code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar lowerCAmelCase_ : Optional[Any] = TypeVar('T') class __SCREAMING_SNAKE_CASE (Generic[T] ): """simple docstring""" def __init__( self : Optional[Any] , __a : T ): _a = data _a = self _a = 0 class __SCREAMING_SNAKE_CASE (Generic[T] ): """simple docstring""" def __init__( self : Dict ): # map from node name to the node object _a = {} def UpperCamelCase__ ( self : Any , __a : T ): # create a new set with x as its member _a = DisjointSetTreeNode(__a ) def UpperCamelCase__ ( self : Tuple , __a : T ): # find the set x belongs to (with path-compression) _a = self.map[data] if elem_ref != elem_ref.parent: _a = self.find_set(elem_ref.parent.data ) return elem_ref.parent def UpperCamelCase__ ( self : Tuple , __a : DisjointSetTreeNode[T] , __a : DisjointSetTreeNode[T] ): # helper function for union operation if nodea.rank > nodea.rank: _a = nodea else: _a = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def UpperCamelCase__ ( self : Dict , __a : T , __a : T ): # merge 2 disjoint sets self.link(self.find_set(__a ) , self.find_set(__a ) ) class __SCREAMING_SNAKE_CASE (Generic[T] ): """simple docstring""" def __init__( self : Tuple ): # connections: map from the node to the neighbouring nodes (with weights) _a = {} def UpperCamelCase__ ( self : Any , __a : T ): # add a node ONLY if its not present in the graph if node not in self.connections: _a = {} def UpperCamelCase__ ( self : Any , __a : T , __a : T , __a : int ): # add an edge with the given weight self.add_node(__a ) self.add_node(__a ) _a = weight _a = weight def UpperCamelCase__ ( self : Union[str, Any] ): _a = [] _a = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda __a : x[2] ) # creating the disjoint set _a = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__a ) # MST generation _a = 0 _a = 0 _a = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: _a , _a , _a = edges[index] index += 1 _a = disjoint_set.find_set(__a ) _a = disjoint_set.find_set(__a ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__a , __a , __a ) disjoint_set.union(__a , __a ) return graph
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __get__( self : Dict , __a : List[str] , __a : Dict=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) _a = "__cached_" + self.fget.__name__ _a = getattr(__a , __a , __a ) if cached is None: _a = self.fget(__a ) setattr(__a , __a , __a ) return cached def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def _lowerCamelCase ( lowercase : Tuple ) -> Optional[Any]: if is_torch_fx_proxy(lowercase ): return True if is_torch_available(): import torch if isinstance(lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(lowercase , np.ndarray ) def _lowerCamelCase ( lowercase : Any ) -> str: return isinstance(lowercase , np.ndarray ) def _lowerCamelCase ( lowercase : Any ) -> Optional[int]: return _is_numpy(lowercase ) def _lowerCamelCase ( lowercase : Optional[int] ) -> List[str]: import torch return isinstance(lowercase , torch.Tensor ) def _lowerCamelCase ( lowercase : Tuple ) -> int: return False if not is_torch_available() else _is_torch(lowercase ) def _lowerCamelCase ( lowercase : Dict ) -> str: import torch return isinstance(lowercase , torch.device ) def _lowerCamelCase ( lowercase : Any ) -> str: return False if not is_torch_available() else _is_torch_device(lowercase ) def _lowerCamelCase ( lowercase : int ) -> Any: import torch if isinstance(lowercase , lowercase ): if hasattr(lowercase , lowercase ): _a = getattr(lowercase , lowercase ) else: return False return isinstance(lowercase , torch.dtype ) def _lowerCamelCase ( lowercase : Optional[Any] ) -> Dict: return False if not is_torch_available() else _is_torch_dtype(lowercase ) def _lowerCamelCase ( lowercase : List[str] ) -> Tuple: import tensorflow as tf return isinstance(lowercase , tf.Tensor ) def _lowerCamelCase ( lowercase : Optional[int] ) -> List[str]: return False if not is_tf_available() else _is_tensorflow(lowercase ) def _lowerCamelCase ( lowercase : Optional[Any] ) -> Tuple: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowercase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(lowercase ) return type(lowercase ) == tf.Tensor def _lowerCamelCase ( lowercase : Optional[int] ) -> Any: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowercase ) def _lowerCamelCase ( lowercase : str ) -> str: import jax.numpy as jnp # noqa: F811 return isinstance(lowercase , jnp.ndarray ) def _lowerCamelCase ( lowercase : List[str] ) -> Optional[Any]: return False if not is_flax_available() else _is_jax(lowercase ) def _lowerCamelCase ( lowercase : Optional[Any] ) -> Any: if isinstance(lowercase , (dict, UserDict) ): return {k: to_py_obj(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return [to_py_obj(lowercase ) for o in obj] elif is_tf_tensor(lowercase ): return obj.numpy().tolist() elif is_torch_tensor(lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ).tolist() elif isinstance(lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _lowerCamelCase ( lowercase : Any ) -> List[str]: if isinstance(lowercase , (dict, UserDict) ): return {k: to_numpy(lowercase ) for k, v in obj.items()} elif isinstance(lowercase , (list, tuple) ): return np.array(lowercase ) elif is_tf_tensor(lowercase ): return obj.numpy() elif is_torch_tensor(lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowercase ): return np.asarray(lowercase ) else: return obj class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): _a = fields(self ) # Safety and consistency checks if not len(__a ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) _a = getattr(self , class_fields[0].name ) _a = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__a ): if isinstance(__a , __a ): _a = first_field.items() _a = True else: try: _a = iter(__a ) _a = True except TypeError: _a = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__a ): if ( not isinstance(__a , (list, tuple) ) or not len(__a ) == 2 or not isinstance(element[0] , __a ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _a = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _a = element[1] elif first_field is not None: _a = first_field else: for field in class_fields: _a = getattr(self , field.name ) if v is not None: _a = v def __delitem__( self : Optional[Any] , *__a : Optional[int] , **__a : Tuple ): raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase__ ( self : Any , *__a : Optional[Any] , **__a : int ): raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase__ ( self : Optional[int] , *__a : Union[str, Any] , **__a : Dict ): raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def UpperCamelCase__ ( self : Tuple , *__a : Union[str, Any] , **__a : Any ): raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self : Tuple , __a : Any ): if isinstance(__a , __a ): _a = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[Any] , __a : int , __a : str ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__a , __a ) super().__setattr__(__a , __a ) def __setitem__( self : List[str] , __a : Dict , __a : Optional[int] ): # Will raise a KeyException if needed super().__setitem__(__a , __a ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__a , __a ) def UpperCamelCase__ ( self : Optional[Any] ): return tuple(self[k] for k in self.keys() ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" @classmethod def UpperCamelCase__ ( cls : Dict , __a : str ): raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='longest' __a ='max_length' __a ='do_not_pad' class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='pt' __a ='tf' __a ='np' __a ='jax' class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[str] , __a : List[ContextManager] ): _a = context_managers _a = ExitStack() def __enter__( self : int ): for context_manager in self.context_managers: self.stack.enter_context(__a ) def __exit__( self : List[Any] , *__a : Optional[int] , **__a : Union[str, Any] ): self.stack.__exit__(*__a , **__a ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Union[str, Any]: _a = infer_framework(lowercase ) if framework == "tf": _a = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _a = inspect.signature(model_class.forward ) # PyTorch models else: _a = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _lowerCamelCase ( lowercase : Any ) -> Any: _a = model_class.__name__ _a = infer_framework(lowercase ) if framework == "tf": _a = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _a = inspect.signature(model_class.forward ) # PyTorch models else: _a = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _lowerCamelCase ( lowercase : MutableMapping , lowercase : str = "" , lowercase : str = "." ) -> Tuple: def _flatten_dict(lowercase : List[Any] , lowercase : Any="" , lowercase : List[str]="." ): for k, v in d.items(): _a = str(lowercase ) + delimiter + str(lowercase ) if parent_key else k if v and isinstance(lowercase , lowercase ): yield from flatten_dict(lowercase , lowercase , delimiter=lowercase ).items() else: yield key, v return dict(_flatten_dict(lowercase , lowercase , lowercase ) ) @contextmanager def _lowerCamelCase ( lowercase : Optional[int] , lowercase : bool = False ) -> Dict: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _lowerCamelCase ( lowercase : int , lowercase : int=None ) -> Optional[int]: if is_numpy_array(lowercase ): return np.transpose(lowercase , axes=lowercase ) elif is_torch_tensor(lowercase ): return array.T if axes is None else array.permute(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.transpose(lowercase , perm=lowercase ) elif is_jax_tensor(lowercase ): return jnp.transpose(lowercase , axes=lowercase ) else: raise ValueError(F'Type not supported for transpose: {type(lowercase )}.' ) def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Union[str, Any] ) -> str: if is_numpy_array(lowercase ): return np.reshape(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.reshape(*lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.reshape(lowercase , lowercase ) elif is_jax_tensor(lowercase ): return jnp.reshape(lowercase , lowercase ) else: raise ValueError(F'Type not supported for reshape: {type(lowercase )}.' ) def _lowerCamelCase ( lowercase : Any , lowercase : Dict=None ) -> Union[str, Any]: if is_numpy_array(lowercase ): return np.squeeze(lowercase , axis=lowercase ) elif is_torch_tensor(lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.squeeze(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.squeeze(lowercase , axis=lowercase ) else: raise ValueError(F'Type not supported for squeeze: {type(lowercase )}.' ) def _lowerCamelCase ( lowercase : Dict , lowercase : str ) -> Tuple: if is_numpy_array(lowercase ): return np.expand_dims(lowercase , lowercase ) elif is_torch_tensor(lowercase ): return array.unsqueeze(dim=lowercase ) elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.expand_dims(lowercase , axis=lowercase ) elif is_jax_tensor(lowercase ): return jnp.expand_dims(lowercase , axis=lowercase ) else: raise ValueError(F'Type not supported for expand_dims: {type(lowercase )}.' ) def _lowerCamelCase ( lowercase : Any ) -> Any: if is_numpy_array(lowercase ): return np.size(lowercase ) elif is_torch_tensor(lowercase ): return array.numel() elif is_tf_tensor(lowercase ): import tensorflow as tf return tf.size(lowercase ) elif is_jax_tensor(lowercase ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(lowercase )}.' ) def _lowerCamelCase ( lowercase : Any , lowercase : List[Any] ) -> Any: for key, value in auto_map.items(): if isinstance(lowercase , (tuple, list) ): _a = [F'{repo_id}--{v}' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: _a = F'{repo_id}--{value}' return auto_map def _lowerCamelCase ( lowercase : Tuple ) -> str: for base_class in inspect.getmro(lowercase ): _a = base_class.__module__ _a = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : int ) -> tuple[complex, complex]: if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) _a = b * b - 4 * a * c _a = (-b + sqrt(lowercase )) / (2 * a) _a = (-b - sqrt(lowercase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _lowerCamelCase ( ) -> int: _a , _a = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
692
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
1
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : str = logging.get_logger(__name__) # TODO Update this lowerCAmelCase_ : str = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='esm' def __init__( self : Tuple , __a : Union[str, Any]=None , __a : Any=None , __a : List[str]=None , __a : Optional[int]=7_68 , __a : List[str]=12 , __a : Tuple=12 , __a : List[Any]=30_72 , __a : Any=0.1 , __a : Dict=0.1 , __a : int=10_26 , __a : str=0.02 , __a : Any=1e-1_2 , __a : Union[str, Any]="absolute" , __a : int=True , __a : Any=None , __a : str=False , __a : Optional[Any]=False , __a : Tuple=None , __a : Dict=None , **__a : Optional[Any] , ): super().__init__(pad_token_id=__a , mask_token_id=__a , **__a ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = emb_layer_norm_before _a = token_dropout _a = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) _a = EsmFoldConfig() elif isinstance(__a , __a ): _a = EsmFoldConfig(**__a ) _a = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) _a = get_default_vocab_list() else: _a = vocab_list else: _a = None _a = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , __a ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def UpperCamelCase__ ( self : List[Any] ): _a = super().to_dict() if isinstance(self.esmfold_config , __a ): _a = self.esmfold_config.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =None __a =True __a =False __a =False __a =False __a =0 __a =True __a =False __a =128 __a =None def UpperCamelCase__ ( self : Dict ): if self.trunk is None: _a = TrunkConfig() elif isinstance(self.trunk , __a ): _a = TrunkConfig(**self.trunk ) def UpperCamelCase__ ( self : List[Any] ): _a = asdict(self ) _a = self.trunk.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =48 __a =1024 __a =128 __a =32 __a =32 __a =32 __a =0 __a =0 __a =False __a =4 __a =128 __a =None def UpperCamelCase__ ( self : List[Any] ): if self.structure_module is None: _a = StructureModuleConfig() elif isinstance(self.structure_module , __a ): _a = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) _a = self.sequence_state_dim // self.sequence_head_width _a = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(f'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def UpperCamelCase__ ( self : List[Any] ): _a = asdict(self ) _a = self.structure_module.to_dict() return output @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =384 __a =128 __a =16 __a =128 __a =12 __a =4 __a =8 __a =0.1 __a =8 __a =1 __a =2 __a =7 __a =10 __a =1E-8 __a =1E5 def UpperCamelCase__ ( self : List[str] ): return asdict(self ) def _lowerCamelCase ( ) -> str: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[int] , __a : Any , __a : str ): super().__init__() self.register_modules(unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self : Tuple , __a : int = 1 , __a : Optional[torch.Generator] = None , __a : int = 50 , __a : Optional[str] = "pil" , __a : bool = True , **__a : Tuple , ): _a = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__a , ) _a = image.to(self.device ) # set step values self.scheduler.set_timesteps(__a ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _a = self.unet(__a , __a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _a = self.scheduler.step(__a , __a , __a ).prev_sample _a = (image / 2 + 0.5).clamp(0 , 1 ) _a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _a = self.numpy_to_pil(__a ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=__a ), "This is a local test"
692
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
1
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int = 100 ) -> int: _a = sum(i * i for i in range(1 , n + 1 ) ) _a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' import colorsys from PIL import Image # type: ignore def _lowerCamelCase ( lowercase : float , lowercase : float , lowercase : int ) -> float: _a = x _a = y for step in range(lowercase ): # noqa: B007 _a = a * a - b * b + x _a = 2 * a * b + y _a = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _lowerCamelCase ( lowercase : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _lowerCamelCase ( lowercase : float ) -> tuple: if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase , 1 , 1 ) ) def _lowerCamelCase ( lowercase : int = 800 , lowercase : int = 600 , lowercase : float = -0.6 , lowercase : float = 0 , lowercase : float = 3.2 , lowercase : int = 50 , lowercase : bool = True , ) -> Image.Image: _a = Image.new("RGB" , (image_width, image_height) ) _a = img.load() # loop through the image-coordinates for image_x in range(lowercase ): for image_y in range(lowercase ): # determine the figure-coordinates based on the image-coordinates _a = figure_width / image_width * image_height _a = figure_center_x + (image_x / image_width - 0.5) * figure_width _a = figure_center_y + (image_y / image_height - 0.5) * figure_height _a = get_distance(lowercase , lowercase , lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _a = get_color_coded_rgb(lowercase ) else: _a = get_black_and_white_rgb(lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure lowerCAmelCase_ : Optional[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
692
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _lowerCamelCase ( ) -> List[Any]: _a = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" _a = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert("RGB" ) return image def _lowerCamelCase ( lowercase : Dict ) -> Optional[int]: _a = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'visual_encoder.blocks.{i}.norm1.weight', F'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm1.bias', F'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.weight', F'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.norm2.bias', F'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.qkv.weight', F'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.weight', F'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((F'visual_encoder.blocks.{i}.attn.proj.bias', F'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.weight', F'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc1.bias', F'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.weight', F'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((F'visual_encoder.blocks.{i}.mlp.fc2.bias', F'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : int ) -> Union[str, Any]: _a = dct.pop(lowercase ) _a = val def _lowerCamelCase ( lowercase : int , lowercase : str ) -> Union[str, Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _a = state_dict.pop(F'visual_encoder.blocks.{i}.attn.q_bias' ) _a = state_dict.pop(F'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict _a = torch.cat((q_bias, torch.zeros_like(lowercase , requires_grad=lowercase ), v_bias) ) _a = qkv_bias def _lowerCamelCase ( lowercase : List[Any] , lowercase : Union[str, Any] ) -> str: _a = 364 if "coco" in model_name else 224 _a = BlipaVisionConfig(image_size=lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _a = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=lowercase ).to_dict() elif "opt-6.7b" in model_name: _a = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=lowercase ).to_dict() elif "t5-xl" in model_name: _a = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _a = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() _a = BlipaConfig(vision_config=lowercase , text_config=lowercase ) return config, image_size @torch.no_grad() def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : Dict=None , lowercase : int=False ) -> str: _a = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) _a = tokenizer("\n" , add_special_tokens=lowercase ).input_ids[0] _a , _a = get_blipa_config(lowercase , eos_token_id=lowercase ) _a = BlipaForConditionalGeneration(lowercase ).eval() _a = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } _a , _a = model_name_to_original[model_name] # load original model print("Loading original model..." ) _a = "cuda" if torch.cuda.is_available() else "cpu" _a , _a , _a = load_model_and_preprocess( name=lowercase , model_type=lowercase , is_eval=lowercase , device=lowercase ) original_model.eval() print("Done!" ) # update state dict keys _a = original_model.state_dict() _a = create_rename_keys(lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _a = state_dict.pop(lowercase ) if key.startswith("Qformer.bert" ): _a = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: _a = key.replace("self" , "attention" ) if "opt_proj" in key: _a = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: _a = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): _a = key.replace("opt" , "language" ) if key.startswith("t5" ): _a = key.replace("t5" , "language" ) _a = val # read in qv biases read_in_q_v_bias(lowercase , lowercase ) _a , _a = hf_model.load_state_dict(lowercase , strict=lowercase ) assert len(lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _a = load_demo_image() _a = vis_processors["eval"](lowercase ).unsqueeze(0 ).to(lowercase ) _a = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(lowercase ) # create processor _a = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=lowercase , image_std=lowercase ) _a = BlipaProcessor(image_processor=lowercase , tokenizer=lowercase ) _a = processor(images=lowercase , return_tensors="pt" ).pixel_values.to(lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(lowercase , lowercase ) original_model.to(lowercase ) hf_model.to(lowercase ) with torch.no_grad(): if "opt" in model_name: _a = original_model({"image": original_pixel_values, "text_input": [""]} ).logits _a = hf_model(lowercase , lowercase ).logits else: _a = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits _a = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) _a = hf_model(lowercase , lowercase , labels=lowercase ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _a = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=lowercase ) assert torch.allclose(logits[0, :3, :3] , lowercase , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": _a = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=lowercase ) else: # cast to same type _a = logits.dtype assert torch.allclose(original_logits.to(lowercase ) , lowercase , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) _a = "" _a = tokenizer(lowercase , return_tensors="pt" ).input_ids.to(lowercase ) _a = original_model.generate({"image": original_pixel_values} ) _a = hf_model.generate( lowercase , lowercase , do_sample=lowercase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , lowercase ) _a = input_ids.shape[1] _a = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowercase ) _a = [text.strip() for text in output_text] print("HF generation:" , lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase ) hf_model.save_pretrained(lowercase ) if push_to_hub: processor.push_to_hub(F'nielsr/{model_name}' ) hf_model.push_to_hub(F'nielsr/{model_name}' ) if __name__ == "__main__": lowerCAmelCase_ : int = argparse.ArgumentParser() lowerCAmelCase_ : Union[str, Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) lowerCAmelCase_ : Union[str, Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
692
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
1
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase_ : Optional[Any] = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : List[Any] ): _a = tempfile.mkdtemp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "的", "价", "格", "是", "15", "便", "alex", "##andra", ",", "。", "-", "t", "shirt", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _a = { "do_resize": True, "size": {"height": 2_24, "width": 2_24}, "do_center_crop": True, "crop_size": {"height": 18, "width": 18}, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], "do_convert_rgb": True, } _a = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__a , __a ) def UpperCamelCase__ ( self : Optional[int] , **__a : str ): return BertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[int] , **__a : List[str] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , **__a : Tuple ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Any ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self : Tuple ): _a = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] _a = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase__ ( self : Optional[int] ): _a = self.get_tokenizer() _a = self.get_rust_tokenizer() _a = self.get_image_processor() _a = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) _a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) _a = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) _a = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def UpperCamelCase__ ( self : Tuple ): _a = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _a = self.get_tokenizer(cls_token="(CLS)" , sep_token="(SEP)" ) _a = self.get_image_processor(do_normalize=__a ) _a = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="(CLS)" , sep_token="(SEP)" , do_normalize=__a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def UpperCamelCase__ ( self : Tuple ): _a = self.get_image_processor() _a = self.get_tokenizer() _a = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) _a = self.prepare_image_inputs() _a = image_processor(__a , return_tensors="np" ) _a = processor(images=__a , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.get_image_processor() _a = self.get_tokenizer() _a = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) _a = "Alexandra,T-shirt的价格是15便士。" _a = processor(text=__a ) _a = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.get_image_processor() _a = self.get_tokenizer() _a = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) _a = "Alexandra,T-shirt的价格是15便士。" _a = self.prepare_image_inputs() _a = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def UpperCamelCase__ ( self : Any ): _a = self.get_image_processor() _a = self.get_tokenizer() _a = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) _a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _a = processor.batch_decode(__a ) _a = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.get_image_processor() _a = self.get_tokenizer() _a = ChineseCLIPProcessor(tokenizer=__a , image_processor=__a ) _a = "Alexandra,T-shirt的价格是15便士。" _a = self.prepare_image_inputs() _a = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
692
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int , lowercase : int ) -> int: _a = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): _a = n - k # Calculate C(n,k) for i in range(lowercase ): result *= n - i result //= i + 1 return result def _lowerCamelCase ( lowercase : int ) -> int: return binomial_coefficient(2 * node_count , lowercase ) // (node_count + 1) def _lowerCamelCase ( lowercase : int ) -> int: if n < 0: raise ValueError("factorial() not defined for negative values" ) _a = 1 for i in range(1 , n + 1 ): result *= i return result def _lowerCamelCase ( lowercase : int ) -> int: return catalan_number(lowercase ) * factorial(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Dict = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : Any ) -> List[Any]: _a = "" for i in table: res += inp[i - 1] return res def _lowerCamelCase ( lowercase : str ) -> int: return data[1:] + data[0] def _lowerCamelCase ( lowercase : List[Any] , lowercase : Union[str, Any] ) -> Optional[Any]: _a = "" for i in range(len(lowercase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def _lowerCamelCase ( lowercase : int , lowercase : int ) -> Optional[int]: _a = int("0b" + data[0] + data[-1] , 2 ) _a = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def _lowerCamelCase ( lowercase : List[Any] , lowercase : List[str] , lowercase : int , lowercase : Union[str, Any] , lowercase : int ) -> str: _a = message[:4] _a = message[4:] _a = apply_table(lowercase , lowercase ) _a = xor(lowercase , lowercase ) _a = apply_sbox(lowercase , temp[:4] ) # noqa: E741 _a = apply_sbox(lowercase , temp[4:] ) _a = "0" * (2 - len(lowercase )) + l # noqa: E741 _a = "0" * (2 - len(lowercase )) + r _a = apply_table(l + r , lowercase ) _a = xor(lowercase , lowercase ) return temp + right if __name__ == "__main__": lowerCAmelCase_ : List[Any] = input('Enter 10 bit key: ') lowerCAmelCase_ : int = input('Enter 8 bit message: ') lowerCAmelCase_ : int = [6, 3, 7, 4, 8, 5, 10, 9] lowerCAmelCase_ : Tuple = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowerCAmelCase_ : int = [2, 4, 3, 1] lowerCAmelCase_ : Optional[int] = [2, 6, 3, 1, 4, 8, 5, 7] lowerCAmelCase_ : int = [4, 1, 3, 5, 7, 2, 8, 6] lowerCAmelCase_ : Tuple = [4, 1, 2, 3, 2, 3, 4, 1] lowerCAmelCase_ : Optional[Any] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowerCAmelCase_ : Optional[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowerCAmelCase_ : Union[str, Any] = apply_table(key, paa_table) lowerCAmelCase_ : Any = temp[:5] lowerCAmelCase_ : List[str] = temp[5:] lowerCAmelCase_ : Tuple = left_shift(left) lowerCAmelCase_ : List[str] = left_shift(right) lowerCAmelCase_ : Union[str, Any] = apply_table(left + right, pa_table) lowerCAmelCase_ : str = left_shift(left) lowerCAmelCase_ : int = left_shift(right) lowerCAmelCase_ : Optional[int] = left_shift(left) lowerCAmelCase_ : Optional[Any] = left_shift(right) lowerCAmelCase_ : Union[str, Any] = apply_table(left + right, pa_table) # encryption lowerCAmelCase_ : Optional[Any] = apply_table(message, IP) lowerCAmelCase_ : Optional[Any] = function(expansion, sa, sa, keya, temp) lowerCAmelCase_ : Optional[Any] = temp[4:] + temp[:4] lowerCAmelCase_ : Union[str, Any] = function(expansion, sa, sa, keya, temp) lowerCAmelCase_ : Optional[Any] = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption lowerCAmelCase_ : str = apply_table(CT, IP) lowerCAmelCase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowerCAmelCase_ : str = temp[4:] + temp[:4] lowerCAmelCase_ : Optional[int] = function(expansion, sa, sa, keya, temp) lowerCAmelCase_ : int = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import math lowerCAmelCase_ : Tuple = 10 lowerCAmelCase_ : Tuple = 7 lowerCAmelCase_ : int = BALLS_PER_COLOUR * NUM_COLOURS def _lowerCamelCase ( lowercase : int = 20 ) -> str: _a = math.comb(lowercase , lowercase ) _a = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowercase ) _a = NUM_COLOURS * (1 - missing_colour / total) return F'{result:.9f}' if __name__ == "__main__": print(solution(20))
692
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import re def _lowerCamelCase ( lowercase : str ) -> bool: _a = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(lowercase , lowercase ) ) if __name__ == "__main__": lowerCAmelCase_ : int = '0094702343221' print(is_sri_lankan_phone_number(phone))
692
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
1
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase_ : int = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Union[str, Any]: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') lowerCAmelCase_ : str = parser.parse_args() if args.check_lib: lowerCAmelCase_ : List[Any] = importlib.import_module('transformers') lowerCAmelCase_ : Tuple = Path(transformers_module.__file__).parent else: lowerCAmelCase_ : Any = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =None __a =BloomTokenizerFast __a =BloomTokenizerFast __a =True __a =False __a ='tokenizer_file' __a ={'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def UpperCamelCase__ ( self : List[str] ): super().setUp() _a = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : List[Any] , **__a : Optional[int] ): kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Dict ): _a = self.get_rust_tokenizer() _a = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] _a = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]] _a = tokenizer.batch_encode_plus(__a )["input_ids"] self.assertListEqual(__a , __a ) _a = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a ) def UpperCamelCase__ ( self : Tuple , __a : Optional[Any]=6 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _a = self.rust_tokenizer_class.from_pretrained(__a , **__a ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _a = "This is a simple input" _a = ["This is a simple input 1", "This is a simple input 2"] _a = ("This is a simple input", "This is a pair") _a = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(__a , max_length=__a ) tokenizer_r.encode_plus(__a , max_length=__a ) tokenizer_r.batch_encode_plus(__a , max_length=__a ) tokenizer_r.encode(__a , max_length=__a ) tokenizer_r.batch_encode_plus(__a , max_length=__a ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) _a = None # Hotfixing padding = None self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Simple input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) # Pair input self.assertRaises(__a , tokenizer_r.encode , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises(__a , tokenizer_r.encode_plus , __a , max_length=__a , padding="max_length" ) # Pair input self.assertRaises( __a , tokenizer_r.batch_encode_plus , __a , max_length=__a , padding="max_length" , ) def UpperCamelCase__ ( self : str ): _a = self.get_rust_tokenizer() _a = load_dataset("xnli" , "all_languages" , split="test" , streaming=__a ) _a = next(iter(__a ) )["premise"] # pick up one data _a = list(sample_data.values() ) _a = list(map(tokenizer.encode , __a ) ) _a = [tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) for x in output_tokens] self.assertListEqual(__a , __a ) def UpperCamelCase__ ( self : Optional[Any] ): # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
692
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
1
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
1
'''simple docstring''' from __future__ import annotations def _lowerCamelCase ( lowercase : str , lowercase : list[str] | None = None ) -> list[list[str]]: _a = word_bank or [] # create a table _a = len(lowercase ) + 1 _a = [] for _ in range(lowercase ): table.append([] ) # seed value _a = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowercase )] == word: _a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowercase )]: combination.reverse() return table[len(lowercase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
692
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
1
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Any: if not is_accelerate_available(): return method _a = version.parse(accelerate.__version__ ).base_version if version.parse(lowercase ) < version.parse("0.17.0" ): return method def wrapper(self : Union[str, Any] , *lowercase : Optional[Any] , **lowercase : Dict ): if hasattr(self , "_hf_hook" ) and hasattr(self._hf_hook , "pre_forward" ): self._hf_hook.pre_forward(self ) return method(self , *lowercase , **lowercase ) return wrapper
692
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) __a =Features({'text': Value('string' )} ) __a =Features({'labels': ClassLabel} ) __a ="text" __a ="labels" def UpperCamelCase__ ( self : List[str] , __a : Any ): if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __a ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) _a = copy.deepcopy(self ) _a = self.label_schema.copy() _a = features[self.label_column] _a = label_schema return task_template @property def UpperCamelCase__ ( self : Any ): return { self.text_column: "text", self.label_column: "labels", }
692
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowerCAmelCase_ : str = get_tests_dir('fixtures') class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ): # A mock response for an HTTP head request to emulate server down _a = mock.Mock() _a = 5_00 _a = {} _a = HTTPError _a = {} # Download this model to make sure it's in the cache. _a = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=__a ) as mock_head: _a = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase__ ( self : Any ): # This test is for deprecated behavior and can be removed in v5 _a = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def UpperCamelCase__ ( self : Any ): with self.assertRaises(__a ): # config is in subfolder, the following should not work without specifying the subfolder _a = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) _a = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(__a ) @is_staging_test class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @classmethod def UpperCamelCase__ ( cls : Optional[int] ): _a = TOKEN HfFolder.save_token(__a ) @classmethod def UpperCamelCase__ ( cls : Any ): try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def UpperCamelCase__ ( self : Dict ): _a = ViTImageProcessor.from_pretrained(__a ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __a , repo_id="test-image-processor" , push_to_hub=__a , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(__a , getattr(__a , __a ) ) def UpperCamelCase__ ( self : Dict ): _a = ViTImageProcessor.from_pretrained(__a ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __a , repo_id="valid_org/test-image-processor-org" , push_to_hub=__a , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__a , getattr(__a , __a ) ) def UpperCamelCase__ ( self : List[str] ): CustomImageProcessor.register_for_auto_class() _a = CustomImageProcessor.from_pretrained(__a ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) _a = AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=__a ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict , __a : int , __a : List[str] ): return f'gaussian_noise_s={seed}_shape={"_".join([str(__a ) for s in shape] )}.npy' def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() def UpperCamelCase__ ( self : Any , __a : Optional[int]=0 , __a : str=(4, 4, 64, 64) , __a : List[str]=False ): _a = jnp.bfloataa if fpaa else jnp.floataa _a = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return image def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[Any]=False , __a : Optional[int]="CompVis/stable-diffusion-v1-4" ): _a = jnp.bfloataa if fpaa else jnp.floataa _a = "bf16" if fpaa else None _a , _a = FlaxUNetaDConditionModel.from_pretrained( __a , subfolder="unet" , dtype=__a , revision=__a ) return model, params def UpperCamelCase__ ( self : Optional[Any] , __a : Any=0 , __a : Optional[int]=(4, 77, 7_68) , __a : Tuple=False ): _a = jnp.bfloataa if fpaa else jnp.floataa _a = jnp.array(load_hf_numpy(self.get_file_format(__a , __a ) ) , dtype=__a ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 10_00, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def UpperCamelCase__ ( self : Optional[Any] , __a : Any , __a : Dict , __a : Union[str, Any] ): _a , _a = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=__a ) _a = self.get_latents(__a , fpaa=__a ) _a = self.get_encoder_hidden_states(__a , fpaa=__a ) _a = model.apply( {"params": params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape _a = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _a = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__a , __a , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 10_00, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def UpperCamelCase__ ( self : int , __a : int , __a : Optional[Any] , __a : Any ): _a , _a = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=__a ) _a = self.get_latents(__a , shape=(4, 4, 96, 96) , fpaa=__a ) _a = self.get_encoder_hidden_states(__a , shape=(4, 77, 10_24) , fpaa=__a ) _a = model.apply( {"params": params} , __a , jnp.array(__a , dtype=jnp.intaa ) , encoder_hidden_states=__a , ).sample assert sample.shape == latents.shape _a = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _a = jnp.array(__a , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__a , __a , atol=1e-2 )
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __SCREAMING_SNAKE_CASE : """simple docstring""" def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _a = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _a = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=__a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) _a = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase__ ( self : List[str] ): torch.manual_seed(0 ) _a = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _a = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _a = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _a = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=__a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) _a = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) _a = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase__ ( self : Tuple ): _a = self.get_dummy_components() _a = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = inputs["prompt"] _a = inputs["generator"] _a = inputs["num_inference_steps"] _a = inputs["output_type"] if "image" in inputs: _a = inputs["image"] else: _a = None if "mask_image" in inputs: _a = inputs["mask_image"] else: _a = None if "original_image" in inputs: _a = inputs["original_image"] else: _a = None _a , _a = pipe.encode_prompt(__a ) # inputs with prompt converted to embeddings _a = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _a = image if mask_image is not None: _a = mask_image if original_image is not None: _a = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__a , __a , __a ) _a = pipe(**__a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__a ) _a = self.pipeline_class.from_pretrained(__a ) pipe_loaded.to(__a ) pipe_loaded.set_progress_bar_config(disable=__a ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__a , __a ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) _a = self.get_dummy_inputs(__a ) _a = inputs["generator"] _a = inputs["num_inference_steps"] _a = inputs["output_type"] # inputs with prompt converted to embeddings _a = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _a = image if mask_image is not None: _a = mask_image if original_image is not None: _a = original_image _a = pipe_loaded(**__a )[0] _a = np.abs(to_np(__a ) - to_np(__a ) ).max() self.assertLess(__a , 1e-4 ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.get_dummy_components() _a = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = self.get_dummy_inputs(__a ) _a = pipe(**__a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__a ) _a = self.pipeline_class.from_pretrained(__a ) pipe_loaded.to(__a ) pipe_loaded.set_progress_bar_config(disable=__a ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _a = self.get_dummy_inputs(__a ) _a = pipe_loaded(**__a )[0] _a = np.abs(to_np(__a ) - to_np(__a ) ).max() self.assertLess(__a , 1e-4 )
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
1
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =IFPipeline __a =TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'} __a =TEXT_TO_IMAGE_BATCH_PARAMS __a =PipelineTesterMixin.required_optional_params - {'latents'} def UpperCamelCase__ ( self : Optional[int] ): return self._get_dummy_components() def UpperCamelCase__ ( self : Any , __a : Union[str, Any] , __a : Optional[Any]=0 ): if str(__a ).startswith("mps" ): _a = torch.manual_seed(__a ) else: _a = torch.Generator(device=__a ).manual_seed(__a ) _a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def UpperCamelCase__ ( self : List[str] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCamelCase__ ( self : List[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def UpperCamelCase__ ( self : List[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def UpperCamelCase__ ( self : Dict ): self._test_save_load_local() def UpperCamelCase__ ( self : int ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : int ): # if _a = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) _a = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=__a , tokenizer=__a ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) _a , _a = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _a = None _a = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(__a , __a , __a , __a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _a = IFImgaImgPipeline(**pipe_a.components ) _a = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(__a , __a , __a , __a ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _a = IFInpaintingPipeline(**pipe_a.components ) _a = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(__a , __a , __a , __a ) def UpperCamelCase__ ( self : Optional[int] , __a : List[Any] , __a : str , __a : str , __a : Optional[int] ): # pipeline 1 _start_torch_memory_measurement() _a = torch.Generator(device="cpu" ).manual_seed(0 ) _a = pipe_a( prompt_embeds=__a , negative_prompt_embeds=__a , num_inference_steps=2 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (64, 64, 3) _a = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(__a , __a ) # pipeline 2 _start_torch_memory_measurement() _a = torch.Generator(device="cpu" ).manual_seed(0 ) _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__a ) _a = pipe_a( prompt_embeds=__a , negative_prompt_embeds=__a , image=__a , generator=__a , num_inference_steps=2 , output_type="np" , ) _a = output.images[0] assert image.shape == (2_56, 2_56, 3) _a = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(__a , __a ) def UpperCamelCase__ ( self : List[Any] , __a : List[Any] , __a : Union[str, Any] , __a : int , __a : Union[str, Any] ): # pipeline 1 _start_torch_memory_measurement() _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__a ) _a = torch.Generator(device="cpu" ).manual_seed(0 ) _a = pipe_a( prompt_embeds=__a , negative_prompt_embeds=__a , image=__a , num_inference_steps=2 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (64, 64, 3) _a = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(__a , __a ) # pipeline 2 _start_torch_memory_measurement() _a = torch.Generator(device="cpu" ).manual_seed(0 ) _a = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__a ) _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__a ) _a = pipe_a( prompt_embeds=__a , negative_prompt_embeds=__a , image=__a , original_image=__a , generator=__a , num_inference_steps=2 , output_type="np" , ) _a = output.images[0] assert image.shape == (2_56, 2_56, 3) _a = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(__a , __a ) def UpperCamelCase__ ( self : Dict , __a : Dict , __a : Optional[Any] , __a : Dict , __a : Tuple ): # pipeline 1 _start_torch_memory_measurement() _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__a ) _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(__a ) _a = torch.Generator(device="cpu" ).manual_seed(0 ) _a = pipe_a( prompt_embeds=__a , negative_prompt_embeds=__a , image=__a , mask_image=__a , num_inference_steps=2 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (64, 64, 3) _a = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(__a , __a ) # pipeline 2 _start_torch_memory_measurement() _a = torch.Generator(device="cpu" ).manual_seed(0 ) _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(__a ) _a = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(__a ) _a = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(__a ) _a = pipe_a( prompt_embeds=__a , negative_prompt_embeds=__a , image=__a , mask_image=__a , original_image=__a , generator=__a , num_inference_steps=2 , output_type="np" , ) _a = output.images[0] assert image.shape == (2_56, 2_56, 3) _a = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(__a , __a ) def _lowerCamelCase ( ) -> Optional[int]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
692
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
1
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin lowerCAmelCase_ : Any = logging.get_logger(__name__) enable_full_determinism() class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =UNetaDModel __a ='sample' @property def UpperCamelCase__ ( self : List[str] ): _a = 4 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) _a = torch.tensor([10] ).to(__a ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase__ ( self : Optional[int] ): return (3, 32, 32) @property def UpperCamelCase__ ( self : Optional[Any] ): return (3, 32, 32) def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } _a = self.dummy_input return init_dict, inputs_dict class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =UNetaDModel __a ='sample' @property def UpperCamelCase__ ( self : Union[str, Any] ): _a = 4 _a = 4 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) _a = torch.tensor([10] ).to(__a ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase__ ( self : List[str] ): return (4, 32, 32) @property def UpperCamelCase__ ( self : Tuple ): return (4, 32, 32) def UpperCamelCase__ ( self : Union[str, Any] ): _a = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } _a = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ ( self : Optional[int] ): _a , _a = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__a ) _a = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def UpperCamelCase__ ( self : int ): _a , _a = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=__a ) model.to(__a ) _a = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU" ) def UpperCamelCase__ ( self : Union[str, Any] ): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` _a , _a = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=__a ) model_accelerate.to(__a ) model_accelerate.eval() _a = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) _a = noise.to(__a ) _a = torch.tensor([10] * noise.shape[0] ).to(__a ) _a = model_accelerate(__a , __a )["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() _a , _a = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=__a , low_cpu_mem_usage=__a ) model_normal_load.to(__a ) model_normal_load.eval() _a = model_normal_load(__a , __a )["sample"] assert torch_all_close(__a , __a , rtol=1e-3 ) def UpperCamelCase__ ( self : Optional[int] ): _a = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" ) model.eval() model.to(__a ) _a = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) _a = noise.to(__a ) _a = torch.tensor([10] * noise.shape[0] ).to(__a ) with torch.no_grad(): _a = model(__a , __a ).sample _a = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _a = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__a , __a , rtol=1e-3 ) ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =UNetaDModel __a ='sample' @property def UpperCamelCase__ ( self : Tuple , __a : List[str]=(32, 32) ): _a = 4 _a = 3 _a = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) _a = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=__a ) return {"sample": noise, "timestep": time_step} @property def UpperCamelCase__ ( self : Union[str, Any] ): return (3, 32, 32) @property def UpperCamelCase__ ( self : Tuple ): return (3, 32, 32) def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0 ), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } _a = self.dummy_input return init_dict, inputs_dict @slow def UpperCamelCase__ ( self : List[str] ): _a , _a = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(__a ) _a = self.dummy_input _a = floats_tensor((4, 3) + (2_56, 2_56) ).to(__a ) _a = noise _a = model(**__a ) assert image is not None, "Make sure output is not None" @slow def UpperCamelCase__ ( self : Dict ): _a = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" ) model.to(__a ) _a = 4 _a = 3 _a = (2_56, 2_56) _a = torch.ones((batch_size, num_channels) + sizes ).to(__a ) _a = torch.tensor(batch_size * [1e-4] ).to(__a ) with torch.no_grad(): _a = model(__a , __a ).sample _a = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _a = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__a , __a , rtol=1e-2 ) ) def UpperCamelCase__ ( self : str ): _a = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update" ) model.to(__a ) _a = 4 _a = 3 _a = (32, 32) _a = torch.ones((batch_size, num_channels) + sizes ).to(__a ) _a = torch.tensor(batch_size * [1e-4] ).to(__a ) with torch.no_grad(): _a = model(__a , __a ).sample _a = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off _a = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__a , __a , rtol=1e-2 ) ) def UpperCamelCase__ ( self : Optional[Any] ): # not required for this model pass
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _lowerCamelCase ( lowercase : List[Any] , lowercase : List[Any] , lowercase : Tuple=None , lowercase : Tuple=None ) -> Dict: if attention_mask is None: _a = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =OPTConfig __a ={} __a ='gelu' def __init__( self : Any , __a : Optional[Any] , __a : Optional[int]=13 , __a : Union[str, Any]=7 , __a : Optional[int]=True , __a : List[str]=False , __a : int=99 , __a : int=16 , __a : Union[str, Any]=2 , __a : Optional[Any]=4 , __a : Dict=4 , __a : List[Any]="gelu" , __a : Any=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=20 , __a : List[Any]=2 , __a : Dict=1 , __a : Optional[int]=0 , __a : List[str]=16 , __a : List[Any]=16 , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = eos_token_id _a = pad_token_id _a = bos_token_id _a = embed_dim _a = word_embed_proj_dim _a = False def UpperCamelCase__ ( self : Dict ): _a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _a = tf.concat([input_ids, eos_tensor] , axis=1 ) _a = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__a , **self.config_updates , ) _a = prepare_opt_inputs_dict(__a , __a ) return config, inputs_dict def UpperCamelCase__ ( self : List[str] , __a : int , __a : List[str] ): _a = TFOPTModel(config=__a ) _a = inputs_dict["input_ids"] _a = input_ids[:1, :] _a = inputs_dict["attention_mask"][:1, :] _a = 1 # first forward pass _a = model(__a , attention_mask=__a , use_cache=__a ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _a = tf.concat([input_ids, next_tokens] , axis=-1 ) _a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _a = model(__a , attention_mask=__a )[0] _a = model(__a , attention_mask=__a , past_key_values=__a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _a = output_from_no_past[:, -3:, random_slice_idx] _a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__a , __a , rtol=1e-3 ) @require_tf class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =(TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __a =(TFOPTForCausalLM,) if is_tf_available() else () __a =( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) __a =False __a =False __a =False __a =10 def UpperCamelCase__ ( self : Union[str, Any] ): _a = TFOPTModelTester(self ) _a = ConfigTester(self , config_class=__a ) def UpperCamelCase__ ( self : Optional[Any] ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : str ): _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__a ) def UpperCamelCase__ ( self : str ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__a : Optional[int] , __a : Optional[int] ): if hasattr(__a , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__a , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings _a = model_class(config=__a ) _a = _get_word_embedding_weight(__a , model.get_input_embeddings() ) _a = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__a ) _a = _get_word_embedding_weight(__a , model.get_input_embeddings() ) _a = _get_word_embedding_weight(__a , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. _a = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __a ) # check that weights remain the same after resizing _a = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _a = False self.assertTrue(__a ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __a ) _a = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: _a = False self.assertTrue(__a ) def _lowerCamelCase ( lowercase : Dict ) -> List[str]: return tf.constant(lowercase , dtype=tf.intaa ) @require_tf class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" __a =99 def UpperCamelCase__ ( self : Dict ): _a = tf.ones((4, 1) , dtype=tf.intaa ) * 2 _a = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) _a = input_ids.shape[0] _a = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : Union[str, Any] ): _a = TFOPTModel.from_pretrained("facebook/opt-350m" ) _a = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _a = tf.not_equal(__a , model.config.pad_token_id ) with tf.GradientTape(): _a = model(input_ids=__a , attention_mask=__a ).last_hidden_state _a = (1, 11, 5_12) self.assertEqual(output.shape , __a ) _a = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4e-3 ) ) _a = tf.function(__a , jit_compile=__a ) _a = xla_generate(__a , __a )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __a , atol=4e-2 ) ) @require_tf @slow class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : int ): super().setUp() _a = "facebook/opt-350m" def UpperCamelCase__ ( self : Tuple ): _a = TFOPTForCausalLM.from_pretrained(self.path_model ) _a = GPTaTokenizer.from_pretrained(self.path_model ) _a = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False _a = tokenizer(__a , return_tensors="tf" , padding=__a , add_special_tokens=__a ) _a = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) _a = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(__a , __a , atol=1e-4 ) ) _a = tf.function(__a , jit_compile=__a ) _a = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__a , __a , atol=1e-4 ) ) @require_tf @slow class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @property def UpperCamelCase__ ( self : Union[str, Any] ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCamelCase__ ( self : Optional[Any] ): _a = "facebook/opt-125m" _a = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _a = [] _a = GPTaTokenizer.from_pretrained(__a ) _a = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: _a = tokenizer(__a , return_tensors="tf" ).input_ids _a = model.generate(__a , max_length=10 ) _a = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = "facebook/opt-350m" _a = GPTaTokenizer.from_pretrained(__a ) _a = TFOPTForCausalLM.from_pretrained(__a ) _a = "left" # use different length sentences to test batching _a = [ "Hello, my dog is a little", "Today, I", ] _a = tokenizer(__a , return_tensors="tf" , padding=__a ) _a = inputs["input_ids"] _a = model.generate(input_ids=__a , attention_mask=inputs["attention_mask"] ) _a = tokenizer(sentences[0] , return_tensors="tf" ).input_ids _a = model.generate(input_ids=__a ) _a = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) _a = tokenizer(sentences[1] , return_tensors="tf" ).input_ids _a = model.generate(input_ids=__a , max_length=model.config.max_length - num_paddings ) _a = tokenizer.batch_decode(__a , skip_special_tokens=__a ) _a = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__a ) _a = tokenizer.decode(output_padded[0] , skip_special_tokens=__a ) _a = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , [non_padded_sentence, padded_sentence] ) def UpperCamelCase__ ( self : List[str] ): _a = "facebook/opt-350m" _a = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] _a = [] _a = GPTaTokenizer.from_pretrained(__a ) _a = TFOPTForCausalLM.from_pretrained(__a ) for prompt in self.prompts: _a = tokenizer(__a , return_tensors="tf" ).input_ids _a = model.generate(__a , max_length=10 ) _a = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a )
692
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : List[str] = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase_ : Dict = 4 lowerCAmelCase_ : List[Any] = 3 class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" pass def _lowerCamelCase ( lowercase : List[str] ) -> Union[str, Any]: for shard in shards: for i in range(lowercase ): yield {"i": i, "shard": shard} def _lowerCamelCase ( ) -> List[str]: _a = int(os.environ["RANK"] ) _a = int(os.environ["WORLD_SIZE"] ) _a = ArgumentParser() parser.add_argument("--streaming" , type=lowercase ) parser.add_argument("--local_rank" , type=lowercase ) parser.add_argument("--num_workers" , type=lowercase , default=0 ) _a = parser.parse_args() _a = args.streaming _a = args.num_workers _a = {"shards": [F'shard_{shard_idx}' for shard_idx in range(lowercase )]} _a = IterableDataset.from_generator(lowercase , gen_kwargs=lowercase ) if not streaming: _a = Dataset.from_list(list(lowercase ) ) _a = split_dataset_by_node(lowercase , rank=lowercase , world_size=lowercase ) _a = torch.utils.data.DataLoader(lowercase , num_workers=lowercase ) _a = NUM_SHARDS * NUM_ITEMS_PER_SHARD _a = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _a = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'local_size {local_size} != expected_local_size {expected_local_size}' ) if __name__ == "__main__": main()
692
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
1
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : List[Any] , __a : int , __a : int ): _a = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase__ ( self : Tuple ): _a = None _a = 20 _a = self._get_uniform_logits(batch_size=2 , length=__a ) # tweak scores to not be uniform anymore _a = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch _a = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax _a = jax.nn.softmax(__a , axis=-1 ) _a = FlaxTemperatureLogitsWarper(temperature=0.5 ) _a = FlaxTemperatureLogitsWarper(temperature=1.3 ) _a = jax.nn.softmax(temp_dist_warper_sharper(__a , scores.copy() , cur_len=__a ) , axis=-1 ) _a = jax.nn.softmax(temp_dist_warper_smoother(__a , scores.copy() , cur_len=__a ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def UpperCamelCase__ ( self : Dict ): _a = None _a = 10 _a = 2 # create ramp distribution _a = np.broadcast_to(np.arange(__a )[None, :] , (batch_size, vocab_size) ).copy() _a = ramp_logits[1:, : vocab_size // 2] + vocab_size _a = FlaxTopKLogitsWarper(3 ) _a = top_k_warp(__a , __a , cur_len=__a ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case _a = 5 _a = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) _a = np.broadcast_to(np.arange(__a )[None, :] , (batch_size, length) ).copy() _a = top_k_warp_safety_check(__a , __a , cur_len=__a ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def UpperCamelCase__ ( self : List[str] ): _a = None _a = 10 _a = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) _a = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) _a = FlaxTopPLogitsWarper(0.8 ) _a = np.exp(top_p_warp(__a , __a , cur_len=__a ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 _a = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(__a , __a , atol=1e-3 ) ) # check edge cases with negative and extreme logits _a = np.broadcast_to(np.arange(__a )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme _a = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept _a = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) _a = top_p_warp(__a , __a , cur_len=__a ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def UpperCamelCase__ ( self : Optional[int] ): _a = 20 _a = 4 _a = 0 _a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__a ) # check that min length is applied at length 5 _a = ids_tensor((batch_size, 20) , vocab_size=20 ) _a = 5 _a = self._get_uniform_logits(__a , __a ) _a = min_dist_processor(__a , __a , cur_len=__a ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("inf" )] ) # check that min length is not applied anymore at length 15 _a = self._get_uniform_logits(__a , __a ) _a = 15 _a = min_dist_processor(__a , __a , cur_len=__a ) self.assertFalse(jnp.isinf(__a ).any() ) def UpperCamelCase__ ( self : List[str] ): _a = 20 _a = 4 _a = 0 _a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__a ) # check that all scores are -inf except the bos_token_id score _a = ids_tensor((batch_size, 1) , vocab_size=20 ) _a = 1 _a = self._get_uniform_logits(__a , __a ) _a = logits_processor(__a , __a , cur_len=__a ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 _a = 3 _a = self._get_uniform_logits(__a , __a ) _a = logits_processor(__a , __a , cur_len=__a ) self.assertFalse(jnp.isinf(__a ).any() ) def UpperCamelCase__ ( self : Optional[Any] ): _a = 20 _a = 4 _a = 0 _a = 5 _a = FlaxForcedEOSTokenLogitsProcessor(max_length=__a , eos_token_id=__a ) # check that all scores are -inf except the eos_token_id when max_length is reached _a = ids_tensor((batch_size, 4) , vocab_size=20 ) _a = 4 _a = self._get_uniform_logits(__a , __a ) _a = logits_processor(__a , __a , cur_len=__a ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached _a = 3 _a = self._get_uniform_logits(__a , __a ) _a = logits_processor(__a , __a , cur_len=__a ) self.assertFalse(jnp.isinf(__a ).any() ) def UpperCamelCase__ ( self : Dict ): _a = 4 _a = 10 _a = 15 _a = 2 _a = 1 _a = 15 # dummy input_ids and scores _a = ids_tensor((batch_size, sequence_length) , __a ) _a = input_ids.copy() _a = self._get_uniform_logits(__a , __a ) _a = scores.copy() # instantiate all dist processors _a = FlaxTemperatureLogitsWarper(temperature=0.5 ) _a = FlaxTopKLogitsWarper(3 ) _a = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__a ) _a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__a ) _a = FlaxForcedEOSTokenLogitsProcessor(max_length=__a , eos_token_id=__a ) _a = 10 # no processor list _a = temp_dist_warp(__a , __a , cur_len=__a ) _a = top_k_warp(__a , __a , cur_len=__a ) _a = top_p_warp(__a , __a , cur_len=__a ) _a = min_dist_proc(__a , __a , cur_len=__a ) _a = bos_dist_proc(__a , __a , cur_len=__a ) _a = eos_dist_proc(__a , __a , cur_len=__a ) # with processor list _a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _a = processor(__a , __a , cur_len=__a ) # scores should be equal self.assertTrue(jnp.allclose(__a , __a , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def UpperCamelCase__ ( self : int ): _a = 4 _a = 10 _a = 15 _a = 2 _a = 1 _a = 15 # dummy input_ids and scores _a = ids_tensor((batch_size, sequence_length) , __a ) _a = input_ids.copy() _a = self._get_uniform_logits(__a , __a ) _a = scores.copy() # instantiate all dist processors _a = FlaxTemperatureLogitsWarper(temperature=0.5 ) _a = FlaxTopKLogitsWarper(3 ) _a = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors _a = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=__a ) _a = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=__a ) _a = FlaxForcedEOSTokenLogitsProcessor(max_length=__a , eos_token_id=__a ) _a = 10 # no processor list def run_no_processor_list(__a : List[str] , __a : Optional[int] , __a : Union[str, Any] ): _a = temp_dist_warp(__a , __a , cur_len=__a ) _a = top_k_warp(__a , __a , cur_len=__a ) _a = top_p_warp(__a , __a , cur_len=__a ) _a = min_dist_proc(__a , __a , cur_len=__a ) _a = bos_dist_proc(__a , __a , cur_len=__a ) _a = eos_dist_proc(__a , __a , cur_len=__a ) return scores # with processor list def run_processor_list(__a : int , __a : int , __a : Any ): _a = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) _a = processor(__a , __a , cur_len=__a ) return scores _a = jax.jit(__a ) _a = jax.jit(__a ) _a = jitted_run_no_processor_list(__a , __a , __a ) _a = jitted_run_processor_list(__a , __a , __a ) # scores should be equal self.assertTrue(jnp.allclose(__a , __a , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
1
'''simple docstring''' import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : Dict , __a : Dict=13 , __a : List[Any]=30 , __a : Optional[int]=2 , __a : int=3 , __a : Tuple=True , __a : int=True , __a : str=32 , __a : Any=5 , __a : Any=4 , __a : List[Any]=37 , __a : Any="gelu" , __a : Any=0.1 , __a : List[Any]=0.1 , __a : Optional[int]=10 , __a : Any=0.02 , __a : List[str]=None , ): _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = type_sequence_label_size _a = initializer_range _a = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _a = (image_size // patch_size) ** 2 _a = num_patches + 1 def UpperCamelCase__ ( self : Tuple ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self : str ): return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self : Tuple , __a : List[str] , __a : Union[str, Any] , __a : Optional[int] ): _a = ViTMSNModel(config=__a ) model.to(__a ) model.eval() _a = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : Dict , __a : List[str] , __a : str , __a : List[Any] ): _a = self.type_sequence_label_size _a = ViTMSNForImageClassification(__a ) model.to(__a ) model.eval() _a = model(__a , labels=__a ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _a = 1 _a = ViTMSNForImageClassification(__a ) model.to(__a ) model.eval() _a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _a = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =(ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __a =( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) __a =False __a =False __a =False __a =False def UpperCamelCase__ ( self : Tuple ): _a = ViTMSNModelTester(self ) _a = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def UpperCamelCase__ ( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def UpperCamelCase__ ( self : List[str] ): pass def UpperCamelCase__ ( self : str ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ ( self : Tuple ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : Dict ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def UpperCamelCase__ ( self : int ): for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = ViTMSNModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def _lowerCamelCase ( ) -> Optional[Any]: _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @cached_property def UpperCamelCase__ ( self : int ): return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(2 ) _a = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(__a ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): _a = model(**__a ) # verify the logits _a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) _a = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4 ) )
692
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
1
'''simple docstring''' from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _lowerCamelCase ( ) -> Optional[int]: _a = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } _a = Dataset.from_dict(lowercase ) return dataset class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def UpperCamelCase__ ( self : str ): _a = get_dataset() _a = make_duplicate_clusters(__a , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase__ ( self : Tuple ): _a = get_dataset() _a , _a = deduplicate_dataset(__a ) self.assertEqual(len(__a ) , 2 ) print(__a ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , __a )
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='mctct' def __init__( self : Optional[int] , __a : Optional[Any]=80_65 , __a : int=15_36 , __a : Union[str, Any]=36 , __a : Tuple=61_44 , __a : List[Any]=4 , __a : Any=3_84 , __a : Dict=9_20 , __a : Dict=1e-5 , __a : Dict=0.3 , __a : Optional[Any]="relu" , __a : str=0.02 , __a : str=0.3 , __a : List[Any]=0.3 , __a : List[Any]=1 , __a : Union[str, Any]=0 , __a : Tuple=2 , __a : Any=1 , __a : List[Any]=0.3 , __a : List[Any]=1 , __a : Optional[Any]=(7,) , __a : int=(3,) , __a : Dict=80 , __a : List[Any]=1 , __a : Optional[Any]=None , __a : Dict="sum" , __a : Dict=False , **__a : int , ): super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = intermediate_size _a = num_attention_heads _a = attention_head_dim _a = max_position_embeddings _a = layer_norm_eps _a = layerdrop _a = hidden_act _a = initializer_range _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = pad_token_id _a = bos_token_id _a = eos_token_id _a = conv_glu_dim _a = conv_dropout _a = num_conv_layers _a = input_feat_per_channel _a = input_channels _a = conv_channels _a = ctc_loss_reduction _a = ctc_zero_infinity # prevents config testing fail with exporting to json _a = list(__a ) _a = list(__a ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ' f'`config.num_conv_layers = {self.num_conv_layers}`.' )
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import re def _lowerCamelCase ( lowercase : str ) -> str: if len(re.findall("[ATCG]" , lowercase ) ) != len(lowercase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Tuple = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PegasusTokenizer __a =PegasusTokenizerFast __a =True __a =True def UpperCamelCase__ ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing _a = PegasusTokenizer(__a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase__ ( self : int ): return PegasusTokenizer.from_pretrained("google/pegasus-large" ) def UpperCamelCase__ ( self : List[Any] , **__a : List[str] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Any ): return ("This is a test", "This is a test") def UpperCamelCase__ ( self : Union[str, Any] ): _a = "</s>" _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def UpperCamelCase__ ( self : List[Any] ): _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "</s>" ) self.assertEqual(vocab_keys[-1] , "v" ) self.assertEqual(len(__a ) , 11_03 ) def UpperCamelCase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _a = self.tokenizer_class.from_pretrained(self.tmpdirname ) _a = ( "Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important" " </s> <pad> <pad> <pad>" ) _a = rust_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0] _a = py_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0] self.assertListEqual(__a , __a ) def UpperCamelCase__ ( self : Tuple ): _a = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _a = "<mask_1> To ensure a <mask_2> flow of bank resolutions." _a = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _a = tokenizer([raw_input_str] , return_tensors=__a ).input_ids[0] self.assertListEqual(__a , __a ) def UpperCamelCase__ ( self : List[str] ): _a = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 _a = "To ensure a smooth flow of bank resolutions." _a = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _a = tokenizer([raw_input_str] , return_tensors=__a ).input_ids[0] self.assertListEqual(__a , __a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCamelCase__ ( self : Dict ): _a = ["This is going to be way too long." * 1_50, "short example"] _a = ["not super long but more than 5 tokens", "tiny"] _a = self._large_tokenizer(__a , padding=__a , truncation=__a , return_tensors="pt" ) _a = self._large_tokenizer( text_target=__a , max_length=5 , padding=__a , truncation=__a , return_tensors="pt" ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(__a ) == 2 # input_ids, attention_mask. @slow def UpperCamelCase__ ( self : int ): # fmt: off _a = {"input_ids": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , ) @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PegasusTokenizer __a =PegasusTokenizerFast __a =True __a =True def UpperCamelCase__ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing _a = PegasusTokenizer(__a , offset=0 , mask_token_sent=__a , mask_token="[MASK]" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase__ ( self : Dict ): return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" ) def UpperCamelCase__ ( self : int , **__a : str ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : List[str] , __a : List[Any] ): return ("This is a test", "This is a test") def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _a = self.tokenizer_class.from_pretrained(self.tmpdirname ) _a = ( "Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>" " <pad> <pad> <pad>" ) _a = rust_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0] _a = py_tokenizer([raw_input_str] , return_tensors=__a , add_special_tokens=__a ).input_ids[0] self.assertListEqual(__a , __a ) @require_torch def UpperCamelCase__ ( self : str ): _a = ["This is going to be way too long." * 10_00, "short example"] _a = ["not super long but more than 5 tokens", "tiny"] _a = self._large_tokenizer(__a , padding=__a , truncation=__a , return_tensors="pt" ) _a = self._large_tokenizer( text_target=__a , max_length=5 , padding=__a , truncation=__a , return_tensors="pt" ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(__a ) == 2 # input_ids, attention_mask. def UpperCamelCase__ ( self : Optional[int] ): _a = ( "This is an example string that is used to test the original TF implementation against the HF" " implementation" ) _a = self._large_tokenizer(__a ).input_ids self.assertListEqual( __a , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
692
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
1
'''simple docstring''' from __future__ import annotations from math import pi def _lowerCamelCase ( lowercase : float , lowercase : float , lowercase : float ) -> dict[str, float]: if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if inductance < 0: raise ValueError("Inductance cannot be negative" ) if frequency < 0: raise ValueError("Frequency cannot be negative" ) if reactance < 0: raise ValueError("Inductive reactance cannot be negative" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Tuple , __a : UNetaDModel , __a : UNetaDModel , __a : DDPMScheduler , __a : Tuple , ): super().__init__() _a = value_function _a = unet _a = scheduler _a = env _a = env.get_dataset() _a = {} for key in self.data.keys(): try: _a = self.data[key].mean() except: # noqa: E722 pass _a = {} for key in self.data.keys(): try: _a = self.data[key].std() except: # noqa: E722 pass _a = env.observation_space.shape[0] _a = env.action_space.shape[0] def UpperCamelCase__ ( self : str , __a : Tuple , __a : Optional[int] ): return (x_in - self.means[key]) / self.stds[key] def UpperCamelCase__ ( self : Dict , __a : Any , __a : List[Any] ): return x_in * self.stds[key] + self.means[key] def UpperCamelCase__ ( self : List[Any] , __a : str ): if type(__a ) is dict: return {k: self.to_torch(__a ) for k, v in x_in.items()} elif torch.is_tensor(__a ): return x_in.to(self.unet.device ) return torch.tensor(__a , device=self.unet.device ) def UpperCamelCase__ ( self : str , __a : Any , __a : Optional[Any] , __a : List[str] ): for key, val in cond.items(): _a = val.clone() return x_in def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] , __a : Any , __a : Tuple , __a : List[str] ): _a = x.shape[0] _a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model _a = torch.full((batch_size,) , __a , device=self.unet.device , dtype=torch.long ) for _ in range(__a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _a = self.value_function(x.permute(0 , 2 , 1 ) , __a ).sample _a = torch.autograd.grad([y.sum()] , [x] )[0] _a = self.scheduler._get_variance(__a ) _a = torch.exp(0.5 * posterior_variance ) _a = model_std * grad _a = 0 _a = x.detach() _a = x + scale * grad _a = self.reset_xa(__a , __a , self.action_dim ) _a = self.unet(x.permute(0 , 2 , 1 ) , __a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg _a = self.scheduler.step(__a , __a , __a , predict_epsilon=__a )["prev_sample"] # apply conditions to the trajectory (set the initial state) _a = self.reset_xa(__a , __a , self.action_dim ) _a = self.to_torch(__a ) return x, y def __call__( self : Optional[int] , __a : List[Any] , __a : Union[str, Any]=64 , __a : Union[str, Any]=32 , __a : Optional[Any]=2 , __a : List[Any]=0.1 ): # normalize the observations and create batch dimension _a = self.normalize(__a , "observations" ) _a = obs[None].repeat(__a , axis=0 ) _a = {0: self.to_torch(__a )} _a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _a = randn_tensor(__a , device=self.unet.device ) _a = self.reset_xa(__a , __a , self.action_dim ) _a = self.to_torch(__a ) # run the diffusion process _a , _a = self.run_diffusion(__a , __a , __a , __a ) # sort output trajectories by value _a = y.argsort(0 , descending=__a ).squeeze() _a = x[sorted_idx] _a = sorted_values[:, :, : self.action_dim] _a = actions.detach().cpu().numpy() _a = self.de_normalize(__a , key="actions" ) # select the action with the highest value if y is not None: _a = 0 else: # if we didn't run value guiding, select a random action _a = np.random.randint(0 , __a ) _a = denorm_actions[selected_index, 0] return denorm_actions
692
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='roformer' def __init__( self : str , __a : Any=5_00_00 , __a : Dict=None , __a : Optional[int]=7_68 , __a : Any=12 , __a : str=12 , __a : str=30_72 , __a : List[str]="gelu" , __a : List[str]=0.1 , __a : List[str]=0.1 , __a : Any=15_36 , __a : str=2 , __a : Any=0.02 , __a : Optional[Any]=1e-1_2 , __a : List[str]=0 , __a : str=False , __a : List[Any]=True , **__a : Any , ): super().__init__(pad_token_id=__a , **__a ) _a = vocab_size _a = hidden_size if embedding_size is None else embedding_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = rotary_value _a = use_cache class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : int ): if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
692
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ : Union[str, Any] = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : str = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[Any] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
1
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(PNDMScheduler,) __a =(('num_inference_steps', 50),) def UpperCamelCase__ ( self : Optional[int] , **__a : Optional[int] ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**__a ) return config def UpperCamelCase__ ( self : int , __a : Any=0 , **__a : str ): _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , __a ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals _a = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) _a = scheduler_class.from_pretrained(__a ) new_scheduler.set_timesteps(__a ) # copy over dummy past residuals _a = dummy_past_residuals[:] _a = scheduler.step_prk(__a , __a , __a , **__a ).prev_sample _a = new_scheduler.step_prk(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _a = scheduler.step_plms(__a , __a , __a , **__a ).prev_sample _a = new_scheduler.step_plms(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self : Optional[Any] ): pass def UpperCamelCase__ ( self : List[str] , __a : Union[str, Any]=0 , **__a : Tuple ): _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , __a ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config() _a = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # copy over dummy past residuals (must be after setting timesteps) _a = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__a ) _a = scheduler_class.from_pretrained(__a ) # copy over dummy past residuals new_scheduler.set_timesteps(__a ) # copy over dummy past residual (must be after setting timesteps) _a = dummy_past_residuals[:] _a = scheduler.step_prk(__a , __a , __a , **__a ).prev_sample _a = new_scheduler.step_prk(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _a = scheduler.step_plms(__a , __a , __a , **__a ).prev_sample _a = new_scheduler.step_plms(__a , __a , __a , **__a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self : Any , **__a : int ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a = 10 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for i, t in enumerate(scheduler.prk_timesteps ): _a = model(__a , __a ) _a = scheduler.step_prk(__a , __a , __a ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _a = model(__a , __a ) _a = scheduler.step_plms(__a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : List[str] ): _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , __a ) for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = self.dummy_sample _a = 0.1 * sample if num_inference_steps is not None and hasattr(__a , "set_timesteps" ): scheduler.set_timesteps(__a ) elif num_inference_steps is not None and not hasattr(__a , "set_timesteps" ): _a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _a = dummy_past_residuals[:] _a = scheduler.step_prk(__a , 0 , __a , **__a ).prev_sample _a = scheduler.step_prk(__a , 1 , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _a = scheduler.step_plms(__a , 0 , __a , **__a ).prev_sample _a = scheduler.step_plms(__a , 1 , __a , **__a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Tuple ): for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : List[Any] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , ) def UpperCamelCase__ ( self : Any ): for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : List[Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : List[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : int ): for t in [1, 5, 10]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=__a ) def UpperCamelCase__ ( self : List[Any] ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 _a = 27 for scheduler_class in self.scheduler_classes: _a = self.dummy_sample _a = 0.1 * sample _a = self.get_scheduler_config() _a = scheduler_class(**__a ) scheduler.set_timesteps(__a ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _a = scheduler.step_prk(__a , __a , __a ).prev_sample def UpperCamelCase__ ( self : List[str] ): with self.assertRaises(__a ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def UpperCamelCase__ ( self : Dict ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 198.1318 ) < 1e-2 assert abs(result_mean.item() - 0.2580 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 67.3986 ) < 1e-2 assert abs(result_mean.item() - 0.0878 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 230.0399 ) < 1e-2 assert abs(result_mean.item() - 0.2995 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 186.9482 ) < 1e-2 assert abs(result_mean.item() - 0.2434 ) < 1e-3
692
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
1
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def _lowerCamelCase ( lowercase : Iterable[str] , lowercase : int ) -> Generator[tuple[str, ...], None, None]: _a = iter(lowercase ) while True: _a = tuple(itertools.islice(lowercase , lowercase ) ) if not chunk: return yield chunk def _lowerCamelCase ( lowercase : str ) -> str: _a = "".join([c.upper() for c in dirty if c in string.ascii_letters] ) _a = "" if len(lowercase ) < 2: return dirty for i in range(len(lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase ) & 1: clean += "X" return clean def _lowerCamelCase ( lowercase : str ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) _a = "ABCDEFGHIKLMNOPQRSTUVWXYZ" # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _a = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase ) return table def _lowerCamelCase ( lowercase : str , lowercase : str ) -> str: _a = generate_table(lowercase ) _a = prepare_input(lowercase ) _a = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase , 2 ): _a , _a = divmod(table.index(lowercase ) , 5 ) _a , _a = divmod(table.index(lowercase ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _lowerCamelCase ( lowercase : str , lowercase : str ) -> str: _a = generate_table(lowercase ) _a = "" # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase , 2 ): _a , _a = divmod(table.index(lowercase ) , 5 ) _a , _a = divmod(table.index(lowercase ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
692
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) lowerCAmelCase_ : Union[str, Any] = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Optional[Any] = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys lowerCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def _lowerCamelCase ( lowercase : str ) -> Dict: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def _lowerCamelCase ( lowercase : str ) -> List[Any]: # word like '180' or '身高' or '神' for char in word: _a = ord(lowercase ) if not _is_chinese_char(lowercase ): return 0 return 1 def _lowerCamelCase ( lowercase : List[str] ) -> Any: _a = set() for token in tokens: _a = len(lowercase ) > 1 and is_chinese(lowercase ) if chinese_word: word_set.add(lowercase ) _a = list(lowercase ) return word_list def _lowerCamelCase ( lowercase : List[str] , lowercase : set() ) -> Tuple: if not chinese_word_set: return bert_tokens _a = max([len(lowercase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(lowercase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start , lowercase ) for i in range(lowercase , 1 , -1 ): _a = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _a = "##" + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def _lowerCamelCase ( lowercase : List[str] , lowercase : LTP , lowercase : BertTokenizer ) -> str: _a = [] for i in range(0 , len(lowercase ) , 100 ): _a = ltp_tokenizer.seg(lines[i : i + 100] )[0] _a = [get_chinese_word(lowercase ) for r in res] ltp_res.extend(lowercase ) assert len(lowercase ) == len(lowercase ) _a = [] for i in range(0 , len(lowercase ) , 100 ): _a = bert_tokenizer(lines[i : i + 100] , add_special_tokens=lowercase , truncation=lowercase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(lowercase ) == len(lowercase ) _a = [] for input_ids, chinese_word in zip(lowercase , lowercase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(lowercase ) input_tokens.append(lowercase ) _a = add_sub_symbol(lowercase , lowercase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(lowercase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(lowercase ) == 1 and _is_chinese_char(ord(lowercase ) ): ref_id.append(lowercase ) ref_ids.append(lowercase ) assert len(lowercase ) == len(lowercase ) return ref_ids def _lowerCamelCase ( lowercase : Tuple ) -> Union[str, Any]: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(lowercase , lowercase , lowercase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _a = [json.dumps(lowercase ) + "\n" for ref in ref_ids] f.writelines(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') lowerCAmelCase_ : Dict = parser.parse_args() main(args)
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
1
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" __a =MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __a =TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Tuple , __a : List[str] ): _a = AudioClassificationPipeline(model=__a , feature_extractor=__a ) # test with a raw waveform _a = np.zeros((3_40_00,) ) _a = np.zeros((1_40_00,) ) return audio_classifier, [audioa, audio] def UpperCamelCase__ ( self : List[str] , __a : int , __a : Optional[Any] ): _a , _a = examples _a = audio_classifier(__a ) # by default a model is initialized with num_labels=2 self.assertEqual( __a , [ {"score": ANY(__a ), "label": ANY(__a )}, {"score": ANY(__a ), "label": ANY(__a )}, ] , ) _a = audio_classifier(__a , top_k=1 ) self.assertEqual( __a , [ {"score": ANY(__a ), "label": ANY(__a )}, ] , ) self.run_torchaudio(__a ) @require_torchaudio def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): import datasets # test with a local file _a = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) _a = dataset[0]["audio"]["array"] _a = audio_classifier(__a ) self.assertEqual( __a , [ {"score": ANY(__a ), "label": ANY(__a )}, {"score": ANY(__a ), "label": ANY(__a )}, ] , ) @require_torch def UpperCamelCase__ ( self : Optional[Any] ): _a = "anton-l/wav2vec2-random-tiny-classifier" _a = pipeline("audio-classification" , model=__a ) _a = np.ones((80_00,) ) _a = audio_classifier(__a , top_k=4 ) _a = [ {"score": 0.0842, "label": "no"}, {"score": 0.0838, "label": "up"}, {"score": 0.0837, "label": "go"}, {"score": 0.0834, "label": "right"}, ] _a = [ {"score": 0.0845, "label": "stop"}, {"score": 0.0844, "label": "on"}, {"score": 0.0841, "label": "right"}, {"score": 0.0834, "label": "left"}, ] self.assertIn(nested_simplify(__a , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _a = {"array": np.ones((80_00,) ), "sampling_rate": audio_classifier.feature_extractor.sampling_rate} _a = audio_classifier(__a , top_k=4 ) self.assertIn(nested_simplify(__a , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def UpperCamelCase__ ( self : int ): import datasets _a = "superb/wav2vec2-base-superb-ks" _a = pipeline("audio-classification" , model=__a ) _a = datasets.load_dataset("anton-l/superb_dummy" , "ks" , split="test" ) _a = np.array(dataset[3]["speech"] , dtype=np.floataa ) _a = audio_classifier(__a , top_k=4 ) self.assertEqual( nested_simplify(__a , decimals=3 ) , [ {"score": 0.981, "label": "go"}, {"score": 0.007, "label": "up"}, {"score": 0.006, "label": "_unknown_"}, {"score": 0.001, "label": "down"}, ] , ) @require_tf @unittest.skip("Audio classification is not implemented for TF" ) def UpperCamelCase__ ( self : Tuple ): pass
692
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int = 1000 ) -> int: _a , _a = 1, 1 _a = 2 while True: _a = 0 _a = fa + fa _a , _a = fa, f index += 1 for _ in str(lowercase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from math import factorial def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : float ) -> float: if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(lowercase , lowercase ) or not isinstance(lowercase , lowercase ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) _a = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _a = float(factorial(lowercase ) ) coefficient /= factorial(lowercase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
692
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int ) -> int: if n == 1 or not isinstance(lowercase , lowercase ): return 0 elif n == 2: return 1 else: _a = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _lowerCamelCase ( lowercase : int ) -> int: _a = 0 _a = 2 while digits < n: index += 1 _a = len(str(fibonacci(lowercase ) ) ) return index def _lowerCamelCase ( lowercase : int = 1000 ) -> int: return fibonacci_digits_index(lowercase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def _lowerCamelCase ( lowercase : Any ) -> Dict: assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def _lowerCamelCase ( ) -> List[str]: assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def _lowerCamelCase ( ) -> Any: _a = "mock-s3-bucket" _a = F's3://{mock_bucket}' _a = extract_path_from_uri(lowercase ) assert dataset_path.startswith("s3://" ) is False _a = "./local/path" _a = extract_path_from_uri(lowercase ) assert dataset_path == new_dataset_path def _lowerCamelCase ( lowercase : Tuple ) -> List[Any]: _a = is_remote_filesystem(lowercase ) assert is_remote is True _a = fsspec.filesystem("file" ) _a = is_remote_filesystem(lowercase ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , lowercase ) def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[str] , lowercase : int , lowercase : int , lowercase : Optional[int] , lowercase : List[str] , lowercase : Optional[Any] ) -> List[str]: _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} _a = input_paths[compression_fs_class.protocol] if input_path is None: _a = F'for \'{compression_fs_class.protocol}\' compression protocol, ' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowercase ) _a = fsspec.filesystem(compression_fs_class.protocol , fo=lowercase ) assert isinstance(lowercase , lowercase ) _a = os.path.basename(lowercase ) _a = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(lowercase , "r" , encoding="utf-8" ) as f, open(lowercase , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def _lowerCamelCase ( lowercase : Dict , lowercase : Any , lowercase : Optional[int] ) -> Union[str, Any]: _a = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} _a = compressed_file_paths[protocol] _a = "dataset.jsonl" _a = F'{protocol}://{member_file_path}::{compressed_file_path}' _a , *_a = fsspec.get_fs_token_paths(lowercase ) assert fs.isfile(lowercase ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def _lowerCamelCase ( lowercase : Any , lowercase : Union[str, Any] , lowercase : int , lowercase : str ) -> List[Any]: _a = hf_api.dataset_info(lowercase , token=lowercase ) _a = HfFileSystem(repo_info=lowercase , token=lowercase ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(lowercase ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def _lowerCamelCase ( ) -> List[str]: _a = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(lowercase , lowercase , clobber=lowercase ) with pytest.warns(lowercase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(lowercase ) == 1 assert ( str(warning_info[0].message ) == F'A filesystem protocol was already set for {protocol} and will be overwritten.' )
692
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
1
'''simple docstring''' import numpy # List of input, output pairs lowerCAmelCase_ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) lowerCAmelCase_ : str = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) lowerCAmelCase_ : List[Any] = [2, 4, 1, 5] lowerCAmelCase_ : Optional[int] = len(train_data) lowerCAmelCase_ : Optional[Any] = 0.009 def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : List[Any]="train" ) -> Optional[Any]: return calculate_hypothesis_value(lowercase , lowercase ) - output( lowercase , lowercase ) def _lowerCamelCase ( lowercase : Dict ) -> str: _a = 0 for i in range(len(lowercase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCamelCase ( lowercase : Any , lowercase : List[Any] ) -> Tuple: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCamelCase ( lowercase : List[str] , lowercase : int ) -> Optional[int]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[str]=m ) -> int: _a = 0 for i in range(lowercase ): if index == -1: summation_value += _error(lowercase ) else: summation_value += _error(lowercase ) * train_data[i][0][index] return summation_value def _lowerCamelCase ( lowercase : Dict ) -> Optional[Any]: _a = summation_of_cost_derivative(lowercase , lowercase ) / m return cost_derivative_value def _lowerCamelCase ( ) -> List[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output _a = 0.00_00_02 _a = 0 _a = 0 while True: j += 1 _a = [0, 0, 0, 0] for i in range(0 , len(lowercase ) ): _a = get_cost_derivative(i - 1 ) _a = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowercase , lowercase , atol=lowercase , rtol=lowercase , ): break _a = temp_parameter_vector print(("Number of iterations:", j) ) def _lowerCamelCase ( ) -> Union[str, Any]: for i in range(len(lowercase ) ): print(("Actual output value:", output(lowercase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(lowercase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
692
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =None __a =False __a =False __a =False __a =None __a =None __a =False __a =False __a =False __a =True __a =None __a =1 __a =None __a =False __a =None __a =None def UpperCamelCase__ ( self : str ): return self.__class__(**{k: copy.deepcopy(__a ) for k, v in self.__dict__.items()} )
692
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
1
'''simple docstring''' lowerCAmelCase_ : Any = range(2, 20 + 1) lowerCAmelCase_ : Tuple = [10**k for k in range(ks[-1] + 1)] lowerCAmelCase_ : dict[int, dict[int, list[list[int]]]] = {} def _lowerCamelCase ( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Tuple ) -> Optional[int]: _a = sum(a_i[j] for j in range(lowercase , len(lowercase ) ) ) _a = sum(a_i[j] * base[j] for j in range(min(len(lowercase ) , lowercase ) ) ) _a , _a = 0, 0 _a = n - i _a = memo.get(lowercase ) if sub_memo is not None: _a = sub_memo.get(lowercase ) if jumps is not None and len(lowercase ) > 0: # find and make the largest jump without going over _a = -1 for _k in range(len(lowercase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _a = _k break if max_jump >= 0: _a , _a , _a = jumps[max_jump] # since the difference between jumps is cached, add c _a = diff + c for j in range(min(lowercase , len(lowercase ) ) ): _a , _a = divmod(lowercase , 10 ) if new_c > 0: add(lowercase , lowercase , lowercase ) else: _a = [] else: _a = {c: []} _a = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _a , _a = next_term(lowercase , k - 1 , i + dn , lowercase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _a , _a = compute(lowercase , lowercase , i + dn , lowercase ) diff += _diff dn += terms_jumped _a = sub_memo[c] # keep jumps sorted by # of terms skipped _a = 0 while j < len(lowercase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowercase , (diff, dn, k) ) return (diff, dn) def _lowerCamelCase ( lowercase : int , lowercase : Any , lowercase : List[str] , lowercase : Optional[int] ) -> Optional[int]: if i >= n: return 0, i if k > len(lowercase ): a_i.extend([0 for _ in range(k - len(lowercase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _a = i _a , _a , _a = 0, 0, 0 for j in range(len(lowercase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _a = ds_c + ds_b diff += addend _a = 0 for j in range(lowercase ): _a = a_i[j] + addend _a , _a = divmod(lowercase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowercase , lowercase , lowercase ) return diff, i - start_i def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Tuple , lowercase : List[str] ) -> Any: for j in range(lowercase , len(lowercase ) ): _a = digits[j] + addend if s >= 10: _a , _a = divmod(lowercase , 10 ) _a = addend // 10 + quotient else: _a = s _a = addend // 10 if addend == 0: break while addend > 0: _a , _a = divmod(lowercase , 10 ) digits.append(lowercase ) def _lowerCamelCase ( lowercase : int = 10**15 ) -> int: _a = [1] _a = 1 _a = 0 while True: _a , _a = next_term(lowercase , 20 , i + dn , lowercase ) dn += terms_jumped if dn == n - i: break _a = 0 for j in range(len(lowercase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
692
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
1
'''simple docstring''' import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) def _lowerCamelCase ( lowercase : Dict , lowercase : Union[str, Any] ) -> str: _a = [] for i in range(encoder_config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'encoder.deit.blocks.{i}.norm1.weight', F'encoder.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm1.bias', F'encoder.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.weight', F'encoder.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.attn.proj.bias', F'encoder.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.norm2.weight', F'encoder.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.norm2.bias', F'encoder.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.weight', F'encoder.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc1.bias', F'encoder.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append( (F'encoder.deit.blocks.{i}.mlp.fc2.weight', F'encoder.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'encoder.deit.blocks.{i}.mlp.fc2.bias', F'encoder.encoder.layer.{i}.output.dense.bias') ) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys def _lowerCamelCase ( lowercase : int , lowercase : List[str] ) -> Any: for i in range(encoder_config.num_hidden_layers ): # queries, keys and values (only weights, no biases) _a = state_dict.pop(F'encoder.deit.blocks.{i}.attn.qkv.weight' ) _a = in_proj_weight[ : encoder_config.hidden_size, : ] _a = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] _a = in_proj_weight[ -encoder_config.hidden_size :, : ] def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Any , lowercase : List[str] ) -> int: _a = dct.pop(lowercase ) _a = val def _lowerCamelCase ( lowercase : str ) -> Any: if "handwritten" in checkpoint_url: _a = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: _a = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" _a = Image.open(requests.get(lowercase , stream=lowercase ).raw ).convert("RGB" ) return im @torch.no_grad() def _lowerCamelCase ( lowercase : Dict , lowercase : str ) -> Any: _a = ViTConfig(image_size=384 , qkv_bias=lowercase ) _a = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: _a = 768 elif "large" in checkpoint_url: # use ViT-large encoder _a = 1024 _a = 4096 _a = 24 _a = 16 _a = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL" ) # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: _a = False _a = "relu" _a = 1024 _a = True _a = False _a = False # load HuggingFace model _a = ViTModel(lowercase , add_pooling_layer=lowercase ) _a = TrOCRForCausalLM(lowercase ) _a = VisionEncoderDecoderModel(encoder=lowercase , decoder=lowercase ) model.eval() # load state_dict of original model, rename some keys _a = torch.hub.load_state_dict_from_url(lowercase , map_location="cpu" , check_hash=lowercase )["model"] _a = create_rename_keys(lowercase , lowercase ) for src, dest in rename_keys: rename_key(lowercase , lowercase , lowercase ) read_in_q_k_v(lowercase , lowercase ) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): _a = state_dict.pop(lowercase ) if key.startswith("decoder" ) and "output_projection" not in key: _a = val else: _a = val # load state dict model.load_state_dict(lowercase ) # Check outputs on an image _a = ViTImageProcessor(size=encoder_config.image_size ) _a = RobertaTokenizer.from_pretrained("roberta-large" ) _a = TrOCRProcessor(lowercase , lowercase ) _a = processor(images=prepare_img(lowercase ) , return_tensors="pt" ).pixel_values # verify logits _a = torch.tensor([[model.config.decoder.decoder_start_token_id]] ) _a = model(pixel_values=lowercase , decoder_input_ids=lowercase ) _a = outputs.logits _a = torch.Size([1, 1, 5_0265] ) if "trocr-base-handwritten" in checkpoint_url: _a = torch.tensor( [-1.45_02, -4.66_83, -0.53_47, -2.92_91, 9.14_35, -3.05_71, 8.97_64, 1.75_60, 8.73_58, -1.53_11] ) elif "trocr-large-handwritten" in checkpoint_url: _a = torch.tensor( [-2.64_37, -1.31_29, -2.25_96, -5.34_55, 6.35_39, 1.76_04, 5.49_91, 1.47_02, 5.61_13, 2.01_70] ) elif "trocr-base-printed" in checkpoint_url: _a = torch.tensor( [-5.68_16, -5.83_88, 1.13_98, -6.90_34, 6.85_05, -2.43_93, 1.22_84, -1.02_32, -1.96_61, -3.92_10] ) elif "trocr-large-printed" in checkpoint_url: _a = torch.tensor( [-6.01_62, -7.09_59, 4.41_55, -5.10_63, 7.04_68, -3.16_31, 2.64_66, -0.30_81, -0.81_06, -1.75_35] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10] , lowercase , atol=1E-3 ), "First elements of logits not as expected" Path(lowercase ).mkdir(exist_ok=lowercase ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_url', default='https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt', type=str, help='URL to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase_ : Tuple = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def _lowerCamelCase ( lowercase : Optional[int] ) -> Tuple: return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @staticmethod def UpperCamelCase__ ( __a : ArgumentParser ): _a = parser.add_parser("download" ) download_parser.add_argument( "--cache-dir" , type=__a , default=__a , help="Path to location to store the models" ) download_parser.add_argument( "--force" , action="store_true" , help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code" , action="store_true" , help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine" , ) download_parser.add_argument("model" , type=__a , help="Name of the model to download" ) download_parser.set_defaults(func=__a ) def __init__( self : Tuple , __a : str , __a : str , __a : bool , __a : bool ): _a = model _a = cache _a = force _a = trust_remote_code def UpperCamelCase__ ( self : List[Any] ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
1
'''simple docstring''' from math import loga def _lowerCamelCase ( lowercase : int ) -> int: if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(lowercase , lowercase ): raise TypeError("Input value must be a 'int' type" ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : List[str] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['pixel_values'] def __init__( self : Union[str, Any] , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PIL.Image.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : Union[int, float] = 1 / 2_55 , __a : bool = True , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , **__a : Optional[int] , ): super().__init__(**__a ) _a = size if size is not None else {"height": 2_56, "width": 2_56} _a = get_size_dict(__a ) _a = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} _a = get_size_dict(__a , param_name="crop_size" ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _a = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self : str , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PIL.Image.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ): _a = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( __a , size=(size["height"], size["width"]) , resample=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Dict , ): _a = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def UpperCamelCase__ ( self : Dict , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : int , ): return rescale(__a , scale=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self : Any , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[int] , ): return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self : List[str] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : Optional[Any]=None , __a : bool = None , __a : Dict[str, int] = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : List[Any] , ): _a = do_resize if do_resize is not None else self.do_resize _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = size if size is not None else self.size _a = get_size_dict(__a ) _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__a , param_name="crop_size" ) _a = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _a = [to_numpy_array(__a ) for image in images] if do_resize: _a = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: _a = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: _a = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _a = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _a = [to_channel_dimension_format(__a , __a ) for image in images] _a = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
692
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowerCAmelCase_ : str = 'pt' elif is_tf_available(): lowerCAmelCase_ : Optional[Any] = 'tf' else: lowerCAmelCase_ : Optional[Any] = 'jax' class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =ByTaTokenizer __a =False def UpperCamelCase__ ( self : Tuple ): super().setUp() _a = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase__ ( self : Optional[Any] ): return ByTaTokenizer.from_pretrained("google/byt5-small" ) def UpperCamelCase__ ( self : List[Any] , **__a : Optional[int] ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : List[Any] , __a : str , __a : Union[str, Any]=False , __a : Optional[int]=20 , __a : Any=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _a = [] for i in range(len(__a ) ): try: _a = tokenizer.decode([i] , clean_up_tokenization_spaces=__a ) except UnicodeDecodeError: pass toks.append((i, tok) ) _a = list(filter(lambda __a : re.match(r"^[ a-zA-Z]+$" , t[1] ) , __a ) ) _a = list(filter(lambda __a : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__a ) , __a ) ) if max_length is not None and len(__a ) > max_length: _a = toks[:max_length] if min_length is not None and len(__a ) < min_length and len(__a ) > 0: while len(__a ) < min_length: _a = toks + toks # toks_str = [t[1] for t in toks] _a = [t[0] for t in toks] # Ensure consistency _a = tokenizer.decode(__a , clean_up_tokenization_spaces=__a ) if " " not in output_txt and len(__a ) > 1: _a = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__a ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__a ) ) if with_prefix_space: _a = " " + output_txt _a = tokenizer.encode(__a , add_special_tokens=__a ) return output_txt, output_ids def UpperCamelCase__ ( self : Tuple ): _a = self.ta_base_tokenizer _a = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) _a = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def UpperCamelCase__ ( self : Tuple ): _a = self.ta_base_tokenizer _a = "Unicode €." _a = tokenizer(__a ) _a = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded["input_ids"] , __a ) # decoding _a = tokenizer.decode(__a ) self.assertEqual(__a , "Unicode €.</s>" ) _a = tokenizer("e è é ê ë" ) _a = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded["input_ids"] , __a ) # decoding _a = tokenizer.decode(__a ) self.assertEqual(__a , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = self.ta_base_tokenizer _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off _a = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on _a = tokenizer(__a , padding=__a , return_tensors=__a ) self.assertIsInstance(__a , __a ) if FRAMEWORK != "jax": _a = list(batch.input_ids.numpy()[0] ) else: _a = list(batch.input_ids.tolist()[0] ) self.assertListEqual(__a , __a ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.ta_base_tokenizer _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = tokenizer(__a , padding=__a , return_tensors=__a ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , __a ) self.assertIn("attention_mask" , __a ) self.assertNotIn("decoder_input_ids" , __a ) self.assertNotIn("decoder_attention_mask" , __a ) def UpperCamelCase__ ( self : Tuple ): _a = self.ta_base_tokenizer _a = [ "Summary of the text.", "Another summary.", ] _a = tokenizer( text_target=__a , max_length=32 , padding="max_length" , truncation=__a , return_tensors=__a ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def UpperCamelCase__ ( self : Tuple ): _a = self.ta_base_tokenizer _a = ["A long paragraph for summarization. </s>"] _a = ["Summary of the text. </s>"] # fmt: off _a = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] _a = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on _a = tokenizer(__a , text_target=__a ) self.assertEqual(__a , batch["input_ids"][0] ) self.assertEqual(__a , batch["labels"][0] ) def UpperCamelCase__ ( self : Union[str, Any] ): # safety check on max_len default value so we are sure the test works _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _a = tempfile.mkdtemp() _a = " He is very happy, UNwant\u00E9d,running" _a = tokenizer.encode(__a , add_special_tokens=__a ) tokenizer.save_pretrained(__a ) _a = tokenizer.__class__.from_pretrained(__a ) _a = after_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) shutil.rmtree(__a ) _a = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _a = tempfile.mkdtemp() _a = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) _a = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) _a = tokenizer.encode(__a , add_special_tokens=__a ) tokenizer.save_pretrained(__a ) _a = tokenizer.__class__.from_pretrained(__a ) _a = after_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _a = tokenizer.__class__.from_pretrained(__a , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__a ) with open(os.path.join(__a , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: _a = json.load(__a ) with open(os.path.join(__a , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: _a = json.load(__a ) _a = [f'<extra_id_{i}>' for i in range(1_25 )] _a = added_tokens_extra_ids + [ "an_additional_special_token" ] _a = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(__a , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__a , __a ) with open(os.path.join(__a , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(__a , __a ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _a = tokenizer_class.from_pretrained( __a , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _a = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=__a )] _a = tokenizer_class.from_pretrained( __a , additional_special_tokens=__a , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def UpperCamelCase__ ( self : Optional[int] ): _a = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(__a ) _a = tokenizer_class.from_pretrained(__a ) self.assertTrue(tokenizer.decode([2_55] ) == "" ) def UpperCamelCase__ ( self : str ): pass def UpperCamelCase__ ( self : Optional[Any] ): pass def UpperCamelCase__ ( self : List[Any] ): pass def UpperCamelCase__ ( self : List[Any] ): pass def UpperCamelCase__ ( self : Dict ): # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens _a = self.get_tokenizers(fast=__a , do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _a = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] _a = tokenizer.convert_tokens_to_string(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Optional[Any] ): _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _a = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] _a = 0 _a = tokenizer.convert_ids_to_tokens( __a , skip_special_tokens=__a ) for attr in attributes_list: setattr(__a , attr + "_id" , __a ) self.assertEqual(getattr(__a , __a ) , __a ) self.assertEqual(getattr(__a , attr + "_id" ) , __a ) setattr(__a , attr + "_id" , __a ) self.assertEqual(getattr(__a , __a ) , __a ) self.assertEqual(getattr(__a , attr + "_id" ) , __a ) setattr(__a , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(__a , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(__a , "additional_special_tokens_ids" ) , [] ) setattr(__a , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(__a , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(__a , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int = 100 ) -> int: _a = n * (n + 1) * (2 * n + 1) / 6 _a = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f"""{solution() = }""")
692
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def _lowerCamelCase ( lowercase : Callable[[int | float], int | float] , lowercase : int | float , lowercase : int | float , lowercase : int = 100 , ) -> float: _a = x_start _a = fnc(lowercase ) _a = 0.0 for _ in range(lowercase ): # Approximates curve as a sequence of linear lines and sums their length _a = (x_end - x_start) / steps + xa _a = fnc(lowercase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step _a = xa _a = fxa return length if __name__ == "__main__": def _lowerCamelCase ( lowercase : List[str] ) -> List[str]: return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') lowerCAmelCase_ : Dict = 10 while i <= 10_00_00: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
692
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase_ : List[Any] = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Union[str, Any] = ['GLPNFeatureExtractor'] lowerCAmelCase_ : Tuple = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[Any] = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
1
'''simple docstring''' import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Tuple , __a : str , __a : Union[str, Any]=13 , __a : str=32 , __a : Tuple=2 , __a : Any=3 , __a : List[Any]=16 , __a : int=[1, 2, 1] , __a : Dict=[2, 2, 4] , __a : Any=2 , __a : Optional[int]=2.0 , __a : Union[str, Any]=True , __a : Optional[int]=0.0 , __a : Tuple=0.0 , __a : Optional[Any]=0.1 , __a : Dict="gelu" , __a : Optional[int]=False , __a : Optional[Any]=True , __a : Union[str, Any]=0.02 , __a : List[str]=1e-5 , __a : int=True , __a : Tuple=None , __a : List[Any]=True , __a : Optional[int]=10 , __a : List[Any]=8 , __a : str=["stage1", "stage2", "stage3"] , __a : Optional[int]=[1, 2, 3] , ): _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = num_heads _a = window_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = use_absolute_embeddings _a = patch_norm _a = layer_norm_eps _a = initializer_range _a = is_training _a = scope _a = use_labels _a = type_sequence_label_size _a = encoder_stride _a = out_features _a = out_indices def UpperCamelCase__ ( self : List[Any] ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = self.get_config() return config, pixel_values, labels def UpperCamelCase__ ( self : Union[str, Any] ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[Any] , __a : Union[str, Any] , __a : Any ): _a = MaskFormerSwinModel(config=__a ) model.to(__a ) model.eval() _a = model(__a ) _a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _a = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def UpperCamelCase__ ( self : List[Any] , __a : str , __a : Union[str, Any] , __a : Dict ): _a = MaskFormerSwinBackbone(config=__a ) model.to(__a ) model.eval() _a = model(__a ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(__a ): _a = ["stem"] _a = MaskFormerSwinBackbone(config=__a ) def UpperCamelCase__ ( self : int ): _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __a ={'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} __a =False __a =False __a =False __a =False __a =False def UpperCamelCase__ ( self : List[Any] ): _a = MaskFormerSwinModelTester(self ) _a = ConfigTester(self , config_class=__a , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def UpperCamelCase__ ( self : List[Any] ): pass def UpperCamelCase__ ( self : int ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase__ ( self : str ): return def UpperCamelCase__ ( self : Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def UpperCamelCase__ ( self : str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a ) @unittest.skip("Swin does not use inputs_embeds" ) def UpperCamelCase__ ( self : Any ): pass @unittest.skip("Swin does not support feedforward chunking" ) def UpperCamelCase__ ( self : Tuple ): pass def UpperCamelCase__ ( self : List[str] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def UpperCamelCase__ ( self : str ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__a ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def UpperCamelCase__ ( self : Dict ): pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def UpperCamelCase__ ( self : Union[str, Any] ): pass def UpperCamelCase__ ( self : Any , __a : Tuple , __a : Dict , __a : str , __a : int ): _a = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__a , __a ) ) _a = outputs.hidden_states _a = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swin has a different seq_length _a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase__ ( self : List[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _a = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True self.check_hidden_states_output(__a , __a , __a , __a ) def UpperCamelCase__ ( self : List[Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _a = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def UpperCamelCase__ ( self : Tuple ): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def UpperCamelCase__ ( self : Tuple ): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def UpperCamelCase__ ( self : List[Any] ): pass def UpperCamelCase__ ( self : int ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__a : Optional[Any] ): _a = 0 return t def check_equivalence(__a : Any , __a : Tuple , __a : List[str] , __a : List[Any]={} ): with torch.no_grad(): _a = model(**__a , return_dict=__a , **__a ) _a = model(**__a , return_dict=__a , **__a ).to_tuple() def recursive_check(__a : Optional[int] , __a : Union[str, Any] ): if isinstance(__a , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__a , __a ): recursive_check(__a , __a ) elif isinstance(__a , __a ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(__a , __a ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__a ) , set_nan_tensor_to_zero(__a ) , atol=1e-5 ) , msg=( "Tuple and dict output are not equal. Difference:" f' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:' f' {torch.isnan(__a ).any()} and `inf`: {torch.isinf(__a )}. Dict has' f' `nan`: {torch.isnan(__a ).any()} and `inf`: {torch.isinf(__a )}.' ) , ) recursive_check(__a , __a ) for model_class in self.all_model_classes: _a = model_class(__a ) model.to(__a ) model.eval() _a = self._prepare_for_class(__a , __a ) _a = self._prepare_for_class(__a , __a ) check_equivalence(__a , __a , __a ) _a = self._prepare_for_class(__a , __a , return_labels=__a ) _a = self._prepare_for_class(__a , __a , return_labels=__a ) check_equivalence(__a , __a , __a ) _a = self._prepare_for_class(__a , __a ) _a = self._prepare_for_class(__a , __a ) check_equivalence(__a , __a , __a , {"output_hidden_states": True} ) _a = self._prepare_for_class(__a , __a , return_labels=__a ) _a = self._prepare_for_class(__a , __a , return_labels=__a ) check_equivalence(__a , __a , __a , {"output_hidden_states": True} ) @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase , lowerCamelCase_ ): """simple docstring""" __a =(MaskFormerSwinBackbone,) if is_torch_available() else () __a =MaskFormerSwinConfig def UpperCamelCase__ ( self : Optional[Any] ): _a = MaskFormerSwinModelTester(self ) def UpperCamelCase__ ( self : Optional[int] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _a = backbone_class(__a ) backbone.to(__a ) backbone.eval() _a = backbone(**__a ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __a ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True _a = backbone(**__a , output_hidden_states=__a ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _a , _a , _a = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: _a = backbone(**__a , output_attentions=__a ) self.assertIsNotNone(outputs.attentions )
692
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
1
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase_ : Union[str, Any] = False class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Optional[Any] ): _a = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) _a = torch.manual_seed(0 ) _a = pipe.dual_guided( prompt="first prompt" , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a ) _a = VersatileDiffusionPipeline.from_pretrained(__a , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = generator.manual_seed(0 ) _a = pipe.dual_guided( prompt="first prompt" , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCamelCase__ ( self : int ): _a = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = "cyberpunk 2077" _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) _a = torch.manual_seed(0 ) _a = pipe.dual_guided( prompt=__a , image=__a , text_to_image_strength=0.75 , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" , ).images _a = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _a = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _a = "A painting of a squirrel eating a burger " _a = torch.manual_seed(0 ) _a = pipe.text_to_image( prompt=__a , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images _a = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _a = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 _a = pipe.image_variation(__a , generator=__a , output_type="numpy" ).images _a = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) _a = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
692
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def _lowerCamelCase ( lowercase : Any , lowercase : Union[str, Any] , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : List[str] , lowercase : str , lowercase : Dict , lowercase : Tuple , lowercase : Union[str, Any] , lowercase : int , lowercase : Union[str, Any] , lowercase : Any , ) -> Union[str, Any]: _a = { "7z": (seven_zip_file, SevenZipExtractor), "bz2": (bza_file, BzipaExtractor), "gzip": (gz_file, GzipExtractor), "lz4": (lza_file, LzaExtractor), "tar": (tar_file, TarExtractor), "xz": (xz_file, XzExtractor), "zip": (zip_file, ZipExtractor), "zstd": (zstd_file, ZstdExtractor), } _a , _a = input_paths_and_base_extractors[compression_format] if input_path is None: _a = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowercase ) assert base_extractor.is_extractable(lowercase ) _a = tmp_path / ("extracted" if is_archive else "extracted.txt") base_extractor.extract(lowercase , lowercase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _a = file_path.read_text(encoding="utf-8" ) else: _a = output_path.read_text(encoding="utf-8" ) _a = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( "compression_format, is_archive" , [ ("7z", True), ("bz2", False), ("gzip", False), ("lz4", False), ("tar", True), ("xz", False), ("zip", True), ("zstd", False), ] , ) def _lowerCamelCase ( lowercase : Tuple , lowercase : Optional[int] , lowercase : Tuple , lowercase : Tuple , lowercase : Any , lowercase : Dict , lowercase : int , lowercase : Tuple , lowercase : Dict , lowercase : Union[str, Any] , lowercase : Any , lowercase : Optional[Any] , ) -> Optional[Any]: _a = { "7z": seven_zip_file, "bz2": bza_file, "gzip": gz_file, "lz4": lza_file, "tar": tar_file, "xz": xz_file, "zip": zip_file, "zstd": zstd_file, } _a = input_paths[compression_format] if input_path is None: _a = F'for \'{compression_format}\' compression_format, ' if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(lowercase ) _a = Extractor.infer_extractor_format(lowercase ) assert extractor_format is not None _a = tmp_path / ("extracted" if is_archive else "extracted.txt") Extractor.extract(lowercase , lowercase , lowercase ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _a = file_path.read_text(encoding="utf-8" ) else: _a = output_path.read_text(encoding="utf-8" ) _a = text_file.read_text(encoding="utf-8" ) assert extracted_file_content == expected_file_content @pytest.fixture def _lowerCamelCase ( lowercase : List[Any] , lowercase : int ) -> str: import tarfile _a = tmp_path / "data_dot_dot" directory.mkdir() _a = directory / "tar_file_with_dot_dot.tar" with tarfile.TarFile(lowercase , "w" ) as f: f.add(lowercase , arcname=os.path.join(".." , text_file.name ) ) return path @pytest.fixture def _lowerCamelCase ( lowercase : int ) -> Any: import tarfile _a = tmp_path / "data_sym_link" directory.mkdir() _a = directory / "tar_file_with_sym_link.tar" os.symlink(".." , directory / "subdir" , target_is_directory=lowercase ) with tarfile.TarFile(lowercase , "w" ) as f: f.add(str(directory / "subdir" ) , arcname="subdir" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( "insecure_tar_file, error_log" , [("tar_file_with_dot_dot", "illegal path"), ("tar_file_with_sym_link", "Symlink")] , ) def _lowerCamelCase ( lowercase : List[str] , lowercase : Any , lowercase : Any , lowercase : Optional[Any] , lowercase : Dict , lowercase : Optional[int] ) -> Optional[Any]: _a = { "tar_file_with_dot_dot": tar_file_with_dot_dot, "tar_file_with_sym_link": tar_file_with_sym_link, } _a = insecure_tar_files[insecure_tar_file] _a = tmp_path / "extracted" TarExtractor.extract(lowercase , lowercase ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def _lowerCamelCase ( lowercase : Optional[Any] ) -> Tuple: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _a = tmpdir / "not_a_zip_file" # From: https://github.com/python/cpython/pull/5053 _a = ( B"\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00" B"\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I" B"DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07" B"\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82" ) with not_a_zip_file.open("wb" ) as f: f.write(lowercase ) assert zipfile.is_zipfile(str(lowercase ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(lowercase ) # but we're right
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
'''simple docstring''' import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Tuple , lowercase : int ) -> Dict: # Initialise PyTorch model _a = AlbertConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) _a = AlbertForPreTraining(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--albert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained ALBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
1
'''simple docstring''' import os import time import numpy as np import onnxruntime as ort lowerCAmelCase_ : Dict = '1' lowerCAmelCase_ : int = '0' lowerCAmelCase_ : Any = '1' lowerCAmelCase_ : List[Any] = ort.SessionOptions() lowerCAmelCase_ : Any = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print('Create inference session...') lowerCAmelCase_ : List[Any] = ['TensorrtExecutionProvider', 'CUDAExecutionProvider'] lowerCAmelCase_ : List[str] = ort.InferenceSession('model.onnx', sess_options=sess_opt, providers=execution_provider) lowerCAmelCase_ : Any = ort.RunOptions() lowerCAmelCase_ : List[str] = 1_28 lowerCAmelCase_ : int = 1 lowerCAmelCase_ : int = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase_ : Dict = np.ones((batch, sequence), dtype=np.intaa) lowerCAmelCase_ : int = np.ones((batch, sequence), dtype=np.intaa) print('Warm up phase...') sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Start inference...') lowerCAmelCase_ : Dict = time.time() lowerCAmelCase_ : Optional[Any] = 20_00 lowerCAmelCase_ : Any = {} for iter in range(max_iters): lowerCAmelCase_ : Any = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print('Average Inference Time = {:.3f} ms'.format((time.time() - start_time) * 10_00 / max_iters))
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='LayoutLMv3ImageProcessor' __a =('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : int , __a : str=None , __a : str=None , **__a : List[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Union[str, Any] , __a : Optional[int] , __a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __a : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __a : Union[List[List[int]], List[List[List[int]]]] = None , __a : Optional[Union[List[int], List[List[int]]]] = None , __a : bool = True , __a : Union[bool, str, PaddingStrategy] = False , __a : Union[bool, str, TruncationStrategy] = None , __a : Optional[int] = None , __a : int = 0 , __a : Optional[int] = None , __a : Optional[bool] = None , __a : Optional[bool] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : Optional[Union[str, TensorType]] = None , **__a : Any , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor _a = self.image_processor(images=__a , return_tensors=__a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__a , __a ): _a = [text] # add batch dimension (as the image processor always adds a batch dimension) _a = features["words"] _a = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_token_type_ids=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) # add pixel values _a = features.pop("pixel_values" ) if return_overflowing_tokens is True: _a = self.get_overflowing_images(__a , encoded_inputs["overflow_to_sample_mapping"] ) _a = images return encoded_inputs def UpperCamelCase__ ( self : int , __a : List[Any] , __a : Dict ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image _a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__a ) != len(__a ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f' {len(__a )} and {len(__a )}' ) return images_with_overflow def UpperCamelCase__ ( self : List[Any] , *__a : Optional[Any] , **__a : Union[str, Any] ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : Dict , *__a : Union[str, Any] , **__a : Dict ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : int ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCamelCase__ ( self : Dict ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : Union[str, Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
692
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
1
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') lowerCAmelCase_ : str = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __a =field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) __a =field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __a =field( default=lowerCamelCase_ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) __a =field( default=lowerCamelCase_ , metadata={'help': 'A csv or a json file containing the training data.'} ) __a =field( default=lowerCamelCase_ , metadata={'help': 'A csv or a json file containing the validation data.'} ) __a =field(default=lowerCamelCase_ , metadata={'help': 'A csv or a json file containing the test data.'} ) def UpperCamelCase__ ( self : Any ): if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: _a = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _a = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =field( default=lowerCamelCase_ , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __a =field( default=lowerCamelCase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __a =field( default=lowerCamelCase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __a =field( default=lowerCamelCase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __a =field( default=lowerCamelCase_ , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __a =field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __a =field( default=lowerCamelCase_ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def _lowerCamelCase ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _a = training_args.get_process_log_level() logger.setLevel(lowercase ) datasets.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.set_verbosity(lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. _a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _a = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _a = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _a = data_args.train_file.split("." )[-1] _a = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _a = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F'load a local file for {key}: {data_files[key]}' ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files _a = load_dataset("csv" , data_files=lowercase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _a = load_dataset("json" , data_files=lowercase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _a = raw_datasets["train"].features["label"].names _a = len(lowercase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _a = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowercase , ) _a = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _a = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _a = False # Some models have set the order of the labels to use, so let's make sure we do use it. _a = {"Refused": 0, "Entailed": 1} _a = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) _a = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowercase : List[str] ): # Tokenize the texts def _convert_table_text_to_pandas(lowercase : int ): _a = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] _a = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _a = examples["statement"] _a = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) _a = tokenizer(lowercase , lowercase , padding=lowercase , max_length=lowercase , truncation=lowercase ) _a = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): _a = raw_datasets.map( lowercase , batched=lowercase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _a = raw_datasets["train"] if data_args.max_train_samples is not None: _a = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _a = raw_datasets["validation"] if data_args.max_eval_samples is not None: _a = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) _a = raw_datasets["test"] if data_args.max_predict_samples is not None: _a = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowercase ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowercase : EvalPrediction ): _a = p.predictions[0] if isinstance(p.predictions , lowercase ) else p.predictions _a = np.argmax(lowercase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _a = default_data_collator elif training_args.fpaa: _a = DataCollatorWithPadding(lowercase , pad_to_multiple_of=8 ) else: _a = None # Initialize our Trainer _a = Trainer( model=lowercase , args=lowercase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowercase , tokenizer=lowercase , data_collator=lowercase , ) # Training if training_args.do_train: _a = None if training_args.resume_from_checkpoint is not None: _a = training_args.resume_from_checkpoint elif last_checkpoint is not None: _a = last_checkpoint _a = trainer.train(resume_from_checkpoint=lowercase ) _a = train_result.metrics _a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) _a = min(lowercase , len(lowercase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , lowercase ) trainer.save_metrics("train" , lowercase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _a = trainer.evaluate(eval_dataset=lowercase ) _a = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowercase ) _a = min(lowercase , len(lowercase ) ) trainer.log_metrics("eval" , lowercase ) trainer.save_metrics("eval" , lowercase ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _a = predict_dataset.remove_columns("label" ) _a = trainer.predict(lowercase , metric_key_prefix="predict" ).predictions _a = np.argmax(lowercase , axis=1 ) _a = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(lowercase , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(lowercase ): _a = label_list[item] writer.write(F'{index}\t{item}\n' ) _a = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**lowercase ) else: trainer.create_model_card(**lowercase ) def _lowerCamelCase ( lowercase : Dict ) -> int: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/config.json', 'umberto-commoncrawl-cased-v1': ( 'https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json' ), 'umberto-wikipedia-uncased-v1': ( 'https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='camembert' def __init__( self : Optional[Any] , __a : Union[str, Any]=3_05_22 , __a : Optional[int]=7_68 , __a : Optional[int]=12 , __a : Optional[Any]=12 , __a : List[str]=30_72 , __a : Any="gelu" , __a : Optional[int]=0.1 , __a : Union[str, Any]=0.1 , __a : List[str]=5_12 , __a : int=2 , __a : List[Any]=0.02 , __a : Optional[Any]=1e-1_2 , __a : List[Any]=1 , __a : List[str]=0 , __a : int=2 , __a : Any="absolute" , __a : int=True , __a : List[str]=None , **__a : int , ): super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = use_cache _a = classifier_dropout class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" @property def UpperCamelCase__ ( self : List[Any] ): if self.task == "multiple-choice": _a = {0: "batch", 1: "choice", 2: "sequence"} else: _a = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
692
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : str ) -> str: return "".join(chr(ord(lowercase ) - 32 ) if "a" <= char <= "z" else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
692
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =StableDiffusionControlNetImgaImgPipeline __a =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} __a =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'control_image'} ) __a =IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase__ ( self : List[Any] ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) _a = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _a = CLIPTextModel(__a ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self : List[str] , __a : int , __a : Tuple=0 ): if str(__a ).startswith("mps" ): _a = torch.manual_seed(__a ) else: _a = torch.Generator(device=__a ).manual_seed(__a ) _a = 2 _a = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ) _a = floats_tensor(control_image.shape , rng=random.Random(__a ) ).to(__a ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) _a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def UpperCamelCase__ ( self : Dict ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCamelCase__ ( self : Tuple ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =StableDiffusionControlNetImgaImgPipeline __a =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} __a =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __a =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__a : List[Any] ): if isinstance(__a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _a = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__a ) torch.manual_seed(0 ) _a = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__a ) torch.manual_seed(0 ) _a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) _a = CLIPTextModel(__a ) _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _a = MultiControlNetModel([controlneta, controlneta] ) _a = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def UpperCamelCase__ ( self : int , __a : str , __a : Tuple=0 ): if str(__a ).startswith("mps" ): _a = torch.manual_seed(__a ) else: _a = torch.Generator(device=__a ).manual_seed(__a ) _a = 2 _a = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ), ] _a = floats_tensor(control_image[0].shape , rng=random.Random(__a ) ).to(__a ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__a ) ).convert("RGB" ).resize((64, 64) ) _a = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.get_dummy_components() _a = self.pipeline_class(**__a ) pipe.to(__a ) _a = 10.0 _a = 4 _a = self.get_dummy_inputs(__a ) _a = steps _a = scale _a = pipe(**__a )[0] _a = self.get_dummy_inputs(__a ) _a = steps _a = scale _a = pipe(**__a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _a = self.get_dummy_inputs(__a ) _a = steps _a = scale _a = pipe(**__a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _a = self.get_dummy_inputs(__a ) _a = steps _a = scale _a = pipe(**__a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def UpperCamelCase__ ( self : str ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCamelCase__ ( self : Tuple ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def UpperCamelCase__ ( self : Union[str, Any] ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.get_dummy_components() _a = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__a ) except NotImplementedError: pass @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Tuple ): _a = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) _a = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=__a , controlnet=__a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__a ) _a = torch.Generator(device="cpu" ).manual_seed(0 ) _a = "evil space-punk bird" _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((5_12, 5_12) ) _a = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((5_12, 5_12) ) _a = pipe( __a , __a , control_image=__a , generator=__a , output_type="np" , num_inference_steps=50 , strength=0.6 , ) _a = output.images[0] assert image.shape == (5_12, 5_12, 3) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9e-2
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ): _a = tempfile.mkdtemp() _a = 5 # Realm tok _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__a , exist_ok=__a ) _a = os.path.join(__a , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _a = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__a , exist_ok=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def UpperCamelCase__ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self : List[Any] ): _a = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCamelCase__ ( self : List[Any] ): _a = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def UpperCamelCase__ ( self : Any ): _a = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=__a , ) return block_records def UpperCamelCase__ ( self : Optional[Any] ): _a = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCamelCase__ ( self : List[Any] ): _a = self.get_config() _a = self.get_dummy_retriever() _a = retriever.tokenizer _a = np.array([0, 3] , dtype="long" ) _a = tokenizer(["Test question"] ).input_ids _a = tokenizer( ["the fourth"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _a = config.reader_seq_len _a , _a , _a , _a = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(len(__a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def UpperCamelCase__ ( self : Dict ): _a = self.get_config() _a = self.get_dummy_retriever() _a = retriever.tokenizer _a = np.array([0, 3, 5] , dtype="long" ) _a = tokenizer(["Test question"] ).input_ids _a = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__a , return_token_type_ids=__a , return_attention_mask=__a , ).input_ids _a = config.reader_seq_len _a , _a , _a , _a = retriever( __a , __a , answer_ids=__a , max_length=__a , return_tensors="np" ) self.assertEqual([False, True, True] , __a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path _a = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: _a = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) _a = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
692
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
1
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
1
'''simple docstring''' lowerCAmelCase_ : str = [0, 2, 4, 6, 8] lowerCAmelCase_ : Dict = [1, 3, 5, 7, 9] def _lowerCamelCase ( lowercase : int , lowercase : int , lowercase : list[int] , lowercase : int ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _a = 0 for digit in range(10 ): _a = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowercase , lowercase ) return result _a = 0 for digita in range(10 ): _a = digita if (remainder + digita) % 2 == 0: _a = ODD_DIGITS else: _a = EVEN_DIGITS for digita in other_parity_digits: _a = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowercase , lowercase , ) return result def _lowerCamelCase ( lowercase : int = 9 ) -> int: _a = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowercase , 0 , [0] * length , lowercase ) return result if __name__ == "__main__": print(f"""{solution() = }""")
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : Dict , **__a : List[Any] ): warnings.warn( "The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ChineseCLIPImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowerCAmelCase_ : Dict = 50_00_00 lowerCAmelCase_ , lowerCAmelCase_ : int = os.path.split(__file__) lowerCAmelCase_ : Optional[int] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _lowerCamelCase ( lowercase : datasets.Dataset , **lowercase : List[str] ) -> Tuple: _a = dataset.map(**lowercase ) @get_duration def _lowerCamelCase ( lowercase : datasets.Dataset , **lowercase : Tuple ) -> List[str]: _a = dataset.filter(**lowercase ) def _lowerCamelCase ( ) -> int: _a = {"num examples": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _a = datasets.Features({"text": datasets.Value("string" ), "numbers": datasets.Value("float32" )} ) _a = generate_example_dataset( os.path.join(lowercase , "dataset.arrow" ) , lowercase , num_examples=lowercase ) _a = transformers.AutoTokenizer.from_pretrained("bert-base-cased" , use_fast=lowercase ) def tokenize(lowercase : Union[str, Any] ): return tokenizer(examples["text"] ) _a = map(lowercase ) _a = map(lowercase , batched=lowercase ) _a = map(lowercase , function=lambda lowercase : None , batched=lowercase ) with dataset.formatted_as(type="numpy" ): _a = map(lowercase , function=lambda lowercase : None , batched=lowercase ) with dataset.formatted_as(type="pandas" ): _a = map(lowercase , function=lambda lowercase : None , batched=lowercase ) with dataset.formatted_as(type="torch" , columns="numbers" ): _a = map(lowercase , function=lambda lowercase : None , batched=lowercase ) with dataset.formatted_as(type="tensorflow" , columns="numbers" ): _a = map(lowercase , function=lambda lowercase : None , batched=lowercase ) _a = map(lowercase , function=lowercase , batched=lowercase ) _a = filter(lowercase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase , "wb" ) as f: f.write(json.dumps(lowercase ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
692
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : str=0.0 , __a : Optional[int] = None , __a : str = "geglu" , __a : Optional[int] = None , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = False , __a : bool = True , __a : str = "layer_norm" , __a : bool = False , ): super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" _a = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' f' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__a , __a ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__a , __a ) else: _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = Attention( query_dim=__a , heads=__a , dim_head=__a , dropout=__a , bias=__a , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__a , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__a , __a ) if self.use_ada_layer_norm else nn.LayerNorm(__a , elementwise_affine=__a ) ) _a = Attention( query_dim=__a , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__a , dim_head=__a , dropout=__a , bias=__a , upcast_attention=__a , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__a , elementwise_affine=__a ) _a = FeedForward(__a , dropout=__a , activation_fn=__a , final_dropout=__a ) # let chunk size default to None _a = None _a = 0 def UpperCamelCase__ ( self : int , __a : Optional[int] , __a : int ): # Sets chunk feed-forward _a = chunk_size _a = dim def UpperCamelCase__ ( self : List[str] , __a : torch.FloatTensor , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.FloatTensor] = None , __a : Optional[torch.LongTensor] = None , __a : Dict[str, Any] = None , __a : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__a , __a ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __a , __a , __a , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__a ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __a , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__a , **__a , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__a , __a ) if self.use_ada_layer_norm else self.norma(__a ) ) _a = self.attna( __a , encoder_hidden_states=__a , attention_mask=__a , **__a , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__a ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__a ) for hid_slice in norm_hidden_states.chunk(__a , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__a ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : int , __a : Optional[int] = None , __a : int = 4 , __a : float = 0.0 , __a : str = "geglu" , __a : bool = False , ): super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__a , __a ) if activation_fn == "gelu-approximate": _a = GELU(__a , __a , approximate="tanh" ) elif activation_fn == "geglu": _a = GEGLU(__a , __a ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__a , __a ) _a = nn.ModuleList([] ) # project in self.net.append(__a ) # project dropout self.net.append(nn.Dropout(__a ) ) # project out self.net.append(nn.Linear(__a , __a ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__a ) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple ): for module in self.net: _a = module(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : int , __a : int , __a : str = "none" ): super().__init__() _a = nn.Linear(__a , __a ) _a = approximate def UpperCamelCase__ ( self : Union[str, Any] , __a : List[Any] ): if gate.device.type != "mps": return F.gelu(__a , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : str , __a : Optional[int] ): _a = self.proj(__a ) _a = self.gelu(__a ) return hidden_states class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : str , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , dim_out * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[int] ): if gate.device.type != "mps": return F.gelu(__a ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase__ ( self : List[str] , __a : Any ): _a , _a = self.proj(__a ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__a ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __a : int , __a : int ): super().__init__() _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] , __a : Dict ): _a = self.proj(__a ) return x * torch.sigmoid(1.702 * x ) class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : str , __a : str ): super().__init__() _a = nn.Embedding(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , embedding_dim * 2 ) _a = nn.LayerNorm(__a , elementwise_affine=__a ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Optional[Any] ): _a = self.linear(self.silu(self.emb(__a ) ) ) _a , _a = torch.chunk(__a , 2 ) _a = self.norm(__a ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : List[Any] , __a : List[Any] , __a : Any ): super().__init__() _a = CombinedTimestepLabelEmbeddings(__a , __a ) _a = nn.SiLU() _a = nn.Linear(__a , 6 * embedding_dim , bias=__a ) _a = nn.LayerNorm(__a , elementwise_affine=__a , eps=1e-6 ) def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : List[Any] , __a : Union[str, Any] , __a : List[Any]=None ): _a = self.linear(self.silu(self.emb(__a , __a , hidden_dtype=__a ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__a ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __a : int , __a : int , __a : int , __a : Optional[str] = None , __a : float = 1e-5 ): super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__a ) _a = nn.Linear(__a , out_dim * 2 ) def UpperCamelCase__ ( self : List[Any] , __a : Optional[Any] , __a : List[Any] ): if self.act: _a = self.act(__a ) _a = self.linear(__a ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__a , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
692
1
'''simple docstring''' import os from distutils.util import strtobool def _lowerCamelCase ( lowercase : Any , lowercase : int ) -> List[str]: for e in env_keys: _a = int(os.environ.get(lowercase , -1 ) ) if val >= 0: return val return default def _lowerCamelCase ( lowercase : List[str] , lowercase : Optional[Any]=False ) -> Any: _a = os.environ.get(lowercase , str(lowercase ) ) return strtobool(lowercase ) == 1 # As its name indicates `strtobool` actually returns an int... def _lowerCamelCase ( lowercase : List[str] , lowercase : int="no" ) -> Tuple: _a = os.environ.get(lowercase , str(lowercase ) ) return value
692
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase_ : str = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase_ : int = get_tests_dir('fixtures/vocab.json') lowerCAmelCase_ : Dict = get_tests_dir('fixtures') class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" __a =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def UpperCamelCase__ ( self : List[str] ): _a = 0 def UpperCamelCase__ ( self : Optional[int] ): _a = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaConfig() _a = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(__a ) processor.save_pretrained(__a ) _a = AutoProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__a , os.path.join(__a , __a ) ) copyfile(__a , os.path.join(__a , "vocab.json" ) ) _a = AutoProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaFeatureExtractor() _a = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) _a = WavaVecaProcessor(__a , __a ) # save in new folder processor.save_pretrained(__a ) # drop `processor_class` in tokenizer with open(os.path.join(__a , __a ) , "r" ) as f: _a = json.load(__a ) config_dict.pop("processor_class" ) with open(os.path.join(__a , __a ) , "w" ) as f: f.write(json.dumps(__a ) ) _a = AutoProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : List[Any] ): with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaFeatureExtractor() _a = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) _a = WavaVecaProcessor(__a , __a ) # save in new folder processor.save_pretrained(__a ) # drop `processor_class` in feature extractor with open(os.path.join(__a , __a ) , "r" ) as f: _a = json.load(__a ) config_dict.pop("processor_class" ) with open(os.path.join(__a , __a ) , "w" ) as f: f.write(json.dumps(__a ) ) _a = AutoProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: _a = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(__a ) # copy relevant files copyfile(__a , os.path.join(__a , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(__a , __a ) , "w" ) as f: f.write("{}" ) _a = AutoProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) def UpperCamelCase__ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__a ): _a = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__a ): _a = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__a ) _a = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=__a ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) _a = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) _a = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version _a = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__a , use_fast=__a ) _a = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def UpperCamelCase__ ( self : int ): try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) AutoTokenizer.register(__a , slow_tokenizer_class=__a ) AutoProcessor.register(__a , __a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__a ): AutoProcessor.register(__a , __a ) # Now that the config is registered, it can be used as any other config with the auto-API _a = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: _a = os.path.join(__a , "vocab.txt" ) with open(__a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) _a = CustomTokenizer(__a ) _a = CustomProcessor(__a , __a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__a ) _a = AutoProcessor.from_pretrained(__a ) self.assertIsInstance(__a , __a ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self : Union[str, Any] ): class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =False class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =False class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='AutoFeatureExtractor' __a ='AutoTokenizer' __a =False try: AutoConfig.register("custom" , __a ) AutoFeatureExtractor.register(__a , __a ) AutoTokenizer.register(__a , slow_tokenizer_class=__a ) AutoProcessor.register(__a , __a ) # If remote code is not set, the default is to use local classes. _a = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. _a = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__a ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. _a = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__a ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self : Any ): _a = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def UpperCamelCase__ ( self : List[Any] ): _a = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" __a =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def UpperCamelCase__ ( cls : List[Any] ): _a = TOKEN HfFolder.save_token(__a ) @classmethod def UpperCamelCase__ ( cls : List[str] ): try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def UpperCamelCase__ ( self : List[str] ): _a = WavaVecaProcessor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__a , "test-processor" ) , push_to_hub=__a , use_auth_token=self._token ) _a = WavaVecaProcessor.from_pretrained(f'{USER}/test-processor' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__a , getattr(new_processor.feature_extractor , __a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCamelCase__ ( self : Optional[int] ): _a = WavaVecaProcessor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__a , "test-processor-org" ) , push_to_hub=__a , use_auth_token=self._token , organization="valid_org" , ) _a = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__a , getattr(new_processor.feature_extractor , __a ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def UpperCamelCase__ ( self : Dict ): CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _a = CustomFeatureExtractor.from_pretrained(__a ) with tempfile.TemporaryDirectory() as tmp_dir: _a = os.path.join(__a , "vocab.txt" ) with open(__a , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) _a = CustomTokenizer(__a ) _a = CustomProcessor(__a , __a ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f'{USER}/test-dynamic-processor' , token=self._token ) _a = Repository(__a , clone_from=f'{USER}/test-dynamic-processor' , token=self._token ) processor.save_pretrained(__a ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__a , "tokenizer_config.json" ) ) as f: _a = json.load(__a ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__a , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__a , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__a , "custom_processing.py" ) ) ) repo.push_to_hub() _a = AutoProcessor.from_pretrained(f'{USER}/test-dynamic-processor' , trust_remote_code=__a ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
692
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =FlaxAutoencoderKL @property def UpperCamelCase__ ( self : str ): _a = 4 _a = 3 _a = (32, 32) _a = jax.random.PRNGKey(0 ) _a = jax.random.uniform(__a , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def UpperCamelCase__ ( self : List[Any] ): _a = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } _a = self.dummy_input return init_dict, inputs_dict
692
1
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase_ : int = False lowerCAmelCase_ : Tuple = logging.get_logger(__name__) lowerCAmelCase_ : str = 'ybelkada/fonts' def _lowerCamelCase ( ) -> Any: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' "Pix2StructImageProcessor. Please upgrade torch." ) def _lowerCamelCase ( lowercase : List[Any] , lowercase : Optional[int] , lowercase : Tuple ) -> Any: requires_backends(lowercase , ["torch"] ) _check_torch_version() _a = image_tensor.unsqueeze(0 ) _a = torch.nn.functional.unfold(lowercase , (patch_height, patch_width) , stride=(patch_height, patch_width) ) _a = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , lowercase , lowercase , -1 ) _a = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _lowerCamelCase ( lowercase : str , lowercase : int = 36 , lowercase : str = "black" , lowercase : str = "white" , lowercase : int = 5 , lowercase : int = 5 , lowercase : int = 5 , lowercase : int = 5 , lowercase : Optional[bytes] = None , lowercase : Optional[str] = None , ) -> Image.Image: requires_backends(lowercase , "vision" ) # Add new lines so that each line is no more than 80 characters. _a = textwrap.TextWrapper(width=80 ) _a = wrapper.wrap(text=lowercase ) _a = "\n".join(lowercase ) if font_bytes is not None and font_path is None: _a = io.BytesIO(lowercase ) elif font_path is not None: _a = font_path else: _a = hf_hub_download(lowercase , "Arial.TTF" ) _a = ImageFont.truetype(lowercase , encoding="UTF-8" , size=lowercase ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. _a = ImageDraw.Draw(Image.new("RGB" , (1, 1) , lowercase ) ) _a , _a , _a , _a = temp_draw.textbbox((0, 0) , lowercase , lowercase ) # Create the actual image with a bit of padding around the text. _a = text_width + left_padding + right_padding _a = text_height + top_padding + bottom_padding _a = Image.new("RGB" , (image_width, image_height) , lowercase ) _a = ImageDraw.Draw(lowercase ) draw.text(xy=(left_padding, top_padding) , text=lowercase , fill=lowercase , font=lowercase ) return image def _lowerCamelCase ( lowercase : np.ndarray , lowercase : str , **lowercase : Union[str, Any] ) -> Any: requires_backends(lowercase , "vision" ) # Convert to PIL image if necessary _a = to_pil_image(lowercase ) _a = render_text(lowercase , **lowercase ) _a = max(header_image.width , image.width ) _a = int(image.height * (new_width / image.width) ) _a = int(header_image.height * (new_width / header_image.width) ) _a = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary _a = to_numpy_array(lowercase ) if infer_channel_dimension_format(lowercase ) == ChannelDimension.LAST: _a = to_channel_dimension_format(lowercase , ChannelDimension.LAST ) return new_image class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['flattened_patches'] def __init__( self : Union[str, Any] , __a : bool = True , __a : bool = True , __a : Dict[str, int] = None , __a : int = 20_48 , __a : bool = False , **__a : int , ): super().__init__(**__a ) _a = patch_size if patch_size is not None else {"height": 16, "width": 16} _a = do_normalize _a = do_convert_rgb _a = max_patches _a = is_vqa def UpperCamelCase__ ( self : int , __a : np.ndarray , __a : int , __a : dict , **__a : Optional[int] ): requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch _a = to_channel_dimension_format(__a , ChannelDimension.FIRST ) _a = torch.from_numpy(__a ) _a , _a = patch_size["height"], patch_size["width"] _a , _a = get_image_size(__a ) # maximize scale s.t. _a = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) _a = max(min(math.floor(scale * image_height / patch_height ) , __a ) , 1 ) _a = max(min(math.floor(scale * image_width / patch_width ) , __a ) , 1 ) _a = max(num_feasible_rows * patch_height , 1 ) _a = max(num_feasible_cols * patch_width , 1 ) _a = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=__a , antialias=__a , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] _a = torch_extract_patches(__a , __a , __a ) _a = patches.shape _a = patches_shape[1] _a = patches_shape[2] _a = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] _a = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] _a = torch.arange(__a ).reshape([rows, 1] ).repeat(1 , __a ).reshape([rows * columns, 1] ) _a = torch.arange(__a ).reshape([1, columns] ).repeat(__a , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] _a = row_ids.to(torch.floataa ) _a = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] _a = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] _a = torch.nn.functional.pad(__a , [0, 0, 0, max_patches - (rows * columns)] ).float() _a = to_numpy_array(__a ) return result def UpperCamelCase__ ( self : Tuple , __a : np.ndarray , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple ): if image.dtype == np.uinta: _a = image.astype(np.floataa ) # take mean across the whole `image` _a = np.mean(__a ) _a = np.std(__a ) _a = max(__a , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(__a , mean=__a , std=__a , **__a ) def UpperCamelCase__ ( self : List[str] , __a : ImageInput , __a : Optional[str] = None , __a : bool = None , __a : Optional[bool] = None , __a : Optional[int] = None , __a : Optional[Dict[str, int]] = None , __a : Optional[Union[str, TensorType]] = None , __a : ChannelDimension = ChannelDimension.FIRST , **__a : Any , ): _a = do_normalize if do_normalize is not None else self.do_normalize _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = patch_size if patch_size is not None else self.patch_size _a = max_patches if max_patches is not None else self.max_patches _a = self.is_vqa if kwargs.get("data_format" , __a ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) _a = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__a ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) _a = kwargs.pop("font_bytes" , __a ) _a = kwargs.pop("font_path" , __a ) if isinstance(__a , __a ): _a = [header_text] * len(__a ) _a = [ render_header(__a , header_text[i] , font_bytes=__a , font_path=__a ) for i, image in enumerate(__a ) ] if do_normalize: _a = [self.normalize(image=__a ) for image in images] # convert to torch tensor and permute _a = [ self.extract_flattened_patches(image=__a , max_patches=__a , patch_size=__a ) for image in images ] # create attention mask in numpy _a = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] _a = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=__a ) return encoded_outputs
692
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
1
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer lowerCAmelCase_ : str = logging.get_logger(__name__) lowerCAmelCase_ : List[str] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase_ : Dict = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } lowerCAmelCase_ : Union[str, Any] = { 'facebook/blenderbot_small-90M': 5_12, } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =VOCAB_FILES_NAMES __a =PRETRAINED_VOCAB_FILES_MAP __a =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a =BlenderbotSmallTokenizer def __init__( self : int , __a : List[str]=None , __a : int=None , __a : Tuple="<|endoftext|>" , __a : List[Any]="<|endoftext|>" , __a : int="<|endoftext|>" , __a : Dict=False , __a : Dict=True , **__a : Optional[int] , ): super().__init__( ByteLevelBPETokenizer( vocab=__a , merges=__a , add_prefix_space=__a , trim_offsets=__a , ) , bos_token=__a , eos_token=__a , unk_token=__a , **__a , ) _a = add_prefix_space def UpperCamelCase__ ( self : Dict , __a : Optional[int] , __a : List[Any]=None ): _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self : Optional[int] , __a : List[int] , __a : Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
692
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
1
'''simple docstring''' from __future__ import annotations class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Optional[Any] , __a : int ): _a = data _a = None _a = None def _lowerCamelCase ( lowercase : Node | None ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _lowerCamelCase ( lowercase : Node | None ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _lowerCamelCase ( lowercase : Node ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _lowerCamelCase ( ) -> None: # Main function for testing. _a = Node(1 ) _a = Node(2 ) _a = Node(3 ) _a = Node(4 ) _a = Node(5 ) _a = Node(6 ) _a = Node(7 ) _a = Node(8 ) _a = Node(9 ) print(is_full_binary_tree(lowercase ) ) print(depth_of_tree(lowercase ) ) print("Tree is: " ) display(lowercase ) if __name__ == "__main__": main()
692
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
1
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase_ : List[str] = object() # For specifying empty leaf dict `{}` lowerCAmelCase_ : Union[str, Any] = object() def _lowerCamelCase ( lowercase : Tuple , lowercase : Any ) -> List[str]: _a = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(lowercase ) - len(lowercase ) + 1 ): _a = [x.match(lowercase ) for x, y in zip(lowercase , ks[i:] )] if matches and all(lowercase ): return True return False def _lowerCamelCase ( lowercase : List[str] ) -> List[Any]: def replace(lowercase : Optional[Any] , lowercase : str ): for rule, replacement in rules: if _match(lowercase , lowercase ): return replacement return val return replace def _lowerCamelCase ( ) -> Optional[int]: return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , lowercase )), (("transformer", "wte", "embedding"), P("mp" , lowercase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(lowercase , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , lowercase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(lowercase , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , lowercase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _lowerCamelCase ( lowercase : Union[str, Any] ) -> Any: _a = _get_partition_rules() _a = _replacement_rules(lowercase ) _a = {k: _unmatched for k in flatten_dict(lowercase )} _a = {k: replace(lowercase , lowercase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(lowercase ) )
692
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') lowerCAmelCase_ : Optional[Any] = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) lowerCAmelCase_ : Dict = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) lowerCAmelCase_ : Dict = BeautifulSoup(res.text, 'html.parser') lowerCAmelCase_ : Optional[int] = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
692
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) def _lowerCamelCase ( lowercase : List[Any] , lowercase : List[str] ) -> Any: _a = b.T _a = np.sum(np.square(lowercase ) , axis=1 ) _a = np.sum(np.square(lowercase ) , axis=0 ) _a = np.matmul(lowercase , lowercase ) _a = aa[:, None] - 2 * ab + ba[None, :] return d def _lowerCamelCase ( lowercase : int , lowercase : Tuple ) -> str: _a = x.reshape(-1 , 3 ) _a = squared_euclidean_distance(lowercase , lowercase ) return np.argmin(lowercase , axis=1 ) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['pixel_values'] def __init__( self : int , __a : Optional[Union[List[List[int]], np.ndarray]] = None , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : bool = True , __a : bool = True , **__a : List[str] , ): super().__init__(**__a ) _a = size if size is not None else {"height": 2_56, "width": 2_56} _a = get_size_dict(__a ) _a = np.array(__a ) if clusters is not None else None _a = do_resize _a = size _a = resample _a = do_normalize _a = do_color_quantize def UpperCamelCase__ ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BILINEAR , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ): _a = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(f'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( __a , size=(size["height"], size["width"]) , resample=__a , data_format=__a , **__a ) def UpperCamelCase__ ( self : List[str] , __a : np.ndarray , __a : Optional[Union[str, ChannelDimension]] = None , ): _a = rescale(image=__a , scale=1 / 127.5 , data_format=__a ) _a = image - 1 return image def UpperCamelCase__ ( self : str , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : Optional[bool] = None , __a : Optional[Union[List[List[int]], np.ndarray]] = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__a : str , ): _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__a ) _a = resample if resample is not None else self.resample _a = do_normalize if do_normalize is not None else self.do_normalize _a = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _a = clusters if clusters is not None else self.clusters _a = np.array(__a ) _a = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. _a = [to_numpy_array(__a ) for image in images] if do_resize: _a = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_normalize: _a = [self.normalize(image=__a ) for image in images] if do_color_quantize: _a = [to_channel_dimension_format(__a , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _a = np.array(__a ) _a = color_quantize(__a , __a ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _a = images.shape[0] _a = images.reshape(__a , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _a = list(__a ) else: _a = [to_channel_dimension_format(__a , __a ) for image in images] _a = {"input_ids": images} return BatchFeature(data=__a , tensor_type=__a )
692
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase_ : Optional[Any] = datasets.logging.get_logger(__name__) lowerCAmelCase_ : Tuple = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n' lowerCAmelCase_ : Union[str, Any] = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase_ : Union[str, Any] = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def _lowerCamelCase ( lowercase : Tuple , lowercase : List[Any] , lowercase : Optional[int]=False , lowercase : Dict=False , lowercase : Optional[int]=True , lowercase : Union[str, Any]=False , lowercase : int="dummy_doc" ) -> Union[str, Any]: _a = {doc: key_lines} _a = {doc: sys_lines} _a = {} _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a = 0 _a , _a = reader.get_doc_mentions(lowercase , key_doc_lines[doc] , lowercase ) key_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) _a , _a = reader.get_doc_mentions(lowercase , sys_doc_lines[doc] , lowercase ) sys_singletons_num += singletons_num if NP_only or min_span: _a = reader.set_annotated_parse_trees(lowercase , key_doc_lines[doc] , lowercase , lowercase ) if remove_nested: _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters _a , _a = reader.remove_nested_coref_mentions(lowercase , lowercase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters _a = reader.get_mention_assignments(lowercase , lowercase ) _a = reader.get_mention_assignments(lowercase , lowercase ) _a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( "Number of removed nested coreferring mentions in the key " F'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' ) logger.info( "Number of resulting singleton clusters in the key " F'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' ) if not keep_singletons: logger.info( F'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' "files, respectively" ) return doc_coref_infos def _lowerCamelCase ( lowercase : List[Any] , lowercase : Any , lowercase : Optional[Any] , lowercase : Union[str, Any] , lowercase : Any , lowercase : List[str] , lowercase : Dict ) -> str: _a = get_coref_infos(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) _a = {} _a = 0 _a = 0 for name, metric in metrics: _a , _a , _a = evaluator.evaluate_documents(lowercase , lowercase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'{name}/recall': recall, F'{name}/precision': precision, F'{name}/f1': fa} ) logger.info( name.ljust(10 ) , F'Recall: {recall * 100:.2f}' , F' Precision: {precision * 100:.2f}' , F' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: _a = (conll / 3) * 100 logger.info(F'CoNLL score: {conll:.2f}' ) output_scores.update({"conll_score": conll} ) return output_scores def _lowerCamelCase ( lowercase : Any ) -> str: _a = False for line in key_lines: if not line.startswith("#" ): if len(line.split() ) > 6: _a = line.split()[5] if not parse_col == "-": _a = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Sequence(datasets.Value("string" ) ), } ) , codebase_urls=["https://github.com/ns-moosavi/coval"] , reference_urls=[ "https://github.com/ns-moosavi/coval", "https://www.aclweb.org/anthology/P16-1060", "http://www.conll.cemantix.org/2012/data.html", ] , ) def UpperCamelCase__ ( self : int , __a : Any , __a : int , __a : Optional[Any]=True , __a : Optional[Any]=False , __a : str=False , __a : List[str]=False ): _a = [ ("mentions", evaluator.mentions), ("muc", evaluator.muc), ("bcub", evaluator.b_cubed), ("ceafe", evaluator.ceafe), ("lea", evaluator.lea), ] if min_span: _a = util.check_gold_parse_annotation(__a ) if not has_gold_parse: raise NotImplementedError("References should have gold parse annotation to use 'min_span'." ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" _a = evaluate( key_lines=__a , sys_lines=__a , metrics=__a , NP_only=__a , remove_nested=__a , keep_singletons=__a , min_span=__a , ) return score
692
1
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
'''simple docstring''' import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( lowercase : float = 0.1 ) -> int: _a = 3 _a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowercase ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" __a =inspect.getfile(accelerate.test_utils ) __a =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_cli.py'] ) __a =['accelerate', 'launch'] __a =Path.home() / '.cache/huggingface/accelerate' __a ='default_config.yaml' __a =config_folder / config_file __a =config_folder / '_default_config.yaml' __a =Path('tests/test_configs' ) @classmethod def UpperCamelCase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def UpperCamelCase__ ( cls : Union[str, Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def UpperCamelCase__ ( self : Dict ): _a = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase__ ( self : List[Any] ): for config in sorted(self.test_config_path.glob("**/*.yaml" ) ): with self.subTest(config_file=__a ): execute_subprocess_async( self.base_cmd + ["--config_file", str(__a ), self.test_file_path] , env=os.environ.copy() ) def UpperCamelCase__ ( self : Dict ): execute_subprocess_async(["accelerate", "test"] , env=os.environ.copy() ) class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" __a ='test-tpu' __a ='us-central1-a' __a ='ls' __a =['accelerate', 'tpu-config'] __a ='cd /usr/share' __a ='tests/test_samples/test_command_file.sh' __a ='Running gcloud compute tpus tpu-vm ssh' def UpperCamelCase__ ( self : Optional[int] ): _a = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"] , return_stdout=__a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __a , ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=__a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __a , ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"] , return_stdout=__a ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __a , ) def UpperCamelCase__ ( self : Optional[int] ): _a = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"] , return_stdout=__a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , __a , ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ] , return_stdout=__a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , __a , ) def UpperCamelCase__ ( self : List[str] ): _a = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"] , return_stdout=__a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __a , ) def UpperCamelCase__ ( self : Optional[int] ): _a = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ] , return_stdout=__a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , __a , ) def UpperCamelCase__ ( self : Optional[Any] ): _a = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"] , return_stdout=__a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , __a , ) def UpperCamelCase__ ( self : Optional[Any] ): _a = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ] , return_stdout=__a , ) self.assertIn( f'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , __a , )
692
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(CMStochasticIterativeScheduler,) __a =10 def UpperCamelCase__ ( self : Union[str, Any] , **__a : str ): _a = { "num_train_timesteps": 2_01, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[Any] ): _a = 10 _a = self.get_scheduler_config() _a = self.scheduler_classes[0](**__a ) scheduler.set_timesteps(__a ) _a = scheduler.timesteps[0] _a = scheduler.timesteps[1] _a = self.dummy_sample _a = 0.1 * sample _a = scheduler.step(__a , __a , __a ).prev_sample _a = scheduler.step(__a , __a , __a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self : Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : int ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = 1 scheduler.set_timesteps(__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(__a ): # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [1_06, 0] scheduler.set_timesteps(timesteps=__a ) _a = scheduler.timesteps _a = torch.manual_seed(0 ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input _a = scheduler.scale_model_input(__a , __a ) # 2. predict noise residual _a = model(__a , __a ) # 3. predict previous sample x_t-1 _a = scheduler.step(__a , __a , __a , generator=__a ).prev_sample _a = pred_prev_sample _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def UpperCamelCase__ ( self : List[Any] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 15, 0] with self.assertRaises(__a , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__a ) def UpperCamelCase__ ( self : Tuple ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [39, 30, 12, 1, 0] _a = len(__a ) with self.assertRaises(__a , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def UpperCamelCase__ ( self : str ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__a )
692
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ : Any = { 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Tuple = [ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , *__a : int , **__a : Optional[Any] ): warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants lowerCAmelCase_ : List[str] = Mapping[str, np.ndarray] lowerCAmelCase_ : Any = Mapping[str, Any] # Is a nested dict. lowerCAmelCase_ : Optional[Any] = 0.01 @dataclasses.dataclass(frozen=lowerCamelCase_ ) class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. __a =42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. __a =42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. __a =42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. __a =42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions __a =None # Optional remark about the protein. Included as a comment in output PDB # files __a =None # Templates used to generate this protein (prediction-only) __a =None # Chain corresponding to each parent __a =None def _lowerCamelCase ( lowercase : str ) -> Protein: _a = r"(\[[A-Z]+\]\n)" _a = [tag.strip() for tag in re.split(lowercase , lowercase ) if len(lowercase ) > 0] _a = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) _a = ["N", "CA", "C"] _a = None _a = None _a = None for g in groups: if "[PRIMARY]" == g[0]: _a = g[1][0].strip() for i in range(len(lowercase ) ): if seq[i] not in residue_constants.restypes: _a = "X" # FIXME: strings are immutable _a = np.array( [residue_constants.restype_order.get(lowercase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _a = [] for axis in range(3 ): tertiary.append(list(map(lowercase , g[1][axis].split() ) ) ) _a = np.array(lowercase ) _a = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(lowercase ): _a = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _a = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) _a = np.zeros( ( len(lowercase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(lowercase ): _a = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=lowercase , atom_mask=lowercase , aatype=lowercase , residue_index=np.arange(len(lowercase ) ) , b_factors=lowercase , ) def _lowerCamelCase ( lowercase : Protein , lowercase : int = 0 ) -> List[str]: _a = [] _a = prot.remark if remark is not None: pdb_headers.append(F'REMARK {remark}' ) _a = prot.parents _a = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _a = [p for i, p in zip(lowercase , lowercase ) if i == chain_id] if parents is None or len(lowercase ) == 0: _a = ["N/A"] pdb_headers.append(F'PARENT {" ".join(lowercase )}' ) return pdb_headers def _lowerCamelCase ( lowercase : Protein , lowercase : str ) -> str: _a = [] _a = pdb_str.split("\n" ) _a = prot.remark if remark is not None: out_pdb_lines.append(F'REMARK {remark}' ) _a = 42 if prot.parents is not None and len(prot.parents ) > 0: _a = [] if prot.parents_chain_index is not None: _a = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(lowercase ) , [] ) parent_dict[str(lowercase )].append(lowercase ) _a = max([int(lowercase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _a = parent_dict.get(str(lowercase ) , ["N/A"] ) parents_per_chain.append(lowercase ) else: parents_per_chain.append(list(prot.parents ) ) else: _a = [["N/A"]] def make_parent_line(lowercase : Sequence[str] ) -> str: return F'PARENT {" ".join(lowercase )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _a = 0 for i, l in enumerate(lowercase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(lowercase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(lowercase ): _a = parents_per_chain[chain_counter] else: _a = ["N/A"] out_pdb_lines.append(make_parent_line(lowercase ) ) return "\n".join(lowercase ) def _lowerCamelCase ( lowercase : Protein ) -> str: _a = residue_constants.restypes + ["X"] def res_atoa(lowercase : int ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) _a = residue_constants.atom_types _a = [] _a = prot.atom_mask _a = prot.aatype _a = prot.atom_positions _a = prot.residue_index.astype(np.intaa ) _a = prot.b_factors _a = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) _a = get_pdb_headers(lowercase ) if len(lowercase ) > 0: pdb_lines.extend(lowercase ) _a = aatype.shape[0] _a = 1 _a = 0 _a = string.ascii_uppercase _a = None # Add all atom sites. for i in range(lowercase ): _a = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(lowercase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _a = "ATOM" _a = atom_name if len(lowercase ) == 4 else F' {atom_name}' _a = "" _a = "" _a = 1.00 _a = atom_name[0] # Protein supports only C, N, O, S, this works. _a = "" _a = "A" if chain_index is not None: _a = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _a = ( F'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' F'{res_name_a:>3} {chain_tag:>1}' F'{residue_index[i]:>4}{insertion_code:>1} ' F'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' F'{occupancy:>6.2f}{b_factor:>6.2f} ' F'{element:>2}{charge:>2}' ) pdb_lines.append(lowercase ) atom_index += 1 _a = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _a = True _a = chain_index[i + 1] if should_terminate: # Close the chain. _a = "TER" _a = ( F'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(lowercase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(lowercase , lowercase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(lowercase ) def _lowerCamelCase ( lowercase : Protein ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowerCamelCase ( lowercase : FeatureDict , lowercase : ModelOutput , lowercase : Optional[np.ndarray] = None , lowercase : Optional[np.ndarray] = None , lowercase : Optional[str] = None , lowercase : Optional[Sequence[str]] = None , lowercase : Optional[Sequence[int]] = None , ) -> Protein: return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=lowercase , remark=lowercase , parents=lowercase , parents_chain_index=lowercase , )
692
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='timesformer' def __init__( self : Optional[int] , __a : Optional[int]=2_24 , __a : Tuple=16 , __a : int=3 , __a : Union[str, Any]=8 , __a : Union[str, Any]=7_68 , __a : List[str]=12 , __a : Union[str, Any]=12 , __a : Optional[Any]=30_72 , __a : Tuple="gelu" , __a : str=0.0 , __a : List[Any]=0.0 , __a : Any=0.02 , __a : List[str]=1e-6 , __a : Any=True , __a : Union[str, Any]="divided_space_time" , __a : str=0 , **__a : Tuple , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = num_frames _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = qkv_bias _a = attention_type _a = drop_path_rate
692
1
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowerCAmelCase_ : int = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def _lowerCamelCase ( lowercase : str , lowercase : List[str]=None ) -> int: require_version(deps[pkg] , lowercase )
692
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Union[str, Any] , __a : int ): _a = [[] for _ in range(__a )] _a = size def __getitem__( self : int , __a : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase__ ( self : Dict ): return self._size def UpperCamelCase__ ( self : Union[str, Any] , __a : int , __a : int , __a : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def UpperCamelCase__ ( self : Tuple , __a : int , __a : int ): _a = deque([start_vertex] ) _a = [None] * self.size _a = 0 while queue: _a = queue.popleft() _a = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _a = current_distance + edge.weight _a = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue _a = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : int , *__a : Tuple , **__a : Optional[Any] ): warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , __a , ) super().__init__(*__a , **__a )
692
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =None __a =None lowerCAmelCase_ : int = namedtuple('CoinsDistribResult', 'moves excess') def _lowerCamelCase ( lowercase : TreeNode | None ) -> int: if root is None: return 0 # Validation def count_nodes(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(lowercase : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(lowercase ) != count_coins(lowercase ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(lowercase : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _a , _a = get_distrib(node.left ) _a , _a = get_distrib(node.right ) _a = 1 - left_distrib_excess _a = 1 - right_distrib_excess _a = ( left_distrib_moves + right_distrib_moves + abs(lowercase ) + abs(lowercase ) ) _a = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowercase , lowercase ) return get_distrib(lowercase )[0] if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _lowerCamelCase ( lowercase : Any ) -> Tuple: _a = filter(lambda lowercase : p.requires_grad , model.parameters() ) _a = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase_ : str = logging.getLogger(__name__) def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Dict: if metric == "rouge2": _a = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _a = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _a = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' " function." ) _a = ModelCheckpoint( dirpath=lowercase , filename=lowercase , monitor=F'val_{metric}' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def _lowerCamelCase ( lowercase : Optional[int] , lowercase : List[str] ) -> Dict: return EarlyStopping( monitor=F'val_{metric}' , mode="min" if "loss" in metric else "max" , patience=lowercase , verbose=lowercase , ) class __SCREAMING_SNAKE_CASE (pl.Callback ): """simple docstring""" def UpperCamelCase__ ( self : Optional[Any] , __a : Dict , __a : Optional[int] ): _a = {f'lr_group_{i}': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__a ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : pl.LightningModule , __a : str , __a : Optional[int]=True ): logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) _a = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _a = Path(pl_module.hparams.output_dir ) if type_path == "test": _a = od / "test_results.txt" _a = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _a = od / f'{type_path}_results/{trainer.global_step:05d}.txt' _a = od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=__a ) generations_file.parent.mkdir(exist_ok=__a ) with open(__a , "a+" ) as writer: for key in sorted(__a ): if key in ["log", "progress_bar", "preds"]: continue _a = metrics[key] if isinstance(__a , torch.Tensor ): _a = val.item() _a = f'{key}: {val:.6f}\n' writer.write(__a ) if not save_generations: return if "preds" in metrics: _a = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(__a ) @rank_zero_only def UpperCamelCase__ ( self : List[str] , __a : Optional[Any] , __a : List[str] ): try: _a = pl_module.model.model.num_parameters() except AttributeError: _a = pl_module.model.num_parameters() _a = count_trainable_parameters(__a ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCamelCase__ ( self : Dict , __a : pl.Trainer , __a : pl.LightningModule ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__a , __a , "test" ) @rank_zero_only def UpperCamelCase__ ( self : Any , __a : pl.Trainer , __a : Optional[int] ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
692
1
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 lowerCAmelCase_ : Tuple = 0B101100111110110010010000011110111011000110011110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 lowerCAmelCase_ : str = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = WATERMARK_BITS _a = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark ) def UpperCamelCase__ ( self : Optional[Any] , __a : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 2_56: return images _a = (2_55 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _a = [self.encoder.encode(__a , "dwtDct" ) for image in images] _a = torch.from_numpy(np.array(__a ) ).permute(0 , 3 , 1 , 2 ) _a = torch.clamp(2 * (images / 2_55 - 0.5) , min=-1.0 , max=1.0 ) return images
692
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ : Any = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : List[str] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
692
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int ) -> int: assert ( isinstance(lowercase , lowercase ) and number_of_steps > 0 ), F'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 _a , _a = 1, 1 for _ in range(number_of_steps - 1 ): _a , _a = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
692
'''simple docstring''' import gc import threading import time import psutil import torch class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] ): _a = psutil.Process() _a = False def UpperCamelCase__ ( self : Tuple ): _a = -1 while True: _a = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def UpperCamelCase__ ( self : List[Any] ): _a = True _a = threading.Thread(target=self.peak_monitor ) _a = True self.thread.start() def UpperCamelCase__ ( self : Optional[int] ): _a = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase_ : List[Any] = PeakCPUMemory() def _lowerCamelCase ( ) -> Tuple: # Time _a = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _a = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _a = torch.cuda.memory_allocated(lowercase ) torch.cuda.reset_peak_memory_stats() return measures def _lowerCamelCase ( lowercase : Any ) -> int: # Time _a = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _a = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 _a = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _a = (torch.cuda.memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 _a = (torch.cuda.max_memory_allocated(lowercase ) - start_measures[str(lowercase )]) / 2**20 return measures def _lowerCamelCase ( lowercase : Optional[int] , lowercase : Dict ) -> str: print(F'{description}:' ) print(F'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(F'- GPU {i} allocated: {measures[str(lowercase )]:.2f}MiB' ) _a = measures[F'{i}-peak'] print(F'- GPU {i} peak: {peak:.2f}MiB' ) print(F'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(F'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
692
1
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Union[str, Any] , __a : str , __a : Tuple=13 , __a : Optional[int]=7 , __a : Tuple=True , __a : Union[str, Any]=True , __a : List[Any]=True , __a : Union[str, Any]=True , __a : List[str]=True , __a : Union[str, Any]=False , __a : Dict=False , __a : Optional[Any]=False , __a : Tuple=2 , __a : List[str]=99 , __a : Union[str, Any]=0 , __a : int=32 , __a : Optional[Any]=5 , __a : Optional[Any]=4 , __a : str=0.1 , __a : str=0.1 , __a : Optional[Any]=5_12 , __a : int=12 , __a : str=2 , __a : List[str]=0.02 , __a : Dict=3 , __a : List[Any]=4 , __a : Union[str, Any]="last" , __a : Any=None , __a : str=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_lengths _a = use_token_type_ids _a = use_labels _a = gelu_activation _a = sinusoidal_embeddings _a = causal _a = asm _a = n_langs _a = vocab_size _a = n_special _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = summary_type _a = use_proj _a = scope def UpperCamelCase__ ( self : Optional[Any] ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 ).float() _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase__ ( self : List[str] ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase__ ( self : Optional[Any] , __a : Any , __a : Dict , __a : Any , __a : Optional[Any] , __a : str , __a : Optional[Any] , __a : List[Any] , __a : int , __a : List[Any] , ): _a = FlaubertModel(config=__a ) model.to(__a ) model.eval() _a = model(__a , lengths=__a , langs=__a ) _a = model(__a , langs=__a ) _a = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self : List[Any] , __a : Tuple , __a : int , __a : Optional[int] , __a : Optional[Any] , __a : int , __a : List[str] , __a : Dict , __a : Dict , __a : Union[str, Any] , ): _a = FlaubertWithLMHeadModel(__a ) model.to(__a ) model.eval() _a = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self : List[Any] , __a : List[str] , __a : Optional[int] , __a : Tuple , __a : Dict , __a : Optional[Any] , __a : str , __a : List[str] , __a : Tuple , __a : str , ): _a = FlaubertForQuestionAnsweringSimple(__a ) model.to(__a ) model.eval() _a = model(__a ) _a = model(__a , start_positions=__a , end_positions=__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self : Tuple , __a : Any , __a : Union[str, Any] , __a : Union[str, Any] , __a : Union[str, Any] , __a : Dict , __a : Optional[Any] , __a : List[str] , __a : int , __a : Optional[int] , ): _a = FlaubertForQuestionAnswering(__a ) model.to(__a ) model.eval() _a = model(__a ) _a = model( __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , p_mask=__a , ) _a = model( __a , start_positions=__a , end_positions=__a , cls_index=__a , is_impossible=__a , ) ((_a) , ) = result_with_labels.to_tuple() _a = model(__a , start_positions=__a , end_positions=__a ) ((_a) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase__ ( self : int , __a : Union[str, Any] , __a : List[str] , __a : Tuple , __a : str , __a : Optional[int] , __a : int , __a : Union[str, Any] , __a : Dict , __a : List[Any] , ): _a = FlaubertForSequenceClassification(__a ) model.to(__a ) model.eval() _a = model(__a ) _a = model(__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] , __a : List[str] , __a : int , __a : Dict , __a : Optional[int] , __a : List[str] , __a : List[Any] , __a : Optional[int] , __a : Any , ): _a = self.num_labels _a = FlaubertForTokenClassification(__a ) model.to(__a ) model.eval() _a = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self : Optional[Any] , __a : Tuple , __a : Union[str, Any] , __a : Union[str, Any] , __a : str , __a : int , __a : Dict , __a : Optional[Any] , __a : str , __a : Optional[Any] , ): _a = self.num_choices _a = FlaubertForMultipleChoice(config=__a ) model.to(__a ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase__ ( self : Optional[Any] ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __a =( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self : str , __a : List[Any] , __a : Any , __a : List[Any] , __a : int , __a : List[str] ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase__ ( self : List[str] , __a : List[Any] , __a : Optional[Any] , __a : Dict=False ): _a = super()._prepare_for_class(__a , __a , return_labels=__a ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a ) return inputs_dict def UpperCamelCase__ ( self : str ): _a = FlaubertModelTester(self ) _a = ConfigTester(self , config_class=__a , emb_dim=37 ) def UpperCamelCase__ ( self : int ): self.config_tester.run_common_tests() def UpperCamelCase__ ( self : List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__a ) def UpperCamelCase__ ( self : int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__a ) def UpperCamelCase__ ( self : Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__a ) def UpperCamelCase__ ( self : List[str] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__a ) @slow def UpperCamelCase__ ( self : str ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = FlaubertModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @slow @require_torch_gpu def UpperCamelCase__ ( self : List[str] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _a = True _a = model_class(config=__a ) _a = self._prepare_for_class(__a , __a ) _a = torch.jit.trace( __a , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__a , os.path.join(__a , "traced_model.pt" ) ) _a = torch.jit.load(os.path.join(__a , "traced_model.pt" ) , map_location=__a ) loaded(inputs_dict["input_ids"].to(__a ) , inputs_dict["attention_mask"].to(__a ) ) @require_torch class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" @slow def UpperCamelCase__ ( self : Tuple ): _a = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) _a = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): _a = model(__a )[0] _a = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __a ) _a = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
692
'''simple docstring''' import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =(DDIMParallelScheduler,) __a =(('eta', 0.0), ('num_inference_steps', 50)) def UpperCamelCase__ ( self : Optional[int] , **__a : Any ): _a = { "num_train_timesteps": 10_00, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__a ) return config def UpperCamelCase__ ( self : List[str] , **__a : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**__a ) _a = scheduler_class(**__a ) _a , _a = 10, 0.0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(__a ) for t in scheduler.timesteps: _a = model(__a , __a ) _a = scheduler.step(__a , __a , __a , __a ).prev_sample return sample def UpperCamelCase__ ( self : str ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=__a ) def UpperCamelCase__ ( self : Dict ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__a ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**__a ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def UpperCamelCase__ ( self : Tuple ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def UpperCamelCase__ ( self : Dict ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def UpperCamelCase__ ( self : Tuple ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def UpperCamelCase__ ( self : Dict ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def UpperCamelCase__ ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__a ) def UpperCamelCase__ ( self : Optional[Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__a ) def UpperCamelCase__ ( self : List[Any] ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def UpperCamelCase__ ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=__a , num_inference_steps=__a ) def UpperCamelCase__ ( self : Union[str, Any] ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__a , eta=__a ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.14771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.32460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def UpperCamelCase__ ( self : List[str] ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**__a ) _a , _a = 10, 0.0 scheduler.set_timesteps(__a ) _a = self.dummy_model() _a = self.dummy_sample_deter _a = self.dummy_sample_deter + 0.1 _a = self.dummy_sample_deter - 0.1 _a = samplea.shape[0] _a = torch.stack([samplea, samplea, samplea] , dim=0 ) _a = torch.arange(__a )[0:3, None].repeat(1 , __a ) _a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _a = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __a ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def UpperCamelCase__ ( self : List[str] ): _a = self.full_loop() _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.223967 ) < 1e-3 def UpperCamelCase__ ( self : str ): _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def UpperCamelCase__ ( self : str ): # We specify different beta, so that the first alpha is 0.99 _a = self.full_loop(set_alpha_to_one=__a , beta_start=0.01 ) _a = torch.sum(torch.abs(__a ) ) _a = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
692
1
'''simple docstring''' from collections import deque from .hash_table import HashTable class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : Any , *__a : Union[str, Any] , **__a : List[str] ): super().__init__(*__a , **__a ) def UpperCamelCase__ ( self : List[Any] , __a : List[Any] , __a : Tuple ): _a = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(__a ) _a = self.values[key] def UpperCamelCase__ ( self : Tuple ): return ( sum(self.charge_factor - len(__a ) for slot in self.values ) / self.size_table * self.charge_factor ) def UpperCamelCase__ ( self : Dict , __a : Union[str, Any] , __a : Any=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(__a ) == 0 ): return key return super()._collision_resolution(__a , __a )
692
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _lowerCamelCase ( lowercase : Any ) -> List[str]: return getitem, k def _lowerCamelCase ( lowercase : Optional[Any] , lowercase : Union[str, Any] ) -> Any: return setitem, k, v def _lowerCamelCase ( lowercase : int ) -> Union[str, Any]: return delitem, k def _lowerCamelCase ( lowercase : Tuple , lowercase : Dict , *lowercase : Union[str, Any] ) -> int: try: return fun(lowercase , *lowercase ), None except Exception as e: return None, e lowerCAmelCase_ : Optional[Any] = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) lowerCAmelCase_ : Optional[int] = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] lowerCAmelCase_ : int = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] lowerCAmelCase_ : List[Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def _lowerCamelCase ( lowercase : Optional[int] ) -> Optional[int]: _a = HashMap(initial_block_size=4 ) _a = {} for _, (fun, *args) in enumerate(lowercase ): _a , _a = _run_operation(lowercase , lowercase , *lowercase ) _a , _a = _run_operation(lowercase , lowercase , *lowercase ) assert my_res == py_res assert str(lowercase ) == str(lowercase ) assert set(lowercase ) == set(lowercase ) assert len(lowercase ) == len(lowercase ) assert set(my.items() ) == set(py.items() ) def _lowerCamelCase ( ) -> str: def is_public(lowercase : str ) -> bool: return not name.startswith("_" ) _a = {name for name in dir({} ) if is_public(lowercase )} _a = {name for name in dir(HashMap() ) if is_public(lowercase )} assert dict_public_names > hash_public_names
692
1
'''simple docstring''' import itertools import math def _lowerCamelCase ( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCamelCase ( ) -> Union[str, Any]: _a = 2 while True: if is_prime(lowercase ): yield num num += 1 def _lowerCamelCase ( lowercase : int = 1_0001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , lowercase ) ) if __name__ == "__main__": print(f"""{solution() = }""")
692
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Any = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='swinv2' __a ={ 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Tuple , __a : Optional[int]=2_24 , __a : List[str]=4 , __a : List[str]=3 , __a : int=96 , __a : Optional[int]=[2, 2, 6, 2] , __a : List[str]=[3, 6, 12, 24] , __a : List[Any]=7 , __a : Optional[Any]=4.0 , __a : Optional[Any]=True , __a : Tuple=0.0 , __a : Dict=0.0 , __a : Any=0.1 , __a : Tuple="gelu" , __a : List[str]=False , __a : int=0.02 , __a : Tuple=1e-5 , __a : List[str]=32 , **__a : str , ): super().__init__(**__a ) _a = image_size _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = len(__a ) _a = num_heads _a = window_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = use_absolute_embeddings _a = layer_norm_eps _a = initializer_range _a = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a = int(embed_dim * 2 ** (len(__a ) - 1) ) _a = (0, 0, 0, 0)
692
'''simple docstring''' import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" def __init__( self : str , *__a : Any , __a : str=None , __a : Union[str, Any]=None , **__a : Any ): super().__init__(*__a , **__a ) _a = eval_examples _a = post_process_function def UpperCamelCase__ ( self : Optional[Any] , __a : Dict=None , __a : Any=None , __a : str=None , __a : str = "eval" ): _a = self.eval_dataset if eval_dataset is None else eval_dataset _a = self.get_eval_dataloader(__a ) _a = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _a = self.post_process_function(__a , __a , output.predictions ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) else: _a = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__a ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _a = self.callback_handler.on_evaluate(self.args , self.state , self.control , __a ) return metrics def UpperCamelCase__ ( self : Tuple , __a : Dict , __a : Optional[Any] , __a : Optional[Any]=None , __a : str = "test" ): _a = self.get_test_dataloader(__a ) # Temporarily disable metric computation, we will do it in the loop here. _a = self.compute_metrics _a = None _a = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _a = time.time() try: _a = eval_loop( __a , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__a , metric_key_prefix=__a , ) finally: _a = compute_metrics _a = self.args.eval_batch_size * self.args.world_size if f'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[f'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( __a , __a , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _a = self.post_process_function(__a , __a , output.predictions , "predict" ) _a = self.compute_metrics(__a ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): _a = metrics.pop(__a ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__a )
692
1