repo_name
stringlengths
7
90
path
stringlengths
5
191
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
976
581k
license
stringclasses
15 values
dpressel/baseline
scripts/lr_visualize.py
1
8549
import os import math import json import inspect import argparse from hashlib import sha1 from collections import defaultdict import numpy as np import baseline as bl import matplotlib.pyplot as plt from lr_compare import plot_learning_rates # Collect possible Schedulers OPTIONS = {} WARMUP = {} base_classes = ( bl.train.LearningRateScheduler.__name__, bl.train.WarmupLearningRateScheduler.__name__ ) # Collect all schedulers except base classes and separate out the warmup ones for item_name in dir(bl.train): if item_name in base_classes: continue item = getattr(bl.train, item_name) try: if issubclass(item, bl.train.LearningRateScheduler): OPTIONS[item_name] = item if issubclass(item, bl.train.WarmupLearningRateScheduler): WARMUP[item_name] = item except: pass REST = {} for k, v in OPTIONS.items(): if k not in WARMUP: REST[k] = v # Collect the args and defaults that the schedulers use. # This currently misses the `lr` because it is kwargs only as well # As `values` because that is never a defaulted argument # (we skip over ones without defaults) ARGS = defaultdict(list) DEFAULTS = defaultdict(list) for k, v in OPTIONS.items(): az = inspect.getargspec(v).args ds = inspect.getargspec(v).defaults if az is None or ds is None: continue for a, d in zip(reversed(az), reversed(ds)): ARGS[a].append(k) DEFAULTS[a].append(d) for a, ds in DEFAULTS.items(): ds_set = set(ds) if len(ds_set) == 1: # If the only default values is None set to None. if None in ds_set: DEFAULTS[a] = None # Set to the only default. else: DEFAULTS[a] = ds_set.pop() else: # Remove None and grab the last default, no reason arbitrary but # consistant if None in ds: ds.remove(None) DEFAULTS[a] = ds[-1] new_defaults = defaultdict(lambda: None) for k, v in DEFAULTS.items(): new_defaults[k] = v DEFAULTS = new_defaults def exp_steps(y, lr, decay_rate, decay_steps): """Calculate how many steps are needed to get to some value.""" return decay_steps * (math.log(y / lr) / math.log(decay_rate)) def inv_steps(y, lr, decay_rate, decay_steps): """Calculate how many steps are needed to get to some value.""" return decay_steps * (((lr / y) - 1.0) / decay_rate) def get_steps(type_, args, double_warm=False): """ Calculate the number of steps to plot. Most of these calculations are bespoke to the scheduler. """ if type_ == 'ConstantScheduler': return 1000 # WarmupLinear if type_ in WARMUP: # If we are just warm up double it to show its fine return args['warmup_steps'] * 2 if double_warm else args['warmup_steps'] # PiecewiseDecay, Zaremba if args['boundaries'] is not None: # If we are bound based how bounds plus some extra gap = np.max(np.diff(args['boundaries'])) return args['boundaries'][-1] + gap if type_ == 'CyclicLRScheduler': # Cyclic, show some cycles return args['decay_steps'] * args['cycles'] # Show it decay once # Cosine, InverseTimeDecay, Exponential if type_ == 'ExponentialDecayScheduler': return exp_steps(args['min_lr'], args['lr'], args['decay_rate'], args['decay_steps']) if type_ == 'InverseTimeDecayScheduler': return inv_steps(args['min_lr'], args['lr'], args['decay_rate'], args['decay_steps']) if type_ == 'CosineDecayScheduler': return args['decay_steps'] # def plot_learning_rates(ys, names): # fig, ax = plt.subplots(1, 1) # ax.set_title('Learning Rates from baseline.') # ax.set_xlabel('Steps') # ax.set_ylabel('Learning Rates') # for y, name in zip(ys, names): # ax.plot(np.arange(len(y)), y, label=name) # ax.legend() # return fig def main(): parser = argparse.ArgumentParser(description="Plot a learning rate schedule.") # Begin lr scheduler based arguments parser.add_argument( "type", choices=OPTIONS.keys(), help="The scheduler to visualize." ) parser.add_argument( "--lr", type=float, default=1.0, help="The initial Learning Rate." ) parser.add_argument( "--warmup_steps", type=int, default=DEFAULTS['warmup_steps'], help="The number of steps for a warmup. Used in {}.".format(", ".join(ARGS['warmup_steps'])) ) parser.add_argument( "--max_lr", type=float, default=DEFAULTS['max_lr'], help="The maximum learning rate for a cyclical one. Used in {}.".format(", ".join(ARGS['max_lr'])) ) parser.add_argument( "--decay_steps", type=int, default=DEFAULTS['decay_steps'], help="The number of steps to take before a decay. Used in {}.".format(", ".join(ARGS['decay_steps'])) ) parser.add_argument("--boundaries", nargs="+", default=DEFAULTS['boundaries']) parser.add_argument("--values", nargs="+", default=DEFAULTS['values']) parser.add_argument( "--decay_rate", type=float, default=DEFAULTS['decay_rate'], help="How much to decay. Used in {}.".format(", ".join(ARGS['decay_rate'])) ) parser.add_argument( "--staircase", action="store_true", default=DEFAULTS['staircase'], help="Should you decay in a stepwise fashion? Used in {}.".format(", ".join(ARGS['staircase'])) ) parser.add_argument( "--alpha", type=float, default=DEFAULTS['alpha'], help="Alpha. Used in {}.".format(", ".join(ARGS['alpha'])) ) parser.add_argument( "--warm", choices=WARMUP.keys(), default=DEFAULTS['warm'], help="The Warmup Scheduler to use. Used in {}.".format(", ".join(ARGS['warm'])) ) parser.add_argument( "--rest", choices=REST.keys(), default=DEFAULTS['rest'], help="The Scheduler to use after warmup. Used in {}.".format(", ".join(ARGS['rest'])) ) # Begin Visualization only arguments parser.add_argument( "--steps", type=int, help="Override the number of steps to plot." ) parser.add_argument( "--cycles", type=int, default=6, help="Override the number of cycles to plot." ) parser.add_argument( "--min_lr", type=float, default=1e-3, help="When calculating the number of steps to show how small should the learning rate get before we stop." ) parser.add_argument( "--out_file", default='.lrs/cache.index', help="Where to save the results for later plotting." ) args = parser.parse_args() args = vars(args) # Build the sub schedulers for the Composite Scheduler if args['type'] == 'CompositeLRScheduler': if args['warm'] is None or args['rest'] is None: raise RuntimeError("Warmup and Rest Scheduler are required when the Scheduler is CompositeLRScheduler") args['warm'] = WARMUP[args['warm']](**args) args['rest'] = REST[args['rest']](**args) if args['boundaries'] is not None: if args['values'] is not None: if len(args['boundaries']) != len(args['values']): raise RuntimeError("Bounds and Value list must be aligned") lr = OPTIONS[args['type']](**args) # Calculate the number of steps you should show. if args['steps'] is None: if args['type'] == 'CompositeLRScheduler': warm = get_steps(type(args['warm']).__name__, args, double_warm=False) rest = get_steps(type(args['rest']).__name__, args) args['steps'] = warm + rest else: args['steps'] = get_steps(args['type'], args, double_warm=True) # Plot the schedule steps = np.arange(0, args['steps']) ys = np.stack(lr(s) for s in steps) fig = plot_learning_rates([ys], [str(lr)]) plt.show() # Save the lr values to a cache, this is .lrs/{hash of lr values}.npy and save # information about it into the cache index if args['out_file'] is not None: dir_ = os.path.dirname(args['out_file']) try: os.makedirs(dir_) except: pass with open(args['out_file'], 'a') as f: lr_hash = sha1(ys.tostring()).hexdigest() file_name = "{}.npy".format(lr_hash) index = {'name': str(lr), 'file': file_name} f.write(json.dumps(index) + "\n") np.save(os.path.join(dir_, file_name), ys) if __name__ == "__main__": main()
apache-2.0
kennethdecker/MagnePlane
paper/images/trade_scripts/pressure_trades_plot.py
4
2273
import numpy as np import matplotlib.pyplot as plt p_tunnel = np.loadtxt('../data_files/pressure_trades/p_tunnel.txt', delimiter = '\t') Re = np.loadtxt('../data_files/pressure_trades/Re.txt', delimiter = '\t') A_tube = np.loadtxt('../data_files/pressure_trades/A_tube.txt', delimiter = '\t') T_tunnel = np.loadtxt('../data_files/pressure_trades/T_tunnel.txt', delimiter = '\t') L_pod = np.loadtxt('../data_files/pressure_trades/L_pod.txt', delimiter = '\t') power = np.loadtxt('../data_files/pressure_trades/comp_power.txt', delimiter = '\t') steady_vac = np.loadtxt('../data_files/pressure_trades/vac_power.txt', delimiter = '\t') total_energy = np.loadtxt('../data_files/pressure_trades/total_energy.txt', delimiter = '\t') fig = plt.figure(figsize = (3.25,3.5), tight_layout = True) ax = plt.axes() plt.setp(ax.get_xticklabels(), fontsize=8) plt.setp(ax.get_yticklabels(), fontsize=8) plt.plot(p_tunnel, A_tube, 'b-', linewidth = 2.0) plt.xlabel('Tube Pressure (Pa)', fontsize = 10, fontweight = 'bold') plt.ylabel('Tube Area ($m^2$)', fontsize = 10, fontweight = 'bold') ax.set_xticks([1000,2000,3000]) plt.savefig('../graphs/pressure_trades/pressure_vs_Area.png', format = 'png', dpi = 300) plt.show() fig = plt.figure(figsize = (3.25,3.5), tight_layout = True) ax1 = fig.add_subplot(211) line1, = ax1.plot(p_tunnel, steady_vac, 'g-', linewidth = 2.0, label = 'Vaccum Power') line2, = ax1.plot(p_tunnel, power, 'b-', linewidth = 2.0, label = 'Compressor Power') ax1.set_ylabel('Power (hp)', fontsize = 10, fontweight = 'bold') plt.legend(handles = [line1, line2], loc = 1, fontsize = 8) ax1.set_xticks([1000,2000,3000]) ax1.set_yticks([4000, 8000, 12000, 16000]) ax2 = fig.add_subplot(212) ax2.plot(p_tunnel, total_energy/(1.0e6), 'r-', linewidth = 2.0) ax2.set_xlabel('Tube Pressure (Pa)', fontsize = 10, fontweight = 'bold') ax2.set_ylabel('Total Energy Cost \n per Year (Million USD)', fontsize = 10, fontweight = 'bold') ax2.set_xticks([1000,2000,3000]) ax2.set_yticks([0,40,80,120]) plt.setp(ax1.get_xticklabels(), fontsize=8) plt.setp(ax1.get_yticklabels(), fontsize=8) plt.setp(ax2.get_xticklabels(), fontsize=8) plt.setp(ax2.get_yticklabels(), fontsize=8) plt.savefig('../graphs/pressure_trades/pressure_vs_power.png', format = 'png', dpi = 300) plt.show()
apache-2.0
Darthone/Informed-Finance-Canary
tinkering/ml/sklearn_svr.py
2
3910
#!/usr/bin/env python -W ignore::DeprecationWarning import numpy as np import pandas as pd from sklearn import preprocessing, cross_validation, neighbors, svm, metrics, grid_search import peewee from peewee import * import ifc.ta as ta import math def addDailyReturn(dataset): """ Adding in daily return to create binary classifiers (Up or Down in relation to the previous day) """ #will normalize labels le = preprocessing.LabelEncoder() #print "dataset['Adj_Close']\n", dataset['Adj_Close'][:5] #print "dataset['Adj_Close'].shift(-1)\n", dataset['Adj_Close'].shift(1)[:5] dataset['UpDown'] = (dataset['Adj_Close']-dataset['Adj_Close'].shift(1))/dataset['Adj_Close'].shift(1) #print dataset['UpDown'][240:] # will be denoted by 3 when transformed dataset.UpDown[dataset.UpDown > 0] = "sell" dataset.UpDown[dataset.UpDown == 0] = "hold" dataset.UpDown[dataset.UpDown < 0] = "buy" #print dataset['UpDown'][:10] dataset.UpDown = le.fit(dataset.UpDown).transform(dataset.UpDown) #print dataset['UpDown'] accuracies = [] def preProcessing(stock_name, start_date, end_date): """ Clean up data to allow for classifiers to predict """ x = ta.get_series(stock_name, start_date, end_date) x.run_calculations() x.trim_fat() df = x.df #df = pd.read_csv(csv) addDailyReturn(df) #The columns left will be the ones that are being used to predict df.drop(['Date'], 1, inplace=True) df.drop(['Low'], 1, inplace=True) df.drop(['Volume'], 1, inplace=True) #df.drop(['Open'], 1, inplace=True) #df.drop(['Adj_Close'],1, inplace=True) df.drop(['Close'],1, inplace=True) df.drop(['High'],1, inplace=True) df.drop(['mavg_10'],1, inplace=True) df.drop(['mavg_30'],1, inplace=True) df.drop(['rsi_14'],1, inplace=True) return df def regressorOp(x, y): """ This will optimize the parameters for the algo """ regr_rbf = svm.SVR(kernel="rbf") C = [1000, 10, 1] gamma = [0.005, 0.004, 0.003, 0.002, 0.001] epsilon = [0.1, 0.01] parameters = {"C":C, "gamma":gamma, "epsilon":epsilon} gs = grid_search.GridSearchCV(regr_rbf, parameters, scoring="r2") gs.fit(x, y) print "Best Estimator:\n", gs.best_estimator_ print "Type: ", type(gs.best_estimator_) return gs.best_estimator_ for i in range(1): #calling in date ranges plus stock name to be pulled ticker = raw_input('Enter a stock ticker then press "Enter":\n') train_df = preProcessing(ticker, "2015-04-17", "2016-04-17") test_df = preProcessing(ticker, "2016-04-17", "2017-04-17") print "-----------------------------------------" print "test_df[:5]:" print test_df[:5] # separating the binary predictor into different arryays so the algo knows what to predict on X_train = np.array(train_df.drop(['UpDown'],1)) y_train = np.array(train_df['UpDown']) X_test = np.array(test_df.drop(['UpDown'],1)) y_test = np.array(test_df['UpDown']) #print test_df[:240] #X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.5) # regression optimization clf = regressorOp(X_train, y_train) clf.fit(X_train,y_train) y_pred = clf.predict(X_test) accuracy = clf.score(X_test,y_test) variance = metrics.explained_variance_score(y_test, y_pred) # iterate and print average accuracy rate print "---------------------------------------" print "accuracy: " + str(accuracy) print "\nvariance: " + str(variance) accuracies.append(accuracy) # test value test_set = np.array([[100,100],[0,0],[45, 42],[6,6]]) print "--------------------------------------" print "np.array([100,100],[0,0],[45, 42],[6,6]])" prediction = clf.predict(test_set) print "--------------------------------------" print "prediction: " print prediction #print sum(accuracies)/len(accuracies)
mit
mblondel/scikit-learn
examples/linear_model/plot_sgd_separating_hyperplane.py
260
1219
""" ========================================= SGD: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a linear Support Vector Machines classifier trained using SGD. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import SGDClassifier from sklearn.datasets.samples_generator import make_blobs # we create 50 separable points X, Y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60) # fit the model clf = SGDClassifier(loss="hinge", alpha=0.01, n_iter=200, fit_intercept=True) clf.fit(X, Y) # plot the line, the points, and the nearest vectors to the plane xx = np.linspace(-1, 5, 10) yy = np.linspace(-1, 5, 10) X1, X2 = np.meshgrid(xx, yy) Z = np.empty(X1.shape) for (i, j), val in np.ndenumerate(X1): x1 = val x2 = X2[i, j] p = clf.decision_function([x1, x2]) Z[i, j] = p[0] levels = [-1.0, 0.0, 1.0] linestyles = ['dashed', 'solid', 'dashed'] colors = 'k' plt.contour(X1, X2, Z, levels, colors=colors, linestyles=linestyles) plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
feranick/Pi-bot
Old/3_ML-splrcbxyz/piRC_ML.py
1
10653
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' ********************************************************** * * PiRC - Machine learning train and predict * version: 20170518b * * By: Nicola Ferralis <feranick@hotmail.com> * *********************************************************** ''' print(__doc__) import numpy as np import sys, os.path, os, getopt, glob, csv from time import sleep, time from os.path import exists, splitext from os import rename from datetime import datetime, date from sklearn.neural_network import MLPClassifier, MLPRegressor from sklearn.externals import joblib from sklearn.preprocessing import StandardScaler #********************************************** ''' MultiClassReductor ''' #********************************************** class MultiClassReductor(): def __self__(self): self.name = name totalClass = [[-1,-1],[-1,0],[-1,1],[0,-1],[0,0],[0,1],[1,-1],[1,0],[1,1]] def transform(self,y): Cl = np.zeros(y.shape[0]) for j in range(len(y)): Cl[j] = self.totalClass.index(np.array(y[j]).tolist()) return Cl def inverse_transform(self,a): return self.totalClass[int(a)] #********************************************** ''' General parameters''' #********************************************** class params: timeDelay = 0.25 filename = 'Training_splrcbxyz.txt' runFullAuto = False debug = False # do not activate sensors or motors in debug mode #********************************************** ''' Neural Networks''' #********************************************** class nnDef: runNN = True nnAlwaysRetrain = False syncTimeLimit = 20 # time in seconds for NN model synchronization syncTrainModel = False saveNewTrainingData = False useRegressor = False scaler = StandardScaler() mlp = MultiClassReductor() ''' Solver for NN lbfgs preferred for small datasets (alternatives: 'adam' or 'sgd') ''' nnSolver = 'lbfgs' nnNeurons = 10 #default = 10 #********************************************** ''' Main ''' #********************************************** def main(): try: opts, args = getopt.getopt(sys.argv[1:], "rtch:", ["run", "train", "collect", "help"]) except: usage() sys.exit(2) if opts == []: usage() sys.exit(2) try: sys.argv[3] if sys.argv[3] in ("-C", "--Classifier"): nnDef.useRegressor = False elif sys.argv[3] in ("-R", "--Regressor"): nnDef.useRegressor = True except: nnDef.useRegressor = False for o, a in opts: if o in ("-r" , "--run"): try: runAuto(sys.argv[2],params.runFullAuto) except: exitProg() if o in ("-t" , "--train"): try: runTrain(sys.argv[2]) except: sys.exit(2) if o in ("-c" , "--collect"): try: writeTrainFile() except: exitProg() #************************************************* ''' runAuto ''' ''' Use ML models to predict steer and power ''' #************************************************* def runAuto(trainFile, type): trainFileRoot = os.path.splitext(trainFile)[0] Cl, sensors = readTrainFile(trainFile) clf = runNN(sensors, Cl, trainFileRoot) fullStop(False) syncTime = time() while True: if time() - syncTime > nnDef.syncTimeLimit and nnDef.syncTrainModel == True: print(" Reloading NN model...") clf = runNN(sensors, Cl, trainFileRoot) print(" Synchronizing NN model...\n") os.system("./syncTFile.sh " + trainFileRoot + " &") syncTime = time() if type == False: print(" Running \033[1mPartial Auto\033[0m Mode\n") s, p = predictDrive(clf) drive(s,p) sleep(params.timeDelay) else: print(" Running \033[1mFull Auto\033[0m Mode\n") dt=0 t1=time() while dt < 0.5: s, p = predictDrive(clf) if p != 0: dt = 0 drive(s,p) else: dt = time() - t1 sleep(params.timeDelay) drive(0, 1) sleep(0.5) drive(0, 0) #************************************************* ''' runTrain ''' ''' Use ML models to predict steer and power ''' #************************************************* def runTrain(trainFile): trainFileRoot = os.path.splitext(trainFile)[0] Cl, sensors = readTrainFile(trainFile) nnDef.nnAlwaysRetrain = True runNN(sensors, Cl, trainFileRoot) #************************************************* ''' write training file from sensors ''' #************************************************* def writeTrainFile(): while True: import piRC_lib s,p,l,r,c,b,x,y,z = piRC_lib.readAllSensors() print(' S={0:.0f}, P={1:.0f}, L={2:.0f}, R={3:.0f}, C={4:.0f}, B={5:.0f}, X={6:.3f}, Y={7:.3f}, Z={8:.3f}'.format(s,p,l,r,c,b,x,y,z)) with open(params.filename, "a") as sum_file: sum_file.write('{0:.0f}\t{1:.0f}\t{2:.0f}\t{3:.0f}\t{4:.0f}\t{5:.0f}\t{6:.3f}\t{7:.3f}\t{8:.3f}\n'.format(s,p,l,r,c,b,x,y,z)) #************************************************* ''' read Train File ''' #************************************************* def readTrainFile(trainFile): try: with open(trainFile, 'r') as f: M = np.loadtxt(f, unpack =False) except: print('\033[1m' + ' Training file not found \n' + '\033[0m') return steer = M[:,0] power = M[:,1] Cl = M[:,[0,1]] sensors = np.delete(M,np.s_[0:2],1) return Cl, sensors #******************************************************************************** ''' Run Neural Network ''' #******************************************************************************** def runNN(sensors, Cl, Root): if nnDef.useRegressor is False: nnTrainedData = Root + '.nnModelC.pkl' else: nnTrainedData = Root + '.nnModelR.pkl' print(' Running Neural Network: multi-layer perceptron (MLP) - (solver: ' + nnDef.nnSolver + ')...') sensors = nnDef.scaler.fit_transform(sensors) if nnDef.useRegressor is False: Y = nnDef.mlp.transform(Cl) else: Y = Cl try: if nnDef.nnAlwaysRetrain == False: with open(nnTrainedData): print(' Opening NN training model...\n') clf = joblib.load(nnTrainedData) else: raise ValueError('Force NN retraining.') except: #********************************************** ''' Retrain data if not available''' #********************************************** print(' Retraining NN model...\n') if nnDef.useRegressor is False: clf = MLPClassifier(solver=nnDef.nnSolver, alpha=1e-5, hidden_layer_sizes=(nnDef.nnNeurons,), random_state=1) else: clf = MLPRegressor(solver=nnDef.nnSolver, alpha=1e-5, hidden_layer_sizes=(nnDef.nnNeurons,), random_state=9) clf.fit(sensors, Y) joblib.dump(clf, nnTrainedData) return clf #************************************************* ''' Predict drive pattern ''' #************************************************* def predictDrive(clf): np.set_printoptions(suppress=True) sp = [0,0] if params.debug is True: s,p,l,r,c,b,x,y,z = [-1,-1,116,117,111,158,0.224,0.108,1.004] else: import piRC_lib s,p,l,r,c,b,x,y,z = piRC_lib.readAllSensors() print(' S={0:.0f}, P={1:.0f}, L={2:.0f}, R={3:.0f}, C={4:.0f}, B={5:.0f}, X={6:.3f}, Y={7:.3f}, Z={8:.3f}'.format(s,p,l,r,c,b,x,y,z)) nowsensors = np.array([[round(l,0),round(r,0),round(c,0),round(b,0),round(x,3),round(y,3),round(z,3)]]).reshape(1,-1) if nnDef.useRegressor is False: nowsensors = nnDef.scaler.transform(nowsensors) try: sp[0] = nnDef.mlp.inverse_transform(clf.predict(nowsensors)[0])[0] sp[1] = nnDef.mlp.inverse_transform(clf.predict(nowsensors)[0])[1] except: sp = [0,0] print('\033[1m' + '\n Predicted classification value (Neural Networks) = ( S=',str(sp[0]),', P=',str(sp[1]),')') prob = clf.predict_proba(nowsensors)[0].tolist() print(' (probability = ' + str(round(100*max(prob),4)) + '%)\033[0m\n') else: sp = clf.predict(nowsensors)[0] print('\033[1m' + '\n Predicted regression value (Neural Networks) = ( S=',str(sp[0]),', P=',str(sp[1]),')') for k in range(2): if sp[k] >= 1: sp[k] = 1 elif sp[k] <= -1: sp[k] = -1 else: sp[k] = 0 print('\033[1m' + ' Predicted regression value (Neural Networks) = ( S=',str(sp[0]),', P=',str(sp[1]),') Normalized\n') if nnDef.saveNewTrainingData is True: with open(params.filename, "a") as sum_file: sum_file.write('{0:.0f}\t{1:.0f}\t{2:.0f}\t{3:.0f}\t{4:.0f}\t{5:.0f}\t{6:.3f}\t{7:.3f}\t{8:.3f}\n'.format(sp[0],sp[1],l,r,c,b,x,y,z)) return sp[0], sp[1] #************************************************* ''' Drive ''' #************************************************* def drive(s,p): if params.debug is False: import piRC_lib piRC_lib.runMotor(0,s) piRC_lib.runMotor(1,p) def fullStop(type): if params.debug is False: import piRC_lib piRC_lib.fullStop(type) #************************************************* ''' Lists the program usage ''' #************************************************* def usage(): print('\n Usage:') print('\n Training (Classifier):\n python3 piRC_ML.py -t <train file>') print('\n Prediction (Classifier):\n python3 piRC_ML.py -r <train file>') print('\n Training (Regression):\n python3 piRC_ML.py -t <train file> -R') print('\n Prediction (Regression):\n python3 piRC_ML.py -r <train file> -R') print('\n Collect data from sensors into training file:\n python3 piRC_ML.py -c') print('\n (Separate trained models are created for regression and classification\n') print(' Requires python 3.x. Not compatible with python 2.x\n') def exitProg(): fullStop(True) sys.exit(2) #************************************************* ''' Main initialization routine ''' #************************************************* if __name__ == "__main__": sys.exit(main())
gpl-3.0
belteshassar/cartopy
lib/cartopy/tests/mpl/test_set_extent.py
3
6485
# (C) British Crown Copyright 2011 - 2016, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. from __future__ import (absolute_import, division, print_function) import tempfile from matplotlib.testing.decorators import cleanup import matplotlib.pyplot as plt import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal import cartopy.crs as ccrs @cleanup def test_extents(): # tests that one can set the extents of a map in a variety of coordinate # systems, for a variety of projection uk = [-12.5, 4, 49, 60] uk_crs = ccrs.Geodetic() ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent(uk, crs=uk_crs) # enable to see what is going on (and to make sure it is a plot of the uk) # ax.coastlines() assert_array_almost_equal(ax.viewLim.get_points(), np.array([[-12.5, 49.], [4., 60.]])) ax = plt.axes(projection=ccrs.NorthPolarStereo()) ax.set_extent(uk, crs=uk_crs) # enable to see what is going on (and to make sure it is a plot of the uk) # ax.coastlines() assert_array_almost_equal(ax.viewLim.get_points(), np.array([[-1034046.22566261, -4765889.76601514], [333263.47741164, -3345219.0594531]]) ) # given that we know the PolarStereo coordinates of the UK, try using # those in a PlateCarree plot ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent([-1034046, 333263, -4765889, -3345219], crs=ccrs.NorthPolarStereo()) # enable to see what is going on (and to make sure it is a plot of the uk) # ax.coastlines() assert_array_almost_equal(ax.viewLim.get_points(), np.array([[-17.17698577, 48.21879707], [5.68924381, 60.54218893]]) ) @cleanup def test_domain_extents(): # Setting the extent to global or the domain limits. ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent((-180, 180, -90, 90)) assert_array_equal(ax.viewLim.get_points(), [[-180, -90], [180, 90]]) ax.set_extent((-180, 180, -90, 90), ccrs.PlateCarree()) assert_array_equal(ax.viewLim.get_points(), [[-180, -90], [180, 90]]) ax = plt.axes(projection=ccrs.PlateCarree(90)) ax.set_extent((-180, 180, -90, 90)) assert_array_equal(ax.viewLim.get_points(), [[-180, -90], [180, 90]]) ax.set_extent((-180, 180, -90, 90), ccrs.PlateCarree(90)) assert_array_equal(ax.viewLim.get_points(), [[-180, -90], [180, 90]]) ax = plt.axes(projection=ccrs.OSGB()) ax.set_extent((0, 7e5, 0, 13e5), ccrs.OSGB()) assert_array_equal(ax.viewLim.get_points(), [[0, 0], [7e5, 13e5]]) def test_update_lim(): # check that the standard data lim setting works ax = plt.axes(projection=ccrs.PlateCarree()) ax.update_datalim([(-10, -10), (-5, -5)]) assert_array_almost_equal(ax.dataLim.get_points(), np.array([[-10., -10.], [-5., -5.]])) plt.close() def test_limits_contour(): xs, ys = np.meshgrid(np.linspace(250, 350, 15), np.linspace(-45, 45, 20)) data = np.sin((xs * ys) * 1.e7) resulting_extent = np.array([[250 - 180, -45.], [-10. + 180, 45.]]) ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() plt.contourf(xs, ys, data, transform=ccrs.PlateCarree(180)) assert_array_almost_equal(ax.dataLim, resulting_extent) plt.close() ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() plt.contour(xs, ys, data, transform=ccrs.PlateCarree(180)) assert_array_almost_equal(ax.dataLim, resulting_extent) plt.close() def test_limits_pcolor(): xs, ys = np.meshgrid(np.linspace(250, 350, 15), np.linspace(-45, 45, 20)) data = (np.sin((xs * ys) * 1.e7))[:-1, :-1] resulting_extent = np.array([[250 - 180, -45.], [-10. + 180, 45.]]) ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() plt.pcolor(xs, ys, data, transform=ccrs.PlateCarree(180)) assert_array_almost_equal(ax.dataLim, resulting_extent) plt.close() ax = plt.axes(projection=ccrs.PlateCarree()) ax.coastlines() plt.pcolormesh(xs, ys, data, transform=ccrs.PlateCarree(180)) assert_array_almost_equal(ax.dataLim, resulting_extent) plt.close() def test_view_lim_autoscaling(): x = np.linspace(0.12910209, 0.42141822) y = np.linspace(0.03739792, 0.33029076) x, y = np.meshgrid(x, y) ax = plt.axes(projection=ccrs.RotatedPole(37.5, 357.5)) plt.scatter(x, y, x * y, transform=ccrs.PlateCarree()) expected = np.array([[86.12433701, 52.51570463], [86.69696603, 52.86372057]]) assert_array_almost_equal(ax.viewLim.frozen().get_points(), expected, decimal=2) plt.draw() assert_array_almost_equal(ax.viewLim.frozen().get_points(), expected, decimal=2) ax.autoscale_view(tight=False) expected_non_tight = np.array([[86, 52.45], [86.8, 52.9]]) assert_array_almost_equal(ax.viewLim.frozen().get_points(), expected_non_tight, decimal=1) plt.close() def test_view_lim_default_global(): ax = plt.axes(projection=ccrs.PlateCarree()) # The view lim should be the default unit bbox until it is drawn. assert_array_almost_equal(ax.viewLim.frozen().get_points(), [[0, 0], [1, 1]]) with tempfile.TemporaryFile() as tmp: plt.savefig(tmp) expected = np.array([[-180, -90], [180, 90]]) assert_array_almost_equal(ax.viewLim.frozen().get_points(), expected) plt.close() if __name__ == '__main__': import nose nose.runmodule(argv=['-s', '--with-doctest'], exit=False)
gpl-3.0
scikit-optimize/scikit-optimize.github.io
0.8/_downloads/365fdab27864494141feaa35987b301b/partial-dependence-plot-2D.py
3
3291
""" =========================== Partial Dependence Plots 2D =========================== Hvass-Labs Dec 2017 Holger Nahrstaedt 2020 .. currentmodule:: skopt Simple example to show the new 2D plots. """ print(__doc__) import numpy as np from math import exp from skopt import gp_minimize from skopt.space import Real, Categorical, Integer from skopt.plots import plot_histogram, plot_objective_2D, plot_objective from skopt.utils import point_asdict np.random.seed(123) import matplotlib.pyplot as plt ############################################################################# dim_learning_rate = Real(name='learning_rate', low=1e-6, high=1e-2, prior='log-uniform') dim_num_dense_layers = Integer(name='num_dense_layers', low=1, high=5) dim_num_dense_nodes = Integer(name='num_dense_nodes', low=5, high=512) dim_activation = Categorical(name='activation', categories=['relu', 'sigmoid']) dimensions = [dim_learning_rate, dim_num_dense_layers, dim_num_dense_nodes, dim_activation] default_parameters = [1e-4, 1, 64, 'relu'] def model_fitness(x): learning_rate, num_dense_layers, num_dense_nodes, activation = x fitness = ((exp(learning_rate) - 1.0) * 1000) ** 2 + \ (num_dense_layers) ** 2 + \ (num_dense_nodes/100) ** 2 fitness *= 1.0 + 0.1 * np.random.rand() if activation == 'sigmoid': fitness += 10 return fitness print(model_fitness(x=default_parameters)) ############################################################################# search_result = gp_minimize(func=model_fitness, dimensions=dimensions, n_calls=30, x0=default_parameters, random_state=123 ) print(search_result.x) print(search_result.fun) ############################################################################# for fitness, x in sorted(zip(search_result.func_vals, search_result.x_iters)): print(fitness, x) ############################################################################# space = search_result.space print(search_result.x_iters) search_space = {name: space[name][1] for name in space.dimension_names} print(point_asdict(search_space, default_parameters)) ############################################################################# print("Plotting now ...") _ = plot_histogram(result=search_result, dimension_identifier='learning_rate', bins=20) plt.show() ############################################################################# _ = plot_objective_2D(result=search_result, dimension_identifier1='learning_rate', dimension_identifier2='num_dense_nodes') plt.show() ############################################################################# _ = plot_objective_2D(result=search_result, dimension_identifier1='num_dense_layers', dimension_identifier2='num_dense_nodes') plt.show() ############################################################################# _ = plot_objective(result=search_result, plot_dims=['num_dense_layers', 'num_dense_nodes']) plt.show()
bsd-3-clause
MMKrell/pyspace
pySPACE/missions/nodes/classification/base.py
1
89554
""" Base classes for classification """ import numpy # import matplotlib as mpl # mpl.rcParams['text.usetex']=True # mpl.rcParams['text.latex.unicode']=True import matplotlib.pyplot as plt import os import cPickle import logging import math import numpy import os import timeit import warnings # base class from pySPACE.missions.nodes.base_node import BaseNode # representation of the linear classification vector from pySPACE.missions.nodes.decorators import BooleanParameter, QNormalParameter, ChoiceParameter, QUniformParameter, \ NormalParameter, NoOptimizationParameter, LogUniformParameter, LogNormalParameter, QLogUniformParameter, \ UniformParameter from pySPACE.resources.data_types.feature_vector import FeatureVector # the output is a prediction vector from pySPACE.resources.data_types.prediction_vector import PredictionVector @BooleanParameter("regression") @LogUniformParameter("complexity", min_value=1e-6, max_value=1e3) @ChoiceParameter("kernel_type", choices=["LINEAR", "POLY", "RBF", "SIGMOID"]) @QNormalParameter("offset", mu=0, sigma=1, q=1) @UniformParameter("nu", min_value=0.01, max_value=0.99) @LogNormalParameter("epsilon", shape=0.1 / 2, scale=0.1) @NoOptimizationParameter("debug") @QUniformParameter("max_time", min_value=0, max_value=3600, q=1) @LogNormalParameter("tolerance", shape=0.001 / 2, scale=0.001) @NoOptimizationParameter("keep_vectors") @NoOptimizationParameter("use_list") @NormalParameter("ratio", mu=0.5, sigma=0.5 / 2) class RegularizedClassifierBase(BaseNode): """ Basic class for regularized (kernel) classifiers with extra support in the linear case This module also implements several concepts of data handling strategies to keep the set of training samples limited especially in an online learning scenario. These have been used in the *Data Selection Strategies* publication. This functionality is currently implemented for the LibSVMClassifierNode and the SorSvmNode. It requires to replace the *_complete_training* **References** ========= ============================================================== main source: Data Selection Strategies ========= ============================================================== author Krell, M. M. and Wilshusen, N. and Ignat, A. C., and Kim, S. K. title `Comparison of Data Selection Strategies For Online Support Vector Machine Classification <http://dx.doi.org/10.5220/0005650700590067>`_ book Proceedings of the International Congress on Neurotechnology, Electronics and Informatics publisher SciTePress year 2015 doi 10.5220/0005650700590067 ========= ============================================================== **Parameters** :class_labels: Sets the labels of the classes. This can be done automatically, but setting it will be better, if you want to have similar predictions values for classifiers trained on different sets. Otherwise this variable is built up by occurrence of labels. Furthermore the important class (ir_class) should get the second position in the list, such that it gets higher prediction values by the classifier. (*recommended, default: []*) :complexity: Complexity sets the weighting of punishment for misclassification in comparison to generalizing classification from the data. Value in the range from 0 to infinity. (*optional, default: 1*) :weight: Defines an array with two entries to give different complexity weight on the two used classes. Set the parameter C of class i to weight*C. (*optional, default: [1,1]*) :kernel_type: Defines the used kernel function. One of the following Strings: 'LINEAR', 'POLY','RBF', 'SIGMOID'. - LINEAR :: u'*v - POLY :: (gamma*u'*v + offset)^exponent - RBF :: exp(-gamma*|u-v|^2) - SIGMOID :: tanh(gamma*u'*v + offset) (*optional, default: 'LINEAR'*) :exponent: Defines parameter for the 'POLY'-kernel. Equals parameter /degree/ in libsvm-package. (*optional, default: 2*) :gamma: Defines parameter for 'POLY'-,'RBF'- and 'SIGMOID'-kernel. In libsvm-package it was set to 1/num_features. For RBF-Kernels we calculate it as described in: :Paper: A practical Approach to Model Selection for Support vector Machines with a Gaussian Kernel :Author: M. Varewyck and J.-P. Martens. :Formula: 15 The quasi-optimal complexity should then be found in [0.5,2,8] or better to say log_2 C should be found in [-1,1,3]. For testing a wider range, you may try: [-2,...,4]. A less accurate version would be to use 1/(num_features*sqrt(2)). For the other kernels we set it to 1/num_features. .. warning:: For the RBF-Parameter selection the the :class:`~pySPACE.missions.nodes.postprocessing.feature_normalization.HistogramFeatureNormalizationNode` should be used before. (*optional, default: None*) :offset: Defines parameter for 'POLY'- and 'SIGMOID'-kernel. Equals parameter /coef0/ in libsvm-package. (*optional, default: 0*) :nu: Defines parameter for 'nu-SVC', 'one-class SVM' and 'nu-SVR'. It approximates the fraction of training errors and support vectors. Value in the range from 0 to 1. (*optional, default: 0.5*) :epsilon: Defines parameter for 'epsilon-SVR'. Set the epsilon in loss function of epsilon-SVR. Equals parameter /p/ in libsvm-package. (*optional, default: 0.1*) :tolerance: tolerance of termination criterion, same default as in libsvm. In the SOR implementation the tolerance may be reduced to one tenth of the complexity, if it is higher than this value. Otherwise it would be no valid stopping criterion. (*optional, default: 0.001*) :max_time: Time for the construction of the classifier For LibSVM we restrict the number of steps but for cvxopt we use a signal handling to stop processes. This may happen, when the parameters are bad chosen or the problem matrix is to large. Parameter is still in testing and implementation phase. The time is given in seconds and as a default, one hour is used. (*optional, default: 3600*) :keep_vectors: After training the training data is normally deleted, except this variable is set to True. (*optional, default: False*) :use_list: Switch to store samples as *list*. If set to *False* they are stored as arrays. Used for compatibility with LIBSVM. This parameter should not be changed by the user. (*optional, default False*) :multinomial: Accept more than two classes. (*optional, default: False*) :add_type: In case the classifier should be retrained, this parameter specifies which incoming samples should be added to the training set. One of the following strings 'ADD_ALL', 'ONLY_MISSCLASSIFIED', 'ONLY_WITHIN_MARGIN', 'UNSUPERVISED_PROB'. - ADD_ALL Add all incoming samples. - ONLY_MISSCLASSIFIED Add only those samples that were misclassified by the current decision function. **References** ========= ================================================== minor ========= ================================================== author Bordes, Antoine and Ertekin, Seyda and Weston, Jason and Bottou, L{\'e}on title Fast Kernel Classifiers with Online and Active Learning journal J. Mach. Learn. Res. volume 6 month dec year 2005 issn 1532-4435 pages 1579--1619 numpages 41 publisher JMLR.org ========= ================================================== - ONLY_WITHIN_MARGIN Add only samples that lie within the margin of the SVM. **References** ========= ================================================== main ========= ================================================== author Bordes, Antoine and Ertekin, Seyda and Weston, Jason and Bottou, L{\'e}on title Fast Kernel Classifiers with Online and Active Learning journal J. Mach. Learn. Res. volume 6 month dec year 2005 issn 1532-4435 pages 1579--1619 numpages 41 publisher JMLR.org ========= ================================================== ========= ================================================== main ========= ================================================== author Oskoei, M.A. and Gan, J.Q. and Huosheng Hu booktitle Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE title Adaptive schemes applied to online SVM for BCI data classification year 2009 month Sept pages 2600-2603 ISSN 1557-170X ========= ================================================== - UNSUPERVISED_PROB Classify the label with the current decision function and determine how probable this decision is. If it is most likely right, which means the probability exceeds a threshold, add the sample to the training set. **References** ========= ================================================== main ========= ================================================== author Sp{\"u}ler, Martin and Rosenstiel, Wolfgang and Bogdan, Martin year 2012 isbn 978-3-642-33268-5 booktitle Artificial Neural Networks and Machine Learning - ICANN 2012 volume 7552 series Lecture Notes in Computer Science editor Villa, AlessandroE.P. and Duch, W\lodzis\law and \'{E}rdi, P\'{e}ter and Masulli, Francesco and Palm, G{\"u}nther title Adaptive SVM-Based Classification Increases Performance of a MEG-Based Brain-Computer Interface (BCI) publisher Springer Berlin Heidelberg pages 669-676 language English ========= ================================================== (*optional, default: "ADD_ALL"*) :discard_type: In case the classifier should be retrained this parameter specifies which samples from the training set should be discarded to keep the training set small. One of the following strings 'REMOVE_OLDEST', 'REMOVE_FARTHEST', 'REMOVE_NO_BORDER_POINTS', 'INC', 'INC_BATCH', 'CDT', 'DONT_DISCARD'. - REMOVE_OLDEST Remove the oldest sample from the training set. **References** ========= ================================================== main ========= ================================================== title Online weighted LS-SVM for hysteretic structural system identification journal Engineering Structures volume 28 number 12 pages 1728 - 1735 year 2006 issn 0141-0296 author He-Sheng Tang and Song-Tao Xue and Rong Chen and Tadanobu Sato ========= ================================================== ========= ================================================== minor ========= ================================================== author Van Vaerenbergh, S. and Via, J. and Santamaria, I. booktitle Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on title A Sliding-Window Kernel RLS Algorithm and Its Application to Nonlinear Channel Identification year 2006 month May volume 5 ISSN 1520-6149 ========= ================================================== ========= ================================================== minor ========= ================================================== author Funaya, Hiroyuki and Nomura, Yoshihiko and Ikeda, Kazushi booktitle ICONIP (1) date 2009-10-26 editor K{\"o}ppen, Mario and Kasabov, Nikola K. and Coghill, George G. isbn 978-3-642-02489-4 keywords dblp pages 929-936 publisher Springer series Lecture Notes in Computer Science title A Support Vector Machine with Forgetting Factor and Its Statistical Properties. volume 5506 year 2008 ========= ================================================== ========= ================================================== minor ========= ================================================== title On-Line One-Class Support Vector Machines. An Application to Signal Segmentation author Gretton, A and Desobry, F year 2003 date 2003-04 journal IEEE ICASSP Vol. 2 pages 709--712 ========= ================================================== - INC Don't remove any sample, but retrain the SVM/classifier incrementally with each incoming sample. **References** ========= ================================================== main ========= ================================================== year 2012 isbn 978-3-642-34155-7 booktitle Advances in Intelligent Data Analysis XI volume 7619 series Lecture Notes in Computer Science editor Hollm\'{e}n, Jaakko and Klawonn, Frank and Tucker, Allan title Batch-Incremental versus Instance-Incremental Learning in Dynamic and Evolving Data publisher Springer Berlin Heidelberg author Read, Jesse and Bifet, Albert and Pfahringer, Bernhard and Holmes, Geoff pages 313-323 ========= ================================================== - CDT Detect changes in the distribution of the data and adapt the classifier accordingly, by throwing old samples away and only take the last few for retraining. **References** ========= ================================================== main ========= ================================================== author Alippi, C. and Derong Liu and Dongbin Zhao and Li Bu journal Systems, Man, and Cybernetics: Systems, IEEE Transactions on title Detecting and Reacting to Changes in Sensing Units: The Active Classifier Case year 2014 month March volume 44 number 3 pages 353-362 ISSN 2168-2216 ========= ================================================== ========= ================================================== minor ========= ================================================== title Intelligence for embedded systems: a methodological approach author Cesare Alippi publisher Springer address Cham [u.a.] year 2014 ISBN 978-3-319-05278-6 pages 211-247 chapter Learning in Nonstationary and Evolving Environments ========= ================================================== - INC_BATCH Collect new samples until a basket size is reached. Then throw all old samples away. And retrain the classifier with the current training set. **References** ========= ================================================== main ========= ================================================== year 2012 isbn 978-3-642-34155-7 booktitle Advances in Intelligent Data Analysis XI volume 7619 series Lecture Notes in Computer Science editor Hollm\'{e}n, Jaakko and Klawonn, Frank and Tucker, Allan title Batch-Incremental versus Instance-Incremental Learning in Dynamic and Evolving Data publisher Springer Berlin Heidelberg author Read, Jesse and Bifet, Albert and Pfahringer,Bernhard and Holmes, Geoff pages 313-323 ========= ================================================== - DONT_DISCARD Don't remove any samples from the training set. - REMOVE_FARTHEST Remove that sample that is farthest away from the hyperplane. - REMOVE_NO_BORDER_POINTS Remove all points that are not in the border of their class. **References** ========= ================================================== main ========= ================================================== title Incremental SVM based on reserved set for network intrusion detection journal Expert Systems with Applications volume 38 number 6 pages 7698 - 7707 year 2011 issn 0957-4174 author Yang Yi and Jiansheng Wu and Wei Xu ========= ================================================== (*optional, default: "REMOVE_OLDEST"*) :keep_only_sv: Because only the support vectors determine the decision function remove all other samples after the SVM is trained. (*optional, default: False*) :basket_size: Specify the number of training samples for retraining. (*optional, default: infinity*) :relabel: Relabel the training set after the SVM is trained. If the parameter is set to *True*, the relabeling is done once. Otherwise, if the parameter is set to *conv* relabeling is repeated till convergence (with a maximum of 10 iterations over the complete training data to ensure stopping). The maximum number of iterations is reset after each relabeling. (*optional, default: False*) :border_handling: Specify how to determine border points in case the discard_type: 'REMOVE_ONLY_BORDER_POINTS' is selected. One of the following strings 'USE_ONLY_BORDER_POINTS', 'USE_DIFFERENCE'. - USE_ONLY_BORDER_POINTS Keep only those points which distance to the center lie within a specified range. - USE_DIFFERENCE Use the difference from the center of the class as criterion to determine the border points of the class. (*optional, default: USE_ONLY_BORDER_POINTS*) :scale_factor_small: Factor to specify the distance of the inner border to the center of a class. This should be smaller than *scale_factor_tall*. :: inner border = scale_factor_small * distance between centers (*optional, default: 0.3*) :scale_factor_tall: Factor to specify the distance of the outer border to the center of a class. This should be greater than *scale_factor_small*. :: outer border = scale_factor_tall * distance between centers (*optional, default: 0.5*) :p_threshold: Probability threshold for unsupervised learning. Only data that is most likely right (p>p_threshold) classified will be added to training set. (*optional, default: 0.8*) :cdt_threshold: Specify a multiple of the amount of support vectors before the SVM should be retrained anyway, does not matter if something changed or not. (*optional, default: 10*) :training_set_ratio: Handle the ratio of the classes. One of the following strings: "DONT_HANDLE_RATIO", "KEEP_RATIO_AS_IT_IS", "BALANCED_RATIO" - DONT_HANDLE_RATIO Dont handle the ratio between the classes and dont consider the class labels of the samples. - KEEP_RATIO_AS_IT_IS Dont change the ratio between the classes. If a sample from one class is added an other sample from the same class will be removed from the training set. - BALANCED_RATIO Try to keep a balanced training set with just as many positive samples as negatives. (*optional, default: DONT_HANDLE_RATIO"*) :u_retrain: For the retraining, not the given label is used but it is replaced with the prediction of the current classifier. This option is interesting, where no true label can be provided and a fake label is used instead. It is related to the parameter *p_threshold* and the *relabel* parameter. The latter allows for a correction of the possibly wrong label and the first avoids to use to unsure predictions The *retrain* parameter has to be additionally set to *True* for this parameter to become really active. (*optional, default: False*) :show_plot: Plot the samples and the decision function. (*optional, default: False*) :save_plot: Save the plot of the samples and the decision function. (*optional, default: False*) :plot_storage: Specify a directory to store the images of the plots. If directory does not exists, it will be created. (*optional, default: "./plot_storage"*) .. note:: Not all parameter effects are implemented for all inheriting nodes. Kernels are available for LibSVMClassifierNode and partially for other nodes. The *tolerance* has only an effect on Liblinear, LibSVM and SOR classifier. :input: FeatureVector :output: PredictionVector :Author: Mario Krell (mario.krell@dfki.de) :Created: 2012/03/28 """ def __init__(self, regression=False, complexity=1, weight=None, kernel_type='LINEAR', exponent=2, gamma=None, offset=0, nu=0.5, epsilon=0.1, class_labels=None, debug=False, max_time=3600, tolerance=0.001, complexities_path=None, keep_vectors=False, use_list=False, multinomial=False, add_type="ADD_ALL", discard_type="REMOVE_OLDEST", keep_only_sv=False, basket_size=numpy.inf, relabel=False, border_handling="USE_ONLY_BORDER_POINTS", scale_factor_small=0.3, scale_factor_tall=0.5, p_threshold=0.8, show_plot=False, save_plot=False, cdt_threshold=10, u_retrain=False, training_set_ratio="DONT_HANDLE_RATIO", plot_storage="./plot_storage", ratio=0.5, **kwargs): super(RegularizedClassifierBase, self).__init__(**kwargs) # type conversion complexity = float(complexity) if complexity<1e-10: self._log("Complexity (%.42f) is very small."+\ "Try rescaling data or check this behavior."\ % complexity, level=logging.WARNING) if self.is_retrainable() or basket_size != numpy.inf: keep_vectors=True if class_labels is None: class_labels = [] if ratio < 0.01: self._log("Ratio (%.2f) is to small. Setting to 0.01" % ratio) ratio = 0.01 elif ratio > 0.99: self._log("Ratio (%.2f) is to large. Setting to 0.99" % ratio) ratio = 0.99 if weight is None: weight = [ratio, 1 - ratio] ################ Only for printing ########################### is_plot_active = False scat = None scatStandard = None scatTarget = None surf = None is_retraining = False is_trained = False circleTarget0 = None circleTarget1 = None circleStandard0 = None circleStandard1 = None m_counter_i = 0 ################# Only to store results ######################## if save_plot == True: if show_plot == False: plt.ioff() # Create storage folder if it does not exists try: import time plot_storage += os.path.sep + time.strftime("%d-%m-%Y_%H_%M_%S") os.makedirs(plot_storage) except OSError: if os.path.exists(plot_storage): pass # Path should already exists else: raise # Error on creation ################################################################ self.set_permanent_attributes(samples=None, labels=None, future_samples=[], future_labels=[], classes=class_labels, weight=weight, kernel_type=kernel_type, complexity=complexity, exponent=exponent, gamma=gamma, offset=offset, nu=nu, epsilon=epsilon, debug=debug, tolerance=tolerance, w=None, b=0, dim=None, feature_names=None, complexities_path=complexities_path, regression=regression, keep_vectors=keep_vectors, max_time=max_time, steps=0, retraining_needed=False, use_list=use_list, multinomial=multinomial, classifier_information={}, add_type=add_type, discard_type=discard_type, keep_only_sv=keep_only_sv, basket_size=basket_size, relabel=relabel, border_handling=border_handling, scale_factor_small=scale_factor_small, scale_factor_tall=scale_factor_tall, p_threshold=p_threshold, u_retrain=u_retrain, cdt_threshold=cdt_threshold, training_set_ratio=training_set_ratio, show_plot=show_plot, save_plot=save_plot, plot_storage=plot_storage, scat=scat, scatStandard=scatStandard, scatTarget=scatTarget, surf=surf, is_retraining=is_retraining, is_trained=is_trained, # parameters for circles around # first and second class circleTarget0=circleTarget0, circleTarget1=circleTarget1, circleStandard0=circleStandard0, circleStandard1=circleStandard1, m_counter_i=m_counter_i, # collection of classification scores # for probability fits decisions=[], is_plot_active=is_plot_active, ) def stop_training(self): """ Wrapper around stop training for measuring times """ if self.samples is None or len(self.samples) == 0: self._log("No training data given to classification node (%s), " % self.__class__.__name__ + "wrong class labels " + "used or your classifier is not using samples.", level=logging.CRITICAL) start_time_stamp = timeit.default_timer() super(RegularizedClassifierBase, self).stop_training() stop_time_stamp = timeit.default_timer() if not self.classifier_information.has_key("Training_time(classifier)"): self.classifier_information["Training_time(classifier)"] = \ stop_time_stamp - start_time_stamp else: self.classifier_information["Training_time(classifier)"] += \ stop_time_stamp - start_time_stamp def is_trainable(self): """ Returns whether this node is trainable """ return True def is_supervised(self): """ Returns whether this node requires supervised training """ return True def delete_training_data(self): """ Check if training data can be deleted to save memory """ if not (self.keep_vectors or self.is_retrainable()): self.samples = [] self.labels = [] self.decisions = [] def __getstate__(self): """ Return a pickable state for this object """ odict = super(RegularizedClassifierBase, self).__getstate__() if self.kernel_type == 'LINEAR': # if 'labels' in odict: # odict['labels'] = [] # if 'samples' in odict: # odict['samples'] = [] if 'model' in odict: del odict['model'] else: if 'model' in odict: del odict['model'] return odict def store_state(self, result_dir, index=None): """ Stores this node in the given directory *result_dir* """ if self.store and self.kernel_type == 'LINEAR': node_dir = os.path.join(result_dir, self.__class__.__name__) from pySPACE.tools.filesystem import create_directory create_directory(node_dir) try: self.features except: if type(self.w) == FeatureVector: self.features = self.w elif self.w is not None: self.features = FeatureVector(self.w.T, self.feature_names) else: self.features = None if self.features is not None: # This node stores the learned features name = "%s_sp%s.pickle" % ("features", self.current_split) result_file = open(os.path.join(node_dir, name), "wb") result_file.write(cPickle.dumps(self.features, protocol=2)) result_file.close() name = "%s_sp%s.yaml" % ("features", self.current_split) result_file = open(os.path.join(node_dir, name), "wb") result_file.write(str(self.features)) result_file.close() del self.features def __setstate__(self, sdict): """ Restore object from its pickled state """ super(RegularizedClassifierBase, self).__setstate__(sdict) if self.kernel_type != 'LINEAR': # Retraining the svm is not a semantically clean way of restoring # an object but its by far the most simple solution self._log("Requires retraining of the classifier") if self.samples is not None: self._complete_training() def get_sensor_ranking(self): """ Transform the classification vector to a sensor ranking This method will fail, if the classification vector variable ``self.features`` is not existing. This is for example the case when using nonlinear classification with kernels. """ if not "features" in self.__dict__: self.features = FeatureVector( numpy.atleast_2d(self.w).astype(numpy.float64), self.feature_names) self._log("No features variable existing to create generic sensor " "ranking in %s."%self.__class__.__name__, level=logging.ERROR) # channel name is what comes after the first underscore feat_channel_names = [chnames.split('_')[1] for chnames in self.features.feature_names] from collections import defaultdict ranking_dict = defaultdict(float) for i in range(len(self.features[0])): ranking_dict[feat_channel_names[i]] += abs(self.features[0][i]) ranking = sorted(ranking_dict.items(),key=lambda t: t[1]) return ranking def _train(self, data, class_label): """ Add a new sample with associated label to the training set. In case of neither incremental learning nor the restriction of training samples is used, add the samples to the training set. Otherwise check whether the classifier is already trained and if so select an appropriate training set and retrain the classifier. If the classifier is not trained, train it when there are enough samples available. :param data: A new sample for the training set. :type data: list of float :param class_label: The label of the new sample. :type class_label: str """ if not self.is_retrainable() and self.basket_size == numpy.inf: self._train_sample(data, class_label) else: # should not be relevant because first the classifier will be # trained if the basket size is reached but after the first training # only inc_train should adapt the classifier no matter how many # samples are in the training set if self.samples is not None and self.is_trained: self.adapt_training_set(data, class_label) else: self._train_sample(data, class_label) if self.show_plot or self.save_plot: plt.clf() if len(self.samples) >= self.basket_size: if not self.is_trained: self._complete_training() if self.discard_type == "CDT": self.learn_CDT() self.is_trained = True def _train_sample(self, data, class_label): """ Train the classifier on the given data sample It is assumed that the class_label parameter contains information about the true class the data belongs to. :param data: A new sample for the training set. :type data: FeatureVector :param class_label: The label of the new sample. :type class_label: str. """ if self.feature_names is None: try: self.feature_names = data.feature_names except AttributeError as e: warnings.warn("Use a feature generator node before a " + "classification node.") raise e if self.dim is None: self.dim = data.shape[1] if self.samples is None: self.samples = [] # self.decision is by default set to empty list if self.add_type == "UNSUPERVISED_PROB": self.decisions = [] if self.labels is None: self.labels = [] if self.discard_type == "INC_BATCH": self.future_samples = [] self.future_labels = [] if class_label not in self.classes and "REST" not in self.classes and \ not self.regression: warnings.warn( "Please give the expected classes to the classifier! " + "%s unknown. " % class_label + "Therefore define the variable 'class_labels' in " + "your spec file, where you use your classifier. " + "For further info look at the node documentation.") if self.multinomial or not(len(self.classes) == 2): self.classes.append(class_label) self.set_permanent_attributes(classes=self.classes) # main step of appending data to the list *self.samples* if class_label in self.classes or self.regression: self.append_sample(data) if not self.regression and class_label in self.classes: self.labels.append(self.classes.index(class_label)) elif not self.regression and "REST" in self.classes: self.labels.append(self.classes.index("REST")) elif self.regression: # regression! try: self.labels.append(float(class_label)) except ValueError: # one-class-classification is regression-like self.labels.append(1) else: # case, where data is irrelevant pass def train(self, data, label): """ Special mapping for multi-class classification It enables label filtering for one vs. REST and one vs. one case. Furthermore, the method measures time for the training segments. """ # one vs. REST case if "REST" in self.classes and not label in self.classes: label = "REST" # one vs. one case if not self.multinomial and len(self.classes) == 2 and \ not label in self.classes: return start_time_stamp = timeit.default_timer() super(RegularizedClassifierBase, self).train(data, label) stop_time_stamp = timeit.default_timer() if not self.classifier_information.has_key("Training_time(classifier)"): self.classifier_information["Training_time(classifier)"] = \ stop_time_stamp - start_time_stamp else: self.classifier_information["Training_time(classifier)"] += \ stop_time_stamp - start_time_stamp def append_sample(self, sample): """ Some methods need a list of arrays as lists and some prefer arrays """ data_array = sample.view(numpy.ndarray) if self.use_list: self.samples.append(map(float, list(data_array[0, :]))) else: self.samples.append(data_array[0, :]) def _execute(self, x): """ Executes the classifier on the given data vector in the linear case prediction value = <w,data>+b """ if self.kernel_type == 'LINEAR': data = x.view(numpy.ndarray) # Let the SVM classify the given data: <w,data>+b if self.w is None: prediction_value = 0 self.w = numpy.zeros(x.shape[1]) else: prediction_value = float(numpy.dot(self.w.T, data[0, :]))+self.b # one-class multinomial handling of REST class if "REST" in self.classes and self.multinomial: if "REST" == self.classes[0]: label = self.classes[1] elif "REST" == self.classes[1]: label = self.classes[0] prediction_value *= -1 # Look up class label # prediction_value --> {-1,1} --> {0,1} --> Labels elif prediction_value > 0: label = self.classes[1] else: label = self.classes[0] return PredictionVector(label=label, prediction=prediction_value, predictor=self) def get_own_transformation(self, sample=None): """ Use classification function e.g. for visualization in LINEAR case """ if self.kernel_type == 'LINEAR': return self.w, self.b, self.feature_names, "linear classifier" def _inc_train(self, data, class_label=None): """ Manipulation of training set for updating the svm """ ####################################################################### if not self.classifier_information.has_key("Inc_iterations"): self.classifier_information["Inc_iterations"] = 1 else: self.classifier_information["Inc_iterations"] += 1 if self.u_retrain: class_label = self._execute(data).label start_time_stamp = timeit.default_timer() ####################################################################### self.adapt_training_set(data, class_label) ####################################################################### stop_time_stamp = timeit.default_timer() if not self.classifier_information.has_key("Retraining_time(classifier)"): self.classifier_information["Retraining_time(classifier)"] = \ stop_time_stamp - start_time_stamp else: self.classifier_information["Retraining_time(classifier)"] += \ stop_time_stamp - start_time_stamp ####################################################################### def _batch_retrain(self,data_list, label_list): """ Simply adding the new data to the old one an retraining """ for i in range(label_list): self._train(data_list[i], label_list[i]) # # retraining is now performed in the train method, since method # # needs to be retrainable to call _batch_retrain # self.stop_training() def print_variables(self): """ Debug function for printing the classifier and the slack variables """ # Precision does not work here because of the strange dtype. numpy.set_printoptions(edgeitems=50, precision=4, suppress=False, threshold=50) # ...Setting the dtype to list doesn't work either. print self.print_w print 'This is the classification vector w and b=', self.b, '.' print self.num_retained_features, ' out of ', self.dim, \ ' features have been used.' print self.num_sv, " vectors of ", self.num_samples, " have been used." # print self.t, "are the Slack variables." if not((numpy.array(self.t) >= 0).all()): print "There are negative slack variables! Classification failed?" print "%i vectors of %i have been used for the inner margin and" \ % (self.inner_margin, self.num_samples) numpy.set_printoptions(edgeitems=100, linewidth=75, precision=5, suppress=True, threshold=1000) print numpy.array(self.ti), "are the inner Slack variables." numpy.set_printoptions(edgeitems=3, infstr='Inf', linewidth=75, nanstr='NaN', precision=8, suppress=False, threshold=1000) def kernel_func(self, u, v): """ Returns the kernel function applied on x and y - POLY :: (gamma*u'*v + offset)^exponent - RBF :: exp(-gamma*|u-v|^2) - SIGMOID :: tanh(gamma*u'*v + offset) """ if not self.kernel_type == "LINEAR" and self.gamma is None: self.calculate_gamma() if self.kernel_type == "LINEAR": return float(numpy.dot(u, v)) elif self.kernel_type == "POLY": h = float(numpy.dot(u, v)) return (self.gamma*h+self.offset)**self.exponent elif self.kernel_type == "RBF": return numpy.exp(-self.gamma*float(numpy.sum((u - v)**2))) elif self.kernel_type == "SIGMOID": h = float(numpy.dot(u, v)) return numpy.tanh(self.gamma * h + self.offset) elif self.kernel_type.startswith("lambda "): function = eval(self.kernel_type) return float(function(u, v)) def calculate_gamma(self): """ Calculate default gamma This defines a parameter for 'POLY'-,'RBF'- and 'SIGMOID'-kernel. We calculate the parameter `gamma` as described in the base node description. """ if (self.kernel_type == 'POLY' or self.kernel_type == 'SIGMOID') \ and self.gamma is None: self.gamma = 1.0 / self.dim elif self.kernel_type == 'RBF' and self.gamma is None and \ not self.regression: a = self.labels.count(self.classes.index(self.classes[0])) b = self.labels.count(self.classes.index(self.classes[1])) if a > b: relevant = 1 else: relevant = 0 relevant_samples = [] for i, label in enumerate(self.labels): if label == relevant: relevant_samples.append(self.samples[i]) variance = numpy.median(numpy.var(numpy.array(self.samples), axis=0)) self.gamma = 0.5/(variance*self.dim) self._log( "No parameter gamma specified for the kernel. Using: %f."\ % self.gamma, level=logging.WARNING) elif self.gamma is None: self.gamma = 0.001 def adapt_training_set(self, data, class_label=None): """ Select the samples that should belong to the training set and retrain the classifier. For incremental training run through four steps. 1) Add samples to the training set according to some criteria. 2) Discard samples from the training set according to some criteria. 3) Retrain the classifier with the current training set. 4) If used relabel the training set according to the current decision function. :param data: A new sample for the training set. :type data: list of float :param class_label: The label of the new sample. :type class_label: str """ if (self.show_plot or self.save_plot) and self.is_plot_active == False: if self.show_plot: plt.ion() plt.grid(True) if self.show_plot: plt.show() self.is_plot_active = True # In case initial training is not already performed, train # classifier and CDT once. if self.is_trained == False and self.discard_type != "INC": self._complete_training() if self.discard_type == "CDT": self.learn_CDT() self.is_trained = True # specify flag for retraining phase self.is_retraining = True ######################################################################## # 1) Selection of new data # ######################################################################## [new_data_in_training_set, retraining_required, label] =\ self.select_new_data(data, class_label) ######################################################################## # 2) Discard data # ######################################################################## [new_data_in_training_set, retraining_required] =\ self.discard_data(data, class_label,\ new_data_in_training_set, retraining_required,\ label) ######################################################################## # 3) Retrain # ######################################################################## self.retrain(data, class_label,\ new_data_in_training_set, retraining_required) ######################################################################## # 4) Relabel training set # ######################################################################## self.relabel_training_set() if self.show_plot or self.save_plot: self.num_samples = len(self.samples) self.visualize() def select_new_data(self, data, class_label): """ Add the new sample to the training set if it satisfies some criteria. :param data: A new sample for the training set. :type data: list of float :param class_label: The label of the new sample. :type class_label: str :rtype: [flag if new data is in training set, flag if retraining is required (the new point is a potential sv or a removed one was a sv)] """ ret_label = None retraining_required = False new_data_in_training_set = False if self.add_type == "ONLY_MISSCLASSIFIED": # get the prediction for the current data predictionVec = self._execute(data) # only append misclassified data points to training set if predictionVec.label != class_label: if self.discard_type != "INC": self.add_new_sample(data, class_label) ret_label = self.classes.index(class_label) # no need to check if potential support vector # already confirmed with criteria retraining_required = True else: new_data_in_training_set = True elif self.add_type == "ADD_ALL": # add all incomming samples if self.discard_type != "INC": self.add_new_sample(data, class_label) ret_label = self.classes.index(class_label) retraining_required =\ self.is_potential_support_vector(data, class_label) else: new_data_in_training_set = True elif self.add_type == "ONLY_WITHIN_MARGIN": # append only samples that are within the margin # (not on the other side of own border, but really between those # borderlines) predictionVec = self._execute(data) if abs(predictionVec.prediction) < 1.0: if self.discard_type != "INC": self.add_new_sample(data, class_label) ret_label = self.classes.index(class_label) retraining_required =\ self.is_potential_support_vector(data, class_label) else: new_data_in_training_set = True elif self.add_type == "UNSUPERVISED_PROB": # unsupervised classification # only append those samples that were most probably right # classified for i in numpy.arange(len(self.decisions), self.num_samples): predictionVec = self._execute(\ numpy.atleast_2d(self.samples[i])) self.decisions.append(predictionVec.prediction) # get number of target and standard samples prior1 = sum(map(lambda x: x == 1, self.labels)) prior0 = self.num_samples - prior1 # get labels as list of trues and falses labels = map(lambda x: x == 1, self.labels) # calculate the label and the probability for the label of the # given data [p, label] = self.get_platt_prob(self.decisions, labels, prior1, prior0, data) if p > self.p_threshold: self.decisions.append(p) if self.discard_type != "INC": self.add_new_sample(data, label) ret_label = self.classes.index(label) retraining_required =\ self.is_potential_support_vector(data, label) else: new_data_in_training_set = True return [new_data_in_training_set, retraining_required, ret_label] def discard_data(self, data, class_label,\ new_data_in_training_set, retraining_required, label=None): """ Discard data from training set according to some criteria. :param data: A new sample for the training set. :type data: list of float :param class_label: The label of the new sample. :type class_label: str :param new_data_in_training_set: flag if new data is in training set :type new_data_in_training_set: bool :param retraining_required: flag if retraining is requiered (the new point is a potentiell sv or a removed one was a sv) :type retraining_required: bool :rtype: [flag if new data is in training set, flag if retraining is requiered (the new point is a potentiell sv or a removed one was a sv)] """ # Reset retraining_required flag if a new chunk is not full if self.discard_type == "INC_BATCH"\ and len(self.future_samples) < self.basket_size: retraining_required = False while self.num_samples > self.basket_size\ and (self.discard_type=="REMOVE_OLDEST"\ or self.discard_type=="REMOVE_FARTHEST"): if self.discard_type == "REMOVE_OLDEST": # remove the oldest sample idx = 0# in case "DONT_HANDLE_RATIO" if self.training_set_ratio == "KEEP_RATIO_AS_IT_IS": # choose from the training set the oldest sample with the # same label as the added sample idx = next((i for i in numpy.arange(len(self.samples))\ if self.labels[i] == label), 0) elif self.training_set_ratio == "BALANCED_RATIO": # try to keep the number of samples for each class equal num_target = sum(l == 1 for l in self.labels) num_standard = sum(l == 0 for l in self.labels) if num_target != num_standard: label = (num_target > num_standard) idx = next((i for i in numpy.arange(len(self.samples))\ if self.labels[i] == label), 0) retraining_required = self.remove_samples([idx])\ or retraining_required elif self.discard_type == "REMOVE_FARTHEST": # remove the sample which distance is maximal to the # hyperplane samples = self.samples # in case "DONT_HANDLE_RATIO" if self.training_set_ratio == "KEEP_RATIO_AS_IT_IS": # choose only from that samples with the same label as the # added sample samples = [] idxs_label = [] for i in numpy.arange(len(self.samples)): if self.labels[i] == label: samples.append(self.samples[i]) idxs_label.append(i) elif self.training_set_ratio == "BALANCED_RATIO": # try to keep the number of samples for each class equal num_target = sum(l == 1 for l in self.labels) num_standard = sum(l == 0 for l in self.labels) if num_target != num_standard: label = (num_target > num_standard) samples = [] idxs_label = [] for i in numpy.arange(len(self.samples)): if self.labels[i] == label: samples.append(self.samples[i]) idxs_label.append(i) idx = numpy.argmax(map(\ lambda x: abs((self._execute(\ numpy.atleast_2d(x))).prediction),\ samples)) if self.training_set_ratio == "KEEP_RATIO_AS_IT_IS" or\ self.training_set_ratio == "BALANCED_RATIO": idx = idxs_label[idx] retraining_required = self.remove_samples([idx])\ or retraining_required # TODO: add parameter to specify possible overlap # like x times basket size? if self.discard_type == "INC_BATCH"\ and len(self.future_samples) == self.basket_size: # remove all old samples self.remove_samples(list(numpy.arange(self.num_samples))) # and add all samples from the future knowledge base for (d, c_l) in zip(self.future_samples, self.future_labels): self.add_new_sample(d, c_l, True) # The whole training set changes so retraining is required retraining_required = True if self.discard_type == "REMOVE_NO_BORDER_POINTS": if len(self.samples) < self.basket_size: # Don't retrain if basket size is not reached retraining_required = False elif len(self.samples) == self.basket_size: # Retrain if basket size is reached retraining_required = True if len(self.samples) > self.basket_size: # Discard useless data for next iterations self.remove_no_border_points(retraining_required) retraining_required = False if self.discard_type == "CDT": # test if a change occurred changeDetected = self.change_detection_test(data, class_label) # if a change is detected remove old samples if changeDetected or (numpy.floor_divide( len(self.future_samples), self.num_samples) > self.cdt_threshold): self.remove_samples(numpy.arange(len(self.samples))) # if a change is detected or many new samples arrived add # current samples to training set for (s, l) in zip(self.future_samples, self.future_labels): self.add_new_sample(s, l, True) retraining_required = True else: retraining_required = False return [new_data_in_training_set, retraining_required] def retrain(self, data, class_label, new_data_in_training_set, retraining_required): """ Start retraining procedure if the training set changed. :param data: A new sample for the training set. :type data: list of float :param class_label: The label of the new sample. :type class_label: str :param new_data_in_training_set: flag if new data is in training set :type new_data_in_training_set: bool :param retraining_required: flag if retraining is required (the new point is a potential sv or a removed one was a sv) """ if self.classifier_information.has_key("Inc_iterations") and\ self.classifier_information["Inc_iterations"] == 1: self.classifier_information["Retrain_counter"] = 0 if self.discard_type == "INC" and new_data_in_training_set is True: # Incremental training self.incremental_training(data, class_label) if not self.classifier_information.has_key("Retrain_counter"): self.classifier_information["Retrain_counter"] = 1 else: self.classifier_information["Retrain_counter"] += 1 else: if retraining_required: # retrain the svm self.retrain_SVM() if not self.classifier_information.has_key("Retrain_counter"): self.classifier_information["Retrain_counter"] = 1 else: self.classifier_information["Retrain_counter"] += 1 if (self.keep_only_sv or # approaches, where data is removed later on self.discard_type == "CDT" or self.discard_type == "INC_BATCH"): # only keep the sv to save memory self.remove_non_support_vectors() def relabel_training_set(self): """ Relabel the training set according to the current decision function. """ iterations = 1 while self.relabel: changed = False # relabel all training samples according to # current decision function for i in numpy.arange(len(self.samples)): predictionVec = self._execute(numpy.atleast_2d(self.samples[i])) if self.labels[i] != self.classes.index(predictionVec.label): changed = True self.labels[i] = self.classes.index(predictionVec.label) # only relevant for SOR classification (outsourcing?) if "version" in self.__dict__: for i in range(self.num_samples): if self.version == "matrix": self.M[-1, i] *= -1 self.M[i, -1] *= -1 # modified from *calculate_weigts_and_class_factors* if self.version in ["samples", "matrix"]: self.bi[i] *= -1 self.ci[i] = self.complexity * \ self.weight[self.labels[i]] if i < len(self.decisions): self.decisions[i] = predictionVec.prediction else: self.decisions.append(predictionVec.prediction) if not changed: break else: # Retrain the svm with the relabeled training set self.retrain_SVM() if not self.relabel == "conv" or iterations >= 10: break iterations += 1 def is_potential_support_vector(self, data, class_label=None): """ Check whether the given data could become a support vector This is when the data is within, on or on the other side of the margin. :param data: A new sample for the training set. :type data: list of float :param class_label: The label of the new sample. :type class_label: str """ predictionVec = self._execute(data) if class_label is not None: if self.classes.index(class_label) == 1: return predictionVec.prediction <= 1.0 else: return predictionVec.prediction >= -1.0 else: return True def remove_no_border_points(self, retraining_required): """ Discard method to remove all samples from the training set that are not in the border of their class. The border is determined by a minimum distance from the center of the class and a maximum distance. :param retraining_required: flag if retraining is required (the new point is a potential sv or a removed one was a sv) """ raise NotImplementedError( "The node %s does not implement a border point handling." \ % self.__class__.__name__) def add_new_sample(self, data, class_label=None, default=False): """ Add a new sample to the training set :param data: A new sample for the training set. :type data: list of float :param class_label: The label of the new sample. :type class_label: str :param default: Specifies if the sample is added to the current training set or to a future training set :param default: bool """ raise NotImplementedError( "The node %s does not implement a add sample routine." \ % self.__class__.__name__) def remove_samples(self, idxs): """ Remove the samples at the given indices from the training set :param: idxs: Indices of the samples to remove. :type: idxs: list of int :rtype: bool - True if a support vector was removed. """ raise NotImplementedError( "The node %s does not implement a remove sample routine." \ % self.__class__.__name__) def remove_non_support_vectors(self): """ Remove all samples that are no support vectors """ raise NotImplementedError( "The node %s does not implement a remove SVs routine." \ % self.__class__.__name__) def retrain_SVM(self): """ Retrain the svm with the current training set """ # start retraining process self._complete_training() self.future_samples = [] self.future_labels = [] if self.discard_type == "CDT": self.learn_CDT() def incremental_training(self, data, class_label): """ Warm Start Implementation by Mario Michael Krell The saved status of the algorithm, including the Matrix M, is used as a starting point for the iteration. Only the problem has to be lifted up one dimension. """ raise NotImplementedError( "The node %s does not implement incremental training." \ % self.__class__.__name__) def learn_CDT(self): """ Learn features of the training set to detect changes in the underlying distribution """ raise NotImplementedError( "The node %s does not implement a CDT." % self.__class__.__name__) def change_detection_test(self, data, class_label=None): """ Detect a change of the distribution :param data: A new sample for the training set. :type data: list of float :param class_label: The label of the new sample. :type class_label: str :rtype: bool - If change detected return True """ raise NotImplementedError( "The node %s does not implement a change detection test." \ % self.__class__.__name__) def get_platt_prob(self, deci, label, prior1, prior0, data): """ Get a probability for the decision of the svm :param deci: List of decision made for each sample. :type deci: list of float :param label: List of labels from the previous samples. :type label: list of bool :param prior1: Number of samples of class 1 :type prior1: int :param prior0: Number of samples of class 0 :type prior0: int :param data: Sample under investigation :type data: list of float :rtype: [float, int] - probability and the corresponding label """ [A, B] = self.approximate_AB_for_plat_prob(deci, label, prior1, prior0) predictionVec = self._execute(data) f = predictionVec.prediction fApB = f * A + B if fApB >= 0: p = numpy.exp(-fApB) / (1.0 + numpy.exp(-fApB)) else: p = 1.0 / (1.0 + numpy.exp(fApB)) if self.classes.index(predictionVec.label) == 1: return [p, predictionVec.label] else: return [1-p, predictionVec.label] def approximate_AB_for_plat_prob(self, deci, label, prior1, prior0): """ Approximate the distribution of both classes :param deci: List of decision made for each sample. :type deci: list of float :param label: List of labels from the previous samples. :type label: list of bool :param prior1: Number of samples of class 1 :type prior1: int :param prior0: Number of samples of class 0 :type prior0: int :rtype: [float, float] - ([A, B] - parameters of sigmoid) """ # Parameter setting maxiter = 100 # Maximum number of iterations minstep = 1e-10 # Minimum step taken in line search sigma = 1e-12 # Set to any value > 0 # Construct initial values: target support in array t, # initial function value in fval hiTarget = (prior1 + 1.0) / (prior1 + 2.0) loTarget = 1 / (prior0 + 2.0) length = prior1 + prior0 # Total number of data t = numpy.zeros(length) for i in numpy.arange(length): if label[i] > 0: t[i] = hiTarget else: t[i] = loTarget A = 0.0 B = numpy.log((prior0 + 1.0) / (prior1 + 1.0)) fval = 0.0 for i in numpy.arange(length): fApB = deci[i] * A + B if fApB >= 0: fval += t[i] * fApB + numpy.log(1 + numpy.exp(-fApB)) else: fval += (t[i] - 1) * fApB + numpy.log(1 + numpy.exp(fApB)) for it in numpy.arange(maxiter): # Update Gradient and Hessian (use H' = H + sigma 1) h11 = h22 = sigma h21 = g1 = g2 = 0.0 for i in numpy.arange(length): fApB = deci[i] * A + B if fApB >= 0: p = numpy.exp(-fApB) / (1.0 + numpy.exp(-fApB)) q = 1.0 / (1.0 + numpy.exp(-fApB)) else: p = 1.0 / (1.0 + numpy.exp(fApB)) q = numpy.exp(fApB) / (1.0 + numpy.exp(fApB)) d2 = p * q h11 += deci[i] * deci[i] * d2 h22 += d2 h21 += deci[i] * d2 d1 = t[i] - p g1 += deci[i] * d1 g2 += d1 if abs(g1) < 1e-5 and abs(g2) < 1e-5: # Stopping criteria break # Compute modified Newton directions det = h11 * h22 - h21 * h21 dA = -(h22 * g1 - h21 * g2) / det dB = -(-h21 * g1 + h11 * g2) / det gd = g1 * dA + g2 * dB stepsize = 1 while stepsize >= minstep: # Line search newA = A + stepsize * dA newB = B + stepsize * dB newf = 0.0 for i in numpy.arange(length): fApB = deci[i] * newA + newB if fApB >= 0: newf += t[i] * fApB + numpy.log(1 + numpy.exp(-fApB)) else: newf += (t[i] - 1) * fApB + \ numpy.log(1 + numpy.exp(fApB)) if newf < fval + 0.0001 * stepsize * gd: A = newA B = newB fval = newf break # Sufficient decrease satisfied else: stepsize /= 2.0 if stepsize < minstep: self._log( "Line search fails. A= " + str(A) + " B= " + str(B), level=logging.WARNING) break if it >= maxiter: self._log("Reaching maximal iterations", level=logging.WARNING) return [A, B] # ------------------------------------------------------------------------------ # plot routines # ------------------------------------------------------------------------------ def __intersect(self, rect, line): """ Calculate the points of a line in a given rectangle :param rect: Parameters of a rectangle (min x, min y, max x, max y). :type rect: list of float :param line: line given as y=a*x+b or a*x+b*y+c=0 :type line: list of float :rtype: list of pairs of float """ l = [] xmin, xmax, ymin, ymax = rect a, b, c = line assert a != 0 or b != 0 if a == 0: y = -c/b if y <= ymax and y >= ymin: l.append((xmin, y)) l.append((xmax, y)) return l if b == 0: x = -c/a if x <= xmax and x >= xmin: l.append((x, ymin)) l.append((x, ymax)) return l k = -a / b m = -c / b for x in (xmin, xmax): y = k * x + m if y <= ymax and y >= ymin: l.append((x,y)) k = -b / a m = -c / a for y in (ymin, ymax): x = k * y + m if x < xmax and x > xmin: l.append((x, y)) return l def plot_line(self, coef, *args, **kwargs): """ Plot a line (y=a*x+b or a*x+b*y+c=0) with the given coefficients :param coef: Coefficients determining the line :type coef: list of floats :rtype: list of lines """ coef = numpy.float64(coef[:]) assert len(coef) == 2 or len(coef) == 3 if len(coef) == 2: a, b, c = coef[0], -1., coef[1] elif len(coef) == 3: a, b, c = coef ax = plt.gca() limits = ax.axis() points = self.__intersect(limits, (a,b,c)) if len(points) == 2: pts = numpy.array(points) l = ax.plot(pts[:, 0], pts[:, 1], *args, **kwargs) ax.axis(limits) return l return None def circle_out(self, x, y, s=20, *args, **kwargs): """ Circle out points with size 's'. :param x: x coordinates. :type x: list of float :param y: y coordinates. :type y: list of float :param s: Size of circle :tyep s: int """ ax = plt.gca() x = [item for sublist in x for item in sublist] y = [item for sublist in y for item in sublist] if 'edgecolors' not in kwargs: kwargs['edgecolors'] = 'g' self.scat = ax.scatter(x, y, s, facecolors='none', *args, **kwargs) def plot_data(self, x, y, target, s=20, *args, **kwargs): """ Plot points with size 's' :param x: x coordinates. :type x: list of float :param y: y coordinates. :type y: list of float :param target: Determine class label. :type target: bool :param s: Size of point. :type s: int """ ax = plt.gca() x = [item for sublist in x for item in sublist] y = [item for sublist in y for item in sublist] if 'edgecolors' not in kwargs: if target == True: kwargs['edgecolors'] = 'r' self.scatTarget = ax.scatter(x, y, s, marker='x',\ facecolors='none',\ *args, **kwargs) else: kwargs['edgecolors'] = 'b' self.scatStandard = ax.scatter(x, y, s, marker='o',\ facecolors='none',\ *args, **kwargs) def plot_hyperplane(self): """ Plot the hyperplane (in 2D a line). """ ax = plt.gca() ax.set_title("$wx + b = 0$\n$[%.4f; %.4f]x + %.4f = 0$"\ % (self.w[0], self.w[1], self.b)) coef = [self.w[0], self.w[1], self.b] coef1 = coef[:] coef2 = coef[:] coef1[2] += 1 coef2[2] -= 1 i = 0 for _, line in enumerate(ax.lines): ax.lines.remove(line) i += 1 if i != 3: if self.show_plot: from time import sleep sleep(0.25) for _, line in enumerate(ax.lines): ax.lines.remove(line) i += 1 self.plot_line(coef, 'b', lw=2) self.plot_line(coef1, 'g', lw=1, ls='dashed') self.plot_line(coef2, 'r', lw=1, ls='dashed') def plot_samples(self): """ Plot all training samples. Plot all training samples and mark the class association. """ class_neg = [] class_pos = [] for idx in numpy.arange(self.num_samples): if self.labels[idx] == 0: class_neg.append(self.samples[idx]) else: class_pos.append(self.samples[idx]) class_neg = numpy.matrix(class_neg) class_pos = numpy.matrix(class_pos) if self.scatStandard is not None: self.scatStandard.remove() self.scatStandard = None if self.scatTarget is not None: self.scatTarget.remove() self.scatTarget = None # TODO: determine size of plot xmin = -2.5 #min(numpy.min(class_neg[:,0]), numpy.min(class_pos[:,0])) xmax = 2.5 #max(numpy.max(class_neg[:,0]), numpy.max(class_pos[:,0])) ymin = -2.5 #min(numpy.min(class_neg[:,1]), numpy.min(class_pos[:,1])) ymax = 2.5 #max(numpy.max(class_neg[:,1]), numpy.max(class_pos[:,1])) ax = plt.gca() ax.axis([xmin-1.0, xmax+1.0, ymin-1.0, ymax+1.0]) if numpy.shape(class_neg)[1] > 0: self.plot_data(class_neg[:, 0], class_neg[:, 1], False) if numpy.shape(class_pos)[1] > 0: self.plot_data(class_pos[:, 0], class_pos[:, 1], True) def plot_support_vectors(self): """ Mark the support vectors by a circle. """ support_vectors = [] for idx in numpy.arange(self.num_samples): if self.dual_solution[idx] != 0: support_vectors.append(self.samples[idx]) support_vectors = numpy.matrix(support_vectors) if self.scat is not None: self.scat.remove() if support_vectors is not None and\ numpy.shape(support_vectors)[0] > 1 and\ numpy.shape(support_vectors)[1] > 0: self.circle_out(support_vectors[:, 0], support_vectors[:, 1], s=100) else: self.scat = None def plot_class_borders(self, mStandard, mTarget, R, scaleFactorSmall, scaleFactorTall): """ Plot the borders of each class. :param mStandard: Center of standard class. :type mStandard: [float, float] - (x,y) :param mTarget: Center of target class. :type mTarget: [float, float] - (x,y) :param R: Distance between both centers. :type R: float :param scaleFactorSmall: Determine inner circle of class border. :type scaleFactorSmall: float :param scaleFactorTall: Determine outer circle of class border. :type scaleFactorTall: float """ ax = plt.gca() if self.circleStandard0 is not None: self.circleStandard0.remove() if self.circleStandard1 is not None: self.circleStandard1.remove() if self.circleTarget0 is not None: self.circleTarget0.remove() if self.circleTarget1 is not None: self.circleTarget1.remove() self.circleStandard0 = plt.Circle( mStandard, radius=scaleFactorSmall * R, color='b', fill=False) self.circleStandard1 = plt.Circle( mStandard, radius=scaleFactorTall * R, color='b', fill=False) self.circleTarget0 = plt.Circle( mTarget, radius=scaleFactorSmall * R, color='r', fill=False) self.circleTarget1 = plt.Circle( mTarget, radius=scaleFactorTall * R, color='r', fill=False) ax.add_patch(self.circleStandard0) ax.add_patch(self.circleStandard1) ax.add_patch(self.circleTarget0) ax.add_patch(self.circleTarget1) def plot_data_3D(self, x, y, z, target, s=20, *args, **kwargs): """ Plot points with size 's' :param x: x coordinates. :type x: list of float :param y: y coordinates. :type y: list of float :param z: z coordinates: :type z: list of float :param target: Determine class label. :type target: bool :param s: Size of point. :type s: int """ ax = plt.gca(projection='3d') x = [item for sublist in x for item in sublist] y = [item for sublist in y for item in sublist] z = [item for sublist in z for item in sublist] if 'edgecolors' not in kwargs: if target: self.scatTarget = ax.scatter(x, y, z, c='r', marker='o') else: self.scatStandard = ax.scatter(x, y, z, c='g', marker='x') def plot_samples_3D(self): """ Plot all training samples. Plot all training samples and mark the class association. """ ax = plt.gca(projection='3d')#generate 3d plot # TODO: determine size of plot xmin = -2.5 # min(numpy.min(class_neg[:,0]), numpy.min(class_pos[:,0])) xmax = 2.5 # max(numpy.max(class_neg[:,0]), numpy.max(class_pos[:,0])) ymin = -2.5 # min(numpy.min(class_neg[:,1]), numpy.min(class_pos[:,1])) ymax = 2.5 # max(numpy.max(class_neg[:,1]), numpy.max(class_pos[:,1])) zmin = -2.5 zmax = 2.5 ax.set_xlim3d(xmin, xmax) ax.set_ylim3d(ymin, ymax) ax.set_zlim3d(zmin, zmax) class_neg = [] class_pos = [] for idx in numpy.arange(self.num_samples): if self.labels[idx] == 0: class_neg.append(self.samples[idx]) else: class_pos.append(self.samples[idx]) class_neg = numpy.matrix(class_neg) class_pos = numpy.matrix(class_pos) if self.scatStandard is not None: self.scatStandard.remove() self.scatStandard = None if self.scatTarget is not None: self.scatTarget.remove() self.scatTarget = None if numpy.shape(class_neg)[1] > 0: self.plot_data_3D( class_neg[:, 0], class_neg[:, 1], class_neg[:, 2], False) if numpy.shape(class_pos)[1] > 0: self.plot_data_3D( class_pos[:, 0], class_pos[:, 1], class_pos[:, 2], True) def plot_hyperplane_3D(self): """ Plot the hyperplane (in 3D a surface). """ ax = plt.gca(projection='3d') ax.set_title("$wx + b = 0$\n$[%.4f; %.4f; %.4f]x + %.4f = 0$"\ % (self.w[0], self.w[1], self.w[2], self.b)) if self.surf is not None: self.surf.remove() self.surf = None # create x,y xx, yy = numpy.meshgrid(numpy.arange(-2.0, 2.0, 0.05),\ numpy.arange(-2.0, 2.0, 0.05)) # calculate corresponding z z = (-self.w[0] * xx - self.w[1] * yy - self.b) * 1. / self.w[2] self.surf = ax.plot_surface(xx, yy, z, alpha=0.2) def visualize(self): """ Show the training samples, the support vectors if possible and the current decision function """ raise NotImplementedError("The node %s does not implement a"+ \ "visualization." % self.__class__.__name__) # ------------------------------------------------------------------------------ class TimeoutException(Exception): """ Break up for to long simplex iterations """ pass
gpl-3.0
Odingod/mne-python
mne/viz/raw.py
2
30957
"""Functions to plot raw M/EEG data """ from __future__ import print_function # Authors: Eric Larson <larson.eric.d@gmail.com> # # License: Simplified BSD import copy from functools import partial import numpy as np from ..externals.six import string_types from ..io.pick import pick_types from ..io.proj import setup_proj from ..utils import set_config, get_config, verbose from ..time_frequency import compute_raw_psd from .utils import figure_nobar, _toggle_options, _toggle_proj, tight_layout from ..defaults import _handle_default def _plot_update_raw_proj(params, bools): """Helper only needs to be called when proj is changed""" if bools is not None: inds = np.where(bools)[0] params['info']['projs'] = [copy.deepcopy(params['projs'][ii]) for ii in inds] params['proj_bools'] = bools params['projector'], _ = setup_proj(params['info'], add_eeg_ref=False, verbose=False) _update_raw_data(params) params['plot_fun']() def _update_raw_data(params): """Helper only needs to be called when time or proj is changed""" from scipy.signal import filtfilt start = params['t_start'] stop = params['raw'].time_as_index(start + params['duration'])[0] start = params['raw'].time_as_index(start)[0] data_picks = pick_types(params['raw'].info, meg=True, eeg=True) data, times = params['raw'][:, start:stop] if params['projector'] is not None: data = np.dot(params['projector'], data) # remove DC if params['remove_dc'] is True: data -= np.mean(data, axis=1)[:, np.newaxis] if params['ba'] is not None: data[data_picks] = filtfilt(params['ba'][0], params['ba'][1], data[data_picks], axis=1, padlen=0) # scale for di in range(data.shape[0]): data[di] /= params['scalings'][params['types'][di]] # stim channels should be hard limited if params['types'][di] == 'stim': data[di] = np.minimum(data[di], 1.0) # clip if params['clipping'] == 'transparent': data[np.logical_or(data > 1, data < -1)] = np.nan elif params['clipping'] == 'clamp': data = np.clip(data, -1, 1, data) params['data'] = data params['times'] = times def _layout_raw(params): """Set raw figure layout""" s = params['fig'].get_size_inches() scroll_width = 0.33 hscroll_dist = 0.33 vscroll_dist = 0.1 l_border = 1.2 r_border = 0.1 t_border = 0.33 b_border = 0.5 # only bother trying to reset layout if it's reasonable to do so if s[0] < 2 * scroll_width or s[1] < 2 * scroll_width + hscroll_dist: return # convert to relative units scroll_width_x = scroll_width / s[0] scroll_width_y = scroll_width / s[1] vscroll_dist /= s[0] hscroll_dist /= s[1] l_border /= s[0] r_border /= s[0] t_border /= s[1] b_border /= s[1] # main axis (traces) ax_width = 1.0 - scroll_width_x - l_border - r_border - vscroll_dist ax_y = hscroll_dist + scroll_width_y + b_border ax_height = 1.0 - ax_y - t_border params['ax'].set_position([l_border, ax_y, ax_width, ax_height]) # vscroll (channels) pos = [ax_width + l_border + vscroll_dist, ax_y, scroll_width_x, ax_height] params['ax_vscroll'].set_position(pos) # hscroll (time) pos = [l_border, b_border, ax_width, scroll_width_y] params['ax_hscroll'].set_position(pos) # options button pos = [l_border + ax_width + vscroll_dist, b_border, scroll_width_x, scroll_width_y] params['ax_button'].set_position(pos) params['fig'].canvas.draw() def _helper_resize(event, params): """Helper for resizing""" size = ','.join([str(s) for s in params['fig'].get_size_inches()]) set_config('MNE_BROWSE_RAW_SIZE', size) _layout_raw(params) def _pick_bad_channels(event, params): """Helper for selecting / dropping bad channels onpick""" bads = params['raw'].info['bads'] # trade-off, avoid selecting more than one channel when drifts are present # however for clean data don't click on peaks but on flat segments def f(x, y): return y(np.mean(x), x.std() * 2) for l in event.inaxes.lines: ydata = l.get_ydata() if not isinstance(ydata, list) and not np.isnan(ydata).any(): ymin, ymax = f(ydata, np.subtract), f(ydata, np.add) if ymin <= event.ydata <= ymax: this_chan = vars(l)['ch_name'] if this_chan in params['raw'].ch_names: if this_chan not in bads: bads.append(this_chan) l.set_color(params['bad_color']) l.set_zorder(-1) else: bads.pop(bads.index(this_chan)) l.set_color(vars(l)['def_color']) l.set_zorder(0) break else: x = np.array([event.xdata] * 2) params['ax_vertline'].set_data(x, np.array(params['ax'].get_ylim())) params['ax_hscroll_vertline'].set_data(x, np.array([0., 1.])) params['vertline_t'].set_text('%0.3f' % x[0]) # update deep-copied info to persistently draw bads params['info']['bads'] = bads _plot_update_raw_proj(params, None) def _mouse_click(event, params): """Vertical select callback""" if event.inaxes is None or event.button != 1: return # vertical scrollbar changed if event.inaxes == params['ax_vscroll']: ch_start = max(int(event.ydata) - params['n_channels'] // 2, 0) if params['ch_start'] != ch_start: params['ch_start'] = ch_start params['plot_fun']() # horizontal scrollbar changed elif event.inaxes == params['ax_hscroll']: _plot_raw_time(event.xdata - params['duration'] / 2, params) elif event.inaxes == params['ax']: _pick_bad_channels(event, params) def _plot_raw_time(value, params): """Deal with changed time value""" info = params['info'] max_times = params['n_times'] / float(info['sfreq']) - params['duration'] if value > max_times: value = params['n_times'] / info['sfreq'] - params['duration'] if value < 0: value = 0 if params['t_start'] != value: params['t_start'] = value params['hsel_patch'].set_x(value) _update_raw_data(params) params['plot_fun']() def _plot_raw_onkey(event, params): """Interpret key presses""" import matplotlib.pyplot as plt # check for initial plot if event is None: params['plot_fun']() return # quit event if event.key == 'escape': plt.close(params['fig']) return # change plotting params ch_changed = False if event.key == 'down': params['ch_start'] += params['n_channels'] ch_changed = True elif event.key == 'up': params['ch_start'] -= params['n_channels'] ch_changed = True elif event.key == 'right': _plot_raw_time(params['t_start'] + params['duration'], params) return elif event.key == 'left': _plot_raw_time(params['t_start'] - params['duration'], params) return elif event.key in ['o', 'p']: _toggle_options(None, params) return # deal with plotting changes if ch_changed: _channels_changed(params) def _channels_changed(params): if params['ch_start'] >= len(params['info']['ch_names']): params['ch_start'] = 0 elif params['ch_start'] < 0: # wrap to end rem = len(params['info']['ch_names']) % params['n_channels'] params['ch_start'] = len(params['info']['ch_names']) params['ch_start'] -= rem if rem != 0 else params['n_channels'] params['plot_fun']() def _plot_raw_onscroll(event, params): """Interpret scroll events""" orig_start = params['ch_start'] if event.step < 0: params['ch_start'] = min(params['ch_start'] + params['n_channels'], len(params['info']['ch_names']) - params['n_channels']) else: # event.key == 'up': params['ch_start'] = max(params['ch_start'] - params['n_channels'], 0) if orig_start != params['ch_start']: _channels_changed(params) def _plot_traces(params, inds, color, bad_color, lines, event_lines, event_color, offsets): """Helper for plotting raw""" info = params['info'] n_channels = params['n_channels'] params['bad_color'] = bad_color # do the plotting tick_list = [] for ii in range(n_channels): ch_ind = ii + params['ch_start'] # let's be generous here and allow users to pass # n_channels per view >= the number of traces available if ii >= len(lines): break elif ch_ind < len(info['ch_names']): # scale to fit ch_name = info['ch_names'][inds[ch_ind]] tick_list += [ch_name] offset = offsets[ii] # do NOT operate in-place lest this get screwed up this_data = params['data'][inds[ch_ind]] this_color = bad_color if ch_name in info['bads'] else color this_z = -1 if ch_name in info['bads'] else 0 if isinstance(this_color, dict): this_color = this_color[params['types'][inds[ch_ind]]] # subtraction here gets corect orientation for flipped ylim lines[ii].set_ydata(offset - this_data) lines[ii].set_xdata(params['times']) lines[ii].set_color(this_color) lines[ii].set_zorder(this_z) vars(lines[ii])['ch_name'] = ch_name vars(lines[ii])['def_color'] = color[params['types'][inds[ch_ind]]] else: # "remove" lines lines[ii].set_xdata([]) lines[ii].set_ydata([]) # deal with event lines if params['event_times'] is not None: # find events in the time window event_times = params['event_times'] mask = np.logical_and(event_times >= params['times'][0], event_times <= params['times'][-1]) event_times = event_times[mask] event_nums = params['event_nums'][mask] # plot them with appropriate colors # go through the list backward so we end with -1, the catchall used = np.zeros(len(event_times), bool) for ev_num, line in zip(sorted(event_color.keys())[::-1], event_lines[::-1]): mask = (event_nums == ev_num) if ev_num >= 0 else ~used assert not np.any(used[mask]) used[mask] = True t = event_times[mask] if len(t) > 0: xs = list() ys = list() for tt in t: xs += [tt, tt, np.nan] ys += [0, 2 * n_channels + 1, np.nan] line.set_xdata(xs) line.set_ydata(ys) else: line.set_xdata([]) line.set_ydata([]) # finalize plot params['ax'].set_xlim(params['times'][0], params['times'][0] + params['duration'], False) params['ax'].set_yticklabels(tick_list) params['vsel_patch'].set_y(params['ch_start']) params['fig'].canvas.draw() # XXX This is a hack to make sure this figure gets drawn last # so that when matplotlib goes to calculate bounds we don't get a # CGContextRef error on the MacOSX backend :( if params['fig_proj'] is not None: params['fig_proj'].canvas.draw() def plot_raw(raw, events=None, duration=10.0, start=0.0, n_channels=None, bgcolor='w', color=None, bad_color=(0.8, 0.8, 0.8), event_color='cyan', scalings=None, remove_dc=True, order='type', show_options=False, title=None, show=True, block=False, highpass=None, lowpass=None, filtorder=4, clipping=None): """Plot raw data Parameters ---------- raw : instance of Raw The raw data to plot. events : array | None Events to show with vertical bars. duration : float Time window (sec) to plot in a given time. start : float Initial time to show (can be changed dynamically once plotted). n_channels : int Number of channels to plot at once. bgcolor : color object Color of the background. color : dict | color object | None Color for the data traces. If None, defaults to:: dict(mag='darkblue', grad='b', eeg='k', eog='k', ecg='r', emg='k', ref_meg='steelblue', misc='k', stim='k', resp='k', chpi='k') bad_color : color object Color to make bad channels. event_color : color object | dict Color to use for events. Can also be a dict with ``{event_number: color}`` pairings. Use ``event_number==-1`` for any event numbers in the events list that are not in the dictionary. scalings : dict | None Scale factors for the traces. If None, defaults to:: dict(mag=1e-12, grad=4e-11, eeg=20e-6, eog=150e-6, ecg=5e-4, emg=1e-3, ref_meg=1e-12, misc=1e-3, stim=1, resp=1, chpi=1e-4) remove_dc : bool If True remove DC component when plotting data. order : 'type' | 'original' | array Order in which to plot data. 'type' groups by channel type, 'original' plots in the order of ch_names, array gives the indices to use in plotting. show_options : bool If True, a dialog for options related to projection is shown. title : str | None The title of the window. If None, and either the filename of the raw object or '<unknown>' will be displayed as title. show : bool Show figure if True. block : bool Whether to halt program execution until the figure is closed. Useful for setting bad channels on the fly by clicking on a line. May not work on all systems / platforms. highpass : float | None Highpass to apply when displaying data. lowpass : float | None Lowpass to apply when displaying data. filtorder : int Filtering order. Note that for efficiency and simplicity, filtering during plotting uses forward-backward IIR filtering, so the effective filter order will be twice ``filtorder``. Filtering the lines for display may also produce some edge artifacts (at the left and right edges) of the signals during display. Filtering requires scipy >= 0.10. clipping : str | None If None, channels are allowed to exceed their designated bounds in the plot. If "clamp", then values are clamped to the appropriate range for display, creating step-like artifacts. If "transparent", then excessive values are not shown, creating gaps in the traces. Returns ------- fig : Instance of matplotlib.figure.Figure Raw traces. Notes ----- The arrow keys (up/down/left/right) can typically be used to navigate between channels and time ranges, but this depends on the backend matplotlib is configured to use (e.g., mpl.use('TkAgg') should work). To mark or un-mark a channel as bad, click on the rather flat segments of a channel's time series. The changes will be reflected immediately in the raw object's ``raw.info['bads']`` entry. """ import matplotlib.pyplot as plt import matplotlib as mpl from scipy.signal import butter color = _handle_default('color', color) scalings = _handle_default('scalings_plot_raw', scalings) if clipping is not None and clipping not in ('clamp', 'transparent'): raise ValueError('clipping must be None, "clamp", or "transparent", ' 'not %s' % clipping) # figure out the IIR filtering parameters nyq = raw.info['sfreq'] / 2. if highpass is None and lowpass is None: ba = None else: filtorder = int(filtorder) if filtorder <= 0: raise ValueError('filtorder (%s) must be >= 1' % filtorder) if highpass is not None and highpass <= 0: raise ValueError('highpass must be > 0, not %s' % highpass) if lowpass is not None and lowpass >= nyq: raise ValueError('lowpass must be < nyquist (%s), not %s' % (nyq, lowpass)) if highpass is None: ba = butter(filtorder, lowpass / nyq, 'lowpass', analog=False) elif lowpass is None: ba = butter(filtorder, highpass / nyq, 'highpass', analog=False) else: if lowpass <= highpass: raise ValueError('lowpass (%s) must be > highpass (%s)' % (lowpass, highpass)) ba = butter(filtorder, [highpass / nyq, lowpass / nyq], 'bandpass', analog=False) # make a copy of info, remove projection (for now) info = copy.deepcopy(raw.info) projs = info['projs'] info['projs'] = [] n_times = raw.n_times # allow for raw objects without filename, e.g., ICA if title is None: title = raw._filenames if len(title) == 0: # empty list or absent key title = '<unknown>' elif len(title) == 1: title = title[0] else: # if len(title) > 1: title = '%s ... (+ %d more) ' % (title[0], len(title) - 1) if len(title) > 60: title = '...' + title[-60:] elif not isinstance(title, string_types): raise TypeError('title must be None or a string') if events is not None: event_times = events[:, 0].astype(float) - raw.first_samp event_times /= info['sfreq'] event_nums = events[:, 2] else: event_times = event_nums = None # reorganize the data in plotting order inds = list() types = list() for t in ['grad', 'mag']: inds += [pick_types(info, meg=t, ref_meg=False, exclude=[])] types += [t] * len(inds[-1]) pick_kwargs = dict(meg=False, ref_meg=False, exclude=[]) for t in ['eeg', 'eog', 'ecg', 'emg', 'ref_meg', 'stim', 'resp', 'misc', 'chpi', 'syst', 'ias', 'exci']: pick_kwargs[t] = True inds += [pick_types(raw.info, **pick_kwargs)] types += [t] * len(inds[-1]) pick_kwargs[t] = False inds = np.concatenate(inds).astype(int) if not len(inds) == len(info['ch_names']): raise RuntimeError('Some channels not classified, please report ' 'this problem') # put them back to original or modified order for natral plotting reord = np.argsort(inds) types = [types[ri] for ri in reord] if isinstance(order, str): if order == 'original': inds = inds[reord] elif order != 'type': raise ValueError('Unknown order type %s' % order) elif isinstance(order, np.ndarray): if not np.array_equal(np.sort(order), np.arange(len(info['ch_names']))): raise ValueError('order, if array, must have integers from ' '0 to n_channels - 1') # put back to original order first, then use new order inds = inds[reord][order] if not isinstance(event_color, dict): event_color = {-1: event_color} else: event_color = copy.deepcopy(event_color) # we might modify it for key in event_color: if not isinstance(key, int): raise TypeError('event_color key "%s" was a %s not an int' % (key, type(key))) if key <= 0 and key != -1: raise KeyError('only key <= 0 allowed is -1 (cannot use %s)' % key) # set up projection and data parameters params = dict(raw=raw, ch_start=0, t_start=start, duration=duration, info=info, projs=projs, remove_dc=remove_dc, ba=ba, n_channels=n_channels, scalings=scalings, types=types, n_times=n_times, event_times=event_times, event_nums=event_nums, clipping=clipping, fig_proj=None) # set up plotting size = get_config('MNE_BROWSE_RAW_SIZE') if size is not None: size = size.split(',') size = tuple([float(s) for s in size]) # have to try/catch when there's no toolbar fig = figure_nobar(facecolor=bgcolor, figsize=size) fig.canvas.set_window_title('mne_browse_raw') ax = plt.subplot2grid((10, 10), (0, 0), colspan=9, rowspan=9) ax.set_title(title, fontsize=12) ax_hscroll = plt.subplot2grid((10, 10), (9, 0), colspan=9) ax_hscroll.get_yaxis().set_visible(False) ax_hscroll.set_xlabel('Time (s)') ax_vscroll = plt.subplot2grid((10, 10), (0, 9), rowspan=9) ax_vscroll.set_axis_off() ax_button = plt.subplot2grid((10, 10), (9, 9)) # store these so they can be fixed on resize params['fig'] = fig params['ax'] = ax params['ax_hscroll'] = ax_hscroll params['ax_vscroll'] = ax_vscroll params['ax_button'] = ax_button # populate vertical and horizontal scrollbars for ci in range(len(info['ch_names'])): this_color = (bad_color if info['ch_names'][inds[ci]] in info['bads'] else color) if isinstance(this_color, dict): this_color = this_color[types[inds[ci]]] ax_vscroll.add_patch(mpl.patches.Rectangle((0, ci), 1, 1, facecolor=this_color, edgecolor=this_color)) vsel_patch = mpl.patches.Rectangle((0, 0), 1, n_channels, alpha=0.5, facecolor='w', edgecolor='w') ax_vscroll.add_patch(vsel_patch) params['vsel_patch'] = vsel_patch hsel_patch = mpl.patches.Rectangle((start, 0), duration, 1, edgecolor='k', facecolor=(0.75, 0.75, 0.75), alpha=0.25, linewidth=1, clip_on=False) ax_hscroll.add_patch(hsel_patch) params['hsel_patch'] = hsel_patch ax_hscroll.set_xlim(0, n_times / float(info['sfreq'])) n_ch = len(info['ch_names']) ax_vscroll.set_ylim(n_ch, 0) ax_vscroll.set_title('Ch.') # make shells for plotting traces offsets = np.arange(n_channels) * 2 + 1 ylim = [n_channels * 2 + 1, 0] ax.set_yticks(offsets) ax.set_ylim(ylim) # plot event_line first so it's in the back event_lines = [ax.plot([np.nan], color=event_color[ev_num])[0] for ev_num in sorted(event_color.keys())] lines = [ax.plot([np.nan], antialiased=False, linewidth=0.5)[0] for _ in range(n_ch)] ax.set_yticklabels(['X' * max([len(ch) for ch in info['ch_names']])]) vertline_color = (0., 0.75, 0.) params['ax_vertline'] = ax.plot([0, 0], ylim, color=vertline_color, zorder=-1)[0] params['ax_vertline'].ch_name = '' params['vertline_t'] = ax_hscroll.text(0, 0.5, '0.000', color=vertline_color, verticalalignment='center', horizontalalignment='right') params['ax_hscroll_vertline'] = ax_hscroll.plot([0, 0], [0, 1], color=vertline_color, zorder=1)[0] params['plot_fun'] = partial(_plot_traces, params=params, inds=inds, color=color, bad_color=bad_color, lines=lines, event_lines=event_lines, event_color=event_color, offsets=offsets) # set up callbacks opt_button = None if len(raw.info['projs']) > 0: opt_button = mpl.widgets.Button(ax_button, 'Proj') callback_option = partial(_toggle_options, params=params) opt_button.on_clicked(callback_option) callback_key = partial(_plot_raw_onkey, params=params) fig.canvas.mpl_connect('key_press_event', callback_key) callback_scroll = partial(_plot_raw_onscroll, params=params) fig.canvas.mpl_connect('scroll_event', callback_scroll) callback_pick = partial(_mouse_click, params=params) fig.canvas.mpl_connect('button_press_event', callback_pick) callback_resize = partial(_helper_resize, params=params) fig.canvas.mpl_connect('resize_event', callback_resize) # As here code is shared with plot_evoked, some extra steps: # first the actual plot update function params['plot_update_proj_callback'] = _plot_update_raw_proj # then the toggle handler callback_proj = partial(_toggle_proj, params=params) # store these for use by callbacks in the options figure params['callback_proj'] = callback_proj params['callback_key'] = callback_key # have to store this, or it could get garbage-collected params['opt_button'] = opt_button # do initial plots callback_proj('none') _layout_raw(params) # deal with projectors if show_options is True: _toggle_options(None, params) if show: try: plt.show(block=block) except TypeError: # not all versions have this plt.show() return fig def _set_psd_plot_params(info, proj, picks, ax, area_mode): """Aux function""" import matplotlib.pyplot as plt if area_mode not in [None, 'std', 'range']: raise ValueError('"area_mode" must be "std", "range", or None') if picks is None: if ax is not None: raise ValueError('If "ax" is not supplied (None), then "picks" ' 'must also be supplied') megs = ['mag', 'grad', False] eegs = [False, False, True] names = ['Magnetometers', 'Gradiometers', 'EEG'] picks_list = list() titles_list = list() for meg, eeg, name in zip(megs, eegs, names): picks = pick_types(info, meg=meg, eeg=eeg, ref_meg=False) if len(picks) > 0: picks_list.append(picks) titles_list.append(name) if len(picks_list) == 0: raise RuntimeError('No MEG or EEG channels found') else: picks_list = [picks] titles_list = ['Selected channels'] ax_list = [ax] make_label = False fig = None if ax is None: fig = plt.figure() ax_list = list() for ii in range(len(picks_list)): # Make x-axes change together if ii > 0: ax_list.append(plt.subplot(len(picks_list), 1, ii + 1, sharex=ax_list[0])) else: ax_list.append(plt.subplot(len(picks_list), 1, ii + 1)) make_label = True else: fig = ax_list[0].get_figure() return fig, picks_list, titles_list, ax_list, make_label @verbose def plot_raw_psd(raw, tmin=0., tmax=np.inf, fmin=0, fmax=np.inf, proj=False, n_fft=2048, picks=None, ax=None, color='black', area_mode='std', area_alpha=0.33, n_overlap=0, dB=True, show=True, n_jobs=1, verbose=None): """Plot the power spectral density across channels Parameters ---------- raw : instance of io.Raw The raw instance to use. tmin : float Start time for calculations. tmax : float End time for calculations. fmin : float Start frequency to consider. fmax : float End frequency to consider. proj : bool Apply projection. n_fft : int Number of points to use in Welch FFT calculations. picks : array-like of int | None List of channels to use. Cannot be None if `ax` is supplied. If both `picks` and `ax` are None, separate subplots will be created for each standard channel type (`mag`, `grad`, and `eeg`). ax : instance of matplotlib Axes | None Axes to plot into. If None, axes will be created. color : str | tuple A matplotlib-compatible color to use. area_mode : str | None Mode for plotting area. If 'std', the mean +/- 1 STD (across channels) will be plotted. If 'range', the min and max (across channels) will be plotted. Bad channels will be excluded from these calculations. If None, no area will be plotted. area_alpha : float Alpha for the area. n_overlap : int The number of points of overlap between blocks. The default value is 0 (no overlap). dB : bool If True, transform data to decibels. show : bool Show figure if True. n_jobs : int Number of jobs to run in parallel. verbose : bool, str, int, or None If not None, override default verbose level (see mne.verbose). Returns ------- fig : instance of matplotlib figure Figure distributing one image per channel across sensor topography. """ import matplotlib.pyplot as plt fig, picks_list, titles_list, ax_list, make_label = _set_psd_plot_params( raw.info, proj, picks, ax, area_mode) for ii, (picks, title, ax) in enumerate(zip(picks_list, titles_list, ax_list)): psds, freqs = compute_raw_psd(raw, tmin=tmin, tmax=tmax, picks=picks, fmin=fmin, fmax=fmax, proj=proj, n_fft=n_fft, n_overlap=n_overlap, n_jobs=n_jobs, verbose=None) # Convert PSDs to dB if dB: psds = 10 * np.log10(psds) unit = 'dB' else: unit = 'power' psd_mean = np.mean(psds, axis=0) if area_mode == 'std': psd_std = np.std(psds, axis=0) hyp_limits = (psd_mean - psd_std, psd_mean + psd_std) elif area_mode == 'range': hyp_limits = (np.min(psds, axis=0), np.max(psds, axis=0)) else: # area_mode is None hyp_limits = None ax.plot(freqs, psd_mean, color=color) if hyp_limits is not None: ax.fill_between(freqs, hyp_limits[0], y2=hyp_limits[1], color=color, alpha=area_alpha) if make_label: if ii == len(picks_list) - 1: ax.set_xlabel('Freq (Hz)') if ii == len(picks_list) // 2: ax.set_ylabel('Power Spectral Density (%s/Hz)' % unit) ax.set_title(title) ax.set_xlim(freqs[0], freqs[-1]) if make_label: tight_layout(pad=0.1, h_pad=0.1, w_pad=0.1, fig=fig) if show is True: plt.show() return fig
bsd-3-clause
XENON1T/pax
pax/PatternFitter.py
1
18942
from __future__ import division from collections import namedtuple import json import gzip import re import logging import numpy as np import numexpr as ne import matplotlib.pyplot as plt try: from matplotlib import _cntr except ImportError: print("matplotlib._cntr did not import, confidence tuple generation in PatternFitter disabled") _cntr = None from scipy.optimize import fmin_powell from scipy.ndimage.interpolation import zoom as image_zoom from pax import utils from pax.exceptions import CoordinateOutOfRangeException from pax.datastructure import ConfidenceTuple # Named tuple for coordinate data storage # Maybe works faster than dictionary... can always remove later CoordinateData = namedtuple('CoordinateData', ('minimum', 'maximum', 'n_points', 'point_spacing')) class PatternFitter(object): def __init__(self, filename, zoom_factor=1, adjust_to_qe=None, default_errors=None): """Initialize a pattern map file from filename. Format of the file is very similar to InterpolatingMap; a (gzip compressed) json containing: 'coordinate_system' : [['x', (x_min, x_max, n_x)], ['y',... 'map' : [[[valuex1y1pmt1, valuex1y1pmt2, ...], ...], ...] 'name': 'Nice file with maps', 'description': 'Say what the maps are, who you are, your favorite food, etc', 'timestamp': unix epoch seconds timestamp where x_min is the lowest x coordinate of a point, x_max the highest, n_x the number of points zoom_factor is factor by which the spatial dimensions of the map will be upsampled. adjust_to_qe: array of same length as the number of pmts in the map; we'll adjust the patterns to account for these QEs, upweighing PMTs with higher QEs Obviously this should be None if map already includes QE effects (e.g. if it is data-derived)! default_errors: array of the same length as the number of pmts in the map; This is the default factor which will be applied to obtain the squared systematic errors in the goodness of fit statistic, as follows: squared_systematic_errors = (areas_observed * default_errors)**2 """ self.log = logging.getLogger('PatternFitter') with gzip.open(utils.data_file_name(filename)) as infile: json_data = json.loads(infile.read().decode()) self.data = np.array(json_data['map']) self.log.debug('Loaded pattern file named: %s' % json_data['name']) self.log.debug('Description:\n ' + re.sub(r'\n', r'\n ', json_data['description'])) self.log.debug('Data shape: %s' % str(self.data.shape)) self.log.debug('Will zoom in by factor %s' % zoom_factor) self.dimensions = len(json_data['coordinate_system']) # Spatial dimensions (other one is sampling points) # Zoom the spatial map using linear interpolation, if desired if zoom_factor != 1: self.data = image_zoom(self.data, zoom=[zoom_factor] * self.dimensions + [1], order=1) # Adjust the expected patterns to the PMT's quantum efficiencies, if desired # No need to re-normalize: will be done in each gof computation anyway if adjust_to_qe is not None: self.data *= adjust_to_qe[[np.newaxis] * self.dimensions] # Store index starts and distances for quick access, assuming uniform grid spacing self.coordinate_data = [] for dim_i, (name, (start, stop, n_points)) in enumerate(json_data['coordinate_system']): n_points *= zoom_factor if not n_points == self.data.shape[dim_i]: raise ValueError("Map interpretation error: %d points expected along %s, but map is %d points long" % ( n_points, name, self.data.shape[dim_i])) self.coordinate_data.append(CoordinateData(minimum=start, maximum=stop, n_points=n_points, point_spacing=(stop - start)/(n_points - 1))) self.log.debug('Coordinate ranges: %s' % ', '.join(['%s-%s (%d points)' % (cd.minimum, cd.maximum, cd.n_points) for cd in self.coordinate_data])) # TODO: Technically we should zero the points outside the tpc bounds again: # some LCE may have leaked into this region due to upsampling... but doesn't matter: # if it causes a bias, it will push some events who are already far outside the fiducial volume # even further out. self.n_points = self.data.shape[-1] self.default_pmt_selection = np.ones(self.n_points, dtype=np.bool) if default_errors is None: default_errors = 0 self.default_errors = default_errors def expected_pattern(self, coordinates): """Returns expected, normalized pattern at coordinates 'Pattern' means: expected fraction of light seen in each PMT, among PMTs included in the map. Keep in mind you'll have to re-normalize if there are any dead / saturated PMTs... """ # Copy is to ensure the map is not modified accidentally... happened once, never again. pattern = self.data[self.coordinates_to_indices(coordinates) + [slice(None)]].copy() sum_pattern = pattern.sum() if sum_pattern == 0: raise CoordinateOutOfRangeException("Expected light pattern at coordinates %s " "consists of only zeros!" % str(coordinates)) return pattern / sum_pattern def compute_gof(self, coordinates, areas_observed, pmt_selection=None, square_syst_errors=None, statistic='chi2gamma'): """Compute goodness of fit at a single coordinate point :param areas_observed: arraylike of length n_points containing observed area at each point :param coordinates: arraylike of n_dimensions, coordinates to test :param pmt_selection: boolean array of length n_points, if False point will be excluded from statistic :param square_syst_errors: float array of length n_points, systematic error to use for each point :param statistic: 'chi2' or 'chi2gamma': goodness of fit statistic to use :return: value of goodness of fit statistic, or float('inf') if coordinates outside of range """ return self._compute_gof_base(self.coordinates_to_indices(coordinates), areas_observed, pmt_selection, square_syst_errors, statistic) def compute_gof_grid(self, center_coordinates, grid_size, areas_observed, pmt_selection=None, square_syst_errors=None, statistic='chi2gamma', plot=False): """Compute goodness of fit on a grid of points of length grid_size in each coordinate, centered at center_coordinates. All other parameters like compute_gof. Returns gof_grid, (index of lowest grid point in dimension 1, ...) :return: """ index_selection = [] lowest_indices = [] for dimension_i, x in enumerate(center_coordinates): cd = self.coordinate_data[dimension_i] start = self._coordinate_to_index(max(x - grid_size / 2, cd.minimum), dimension_i) lowest_indices.append(start) stop = self._coordinate_to_index(min(x + grid_size / 2, cd.maximum), dimension_i) index_selection.append(slice(start, stop + 1)) # Don't forget python's silly indexing here... gofs = self._compute_gof_base(index_selection, areas_observed, pmt_selection, square_syst_errors, statistic) # The below code is for diagnostic plots only if plot: plt.figure() plt.set_cmap('viridis') # Make the linspaces of coordinates along each dimension # Remember the grid indices are q = [] for dimension_i, cd in enumerate(self.coordinate_data): dimstart = self._index_to_coordinate(index_selection[dimension_i].start, dimension_i) dimstart -= 0.5 * cd.point_spacing # stop -1 for python silly indexing again... dimstop = self._index_to_coordinate(index_selection[dimension_i].stop - 1, dimension_i) dimstop += 0.5 * cd.point_spacing q.append(np.linspace(dimstart, dimstop, gofs.shape[dimension_i] + 1)) if dimension_i == 0: plt.xlim((dimstart, dimstop)) else: plt.ylim((dimstart, dimstop)) if statistic == 'likelihood_poisson': # because ln(a/b) = ln(a) - ln(b), also different ranges q.append(gofs.T - np.nanmin(gofs)) plt.pcolormesh(*q, vmin=1, vmax=100, alpha=0.9) plt.colorbar(label=r'$\Delta L$') else: q.append(gofs.T / np.nanmin(gofs)) plt.pcolormesh(*q, vmin=1, vmax=4, alpha=0.9) plt.colorbar(label='Goodness-of-fit / minimum') plt.xlabel('x [cm]') plt.ylabel('y [cm]') return gofs, lowest_indices def coordinates_to_indices(self, coordinates): return [self._coordinate_to_index(x, dimension_i) for dimension_i, x in enumerate(coordinates)] def _coordinate_to_index(self, value, dimension_i): """Return array index along dimension_i which contains value. Raises CoordinateOutOfRangeException if value out of range. TODO: check if this is faster than just using np.digitize on the index list """ cd = self.coordinate_data[dimension_i] if not cd.minimum - cd.point_spacing / 2 <= value <= cd.maximum + cd.point_spacing / 2: raise CoordinateOutOfRangeException("%s is not in allowed range %s-%s" % (value, cd.minimum, cd.maximum)) value = max(cd.minimum, min(value, cd.maximum - 0.01 * cd.point_spacing)) return int((value - cd.minimum) / cd.point_spacing + 0.5) def _index_to_coordinate(self, index_i, dimension_i): cd = self.coordinate_data[dimension_i] return cd.minimum + cd.point_spacing * index_i def _compute_gof_base(self, index_selection, areas_observed, pmt_selection, square_syst_errors, statistic): """Compute goodness of fit statistic: see compute_gof index_selection will be used to slice the spatial histogram. :return: gof with shape determined by index_selection. """ if pmt_selection is None: pmt_selection = self.default_pmt_selection if square_syst_errors is None: square_syst_errors = (self.default_errors * areas_observed) ** 2 # The following aliases are used in the numexprs below areas_observed = areas_observed.copy()[pmt_selection] q = self.data[index_selection + [pmt_selection]] qsum = q.sum(axis=-1)[..., np.newaxis] # noqa fractions_expected = ne.evaluate("q / qsum") # noqa total_observed = areas_observed.sum() # noqa ao = areas_observed # noqa square_syst_errors = square_syst_errors[pmt_selection] # noqa # The actual goodness of fit computation is here... # Areas expected = fractions_expected * sum(areas_observed) if statistic == 'chi2gamma': result = ne.evaluate("(ao + where(ao > 1, 1, ao) - {ae})**2 /" "({ae} + square_syst_errors + 1)".format(ae='fractions_expected * total_observed')) elif statistic == 'chi2': result = ne.evaluate("(ao - {ae})**2 /" "({ae} + square_syst_errors)".format(ae='fractions_expected * total_observed')) elif statistic == 'likelihood_poisson': # Poisson likelihood chi-square (Baker and Cousins, 1984) # Clip areas to range [0.0001, +inf), because of log(0) areas_expected_clip = np.clip(fractions_expected * total_observed, 1e-10, float('inf')) areas_observed_clip = np.clip(areas_observed, 1e-10, float('inf')) result = ne.evaluate("-2*({ao} * log({ae}/{ao}) + {ao} - {ae})".format(ae='areas_expected_clip', ao='areas_observed_clip')) else: raise ValueError('Pattern goodness of fit statistic %s not implemented!' % statistic) return np.sum(result, axis=-1) def minimize_gof_grid(self, center_coordinates, grid_size, areas_observed, pmt_selection=None, square_syst_errors=None, statistic='chi2gamma', plot=False, cls=None): """Return (spatial position which minimizes goodness of fit parameter, gof at that position, errors on that position) minimum is found by minimizing over a grid centered at center_coordinates and extending by grid_size in all dimensions. Errors are optionally calculated by tracing contours at given confidence levels, from the resulting set of points the distances to the minimum are calculated for each dimension and the mean of these distances is reported as (dx, dy). All other parameters like compute_gof """ gofs, lowest_indices = self.compute_gof_grid(center_coordinates, grid_size, areas_observed, pmt_selection, square_syst_errors, statistic, plot) min_index = np.unravel_index(np.nanargmin(gofs), gofs.shape) # Convert index back to position result = [] for dimension_i, i_of_minimum in enumerate(min_index): x = self._index_to_coordinate(lowest_indices[dimension_i] + i_of_minimum, dimension_i) result.append(x) # Compute confidence level contours (but only in 2D) n_dim = len(min_index) # Store contours for plotting only cl_segments = [] # Store (dx, dy) for each CL for output confidence_tuples = [] if cls is not None and n_dim == 2 and _cntr is not None: x, y = np.mgrid[:gofs.shape[0], :gofs.shape[1]] # Use matplotlib _Cntr module to trace contours (without plotting) c = _cntr.Cntr(x, y, gofs) for cl in cls: ct = ConfidenceTuple() ct.level = cl # Trace at the required value cl_trace = c.trace(gofs[min_index] + cl) # Check for failure if len(cl_trace) == 0: confidence_tuples.append(ct) continue # Get the actual contour, the first half of cl_trace is an array of (x, y) pairs half_length = int(len(cl_trace)//2) cl_segment = np.array(cl_trace[:half_length][0]) # Extract the x values and y values seperately, also convert to the TPC coordinate system x_values = np.array([self._index_to_coordinate(lowest_indices[0] + x, 0) for x in cl_segment[:,0]]) y_values = np.array([self._index_to_coordinate(lowest_indices[1] + y, 1) for y in cl_segment[:,1]]) if np.all(np.isnan(x_values)) or np.all(np.isnan(y_values)): self.log.debug("Cannot compute confidence contour: all x or y values are Nan!") # If we'd now call nanmin, we get an annoying numpy runtime warning. else: # Calculate the confidence tuple for this CL ct.x0 = np.nanmin(x_values) ct.y0 = np.nanmin(y_values) ct.dx = abs(np.nanmax(x_values) - np.nanmin(x_values)) ct.dy = abs(np.nanmax(y_values) - np.nanmin(y_values)) # Does the contour touch the edge of the TPC if np.isnan(x_values).any() or np.isnan(y_values).any(): ct.at_edge = True confidence_tuples.append(ct) # The contour points, only for plotting if plot: contour_points = np.array([x_values, y_values]).T # Take out point if x or y is nan contour_points = [p for p in contour_points if not np.isnan(p).any()] cl_segments.append(contour_points) if plot and n_dim == 2: plt.scatter(*[[r] for r in result], marker='*', s=20, color='orange', label='Grid minimum') for i, contour in enumerate(cl_segments): if len(contour) == 0: continue color = lambda x: 'w' if x % 2 == 0 else 'r' p = plt.Polygon(contour, fill=False, color=color(i), label=str(cls[i])) plt.gca().add_artist(p) # plt.savefig("plot_%.2f_%.2f.pdf" % (result[0], result[1]), dpi=150) return result, gofs[min_index], confidence_tuples def minimize_gof_powell(self, start_coordinates, areas_observed, pmt_selection=None, square_syst_errors=None, statistic='chi2gamma'): direc = None if self.dimensions == 2: # Hack to match old chi2gamma results s = lambda d: 1 if d < 0 else -1 # flake8: noqa direc = np.array([[s(start_coordinates[0]), 0], [0, s(start_coordinates[1])]]) def safe_compute_gof(*args, **kwargs): try: return self.compute_gof(*args, **kwargs) except CoordinateOutOfRangeException: return float('inf') # Minimize chi_square_gamma function, fmin_powell is the call to the SciPy minimizer # It takes the function to minimize, starting position and several options # It returns the optimal values for the position (xopt) and function value (fopt) # A warnflag tells if the maximum number of iterations was exceeded # warnflag 0, OK # warnflag 1, maximum functions evaluations exceeded # warnflag 2, maximum iterations exceeded rv = fmin_powell(safe_compute_gof, start_coordinates, direc=direc, args=(areas_observed, pmt_selection, square_syst_errors, statistic), xtol=0.0001, ftol=0.0001, maxiter=10, maxfun=None, full_output=1, disp=0, retall=0) xopt, fopt, direc, iter, funcalls, warnflag = rv # On failure the minimizer seems to give np.array([float('inf')]) if isinstance(fopt, np.ndarray): fopt = float('nan') return xopt, fopt
bsd-3-clause
haiweiosu/Optical-Character-Recognition-using-Template-Matching-Object-Detection-in-Images
task2_4.py
1
1734
# USAGE # python sliding_window.py --image images/adrian_florida.jpg # import the necessary packages from imagesearch.helpers import pyramid from imagesearch.helpers import sliding_window from task2_2_step_3 import lin_svc from config import negative_training_1, negative_training_2, negative_training_3, negative_training_4 from config import road9, road10, negative_training_1 from skimage.feature import hog from PIL import Image from skimage import color, exposure from sklearn.svm.libsvm import decision_function from sklearn import svm import argparse import time import cv2 import numpy as np # load the image and define the window width and height image = cv2.imread(road9) (winW, winH) = (225, 225) false_positives = [] # loop over the image pyramid for resized in pyramid(image, scale=1.5): # loop over the sliding window for each layer of the pyramid for (x, y, window) in sliding_window(resized, stepSize=32, windowSize=(winW, winH)): # if the window does not meet our desired window size, ignore it if window.shape[0] != winH or window.shape[1] != winW: # print window.shape[0], window.shape[1] continue # THIS IS WHERE YOU WOULD PROCESS YOUR WINDOW, SUCH AS APPLYING A # MACHINE LEARNING CLASSIFIER TO CLASSIFY THE CONTENTS OF THE # WINDOW hog = cv2.HOGDescriptor() h = hog.compute(resized) print(h.flatten()) prediciton = lin_svc.predict(h.reshape(1,-1)) print(prediciton) threshold = 0.2 loc = np.where( h >= threshold) # # since we do not have a classifier, we'll just draw the window clone = resized.copy() for pt in zip(*loc[::-1]): cv2.rectangle(clone, pt, (pt[0] + 50, pt[1] + 50), (0, 255, 0), 2) cv2.imshow("Window", clone) cv2.waitKey(1) time.sleep(10)
apache-2.0
ndingwall/scikit-learn
sklearn/datasets/tests/test_20news.py
10
5098
"""Test the 20news downloader, if the data is available, or if specifically requested via environment variable (e.g. for travis cron job).""" from functools import partial from unittest.mock import patch import pytest import numpy as np import scipy.sparse as sp from sklearn.datasets.tests.test_common import check_as_frame from sklearn.datasets.tests.test_common import check_pandas_dependency_message from sklearn.datasets.tests.test_common import check_return_X_y from sklearn.utils._testing import assert_allclose_dense_sparse from sklearn.preprocessing import normalize def test_20news(fetch_20newsgroups_fxt): data = fetch_20newsgroups_fxt(subset='all', shuffle=False) # Extract a reduced dataset data2cats = fetch_20newsgroups_fxt( subset='all', categories=data.target_names[-1:-3:-1], shuffle=False) # Check that the ordering of the target_names is the same # as the ordering in the full dataset assert data2cats.target_names == data.target_names[-2:] # Assert that we have only 0 and 1 as labels assert np.unique(data2cats.target).tolist() == [0, 1] # Check that the number of filenames is consistent with data/target assert len(data2cats.filenames) == len(data2cats.target) assert len(data2cats.filenames) == len(data2cats.data) # Check that the first entry of the reduced dataset corresponds to # the first entry of the corresponding category in the full dataset entry1 = data2cats.data[0] category = data2cats.target_names[data2cats.target[0]] label = data.target_names.index(category) entry2 = data.data[np.where(data.target == label)[0][0]] assert entry1 == entry2 # check that return_X_y option X, y = fetch_20newsgroups_fxt(subset='all', shuffle=False, return_X_y=True) assert len(X) == len(data.data) assert y.shape == data.target.shape def test_20news_length_consistency(fetch_20newsgroups_fxt): """Checks the length consistencies within the bunch This is a non-regression test for a bug present in 0.16.1. """ # Extract the full dataset data = fetch_20newsgroups_fxt(subset='all') assert len(data['data']) == len(data.data) assert len(data['target']) == len(data.target) assert len(data['filenames']) == len(data.filenames) def test_20news_vectorized(fetch_20newsgroups_vectorized_fxt): # test subset = train bunch = fetch_20newsgroups_vectorized_fxt(subset="train") assert sp.isspmatrix_csr(bunch.data) assert bunch.data.shape == (11314, 130107) assert bunch.target.shape[0] == 11314 assert bunch.data.dtype == np.float64 # test subset = test bunch = fetch_20newsgroups_vectorized_fxt(subset="test") assert sp.isspmatrix_csr(bunch.data) assert bunch.data.shape == (7532, 130107) assert bunch.target.shape[0] == 7532 assert bunch.data.dtype == np.float64 # test return_X_y option fetch_func = partial(fetch_20newsgroups_vectorized_fxt, subset='test') check_return_X_y(bunch, fetch_func) # test subset = all bunch = fetch_20newsgroups_vectorized_fxt(subset='all') assert sp.isspmatrix_csr(bunch.data) assert bunch.data.shape == (11314 + 7532, 130107) assert bunch.target.shape[0] == 11314 + 7532 assert bunch.data.dtype == np.float64 def test_20news_normalization(fetch_20newsgroups_vectorized_fxt): X = fetch_20newsgroups_vectorized_fxt(normalize=False) X_ = fetch_20newsgroups_vectorized_fxt(normalize=True) X_norm = X_['data'][:100] X = X['data'][:100] assert_allclose_dense_sparse(X_norm, normalize(X)) assert np.allclose(np.linalg.norm(X_norm.todense(), axis=1), 1) def test_20news_as_frame(fetch_20newsgroups_vectorized_fxt): pd = pytest.importorskip('pandas') bunch = fetch_20newsgroups_vectorized_fxt(as_frame=True) check_as_frame(bunch, fetch_20newsgroups_vectorized_fxt) frame = bunch.frame assert frame.shape == (11314, 130108) assert all([isinstance(col, pd.SparseDtype) for col in bunch.data.dtypes]) # Check a small subset of features for expected_feature in [ "beginner", "beginners", "beginning", "beginnings", "begins", "begley", "begone", ]: assert expected_feature in frame.keys() assert "category_class" in frame.keys() assert bunch.target.name == "category_class" def test_as_frame_no_pandas( fetch_20newsgroups_vectorized_fxt, hide_available_pandas ): check_pandas_dependency_message(fetch_20newsgroups_vectorized_fxt) def test_outdated_pickle(fetch_20newsgroups_vectorized_fxt): with patch("os.path.exists") as mock_is_exist: with patch("joblib.load") as mock_load: # mock that the dataset was cached mock_is_exist.return_value = True # mock that we have an outdated pickle with only X and y returned mock_load.return_value = ("X", "y") err_msg = "The cached dataset located in" with pytest.raises(ValueError, match=err_msg): fetch_20newsgroups_vectorized_fxt(as_frame=True)
bsd-3-clause
av8ramit/tensorflow
tensorflow/tools/dist_test/python/census_widendeep.py
48
11896
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Distributed training and evaluation of a wide and deep model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import json import os import sys from six.moves import urllib import tensorflow as tf from tensorflow.contrib.learn.python.learn import learn_runner from tensorflow.contrib.learn.python.learn.estimators import run_config # Constants: Data download URLs TRAIN_DATA_URL = "http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.data" TEST_DATA_URL = "http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/adult.test" # Define features for the model def census_model_config(): """Configuration for the census Wide & Deep model. Returns: columns: Column names to retrieve from the data source label_column: Name of the label column wide_columns: List of wide columns deep_columns: List of deep columns categorical_column_names: Names of the categorical columns continuous_column_names: Names of the continuous columns """ # 1. Categorical base columns. gender = tf.contrib.layers.sparse_column_with_keys( column_name="gender", keys=["female", "male"]) race = tf.contrib.layers.sparse_column_with_keys( column_name="race", keys=["Amer-Indian-Eskimo", "Asian-Pac-Islander", "Black", "Other", "White"]) education = tf.contrib.layers.sparse_column_with_hash_bucket( "education", hash_bucket_size=1000) marital_status = tf.contrib.layers.sparse_column_with_hash_bucket( "marital_status", hash_bucket_size=100) relationship = tf.contrib.layers.sparse_column_with_hash_bucket( "relationship", hash_bucket_size=100) workclass = tf.contrib.layers.sparse_column_with_hash_bucket( "workclass", hash_bucket_size=100) occupation = tf.contrib.layers.sparse_column_with_hash_bucket( "occupation", hash_bucket_size=1000) native_country = tf.contrib.layers.sparse_column_with_hash_bucket( "native_country", hash_bucket_size=1000) # 2. Continuous base columns. age = tf.contrib.layers.real_valued_column("age") age_buckets = tf.contrib.layers.bucketized_column( age, boundaries=[18, 25, 30, 35, 40, 45, 50, 55, 60, 65]) education_num = tf.contrib.layers.real_valued_column("education_num") capital_gain = tf.contrib.layers.real_valued_column("capital_gain") capital_loss = tf.contrib.layers.real_valued_column("capital_loss") hours_per_week = tf.contrib.layers.real_valued_column("hours_per_week") wide_columns = [ gender, native_country, education, occupation, workclass, marital_status, relationship, age_buckets, tf.contrib.layers.crossed_column([education, occupation], hash_bucket_size=int(1e4)), tf.contrib.layers.crossed_column([native_country, occupation], hash_bucket_size=int(1e4)), tf.contrib.layers.crossed_column([age_buckets, race, occupation], hash_bucket_size=int(1e6))] deep_columns = [ tf.contrib.layers.embedding_column(workclass, dimension=8), tf.contrib.layers.embedding_column(education, dimension=8), tf.contrib.layers.embedding_column(marital_status, dimension=8), tf.contrib.layers.embedding_column(gender, dimension=8), tf.contrib.layers.embedding_column(relationship, dimension=8), tf.contrib.layers.embedding_column(race, dimension=8), tf.contrib.layers.embedding_column(native_country, dimension=8), tf.contrib.layers.embedding_column(occupation, dimension=8), age, education_num, capital_gain, capital_loss, hours_per_week] # Define the column names for the data sets. columns = ["age", "workclass", "fnlwgt", "education", "education_num", "marital_status", "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", "hours_per_week", "native_country", "income_bracket"] label_column = "label" categorical_columns = ["workclass", "education", "marital_status", "occupation", "relationship", "race", "gender", "native_country"] continuous_columns = ["age", "education_num", "capital_gain", "capital_loss", "hours_per_week"] return (columns, label_column, wide_columns, deep_columns, categorical_columns, continuous_columns) class CensusDataSource(object): """Source of census data.""" def __init__(self, data_dir, train_data_url, test_data_url, columns, label_column, categorical_columns, continuous_columns): """Constructor of CensusDataSource. Args: data_dir: Directory to save/load the data files train_data_url: URL from which the training data can be downloaded test_data_url: URL from which the test data can be downloaded columns: Columns to retrieve from the data files (A list of strings) label_column: Name of the label column categorical_columns: Names of the categorical columns (A list of strings) continuous_columns: Names of the continuous columns (A list of strings) """ # Retrieve data from disk (if available) or download from the web. train_file_path = os.path.join(data_dir, "adult.data") if os.path.isfile(train_file_path): print("Loading training data from file: %s" % train_file_path) train_file = open(train_file_path) else: urllib.urlretrieve(train_data_url, train_file_path) test_file_path = os.path.join(data_dir, "adult.test") if os.path.isfile(test_file_path): print("Loading test data from file: %s" % test_file_path) test_file = open(test_file_path) else: test_file = open(test_file_path) urllib.urlretrieve(test_data_url, test_file_path) # Read the training and testing data sets into Pandas DataFrame. import pandas # pylint: disable=g-import-not-at-top self._df_train = pandas.read_csv(train_file, names=columns, skipinitialspace=True) self._df_test = pandas.read_csv(test_file, names=columns, skipinitialspace=True, skiprows=1) # Remove the NaN values in the last rows of the tables self._df_train = self._df_train[:-1] self._df_test = self._df_test[:-1] # Apply the threshold to get the labels. income_thresh = lambda x: ">50K" in x self._df_train[label_column] = ( self._df_train["income_bracket"].apply(income_thresh)).astype(int) self._df_test[label_column] = ( self._df_test["income_bracket"].apply(income_thresh)).astype(int) self.label_column = label_column self.categorical_columns = categorical_columns self.continuous_columns = continuous_columns def input_train_fn(self): return self._input_fn(self._df_train) def input_test_fn(self): return self._input_fn(self._df_test) # TODO(cais): Turn into minibatch feeder def _input_fn(self, df): """Input data function. Creates a dictionary mapping from each continuous feature column name (k) to the values of that column stored in a constant Tensor. Args: df: data feed Returns: feature columns and labels """ continuous_cols = {k: tf.constant(df[k].values) for k in self.continuous_columns} # Creates a dictionary mapping from each categorical feature column name (k) # to the values of that column stored in a tf.SparseTensor. categorical_cols = { k: tf.SparseTensor( indices=[[i, 0] for i in range(df[k].size)], values=df[k].values, dense_shape=[df[k].size, 1]) for k in self.categorical_columns} # Merges the two dictionaries into one. feature_cols = dict(continuous_cols.items() + categorical_cols.items()) # Converts the label column into a constant Tensor. label = tf.constant(df[self.label_column].values) # Returns the feature columns and the label. return feature_cols, label def _create_experiment_fn(output_dir): # pylint: disable=unused-argument """Experiment creation function.""" (columns, label_column, wide_columns, deep_columns, categorical_columns, continuous_columns) = census_model_config() census_data_source = CensusDataSource(FLAGS.data_dir, TRAIN_DATA_URL, TEST_DATA_URL, columns, label_column, categorical_columns, continuous_columns) os.environ["TF_CONFIG"] = json.dumps({ "cluster": { tf.contrib.learn.TaskType.PS: ["fake_ps"] * FLAGS.num_parameter_servers }, "task": { "index": FLAGS.worker_index } }) config = run_config.RunConfig(master=FLAGS.master_grpc_url) estimator = tf.contrib.learn.DNNLinearCombinedClassifier( model_dir=FLAGS.model_dir, linear_feature_columns=wide_columns, dnn_feature_columns=deep_columns, dnn_hidden_units=[5], config=config) return tf.contrib.learn.Experiment( estimator=estimator, train_input_fn=census_data_source.input_train_fn, eval_input_fn=census_data_source.input_test_fn, train_steps=FLAGS.train_steps, eval_steps=FLAGS.eval_steps ) def main(unused_argv): print("Worker index: %d" % FLAGS.worker_index) learn_runner.run(experiment_fn=_create_experiment_fn, output_dir=FLAGS.output_dir, schedule=FLAGS.schedule) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.register("type", "bool", lambda v: v.lower() == "true") parser.add_argument( "--data_dir", type=str, default="/tmp/census-data", help="Directory for storing the census data") parser.add_argument( "--model_dir", type=str, default="/tmp/census_wide_and_deep_model", help="Directory for storing the model" ) parser.add_argument( "--output_dir", type=str, default="", help="Base output directory." ) parser.add_argument( "--schedule", type=str, default="local_run", help="Schedule to run for this experiment." ) parser.add_argument( "--master_grpc_url", type=str, default="", help="URL to master GRPC tensorflow server, e.g.,grpc://127.0.0.1:2222" ) parser.add_argument( "--num_parameter_servers", type=int, default=0, help="Number of parameter servers" ) parser.add_argument( "--worker_index", type=int, default=0, help="Worker index (>=0)" ) parser.add_argument( "--train_steps", type=int, default=1000, help="Number of training steps" ) parser.add_argument( "--eval_steps", type=int, default=1, help="Number of evaluation steps" ) global FLAGS # pylint:disable=global-at-module-level FLAGS, unparsed = parser.parse_known_args() tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
apache-2.0
plissonf/scikit-learn
sklearn/cluster/__init__.py
364
1228
""" The :mod:`sklearn.cluster` module gathers popular unsupervised clustering algorithms. """ from .spectral import spectral_clustering, SpectralClustering from .mean_shift_ import (mean_shift, MeanShift, estimate_bandwidth, get_bin_seeds) from .affinity_propagation_ import affinity_propagation, AffinityPropagation from .hierarchical import (ward_tree, AgglomerativeClustering, linkage_tree, FeatureAgglomeration) from .k_means_ import k_means, KMeans, MiniBatchKMeans from .dbscan_ import dbscan, DBSCAN from .bicluster import SpectralBiclustering, SpectralCoclustering from .birch import Birch __all__ = ['AffinityPropagation', 'AgglomerativeClustering', 'Birch', 'DBSCAN', 'KMeans', 'FeatureAgglomeration', 'MeanShift', 'MiniBatchKMeans', 'SpectralClustering', 'affinity_propagation', 'dbscan', 'estimate_bandwidth', 'get_bin_seeds', 'k_means', 'linkage_tree', 'mean_shift', 'spectral_clustering', 'ward_tree', 'SpectralBiclustering', 'SpectralCoclustering']
bsd-3-clause
nhejazi/scikit-learn
examples/applications/plot_stock_market.py
5
9800
""" ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: Gael Varoquaux gael.varoquaux@normalesup.org # License: BSD 3 clause from datetime import datetime import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from six.moves.urllib.request import urlopen from six.moves.urllib.parse import urlencode from sklearn import cluster, covariance, manifold # ############################################################################# # Retrieve the data from Internet def retry(f, n_attempts=3): "Wrapper function to retry function calls in case of exceptions" def wrapper(*args, **kwargs): for i in range(n_attempts): try: return f(*args, **kwargs) except Exception as e: if i == n_attempts - 1: raise return wrapper def quotes_historical_google(symbol, date1, date2): """Get the historical data from Google finance. Parameters ---------- symbol : str Ticker symbol to query for, for example ``"DELL"``. date1 : datetime.datetime Start date. date2 : datetime.datetime End date. Returns ------- X : array The columns are ``date`` -- datetime, ``open``, ``high``, ``low``, ``close`` and ``volume`` of type float. """ params = urlencode({ 'q': symbol, 'startdate': date1.strftime('%b %d, %Y'), 'enddate': date2.strftime('%b %d, %Y'), 'output': 'csv' }) url = 'http://www.google.com/finance/historical?' + params response = urlopen(url) dtype = { 'names': ['date', 'open', 'high', 'low', 'close', 'volume'], 'formats': ['object', 'f4', 'f4', 'f4', 'f4', 'f4'] } converters = {0: lambda s: datetime.strptime(s.decode(), '%d-%b-%y')} return np.genfromtxt(response, delimiter=',', skip_header=1, dtype=dtype, converters=converters, missing_values='-', filling_values=-1) # Choose a time period reasonably calm (not too long ago so that we get # high-tech firms, and before the 2008 crash) d1 = datetime(2003, 1, 1) d2 = datetime(2008, 1, 1) symbol_dict = { 'TOT': 'Total', 'XOM': 'Exxon', 'CVX': 'Chevron', 'COP': 'ConocoPhillips', 'VLO': 'Valero Energy', 'MSFT': 'Microsoft', 'IBM': 'IBM', 'TWX': 'Time Warner', 'CMCSA': 'Comcast', 'CVC': 'Cablevision', 'YHOO': 'Yahoo', 'DELL': 'Dell', 'HPQ': 'HP', 'AMZN': 'Amazon', 'TM': 'Toyota', 'CAJ': 'Canon', 'SNE': 'Sony', 'F': 'Ford', 'HMC': 'Honda', 'NAV': 'Navistar', 'NOC': 'Northrop Grumman', 'BA': 'Boeing', 'KO': 'Coca Cola', 'MMM': '3M', 'MCD': 'McDonald\'s', 'PEP': 'Pepsi', 'K': 'Kellogg', 'UN': 'Unilever', 'MAR': 'Marriott', 'PG': 'Procter Gamble', 'CL': 'Colgate-Palmolive', 'GE': 'General Electrics', 'WFC': 'Wells Fargo', 'JPM': 'JPMorgan Chase', 'AIG': 'AIG', 'AXP': 'American express', 'BAC': 'Bank of America', 'GS': 'Goldman Sachs', 'AAPL': 'Apple', 'SAP': 'SAP', 'CSCO': 'Cisco', 'TXN': 'Texas Instruments', 'XRX': 'Xerox', 'WMT': 'Wal-Mart', 'HD': 'Home Depot', 'GSK': 'GlaxoSmithKline', 'PFE': 'Pfizer', 'SNY': 'Sanofi-Aventis', 'NVS': 'Novartis', 'KMB': 'Kimberly-Clark', 'R': 'Ryder', 'GD': 'General Dynamics', 'RTN': 'Raytheon', 'CVS': 'CVS', 'CAT': 'Caterpillar', 'DD': 'DuPont de Nemours'} symbols, names = np.array(list(symbol_dict.items())).T # retry is used because quotes_historical_google can temporarily fail # for various reasons (e.g. empty result from Google API). quotes = [ retry(quotes_historical_google)(symbol, d1, d2) for symbol in symbols ] close_prices = np.vstack([q['close'] for q in quotes]) open_prices = np.vstack([q['open'] for q in quotes]) # The daily variations of the quotes are what carry most information variation = close_prices - open_prices # ############################################################################# # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) # ############################################################################# # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) # ############################################################################# # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T # ############################################################################# # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx = np.where(non_zero) # a sequence of (*line0*, *line1*, *line2*), where:: # linen = (x0, y0), (x1, y1), ... (xm, ym) segments = [[embedding[:, start], embedding[:, stop]] for start, stop in zip(start_idx, end_idx)] values = np.abs(partial_correlations[non_zero]) lc = LineCollection(segments, zorder=0, cmap=plt.cm.hot_r, norm=plt.Normalize(0, .7 * values.max())) lc.set_array(values) lc.set_linewidths(15 * values) ax.add_collection(lc) # Add a label to each node. The challenge here is that we want to # position the labels to avoid overlap with other labels for index, (name, label, (x, y)) in enumerate( zip(names, labels, embedding.T)): dx = x - embedding[0] dx[index] = 1 dy = y - embedding[1] dy[index] = 1 this_dx = dx[np.argmin(np.abs(dy))] this_dy = dy[np.argmin(np.abs(dx))] if this_dx > 0: horizontalalignment = 'left' x = x + .002 else: horizontalalignment = 'right' x = x - .002 if this_dy > 0: verticalalignment = 'bottom' y = y + .002 else: verticalalignment = 'top' y = y - .002 plt.text(x, y, name, size=10, horizontalalignment=horizontalalignment, verticalalignment=verticalalignment, bbox=dict(facecolor='w', edgecolor=plt.cm.spectral(label / float(n_labels)), alpha=.6)) plt.xlim(embedding[0].min() - .15 * embedding[0].ptp(), embedding[0].max() + .10 * embedding[0].ptp(),) plt.ylim(embedding[1].min() - .03 * embedding[1].ptp(), embedding[1].max() + .03 * embedding[1].ptp()) plt.show()
bsd-3-clause
Ninjakow/TrueSkill
lib/numpy/lib/recfunctions.py
148
35012
""" Collection of utilities to manipulate structured arrays. Most of these functions were initially implemented by John Hunter for matplotlib. They have been rewritten and extended for convenience. """ from __future__ import division, absolute_import, print_function import sys import itertools import numpy as np import numpy.ma as ma from numpy import ndarray, recarray from numpy.ma import MaskedArray from numpy.ma.mrecords import MaskedRecords from numpy.lib._iotools import _is_string_like from numpy.compat import basestring if sys.version_info[0] < 3: from future_builtins import zip _check_fill_value = np.ma.core._check_fill_value __all__ = [ 'append_fields', 'drop_fields', 'find_duplicates', 'get_fieldstructure', 'join_by', 'merge_arrays', 'rec_append_fields', 'rec_drop_fields', 'rec_join', 'recursive_fill_fields', 'rename_fields', 'stack_arrays', ] def recursive_fill_fields(input, output): """ Fills fields from output with fields from input, with support for nested structures. Parameters ---------- input : ndarray Input array. output : ndarray Output array. Notes ----- * `output` should be at least the same size as `input` Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)]) >>> b = np.zeros((3,), dtype=a.dtype) >>> rfn.recursive_fill_fields(a, b) array([(1, 10.0), (2, 20.0), (0, 0.0)], dtype=[('A', '<i4'), ('B', '<f8')]) """ newdtype = output.dtype for field in newdtype.names: try: current = input[field] except ValueError: continue if current.dtype.names: recursive_fill_fields(current, output[field]) else: output[field][:len(current)] = current return output def get_names(adtype): """ Returns the field names of the input datatype as a tuple. Parameters ---------- adtype : dtype Input datatype Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.get_names(np.empty((1,), dtype=int)) is None True >>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> rfn.get_names(adtype) ('a', ('b', ('ba', 'bb'))) """ listnames = [] names = adtype.names for name in names: current = adtype[name] if current.names: listnames.append((name, tuple(get_names(current)))) else: listnames.append(name) return tuple(listnames) or None def get_names_flat(adtype): """ Returns the field names of the input datatype as a tuple. Nested structure are flattend beforehand. Parameters ---------- adtype : dtype Input datatype Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.get_names_flat(np.empty((1,), dtype=int)) is None True >>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', float)])) ('A', 'B') >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])]) >>> rfn.get_names_flat(adtype) ('a', 'b', 'ba', 'bb') """ listnames = [] names = adtype.names for name in names: listnames.append(name) current = adtype[name] if current.names: listnames.extend(get_names_flat(current)) return tuple(listnames) or None def flatten_descr(ndtype): """ Flatten a structured data-type description. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> rfn.flatten_descr(ndtype) (('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32'))) """ names = ndtype.names if names is None: return ndtype.descr else: descr = [] for field in names: (typ, _) = ndtype.fields[field] if typ.names: descr.extend(flatten_descr(typ)) else: descr.append((field, typ)) return tuple(descr) def zip_descr(seqarrays, flatten=False): """ Combine the dtype description of a series of arrays. Parameters ---------- seqarrays : sequence of arrays Sequence of arrays flatten : {boolean}, optional Whether to collapse nested descriptions. """ newdtype = [] if flatten: for a in seqarrays: newdtype.extend(flatten_descr(a.dtype)) else: for a in seqarrays: current = a.dtype names = current.names or () if len(names) > 1: newdtype.append(('', current.descr)) else: newdtype.extend(current.descr) return np.dtype(newdtype).descr def get_fieldstructure(adtype, lastname=None, parents=None,): """ Returns a dictionary with fields indexing lists of their parent fields. This function is used to simplify access to fields nested in other fields. Parameters ---------- adtype : np.dtype Input datatype lastname : optional Last processed field name (used internally during recursion). parents : dictionary Dictionary of parent fields (used interbally during recursion). Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = np.dtype([('A', int), ... ('B', [('BA', int), ... ('BB', [('BBA', int), ('BBB', int)])])]) >>> rfn.get_fieldstructure(ndtype) ... # XXX: possible regression, order of BBA and BBB is swapped {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} """ if parents is None: parents = {} names = adtype.names for name in names: current = adtype[name] if current.names: if lastname: parents[name] = [lastname, ] else: parents[name] = [] parents.update(get_fieldstructure(current, name, parents)) else: lastparent = [_ for _ in (parents.get(lastname, []) or [])] if lastparent: lastparent.append(lastname) elif lastname: lastparent = [lastname, ] parents[name] = lastparent or [] return parents or None def _izip_fields_flat(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays, collapsing any nested structure. """ for element in iterable: if isinstance(element, np.void): for f in _izip_fields_flat(tuple(element)): yield f else: yield element def _izip_fields(iterable): """ Returns an iterator of concatenated fields from a sequence of arrays. """ for element in iterable: if (hasattr(element, '__iter__') and not isinstance(element, basestring)): for f in _izip_fields(element): yield f elif isinstance(element, np.void) and len(tuple(element)) == 1: for f in _izip_fields(element): yield f else: yield element def izip_records(seqarrays, fill_value=None, flatten=True): """ Returns an iterator of concatenated items from a sequence of arrays. Parameters ---------- seqarrays : sequence of arrays Sequence of arrays. fill_value : {None, integer} Value used to pad shorter iterables. flatten : {True, False}, Whether to """ # OK, that's a complete ripoff from Python2.6 itertools.izip_longest def sentinel(counter=([fill_value] * (len(seqarrays) - 1)).pop): "Yields the fill_value or raises IndexError" yield counter() # fillers = itertools.repeat(fill_value) iters = [itertools.chain(it, sentinel(), fillers) for it in seqarrays] # Should we flatten the items, or just use a nested approach if flatten: zipfunc = _izip_fields_flat else: zipfunc = _izip_fields # try: for tup in zip(*iters): yield tuple(zipfunc(tup)) except IndexError: pass def _fix_output(output, usemask=True, asrecarray=False): """ Private function: return a recarray, a ndarray, a MaskedArray or a MaskedRecords depending on the input parameters """ if not isinstance(output, MaskedArray): usemask = False if usemask: if asrecarray: output = output.view(MaskedRecords) else: output = ma.filled(output) if asrecarray: output = output.view(recarray) return output def _fix_defaults(output, defaults=None): """ Update the fill_value and masked data of `output` from the default given in a dictionary defaults. """ names = output.dtype.names (data, mask, fill_value) = (output.data, output.mask, output.fill_value) for (k, v) in (defaults or {}).items(): if k in names: fill_value[k] = v data[k][mask[k]] = v return output def merge_arrays(seqarrays, fill_value=-1, flatten=False, usemask=False, asrecarray=False): """ Merge arrays field by field. Parameters ---------- seqarrays : sequence of ndarrays Sequence of arrays fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. flatten : {False, True}, optional Whether to collapse nested fields. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.]))) masked_array(data = [(1, 10.0) (2, 20.0) (--, 30.0)], mask = [(False, False) (False, False) (True, False)], fill_value = (999999, 1e+20), dtype = [('f0', '<i4'), ('f1', '<f8')]) >>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])), ... usemask=False) array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('f0', '<i4'), ('f1', '<f8')]) >>> rfn.merge_arrays((np.array([1, 2]).view([('a', int)]), ... np.array([10., 20., 30.])), ... usemask=False, asrecarray=True) rec.array([(1, 10.0), (2, 20.0), (-1, 30.0)], dtype=[('a', '<i4'), ('f1', '<f8')]) Notes ----- * Without a mask, the missing value will be filled with something, * depending on what its corresponding type: -1 for integers -1.0 for floating point numbers '-' for characters '-1' for strings True for boolean values * XXX: I just obtained these values empirically """ # Only one item in the input sequence ? if (len(seqarrays) == 1): seqarrays = np.asanyarray(seqarrays[0]) # Do we have a single ndarray as input ? if isinstance(seqarrays, (ndarray, np.void)): seqdtype = seqarrays.dtype if (not flatten) or \ (zip_descr((seqarrays,), flatten=True) == seqdtype.descr): # Minimal processing needed: just make sure everythng's a-ok seqarrays = seqarrays.ravel() # Make sure we have named fields if not seqdtype.names: seqdtype = [('', seqdtype)] # Find what type of array we must return if usemask: if asrecarray: seqtype = MaskedRecords else: seqtype = MaskedArray elif asrecarray: seqtype = recarray else: seqtype = ndarray return seqarrays.view(dtype=seqdtype, type=seqtype) else: seqarrays = (seqarrays,) else: # Make sure we have arrays in the input sequence seqarrays = [np.asanyarray(_m) for _m in seqarrays] # Find the sizes of the inputs and their maximum sizes = tuple(a.size for a in seqarrays) maxlength = max(sizes) # Get the dtype of the output (flattening if needed) newdtype = zip_descr(seqarrays, flatten=flatten) # Initialize the sequences for data and mask seqdata = [] seqmask = [] # If we expect some kind of MaskedArray, make a special loop. if usemask: for (a, n) in zip(seqarrays, sizes): nbmissing = (maxlength - n) # Get the data and mask data = a.ravel().__array__() mask = ma.getmaskarray(a).ravel() # Get the filling value (if needed) if nbmissing: fval = _check_fill_value(fill_value, a.dtype) if isinstance(fval, (ndarray, np.void)): if len(fval.dtype) == 1: fval = fval.item()[0] fmsk = True else: fval = np.array(fval, dtype=a.dtype, ndmin=1) fmsk = np.ones((1,), dtype=mask.dtype) else: fval = None fmsk = True # Store an iterator padding the input to the expected length seqdata.append(itertools.chain(data, [fval] * nbmissing)) seqmask.append(itertools.chain(mask, [fmsk] * nbmissing)) # Create an iterator for the data data = tuple(izip_records(seqdata, flatten=flatten)) output = ma.array(np.fromiter(data, dtype=newdtype, count=maxlength), mask=list(izip_records(seqmask, flatten=flatten))) if asrecarray: output = output.view(MaskedRecords) else: # Same as before, without the mask we don't need... for (a, n) in zip(seqarrays, sizes): nbmissing = (maxlength - n) data = a.ravel().__array__() if nbmissing: fval = _check_fill_value(fill_value, a.dtype) if isinstance(fval, (ndarray, np.void)): if len(fval.dtype) == 1: fval = fval.item()[0] else: fval = np.array(fval, dtype=a.dtype, ndmin=1) else: fval = None seqdata.append(itertools.chain(data, [fval] * nbmissing)) output = np.fromiter(tuple(izip_records(seqdata, flatten=flatten)), dtype=newdtype, count=maxlength) if asrecarray: output = output.view(recarray) # And we're done... return output def drop_fields(base, drop_names, usemask=True, asrecarray=False): """ Return a new array with fields in `drop_names` dropped. Nested fields are supported. Parameters ---------- base : array Input array drop_names : string or sequence String or sequence of strings corresponding to the names of the fields to drop. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : string or sequence, optional Whether to return a recarray or a mrecarray (`asrecarray=True`) or a plain ndarray or masked array with flexible dtype. The default is False. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], ... dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) >>> rfn.drop_fields(a, 'a') array([((2.0, 3),), ((5.0, 6),)], dtype=[('b', [('ba', '<f8'), ('bb', '<i4')])]) >>> rfn.drop_fields(a, 'ba') array([(1, (3,)), (4, (6,))], dtype=[('a', '<i4'), ('b', [('bb', '<i4')])]) >>> rfn.drop_fields(a, ['ba', 'bb']) array([(1,), (4,)], dtype=[('a', '<i4')]) """ if _is_string_like(drop_names): drop_names = [drop_names, ] else: drop_names = set(drop_names) def _drop_descr(ndtype, drop_names): names = ndtype.names newdtype = [] for name in names: current = ndtype[name] if name in drop_names: continue if current.names: descr = _drop_descr(current, drop_names) if descr: newdtype.append((name, descr)) else: newdtype.append((name, current)) return newdtype newdtype = _drop_descr(base.dtype, drop_names) if not newdtype: return None output = np.empty(base.shape, dtype=newdtype) output = recursive_fill_fields(base, output) return _fix_output(output, usemask=usemask, asrecarray=asrecarray) def rec_drop_fields(base, drop_names): """ Returns a new numpy.recarray with fields in `drop_names` dropped. """ return drop_fields(base, drop_names, usemask=False, asrecarray=True) def rename_fields(base, namemapper): """ Rename the fields from a flexible-datatype ndarray or recarray. Nested fields are supported. Parameters ---------- base : ndarray Input array whose fields must be modified. namemapper : dictionary Dictionary mapping old field names to their new version. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], ... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])]) >>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'}) array([(1, (2.0, [3.0, 30.0])), (4, (5.0, [6.0, 60.0]))], dtype=[('A', '<i4'), ('b', [('ba', '<f8'), ('BB', '<f8', 2)])]) """ def _recursive_rename_fields(ndtype, namemapper): newdtype = [] for name in ndtype.names: newname = namemapper.get(name, name) current = ndtype[name] if current.names: newdtype.append( (newname, _recursive_rename_fields(current, namemapper)) ) else: newdtype.append((newname, current)) return newdtype newdtype = _recursive_rename_fields(base.dtype, namemapper) return base.view(newdtype) def append_fields(base, names, data, dtypes=None, fill_value=-1, usemask=True, asrecarray=False): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. fill_value : {float}, optional Filling value used to pad missing data on the shorter arrays. usemask : {False, True}, optional Whether to return a masked array or not. asrecarray : {False, True}, optional Whether to return a recarray (MaskedRecords) or not. """ # Check the names if isinstance(names, (tuple, list)): if len(names) != len(data): msg = "The number of arrays does not match the number of names" raise ValueError(msg) elif isinstance(names, basestring): names = [names, ] data = [data, ] # if dtypes is None: data = [np.array(a, copy=False, subok=True) for a in data] data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)] else: if not isinstance(dtypes, (tuple, list)): dtypes = [dtypes, ] if len(data) != len(dtypes): if len(dtypes) == 1: dtypes = dtypes * len(data) else: msg = "The dtypes argument must be None, a dtype, or a list." raise ValueError(msg) data = [np.array(a, copy=False, subok=True, dtype=d).view([(n, d)]) for (a, n, d) in zip(data, names, dtypes)] # base = merge_arrays(base, usemask=usemask, fill_value=fill_value) if len(data) > 1: data = merge_arrays(data, flatten=True, usemask=usemask, fill_value=fill_value) else: data = data.pop() # output = ma.masked_all(max(len(base), len(data)), dtype=base.dtype.descr + data.dtype.descr) output = recursive_fill_fields(base, output) output = recursive_fill_fields(data, output) # return _fix_output(output, usemask=usemask, asrecarray=asrecarray) def rec_append_fields(base, names, data, dtypes=None): """ Add new fields to an existing array. The names of the fields are given with the `names` arguments, the corresponding values with the `data` arguments. If a single field is appended, `names`, `data` and `dtypes` do not have to be lists but just values. Parameters ---------- base : array Input array to extend. names : string, sequence String or sequence of strings corresponding to the names of the new fields. data : array or sequence of arrays Array or sequence of arrays storing the fields to add to the base. dtypes : sequence of datatypes, optional Datatype or sequence of datatypes. If None, the datatypes are estimated from the `data`. See Also -------- append_fields Returns ------- appended_array : np.recarray """ return append_fields(base, names, data=data, dtypes=dtypes, asrecarray=True, usemask=False) def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False, autoconvert=False): """ Superposes arrays fields by fields Parameters ---------- arrays : array or sequence Sequence of input arrays. defaults : dictionary, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. autoconvert : {False, True}, optional Whether automatically cast the type of the field to the maximum. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> x = np.array([1, 2,]) >>> rfn.stack_arrays(x) is x True >>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)]) >>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], ... dtype=[('A', '|S3'), ('B', float), ('C', float)]) >>> test = rfn.stack_arrays((z,zz)) >>> test masked_array(data = [('A', 1.0, --) ('B', 2.0, --) ('a', 10.0, 100.0) ('b', 20.0, 200.0) ('c', 30.0, 300.0)], mask = [(False, False, True) (False, False, True) (False, False, False) (False, False, False) (False, False, False)], fill_value = ('N/A', 1e+20, 1e+20), dtype = [('A', '|S3'), ('B', '<f8'), ('C', '<f8')]) """ if isinstance(arrays, ndarray): return arrays elif len(arrays) == 1: return arrays[0] seqarrays = [np.asanyarray(a).ravel() for a in arrays] nrecords = [len(a) for a in seqarrays] ndtype = [a.dtype for a in seqarrays] fldnames = [d.names for d in ndtype] # dtype_l = ndtype[0] newdescr = dtype_l.descr names = [_[0] for _ in newdescr] for dtype_n in ndtype[1:]: for descr in dtype_n.descr: name = descr[0] or '' if name not in names: newdescr.append(descr) names.append(name) else: nameidx = names.index(name) current_descr = newdescr[nameidx] if autoconvert: if np.dtype(descr[1]) > np.dtype(current_descr[-1]): current_descr = list(current_descr) current_descr[-1] = descr[1] newdescr[nameidx] = tuple(current_descr) elif descr[1] != current_descr[-1]: raise TypeError("Incompatible type '%s' <> '%s'" % (dict(newdescr)[name], descr[1])) # Only one field: use concatenate if len(newdescr) == 1: output = ma.concatenate(seqarrays) else: # output = ma.masked_all((np.sum(nrecords),), newdescr) offset = np.cumsum(np.r_[0, nrecords]) seen = [] for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]): names = a.dtype.names if names is None: output['f%i' % len(seen)][i:j] = a else: for name in n: output[name][i:j] = a[name] if name not in seen: seen.append(name) # return _fix_output(_fix_defaults(output, defaults), usemask=usemask, asrecarray=asrecarray) def find_duplicates(a, key=None, ignoremask=True, return_index=False): """ Find the duplicates in a structured array along a given key Parameters ---------- a : array-like Input array key : {string, None}, optional Name of the fields along which to check the duplicates. If None, the search is performed by records ignoremask : {True, False}, optional Whether masked data should be discarded or considered as duplicates. return_index : {False, True}, optional Whether to return the indices of the duplicated values. Examples -------- >>> from numpy.lib import recfunctions as rfn >>> ndtype = [('a', int)] >>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3], ... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) >>> rfn.find_duplicates(a, ignoremask=True, return_index=True) ... # XXX: judging by the output, the ignoremask flag has no effect """ a = np.asanyarray(a).ravel() # Get a dictionary of fields fields = get_fieldstructure(a.dtype) # Get the sorting data (by selecting the corresponding field) base = a if key: for f in fields[key]: base = base[f] base = base[key] # Get the sorting indices and the sorted data sortidx = base.argsort() sortedbase = base[sortidx] sorteddata = sortedbase.filled() # Compare the sorting data flag = (sorteddata[:-1] == sorteddata[1:]) # If masked data must be ignored, set the flag to false where needed if ignoremask: sortedmask = sortedbase.recordmask flag[sortedmask[1:]] = False flag = np.concatenate(([False], flag)) # We need to take the point on the left as well (else we're missing it) flag[:-1] = flag[:-1] + flag[1:] duplicates = a[sortidx][flag] if return_index: return (duplicates, sortidx[flag]) else: return duplicates def join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None, usemask=True, asrecarray=False): """ Join arrays `r1` and `r2` on key `key`. The key should be either a string or a sequence of string corresponding to the fields used to join the array. An exception is raised if the `key` field cannot be found in the two input arrays. Neither `r1` nor `r2` should have any duplicates along `key`: the presence of duplicates will make the output quite unreliable. Note that duplicates are not looked for by the algorithm. Parameters ---------- key : {string, sequence} A string or a sequence of strings corresponding to the fields used for comparison. r1, r2 : arrays Structured arrays. jointype : {'inner', 'outer', 'leftouter'}, optional If 'inner', returns the elements common to both r1 and r2. If 'outer', returns the common elements as well as the elements of r1 not in r2 and the elements of not in r2. If 'leftouter', returns the common elements and the elements of r1 not in r2. r1postfix : string, optional String appended to the names of the fields of r1 that are present in r2 but absent of the key. r2postfix : string, optional String appended to the names of the fields of r2 that are present in r1 but absent of the key. defaults : {dictionary}, optional Dictionary mapping field names to the corresponding default values. usemask : {True, False}, optional Whether to return a MaskedArray (or MaskedRecords is `asrecarray==True`) or a ndarray. asrecarray : {False, True}, optional Whether to return a recarray (or MaskedRecords if `usemask==True`) or just a flexible-type ndarray. Notes ----- * The output is sorted along the key. * A temporary array is formed by dropping the fields not in the key for the two arrays and concatenating the result. This array is then sorted, and the common entries selected. The output is constructed by filling the fields with the selected entries. Matching is not preserved if there are some duplicates... """ # Check jointype if jointype not in ('inner', 'outer', 'leftouter'): raise ValueError( "The 'jointype' argument should be in 'inner', " "'outer' or 'leftouter' (got '%s' instead)" % jointype ) # If we have a single key, put it in a tuple if isinstance(key, basestring): key = (key,) # Check the keys for name in key: if name not in r1.dtype.names: raise ValueError('r1 does not have key field %s' % name) if name not in r2.dtype.names: raise ValueError('r2 does not have key field %s' % name) # Make sure we work with ravelled arrays r1 = r1.ravel() r2 = r2.ravel() # Fixme: nb2 below is never used. Commenting out for pyflakes. # (nb1, nb2) = (len(r1), len(r2)) nb1 = len(r1) (r1names, r2names) = (r1.dtype.names, r2.dtype.names) # Check the names for collision if (set.intersection(set(r1names), set(r2names)).difference(key) and not (r1postfix or r2postfix)): msg = "r1 and r2 contain common names, r1postfix and r2postfix " msg += "can't be empty" raise ValueError(msg) # Make temporary arrays of just the keys r1k = drop_fields(r1, [n for n in r1names if n not in key]) r2k = drop_fields(r2, [n for n in r2names if n not in key]) # Concatenate the two arrays for comparison aux = ma.concatenate((r1k, r2k)) idx_sort = aux.argsort(order=key) aux = aux[idx_sort] # # Get the common keys flag_in = ma.concatenate(([False], aux[1:] == aux[:-1])) flag_in[:-1] = flag_in[1:] + flag_in[:-1] idx_in = idx_sort[flag_in] idx_1 = idx_in[(idx_in < nb1)] idx_2 = idx_in[(idx_in >= nb1)] - nb1 (r1cmn, r2cmn) = (len(idx_1), len(idx_2)) if jointype == 'inner': (r1spc, r2spc) = (0, 0) elif jointype == 'outer': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1)) (r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn) elif jointype == 'leftouter': idx_out = idx_sort[~flag_in] idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)])) (r1spc, r2spc) = (len(idx_1) - r1cmn, 0) # Select the entries from each input (s1, s2) = (r1[idx_1], r2[idx_2]) # # Build the new description of the output array ....... # Start with the key fields ndtype = [list(_) for _ in r1k.dtype.descr] # Add the other fields ndtype.extend(list(_) for _ in r1.dtype.descr if _[0] not in key) # Find the new list of names (it may be different from r1names) names = list(_[0] for _ in ndtype) for desc in r2.dtype.descr: desc = list(desc) name = desc[0] # Have we seen the current name already ? if name in names: nameidx = ndtype.index(desc) current = ndtype[nameidx] # The current field is part of the key: take the largest dtype if name in key: current[-1] = max(desc[1], current[-1]) # The current field is not part of the key: add the suffixes else: current[0] += r1postfix desc[0] += r2postfix ndtype.insert(nameidx + 1, desc) #... we haven't: just add the description to the current list else: names.extend(desc[0]) ndtype.append(desc) # Revert the elements to tuples ndtype = [tuple(_) for _ in ndtype] # Find the largest nb of common fields : # r1cmn and r2cmn should be equal, but... cmn = max(r1cmn, r2cmn) # Construct an empty array output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype) names = output.dtype.names for f in r1names: selected = s1[f] if f not in names or (f in r2names and not r2postfix and f not in key): f += r1postfix current = output[f] current[:r1cmn] = selected[:r1cmn] if jointype in ('outer', 'leftouter'): current[cmn:cmn + r1spc] = selected[r1cmn:] for f in r2names: selected = s2[f] if f not in names or (f in r1names and not r1postfix and f not in key): f += r2postfix current = output[f] current[:r2cmn] = selected[:r2cmn] if (jointype == 'outer') and r2spc: current[-r2spc:] = selected[r2cmn:] # Sort and finalize the output output.sort(order=key) kwargs = dict(usemask=usemask, asrecarray=asrecarray) return _fix_output(_fix_defaults(output, defaults), **kwargs) def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2', defaults=None): """ Join arrays `r1` and `r2` on keys. Alternative to join_by, that always returns a np.recarray. See Also -------- join_by : equivalent function """ kwargs = dict(jointype=jointype, r1postfix=r1postfix, r2postfix=r2postfix, defaults=defaults, usemask=False, asrecarray=True) return join_by(key, r1, r2, **kwargs)
gpl-3.0
natsutan/cocytus
tools/cqt_diff/cqt_diff_yolo.py
1
2396
import os import numpy as np import matplotlib.pyplot as plt import seaborn import sys keras_dir = '../../example/tiny-yolo/keras/output/' cqt_dir = '../../example/tiny-yolo/c_sdsoc/output/' qp_file = '../../example/tiny-yolo/c_sdsoc/weight/' fix16mode = False def layer_dump(i, q, fnum = 3): """ 引数で指定されたレイヤーの、Keras出力と、コキュートス出力を 比較して、画像に落とす。比較するフィルターは先頭から、fnum まで。 出力はoutputディレクトリーに行われる。 :param i:int レイヤー番号 :param q:int 出力データのQ位置 :param fnum:int 画像化するフィルター数 :return: """ for f in range(fnum): plt.figure() graph_name = 'l%02d_%d' % (i, f) kname = os.path.join(keras_dir+'l%02d_%d.npy' % (i, f)) cname = os.path.join(cqt_dir+'l%02d.npy' % i) k_data = np.load(kname).flatten() c_data = np.load(cname) c_data_tmp = c_data[f,:,:] c_data_f = c_data_tmp.flatten() diff_x = k_data - c_data_f if fix16mode: c_data = c_data.astype(np.float32) / (2 ** q) x = np.arange(len(k_data)) plt.plot(x, k_data, color='b', label='Keras') plt.plot(x, c_data_f, color='r', label='Cocytus') plt.title(graph_name) plt.legend() img_fname = os.path.join('output', graph_name+'.png') print('save %s' % img_fname) plt.savefig(img_fname) s, e = 0, 1000 plt.figure() plt.plot(x[s:e], diff_x[s:e], color='g', label='diff') plt.title(graph_name+'diff') plt.legend() img_fname = os.path.join('output', graph_name + '_diff.png') plt.savefig(img_fname) def read_qpfile(odir): """qpファイルを読み込み、入力、出力、重みのQ位置をリストにして返す""" iqs = [] wqs = [] oqs = [] fname = os.path.join(odir, 'qp.txt') for i, l in enumerate(open(fname).readlines()): if i < 1: continue words = l.split(',') iqs.append(int(words[0])) oqs.append(int(words[1])) wqs.append(int(words[2])) return iqs, oqs, wqs iqs, oqs, wqs = read_qpfile(qp_file) #for i in range(31): # layer_dump(i, oqs[i]) #layer_dump(0, oqs[0]) layer_dump(2, oqs[0]) print('finish')
mit
mattilyra/scikit-learn
sklearn/linear_model/logistic.py
7
67572
""" Logistic Regression """ # Author: Gael Varoquaux <gael.varoquaux@normalesup.org> # Fabian Pedregosa <f@bianp.net> # Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # Manoj Kumar <manojkumarsivaraj334@gmail.com> # Lars Buitinck # Simon Wu <s8wu@uwaterloo.ca> import numbers import warnings import numpy as np from scipy import optimize, sparse from .base import LinearClassifierMixin, SparseCoefMixin, BaseEstimator from .sag import sag_solver from ..feature_selection.from_model import _LearntSelectorMixin from ..preprocessing import LabelEncoder, LabelBinarizer from ..svm.base import _fit_liblinear from ..utils import check_array, check_consistent_length, compute_class_weight from ..utils import check_random_state from ..utils.extmath import (logsumexp, log_logistic, safe_sparse_dot, softmax, squared_norm) from ..utils.extmath import row_norms from ..utils.optimize import newton_cg from ..utils.validation import check_X_y from ..exceptions import DataConversionWarning from ..exceptions import NotFittedError from ..utils.fixes import expit from ..utils.multiclass import check_classification_targets from ..externals.joblib import Parallel, delayed from ..model_selection import check_cv from ..externals import six from ..metrics import SCORERS # .. some helper functions for logistic_regression_path .. def _intercept_dot(w, X, y): """Computes y * np.dot(X, w). It takes into consideration if the intercept should be fit or not. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. Returns ------- w : ndarray, shape (n_features,) Coefficient vector without the intercept weight (w[-1]) if the intercept should be fit. Unchanged otherwise. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Unchanged. yz : float y * np.dot(X, w). """ c = 0. if w.size == X.shape[1] + 1: c = w[-1] w = w[:-1] z = safe_sparse_dot(X, w) + c yz = y * z return w, c, yz def _logistic_loss_and_grad(w, X, y, alpha, sample_weight=None): """Computes the logistic loss and gradient. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. """ n_samples, n_features = X.shape grad = np.empty_like(w) w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(n_samples) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if grad.shape[0] > n_features: grad[-1] = z0.sum() return out, grad def _logistic_loss(w, X, y, alpha, sample_weight=None): """Computes the logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- out : float Logistic loss. """ w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) # Logistic loss is the negative of the log of the logistic function. out = -np.sum(sample_weight * log_logistic(yz)) + .5 * alpha * np.dot(w, w) return out def _logistic_grad_hess(w, X, y, alpha, sample_weight=None): """Computes the gradient and the Hessian, in the case of a logistic loss. Parameters ---------- w : ndarray, shape (n_features,) or (n_features + 1,) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : ndarray, shape (n_samples,) Array of labels. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- grad : ndarray, shape (n_features,) or (n_features + 1,) Logistic gradient. Hs : callable Function that takes the gradient as a parameter and returns the matrix product of the Hessian and gradient. """ n_samples, n_features = X.shape grad = np.empty_like(w) fit_intercept = grad.shape[0] > n_features w, c, yz = _intercept_dot(w, X, y) if sample_weight is None: sample_weight = np.ones(y.shape[0]) z = expit(yz) z0 = sample_weight * (z - 1) * y grad[:n_features] = safe_sparse_dot(X.T, z0) + alpha * w # Case where we fit the intercept. if fit_intercept: grad[-1] = z0.sum() # The mat-vec product of the Hessian d = sample_weight * z * (1 - z) if sparse.issparse(X): dX = safe_sparse_dot(sparse.dia_matrix((d, 0), shape=(n_samples, n_samples)), X) else: # Precompute as much as possible dX = d[:, np.newaxis] * X if fit_intercept: # Calculate the double derivative with respect to intercept # In the case of sparse matrices this returns a matrix object. dd_intercept = np.squeeze(np.array(dX.sum(axis=0))) def Hs(s): ret = np.empty_like(s) ret[:n_features] = X.T.dot(dX.dot(s[:n_features])) ret[:n_features] += alpha * s[:n_features] # For the fit intercept case. if fit_intercept: ret[:n_features] += s[-1] * dd_intercept ret[-1] = dd_intercept.dot(s[:n_features]) ret[-1] += d.sum() * s[-1] return ret return grad, Hs def _multinomial_loss(w, X, Y, alpha, sample_weight): """Computes multinomial loss and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- loss : float Multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities. w : ndarray, shape (n_classes, n_features) Reshaped param vector excluding intercept terms. Reference --------- Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. (Chapter 4.3.4) """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) w = w.reshape(n_classes, -1) sample_weight = sample_weight[:, np.newaxis] if fit_intercept: intercept = w[:, -1] w = w[:, :-1] else: intercept = 0 p = safe_sparse_dot(X, w.T) p += intercept p -= logsumexp(p, axis=1)[:, np.newaxis] loss = -(sample_weight * Y * p).sum() loss += 0.5 * alpha * squared_norm(w) p = np.exp(p, p) return loss, p, w def _multinomial_loss_grad(w, X, Y, alpha, sample_weight): """Computes the multinomial loss, gradient and class probabilities. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- loss : float Multinomial loss. grad : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. p : ndarray, shape (n_samples, n_classes) Estimated class probabilities Reference --------- Bishop, C. M. (2006). Pattern recognition and machine learning. Springer. (Chapter 4.3.4) """ n_classes = Y.shape[1] n_features = X.shape[1] fit_intercept = (w.size == n_classes * (n_features + 1)) grad = np.zeros((n_classes, n_features + bool(fit_intercept))) loss, p, w = _multinomial_loss(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] diff = sample_weight * (p - Y) grad[:, :n_features] = safe_sparse_dot(diff.T, X) grad[:, :n_features] += alpha * w if fit_intercept: grad[:, -1] = diff.sum(axis=0) return loss, grad.ravel(), p def _multinomial_grad_hess(w, X, Y, alpha, sample_weight): """ Computes the gradient and the Hessian, in the case of a multinomial loss. Parameters ---------- w : ndarray, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Coefficient vector. X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. Y : ndarray, shape (n_samples, n_classes) Transformed labels according to the output of LabelBinarizer. alpha : float Regularization parameter. alpha is equal to 1 / C. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. Returns ------- grad : array, shape (n_classes * n_features,) or (n_classes * (n_features + 1),) Ravelled gradient of the multinomial loss. hessp : callable Function that takes in a vector input of shape (n_classes * n_features) or (n_classes * (n_features + 1)) and returns matrix-vector product with hessian. References ---------- Barak A. Pearlmutter (1993). Fast Exact Multiplication by the Hessian. http://www.bcl.hamilton.ie/~barak/papers/nc-hessian.pdf """ n_features = X.shape[1] n_classes = Y.shape[1] fit_intercept = w.size == (n_classes * (n_features + 1)) # `loss` is unused. Refactoring to avoid computing it does not # significantly speed up the computation and decreases readability loss, grad, p = _multinomial_loss_grad(w, X, Y, alpha, sample_weight) sample_weight = sample_weight[:, np.newaxis] # Hessian-vector product derived by applying the R-operator on the gradient # of the multinomial loss function. def hessp(v): v = v.reshape(n_classes, -1) if fit_intercept: inter_terms = v[:, -1] v = v[:, :-1] else: inter_terms = 0 # r_yhat holds the result of applying the R-operator on the multinomial # estimator. r_yhat = safe_sparse_dot(X, v.T) r_yhat += inter_terms r_yhat += (-p * r_yhat).sum(axis=1)[:, np.newaxis] r_yhat *= p r_yhat *= sample_weight hessProd = np.zeros((n_classes, n_features + bool(fit_intercept))) hessProd[:, :n_features] = safe_sparse_dot(r_yhat.T, X) hessProd[:, :n_features] += v * alpha if fit_intercept: hessProd[:, -1] = r_yhat.sum(axis=0) return hessProd.ravel() return grad, hessp def _check_solver_option(solver, multi_class, penalty, dual): if solver not in ['liblinear', 'newton-cg', 'lbfgs', 'sag']: raise ValueError("Logistic Regression supports only liblinear," " newton-cg, lbfgs and sag solvers, got %s" % solver) if multi_class not in ['multinomial', 'ovr']: raise ValueError("multi_class should be either multinomial or " "ovr, got %s" % multi_class) if multi_class == 'multinomial' and solver == 'liblinear': raise ValueError("Solver %s does not support " "a multinomial backend." % solver) if solver != 'liblinear': if penalty != 'l2': raise ValueError("Solver %s supports only l2 penalties, " "got %s penalty." % (solver, penalty)) if dual: raise ValueError("Solver %s supports only " "dual=False, got dual=%s" % (solver, dual)) def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver='lbfgs', coef=None, copy=False, class_weight=None, dual=False, penalty='l2', intercept_scaling=1., multi_class='ovr', random_state=None, check_input=True, max_squared_sum=None, sample_weight=None): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) Input data, target values. Cs : int | array-like, shape (n_cs,) List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. fit_intercept : bool Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int Maximum number of iterations for the solver. tol : float Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag'} Numerical solver to use. coef : array-like, shape (n_features,), default None Initialization value for coefficients of logistic regression. Useless for liblinear solver. copy : bool, default False Whether or not to produce a copy of the data. A copy is not required anymore. This parameter is deprecated and will be removed in 0.19. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. intercept_scaling : float, default 1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' and 'newton-cg' solvers. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used only in solvers 'sag' and 'liblinear'. check_input : bool, default True If False, the input arrays X and y will not be checked. max_squared_sum : float, default None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like, shape(n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. n_iter : array, shape (n_cs,) Actual number of iteration for each Cs. Notes ----- You might get slightly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. """ if copy: warnings.warn("A copy is not required anymore. The 'copy' parameter " "is deprecated and will be removed in 0.19.", DeprecationWarning) if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) _check_solver_option(solver, multi_class, penalty, dual) # Preprocessing. if check_input or copy: X = check_array(X, accept_sparse='csr', dtype=np.float64) y = check_array(y, ensure_2d=False, copy=copy, dtype=None) check_consistent_length(X, y) _, n_features = X.shape classes = np.unique(y) random_state = check_random_state(random_state) if pos_class is None and multi_class != 'multinomial': if (classes.size > 2): raise ValueError('To fit OvR, use the pos_class argument') # np.unique(y) gives labels in sorted order. pos_class = classes[1] # If sample weights exist, convert them to array (support for lists) # and check length # Otherwise set them to 1 for all examples if sample_weight is not None: sample_weight = np.array(sample_weight, dtype=np.float64, order='C') check_consistent_length(y, sample_weight) else: sample_weight = np.ones(X.shape[0]) # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "balanced", then # the class_weights are assigned after masking the labels with a OvR. le = LabelEncoder() if isinstance(class_weight, dict) or multi_class == 'multinomial': class_weight_ = compute_class_weight(class_weight, classes, y) sample_weight *= class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. for the # multinomial case this is not necessary. if multi_class == 'ovr': w0 = np.zeros(n_features + int(fit_intercept)) mask_classes = np.array([-1, 1]) mask = (y == pos_class) y_bin = np.ones(y.shape, dtype=np.float64) y_bin[~mask] = -1. # for compute_class_weight # 'auto' is deprecated and will be removed in 0.19 if class_weight in ("auto", "balanced"): class_weight_ = compute_class_weight(class_weight, mask_classes, y_bin) sample_weight *= class_weight_[le.fit_transform(y_bin)] else: if solver != 'sag': lbin = LabelBinarizer() Y_multi = lbin.fit_transform(y) if Y_multi.shape[1] == 1: Y_multi = np.hstack([1 - Y_multi, Y_multi]) else: # SAG multinomial solver needs LabelEncoder, not LabelBinarizer le = LabelEncoder() Y_multi = le.fit_transform(y) w0 = np.zeros((classes.size, n_features + int(fit_intercept)), order='F') if coef is not None: # it must work both giving the bias term and not if multi_class == 'ovr': if coef.size not in (n_features, w0.size): raise ValueError( 'Initialization coef is of shape %d, expected shape ' '%d or %d' % (coef.size, n_features, w0.size)) w0[:coef.size] = coef else: # For binary problems coef.shape[0] should be 1, otherwise it # should be classes.size. n_classes = classes.size if n_classes == 2: n_classes = 1 if (coef.shape[0] != n_classes or coef.shape[1] not in (n_features, n_features + 1)): raise ValueError( 'Initialization coef is of shape (%d, %d), expected ' 'shape (%d, %d) or (%d, %d)' % ( coef.shape[0], coef.shape[1], classes.size, n_features, classes.size, n_features + 1)) w0[:, :coef.shape[1]] = coef if multi_class == 'multinomial': # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters. if solver in ['lbfgs', 'newton-cg']: w0 = w0.ravel() target = Y_multi if solver == 'lbfgs': func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2] elif solver == 'newton-cg': func = lambda x, *args: _multinomial_loss(x, *args)[0] grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1] hess = _multinomial_grad_hess warm_start_sag = {'coef': w0.T} else: target = y_bin if solver == 'lbfgs': func = _logistic_loss_and_grad elif solver == 'newton-cg': func = _logistic_loss grad = lambda x, *args: _logistic_loss_and_grad(x, *args)[1] hess = _logistic_grad_hess warm_start_sag = {'coef': np.expand_dims(w0, axis=1)} coefs = list() n_iter = np.zeros(len(Cs), dtype=np.int32) for i, C in enumerate(Cs): if solver == 'lbfgs': try: w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol, maxiter=max_iter) except TypeError: # old scipy doesn't have maxiter w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=(X, target, 1. / C, sample_weight), iprint=(verbose > 0) - 1, pgtol=tol) if info["warnflag"] == 1 and verbose > 0: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.") try: n_iter_i = info['nit'] - 1 except: n_iter_i = info['funcalls'] - 1 elif solver == 'newton-cg': args = (X, target, 1. / C, sample_weight) w0, n_iter_i = newton_cg(hess, func, grad, w0, args=args, maxiter=max_iter, tol=tol) elif solver == 'liblinear': coef_, intercept_, n_iter_i, = _fit_liblinear( X, target, C, fit_intercept, intercept_scaling, None, penalty, dual, verbose, max_iter, tol, random_state, sample_weight=sample_weight) if fit_intercept: w0 = np.concatenate([coef_.ravel(), intercept_]) else: w0 = coef_.ravel() elif solver == 'sag': if multi_class == 'multinomial': target = target.astype(np.float64) loss = 'multinomial' else: loss = 'log' w0, n_iter_i, warm_start_sag = sag_solver( X, target, sample_weight, loss, 1. / C, max_iter, tol, verbose, random_state, False, max_squared_sum, warm_start_sag) else: raise ValueError("solver must be one of {'liblinear', 'lbfgs', " "'newton-cg', 'sag'}, got '%s' instead" % solver) if multi_class == 'multinomial': multi_w0 = np.reshape(w0, (classes.size, -1)) if classes.size == 2: multi_w0 = multi_w0[1][np.newaxis, :] coefs.append(multi_w0) else: coefs.append(w0.copy()) n_iter[i] = n_iter_i return coefs, np.array(Cs), n_iter # helper function for LogisticCV def _log_reg_scoring_path(X, y, train, test, pos_class=None, Cs=10, scoring=None, fit_intercept=False, max_iter=100, tol=1e-4, class_weight=None, verbose=0, solver='lbfgs', penalty='l2', dual=False, intercept_scaling=1., multi_class='ovr', random_state=None, max_squared_sum=None, sample_weight=None): """Computes scores across logistic_regression_path Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Target labels. train : list of indices The indices of the train set. test : list of indices The indices of the test set. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. If not provided, then a fixed set of values for Cs are used. scoring : callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. fit_intercept : bool If False, then the bias term is set to zero. Else the last term of each coef_ gives us the intercept. max_iter : int Maximum number of iterations for the solver. tol : float Tolerance for stopping criteria. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag'} Decides which solver to use. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. intercept_scaling : float, default 1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equals to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic feature weight Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'lbfgs' and 'newton-cg' solver. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Used only in solvers 'sag' and 'liblinear'. max_squared_sum : float, default None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like, shape(n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. Cs : ndarray Grid of Cs used for cross-validation. scores : ndarray, shape (n_cs,) Scores obtained for each Cs. n_iter : array, shape(n_cs,) Actual number of iteration for each Cs. """ _check_solver_option(solver, multi_class, penalty, dual) X_train = X[train] X_test = X[test] y_train = y[train] y_test = y[test] if sample_weight is not None: sample_weight = sample_weight[train] coefs, Cs, n_iter = logistic_regression_path( X_train, y_train, Cs=Cs, fit_intercept=fit_intercept, solver=solver, max_iter=max_iter, class_weight=class_weight, pos_class=pos_class, multi_class=multi_class, tol=tol, verbose=verbose, dual=dual, penalty=penalty, intercept_scaling=intercept_scaling, random_state=random_state, check_input=False, max_squared_sum=max_squared_sum, sample_weight=sample_weight) log_reg = LogisticRegression(fit_intercept=fit_intercept) # The score method of Logistic Regression has a classes_ attribute. if multi_class == 'ovr': log_reg.classes_ = np.array([-1, 1]) elif multi_class == 'multinomial': log_reg.classes_ = np.unique(y_train) else: raise ValueError("multi_class should be either multinomial or ovr, " "got %d" % multi_class) if pos_class is not None: mask = (y_test == pos_class) y_test = np.ones(y_test.shape, dtype=np.float64) y_test[~mask] = -1. # To deal with object dtypes, we need to convert into an array of floats. y_test = check_array(y_test, dtype=np.float64, ensure_2d=False) scores = list() if isinstance(scoring, six.string_types): scoring = SCORERS[scoring] for w in coefs: if multi_class == 'ovr': w = w[np.newaxis, :] if fit_intercept: log_reg.coef_ = w[:, :-1] log_reg.intercept_ = w[:, -1] else: log_reg.coef_ = w log_reg.intercept_ = 0. if scoring is None: scores.append(log_reg.score(X_test, y_test)) else: scores.append(scoring(log_reg, X_test, y_test)) return coefs, Cs, np.array(scores), n_iter class LogisticRegression(BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin, SparseCoefMixin): """Logistic Regression (aka logit, MaxEnt) classifier. In the multiclass case, the training algorithm uses the one-vs-rest (OvR) scheme if the 'multi_class' option is set to 'ovr', and uses the cross- entropy loss if the 'multi_class' option is set to 'multinomial'. (Currently the 'multinomial' option is supported only by the 'lbfgs', 'sag' and 'newton-cg' solvers.) This class implements regularized logistic regression using the 'liblinear' library, 'newton-cg', 'sag' and 'lbfgs' solvers. It can handle both dense and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit floats for optimal performance; any other input format will be converted (and copied). The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization with primal formulation. The 'liblinear' solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- penalty : str, 'l1' or 'l2', default: 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. dual : bool, default: False Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. C : float, default: 1.0 Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. intercept_scaling : float, default 1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. class_weight : dict or 'balanced', default: None Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. .. versionadded:: 0.17 *class_weight='balanced'* instead of deprecated *class_weight='auto'*. max_iter : int, default: 100 Useful only for the newton-cg, sag and lbfgs solvers. Maximum number of iterations taken for the solvers to converge. random_state : int seed, RandomState instance, default: None The seed of the pseudo random number generator to use when shuffling the data. Used only in solvers 'sag' and 'liblinear'. solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag'}, default: 'liblinear' Algorithm to use in the optimization problem. - For small datasets, 'liblinear' is a good choice, whereas 'sag' is faster for large ones. - For multiclass problems, only 'newton-cg', 'sag' and 'lbfgs' handle multinomial loss; 'liblinear' is limited to one-versus-rest schemes. - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float, default: 1e-4 Tolerance for stopping criteria. multi_class : str, {'ovr', 'multinomial'}, default: 'ovr' Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'newton-cg', 'sag' and 'lbfgs' solver. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. verbose : int, default: 0 For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. warm_start : bool, default: False When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Useless for liblinear solver. .. versionadded:: 0.17 *warm_start* to support *lbfgs*, *newton-cg*, *sag* solvers. n_jobs : int, default: 1 Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. Attributes ---------- coef_ : array, shape (n_classes, n_features) Coefficient of the features in the decision function. intercept_ : array, shape (n_classes,) Intercept (a.k.a. bias) added to the decision function. If `fit_intercept` is set to False, the intercept is set to zero. n_iter_ : array, shape (n_classes,) or (1, ) Actual number of iterations for all classes. If binary or multinomial, it returns only 1 element. For liblinear solver, only the maximum number of iteration across all classes is given. See also -------- SGDClassifier : incrementally trained logistic regression (when given the parameter ``loss="log"``). sklearn.svm.LinearSVC : learns SVM models using the same algorithm. Notes ----- The underlying C implementation uses a random number generator to select features when fitting the model. It is thus not uncommon, to have slightly different results for the same input data. If that happens, try with a smaller tol parameter. Predict output may not match that of standalone liblinear in certain cases. See :ref:`differences from liblinear <liblinear_differences>` in the narrative documentation. References ---------- LIBLINEAR -- A Library for Large Linear Classification http://www.csie.ntu.edu.tw/~cjlin/liblinear/ Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning 85(1-2):41-75. http://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf """ def __init__(self, penalty='l2', dual=False, tol=1e-4, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='liblinear', max_iter=100, multi_class='ovr', verbose=0, warm_start=False, n_jobs=1): self.penalty = penalty self.dual = dual self.tol = tol self.C = C self.fit_intercept = fit_intercept self.intercept_scaling = intercept_scaling self.class_weight = class_weight self.random_state = random_state self.solver = solver self.max_iter = max_iter self.multi_class = multi_class self.verbose = verbose self.warm_start = warm_start self.n_jobs = n_jobs def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. .. versionadded:: 0.17 *sample_weight* support to LogisticRegression. Returns ------- self : object Returns self. """ if not isinstance(self.C, numbers.Number) or self.C < 0: raise ValueError("Penalty term must be positive; got (C=%r)" % self.C) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") check_classification_targets(y) self.classes_ = np.unique(y) n_samples, n_features = X.shape _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual) if self.solver == 'liblinear': self.coef_, self.intercept_, n_iter_ = _fit_liblinear( X, y, self.C, self.fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.dual, self.verbose, self.max_iter, self.tol, self.random_state, sample_weight=sample_weight) self.n_iter_ = np.array([n_iter_]) return self if self.solver == 'sag': max_squared_sum = row_norms(X, squared=True).max() else: max_squared_sum = None n_classes = len(self.classes_) classes_ = self.classes_ if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % classes_[0]) if len(self.classes_) == 2: n_classes = 1 classes_ = classes_[1:] if self.warm_start: warm_start_coef = getattr(self, 'coef_', None) else: warm_start_coef = None if warm_start_coef is not None and self.fit_intercept: warm_start_coef = np.append(warm_start_coef, self.intercept_[:, np.newaxis], axis=1) self.coef_ = list() self.intercept_ = np.zeros(n_classes) # Hack so that we iterate only once for the multinomial case. if self.multi_class == 'multinomial': classes_ = [None] warm_start_coef = [warm_start_coef] if warm_start_coef is None: warm_start_coef = [None] * n_classes path_func = delayed(logistic_regression_path) # The SAG solver releases the GIL so it's more efficient to use # threads for this solver. backend = 'threading' if self.solver == 'sag' else 'multiprocessing' fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=backend)( path_func(X, y, pos_class=class_, Cs=[self.C], fit_intercept=self.fit_intercept, tol=self.tol, verbose=self.verbose, solver=self.solver, copy=False, multi_class=self.multi_class, max_iter=self.max_iter, class_weight=self.class_weight, check_input=False, random_state=self.random_state, coef=warm_start_coef_, max_squared_sum=max_squared_sum, sample_weight=sample_weight) for (class_, warm_start_coef_) in zip(classes_, warm_start_coef)) fold_coefs_, _, n_iter_ = zip(*fold_coefs_) self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:, 0] if self.multi_class == 'multinomial': self.coef_ = fold_coefs_[0][0] else: self.coef_ = np.asarray(fold_coefs_) self.coef_ = self.coef_.reshape(n_classes, n_features + int(self.fit_intercept)) if self.fit_intercept: self.intercept_ = self.coef_[:, -1] self.coef_ = self.coef_[:, :-1] return self def predict_proba(self, X): """Probability estimates. The returned estimates for all classes are ordered by the label of classes. For a multi_class problem, if multi_class is set to be "multinomial" the softmax function is used to find the predicted probability of each class. Else use a one-vs-rest approach, i.e calculate the probability of each class assuming it to be positive using the logistic function. and normalize these values across all the classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ if not hasattr(self, "coef_"): raise NotFittedError("Call fit before prediction") calculate_ovr = self.coef_.shape[0] == 1 or self.multi_class == "ovr" if calculate_ovr: return super(LogisticRegression, self)._predict_proba_lr(X) else: return softmax(self.decision_function(X), copy=False) def predict_log_proba(self, X): """Log of probability estimates. The returned estimates for all classes are ordered by the label of classes. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- T : array-like, shape = [n_samples, n_classes] Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``. """ return np.log(self.predict_proba(X)) class LogisticRegressionCV(LogisticRegression, BaseEstimator, LinearClassifierMixin, _LearntSelectorMixin): """Logistic Regression CV (aka logit, MaxEnt) classifier. This class implements logistic regression using liblinear, newton-cg, sag of lbfgs optimizer. The newton-cg, sag and lbfgs solvers support only L2 regularization with primal formulation. The liblinear solver supports both L1 and L2 regularization, with a dual formulation only for the L2 penalty. For the grid of Cs values (that are set by default to be ten values in a logarithmic scale between 1e-4 and 1e4), the best hyperparameter is selected by the cross-validator StratifiedKFold, but it can be changed using the cv parameter. In the case of newton-cg and lbfgs solvers, we warm start along the path i.e guess the initial coefficients of the present fit to be the coefficients got after convergence in the previous fit, so it is supposed to be faster for high-dimensional dense data. For a multiclass problem, the hyperparameters for each class are computed using the best scores got by doing a one-vs-rest in parallel across all folds and classes. Hence this is not the true multinomial loss. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- Cs : list of floats | int Each of the values in Cs describes the inverse of regularization strength. If Cs is as an int, then a grid of Cs values are chosen in a logarithmic scale between 1e-4 and 1e4. Like in support vector machines, smaller values specify stronger regularization. fit_intercept : bool, default: True Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. .. versionadded:: 0.17 class_weight == 'balanced' cv : integer or cross-validation generator The default cross-validation generator used is Stratified K-Folds. If an integer is provided, then it is the number of folds used. See the module :mod:`sklearn.model_selection` module for the list of possible cross-validation objects. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. scoring : callabale Scoring function to use as cross-validation criteria. For a list of scoring functions that can be used, look at :mod:`sklearn.metrics`. The default scoring option used is accuracy_score. solver : {'newton-cg', 'lbfgs', 'liblinear', 'sag'} Algorithm to use in the optimization problem. - For small datasets, 'liblinear' is a good choice, whereas 'sag' is faster for large ones. - For multiclass problems, only 'newton-cg', 'sag' and 'lbfgs' handle multinomial loss; 'liblinear' is limited to one-versus-rest schemes. - 'newton-cg', 'lbfgs' and 'sag' only handle L2 penalty. - 'liblinear' might be slower in LogisticRegressionCV because it does not handle warm-starting. Note that 'sag' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. .. versionadded:: 0.17 Stochastic Average Gradient descent solver. tol : float, optional Tolerance for stopping criteria. max_iter : int, optional Maximum number of iterations of the optimization algorithm. n_jobs : int, optional Number of CPU cores used during the cross-validation loop. If given a value of -1, all cores are used. verbose : int For the 'liblinear', 'sag' and 'lbfgs' solvers set verbose to any positive number for verbosity. refit : bool If set to True, the scores are averaged across all folds, and the coefs and the C that corresponds to the best score is taken, and a final refit is done using these parameters. Otherwise the coefs, intercepts and C that correspond to the best scores across folds are averaged. multi_class : str, {'ovr', 'multinomial'} Multiclass option can be either 'ovr' or 'multinomial'. If the option chosen is 'ovr', then a binary problem is fit for each label. Else the loss minimised is the multinomial loss fit across the entire probability distribution. Works only for the 'newton-cg', 'sag' and 'lbfgs' solver. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. intercept_scaling : float, default 1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. Attributes ---------- coef_ : array, shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function. `coef_` is of shape (1, n_features) when the given problem is binary. `coef_` is readonly property derived from `raw_coef_` that follows the internal memory layout of liblinear. intercept_ : array, shape (1,) or (n_classes,) Intercept (a.k.a. bias) added to the decision function. It is available only when parameter intercept is set to True and is of shape(1,) when the problem is binary. Cs_ : array Array of C i.e. inverse of regularization parameter values used for cross-validation. coefs_paths_ : array, shape ``(n_folds, len(Cs_), n_features)`` or \ ``(n_folds, len(Cs_), n_features + 1)`` dict with classes as the keys, and the path of coefficients obtained during cross-validating across each fold and then across each Cs after doing an OvR for the corresponding class as values. If the 'multi_class' option is set to 'multinomial', then the coefs_paths are the coefficients corresponding to each class. Each dict value has shape ``(n_folds, len(Cs_), n_features)`` or ``(n_folds, len(Cs_), n_features + 1)`` depending on whether the intercept is fit or not. scores_ : dict dict with classes as the keys, and the values as the grid of scores obtained during cross-validating each fold, after doing an OvR for the corresponding class. If the 'multi_class' option given is 'multinomial' then the same scores are repeated across all classes, since this is the multinomial class. Each dict value has shape (n_folds, len(Cs)) C_ : array, shape (n_classes,) or (n_classes - 1,) Array of C that maps to the best scores across every class. If refit is set to False, then for each class, the best C is the average of the C's that correspond to the best scores for each fold. n_iter_ : array, shape (n_classes, n_folds, n_cs) or (1, n_folds, n_cs) Actual number of iterations for all classes, folds and Cs. In the binary or multinomial cases, the first dimension is equal to 1. See also -------- LogisticRegression """ def __init__(self, Cs=10, fit_intercept=True, cv=None, dual=False, penalty='l2', scoring=None, solver='lbfgs', tol=1e-4, max_iter=100, class_weight=None, n_jobs=1, verbose=0, refit=True, intercept_scaling=1., multi_class='ovr', random_state=None): self.Cs = Cs self.fit_intercept = fit_intercept self.cv = cv self.dual = dual self.penalty = penalty self.scoring = scoring self.tol = tol self.max_iter = max_iter self.class_weight = class_weight self.n_jobs = n_jobs self.verbose = verbose self.solver = solver self.refit = refit self.intercept_scaling = intercept_scaling self.multi_class = multi_class self.random_state = random_state def fit(self, X, y, sample_weight=None): """Fit the model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) Target vector relative to X. sample_weight : array-like, shape (n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- self : object Returns self. """ _check_solver_option(self.solver, self.multi_class, self.penalty, self.dual) if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0: raise ValueError("Maximum number of iteration must be positive;" " got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) X, y = check_X_y(X, y, accept_sparse='csr', dtype=np.float64, order="C") if self.solver == 'sag': max_squared_sum = row_norms(X, squared=True).max() else: max_squared_sum = None check_classification_targets(y) if y.ndim == 2 and y.shape[1] == 1: warnings.warn( "A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning) y = np.ravel(y) check_consistent_length(X, y) # init cross-validation generator cv = check_cv(self.cv, y, classifier=True) folds = list(cv.split(X, y)) self._enc = LabelEncoder() self._enc.fit(y) labels = self.classes_ = np.unique(y) n_classes = len(labels) if n_classes < 2: raise ValueError("This solver needs samples of at least 2 classes" " in the data, but the data contains only one" " class: %r" % self.classes_[0]) if n_classes == 2: # OvR in case of binary problems is as good as fitting # the higher label n_classes = 1 labels = labels[1:] # We need this hack to iterate only once over labels, in the case of # multi_class = multinomial, without changing the value of the labels. iter_labels = labels if self.multi_class == 'multinomial': iter_labels = [None] if self.class_weight and not(isinstance(self.class_weight, dict) or self.class_weight in ['balanced', 'auto']): # 'auto' is deprecated and will be removed in 0.19 raise ValueError("class_weight provided should be a " "dict or 'balanced'") # compute the class weights for the entire dataset y if self.class_weight in ("auto", "balanced"): classes = np.unique(y) class_weight = compute_class_weight(self.class_weight, classes, y) class_weight = dict(zip(classes, class_weight)) else: class_weight = self.class_weight path_func = delayed(_log_reg_scoring_path) # The SAG solver releases the GIL so it's more efficient to use # threads for this solver. backend = 'threading' if self.solver == 'sag' else 'multiprocessing' fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=backend)( path_func(X, y, train, test, pos_class=label, Cs=self.Cs, fit_intercept=self.fit_intercept, penalty=self.penalty, dual=self.dual, solver=self.solver, tol=self.tol, max_iter=self.max_iter, verbose=self.verbose, class_weight=class_weight, scoring=self.scoring, multi_class=self.multi_class, intercept_scaling=self.intercept_scaling, random_state=self.random_state, max_squared_sum=max_squared_sum, sample_weight=sample_weight ) for label in iter_labels for train, test in folds) if self.multi_class == 'multinomial': multi_coefs_paths, Cs, multi_scores, n_iter_ = zip(*fold_coefs_) multi_coefs_paths = np.asarray(multi_coefs_paths) multi_scores = np.asarray(multi_scores) # This is just to maintain API similarity between the ovr and # multinomial option. # Coefs_paths in now n_folds X len(Cs) X n_classes X n_features # we need it to be n_classes X len(Cs) X n_folds X n_features # to be similar to "ovr". coefs_paths = np.rollaxis(multi_coefs_paths, 2, 0) # Multinomial has a true score across all labels. Hence the # shape is n_folds X len(Cs). We need to repeat this score # across all labels for API similarity. scores = np.tile(multi_scores, (n_classes, 1, 1)) self.Cs_ = Cs[0] self.n_iter_ = np.reshape(n_iter_, (1, len(folds), len(self.Cs_))) else: coefs_paths, Cs, scores, n_iter_ = zip(*fold_coefs_) self.Cs_ = Cs[0] coefs_paths = np.reshape(coefs_paths, (n_classes, len(folds), len(self.Cs_), -1)) self.n_iter_ = np.reshape(n_iter_, (n_classes, len(folds), len(self.Cs_))) self.coefs_paths_ = dict(zip(labels, coefs_paths)) scores = np.reshape(scores, (n_classes, len(folds), -1)) self.scores_ = dict(zip(labels, scores)) self.C_ = list() self.coef_ = np.empty((n_classes, X.shape[1])) self.intercept_ = np.zeros(n_classes) # hack to iterate only once for multinomial case. if self.multi_class == 'multinomial': scores = multi_scores coefs_paths = multi_coefs_paths for index, label in enumerate(iter_labels): if self.multi_class == 'ovr': scores = self.scores_[label] coefs_paths = self.coefs_paths_[label] if self.refit: best_index = scores.sum(axis=0).argmax() C_ = self.Cs_[best_index] self.C_.append(C_) if self.multi_class == 'multinomial': coef_init = np.mean(coefs_paths[:, best_index, :, :], axis=0) else: coef_init = np.mean(coefs_paths[:, best_index, :], axis=0) w, _, _ = logistic_regression_path( X, y, pos_class=label, Cs=[C_], solver=self.solver, fit_intercept=self.fit_intercept, coef=coef_init, max_iter=self.max_iter, tol=self.tol, penalty=self.penalty, copy=False, class_weight=class_weight, multi_class=self.multi_class, verbose=max(0, self.verbose - 1), random_state=self.random_state, check_input=False, max_squared_sum=max_squared_sum, sample_weight=sample_weight) w = w[0] else: # Take the best scores across every fold and the average of all # coefficients corresponding to the best scores. best_indices = np.argmax(scores, axis=1) w = np.mean([coefs_paths[i][best_indices[i]] for i in range(len(folds))], axis=0) self.C_.append(np.mean(self.Cs_[best_indices])) if self.multi_class == 'multinomial': self.C_ = np.tile(self.C_, n_classes) self.coef_ = w[:, :X.shape[1]] if self.fit_intercept: self.intercept_ = w[:, -1] else: self.coef_[index] = w[: X.shape[1]] if self.fit_intercept: self.intercept_[index] = w[-1] self.C_ = np.asarray(self.C_) return self
bsd-3-clause
soylentdeen/BlurryApple
Disturbances/calc_TF.py
1
1679
import scipy import pyfits import numpy import matplotlib.pyplot as pyplot from scipy.optimize import leastsq as lsq fig = pyplot.figure(0) fig.clear() df = '/home/deen/Data/GRAVITY/Disturbance/disturb_0_0.1_open/disturb_0_0.1_open.fits' CMf = '/home/deen/Code/Python/BlurryApple/Control/Output/HODM_CM20.fits' data = pyfits.getdata(df) CM = pyfits.getdata(CMf) CM = CM[0:60] frames = data.field(0) times = data.field(1)+1e-6*data.field(2) grad = data.field(4) hodm = data.field(5) counter = numpy.array(range(len(times)-1)) avg_dt = times[counter+1] - times[counter] print numpy.mean(avg_dt) d = numpy.mean(avg_dt) projections = [] for g in grad: projections.append(CM.dot(g)) projections = numpy.array(projections) ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) #ax.plot(projections[:,0]) #ax.plot(hodm[:,0]) #ax.scatter(hodm[0:400,0], projections[1:401,0]) sig_H = hodm[0:400,0] sig_P = projections[0:400,0] FFT_H = numpy.fft.fft(sig_H) FFT_P = numpy.fft.fft(sig_P) ratio = FFT_P/FFT_H ratio_freq = numpy.fft.fftfreq(len(sig_H), d=d) #phase = numpy.arctan(ratio) phase = numpy.arctan2(numpy.imag(ratio), numpy.real(ratio)) freqs = scipy.where( (ratio_freq > 0) & (ratio_freq < 20.0))[0] guess = [-1.0] def calc_error(g, xvals, yvals): e = 0.0; for x, y in zip(xvals, yvals): e+= (x*g[0] - y)**2.0 return e fit = lsq(calc_error, guess, args=(ratio_freq[freqs], phase[freqs])) line = [] for i in ratio_freq[freqs]: line.append(i*fit[0][0]) ax.plot(ratio_freq[freqs], phase[freqs]) ax.plot(ratio_freq[freqs], line) latency = fit[0][0]/(2.0*3.14159) print "Latency : ", numpy.abs(latency) #ax.plot(ratio_freq, numpy.abs(ratio)) fig.show()
gpl-2.0
longzhi/Zappa
tests/tests.py
1
71351
# -*- coding: utf8 -*- import base64 import collections import json from io import BytesIO, StringIO import flask import mock import os import random import string import zipfile import re import unittest import shutil import sys import tempfile if sys.version_info[0] < 3: from contextlib import nested from cStringIO import StringIO as OldStringIO from builtins import bytes from past.builtins import basestring from click.exceptions import ClickException from lambda_packages import lambda_packages from .utils import placebo_session, patch_open from zappa.cli import ZappaCLI, shamelessly_promote from zappa.ext.django_zappa import get_django_wsgi from zappa.handler import LambdaHandler, lambda_handler from zappa.letsencrypt import get_cert_and_update_domain, create_domain_key, create_domain_csr, create_chained_certificate, get_cert, cleanup, parse_account_key, parse_csr, sign_certificate, encode_certificate, register_account, verify_challenge from zappa.utilities import (detect_django_settings, copytree, detect_flask_apps, add_event_source, remove_event_source, get_event_source_status, parse_s3_url, human_size, string_to_timestamp, validate_name, InvalidAwsLambdaName, contains_python_files_or_subdirs, get_venv_from_python_version) from zappa.wsgi import create_wsgi_request, common_log from zappa.core import Zappa, ASSUME_POLICY, ATTACH_POLICY def random_string(length): return ''.join(random.choice(string.printable) for _ in range(length)) class TestZappa(unittest.TestCase): def setUp(self): self.sleep_patch = mock.patch('time.sleep', return_value=None) # Tests expect us-east-1. # If the user has set a different region in env variables, we set it aside for now and use us-east-1 self.users_current_region_name = os.environ.get('AWS_DEFAULT_REGION', None) os.environ['AWS_DEFAULT_REGION'] = 'us-east-1' if not os.environ.get('PLACEBO_MODE') == 'record': self.sleep_patch.start() def tearDown(self): if not os.environ.get('PLACEBO_MODE') == 'record': self.sleep_patch.stop() del os.environ['AWS_DEFAULT_REGION'] if self.users_current_region_name is not None: # Give the user their AWS region back, we're done testing with us-east-1. os.environ['AWS_DEFAULT_REGION'] = self.users_current_region_name ## # Sanity Tests ## def test_test(self): self.assertTrue(True) ## # Basic Tests ## def test_zappa(self): self.assertTrue(True) Zappa() # @mock.patch('zappa.zappa.find_packages') # @mock.patch('os.remove') # def test_copy_editable_packages(self, mock_remove, mock_find_packages): # temp_package_dir = '/var/folders/rn/9tj3_p0n1ln4q4jn1lgqy4br0000gn/T/1480455339' # egg_links = [ # '/user/test/.virtualenvs/test/lib/' + get_venv_from_python_version() + '/site-packages/package-python.egg-link' # ] # egg_path = "/some/other/directory/package" # mock_find_packages.return_value = ["package", "package.subpackage", "package.another"] # temp_egg_link = os.path.join(temp_package_dir, 'package-python.egg-link') # if sys.version_info[0] < 3: # z = Zappa() # with nested( # patch_open(), mock.patch('glob.glob'), mock.patch('zappa.zappa.copytree') # ) as ((mock_open, mock_file), mock_glob, mock_copytree): # # We read in the contents of the egg-link file # mock_file.read.return_value = "{}\n.".format(egg_path) # # we use glob.glob to get the egg-links in the temp packages directory # mock_glob.return_value = [temp_egg_link] # z.copy_editable_packages(egg_links, temp_package_dir) # # make sure we copied the right directories # mock_copytree.assert_called_with( # os.path.join(egg_path, 'package'), # os.path.join(temp_package_dir, 'package'), # symlinks=False # ) # self.assertEqual(mock_copytree.call_count, 1) # # make sure it removes the egg-link from the temp packages directory # mock_remove.assert_called_with(temp_egg_link) # self.assertEqual(mock_remove.call_count, 1) def test_create_lambda_package(self): # mock the pip.get_installed_distributions() to include a package in lambda_packages so that the code # for zipping pre-compiled packages gets called mock_named_tuple = collections.namedtuple('mock_named_tuple', ['project_name', 'location']) mock_return_val = [mock_named_tuple(list(lambda_packages.keys())[0], '/path')] # choose name of 1st package in lambda_packages with mock.patch('pip.get_installed_distributions', return_value=mock_return_val): z = Zappa() path = z.create_lambda_zip(handler_file=os.path.realpath(__file__)) self.assertTrue(os.path.isfile(path)) os.remove(path) def test_get_manylinux_python27(self): z = Zappa(runtime='python2.7') self.assertNotEqual(z.get_manylinux_wheel('pandas'), None) self.assertEqual(z.get_manylinux_wheel('derpderpderpderp'), None) # mock the pip.get_installed_distributions() to include a package in manylinux so that the code # for zipping pre-compiled packages gets called mock_named_tuple = collections.namedtuple('mock_named_tuple', ['project_name', 'location']) mock_return_val = [mock_named_tuple('pandas', '/path')] with mock.patch('pip.get_installed_distributions', return_value=mock_return_val): z = Zappa() path = z.create_lambda_zip(handler_file=os.path.realpath(__file__)) self.assertTrue(os.path.isfile(path)) os.remove(path) def test_get_manylinux_python36(self): z = Zappa(runtime='python3.6') self.assertNotEqual(z.get_manylinux_wheel('psycopg2'), None) self.assertEqual(z.get_manylinux_wheel('derpderpderpderp'), None) # mock the pip.get_installed_distributions() to include a package in manylinux so that the code # for zipping pre-compiled packages gets called mock_named_tuple = collections.namedtuple('mock_named_tuple', ['project_name', 'location']) mock_return_val = [mock_named_tuple('psycopg2', '/path')] with mock.patch('pip.get_installed_distributions', return_value=mock_return_val): z = Zappa() path = z.create_lambda_zip(handler_file=os.path.realpath(__file__)) self.assertTrue(os.path.isfile(path)) os.remove(path) def test_load_credentials(self): z = Zappa() z.aws_region = 'us-east-1' z.load_credentials() self.assertEqual(z.boto_session.region_name, 'us-east-1') self.assertEqual(z.aws_region, 'us-east-1') z.aws_region = 'eu-west-1' z.profile_name = 'default' z.load_credentials() self.assertEqual(z.boto_session.region_name, 'eu-west-1') self.assertEqual(z.aws_region, 'eu-west-1') creds = { 'AWS_ACCESS_KEY_ID': 'AK123', 'AWS_SECRET_ACCESS_KEY': 'JKL456', 'AWS_DEFAULT_REGION': 'us-west-1' } with mock.patch.dict('os.environ', creds): z.aws_region = None z.load_credentials() loaded_creds = z.boto_session._session.get_credentials() self.assertEqual(loaded_creds.access_key, 'AK123') self.assertEqual(loaded_creds.secret_key, 'JKL456') self.assertEqual(z.boto_session.region_name, 'us-west-1') def test_create_api_gateway_routes_with_different_auth_methods(self): z = Zappa() z.parameter_depth = 1 z.integration_response_codes = [200] z.method_response_codes = [200] z.http_methods = ['GET'] z.credentials_arn = 'arn:aws:iam::12345:role/ZappaLambdaExecution' lambda_arn = 'arn:aws:lambda:us-east-1:12345:function:helloworld' # No auth at all z.create_stack_template(lambda_arn, 'helloworld', False, False, None) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("NONE", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("NONE", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual(False, parsable_template["Resources"]["GET0"]["Properties"]["ApiKeyRequired"]) self.assertEqual(False, parsable_template["Resources"]["GET1"]["Properties"]["ApiKeyRequired"]) # IAM auth z.create_stack_template(lambda_arn, 'helloworld', False, True, None) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual(False, parsable_template["Resources"]["GET0"]["Properties"]["ApiKeyRequired"]) self.assertEqual(False, parsable_template["Resources"]["GET1"]["Properties"]["ApiKeyRequired"]) # CORS with auth z.create_stack_template(lambda_arn, 'helloworld', False, True, None, True) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual("NONE", parsable_template["Resources"]["OPTIONS0"]["Properties"]["AuthorizationType"]) self.assertEqual("NONE", parsable_template["Resources"]["OPTIONS1"]["Properties"]["AuthorizationType"]) self.assertEqual("MOCK", parsable_template["Resources"]["OPTIONS0"]["Properties"]["Integration"]["Type"]) self.assertEqual("MOCK", parsable_template["Resources"]["OPTIONS1"]["Properties"]["Integration"]["Type"]) self.assertEqual("'Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token'", parsable_template["Resources"]["OPTIONS0"]["Properties"]["Integration"]["IntegrationResponses"][0]["ResponseParameters"]["method.response.header.Access-Control-Allow-Headers"]) self.assertEqual("'Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-Token'", parsable_template["Resources"]["OPTIONS1"]["Properties"]["Integration"]["IntegrationResponses"][0]["ResponseParameters"]["method.response.header.Access-Control-Allow-Headers"]) self.assertTrue(parsable_template["Resources"]["OPTIONS0"]["Properties"]["MethodResponses"][0]["ResponseParameters"]["method.response.header.Access-Control-Allow-Headers"]) self.assertTrue(parsable_template["Resources"]["OPTIONS1"]["Properties"]["MethodResponses"][0]["ResponseParameters"]["method.response.header.Access-Control-Allow-Headers"]) self.assertEqual(False, parsable_template["Resources"]["GET0"]["Properties"]["ApiKeyRequired"]) self.assertEqual(False, parsable_template["Resources"]["GET1"]["Properties"]["ApiKeyRequired"]) # API Key auth z.create_stack_template(lambda_arn, 'helloworld', True, True, None) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual(True, parsable_template["Resources"]["GET0"]["Properties"]["ApiKeyRequired"]) self.assertEqual(True, parsable_template["Resources"]["GET1"]["Properties"]["ApiKeyRequired"]) # Authorizer and IAM authorizer = { "function": "runapi.authorization.gateway_authorizer.evaluate_token", "result_ttl": 300, "token_header": "Authorization", "validation_expression": "xxx" } z.create_stack_template(lambda_arn, 'helloworld', False, True, authorizer) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("AWS_IAM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) with self.assertRaises(KeyError): parsable_template["Resources"]["Authorizer"] # Authorizer with validation expression invocations_uri = 'arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/' + lambda_arn + '/invocations' z.create_stack_template(lambda_arn, 'helloworld', False, False, authorizer) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("CUSTOM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("CUSTOM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual("TOKEN", parsable_template["Resources"]["Authorizer"]["Properties"]["Type"]) self.assertEqual("ZappaAuthorizer", parsable_template["Resources"]["Authorizer"]["Properties"]["Name"]) self.assertEqual(300, parsable_template["Resources"]["Authorizer"]["Properties"]["AuthorizerResultTtlInSeconds"]) self.assertEqual(invocations_uri, parsable_template["Resources"]["Authorizer"]["Properties"]["AuthorizerUri"]) self.assertEqual(z.credentials_arn, parsable_template["Resources"]["Authorizer"]["Properties"]["AuthorizerCredentials"]) self.assertEqual("xxx", parsable_template["Resources"]["Authorizer"]["Properties"]["IdentityValidationExpression"]) # Authorizer without validation expression authorizer.pop('validation_expression', None) z.create_stack_template(lambda_arn, 'helloworld', False, False, authorizer) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual("CUSTOM", parsable_template["Resources"]["GET0"]["Properties"]["AuthorizationType"]) self.assertEqual("CUSTOM", parsable_template["Resources"]["GET1"]["Properties"]["AuthorizationType"]) self.assertEqual("TOKEN", parsable_template["Resources"]["Authorizer"]["Properties"]["Type"]) with self.assertRaises(KeyError): parsable_template["Resources"]["Authorizer"]["Properties"]["IdentityValidationExpression"] # Authorizer with arn authorizer = { "arn": "arn:aws:lambda:us-east-1:123456789012:function:my-function", } z.create_stack_template(lambda_arn, 'helloworld', False, False, authorizer) parsable_template = json.loads(z.cf_template.to_json()) self.assertEqual('arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/arn:aws:lambda:us-east-1:123456789012:function:my-function/invocations', parsable_template["Resources"]["Authorizer"]["Properties"]["AuthorizerUri"]) def test_policy_json(self): # ensure the policy docs are valid JSON json.loads(ASSUME_POLICY) json.loads(ATTACH_POLICY) def test_schedule_events(self): z = Zappa() path = os.getcwd() # z.schedule_events # TODO ## # Logging ## def test_logging(self): """ TODO """ Zappa() ## # Mapping and pattern tests # Deprecated ## # def test_redirect_pattern(self): # test_urls = [ # # a regular endpoint url # 'https://asdf1234.execute-api.us-east-1.amazonaws.com/env/path/to/thing', # # an external url (outside AWS) # 'https://github.com/Miserlou/zappa/issues?q=is%3Aissue+is%3Aclosed', # # a local url # '/env/path/to/thing' # ] # for code in ['301', '302']: # pattern = Zappa.selection_pattern(code) # for url in test_urls: # self.assertRegexpMatches(url, pattern) # def test_b64_pattern(self): # head = '\{"http_status": ' # for code in ['400', '401', '402', '403', '404', '500']: # pattern = Zappa.selection_pattern(code) # document = head + code + random_string(50) # self.assertRegexpMatches(document, pattern) # for bad_code in ['200', '301', '302']: # document = base64.b64encode(head + bad_code + random_string(50)) # self.assertNotRegexpMatches(document, pattern) # def test_200_pattern(self): # pattern = Zappa.selection_pattern('200') # self.assertEqual(pattern, '') ## # WSGI ## def test_wsgi_event(self): ## This is a pre-proxy+ event # event = { # "body": "", # "headers": { # "Via": "1.1 e604e934e9195aaf3e36195adbcb3e18.cloudfront.net (CloudFront)", # "Accept-Language": "en-US,en;q=0.5", # "Accept-Encoding": "gzip", # "CloudFront-Is-SmartTV-Viewer": "false", # "CloudFront-Forwarded-Proto": "https", # "X-Forwarded-For": "109.81.209.118, 216.137.58.43", # "CloudFront-Viewer-Country": "CZ", # "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", # "X-Forwarded-Proto": "https", # "X-Amz-Cf-Id": "LZeP_TZxBgkDt56slNUr_H9CHu1Us5cqhmRSswOh1_3dEGpks5uW-g==", # "CloudFront-Is-Tablet-Viewer": "false", # "X-Forwarded-Port": "443", # "CloudFront-Is-Mobile-Viewer": "false", # "CloudFront-Is-Desktop-Viewer": "true", # "Content-Type": "application/json" # }, # "params": { # "parameter_1": "asdf1", # "parameter_2": "asdf2", # }, # "method": "POST", # "query": { # "dead": "beef" # } # } event = { u'body': None, u'resource': u'/', u'requestContext': { u'resourceId': u'6cqjw9qu0b', u'apiId': u'9itr2lba55', u'resourcePath': u'/', u'httpMethod': u'GET', u'requestId': u'c17cb1bf-867c-11e6-b938-ed697406e3b5', u'accountId': u'724336686645', u'identity': { u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:48.0) Gecko/20100101 Firefox/48.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'50.191.225.98', u'accountId': None, }, u'stage': u'devorr', }, u'queryStringParameters': None, u'httpMethod': u'GET', u'pathParameters': None, u'headers': { u'Via': u'1.1 6801928d54163af944bf854db8d5520e.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'CloudFront-Is-SmartTV-Viewer': u'false', u'CloudFront-Forwarded-Proto': u'https', u'X-Forwarded-For': u'50.191.225.98, 204.246.168.101', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'Upgrade-Insecure-Requests': u'1', u'Host': u'9itr2lba55.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'X-Amz-Cf-Id': u'qgNdqKT0_3RMttu5KjUdnvHI3OKm1BWF8mGD2lX8_rVrJQhhp-MLDw==', u'CloudFront-Is-Tablet-Viewer': u'false', u'X-Forwarded-Port': u'443', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:48.0) Gecko/20100101 Firefox/48.0', u'CloudFront-Is-Mobile-Viewer': u'false', u'CloudFront-Is-Desktop-Viewer': u'true', }, u'stageVariables': None, u'path': u'/', } request = create_wsgi_request(event) # def test_wsgi_path_info(self): # # Test no parameters (site.com/) # event = { # "body": {}, # "headers": {}, # "pathParameters": {}, # "path": u'/', # "httpMethod": "GET", # "queryStringParameters": {} # } # request = create_wsgi_request(event, trailing_slash=True) # self.assertEqual("/", request['PATH_INFO']) # request = create_wsgi_request(event, trailing_slash=False) # self.assertEqual("/", request['PATH_INFO']) # # Test parameters (site.com/asdf1/asdf2 or site.com/asdf1/asdf2/) # event_asdf2 = {u'body': None, u'resource': u'/{proxy+}', u'requestContext': {u'resourceId': u'dg451y', u'apiId': u'79gqbxq31c', u'resourcePath': u'/{proxy+}', u'httpMethod': u'GET', u'requestId': u'766df67f-8991-11e6-b2c4-d120fedb94e5', u'accountId': u'724336686645', u'identity': {u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'96.90.37.59', u'accountId': None}, u'stage': u'devorr'}, u'queryStringParameters': None, u'httpMethod': u'GET', u'pathParameters': {u'proxy': u'asdf1/asdf2'}, u'headers': {u'Via': u'1.1 b2aeb492548a8a2d4036401355f928dd.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'X-Forwarded-Port': u'443', u'X-Forwarded-For': u'96.90.37.59, 54.240.144.50', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'Upgrade-Insecure-Requests': u'1', u'Host': u'79gqbxq31c.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'X-Amz-Cf-Id': u'BBFP-RhGDrQGOzoCqjnfB2I_YzWt_dac9S5vBcSAEaoM4NfYhAQy7Q==', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'CloudFront-Forwarded-Proto': u'https'}, u'stageVariables': None, u'path': u'/asdf1/asdf2'} # event_asdf2_slash = {u'body': None, u'resource': u'/{proxy+}', u'requestContext': {u'resourceId': u'dg451y', u'apiId': u'79gqbxq31c', u'resourcePath': u'/{proxy+}', u'httpMethod': u'GET', u'requestId': u'd6fda925-8991-11e6-8bd8-b5ec6db19d57', u'accountId': u'724336686645', u'identity': {u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'96.90.37.59', u'accountId': None}, u'stage': u'devorr'}, u'queryStringParameters': None, u'httpMethod': u'GET', u'pathParameters': {u'proxy': u'asdf1/asdf2'}, u'headers': {u'Via': u'1.1 c70173a50d0076c99b5e680eb32d40bb.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'X-Forwarded-Port': u'443', u'X-Forwarded-For': u'96.90.37.59, 54.240.144.53', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'Upgrade-Insecure-Requests': u'1', u'Host': u'79gqbxq31c.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'Cookie': u'zappa=AQ4', u'X-Amz-Cf-Id': u'aU_i-iuT3llVUfXv2zv6uU-m77Oga7ANhd5ZYrCoqXBy4K7I2x3FZQ==', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'CloudFront-Forwarded-Proto': u'https'}, u'stageVariables': None, u'path': u'/asdf1/asdf2/'} # request = create_wsgi_request(event, trailing_slash=True) # self.assertEqual("/asdf1/asdf2/", request['PATH_INFO']) # request = create_wsgi_request(event, trailing_slash=False) # self.assertEqual("/asdf1/asdf2", request['PATH_INFO']) # request = create_wsgi_request(event, trailing_slash=False, script_name='asdf1') # self.assertEqual("/asdf1/asdf2", request['PATH_INFO']) def test_wsgi_path_info_unquoted(self): event = { "body": {}, "headers": {}, "pathParameters": {}, "path": '/path%3A1', # encoded /path:1 "httpMethod": "GET", "queryStringParameters": {}, "requestContext": {} } request = create_wsgi_request(event, trailing_slash=True) self.assertEqual("/path:1", request['PATH_INFO']) def test_wsgi_logging(self): # event = { # "body": {}, # "headers": {}, # "params": { # "parameter_1": "asdf1", # "parameter_2": "asdf2", # }, # "httpMethod": "GET", # "query": {} # } event = {u'body': None, u'resource': u'/{proxy+}', u'requestContext': {u'resourceId': u'dg451y', u'apiId': u'79gqbxq31c', u'resourcePath': u'/{proxy+}', u'httpMethod': u'GET', u'requestId': u'766df67f-8991-11e6-b2c4-d120fedb94e5', u'accountId': u'724336686645', u'identity': {u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'96.90.37.59', u'accountId': None}, u'stage': u'devorr'}, u'queryStringParameters': None, u'httpMethod': u'GET', u'pathParameters': {u'proxy': u'asdf1/asdf2'}, u'headers': {u'Via': u'1.1 b2aeb492548a8a2d4036401355f928dd.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'X-Forwarded-Port': u'443', u'X-Forwarded-For': u'96.90.37.59, 54.240.144.50', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'Upgrade-Insecure-Requests': u'1', u'Host': u'79gqbxq31c.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'X-Amz-Cf-Id': u'BBFP-RhGDrQGOzoCqjnfB2I_YzWt_dac9S5vBcSAEaoM4NfYhAQy7Q==', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:49.0) Gecko/20100101 Firefox/49.0', u'CloudFront-Forwarded-Proto': u'https'}, u'stageVariables': None, u'path': u'/asdf1/asdf2'} environ = create_wsgi_request(event, trailing_slash=False) response_tuple = collections.namedtuple('Response', ['status_code', 'content']) response = response_tuple(200, 'hello') le = common_log(environ, response, response_time=True) le = common_log(environ, response, response_time=False) def test_wsgi_multipart(self): #event = {u'body': u'LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS03Njk1MjI4NDg0Njc4MTc2NTgwNjMwOTYxDQpDb250ZW50LURpc3Bvc2l0aW9uOiBmb3JtLWRhdGE7IG5hbWU9Im15c3RyaW5nIg0KDQpkZGQNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tNzY5NTIyODQ4NDY3ODE3NjU4MDYzMDk2MS0tDQo=', u'headers': {u'Content-Type': u'multipart/form-data; boundary=---------------------------7695228484678176580630961', u'Via': u'1.1 38205a04d96d60185e88658d3185ccee.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'CloudFront-Is-SmartTV-Viewer': u'false', u'CloudFront-Forwarded-Proto': u'https', u'X-Forwarded-For': u'71.231.27.57, 104.246.180.51', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:45.0) Gecko/20100101 Firefox/45.0', u'Host': u'xo2z7zafjh.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'Cookie': u'zappa=AQ4', u'CloudFront-Is-Tablet-Viewer': u'false', u'X-Forwarded-Port': u'443', u'Referer': u'https://xo8z7zafjh.execute-api.us-east-1.amazonaws.com/former/post', u'CloudFront-Is-Mobile-Viewer': u'false', u'X-Amz-Cf-Id': u'31zxcUcVyUxBOMk320yh5NOhihn5knqrlYQYpGGyOngKKwJb0J0BAQ==', u'CloudFront-Is-Desktop-Viewer': u'true'}, u'params': {u'parameter_1': u'post'}, u'method': u'POST', u'query': {}} event = { u'body': u'LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS03Njk1MjI4NDg0Njc4MTc2NTgwNjMwOTYxDQpDb250ZW50LURpc3Bvc2l0aW9uOiBmb3JtLWRhdGE7IG5hbWU9Im15c3RyaW5nIg0KDQpkZGQNCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tNzY5NTIyODQ4NDY3ODE3NjU4MDYzMDk2MS0tDQo=', u'resource': u'/', u'requestContext': { u'resourceId': u'6cqjw9qu0b', u'apiId': u'9itr2lba55', u'resourcePath': u'/', u'httpMethod': u'POST', u'requestId': u'c17cb1bf-867c-11e6-b938-ed697406e3b5', u'accountId': u'724336686645', u'identity': { u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:48.0) Gecko/20100101 Firefox/48.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'50.191.225.98', u'accountId': None, }, u'stage': u'devorr', }, u'queryStringParameters': None, u'httpMethod': u'POST', u'pathParameters': None, u'headers': {u'Content-Type': u'multipart/form-data; boundary=---------------------------7695228484678176580630961', u'Via': u'1.1 38205a04d96d60185e88658d3185ccee.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'CloudFront-Is-SmartTV-Viewer': u'false', u'CloudFront-Forwarded-Proto': u'https', u'X-Forwarded-For': u'71.231.27.57, 104.246.180.51', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:45.0) Gecko/20100101 Firefox/45.0', u'Host': u'xo2z7zafjh.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'Cookie': u'zappa=AQ4', u'CloudFront-Is-Tablet-Viewer': u'false', u'X-Forwarded-Port': u'443', u'Referer': u'https://xo8z7zafjh.execute-api.us-east-1.amazonaws.com/former/post', u'CloudFront-Is-Mobile-Viewer': u'false', u'X-Amz-Cf-Id': u'31zxcUcVyUxBOMk320yh5NOhihn5knqrlYQYpGGyOngKKwJb0J0BAQ==', u'CloudFront-Is-Desktop-Viewer': u'true'}, u'stageVariables': None, u'path': u'/', } environ = create_wsgi_request(event, trailing_slash=False) response_tuple = collections.namedtuple('Response', ['status_code', 'content']) response = response_tuple(200, 'hello') def test_wsgi_without_body(self): event = { u'body': None, u'resource': u'/', u'requestContext': { u'resourceId': u'6cqjw9qu0b', u'apiId': u'9itr2lba55', u'resourcePath': u'/', u'httpMethod': u'POST', u'requestId': u'c17cb1bf-867c-11e6-b938-ed697406e3b5', u'accountId': u'724336686645', u'identity': { u'apiKey': None, u'userArn': None, u'cognitoAuthenticationType': None, u'caller': None, u'userAgent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:48.0) Gecko/20100101 Firefox/48.0', u'user': None, u'cognitoIdentityPoolId': None, u'cognitoIdentityId': None, u'cognitoAuthenticationProvider': None, u'sourceIp': u'50.191.225.98', u'accountId': None, }, u'stage': u'devorr', }, u'queryStringParameters': None, u'httpMethod': u'POST', u'pathParameters': None, u'headers': {u'Via': u'1.1 38205a04d96d60185e88658d3185ccee.cloudfront.net (CloudFront)', u'Accept-Language': u'en-US,en;q=0.5', u'Accept-Encoding': u'gzip, deflate, br', u'CloudFront-Is-SmartTV-Viewer': u'false', u'CloudFront-Forwarded-Proto': u'https', u'X-Forwarded-For': u'71.231.27.57, 104.246.180.51', u'CloudFront-Viewer-Country': u'US', u'Accept': u'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', u'User-Agent': u'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:45.0) Gecko/20100101 Firefox/45.0', u'Host': u'xo2z7zafjh.execute-api.us-east-1.amazonaws.com', u'X-Forwarded-Proto': u'https', u'Cookie': u'zappa=AQ4', u'CloudFront-Is-Tablet-Viewer': u'false', u'X-Forwarded-Port': u'443', u'Referer': u'https://xo8z7zafjh.execute-api.us-east-1.amazonaws.com/former/post', u'CloudFront-Is-Mobile-Viewer': u'false', u'X-Amz-Cf-Id': u'31zxcUcVyUxBOMk320yh5NOhihn5knqrlYQYpGGyOngKKwJb0J0BAQ==', u'CloudFront-Is-Desktop-Viewer': u'true'}, u'stageVariables': None, u'path': u'/', u'isBase64Encoded': True } environ = create_wsgi_request(event, trailing_slash=False) response_tuple = collections.namedtuple('Response', ['status_code', 'content']) response = response_tuple(200, 'hello') def test_wsgi_from_apigateway_testbutton(self): """ API Gateway resources have a "test bolt" button on methods. This button sends some empty dicts as 'null' instead of '{}'. """ event = { "resource": "/", "path": "/", "httpMethod": "GET", "headers": None, "queryStringParameters": None, "pathParameters": None, "stageVariables": None, "requestContext":{ "accountId": "0123456", "resourceId": "qwertyasdf", "stage": "test-invoke-stage", "requestId": "test-invoke-request", "identity":{ "cognitoIdentityPoolId": None, "accountId": "0123456", "cognitoIdentityId": None, "caller": "MYCALLERID", "apiKey": "test-invoke-api-key", "sourceIp": "test-invoke-source-ip", "accessKey": "MYACCESSKEY", "cognitoAuthenticationType": None, "cognitoAuthenticationProvider": None, "userArn": "arn:aws:iam::fooo:user/my.username", "userAgent": "Apache-HttpClient/4.5.x (Java/1.8.0_112)", "user": "MYCALLERID" }, "resourcePath": "/", "httpMethod": "GET", "apiId": "myappid" }, "body": None, "isBase64Encoded": False } environ = create_wsgi_request(event, trailing_slash=False) response_tuple = collections.namedtuple('Response', ['status_code', 'content']) response = response_tuple(200, 'hello') ## # Handler ## ## # CLI ## def test_cli_sanity(self): zappa_cli = ZappaCLI() return def test_load_settings(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' zappa_cli.load_settings('test_settings.json') self.assertEqual(False, zappa_cli.stage_config['touch']) def test_load_extended_settings(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'extendo' zappa_cli.load_settings('test_settings.json') self.assertEqual('lmbda', zappa_cli.stage_config['s3_bucket']) self.assertEqual(True, zappa_cli.stage_config['touch']) zappa_cli = ZappaCLI() zappa_cli.api_stage = 'extendofail' with self.assertRaises(ClickException): zappa_cli.load_settings('test_settings.json') zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' with self.assertRaises(RuntimeError): zappa_cli.load_settings('tests/test_bad_circular_extends_settings.json') zappa_cli = ZappaCLI() zappa_cli.api_stage = 'extendo2' zappa_cli.load_settings('test_settings.json') self.assertEqual('lmbda2', zappa_cli.stage_config['s3_bucket']) # Second Extension self.assertTrue(zappa_cli.stage_config['touch']) # First Extension self.assertTrue(zappa_cli.stage_config['delete_local_zip']) # The base def test_load_settings_yaml(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' zappa_cli.load_settings('tests/test_settings.yml') self.assertEqual(False, zappa_cli.stage_config['touch']) zappa_cli = ZappaCLI() zappa_cli.api_stage = 'extendo' zappa_cli.load_settings('tests/test_settings.yml') self.assertEqual('lmbda', zappa_cli.stage_config['s3_bucket']) self.assertEqual(True, zappa_cli.stage_config['touch']) def test_load_settings_toml(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' zappa_cli.load_settings('tests/test_settings.toml') self.assertEqual(False, zappa_cli.stage_config['touch']) def test_settings_extension(self): """ Make sure Zappa uses settings in the proper order: JSON, TOML, YAML. """ tempdir = tempfile.mkdtemp(prefix="zappa-test-settings") shutil.copy("tests/test_one_env.json", tempdir + "/zappa_settings.json") shutil.copy("tests/test_settings.yml", tempdir + "/zappa_settings.yml") shutil.copy("tests/test_settings.toml", tempdir + "/zappa_settings.toml") orig_cwd = os.getcwd() os.chdir(tempdir) try: zappa_cli = ZappaCLI() # With all three, we should get the JSON file first. self.assertEqual(zappa_cli.get_json_or_yaml_settings(), "zappa_settings.json") zappa_cli.load_settings_file() self.assertIn("lonely", zappa_cli.zappa_settings) os.unlink("zappa_settings.json") # Without the JSON file, we should get the TOML file. self.assertEqual(zappa_cli.get_json_or_yaml_settings(), "zappa_settings.toml") zappa_cli.load_settings_file() self.assertIn("ttt888", zappa_cli.zappa_settings) self.assertNotIn("devor", zappa_cli.zappa_settings) os.unlink("zappa_settings.toml") # With just the YAML file, we should get it. self.assertEqual(zappa_cli.get_json_or_yaml_settings(), "zappa_settings.yml") zappa_cli.load_settings_file() self.assertIn("ttt888", zappa_cli.zappa_settings) self.assertIn("devor", zappa_cli.zappa_settings) os.unlink("zappa_settings.yml") # Without anything, we should get an exception. self.assertRaises( ClickException, zappa_cli.get_json_or_yaml_settings) finally: os.chdir(orig_cwd) shutil.rmtree(tempdir) def test_cli_utility(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' zappa_cli.load_settings('test_settings.json') zappa_cli.create_package() zappa_cli.remove_local_zip() logs = [ { 'timestamp': '12345', 'message': '[START RequestId] test' }, { 'timestamp': '12345', 'message': '[REPORT RequestId] test' }, { 'timestamp': '12345', 'message': '[END RequestId] test' }, { 'timestamp': '12345', 'message': 'test' }, { 'timestamp': '1480001341214', 'message': '[INFO] 2016-11-24T15:29:13.326Z c0cb52d1-b25a-11e6-9b73-f940ce24319a 59.111.125.48 - - [24/Nov/2016:15:29:13 +0000] "GET / HTTP/1.1" 200 2590 "" "python-requests/2.11.0" 0/4.672' }, { 'timestamp': '1480001341214', 'message': '[INFO] 2016-11-24T15:29:13.326Z c0cb52d1-b25a-11e6-9b73-f940ce24319a 59.111.125.48 - - [24/Nov/2016:15:29:13 +0000] "GET / HTTP/1.1" 400 2590 "" "python-requests/2.11.0" 0/4.672' }, { 'timestamp': '1480001341215', 'message': '[1480001341258] [DEBUG] 2016-11-24T15:29:01.258Z b890d8f6-b25a-11e6-b6bc-718f7ec807df Zappa Event: {}' } ] zappa_cli.print_logs(logs) zappa_cli.print_logs(logs, colorize=False) zappa_cli.print_logs(logs, colorize=False, http=True) zappa_cli.print_logs(logs, colorize=True, http=True) zappa_cli.print_logs(logs, colorize=True, http=False) zappa_cli.print_logs(logs, colorize=True, non_http=True) zappa_cli.print_logs(logs, colorize=True, non_http=False) zappa_cli.print_logs(logs, colorize=True, non_http=True, http=True) zappa_cli.print_logs(logs, colorize=True, non_http=False, http=False) zappa_cli.check_for_update() def test_cli_args(self): zappa_cli = ZappaCLI() # Sanity argv = '-s test_settings.json derp ttt888'.split() with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 2) def test_cli_error_exit_code(self): # Discussion: https://github.com/Miserlou/Zappa/issues/407 zappa_cli = ZappaCLI() # Sanity argv = '-s test_settings.json status devor'.split() with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 1) def test_cli_default(self): # Discussion: https://github.com/Miserlou/Zappa/issues/422 zappa_cli = ZappaCLI() argv = '-s tests/test_one_env.json status'.split() # It'll fail, but at least it'll cover it. with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 1) zappa_cli = ZappaCLI() argv = '-s tests/test_one_env.json status --all'.split() # It'll fail, but at least it'll cover it. with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 1) zappa_cli = ZappaCLI() argv = '-s test_settings.json status'.split() with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 2) def test_cli_negative_rollback(self): zappa_cli = ZappaCLI() argv = '-s test_settings.json rollback -n -1 dev'.split() output = StringIO() old_stderr, sys.stderr = sys.stderr, output with self.assertRaises(SystemExit) as system_exit: zappa_cli.handle(argv) self.assertEqual(system_exit.exception.code, 2) error_msg = output.getvalue().strip() expected = r".*This argument must be positive \(got -1\)$" self.assertRegexpMatches(error_msg, expected) sys.stderr = old_stderr @mock.patch('zappa.cli.ZappaCLI.dispatch_command') def test_cli_invoke(self, _): zappa_cli = ZappaCLI() argv = '-s test_settings.json invoke '.split() raw_tests = ( ['--raw', 'devor', '"print 1+2"'], ['devor', '"print 1+2"', '--raw'] ) for cmd in raw_tests: zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertFalse(args['all']) self.assertTrue(args['raw']) self.assertEquals(args['command_rest'], '"print 1+2"') self.assertEquals(args['command_env'], 'devor') all_raw_tests = ( ['--all', '--raw', '"print 1+2"'], ['"print 1+2"', '--all', '--raw'], ['--raw', '"print 1+2"', '--all'], ['--all', '"print 1+2"', '--raw'] ) for cmd in all_raw_tests: zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertTrue(args['all']) self.assertTrue(args['raw']) self.assertEquals(args['command_rest'], '"print 1+2"') self.assertEquals(args['command_env'], None) zappa_cli.handle(argv + ['devor', 'myapp.my_func']) args = zappa_cli.vargs self.assertEquals(args['command_rest'], 'myapp.my_func') all_func_tests = ( ['--all', 'myapp.my_func'], ['myapp.my_func', '--all'] ) for cmd in all_func_tests: zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertTrue(args['all']) self.assertEquals(args['command_rest'], 'myapp.my_func') @mock.patch('zappa.cli.ZappaCLI.dispatch_command') def test_cli_manage(self, _): zappa_cli = ZappaCLI() argv = '-s test_settings.json manage '.split() all_tests = ( ['--all', 'showmigrations', 'admin'], ['showmigrations', 'admin', '--all'] ) for cmd in all_tests: zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertTrue(args['all']) self.assertTrue( args['command_rest'] == ['showmigrations', 'admin'] ) cmd = ['devor', 'showmigrations', 'admin'] zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertFalse(args['all']) self.assertTrue( args['command_rest'] == ['showmigrations', 'admin'] ) cmd = ['devor', '"shell --version"'] zappa_cli.handle(argv + cmd) args = zappa_cli.vargs self.assertFalse(args['all']) self.assertTrue(args['command_rest'] == ['"shell --version"']) def test_bad_json_catch(self): zappa_cli = ZappaCLI() self.assertRaises(ValueError, zappa_cli.load_settings_file, 'tests/test_bad_settings.json') def test_bad_stage_name_catch(self): zappa_cli = ZappaCLI() self.assertRaises(ValueError, zappa_cli.load_settings, 'tests/test_bad_stage_name_settings.json') def test_bad_environment_vars_catch(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' self.assertRaises(ValueError, zappa_cli.load_settings, 'tests/test_bad_environment_vars.json') def test_function_sanity_check(self): zappa_cli = ZappaCLI() self.assertRaises(ClickException, zappa_cli.function_sanity_check, 'not_a_module.foo') self.assertRaises(ClickException, zappa_cli.function_sanity_check, 'tests.test_app.not_a_function') self.assertRaises(ClickException, zappa_cli.load_settings, 'test/test_bad_module_paths.json') # @mock.patch('botocore.session.Session.full_config', new_callable=mock.PropertyMock) # def test_cli_init(self, mock_config): # # Coverage for all profile detection paths # mock_config.side_effect = [ # { 'profiles' : { 'default' : { 'region' : 'us-east-1'} } }, # { 'profiles' : { 'default' : { 'region' : 'us-east-1'} } }, # { 'profiles' : { # 'default' : { # 'region' : 'us-east-1' # }, # 'another' : { # 'region' : 'us-east-1' # } # } }, # { 'profiles' : { # 'radical' : { # 'region' : 'us-east-1' # }, # 'another' : { # 'region' : 'us-east-1' # } # } }, # { 'profiles': {} }, # { 'profiles': {} }, # { 'profiles' : { 'default' : { 'region' : 'us-east-1'} } }, # ] # if os.path.isfile('zappa_settings.json'): # os.remove('zappa_settings.json') # # Test directly # zappa_cli = ZappaCLI() # # Via http://stackoverflow.com/questions/2617057/how-to-supply-stdin-files-and-environment-variable-inputs-to-python-unit-tests # inputs = ['dev', 'lmbda', 'test_settings', 'y', ''] # def test_for(inputs): # input_generator = (i for i in inputs) # bi = 'builtins.input' # with mock.patch(bi, lambda prompt: next(input_generator)): # zappa_cli.init() # if os.path.isfile('zappa_settings.json'): # os.remove('zappa_settings.json') # test_for(inputs) # test_for(['dev', 'lmbda', 'test_settings', 'n', '']) # test_for(['dev', 'default', 'lmbda', 'test_settings', '', '']) # test_for(['dev', 'radical', 'lmbda', 'test_settings', 'p', '']) # test_for(['dev', 'lmbda', 'test_settings', 'y', '']) # test_for(['dev', 'lmbda', 'test_settings', 'p', 'n']) # # Test via handle() # input_generator = (i for i in inputs) # bi = 'builtins.input' # with mock.patch(bi, lambda prompt: next(input_generator)): # zappa_cli = ZappaCLI() # argv = ['init'] # zappa_cli.handle(argv) # if os.path.isfile('zappa_settings.json'): # os.remove('zappa_settings.json') def test_domain_name_match(self): # Simple sanity check zone = Zappa.get_best_match_zone(all_zones={ 'HostedZones': [ { 'Name': 'example.com.au.', 'Id': 'zone-correct', 'Config': { 'PrivateZone': False } } ]}, domain='www.example.com.au') assert zone == 'zone-correct' # No match test zone = Zappa.get_best_match_zone(all_zones={'HostedZones': [ { 'Name': 'example.com.au.', 'Id': 'zone-incorrect', 'Config': { 'PrivateZone': False } } ]}, domain='something-else.com.au') assert zone is None # More involved, better match should win. zone = Zappa.get_best_match_zone(all_zones={'HostedZones': [ { 'Name': 'example.com.au.', 'Id': 'zone-incorrect', 'Config': { 'PrivateZone': False } }, { 'Name': 'subdomain.example.com.au.', 'Id': 'zone-correct', 'Config': { 'PrivateZone': False } } ]}, domain='www.subdomain.example.com.au') assert zone == 'zone-correct' # Check private zone is not matched zone = Zappa.get_best_match_zone(all_zones={ 'HostedZones': [ { 'Name': 'example.com.au.', 'Id': 'zone-private', 'Config': { 'PrivateZone': True } } ]}, domain='www.example.com.au') assert zone is None # More involved, should ignore the private zone and match the public. zone = Zappa.get_best_match_zone(all_zones={'HostedZones': [ { 'Name': 'subdomain.example.com.au.', 'Id': 'zone-private', 'Config': { 'PrivateZone': True } }, { 'Name': 'subdomain.example.com.au.', 'Id': 'zone-public', 'Config': { 'PrivateZone': False } } ]}, domain='www.subdomain.example.com.au') assert zone == 'zone-public' ## # Let's Encrypt / ACME ## def test_lets_encrypt_sanity(self): # We need a fake account key and crt import subprocess proc = subprocess.Popen(["openssl genrsa 2048 > /tmp/account.key"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = proc.communicate() if proc.returncode != 0: raise IOError("OpenSSL Error: {0}".format(err)) proc = subprocess.Popen(["openssl req -x509 -newkey rsa:2048 -subj '/C=US/ST=Denial/L=Springfield/O=Dis/CN=www.example.com' -passout pass:foo -keyout /tmp/key.key -out test_signed.crt -days 1 > /tmp/signed.crt"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) out, err = proc.communicate() if proc.returncode != 0: raise IOError("OpenSSL Error: {0}".format(err)) DEFAULT_CA = "https://acme-staging.api.letsencrypt.org" CA = "https://acme-staging.api.letsencrypt.org" try: result = register_account() except ValueError as e: pass # that's fine. create_domain_key() create_domain_csr('herp.derp.wtf') parse_account_key() parse_csr() create_chained_certificate() try: result = sign_certificate() except ValueError as e: pass # that's fine. result = verify_challenge('http://echo.jsontest.com/status/valid') try: result = verify_challenge('http://echo.jsontest.com/status/fail') except ValueError as e: pass # that's fine. try: result = verify_challenge('http://bing.com') except ValueError as e: pass # that's fine. encode_certificate(b'123') # without domain testing.. zappa_cli = ZappaCLI() zappa_cli.api_stage = 'ttt888' zappa_cli.load_settings('test_settings.json') get_cert_and_update_domain(zappa_cli, 'kerplah', 'zzzz', domain=None, clean_up=True) os.remove('test_signed.crt') cleanup() def test_certify_sanity_checks(self): """ Make sure 'zappa certify': * Writes a warning with the --no-cleanup flag. * Errors out when a deployment hasn't taken place. * Writes errors when certificate settings haven't been specified. * Calls Zappa correctly for creates vs. updates. """ old_stdout = sys.stderr if sys.version_info[0] < 3: sys.stdout = OldStringIO() # print() barfs on io.* types. try: zappa_cli = ZappaCLI() zappa_cli.domain = "test.example.com" try: zappa_cli.certify(no_cleanup=True) except AttributeError: # Since zappa_cli.zappa isn't initalized, the certify() call # fails when it tries to inspect what Zappa has deployed. pass log_output = sys.stdout.getvalue() self.assertIn("You are calling certify with", log_output) self.assertIn("--no-cleanup", log_output) class ZappaMock(object): def __init__(self): self.function_versions = [] self.domain_names = {} self.calls = [] def get_lambda_function_versions(self, function_name): return self.function_versions def get_domain_name(self, domain): return self.domain_names.get(domain) def create_domain_name(self, *args, **kw): self.calls.append(("create_domain_name", args, kw)) def update_route53_records(self, *args, **kw): self.calls.append(("update_route53_records", args, kw)) def update_domain_name(self, *args, **kw): self.calls.append(("update_domain_name", args, kw)) zappa_cli.zappa = ZappaMock() self.assertRaises(ClickException, zappa_cli.certify) # Make sure we get an error if we don't configure the domain. zappa_cli.zappa.function_versions = ["$LATEST"] zappa_cli.api_stage = "stage" zappa_cli.zappa_settings = {"stage": {}} zappa_cli.api_stage = "stage" zappa_cli.domain = "test.example.com" try: zappa_cli.certify() except ClickException as e: log_output = str(e) self.assertIn("Can't certify a domain without", log_output) self.assertIn("domain", log_output) # Without any LetsEncrypt settings, we should get a message about # not having a lets_encrypt_key setting. zappa_cli.zappa_settings["stage"]["domain"] = "test.example.com" try: zappa_cli.certify() self.fail("Expected a ClickException") except ClickException as e: log_output = str(e) self.assertIn("Can't certify a domain without", log_output) self.assertIn("lets_encrypt_key", log_output) # With partial settings, we should get a message about not having # certificate, certificate_key, and certificate_chain zappa_cli.zappa_settings["stage"]["certificate"] = "foo" try: zappa_cli.certify() self.fail("Expected a ClickException") except ClickException as e: log_output = str(e) self.assertIn("Can't certify a domain without", log_output) self.assertIn("certificate_key", log_output) self.assertIn("certificate_chain", log_output) zappa_cli.zappa_settings["stage"]["certificate_key"] = "key" try: zappa_cli.certify() self.fail("Expected a ClickException") except ClickException as e: log_output = str(e) self.assertIn("Can't certify a domain without", log_output) self.assertIn("certificate_key", log_output) self.assertIn("certificate_chain", log_output) zappa_cli.zappa_settings["stage"]["certificate_chain"] = "chain" del zappa_cli.zappa_settings["stage"]["certificate_key"] try: zappa_cli.certify() self.fail("Expected a ClickException") except ClickException as e: log_output = str(e) self.assertIn("Can't certify a domain without", log_output) self.assertIn("certificate_key", log_output) self.assertIn("certificate_chain", log_output) # With all certificate settings, make sure Zappa's domain calls # are executed. cert_file = tempfile.NamedTemporaryFile() cert_file.write(b"Hello world") cert_file.flush() zappa_cli.zappa_settings["stage"].update({ "certificate": cert_file.name, "certificate_key": cert_file.name, "certificate_chain": cert_file.name }) sys.stdout.truncate(0) zappa_cli.certify(no_cleanup=True) self.assertEquals(len(zappa_cli.zappa.calls), 2) self.assertTrue(zappa_cli.zappa.calls[0][0] == "create_domain_name") self.assertTrue(zappa_cli.zappa.calls[1][0] == "update_route53_records") log_output = sys.stdout.getvalue() self.assertIn("Created a new domain name", log_output) zappa_cli.zappa.calls = [] zappa_cli.zappa.domain_names["test.example.com"] = "*.example.com" sys.stdout.truncate(0) zappa_cli.certify(no_cleanup=True) self.assertEquals(len(zappa_cli.zappa.calls), 1) self.assertTrue(zappa_cli.zappa.calls[0][0] == "update_domain_name") log_output = sys.stdout.getvalue() self.assertNotIn("Created a new domain name", log_output) # Test creating domain without Route53 zappa_cli.zappa_settings["stage"].update({ "route53_enabled": False, }) zappa_cli.zappa.calls = [] zappa_cli.zappa.domain_names["test.example.com"] = "" sys.stdout.truncate(0) zappa_cli.certify(no_cleanup=True) self.assertEquals(len(zappa_cli.zappa.calls), 1) self.assertTrue(zappa_cli.zappa.calls[0][0] == "create_domain_name") log_output = sys.stdout.getvalue() self.assertIn("Created a new domain name", log_output) finally: sys.stdout = old_stdout ## # Django ## def test_detect_dj(self): # Sanity settings_modules = detect_django_settings() def test_dj_wsgi(self): # Sanity settings_modules = detect_django_settings() settings = """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'alskdfjalsdkf=0*%do-ayvy*m2k=vss*$7)j8q!@u0+d^na7mi2(^!l!d' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'blah.urls' WSGI_APPLICATION = 'hackathon_starter.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True """ djts = open("dj_test_settings.py", "w") djts.write(settings) djts.close() app = get_django_wsgi('dj_test_settings') try: os.remove('dj_test_settings.py') os.remove('dj_test_settings.pyc') except Exception as e: pass ## # Util / Misc ## def test_human_units(self): human_size(1) human_size(9999999999999) def test_string_to_timestamp(self): boo = string_to_timestamp("asdf") self.assertTrue(boo == 0) yay = string_to_timestamp("1h") self.assertTrue(type(yay) == int) self.assertTrue(yay > 0) yay = string_to_timestamp("4m") self.assertTrue(type(yay) == int) self.assertTrue(yay > 0) yay = string_to_timestamp("1mm") self.assertTrue(type(yay) == int) self.assertTrue(yay > 0) yay = string_to_timestamp("1mm1w1d1h1m1s1ms1us") self.assertTrue(type(yay) == int) self.assertTrue(yay > 0) def test_event_name(self): zappa = Zappa() truncated = zappa.get_event_name("basldfkjalsdkfjalsdkfjaslkdfjalsdkfjadlsfkjasdlfkjasdlfkjasdflkjasdf-asdfasdfasdfasdfasdf", "this.is.my.dang.function.wassup.yeah.its.long") self.assertTrue(len(truncated) <= 64) self.assertTrue(truncated.endswith("this.is.my.dang.function.wassup.yeah.its.long")) truncated = zappa.get_event_name("basldfkjalsdkfjalsdkfjaslkdfjalsdkfjadlsfkjasdlfkjasdlfkjasdflkjasdf-asdfasdfasdfasdfasdf", "thisidoasdfaljksdfalskdjfalsdkfjasldkfjalsdkfjalsdkfjalsdfkjalasdfasdfasdfasdklfjasldkfjalsdkjfaslkdfjasldkfjasdflkjdasfskdj") self.assertTrue(len(truncated) <= 64) truncated = zappa.get_event_name("a", "b") self.assertTrue(len(truncated) <= 64) self.assertEqual(truncated, "a-b") def test_detect_dj(self): # Sanity settings_modules = detect_django_settings() def test_detect_flask(self): # Sanity settings_modules = detect_flask_apps() def test_shameless(self): shamelessly_promote() def test_s3_url_parser(self): remote_bucket, remote_file = parse_s3_url('s3://my-project-config-files/filename.json') self.assertEqual(remote_bucket, 'my-project-config-files') self.assertEqual(remote_file, 'filename.json') remote_bucket, remote_file = parse_s3_url('s3://your-bucket/account.key') self.assertEqual(remote_bucket, 'your-bucket') self.assertEqual(remote_file, 'account.key') remote_bucket, remote_file = parse_s3_url('s3://my-config-bucket/super-secret-config.json') self.assertEqual(remote_bucket, 'my-config-bucket') self.assertEqual(remote_file, 'super-secret-config.json') remote_bucket, remote_file = parse_s3_url('s3://your-secure-bucket/account.key') self.assertEqual(remote_bucket, 'your-secure-bucket') self.assertEqual(remote_file, 'account.key') remote_bucket, remote_file = parse_s3_url('s3://your-bucket/subfolder/account.key') self.assertEqual(remote_bucket, 'your-bucket') self.assertEqual(remote_file, 'subfolder/account.key') # Sad path remote_bucket, remote_file = parse_s3_url('/dev/null') self.assertEqual(remote_bucket, '') def test_remote_env_package(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'depricated_remote_env' zappa_cli.load_settings('test_settings.json') self.assertEqual('lmbda-env', zappa_cli.stage_config['remote_env_bucket']) self.assertEqual('dev/env.json', zappa_cli.stage_config['remote_env_file']) zappa_cli.create_package() with zipfile.ZipFile(zappa_cli.zip_path, 'r') as lambda_zip: content = lambda_zip.read('zappa_settings.py') zappa_cli.remove_local_zip() # m = re.search("REMOTE_ENV='(.*)'", content) # self.assertEqual(m.group(1), 's3://lmbda-env/dev/env.json') zappa_cli = ZappaCLI() zappa_cli.api_stage = 'remote_env' zappa_cli.load_settings('test_settings.json') self.assertEqual('s3://lmbda-env/prod/env.json', zappa_cli.stage_config['remote_env']) zappa_cli.create_package() with zipfile.ZipFile(zappa_cli.zip_path, 'r') as lambda_zip: content = lambda_zip.read('zappa_settings.py') zappa_cli.remove_local_zip() # m = re.search("REMOTE_ENV='(.*)'", content) # self.assertEqual(m.group(1), 's3://lmbda-env/prod/env.json') def test_package_only(self): for delete_local_zip in [True, False]: zappa_cli = ZappaCLI() if delete_local_zip: zappa_cli.api_stage = 'build_package_only_delete_local_zip_true' else: zappa_cli.api_stage = 'build_package_only_delete_local_zip_false' zappa_cli.load_settings('test_settings.json') zappa_cli.package() zappa_cli.on_exit() # simulate the command exits # the zip should never be removed self.assertEqual(os.path.isfile(zappa_cli.zip_path), True) # cleanup os.remove(zappa_cli.zip_path) def test_flask_logging_bug(self): """ This checks whether Flask can write errors sanely. https://github.com/Miserlou/Zappa/issues/283 """ event = { "body": {}, "headers": {}, "pathParameters": {}, "path": '/', "httpMethod": "GET", "queryStringParameters": {}, "requestContext": {} } old_stderr = sys.stderr sys.stderr = BytesIO() try: environ = create_wsgi_request(event) app = flask.Flask(__name__) with app.request_context(environ): app.logger.error(u"This is a test") log_output = sys.stderr.getvalue() if sys.version_info[0] < 3: self.assertNotIn( "'str' object has no attribute 'write'", log_output) self.assertNotIn( "Logged from file tests.py", log_output) finally: sys.stderr = old_stderr def test_slim_handler(self): zappa_cli = ZappaCLI() zappa_cli.api_stage = 'slim_handler' zappa_cli.load_settings('test_settings.json') zappa_cli.create_package() self.assertTrue(os.path.isfile(zappa_cli.handler_path)) self.assertTrue(os.path.isfile(zappa_cli.zip_path)) zappa_cli.remove_local_zip() def test_validate_name(self): fname = 'tests/name_scenarios.json' with open(fname, 'r') as f: scenarios = json.load(f) for scenario in scenarios: value = scenario["value"] is_valid = scenario["is_valid"] if is_valid: assert validate_name(value) else: with self.assertRaises(InvalidAwsLambdaName) as exc: validate_name(value) def test_contains_python_files_or_subdirs(self): files = ['foo.py'] dirs = [] self.assertTrue(contains_python_files_or_subdirs(dirs, files)) files = [] dirs = ['subfolder'] self.assertTrue(contains_python_files_or_subdirs(dirs, files)) files = ['somefile.txt'] dirs = [] self.assertFalse(contains_python_files_or_subdirs(dirs, files)) if __name__ == '__main__': unittest.main()
mit
jlandmann/oggm
oggm/sandbox/run_alps.py
2
3819
"""Run with a subset of benchmark glaciers""" from __future__ import division # Log message format import logging logging.basicConfig(format='%(asctime)s: %(name)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG) # Module logger log = logging.getLogger(__name__) # Python imports import os import shutil from functools import partial # Libs import pandas as pd import geopandas as gpd import numpy as np import shapely.geometry as shpg import matplotlib.pyplot as plt # Locals import oggm import oggm.cfg as cfg from oggm import workflow from oggm.utils import get_demo_file from oggm import tasks from oggm.workflow import execute_entity_task from oggm import graphics, utils # Initialize OGGM cfg.initialize() # Local paths (where to write output and where to download input) WORKING_DIR = '/work/ubuntu/run_alps/wd' DATA_DIR = '/work/ubuntu/oggm-data' PLOTS_DIR = '/work/ubuntu/run_alps/plots' cfg.PATHS['working_dir'] = WORKING_DIR cfg.PATHS['topo_dir'] = os.path.join(DATA_DIR, 'topo') cfg.PATHS['rgi_dir'] = os.path.join(DATA_DIR, 'rgi') # Climate file hist_path = os.path.join(DATA_DIR, 'histalp_merged_with_cru_hydro_yrs.nc') dl_hist_path = utils.aws_file_download('alps/histalp_merged_with_cru_hydro_yrs.nc') shutil.copy(dl_hist_path, hist_path) cfg.PATHS['cru_dir'] = '~' cfg.PATHS['climate_file'] = hist_path # Currently OGGM wants some directories to exist # (maybe I'll change this but it can also catch errors in the user config) utils.mkdir(cfg.PATHS['working_dir']) utils.mkdir(cfg.PATHS['topo_dir']) utils.mkdir(cfg.PATHS['cru_dir']) utils.mkdir(cfg.PATHS['rgi_dir']) # Use multiprocessing? cfg.PARAMS['use_multiprocessing'] = True cfg.CONTINUE_ON_ERROR = False # Run parameters cfg.PARAMS['d1'] = 4 cfg.PARAMS['dmax'] = 100 cfg.PARAMS['border'] = 120 cfg.PARAMS['invert_with_sliding'] = False cfg.PARAMS['min_slope'] = 2 cfg.PARAMS['max_shape_param'] = 0.006 cfg.PARAMS['max_thick_to_width_ratio'] = 0.5 cfg.PARAMS['temp_use_local_gradient'] = False cfg.PARAMS['optimize_thick'] = True cfg.PARAMS['force_one_flowline'] = ['RGI50-11.01270'] # Read in the Alps RGI file rgi_pkl_path = utils.aws_file_download('alps/rgi_ref_alps.pkl') rgidf = pd.read_pickle(rgi_pkl_path) log.info('Number of glaciers: {}'.format(len(rgidf))) # Go - initialize working directories gdirs = workflow.init_glacier_regions(rgidf, reset=True, force=True) # gdirs = workflow.init_glacier_regions(rgidf) # Prepro tasks task_list = [ tasks.glacier_masks, tasks.compute_centerlines, tasks.compute_downstream_lines, tasks.catchment_area, tasks.initialize_flowlines, tasks.catchment_width_geom, tasks.catchment_width_correction ] for task in task_list: execute_entity_task(task, gdirs) # Climate related task execute_entity_task(tasks.process_custom_climate_data, gdirs) tasks.compute_ref_t_stars(gdirs) tasks.distribute_t_stars(gdirs) # Inversion execute_entity_task(tasks.prepare_for_inversion, gdirs) tasks.optimize_inversion_params(gdirs) execute_entity_task(tasks.volume_inversion, gdirs) # Write out glacier statistics df = utils.glacier_characteristics(gdirs) fpath = os.path.join(cfg.PATHS['working_dir'], 'glacier_char.csv') df.to_csv(fpath) # Plots (if you want) if PLOTS_DIR == '': exit() utils.mkdir(PLOTS_DIR) for gd in gdirs: bname = os.path.join(PLOTS_DIR, gd.rgi_id + '_') # graphics.plot_googlemap(gd) # plt.savefig(bname + 'ggl.png') # plt.close() # graphics.plot_domain(gd) # plt.savefig(bname + 'dom.png') # plt.close() graphics.plot_centerlines(gd) plt.savefig(bname + 'cls.png') plt.close() graphics.plot_catchment_width(gd, corrected=True) plt.savefig(bname + 'w.png') plt.close() graphics.plot_inversion(gd) plt.savefig(bname + 'inv.png') plt.close()
gpl-3.0
uglyboxer/linear_neuron
net-p3/lib/python3.5/site-packages/matplotlib/sphinxext/ipython_directive.py
11
27706
# -*- coding: utf-8 -*- """Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import io import os import re import sys import tempfile import ast from hashlib import md5 # Third-party import matplotlib import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive matplotlib.use('Agg') matplotlib.cbook.warn_deprecated("1.4", """ The Sphinx extension ipython_console_highlighting has moved from matplotlib to IPython, and its use in matplotlib is deprecated. Change your import from 'matplotlib.sphinxext.ipython_directive' to 'IPython.sphinxext.ipython_directive.""") # Our own try: from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io except ImportError: raise ImportError( "Unable to import the necessary objects from IPython. " "You may need to install or upgrade your IPython installation.") #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = list(xrange(3)) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): inputline += '\n' + nextline[Nc:] else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self): self.cout = io.StringIO() # Create config object for IPython config = Config() config.Global.display_banner = False config.Global.exec_lines = ['import numpy as np', 'from pylab import *' ] config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize ipython, but don't start its mainloop IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done *after* instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" #print "input='%s'"%self.input stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: source_raw = splitter.source_raw_reset()[1] self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """Process data block for INPUT token.""" decorator, input, rest = data image_file = None image_directive = None #print 'INPUT:', data # dbg is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = decorator=='@doctest' or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_savefig = decorator is not None and \ decorator.startswith('@savefig') input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i==0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=True) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, image_file, image_directive) #print 'OUTPUT', output # dbg def process_output(self, data, output_prompt, input_lines, output, is_doctest, image_file): """Process data block for OUTPUT token.""" if is_doctest: submitted = data.strip() found = output if found is not None: found = found.strip() # XXX - fperez: in 0.11, 'output' never comes with the prompt # in it, just the actual output text. So I think all this code # can be nuked... # the above comment does not appear to be accurate... (minrk) ind = found.find(output_prompt) if ind<0: e='output prompt="%s" does not match out line=%s' % \ (output_prompt, found) raise RuntimeError(e) found = found[len(output_prompt):].strip() if found!=submitted: e = ('doctest failure for input_lines="%s" with ' 'found_output="%s" and submitted output="%s"' % (input_lines, found, submitted) ) raise RuntimeError(e) #print 'doctest PASSED for input_lines="%s" with found_output="%s" and submitted output="%s"'%(input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = 'plt.gcf().savefig("%s")'%image_file #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin%lineno output_prompt = self.promptout%lineno image_file = None image_directive = None for token, data in block: if token==COMMENT: out_data = self.process_comment(data) elif token==INPUT: (out_data, input_lines, output, is_doctest, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token==OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): if self._pyplot_imported: return self.process_input_line('import matplotlib.pyplot as plt', store_history=False) def process_pure_python(self, content): """ content is a list of strings. it is unedited directive conent This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin ct = 0 for lineno, line in enumerate(content): line_stripped = line.strip() if not len(line): output.append(line) continue # handle decorators if line_stripped.startswith('@'): output.extend([line]) if 'savefig' in line: savefig = True # and need to clear figure continue # handle comments if line_stripped.startswith('#'): output.extend([line]) continue # deal with lines checking for multiline continuation = ' %s:'% ''.join(['.']*(len(str(ct))+2)) if not multiline: modified = "%s %s" % (fmtin % ct, line_stripped) output.append(modified) ct += 1 try: ast.parse(line_stripped) output.append('') except Exception: # on a multiline multiline = True multiline_start = lineno else: # still on a multiline modified = '%s %s' % (continuation, line) output.append(modified) try: mod = ast.parse( '\n'.join(content[multiline_start:lineno+1])) if isinstance(mod.body[0], ast.FunctionDef): # check to see if we have the whole function for element in mod.body[0].body: if isinstance(element, ast.Return): multiline = False else: output.append('') multiline = False except Exception: pass if savefig: # clear figure if plotted self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() savefig = False return output class IpythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, } shell = EmbeddedSphinxShell() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout return savefig_dir, source_dir, rgxin, rgxout, promptin, promptout def setup(self): # reset the execution count if we haven't processed this doc #NOTE: this may be borked if there are multiple seen_doc tmp files #check time stamp? seen_docs = [i for i in os.listdir(tempfile.tempdir) if i.startswith('seen_doc')] if seen_docs: fname = os.path.join(tempfile.tempdir, seen_docs[0]) docs = open(fname).read().split('\n') if not self.state.document.current_source in docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 else: # haven't processed any docs yet docs = [] # get config values (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout) = self.get_config_options() # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() # write the filename to a tempfile because it's been "seen" now if not self.state.document.current_source in docs: fd, fname = tempfile.mkstemp(prefix="seen_doc", text=True) fout = open(fname, 'a') fout.write(self.state.document.current_source+'\n') fout.close() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython',''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) #text = '\n'.join(lines) #figs = '\n'.join(figures) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') #print lines if len(lines)>2: if debug: print('\n'.join(lines)) else: #NOTE: this raises some errors, what's it for? #print 'INSERTING %d lines'%len(lines) self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) text = '\n'.join(lines) txtnode = nodes.literal_block(text, text) txtnode['language'] = 'ipython' #imgnode = nodes.image(figs) # cleanup self.teardown() return []#, imgnode] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IpythonDirective) app.add_config_value('ipython_savefig_dir', None, True) app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), True) app.add_config_value('ipython_promptin', 'In [%d]:', True) app.add_config_value('ipython_promptout', 'Out[%d]:', True) # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') ipython_directive('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print('All OK? Check figures in _static/')
mit
stulp/dmpbbo
demo_robot/step2_defineTask.py
1
1989
# This file is part of DmpBbo, a set of libraries and programs for the # black-box optimization of dynamical movement primitives. # Copyright (C) 2014 Freek Stulp, ENSTA-ParisTech # # DmpBbo is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # DmpBbo is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with DmpBbo. If not, see <http://www.gnu.org/licenses/>. import os import sys import numpy as np import matplotlib.pyplot as plt import pickle import inspect lib_path = os.path.abspath('../python') sys.path.append(lib_path) from TaskThrowBall import TaskThrowBall if __name__=="__main__": output_task_file = None if (len(sys.argv)<2): print('Usage: '+sys.argv[0]+' <task file.p>') print('Example: python3 '+sys.argv[0]+' results/task.p') sys.exit() if (len(sys.argv)>1): output_task_file = sys.argv[1] x_goal = -0.70 x_margin = 0.01 y_floor = -0.3 acceleration_weight = 0.001 task = TaskThrowBall(x_goal,x_margin,y_floor,acceleration_weight) # Save the task instance itself print(' * Saving task to file "'+output_task_file+"'") pickle.dump(task, open(output_task_file, "wb" )) # Save the source code of the task for future reference #src_task = inspect.getsourcelines(task.__class__) #src_task = ' '.join(src_task[0]) #src_task = src_task.replace("(Task)", "") #filename = directory+'/the_task.py' #task_file = open(filename, "w") #task_file.write(src_task) #task_file.close()
lgpl-2.1
IshankGulati/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
84
7866
# Important note for the deprecation cleaning of 0.20 : # All the function and classes of this file have been deprecated in 0.18. # When you remove this file please also remove the related files # - 'sklearn/mixture/dpgmm.py' # - 'sklearn/mixture/gmm.py' # - 'sklearn/mixture/test_gmm.py' import unittest import sys import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less, assert_equal from sklearn.utils.testing import assert_warns_message, ignore_warnings from sklearn.mixture.tests.test_gmm import GMMTester from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.mixture.dpgmm import digamma, gammaln from sklearn.mixture.dpgmm import wishart_log_det, wishart_logz np.seterr(all='warn') @ignore_warnings(category=DeprecationWarning) def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) @ignore_warnings(category=DeprecationWarning) def test_verbose_boolean(): # checks that the output for the verbose output is the same # for the flag values '1' and 'True' # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm_bool = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=True) dpgmm_int = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: # generate output with the boolean flag dpgmm_bool.fit(X) verbose_output = sys.stdout verbose_output.seek(0) bool_output = verbose_output.readline() # generate output with the int flag dpgmm_int.fit(X) verbose_output = sys.stdout verbose_output.seek(0) int_output = verbose_output.readline() assert_equal(bool_output, int_output) finally: sys.stdout = old_stdout @ignore_warnings(category=DeprecationWarning) def test_verbose_first_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=1) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout @ignore_warnings(category=DeprecationWarning) def test_verbose_second_level(): # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50, verbose=2) old_stdout = sys.stdout sys.stdout = StringIO() try: dpgmm.fit(X) finally: sys.stdout = old_stdout @ignore_warnings(category=DeprecationWarning) def test_digamma(): assert_warns_message(DeprecationWarning, "The function digamma is" " deprecated in 0.18 and will be removed in 0.20. " "Use scipy.special.digamma instead.", digamma, 3) @ignore_warnings(category=DeprecationWarning) def test_gammaln(): assert_warns_message(DeprecationWarning, "The function gammaln" " is deprecated in 0.18 and will be removed" " in 0.20. Use scipy.special.gammaln instead.", gammaln, 3) @ignore_warnings(category=DeprecationWarning) def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) result = assert_warns_message(DeprecationWarning, "The function " "log_normalize is deprecated in 0.18 and" " will be removed in 0.20.", log_normalize, a) assert np.allclose(v, result, rtol=0.01) @ignore_warnings(category=DeprecationWarning) def test_wishart_log_det(): a = np.array([0.1, 0.8, 0.01, 0.09]) b = np.array([0.2, 0.7, 0.05, 0.1]) assert_warns_message(DeprecationWarning, "The function " "wishart_log_det is deprecated in 0.18 and" " will be removed in 0.20.", wishart_log_det, a, b, 2, 4) @ignore_warnings(category=DeprecationWarning) def test_wishart_logz(): assert_warns_message(DeprecationWarning, "The function " "wishart_logz is deprecated in 0.18 and " "will be removed in 0.20.", wishart_logz, 3, np.identity(3), 1, 3) @ignore_warnings(category=DeprecationWarning) def test_DPGMM_deprecation(): assert_warns_message( DeprecationWarning, "The `DPGMM` class is not working correctly and " "it's better to use `sklearn.mixture.BayesianGaussianMixture` class " "with parameter `weight_concentration_prior_type='dirichlet_process'` " "instead. DPGMM is deprecated in 0.18 and will be removed in 0.20.", DPGMM) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp def test_VBGMM_deprecation(): assert_warns_message( DeprecationWarning, "The `VBGMM` class is not working correctly and " "it's better to use `sklearn.mixture.BayesianGaussianMixture` class " "with parameter `weight_concentration_prior_type=" "'dirichlet_distribution'` instead. VBGMM is deprecated " "in 0.18 and will be removed in 0.20.", VBGMM) class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp def test_vbgmm_no_modify_alpha(): alpha = 2. n_components = 3 X, y = make_blobs(random_state=1) vbgmm = VBGMM(n_components=n_components, alpha=alpha, n_iter=1) assert_equal(vbgmm.alpha, alpha) assert_equal(vbgmm.fit(X).alpha_, float(alpha) / n_components)
bsd-3-clause
jmetzen/scikit-learn
benchmarks/bench_plot_incremental_pca.py
374
6430
""" ======================== IncrementalPCA benchmark ======================== Benchmarks for IncrementalPCA """ import numpy as np import gc from time import time from collections import defaultdict import matplotlib.pyplot as plt from sklearn.datasets import fetch_lfw_people from sklearn.decomposition import IncrementalPCA, RandomizedPCA, PCA def plot_results(X, y, label): plt.plot(X, y, label=label, marker='o') def benchmark(estimator, data): gc.collect() print("Benching %s" % estimator) t0 = time() estimator.fit(data) training_time = time() - t0 data_t = estimator.transform(data) data_r = estimator.inverse_transform(data_t) reconstruction_error = np.mean(np.abs(data - data_r)) return {'time': training_time, 'error': reconstruction_error} def plot_feature_times(all_times, batch_size, all_components, data): plt.figure() plot_results(all_components, all_times['pca'], label="PCA") plot_results(all_components, all_times['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_times['rpca'], label="RandomizedPCA") plt.legend(loc="upper left") plt.suptitle("Algorithm runtime vs. n_components\n \ LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Time (seconds)") def plot_feature_errors(all_errors, batch_size, all_components, data): plt.figure() plot_results(all_components, all_errors['pca'], label="PCA") plot_results(all_components, all_errors['ipca'], label="IncrementalPCA, bsize=%i" % batch_size) plot_results(all_components, all_errors['rpca'], label="RandomizedPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. n_components\n" "LFW, size %i x %i" % data.shape) plt.xlabel("Number of components (out of max %i)" % data.shape[1]) plt.ylabel("Mean absolute error") def plot_batch_times(all_times, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_times['pca'], label="PCA") plot_results(all_batch_sizes, all_times['rpca'], label="RandomizedPCA") plot_results(all_batch_sizes, all_times['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm runtime vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Time (seconds)") def plot_batch_errors(all_errors, n_features, all_batch_sizes, data): plt.figure() plot_results(all_batch_sizes, all_errors['pca'], label="PCA") plot_results(all_batch_sizes, all_errors['ipca'], label="IncrementalPCA") plt.legend(loc="lower left") plt.suptitle("Algorithm error vs. batch_size for n_components %i\n \ LFW, size %i x %i" % ( n_features, data.shape[0], data.shape[1])) plt.xlabel("Batch size") plt.ylabel("Mean absolute error") def fixed_batch_size_comparison(data): all_features = [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=5)] batch_size = 1000 # Compare runtimes and error for fixed batch size all_times = defaultdict(list) all_errors = defaultdict(list) for n_components in all_features: pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('ipca', ipca), ('rpca', rpca)]} for k in sorted(results_dict.keys()): all_times[k].append(results_dict[k]['time']) all_errors[k].append(results_dict[k]['error']) plot_feature_times(all_times, batch_size, all_features, data) plot_feature_errors(all_errors, batch_size, all_features, data) def variable_batch_size_comparison(data): batch_sizes = [i.astype(int) for i in np.linspace(data.shape[0] // 10, data.shape[0], num=10)] for n_components in [i.astype(int) for i in np.linspace(data.shape[1] // 10, data.shape[1], num=4)]: all_times = defaultdict(list) all_errors = defaultdict(list) pca = PCA(n_components=n_components) rpca = RandomizedPCA(n_components=n_components, random_state=1999) results_dict = {k: benchmark(est, data) for k, est in [('pca', pca), ('rpca', rpca)]} # Create flat baselines to compare the variation over batch size all_times['pca'].extend([results_dict['pca']['time']] * len(batch_sizes)) all_errors['pca'].extend([results_dict['pca']['error']] * len(batch_sizes)) all_times['rpca'].extend([results_dict['rpca']['time']] * len(batch_sizes)) all_errors['rpca'].extend([results_dict['rpca']['error']] * len(batch_sizes)) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=n_components, batch_size=batch_size) results_dict = {k: benchmark(est, data) for k, est in [('ipca', ipca)]} all_times['ipca'].append(results_dict['ipca']['time']) all_errors['ipca'].append(results_dict['ipca']['error']) plot_batch_times(all_times, n_components, batch_sizes, data) # RandomizedPCA error is always worse (approx 100x) than other PCA # tests plot_batch_errors(all_errors, n_components, batch_sizes, data) faces = fetch_lfw_people(resize=.2, min_faces_per_person=5) # limit dataset to 5000 people (don't care who they are!) X = faces.data[:5000] n_samples, h, w = faces.images.shape n_features = X.shape[1] X -= X.mean(axis=0) X /= X.std(axis=0) fixed_batch_size_comparison(X) variable_batch_size_comparison(X) plt.show()
bsd-3-clause
fivejjs/pyhsmm-autoregressive
examples/demo.py
1
1813
from __future__ import division import numpy as np from matplotlib import pyplot as plt plt.ion() np.random.seed(0) import pyhsmm from pyhsmm.util.text import progprint_xrange from pyhsmm.util.stats import whiten, cov import autoregressive.models as m import autoregressive.distributions as d ################### # generate data # ################### As = [0.99*np.hstack((-np.eye(2),2*np.eye(2))), np.array([[np.cos(np.pi/6),-np.sin(np.pi/6)],[np.sin(np.pi/6),np.cos(np.pi/6)]]).dot(np.hstack((-np.eye(2),np.eye(2)))) + np.hstack((np.zeros((2,2)),np.eye(2))), np.array([[np.cos(-np.pi/6),-np.sin(-np.pi/6)],[np.sin(-np.pi/6),np.cos(-np.pi/6)]]).dot(np.hstack((-np.eye(2),np.eye(2)))) + np.hstack((np.zeros((2,2)),np.eye(2)))] truemodel = m.ARHSMM( alpha=4.,init_state_concentration=4., obs_distns=[d.AutoRegression(A=A,sigma=np.eye(2)) for A in As], dur_distns=[pyhsmm.basic.distributions.PoissonDuration(alpha_0=4*25,beta_0=4) for state in range(len(As))], ) data, labels = truemodel.generate(500) plt.figure() plt.plot(data[:,0],data[:,1],'bx-') plt.gcf().suptitle('data') truemodel.plot() plt.gcf().suptitle('truth') ################## # create model # ################## Nmax = 10 affine = True nlags = 3 model = m.ARHMM( alpha=4., init_state_distn='uniform', obs_distns=[ d.AutoRegression( nu_0=3, S_0=np.eye(2), M_0=np.zeros((2,2*nlags+affine)), K_0=np.eye(2*nlags+affine), affine=affine) for state in range(Nmax)], ) model.add_data(data) ############### # inference # ############### for itr in progprint_xrange(100): model.resample_model() model.plot() plt.gcf().suptitle('sampled')
gpl-2.0
glue-viz/glue-vispy-viewers
glue_vispy_viewers/scatter/tests/test_scatter_viewer.py
3
11133
import numpy as np from glue.core import DataCollection, Data from glue.app.qt.application import GlueApplication from glue.core.component import Component from matplotlib import cm from ..scatter_viewer import VispyScatterViewer def make_test_data(): data = Data(label="Test Cat Data 1") np.random.seed(12345) for letter in 'abcdefxyz': comp = Component(np.random.random(100)) data.add_component(comp, letter) return data def test_scatter_viewer(tmpdir): # Create fake data data = make_test_data() # Create fake session dc = DataCollection([data]) ga = GlueApplication(dc) ga.show() scatter = ga.new_data_viewer(VispyScatterViewer) scatter.add_data(data) scatter.viewer_size = (400, 500) viewer_state = scatter.state viewer_state.x_att = data.id['a'] viewer_state.y_att = data.id['f'] viewer_state.z_att = data.id['z'] viewer_state.x_stretch = 0.5 viewer_state.y_stretch = 1.0 viewer_state.z_stretch = 2.0 viewer_state.x_min = -0.1 viewer_state.x_max = 1.1 viewer_state.y_min = 0.1 viewer_state.y_max = 0.9 viewer_state.z_min = 0.2 viewer_state.z_max = 0.8 viewer_state.visible_axes = False # Get layer artist style editor layer_state = viewer_state.layers[0] layer_state.size_attribute = data.id['c'] layer_state.size_mode = 'Linear' layer_state.size_scaling = 2 layer_state.size_vmin = 0.2 layer_state.size_vmax = 0.8 layer_state.cmap_attribute = data.id['y'] layer_state.color_mode = 'Linear' layer_state.cmap_vmin = 0.1 layer_state.cmap_vmax = 0.9 layer_state.cmap = cm.BuGn # Check that writing a session works as expected. session_file = tmpdir.join('test_scatter_viewer.glu').strpath ga.save_session(session_file) ga.close() # Now we can check that everything is restored correctly ga2 = GlueApplication.restore_session(session_file) ga2.show() scatter_r = ga2.viewers[0][0] assert scatter_r.viewer_size == (400, 500) viewer_state = scatter_r.state assert viewer_state.x_att.label == 'a' assert viewer_state.y_att.label == 'f' assert viewer_state.z_att.label == 'z' np.testing.assert_allclose(viewer_state.x_stretch, 0.5, rtol=1e-3) np.testing.assert_allclose(viewer_state.y_stretch, 1.0, rtol=1e-3) np.testing.assert_allclose(viewer_state.z_stretch, 2.0, rtol=1e-3) assert viewer_state.x_min == -0.1 assert viewer_state.x_max == 1.1 assert viewer_state.y_min == 0.1 assert viewer_state.y_max == 0.9 assert viewer_state.z_min == 0.2 assert viewer_state.z_max == 0.8 assert not viewer_state.visible_axes layer_state = viewer_state.layers[0] assert layer_state.size_mode == 'Linear' assert layer_state.size_attribute.label == 'c' np.testing.assert_allclose(layer_state.size_scaling, 2, rtol=0.01) assert layer_state.size_vmin == 0.2 assert layer_state.size_vmax == 0.8 assert layer_state.color_mode == 'Linear' assert layer_state.cmap_attribute.label == 'y' assert layer_state.cmap_vmin == 0.1 assert layer_state.cmap_vmax == 0.9 assert layer_state.cmap is cm.BuGn ga2.close() def test_error_bars(tmpdir): # Create fake data data = make_test_data() # Create fake session dc = DataCollection([data]) ga = GlueApplication(dc) ga.show() scatter = ga.new_data_viewer(VispyScatterViewer) scatter.add_data(data) scatter.viewer_size = (400, 500) viewer_state = scatter.state viewer_state.x_att = data.id['a'] viewer_state.y_att = data.id['f'] viewer_state.z_att = data.id['z'] layer_state = viewer_state.layers[0] layer_state.xerr_visible = True layer_state.xerr_attribute = data.id['b'] layer_state.yerr_visible = False layer_state.yerr_attribute = data.id['c'] layer_state.zerr_visible = True layer_state.zerr_attribute = data.id['d'] assert viewer_state.line_width == 1 # Check that writing a session works as expected. session_file = tmpdir.join('test_error_bars.glu').strpath ga.save_session(session_file) ga.close() # Now we can check that everything is restored correctly ga2 = GlueApplication.restore_session(session_file) ga2.show() scatter_r = ga2.viewers[0][0] layer_state = scatter_r.state.layers[0] assert layer_state.xerr_visible assert layer_state.xerr_attribute.label == 'b' assert not layer_state.yerr_visible assert layer_state.yerr_attribute.label == 'c' assert layer_state.zerr_visible assert layer_state.zerr_attribute.label == 'd' assert scatter_r.state.line_width == 1 ga2.close() def test_vectors(tmpdir): # Create fake data data = make_test_data() # Create fake session dc = DataCollection([data]) ga = GlueApplication(dc) ga.show() scatter = ga.new_data_viewer(VispyScatterViewer) scatter.add_data(data) scatter.viewer_size = (400, 500) viewer_state = scatter.state viewer_state.x_att = data.id['a'] viewer_state.y_att = data.id['f'] viewer_state.z_att = data.id['z'] layer_state = viewer_state.layers[0] layer_state.vector_visible = True layer_state.vx_attribute = data.id['x'] layer_state.vy_attribute = data.id['y'] layer_state.vz_attribute = data.id['e'] layer_state.vector_scaling = 0.1 layer_state.vector_origin = 'tail' layer_state.vector_arrowhead = True viewer_state.line_width = 3 # Check that writing a session works as expected. session_file = tmpdir.join('test_vectors.glu').strpath ga.save_session(session_file) ga.close() # Now we can check that everything is restored correctly ga2 = GlueApplication.restore_session(session_file) ga2.show() scatter_r = ga2.viewers[0][0] layer_state = scatter_r.state.layers[0] assert layer_state.vector_visible assert layer_state.vx_attribute.label == 'x' assert layer_state.vy_attribute.label == 'y' assert layer_state.vz_attribute.label == 'e' assert np.isclose(layer_state.vector_scaling, 0.1) assert layer_state.vector_origin == 'tail' assert layer_state.vector_arrowhead assert scatter_r.state.line_width == 3 ga2.close() def test_n_dimensional_data(): # Create fake data data = Data(x=np.random.random((2, 3, 4, 5)), y=np.random.random((2, 3, 4, 5)), z=np.random.random((2, 3, 4, 5))) # Create fake session dc = DataCollection([data]) ga = GlueApplication(dc) ga.show() scatter = ga.new_data_viewer(VispyScatterViewer) scatter.add_data(data) layer_artist = scatter.layers[0] style_widget = scatter._view.layout_style_widgets[layer_artist] style_widget.size_mode = 'Linear' style_widget.size_attribute = data.id['x'] style_widget.color_mode = 'Linear' style_widget.cmap_attribute = data.id['y'] style_widget.cmap = cm.BuGn ga.close() def test_scatter_remove_layer_artists(tmpdir): # Regression test for a bug that caused layer states to not be removed # when the matching layer artist was removed. This then caused issues when # loading session files. # Create fake data data = make_test_data() # Create fake session dc = DataCollection([data]) ga = GlueApplication(dc) ga.show() scatter = ga.new_data_viewer(VispyScatterViewer) scatter.add_data(data) dc.new_subset_group(subset_state=data.id['x'] > 0.5, label='subset 1') scatter.add_subset(data.subsets[0]) assert len(scatter.layers) == 2 assert len(scatter.state.layers) == 2 dc.remove_subset_group(dc.subset_groups[0]) assert len(scatter.layers) == 1 assert len(scatter.state.layers) == 1 # Check that writing a session works as expected. session_file = tmpdir.join('test_scatter_viewer.glu').strpath ga.save_session(session_file) ga.close() # Now we can check that everything is restored correctly ga2 = GlueApplication.restore_session(session_file) ga2.show() ga2.close() def test_add_data_with_incompatible_subsets(tmpdir): # Regression test for a bug that an error when adding a dataset with an # incompatible subset to a 3D scatter viewer. data1 = Data(label="Data 1", x=[1, 2, 3]) data2 = Data(label="Data 2", y=[4, 5, 6]) dc = DataCollection([data1, data2]) ga = GlueApplication(dc) ga.show() # Subset is defined in terms of data2, so it's an incompatible subset # for data1 dc.new_subset_group(subset_state=data2.id['y'] > 0.5, label='subset 1') scatter = ga.new_data_viewer(VispyScatterViewer) scatter.add_data(data1) ga.close() def test_not_all_points_inside_limits(tmpdir): # Regression test for a bug that occurred when not all points were inside # the visible limits and the color or size mode is linear. data1 = Data(label="Data", x=[1, 2, 3]) dc = DataCollection([data1]) ga = GlueApplication(dc) ga.show() scatter = ga.new_data_viewer(VispyScatterViewer) scatter.add_data(data1) scatter.state.layers[0].color_mode = 'Linear' scatter.state.layers[0].size_mode = 'Linear' scatter.state.x_min = -0.1 scatter.state.x_max = 2.1 ga.close() def test_categorical_color_size(tmpdir): # Create fake data data = make_test_data() # Add categorical component data['categorical'] = ['a', 'b'] * 50 dc = DataCollection([data]) ga = GlueApplication(dc) ga.show() scatter = ga.new_data_viewer(VispyScatterViewer) scatter.add_data(data) viewer_state = scatter.state viewer_state.x_att = data.id['a'] viewer_state.y_att = data.id['b'] viewer_state.z_att = data.id['z'] layer_state = viewer_state.layers[0] layer_state.size_mode = 'Linear' layer_state.size_attribute = data.id['categorical'] layer_state.color_mode = 'Linear' layer_state.cmap_attribute = data.id['categorical'] ga.close() def test_layer_visibility_after_session(tmpdir): # Regression test for a bug that caused layers to be incorrectly visible # after saving and loading a session file. # Create fake data data = make_test_data() # Create fake session dc = DataCollection([data]) ga = GlueApplication(dc) ga.show() scatter = ga.new_data_viewer(VispyScatterViewer) scatter.add_data(data) viewer_state = scatter.state layer_state = viewer_state.layers[0] layer_state.visible = False session_file = tmpdir.join('test_layer_visibility.glu').strpath ga.save_session(session_file) ga.close() ga2 = GlueApplication.restore_session(session_file) ga2.show() scatter_r = ga2.viewers[0][0] viewer_state = scatter_r.state layer_state = viewer_state.layers[0] assert not layer_state.visible # Make sure the multiscat layer is also not visible (this was where the bug was) layer_artist = scatter_r.layers[0] assert not layer_artist._multiscat.layers[layer_artist.id]['visible'] ga2.close()
bsd-2-clause
alkyl1978/gnuradio
gr-filter/examples/chirp_channelize.py
58
7169
#!/usr/bin/env python # # Copyright 2009,2012,2013 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr from gnuradio import blocks from gnuradio import filter import sys, time try: from gnuradio import analog except ImportError: sys.stderr.write("Error: Program requires gr-analog.\n") sys.exit(1) try: import scipy from scipy import fftpack except ImportError: sys.stderr.write("Error: Program requires scipy (see: www.scipy.org).\n") sys.exit(1) try: import pylab from pylab import mlab except ImportError: sys.stderr.write("Error: Program requires matplotlib (see: matplotlib.sourceforge.net).\n") sys.exit(1) class pfb_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) self._N = 200000 # number of samples to use self._fs = 9000 # initial sampling rate self._M = 9 # Number of channels to channelize # Create a set of taps for the PFB channelizer self._taps = filter.firdes.low_pass_2(1, self._fs, 500, 20, attenuation_dB=10, window=filter.firdes.WIN_BLACKMAN_hARRIS) # Calculate the number of taps per channel for our own information tpc = scipy.ceil(float(len(self._taps)) / float(self._M)) print "Number of taps: ", len(self._taps) print "Number of channels: ", self._M print "Taps per channel: ", tpc repeated = True if(repeated): self.vco_input = analog.sig_source_f(self._fs, analog.GR_SIN_WAVE, 0.25, 110) else: amp = 100 data = scipy.arange(0, amp, amp/float(self._N)) self.vco_input = blocks.vector_source_f(data, False) # Build a VCO controlled by either the sinusoid or single chirp tone # Then convert this to a complex signal self.vco = blocks.vco_f(self._fs, 225, 1) self.f2c = blocks.float_to_complex() self.head = blocks.head(gr.sizeof_gr_complex, self._N) # Construct the channelizer filter self.pfb = filter.pfb.channelizer_ccf(self._M, self._taps) # Construct a vector sink for the input signal to the channelizer self.snk_i = blocks.vector_sink_c() # Connect the blocks self.connect(self.vco_input, self.vco, self.f2c) self.connect(self.f2c, self.head, self.pfb) self.connect(self.f2c, self.snk_i) # Create a vector sink for each of M output channels of the filter and connect it self.snks = list() for i in xrange(self._M): self.snks.append(blocks.vector_sink_c()) self.connect((self.pfb, i), self.snks[i]) def main(): tstart = time.time() tb = pfb_top_block() tb.run() tend = time.time() print "Run time: %f" % (tend - tstart) if 1: fig_in = pylab.figure(1, figsize=(16,9), facecolor="w") fig1 = pylab.figure(2, figsize=(16,9), facecolor="w") fig2 = pylab.figure(3, figsize=(16,9), facecolor="w") fig3 = pylab.figure(4, figsize=(16,9), facecolor="w") Ns = 650 Ne = 20000 fftlen = 8192 winfunc = scipy.blackman fs = tb._fs # Plot the input signal on its own figure d = tb.snk_i.data()[Ns:Ne] spin_f = fig_in.add_subplot(2, 1, 1) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_in = 10.0*scipy.log10(abs(fftpack.fftshift(X))) f_in = scipy.arange(-fs/2.0, fs/2.0, fs/float(X_in.size)) pin_f = spin_f.plot(f_in, X_in, "b") spin_f.set_xlim([min(f_in), max(f_in)+1]) spin_f.set_ylim([-200.0, 50.0]) spin_f.set_title("Input Signal", weight="bold") spin_f.set_xlabel("Frequency (Hz)") spin_f.set_ylabel("Power (dBW)") Ts = 1.0/fs Tmax = len(d)*Ts t_in = scipy.arange(0, Tmax, Ts) x_in = scipy.array(d) spin_t = fig_in.add_subplot(2, 1, 2) pin_t = spin_t.plot(t_in, x_in.real, "b") pin_t = spin_t.plot(t_in, x_in.imag, "r") spin_t.set_xlabel("Time (s)") spin_t.set_ylabel("Amplitude") Ncols = int(scipy.floor(scipy.sqrt(tb._M))) Nrows = int(scipy.floor(tb._M / Ncols)) if(tb._M % Ncols != 0): Nrows += 1 # Plot each of the channels outputs. Frequencies on Figure 2 and # time signals on Figure 3 fs_o = tb._fs / tb._M Ts_o = 1.0/fs_o Tmax_o = len(d)*Ts_o for i in xrange(len(tb.snks)): # remove issues with the transients at the beginning # also remove some corruption at the end of the stream # this is a bug, probably due to the corner cases d = tb.snks[i].data()[Ns:Ne] sp1_f = fig1.add_subplot(Nrows, Ncols, 1+i) X,freq = mlab.psd(d, NFFT=fftlen, noverlap=fftlen/4, Fs=fs_o, window = lambda d: d*winfunc(fftlen), scale_by_freq=True) X_o = 10.0*scipy.log10(abs(X)) f_o = freq p2_f = sp1_f.plot(f_o, X_o, "b") sp1_f.set_xlim([min(f_o), max(f_o)+1]) sp1_f.set_ylim([-200.0, 50.0]) sp1_f.set_title(("Channel %d" % i), weight="bold") sp1_f.set_xlabel("Frequency (Hz)") sp1_f.set_ylabel("Power (dBW)") x_o = scipy.array(d) t_o = scipy.arange(0, Tmax_o, Ts_o) sp2_o = fig2.add_subplot(Nrows, Ncols, 1+i) p2_o = sp2_o.plot(t_o, x_o.real, "b") p2_o = sp2_o.plot(t_o, x_o.imag, "r") sp2_o.set_xlim([min(t_o), max(t_o)+1]) sp2_o.set_ylim([-2, 2]) sp2_o.set_title(("Channel %d" % i), weight="bold") sp2_o.set_xlabel("Time (s)") sp2_o.set_ylabel("Amplitude") sp3 = fig3.add_subplot(1,1,1) p3 = sp3.plot(t_o, x_o.real) sp3.set_xlim([min(t_o), max(t_o)+1]) sp3.set_ylim([-2, 2]) sp3.set_title("All Channels") sp3.set_xlabel("Time (s)") sp3.set_ylabel("Amplitude") pylab.show() if __name__ == "__main__": try: main() except KeyboardInterrupt: pass
gpl-3.0
Lucaszw/DIGITS
digits/layer_outputs/get_deconv.py
1
2763
import sys import os import numpy as np import matplotlib.pyplot as plt import argparse script_location = os.path.dirname(os.path.realpath(sys.argv[0])) sys.path.insert(0,script_location+"/../..") import digits from digits import utils import argparse from subprocess import call import h5py sys.path.insert(0,"/home/lzeerwanklyn/Projects/caffes/caffe-dvt/python") # if complaining do this: # sudo ldconfig /usr/local/cuda/lib64 os.environ['LD_LIBRARY_PATH'] = '/home/lzeerwanklyn/Projects/torches/torch-nv/install/lib:/home/lzeerwanklyn/Projects/nccl/build/lib:/usr/local/cuda-7.5/lib6' import caffe def write_deconv(job_path,image_key,layer_name, neuron_index): delchars = ''.join(c for c in map(chr, range(256)) if not c.isalnum()) # TODO: This should not be hardcoded! caffe.set_device(0) caffe.set_mode_gpu() deploy_prototxt = job_path+"/deploy.prototxt" caffemodel = job_path+"/model.caffemodel" # Load network net = caffe.Net(deploy_prototxt,caffemodel,caffe.TEST) # Setup data blob for input image transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape}) transformer.set_transpose('data', (2,0,1)) transformer.set_raw_scale('data', 255) transformer.set_channel_swap('data', (2,1,0)) # Load image and perform a forward pass f = h5py.File(job_path+'/activations.hdf5','r') image = f[image_key]['data'][:][0] transformed_image = transformer.preprocess('data', image) net.blobs['data'].data[...] = transformed_image net.forward() # Get deconvolution for specified layer and neuron diffs = net.blobs[layer_name].diff * 0 diffs[0][int(neuron_index)] = net.blobs[layer_name].data[0,int(neuron_index)] net.deconv_from_layer(layer_name, diffs, zero_higher = True) # Save data to numpy array raw_data = net.blobs['data'].diff[0] vis_data = utils.image.reshape_data_for_vis(raw_data,'BGR')[:10000] np.save(script_location+"/deconv/"+layer_name.translate(None, delchars), utils.image.normalize_data(vis_data)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Deconvolution tool - DIGITS') ### Positional arguments parser.add_argument('job_path', help='Path to job containing deploy.prototxt and caffemodel') parser.add_argument('image_key', help='Group key of dataset containing image in activations.hdf5') parser.add_argument('layer_name', help='Name of layer (string)') parser.add_argument('neuron_index', help='neuron index from 0 to N') args = vars(parser.parse_args()) write_deconv( args['job_path'], args['image_key'], args['layer_name'], args['neuron_index'], )
bsd-3-clause
mmp2/megaman
megaman/embedding/tests/test_lle.py
4
4114
# LICENSE: Simplified BSD https://github.com/mmp2/megaman/blob/master/LICENSE import sys import numpy as np import scipy as sp import scipy.sparse as sparse from scipy.spatial.distance import squareform, pdist from itertools import product from numpy.testing import assert_array_almost_equal from sklearn import manifold, datasets from sklearn.neighbors import NearestNeighbors import megaman.embedding.locally_linear as lle import megaman.geometry.geometry as geom from megaman.utils.eigendecomp import EIGEN_SOLVERS def _check_with_col_sign_flipping(A, B, tol=0.0): """ Check array A and B are equal with possible sign flipping on each columns""" sign = True for column_idx in range(A.shape[1]): sign = sign and ((((A[:, column_idx] - B[:, column_idx]) ** 2).mean() <= tol ** 2) or (((A[:, column_idx] + B[:, column_idx]) ** 2).mean() <= tol ** 2)) if not sign: return False return True def test_lle_with_sklearn(): N = 10 X, color = datasets.samples_generator.make_s_curve(N, random_state=0) n_components = 2 n_neighbors = 3 knn = NearestNeighbors(n_neighbors + 1).fit(X) G = geom.Geometry() G.set_data_matrix(X) G.set_adjacency_matrix(knn.kneighbors_graph(X, mode = 'distance')) sk_Y_lle = manifold.LocallyLinearEmbedding(n_neighbors, n_components, method = 'standard').fit_transform(X) (mm_Y_lle, err) = lle.locally_linear_embedding(G, n_components) assert(_check_with_col_sign_flipping(sk_Y_lle, mm_Y_lle, 0.05)) def test_barycenter_kneighbors_graph(): X = np.array([[0, 1], [1.01, 1.], [2, 0]]) distance_matrix = squareform(pdist(X)) A = lle.barycenter_graph(distance_matrix, X) # check that columns sum to one assert_array_almost_equal(np.sum(A.toarray(), 1), np.ones(3)) pred = np.dot(A.toarray(), X) assert(np.linalg.norm(pred - X) / X.shape[0] < 1) def test_lle_simple_grid(): # note: ARPACK is numerically unstable, so this test will fail for # some random seeds. We choose 20 because the tests pass. rng = np.random.RandomState(20) tol = 0.1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(5), repeat=2))) X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 G = geom.Geometry(adjacency_kwds = {'radius':3}) G.set_data_matrix(X) tol = 0.1 distance_matrix = G.compute_adjacency_matrix() N = lle.barycenter_graph(distance_matrix, X).todense() reconstruction_error = np.linalg.norm(np.dot(N, X) - X, 'fro') assert(reconstruction_error < tol) for eigen_solver in EIGEN_SOLVERS: clf = lle.LocallyLinearEmbedding(n_components = n_components, geom = G, eigen_solver = eigen_solver, random_state = rng) clf.fit(X) assert(clf.embedding_.shape[1] == n_components) reconstruction_error = np.linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert(reconstruction_error < tol) def test_lle_manifold(): rng = np.random.RandomState(0) # similar test on a slightly more complex manifold X = np.array(list(product(np.arange(18), repeat=2))) X = np.c_[X, X[:, 0] ** 2 / 18] X = X + 1e-10 * rng.uniform(size=X.shape) n_components = 2 G = geom.Geometry(adjacency_kwds = {'radius':3}) G.set_data_matrix(X) distance_matrix = G.compute_adjacency_matrix() tol = 1.5 N = lle.barycenter_graph(distance_matrix, X).todense() reconstruction_error = np.linalg.norm(np.dot(N, X) - X) assert(reconstruction_error < tol) for eigen_solver in EIGEN_SOLVERS: clf = lle.LocallyLinearEmbedding(n_components = n_components, geom = G, eigen_solver = eigen_solver, random_state = rng) clf.fit(X) assert(clf.embedding_.shape[1] == n_components) reconstruction_error = np.linalg.norm( np.dot(N, clf.embedding_) - clf.embedding_, 'fro') ** 2 assert(reconstruction_error < tol)
bsd-2-clause
qifeigit/scikit-learn
sklearn/linear_model/tests/test_base.py
120
10082
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Fabian Pedregosa <fabian.pedregosa@inria.fr> # # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.base import center_data, sparse_center_data from sklearn.utils import check_random_state from sklearn.datasets.samples_generator import make_sparse_uncorrelated from sklearn.datasets.samples_generator import make_regression def test_linear_regression(): # Test LinearRegression on a simple dataset. # a simple dataset X = [[1], [2]] Y = [1, 2] clf = LinearRegression() clf.fit(X, Y) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.predict(X), [1, 2]) # test it also for degenerate input X = [[1]] Y = [0] clf = LinearRegression() clf.fit(X, Y) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.predict(X), [0]) def test_fit_intercept(): # Test assertions on betas shape. X2 = np.array([[0.38349978, 0.61650022], [0.58853682, 0.41146318]]) X3 = np.array([[0.27677969, 0.70693172, 0.01628859], [0.08385139, 0.20692515, 0.70922346]]) y = np.array([1, 1]) lr2_without_intercept = LinearRegression(fit_intercept=False).fit(X2, y) lr2_with_intercept = LinearRegression(fit_intercept=True).fit(X2, y) lr3_without_intercept = LinearRegression(fit_intercept=False).fit(X3, y) lr3_with_intercept = LinearRegression(fit_intercept=True).fit(X3, y) assert_equal(lr2_with_intercept.coef_.shape, lr2_without_intercept.coef_.shape) assert_equal(lr3_with_intercept.coef_.shape, lr3_without_intercept.coef_.shape) assert_equal(lr2_without_intercept.coef_.ndim, lr3_without_intercept.coef_.ndim) def test_linear_regression_sparse(random_state=0): "Test that linear regression also works with sparse data" random_state = check_random_state(random_state) for i in range(10): n = 100 X = sparse.eye(n, n) beta = random_state.rand(n) y = X * beta[:, np.newaxis] ols = LinearRegression() ols.fit(X, y.ravel()) assert_array_almost_equal(beta, ols.coef_ + ols.intercept_) assert_array_almost_equal(ols.residues_, 0) def test_linear_regression_multiple_outcome(random_state=0): "Test multiple-outcome linear regressions" X, y = make_regression(random_state=random_state) Y = np.vstack((y, y)).T n_features = X.shape[1] clf = LinearRegression(fit_intercept=True) clf.fit((X), Y) assert_equal(clf.coef_.shape, (2, n_features)) Y_pred = clf.predict(X) clf.fit(X, y) y_pred = clf.predict(X) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def test_linear_regression_sparse_multiple_outcome(random_state=0): "Test multiple-outcome linear regressions with sparse data" random_state = check_random_state(random_state) X, y = make_sparse_uncorrelated(random_state=random_state) X = sparse.coo_matrix(X) Y = np.vstack((y, y)).T n_features = X.shape[1] ols = LinearRegression() ols.fit(X, Y) assert_equal(ols.coef_.shape, (2, n_features)) Y_pred = ols.predict(X) ols.fit(X, y.ravel()) y_pred = ols.predict(X) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def test_center_data(): n_samples = 200 n_features = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples) expected_X_mean = np.mean(X, axis=0) # XXX: currently scaled to variance=n_samples expected_X_std = np.std(X, axis=0) * np.sqrt(X.shape[0]) expected_y_mean = np.mean(y, axis=0) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(X_mean, np.zeros(n_features)) assert_array_almost_equal(y_mean, 0) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X) assert_array_almost_equal(yt, y) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X - expected_X_mean) assert_array_almost_equal(yt, y - expected_y_mean) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_std) assert_array_almost_equal(yt, y - expected_y_mean) def test_center_data_multioutput(): n_samples = 200 n_features = 3 n_outputs = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_outputs) expected_y_mean = np.mean(y, axis=0) args = [(center_data, X), (sparse_center_data, sparse.csc_matrix(X))] for center, X in args: _, yt, _, y_mean, _ = center(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(y_mean, np.zeros(n_outputs)) assert_array_almost_equal(yt, y) _, yt, _, y_mean, _ = center(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(yt, y - y_mean) _, yt, _, y_mean, _ = center(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(yt, y - y_mean) def test_center_data_weighted(): n_samples = 200 n_features = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples) sample_weight = rng.rand(n_samples) expected_X_mean = np.average(X, axis=0, weights=sample_weight) expected_y_mean = np.average(y, axis=0, weights=sample_weight) # XXX: if normalize=True, should we expect a weighted standard deviation? # Currently not weighted, but calculated with respect to weighted mean # XXX: currently scaled to variance=n_samples expected_X_std = (np.sqrt(X.shape[0]) * np.mean((X - expected_X_mean) ** 2, axis=0) ** .5) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=False, sample_weight=sample_weight) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X - expected_X_mean) assert_array_almost_equal(yt, y - expected_y_mean) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=True, sample_weight=sample_weight) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_std) assert_array_almost_equal(yt, y - expected_y_mean) def test_sparse_center_data(): n_samples = 200 n_features = 2 rng = check_random_state(0) # random_state not supported yet in sparse.rand X = sparse.rand(n_samples, n_features, density=.5) # , random_state=rng X = X.tolil() y = rng.rand(n_samples) XA = X.toarray() # XXX: currently scaled to variance=n_samples expected_X_std = np.std(XA, axis=0) * np.sqrt(X.shape[0]) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(X_mean, np.zeros(n_features)) assert_array_almost_equal(y_mean, 0) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt.A, XA) assert_array_almost_equal(yt, y) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(X_mean, np.mean(XA, axis=0)) assert_array_almost_equal(y_mean, np.mean(y, axis=0)) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt.A, XA) assert_array_almost_equal(yt, y - np.mean(y, axis=0)) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(X_mean, np.mean(XA, axis=0)) assert_array_almost_equal(y_mean, np.mean(y, axis=0)) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt.A, XA / expected_X_std) assert_array_almost_equal(yt, y - np.mean(y, axis=0)) def test_csr_sparse_center_data(): # Test output format of sparse_center_data, when input is csr X, y = make_regression() X[X < 2.5] = 0.0 csr = sparse.csr_matrix(X) csr_, y, _, _, _ = sparse_center_data(csr, y, True) assert_equal(csr_.getformat(), 'csr')
bsd-3-clause
avistous/QSTK
Tools/Visualizer/FormatData.py
3
3430
''' (c) 2011, 2012 Georgia Tech Research Corporation This source code is released under the New BSD license. Please see http://wiki.quantsoftware.org/index.php?title=QSTK_License for license details. Created on April, 20, 2012 @author: Sourabh Bajaj @contact: sourabhbajaj90@gmail.com @summary: Visualizer - Random Data Source - Weather Data ''' #import libraries import numpy as np import datetime as dt import pickle import dircache import os import string import datetime as dt from pylab import * from pandas import * import qstkutil.tsutil as tsu def genData(): op_folderpath = os.environ['QS'] + 'Tools/Visualizer/Data/Norway' ip_folderpath = os.environ['QS'] + 'Tools/Visualizer/Data/Norway/Raw/' if not os.path.exists(op_folderpath): os.mkdir(op_folderpath) print "Data was missing" return op_folderpath = op_folderpath + '/' files_at_this_path = dircache.listdir(ip_folderpath) ip_folderpath = ip_folderpath +'/' stationnames = [] startyears = [] endyears=[] for file1 in files_at_this_path: file = open(ip_folderpath + file1, 'r') for f in file.readlines(): if string.find(f, 'Name')!=-1: n= string.lstrip(f, 'Name= ') stationnames.append(string.rstrip(n)) if string.find(f, 'Start year')!=-1: n= string.lstrip(f, 'Start year= ') startyears.append(int(string.rstrip(n))) if string.find(f, 'End year')!=-1: n= string.lstrip(f, 'End year= ') endyears.append(int(string.rstrip(n))) file.close() timestamps = [ dt.datetime(year,1,1) for year in range(min(startyears),max(endyears)+1)] months = ['January','February','March','April','May','June','July','August','September','October','November','December'] numpyarray = np.empty([len(months),len(timestamps),len(stationnames)]) numpyarray[:] = np.NAN PandasObject= Panel(numpyarray, items=months, major_axis=timestamps, minor_axis=stationnames) for i, file1 in enumerate(files_at_this_path): flag=0 station=stationnames[i] file = open(ip_folderpath + file1, 'r') for f in file.readlines(): if flag==1: data=string.split(f) year = int(data.pop(0)) time = dt.datetime(year,1,1) for month,val in zip(months,data): PandasObject[month][station][time] = float(val) if string.find(f, 'Obs')!=-1: flag=1 file.close() #Creating a txt file of timestamps file = open(op_folderpath +'TimeStamps.txt', 'w') for onedate in timestamps: stringdate=dt.date.isoformat(onedate) file.write(stringdate+'\n') file.close() #Creating a txt file of symbols file = open(op_folderpath +'Symbols.txt', 'w') for sym in stationnames: file.write(str(sym)+'\n') file.close() #Creating a txt file of Features file = open(op_folderpath +'Features.txt', 'w') for f in months: file.write(f+'\n') file.close() Numpyarray_Final = PandasObject.values for i,month in enumerate(months): for j,station in enumerate(stationnames): for k in range(len(timestamps)-1): if np.isnan(Numpyarray_Final[i][k+1][j]): Numpyarray_Final[i][k+1][j] = Numpyarray_Final[i][k][j] for i,month in enumerate(months): for j,station in enumerate(stationnames): for z in range(1,len(timestamps)): k = len(timestamps) - z if np.isnan(Numpyarray_Final[i][k-1][j]): Numpyarray_Final[i][k-1][j] = Numpyarray_Final[i][k][j] pickle.dump(Numpyarray_Final,open(op_folderpath +'ALLDATA.pkl', 'wb' ),-1) def main(): genData() if __name__ == '__main__': main()
bsd-3-clause
dreuven/SampleSparse
SampleSparse/tests/classicLAHMCSampling/PersonalPlotting.py
3
9713
import matplotlib.pyplot as plt import numpy as np import matplotlib.cm as cm class PPlotting: root_directory = None def __init__(self, directory): # try: # str(directory) # except: # print("Cannot convert input to string. Put in a name!") self.root_directory = str(directory) def plot_a_matrix_mean(self,a_mean_matrix): savepath = self.root_directory + "/a_mean_plot.png" # print("SAVE PATH IS {0}".format(savepath)) plt.figure() plt.title("A matrix mean") plt.plot(a_mean_matrix) plt.savefig(savepath) plt.close() def plot_a_activitation(self,a_coeff_matrix, i, num_receptive_fields, num_patches_from_image): # num_receptive_fields = a_coeff_matrix.shape[0] # num_patches_from_image = a_coeff_matrix.shape[1] a_to_plot = a_coeff_matrix.reshape(num_receptive_fields, num_patches_from_image)[:,0] plt.figure() plt.title("Activity of a for an image patch graph") plt.plot(a_to_plot) savepath = self.root_directory + "/a_activity_iter:" + str(i) + ".png" plt.savefig(savepath) plt.close() def plot_phis(self,phis, i): plt.figure(figsize=(10,10)) k = phis.shape[1] val_x_y = int(np.ceil(np.sqrt(k))) size_of_patch = int(np.sqrt(phis.shape[0])) plt.imshow(self.tile_raster_images(phis.T,(size_of_patch, size_of_patch), [val_x_y,val_x_y]), cmap = cm.Greys_r, interpolation="nearest") savepath = self.root_directory +'/PhiPlots_iter:' + str(i) + '.png' plt.title("Receptive fields") plt.savefig(savepath, format='png', dpi=500) plt.close() def plot_energy_over_time(self,energy_values): plt.figure() plt.title("Energy Value") plt.plot(energy_values) savepath = self.root_directory +"/EnergyVals.png" plt.savefig(savepath) plt.close() def plot_reconstruction_error_over_time(self,reconstruction_error_arr): plt.figure() plt.title("Reconstruction Error Over Time") plt.plot(reconstruction_error_arr) savepath = self.root_directory +"/ReconstructionError.png" plt.savefig(savepath) plt.close() def plot_input_data(self,image_patch_data, i): # Note: Assuming image_patch_data is p x N matrix size = np.sqrt(image_patch_data.shape[0]) num_images = int(np.ceil(np.sqrt(image_patch_data.shape[1]))) im_arr = self.tile_raster_images(image_patch_data.T,[size ,size ],[num_images,num_images]) savePath = self.root_directory +"/input_data_iter_{0}.png".format(i) plt.title("Input Data") plt.imshow(im_arr, cmap=cm.Greys_r) plt.savefig(savePath) plt.close() def plot_reconstructions(self,reconstruction,i): # Note: assuming reconstruction is p x N matrix size = np.sqrt(reconstruction.shape[0]) num_images = int(np.ceil(np.sqrt(reconstruction.shape[1]))) im_arr = self.tile_raster_images(reconstruction.T,[size ,size],[num_images,num_images]) savePath = self.root_directory +"/reconstructions_iter_{0}.png".format(i) plt.title("Reconstruction Data") plt.imshow(im_arr, cmap=cm.Greys_r) plt.savefig(savePath) plt.close() def create_and_show_receptive_field_poster(self,receptive_fields, size_space_between, num_per_row, num_per_column, iteration_num): num_receptive_fields = receptive_fields.shape[1] # Making assumption that all receptive fields are square! size_receptive = int(np.sqrt(receptive_fields.shape[0])) if num_receptive_fields > num_per_row * num_per_column: print("Impossible to fit all receptive fields onto this poster") return size_row_of_poster = num_per_row * size_receptive + (num_per_row - 1) * size_space_between size_col_of_poster = num_per_column * size_receptive + (num_per_column - 1) * size_space_between poster_image = np.zeros((size_row_of_poster, size_col_of_poster)) row_index = 0 col_index = 0 for r_field in range(num_receptive_fields): curr_receptive_field = receptive_fields[:,r_field].reshape(size_receptive, size_receptive) poster_image[row_index:row_index + size_receptive, col_index: col_index + size_receptive] = curr_receptive_field col_index = col_index + size_receptive + size_space_between if col_index - size_space_between == size_col_of_poster: col_index = 0 row_index = row_index + size_receptive + size_space_between plt.imshow(poster_image, cmap=cm.Greys_r) savepath = self.root_directory +'/PhiPlots_iter:' + str(iteration_num) + '.png' plt.title("Receptive fields") plt.savefig(savepath) plt.close() def scale_to_unit_interval(self,ndar, eps=1e-8): # """ Scales all values in the ndarray ndar to be between 0 and 1 """ ndar = ndar.copy() ndar -= ndar.min() ndar *= 1.0 / (ndar.max() + eps) return ndar def tile_raster_images(self,X, img_shape, tile_shape, tile_spacing=(2, 2), scale_rows_to_unit_interval=True, output_pixel_vals=True): """ Transform an array with one flattened image per row, into an array in which images are reshaped and layed out like tiles on a floor. This function is useful for visualizing datasets whose rows are images, and also columns of matrices for transforming those rows (such as the first layer of a neural net). :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can be 2-D ndarrays or None; :param X: a 2-D array in which every row is a flattened image. :type img_shape: tuple; (height, width) :param img_shape: the original shape of each image :type tile_shape: tuple; (rows, cols) :param tile_shape: the number of images to tile (rows, cols) :param output_pixel_vals: if output should be pixel values (i.e. int8 values) or floats :param scale_rows_to_unit_interval: if the values need to be scaled before being plotted to [0,1] or not :returns: array suitable for viewing as an image. (See:`Image.fromarray`.) :rtype: a 2-d array with same dtype as X. """ assert len(img_shape) == 2 assert len(tile_shape) == 2 assert len(tile_spacing) == 2 # The expression below can be re-written in a more C style as # follows : # out_shape = [0,0] # out_shape[0] = (img_shape[0] + tile_spacing[0]) * tile_shape[0] - # tile_spacing[0] # out_shape[1] = (img_shape[1] + tile_spacing[1]) * tile_shape[1] - # tile_spacing[1] out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing)] if isinstance(X, tuple): assert len(X) == 4 # Create an output np ndarray to store the image if output_pixel_vals: out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype='uint8') else: out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype) # colors default to 0, alpha defaults to 1 (opaque) if output_pixel_vals: channel_defaults = [0, 0, 0, 255] else: channel_defaults = [0., 0., 0., 1.] for i in range(4): if X[i] is None: # if channel is None, fill it with zeros of the correct # dtype out_array[:, :, i] = np.zeros(out_shape, dtype='uint8' if output_pixel_vals else out_array.dtype ) + channel_defaults[i] else: # use a recurrent call to compute the channel and store it # in the output out_array[:, :, i] = tile_raster_images(X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals) return out_array else: # if we are dealing with only one channel H, W = img_shape Hs, Ws = tile_spacing # generate a matrix to store the output out_array = np.zeros(out_shape, dtype='uint8' if output_pixel_vals else X.dtype) for tile_row in range(tile_shape[0]): for tile_col in range(tile_shape[1]): if tile_row * tile_shape[1] + tile_col < X.shape[0]: if scale_rows_to_unit_interval: # if we should scale values to be between 0 and 1 # do this by calling the `scale_to_unit_interval` # function this_img = self.scale_to_unit_interval(X[tile_row * tile_shape[1] + tile_col].reshape(img_shape)) else: this_img = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape) # add the slice to the corresponding position in the # output array out_array[ tile_row * (H+Hs): tile_row * (H + Hs) + H, tile_col * (W+Ws): tile_col * (W + Ws) + W ] \ = this_img * (255 if output_pixel_vals else 1) return out_array
gpl-3.0
yaroslavvb/tensorflow
tensorflow/contrib/learn/python/learn/tests/dataframe/arithmetic_transform_test.py
62
2343
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for arithmetic transforms.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.dataframe import tensorflow_dataframe as df from tensorflow.python.platform import test # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False class SumTestCase(test.TestCase): """Test class for `Sum` transform.""" def testSum(self): if not HAS_PANDAS: return num_rows = 100 pandas_df = pd.DataFrame({ "a": np.arange(num_rows), "b": np.arange(num_rows, 2 * num_rows) }) frame = df.TensorFlowDataFrame.from_pandas( pandas_df, shuffle=False, batch_size=num_rows) frame["a+b"] = frame["a"] + frame["b"] expected_sum = pandas_df["a"] + pandas_df["b"] actual_sum = frame.run_one_batch()["a+b"] np.testing.assert_array_equal(expected_sum, actual_sum) class DifferenceTestCase(test.TestCase): """Test class for `Difference` transform.""" def testDifference(self): if not HAS_PANDAS: return num_rows = 100 pandas_df = pd.DataFrame({ "a": np.arange(num_rows), "b": np.arange(num_rows, 2 * num_rows) }) frame = df.TensorFlowDataFrame.from_pandas( pandas_df, shuffle=False, batch_size=num_rows) frame["a-b"] = frame["a"] - frame["b"] expected_diff = pandas_df["a"] - pandas_df["b"] actual_diff = frame.run_one_batch()["a-b"] np.testing.assert_array_equal(expected_diff, actual_diff) if __name__ == "__main__": test.main()
apache-2.0
MonoCloud/zipline
tests/history_cases.py
7
21388
""" Test case definitions for history tests. """ import pandas as pd import numpy as np from zipline.finance.trading import TradingEnvironment from zipline.history.history import HistorySpec from zipline.protocol import BarData from zipline.utils.test_utils import to_utc _cases_env = TradingEnvironment() def mixed_frequency_expected_index(count, frequency): """ Helper for enumerating expected indices for test_mixed_frequency. """ minute = MIXED_FREQUENCY_MINUTES[count] if frequency == '1d': return [_cases_env.previous_open_and_close(minute)[1], minute] elif frequency == '1m': return [_cases_env.previous_market_minute(minute), minute] def mixed_frequency_expected_data(count, frequency): """ Helper for enumerating expected data test_mixed_frequency. """ if frequency == '1d': # First day of this test is July 3rd, which is a half day. if count < 210: return [np.nan, count] else: return [209, count] elif frequency == '1m': if count == 0: return [np.nan, count] else: return [count - 1, count] MIXED_FREQUENCY_MINUTES = _cases_env.market_minute_window( to_utc('2013-07-03 9:31AM'), 600, ) ONE_MINUTE_PRICE_ONLY_SPECS = [ HistorySpec(1, '1m', 'price', True, _cases_env, data_frequency='minute'), ] DAILY_OPEN_CLOSE_SPECS = [ HistorySpec(3, '1d', 'open_price', False, _cases_env, data_frequency='minute'), HistorySpec(3, '1d', 'close_price', False, _cases_env, data_frequency='minute'), ] ILLIQUID_PRICES_SPECS = [ HistorySpec(3, '1m', 'price', False, _cases_env, data_frequency='minute'), HistorySpec(5, '1m', 'price', True, _cases_env, data_frequency='minute'), ] MIXED_FREQUENCY_SPECS = [ HistorySpec(1, '1m', 'price', False, _cases_env, data_frequency='minute'), HistorySpec(2, '1m', 'price', False, _cases_env, data_frequency='minute'), HistorySpec(2, '1d', 'price', False, _cases_env, data_frequency='minute'), ] MIXED_FIELDS_SPECS = [ HistorySpec(3, '1m', 'price', True, _cases_env, data_frequency='minute'), HistorySpec(3, '1m', 'open_price', True, _cases_env, data_frequency='minute'), HistorySpec(3, '1m', 'close_price', True, _cases_env, data_frequency='minute'), HistorySpec(3, '1m', 'high', True, _cases_env, data_frequency='minute'), HistorySpec(3, '1m', 'low', True, _cases_env, data_frequency='minute'), HistorySpec(3, '1m', 'volume', True, _cases_env, data_frequency='minute'), ] HISTORY_CONTAINER_TEST_CASES = { # June 2013 # Su Mo Tu We Th Fr Sa # 1 # 2 3 4 5 6 7 8 # 9 10 11 12 13 14 15 # 16 17 18 19 20 21 22 # 23 24 25 26 27 28 29 # 30 'test one minute price only': { # A list of HistorySpec objects. 'specs': ONE_MINUTE_PRICE_ONLY_SPECS, # Sids for the test. 'sids': [1], # Start date for test. 'dt': to_utc('2013-06-21 9:31AM'), # Sequency of updates to the container 'updates': [ BarData( { 1: { 'price': 5, 'dt': to_utc('2013-06-21 9:31AM'), }, }, ), BarData( { 1: { 'price': 6, 'dt': to_utc('2013-06-21 9:32AM'), }, }, ), ], # Expected results 'expected': { ONE_MINUTE_PRICE_ONLY_SPECS[0].key_str: [ pd.DataFrame( data={ 1: [5], }, index=[ to_utc('2013-06-21 9:31AM'), ], ), pd.DataFrame( data={ 1: [6], }, index=[ to_utc('2013-06-21 9:32AM'), ], ), ], }, }, 'test daily open close': { # A list of HistorySpec objects. 'specs': DAILY_OPEN_CLOSE_SPECS, # Sids for the test. 'sids': [1], # Start date for test. 'dt': to_utc('2013-06-21 9:31AM'), # Sequence of updates to the container 'updates': [ BarData( { 1: { 'open_price': 10, 'close_price': 11, 'dt': to_utc('2013-06-21 10:00AM'), }, }, ), BarData( { 1: { 'open_price': 12, 'close_price': 13, 'dt': to_utc('2013-06-21 3:30PM'), }, }, ), BarData( { 1: { 'open_price': 14, 'close_price': 15, # Wait a full market day before the next bar. # We should end up with nans for Monday the 24th. 'dt': to_utc('2013-06-25 9:31AM'), }, }, ), ], # Dictionary mapping spec_key -> list of expected outputs 'expected': { # open DAILY_OPEN_CLOSE_SPECS[0].key_str: [ pd.DataFrame( data={ 1: [np.nan, np.nan, 10] }, index=[ to_utc('2013-06-19 4:00PM'), to_utc('2013-06-20 4:00PM'), to_utc('2013-06-21 10:00AM'), ], ), pd.DataFrame( data={ 1: [np.nan, np.nan, 10] }, index=[ to_utc('2013-06-19 4:00PM'), to_utc('2013-06-20 4:00PM'), to_utc('2013-06-21 3:30PM'), ], ), pd.DataFrame( data={ 1: [10, np.nan, 14] }, index=[ to_utc('2013-06-21 4:00PM'), to_utc('2013-06-24 4:00PM'), to_utc('2013-06-25 9:31AM'), ], ), ], # close DAILY_OPEN_CLOSE_SPECS[1].key_str: [ pd.DataFrame( data={ 1: [np.nan, np.nan, 11] }, index=[ to_utc('2013-06-19 4:00PM'), to_utc('2013-06-20 4:00PM'), to_utc('2013-06-21 10:00AM'), ], ), pd.DataFrame( data={ 1: [np.nan, np.nan, 13] }, index=[ to_utc('2013-06-19 4:00PM'), to_utc('2013-06-20 4:00PM'), to_utc('2013-06-21 3:30PM'), ], ), pd.DataFrame( data={ 1: [13, np.nan, 15] }, index=[ to_utc('2013-06-21 4:00PM'), to_utc('2013-06-24 4:00PM'), to_utc('2013-06-25 9:31AM'), ], ), ], }, }, 'test illiquid prices': { # A list of HistorySpec objects. 'specs': ILLIQUID_PRICES_SPECS, # Sids for the test. 'sids': [1], # Start date for test. 'dt': to_utc('2013-06-28 9:31AM'), # Sequence of updates to the container 'updates': [ BarData( { 1: { 'price': 10, 'dt': to_utc('2013-06-28 9:31AM'), }, }, ), BarData( { 1: { 'price': 11, 'dt': to_utc('2013-06-28 9:32AM'), }, }, ), BarData( { 1: { 'price': 12, 'dt': to_utc('2013-06-28 9:33AM'), }, }, ), BarData( { 1: { 'price': 13, # Note: Skipping 9:34 to simulate illiquid bar/missing # data. 'dt': to_utc('2013-06-28 9:35AM'), }, }, ), ], # Dictionary mapping spec_key -> list of expected outputs 'expected': { ILLIQUID_PRICES_SPECS[0].key_str: [ pd.DataFrame( data={ 1: [np.nan, np.nan, 10], }, index=[ to_utc('2013-06-27 3:59PM'), to_utc('2013-06-27 4:00PM'), to_utc('2013-06-28 9:31AM'), ], ), pd.DataFrame( data={ 1: [np.nan, 10, 11], }, index=[ to_utc('2013-06-27 4:00PM'), to_utc('2013-06-28 9:31AM'), to_utc('2013-06-28 9:32AM'), ], ), pd.DataFrame( data={ 1: [10, 11, 12], }, index=[ to_utc('2013-06-28 9:31AM'), to_utc('2013-06-28 9:32AM'), to_utc('2013-06-28 9:33AM'), ], ), # Since there's no update for 9:34, this is called at 9:35. pd.DataFrame( data={ 1: [12, np.nan, 13], }, index=[ to_utc('2013-06-28 9:33AM'), to_utc('2013-06-28 9:34AM'), to_utc('2013-06-28 9:35AM'), ], ), ], ILLIQUID_PRICES_SPECS[1].key_str: [ pd.DataFrame( data={ 1: [np.nan, np.nan, np.nan, np.nan, 10], }, index=[ to_utc('2013-06-27 3:57PM'), to_utc('2013-06-27 3:58PM'), to_utc('2013-06-27 3:59PM'), to_utc('2013-06-27 4:00PM'), to_utc('2013-06-28 9:31AM'), ], ), pd.DataFrame( data={ 1: [np.nan, np.nan, np.nan, 10, 11], }, index=[ to_utc('2013-06-27 3:58PM'), to_utc('2013-06-27 3:59PM'), to_utc('2013-06-27 4:00PM'), to_utc('2013-06-28 9:31AM'), to_utc('2013-06-28 9:32AM'), ], ), pd.DataFrame( data={ 1: [np.nan, np.nan, 10, 11, 12], }, index=[ to_utc('2013-06-27 3:59PM'), to_utc('2013-06-27 4:00PM'), to_utc('2013-06-28 9:31AM'), to_utc('2013-06-28 9:32AM'), to_utc('2013-06-28 9:33AM'), ], ), # Since there's no update for 9:34, this is called at 9:35. # The 12 value from 9:33 should be forward-filled. pd.DataFrame( data={ 1: [10, 11, 12, 12, 13], }, index=[ to_utc('2013-06-28 9:31AM'), to_utc('2013-06-28 9:32AM'), to_utc('2013-06-28 9:33AM'), to_utc('2013-06-28 9:34AM'), to_utc('2013-06-28 9:35AM'), ], ), ], }, }, 'test mixed frequencies': { # A list of HistorySpec objects. 'specs': MIXED_FREQUENCY_SPECS, # Sids for the test. 'sids': [1], # Start date for test. # July 2013 # Su Mo Tu We Th Fr Sa # 1 2 3 4 5 6 # 7 8 9 10 11 12 13 # 14 15 16 17 18 19 20 # 21 22 23 24 25 26 27 # 28 29 30 31 'dt': to_utc('2013-07-03 9:31AM'), # Sequence of updates to the container 'updates': [ BarData( { 1: { 'price': count, 'dt': dt, } } ) for count, dt in enumerate(MIXED_FREQUENCY_MINUTES) ], # Dictionary mapping spec_key -> list of expected outputs. 'expected': { MIXED_FREQUENCY_SPECS[0].key_str: [ pd.DataFrame( data={ 1: [count], }, index=[minute], ) for count, minute in enumerate(MIXED_FREQUENCY_MINUTES) ], MIXED_FREQUENCY_SPECS[1].key_str: [ pd.DataFrame( data={ 1: mixed_frequency_expected_data(count, '1m'), }, index=mixed_frequency_expected_index(count, '1m'), ) for count in range(len(MIXED_FREQUENCY_MINUTES)) ], MIXED_FREQUENCY_SPECS[2].key_str: [ pd.DataFrame( data={ 1: mixed_frequency_expected_data(count, '1d'), }, index=mixed_frequency_expected_index(count, '1d'), ) for count in range(len(MIXED_FREQUENCY_MINUTES)) ] }, }, 'test multiple fields and sids': { # A list of HistorySpec objects. 'specs': MIXED_FIELDS_SPECS, # Sids for the test. 'sids': [1, 10], # Start date for test. 'dt': to_utc('2013-06-28 9:31AM'), # Sequence of updates to the container 'updates': [ BarData( { 1: { 'dt': dt, 'price': count, 'open_price': count, 'close_price': count, 'high': count, 'low': count, 'volume': count, }, 10: { 'dt': dt, 'price': count * 10, 'open_price': count * 10, 'close_price': count * 10, 'high': count * 10, 'low': count * 10, 'volume': count * 10, }, }, ) for count, dt in enumerate([ to_utc('2013-06-28 9:31AM'), to_utc('2013-06-28 9:32AM'), to_utc('2013-06-28 9:33AM'), # NOTE: No update for 9:34 to_utc('2013-06-28 9:35AM'), ]) ], # Dictionary mapping spec_key -> list of expected outputs 'expected': dict( # Build a dict from a list of tuples. Doing it this way because # there are two distinct cases we want to test: forward-fillable # fields and non-forward-fillable fields. [ ( # Non forward-fill fields key, [ pd.DataFrame( data={ 1: [np.nan, np.nan, 0], 10: [np.nan, np.nan, 0], }, index=[ to_utc('2013-06-27 3:59PM'), to_utc('2013-06-27 4:00PM'), to_utc('2013-06-28 9:31AM'), ], ), pd.DataFrame( data={ 1: [np.nan, 0, 1], 10: [np.nan, 0, 10], }, index=[ to_utc('2013-06-27 4:00PM'), to_utc('2013-06-28 9:31AM'), to_utc('2013-06-28 9:32AM'), ], ), pd.DataFrame( data={ 1: [0, 1, 2], 10: [0, 10, 20], }, index=[ to_utc('2013-06-28 9:31AM'), to_utc('2013-06-28 9:32AM'), to_utc('2013-06-28 9:33AM'), ], ), pd.DataFrame( data={ 1: [2, np.nan, 3], 10: [20, np.nan, 30], }, index=[ to_utc('2013-06-28 9:33AM'), to_utc('2013-06-28 9:34AM'), to_utc('2013-06-28 9:35AM'), ], # For volume, when we are missing data, we replace # it with 0s to show that no trades occured. ).fillna(0 if 'volume' in key else np.nan), ], ) for key in [spec.key_str for spec in MIXED_FIELDS_SPECS if spec.field not in HistorySpec.FORWARD_FILLABLE] ] + # Concatenate the expected results for non-ffillable with # expected result for ffillable. [ ( # Forward-fillable fields key, [ pd.DataFrame( data={ 1: [np.nan, np.nan, 0], 10: [np.nan, np.nan, 0], }, index=[ to_utc('2013-06-27 3:59PM'), to_utc('2013-06-27 4:00PM'), to_utc('2013-06-28 9:31AM'), ], ), pd.DataFrame( data={ 1: [np.nan, 0, 1], 10: [np.nan, 0, 10], }, index=[ to_utc('2013-06-27 4:00PM'), to_utc('2013-06-28 9:31AM'), to_utc('2013-06-28 9:32AM'), ], ), pd.DataFrame( data={ 1: [0, 1, 2], 10: [0, 10, 20], }, index=[ to_utc('2013-06-28 9:31AM'), to_utc('2013-06-28 9:32AM'), to_utc('2013-06-28 9:33AM'), ], ), pd.DataFrame( data={ 1: [2, 2, 3], 10: [20, 20, 30], }, index=[ to_utc('2013-06-28 9:33AM'), to_utc('2013-06-28 9:34AM'), to_utc('2013-06-28 9:35AM'), ], ), ], ) for key in [spec.key_str for spec in MIXED_FIELDS_SPECS if spec.field in HistorySpec.FORWARD_FILLABLE] ] ), }, }
apache-2.0
antepsis/anteplahmacun
sympy/physics/quantum/tensorproduct.py
23
13565
"""Abstract tensor product.""" from __future__ import print_function, division from sympy import Expr, Add, Mul, Matrix, Pow, sympify from sympy.core.compatibility import range from sympy.core.trace import Tr from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.qexpr import QuantumError from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.state import Ket, Bra from sympy.physics.quantum.matrixutils import ( numpy_ndarray, scipy_sparse_matrix, matrix_tensor_product ) __all__ = [ 'TensorProduct', 'tensor_product_simp' ] #----------------------------------------------------------------------------- # Tensor product #----------------------------------------------------------------------------- _combined_printing = False def combined_tensor_printing(combined): """Set flag controlling whether tensor products of states should be printed as a combined bra/ket or as an explicit tensor product of different bra/kets. This is a global setting for all TensorProduct class instances. Parameters ---------- combine : bool When true, tensor product states are combined into one ket/bra, and when false explicit tensor product notation is used between each ket/bra. """ global _combined_printing _combined_printing = combined class TensorProduct(Expr): """The tensor product of two or more arguments. For matrices, this uses ``matrix_tensor_product`` to compute the Kronecker or tensor product matrix. For other objects a symbolic ``TensorProduct`` instance is returned. The tensor product is a non-commutative multiplication that is used primarily with operators and states in quantum mechanics. Currently, the tensor product distinguishes between commutative and non- commutative arguments. Commutative arguments are assumed to be scalars and are pulled out in front of the ``TensorProduct``. Non-commutative arguments remain in the resulting ``TensorProduct``. Parameters ========== args : tuple A sequence of the objects to take the tensor product of. Examples ======== Start with a simple tensor product of sympy matrices:: >>> from sympy import I, Matrix, symbols >>> from sympy.physics.quantum import TensorProduct >>> m1 = Matrix([[1,2],[3,4]]) >>> m2 = Matrix([[1,0],[0,1]]) >>> TensorProduct(m1, m2) Matrix([ [1, 0, 2, 0], [0, 1, 0, 2], [3, 0, 4, 0], [0, 3, 0, 4]]) >>> TensorProduct(m2, m1) Matrix([ [1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 1, 2], [0, 0, 3, 4]]) We can also construct tensor products of non-commutative symbols: >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> tp = TensorProduct(A, B) >>> tp AxB We can take the dagger of a tensor product (note the order does NOT reverse like the dagger of a normal product): >>> from sympy.physics.quantum import Dagger >>> Dagger(tp) Dagger(A)xDagger(B) Expand can be used to distribute a tensor product across addition: >>> C = Symbol('C',commutative=False) >>> tp = TensorProduct(A+B,C) >>> tp (A + B)xC >>> tp.expand(tensorproduct=True) AxC + BxC """ is_commutative = False def __new__(cls, *args): if isinstance(args[0], (Matrix, numpy_ndarray, scipy_sparse_matrix)): return matrix_tensor_product(*args) c_part, new_args = cls.flatten(sympify(args)) c_part = Mul(*c_part) if len(new_args) == 0: return c_part elif len(new_args) == 1: return c_part * new_args[0] else: tp = Expr.__new__(cls, *new_args) return c_part * tp @classmethod def flatten(cls, args): # TODO: disallow nested TensorProducts. c_part = [] nc_parts = [] for arg in args: cp, ncp = arg.args_cnc() c_part.extend(list(cp)) nc_parts.append(Mul._from_args(ncp)) return c_part, nc_parts def _eval_adjoint(self): return TensorProduct(*[Dagger(i) for i in self.args]) def _eval_rewrite(self, pattern, rule, **hints): sargs = self.args terms = [t._eval_rewrite(pattern, rule, **hints) for t in sargs] return TensorProduct(*terms).expand(tensorproduct=True) def _sympystr(self, printer, *args): from sympy.printing.str import sstr length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Pow, Mul)): s = s + '(' s = s + sstr(self.args[i]) if isinstance(self.args[i], (Add, Pow, Mul)): s = s + ')' if i != length - 1: s = s + 'x' return s def _pretty(self, printer, *args): if (_combined_printing and (all([isinstance(arg, Ket) for arg in self.args]) or all([isinstance(arg, Bra) for arg in self.args]))): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print('', *args) length_i = len(self.args[i].args) for j in range(length_i): part_pform = printer._print(self.args[i].args[j], *args) next_pform = prettyForm(*next_pform.right(part_pform)) if j != length_i - 1: next_pform = prettyForm(*next_pform.right(', ')) if len(self.args[i].args) > 1: next_pform = prettyForm( *next_pform.parens(left='{', right='}')) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: pform = prettyForm(*pform.right(',' + ' ')) pform = prettyForm(*pform.left(self.args[0].lbracket)) pform = prettyForm(*pform.right(self.args[0].rbracket)) return pform length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (Add, Mul)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right(u'\N{N-ARY CIRCLED TIMES OPERATOR}' + u' ')) else: pform = prettyForm(*pform.right('x' + ' ')) return pform def _latex(self, printer, *args): if (_combined_printing and (all([isinstance(arg, Ket) for arg in self.args]) or all([isinstance(arg, Bra) for arg in self.args]))): def _label_wrap(label, nlabels): return label if nlabels == 1 else r"\left\{%s\right\}" % label s = r", ".join([_label_wrap(arg._print_label_latex(printer, *args), len(arg.args)) for arg in self.args]) return r"{%s%s%s}" % (self.args[0].lbracket_latex, s, self.args[0].rbracket_latex) length = len(self.args) s = '' for i in range(length): if isinstance(self.args[i], (Add, Mul)): s = s + '\\left(' # The extra {} brackets are needed to get matplotlib's latex # rendered to render this properly. s = s + '{' + printer._print(self.args[i], *args) + '}' if isinstance(self.args[i], (Add, Mul)): s = s + '\\right)' if i != length - 1: s = s + '\\otimes ' return s def doit(self, **hints): return TensorProduct(*[item.doit(**hints) for item in self.args]) def _eval_expand_tensorproduct(self, **hints): """Distribute TensorProducts across addition.""" args = self.args add_args = [] stop = False for i in range(len(args)): if isinstance(args[i], Add): for aa in args[i].args: tp = TensorProduct(*args[:i] + (aa,) + args[i + 1:]) if isinstance(tp, TensorProduct): tp = tp._eval_expand_tensorproduct() add_args.append(tp) break if add_args: return Add(*add_args) else: return self def _eval_trace(self, **kwargs): indices = kwargs.get('indices', None) exp = tensor_product_simp(self) if indices is None or len(indices) == 0: return Mul(*[Tr(arg).doit() for arg in exp.args]) else: return Mul(*[Tr(value).doit() if idx in indices else value for idx, value in enumerate(exp.args)]) def tensor_product_simp_Mul(e): """Simplify a Mul with TensorProducts. Current the main use of this is to simplify a ``Mul`` of ``TensorProduct``s to a ``TensorProduct`` of ``Muls``. It currently only works for relatively simple cases where the initial ``Mul`` only has scalars and raw ``TensorProduct``s, not ``Add``, ``Pow``, ``Commutator``s of ``TensorProduct``s. Parameters ========== e : Expr A ``Mul`` of ``TensorProduct``s to be simplified. Returns ======= e : Expr A ``TensorProduct`` of ``Mul``s. Examples ======== This is an example of the type of simplification that this function performs:: >>> from sympy.physics.quantum.tensorproduct import \ tensor_product_simp_Mul, TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp_Mul(e) (A*C)x(B*D) """ # TODO: This won't work with Muls that have other composites of # TensorProducts, like an Add, Pow, Commutator, etc. # TODO: This only works for the equivalent of single Qbit gates. if not isinstance(e, Mul): return e c_part, nc_part = e.args_cnc() n_nc = len(nc_part) if n_nc == 0 or n_nc == 1: return e elif e.has(TensorProduct): current = nc_part[0] if not isinstance(current, TensorProduct): raise TypeError('TensorProduct expected, got: %r' % current) n_terms = len(current.args) new_args = list(current.args) for next in nc_part[1:]: # TODO: check the hilbert spaces of next and current here. if isinstance(next, TensorProduct): if n_terms != len(next.args): raise QuantumError( 'TensorProducts of different lengths: %r and %r' % (current, next) ) for i in range(len(new_args)): new_args[i] = new_args[i] * next.args[i] else: # this won't quite work as we don't want next in the # TensorProduct for i in range(len(new_args)): new_args[i] = new_args[i] * next current = next return Mul(*c_part) * TensorProduct(*new_args) else: return e def tensor_product_simp(e, **hints): """Try to simplify and combine TensorProducts. In general this will try to pull expressions inside of ``TensorProducts``. It currently only works for relatively simple cases where the products have only scalars, raw ``TensorProducts``, not ``Add``, ``Pow``, ``Commutators`` of ``TensorProducts``. It is best to see what it does by showing examples. Examples ======== >>> from sympy.physics.quantum import tensor_product_simp >>> from sympy.physics.quantum import TensorProduct >>> from sympy import Symbol >>> A = Symbol('A',commutative=False) >>> B = Symbol('B',commutative=False) >>> C = Symbol('C',commutative=False) >>> D = Symbol('D',commutative=False) First see what happens to products of tensor products: >>> e = TensorProduct(A,B)*TensorProduct(C,D) >>> e AxB*CxD >>> tensor_product_simp(e) (A*C)x(B*D) This is the core logic of this function, and it works inside, powers, sums, commutators and anticommutators as well: >>> tensor_product_simp(e**2) (A*C)x(B*D)**2 """ if isinstance(e, Add): return Add(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, Pow): return tensor_product_simp(e.base) ** e.exp elif isinstance(e, Mul): return tensor_product_simp_Mul(e) elif isinstance(e, Commutator): return Commutator(*[tensor_product_simp(arg) for arg in e.args]) elif isinstance(e, AntiCommutator): return AntiCommutator(*[tensor_product_simp(arg) for arg in e.args]) else: return e
bsd-3-clause
xyguo/scikit-learn
examples/exercises/plot_cv_diabetes.py
53
2861
""" =============================================== Cross-validation on diabetes Dataset Exercise =============================================== A tutorial exercise which uses cross-validation with linear models. This exercise is used in the :ref:`cv_estimators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ from __future__ import print_function print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import LassoCV from sklearn.linear_model import Lasso from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score diabetes = datasets.load_diabetes() X = diabetes.data[:150] y = diabetes.target[:150] lasso = Lasso(random_state=0) alphas = np.logspace(-4, -0.5, 30) scores = list() scores_std = list() n_folds = 3 for alpha in alphas: lasso.alpha = alpha this_scores = cross_val_score(lasso, X, y, cv=n_folds, n_jobs=1) scores.append(np.mean(this_scores)) scores_std.append(np.std(this_scores)) scores, scores_std = np.array(scores), np.array(scores_std) plt.figure().set_size_inches(8, 6) plt.semilogx(alphas, scores) # plot error lines showing +/- std. errors of the scores std_error = scores_std / np.sqrt(n_folds) plt.semilogx(alphas, scores + std_error, 'b--') plt.semilogx(alphas, scores - std_error, 'b--') # alpha=0.2 controls the translucency of the fill color plt.fill_between(alphas, scores + std_error, scores - std_error, alpha=0.2) plt.ylabel('CV score +/- std error') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle='--', color='.5') plt.xlim([alphas[0], alphas[-1]]) ############################################################################## # Bonus: how much can you trust the selection of alpha? # To answer this question we use the LassoCV object that sets its alpha # parameter automatically from the data by internal cross-validation (i.e. it # performs cross-validation on the training data it receives). # We use external cross-validation to see how much the automatically obtained # alphas differ across different cross-validation folds. lasso_cv = LassoCV(alphas=alphas, random_state=0) k_fold = KFold(3) print("Answer to the bonus question:", "how much can you trust the selection of alpha?") print() print("Alpha parameters maximising the generalization score on different") print("subsets of the data:") for k, (train, test) in enumerate(k_fold.split(X, y)): lasso_cv.fit(X[train], y[train]) print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}". format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]))) print() print("Answer: Not very much since we obtained different alphas for different") print("subsets of the data and moreover, the scores for these alphas differ") print("quite substantially.") plt.show()
bsd-3-clause
tetherless-world/setlr
setup.py
1
1523
import os from setuptools import setup, find_packages # Utility function to read the README file. # Used for the long_description. It's nice, because now 1) we have a top level # README file and 2) it's easier to type in the README file than to put a raw # string in below ... def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name = "setlr", version = "0.2.16", author = "Jamie McCusker", author_email = "mccusj@cs.rpi.edu", description = ("setlr is a tool for Semantic Extraction, Transformation, and Loading."), license = "Apache License 2.0", keywords = "rdf semantic etl", url = "http://packages.python.org/setlr", packages=['setlr'], long_description='''SETLr is a tool for generating RDF graphs, including named graphs, from almost any kind of tabular data.''', include_package_data = True, install_requires = [ 'future', 'pip>=9.0.0', 'cython', 'numpy', 'rdflib', 'rdflib-jsonld', 'pandas>=0.23.0', 'requests', 'toposort', 'beautifulsoup4', 'jinja2', 'lxml', 'six', 'xlrd', 'ijson', 'requests-testadapter', 'python-slugify', ], entry_points = { 'console_scripts': ['setlr=setlr:main'], }, classifiers=[ "Development Status :: 5 - Production/Stable", "Topic :: Utilities", "License :: OSI Approved :: Apache Software License", ], )
apache-2.0
Nyker510/scikit-learn
sklearn/ensemble/tests/test_bagging.py
127
25365
""" Testing for the bagging ensemble module (sklearn.ensemble.bagging). """ # Author: Gilles Louppe # License: BSD 3 clause import numpy as np from sklearn.base import BaseEstimator from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_less from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_warns_message from sklearn.dummy import DummyClassifier, DummyRegressor from sklearn.grid_search import GridSearchCV, ParameterGrid from sklearn.ensemble import BaggingClassifier, BaggingRegressor from sklearn.linear_model import Perceptron, LogisticRegression from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.svm import SVC, SVR from sklearn.pipeline import make_pipeline from sklearn.feature_selection import SelectKBest from sklearn.cross_validation import train_test_split from sklearn.datasets import load_boston, load_iris, make_hastie_10_2 from sklearn.utils import check_random_state from scipy.sparse import csc_matrix, csr_matrix rng = check_random_state(0) # also load the iris dataset # and randomly permute it iris = load_iris() perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # also load the boston dataset # and randomly permute it boston = load_boston() perm = rng.permutation(boston.target.size) boston.data = boston.data[perm] boston.target = boston.target[perm] def test_classification(): # Check classification for various parameter settings. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) grid = ParameterGrid({"max_samples": [0.5, 1.0], "max_features": [1, 2, 4], "bootstrap": [True, False], "bootstrap_features": [True, False]}) for base_estimator in [None, DummyClassifier(), Perceptron(), DecisionTreeClassifier(), KNeighborsClassifier(), SVC()]: for params in grid: BaggingClassifier(base_estimator=base_estimator, random_state=rng, **params).fit(X_train, y_train).predict(X_test) def test_sparse_classification(): # Check classification for various parameter settings on sparse input. class CustomSVC(SVC): """SVC variant that records the nature of the training set""" def fit(self, X, y): super(CustomSVC, self).fit(X, y) self.data_type_ = type(X) return self rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) parameter_sets = [ {"max_samples": 0.5, "max_features": 2, "bootstrap": True, "bootstrap_features": True}, {"max_samples": 1.0, "max_features": 4, "bootstrap": True, "bootstrap_features": True}, {"max_features": 2, "bootstrap": False, "bootstrap_features": True}, {"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False}, ] for sparse_format in [csc_matrix, csr_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) for params in parameter_sets: # Trained on sparse format sparse_classifier = BaggingClassifier( base_estimator=CustomSVC(), random_state=1, **params ).fit(X_train_sparse, y_train) sparse_results = sparse_classifier.predict(X_test_sparse) # Trained on dense format dense_results = BaggingClassifier( base_estimator=CustomSVC(), random_state=1, **params ).fit(X_train, y_train).predict(X_test) sparse_type = type(X_train_sparse) types = [i.data_type_ for i in sparse_classifier.estimators_] assert_array_equal(sparse_results, dense_results) assert all([t == sparse_type for t in types]) def test_regression(): # Check regression for various parameter settings. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) grid = ParameterGrid({"max_samples": [0.5, 1.0], "max_features": [0.5, 1.0], "bootstrap": [True, False], "bootstrap_features": [True, False]}) for base_estimator in [None, DummyRegressor(), DecisionTreeRegressor(), KNeighborsRegressor(), SVR()]: for params in grid: BaggingRegressor(base_estimator=base_estimator, random_state=rng, **params).fit(X_train, y_train).predict(X_test) def test_sparse_regression(): # Check regression for various parameter settings on sparse input. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data[:50], boston.target[:50], random_state=rng) class CustomSVR(SVR): """SVC variant that records the nature of the training set""" def fit(self, X, y): super(CustomSVR, self).fit(X, y) self.data_type_ = type(X) return self parameter_sets = [ {"max_samples": 0.5, "max_features": 2, "bootstrap": True, "bootstrap_features": True}, {"max_samples": 1.0, "max_features": 4, "bootstrap": True, "bootstrap_features": True}, {"max_features": 2, "bootstrap": False, "bootstrap_features": True}, {"max_samples": 0.5, "bootstrap": True, "bootstrap_features": False}, ] for sparse_format in [csc_matrix, csr_matrix]: X_train_sparse = sparse_format(X_train) X_test_sparse = sparse_format(X_test) for params in parameter_sets: # Trained on sparse format sparse_classifier = BaggingRegressor( base_estimator=CustomSVR(), random_state=1, **params ).fit(X_train_sparse, y_train) sparse_results = sparse_classifier.predict(X_test_sparse) # Trained on dense format dense_results = BaggingRegressor( base_estimator=CustomSVR(), random_state=1, **params ).fit(X_train, y_train).predict(X_test) sparse_type = type(X_train_sparse) types = [i.data_type_ for i in sparse_classifier.estimators_] assert_array_equal(sparse_results, dense_results) assert all([t == sparse_type for t in types]) assert_array_equal(sparse_results, dense_results) def test_bootstrap_samples(): # Test that bootstraping samples generate non-perfect base estimators. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) base_estimator = DecisionTreeRegressor().fit(X_train, y_train) # without bootstrap, all trees are perfect on the training set ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_samples=1.0, bootstrap=False, random_state=rng).fit(X_train, y_train) assert_equal(base_estimator.score(X_train, y_train), ensemble.score(X_train, y_train)) # with bootstrap, trees are no longer perfect on the training set ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_samples=1.0, bootstrap=True, random_state=rng).fit(X_train, y_train) assert_greater(base_estimator.score(X_train, y_train), ensemble.score(X_train, y_train)) def test_bootstrap_features(): # Test that bootstraping features may generate dupplicate features. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_features=1.0, bootstrap_features=False, random_state=rng).fit(X_train, y_train) for features in ensemble.estimators_features_: assert_equal(boston.data.shape[1], np.unique(features).shape[0]) ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(), max_features=1.0, bootstrap_features=True, random_state=rng).fit(X_train, y_train) for features in ensemble.estimators_features_: assert_greater(boston.data.shape[1], np.unique(features).shape[0]) def test_probability(): # Predict probabilities. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) with np.errstate(divide="ignore", invalid="ignore"): # Normal case ensemble = BaggingClassifier(base_estimator=DecisionTreeClassifier(), random_state=rng).fit(X_train, y_train) assert_array_almost_equal(np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test))) assert_array_almost_equal(ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test))) # Degenerate case, where some classes are missing ensemble = BaggingClassifier(base_estimator=LogisticRegression(), random_state=rng, max_samples=5).fit(X_train, y_train) assert_array_almost_equal(np.sum(ensemble.predict_proba(X_test), axis=1), np.ones(len(X_test))) assert_array_almost_equal(ensemble.predict_proba(X_test), np.exp(ensemble.predict_log_proba(X_test))) def test_oob_score_classification(): # Check that oob prediction is a good estimation of the generalization # error. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) for base_estimator in [DecisionTreeClassifier(), SVC()]: clf = BaggingClassifier(base_estimator=base_estimator, n_estimators=100, bootstrap=True, oob_score=True, random_state=rng).fit(X_train, y_train) test_score = clf.score(X_test, y_test) assert_less(abs(test_score - clf.oob_score_), 0.1) # Test with few estimators assert_warns(UserWarning, BaggingClassifier(base_estimator=base_estimator, n_estimators=1, bootstrap=True, oob_score=True, random_state=rng).fit, X_train, y_train) def test_oob_score_regression(): # Check that oob prediction is a good estimation of the generalization # error. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) clf = BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=50, bootstrap=True, oob_score=True, random_state=rng).fit(X_train, y_train) test_score = clf.score(X_test, y_test) assert_less(abs(test_score - clf.oob_score_), 0.1) # Test with few estimators assert_warns(UserWarning, BaggingRegressor(base_estimator=DecisionTreeRegressor(), n_estimators=1, bootstrap=True, oob_score=True, random_state=rng).fit, X_train, y_train) def test_single_estimator(): # Check singleton ensembles. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) clf1 = BaggingRegressor(base_estimator=KNeighborsRegressor(), n_estimators=1, bootstrap=False, bootstrap_features=False, random_state=rng).fit(X_train, y_train) clf2 = KNeighborsRegressor().fit(X_train, y_train) assert_array_equal(clf1.predict(X_test), clf2.predict(X_test)) def test_error(): # Test that it gives proper exception on deficient input. X, y = iris.data, iris.target base = DecisionTreeClassifier() # Test max_samples assert_raises(ValueError, BaggingClassifier(base, max_samples=-1).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=0.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=2.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples=1000).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_samples="foobar").fit, X, y) # Test max_features assert_raises(ValueError, BaggingClassifier(base, max_features=-1).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=0.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=2.0).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features=5).fit, X, y) assert_raises(ValueError, BaggingClassifier(base, max_features="foobar").fit, X, y) # Test support of decision_function assert_false(hasattr(BaggingClassifier(base).fit(X, y), 'decision_function')) def test_parallel_classification(): # Check parallel classification. rng = check_random_state(0) # Classification X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=3, random_state=0).fit(X_train, y_train) # predict_proba ensemble.set_params(n_jobs=1) y1 = ensemble.predict_proba(X_test) ensemble.set_params(n_jobs=2) y2 = ensemble.predict_proba(X_test) assert_array_almost_equal(y1, y2) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=1, random_state=0).fit(X_train, y_train) y3 = ensemble.predict_proba(X_test) assert_array_almost_equal(y1, y3) # decision_function ensemble = BaggingClassifier(SVC(), n_jobs=3, random_state=0).fit(X_train, y_train) ensemble.set_params(n_jobs=1) decisions1 = ensemble.decision_function(X_test) ensemble.set_params(n_jobs=2) decisions2 = ensemble.decision_function(X_test) assert_array_almost_equal(decisions1, decisions2) ensemble = BaggingClassifier(SVC(), n_jobs=1, random_state=0).fit(X_train, y_train) decisions3 = ensemble.decision_function(X_test) assert_array_almost_equal(decisions1, decisions3) def test_parallel_regression(): # Check parallel regression. rng = check_random_state(0) X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(X_train, y_train) ensemble.set_params(n_jobs=1) y1 = ensemble.predict(X_test) ensemble.set_params(n_jobs=2) y2 = ensemble.predict(X_test) assert_array_almost_equal(y1, y2) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=1, random_state=0).fit(X_train, y_train) y3 = ensemble.predict(X_test) assert_array_almost_equal(y1, y3) def test_gridsearch(): # Check that bagging ensembles can be grid-searched. # Transform iris into a binary classification task X, y = iris.data, iris.target y[y == 2] = 1 # Grid search with scoring based on decision_function parameters = {'n_estimators': (1, 2), 'base_estimator__C': (1, 2)} GridSearchCV(BaggingClassifier(SVC()), parameters, scoring="roc_auc").fit(X, y) def test_base_estimator(): # Check base_estimator and its default values. rng = check_random_state(0) # Classification X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=rng) ensemble = BaggingClassifier(None, n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeClassifier)) ensemble = BaggingClassifier(DecisionTreeClassifier(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeClassifier)) ensemble = BaggingClassifier(Perceptron(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, Perceptron)) # Regression X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=rng) ensemble = BaggingRegressor(None, n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeRegressor)) ensemble = BaggingRegressor(DecisionTreeRegressor(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, DecisionTreeRegressor)) ensemble = BaggingRegressor(SVR(), n_jobs=3, random_state=0).fit(X_train, y_train) assert_true(isinstance(ensemble.base_estimator_, SVR)) def test_bagging_with_pipeline(): estimator = BaggingClassifier(make_pipeline(SelectKBest(k=1), DecisionTreeClassifier()), max_features=2) estimator.fit(iris.data, iris.target) class DummyZeroEstimator(BaseEstimator): def fit(self, X, y): self.classes_ = np.unique(y) return self def predict(self, X): return self.classes_[np.zeros(X.shape[0], dtype=int)] def test_bagging_sample_weight_unsupported_but_passed(): estimator = BaggingClassifier(DummyZeroEstimator()) rng = check_random_state(0) estimator.fit(iris.data, iris.target).predict(iris.data) assert_raises(ValueError, estimator.fit, iris.data, iris.target, sample_weight=rng.randint(10, size=(iris.data.shape[0]))) def test_warm_start(random_state=42): # Test if fitting incrementally with warm start gives a forest of the # right size and the same results as a normal fit. X, y = make_hastie_10_2(n_samples=20, random_state=1) clf_ws = None for n_estimators in [5, 10]: if clf_ws is None: clf_ws = BaggingClassifier(n_estimators=n_estimators, random_state=random_state, warm_start=True) else: clf_ws.set_params(n_estimators=n_estimators) clf_ws.fit(X, y) assert_equal(len(clf_ws), n_estimators) clf_no_ws = BaggingClassifier(n_estimators=10, random_state=random_state, warm_start=False) clf_no_ws.fit(X, y) assert_equal(set([tree.random_state for tree in clf_ws]), set([tree.random_state for tree in clf_no_ws])) def test_warm_start_smaller_n_estimators(): # Test if warm start'ed second fit with smaller n_estimators raises error. X, y = make_hastie_10_2(n_samples=20, random_state=1) clf = BaggingClassifier(n_estimators=5, warm_start=True) clf.fit(X, y) clf.set_params(n_estimators=4) assert_raises(ValueError, clf.fit, X, y) def test_warm_start_equal_n_estimators(): # Test that nothing happens when fitting without increasing n_estimators X, y = make_hastie_10_2(n_samples=20, random_state=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43) clf = BaggingClassifier(n_estimators=5, warm_start=True, random_state=83) clf.fit(X_train, y_train) y_pred = clf.predict(X_test) # modify X to nonsense values, this should not change anything X_train += 1. assert_warns_message(UserWarning, "Warm-start fitting without increasing n_estimators does not", clf.fit, X_train, y_train) assert_array_equal(y_pred, clf.predict(X_test)) def test_warm_start_equivalence(): # warm started classifier with 5+5 estimators should be equivalent to # one classifier with 10 estimators X, y = make_hastie_10_2(n_samples=20, random_state=1) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43) clf_ws = BaggingClassifier(n_estimators=5, warm_start=True, random_state=3141) clf_ws.fit(X_train, y_train) clf_ws.set_params(n_estimators=10) clf_ws.fit(X_train, y_train) y1 = clf_ws.predict(X_test) clf = BaggingClassifier(n_estimators=10, warm_start=False, random_state=3141) clf.fit(X_train, y_train) y2 = clf.predict(X_test) assert_array_almost_equal(y1, y2) def test_warm_start_with_oob_score_fails(): # Check using oob_score and warm_start simultaneously fails X, y = make_hastie_10_2(n_samples=20, random_state=1) clf = BaggingClassifier(n_estimators=5, warm_start=True, oob_score=True) assert_raises(ValueError, clf.fit, X, y) def test_oob_score_removed_on_warm_start(): X, y = make_hastie_10_2(n_samples=2000, random_state=1) clf = BaggingClassifier(n_estimators=50, oob_score=True) clf.fit(X, y) clf.set_params(warm_start=True, oob_score=False, n_estimators=100) clf.fit(X, y) assert_raises(AttributeError, getattr, clf, "oob_score_")
bsd-3-clause
plissonf/scikit-learn
examples/decomposition/plot_kernel_pca.py
353
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
sanketloke/scikit-learn
sklearn/model_selection/_split.py
21
57608
""" The :mod:`sklearn.model_selection._split` module includes classes and functions to split the data based on a preset strategy. """ # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>, # Gael Varoquaux <gael.varoquaux@normalesup.org>, # Olivier Girsel <olivier.grisel@ensta.org> # Raghav R V <rvraghav93@gmail.com> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings import inspect from itertools import chain, combinations from collections import Iterable from math import ceil, floor import numbers from abc import ABCMeta, abstractmethod import numpy as np from scipy.misc import comb from ..utils import indexable, check_random_state, safe_indexing from ..utils.validation import _num_samples, column_or_1d from ..utils.multiclass import type_of_target from ..externals.six import with_metaclass from ..externals.six.moves import zip from ..utils.fixes import bincount from ..utils.fixes import signature from ..base import _pprint from ..gaussian_process.kernels import Kernel as GPKernel __all__ = ['BaseCrossValidator', 'KFold', 'LabelKFold', 'LeaveOneLabelOut', 'LeaveOneOut', 'LeavePLabelOut', 'LeavePOut', 'ShuffleSplit', 'LabelShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'train_test_split', 'check_cv'] class BaseCrossValidator(with_metaclass(ABCMeta)): """Base class for all cross-validators Implementations must define `_iter_test_masks` or `_iter_test_indices`. """ def __init__(self): # We need this for the build_repr to work properly in py2.7 # see #6304 pass def split(self, X, y=None, labels=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, of length n_samples The target variable for supervised learning problems. labels : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, labels = indexable(X, y, labels) indices = np.arange(_num_samples(X)) for test_index in self._iter_test_masks(X, y, labels): train_index = indices[np.logical_not(test_index)] test_index = indices[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self, X=None, y=None, labels=None): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices(X, y, labels) """ for test_index in self._iter_test_indices(X, y, labels): test_mask = np.zeros(_num_samples(X), dtype=np.bool) test_mask[test_index] = True yield test_mask def _iter_test_indices(self, X=None, y=None, labels=None): """Generates integer indices corresponding to test sets.""" raise NotImplementedError @abstractmethod def get_n_splits(self, X=None, y=None, labels=None): """Returns the number of splitting iterations in the cross-validator""" def __repr__(self): return _build_repr(self) class LeaveOneOut(BaseCrossValidator): """Leave-One-Out cross-validator Provides train/test indices to split data in train/test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut()`` is equivalent to ``KFold(n_folds=n)`` and ``LeavePOut(p=1)`` where ``n`` is the number of samples. Due to the high number of test sets (which is the same as the number of samples) this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`ShuffleSplit` or :class:`StratifiedKFold`. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import LeaveOneOut >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = LeaveOneOut() >>> loo.get_n_splits(X) 2 >>> print(loo) LeaveOneOut() >>> for train_index, test_index in loo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneLabelOut For splitting the data according to explicit, domain-specific stratification of the dataset. LabelKFold: K-fold iterator variant with non-overlapping labels. """ def _iter_test_indices(self, X, y=None, labels=None): return range(_num_samples(X)) def get_n_splits(self, X, y=None, labels=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : object Always ignored, exists for compatibility. labels : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if X is None: raise ValueError("The X parameter should not be None") return _num_samples(X) class LeavePOut(BaseCrossValidator): """Leave-P-Out cross-validator Provides train/test indices to split data in train/test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(p)`` is NOT equivalent to ``KFold(n_folds=n_samples // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`StratifiedKFold` or :class:`ShuffleSplit`. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- p : int Size of the test sets. Examples -------- >>> from sklearn.model_selection import LeavePOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = LeavePOut(2) >>> lpo.get_n_splits(X) 6 >>> print(lpo) LeavePOut(p=2) >>> for train_index, test_index in lpo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, p): self.p = p def _iter_test_indices(self, X, y=None, labels=None): for combination in combinations(range(_num_samples(X)), self.p): yield np.array(combination) def get_n_splits(self, X, y=None, labels=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : object Always ignored, exists for compatibility. labels : object Always ignored, exists for compatibility. """ if X is None: raise ValueError("The X parameter should not be None") return int(comb(_num_samples(X), self.p, exact=True)) class _BaseKFold(with_metaclass(ABCMeta, BaseCrossValidator)): """Base class for KFold and StratifiedKFold""" @abstractmethod def __init__(self, n_folds, shuffle, random_state): if not isinstance(n_folds, numbers.Integral): raise ValueError('The number of folds must be of Integral type. ' '%s of type %s was passed.' % (n_folds, type(n_folds))) n_folds = int(n_folds) if n_folds <= 1: raise ValueError( "k-fold cross-validation requires at least one" " train/test split by setting n_folds=2 or more," " got n_folds={0}.".format(n_folds)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.n_folds = n_folds self.shuffle = shuffle self.random_state = random_state def split(self, X, y=None, labels=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. labels : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, labels = indexable(X, y, labels) n_samples = _num_samples(X) if self.n_folds > n_samples: raise ValueError( ("Cannot have number of folds n_folds={0} greater" " than the number of samples: {1}.").format(self.n_folds, n_samples)) for train, test in super(_BaseKFold, self).split(X, y, labels): yield train, test def get_n_splits(self, X=None, y=None, labels=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. labels : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_folds class KFold(_BaseKFold): """K-Folds cross-validator Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used once as a validation while the k - 1 remaining folds form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.model_selection import KFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = KFold(n_folds=2) >>> kf.get_n_splits(X) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE KFold(n_folds=2, random_state=None, shuffle=False) >>> for train_index, test_index in kf.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first ``n_samples % n_folds`` folds have size ``n_samples // n_folds + 1``, other folds have size ``n_samples // n_folds``, where ``n_samples`` is the number of samples. See also -------- StratifiedKFold Takes label information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, n_folds=3, shuffle=False, random_state=None): super(KFold, self).__init__(n_folds, shuffle, random_state) def _iter_test_indices(self, X, y=None, labels=None): n_samples = _num_samples(X) indices = np.arange(n_samples) if self.shuffle: check_random_state(self.random_state).shuffle(indices) n_folds = self.n_folds fold_sizes = (n_samples // n_folds) * np.ones(n_folds, dtype=np.int) fold_sizes[:n_samples % n_folds] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield indices[start:stop] current = stop class LabelKFold(_BaseKFold): """K-fold iterator variant with non-overlapping labels. The same label will not appear in two different folds (the number of distinct labels has to be at least equal to the number of folds). The folds are approximately balanced in the sense that the number of distinct labels is approximately the same in each fold. Parameters ---------- n_folds : int, default=3 Number of folds. Must be at least 2. Examples -------- >>> from sklearn.model_selection import LabelKFold >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> labels = np.array([0, 0, 2, 2]) >>> label_kfold = LabelKFold(n_folds=2) >>> label_kfold.get_n_splits(X, y, labels) 2 >>> print(label_kfold) LabelKFold(n_folds=2) >>> for train_index, test_index in label_kfold.split(X, y, labels): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) ... TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [3 4] TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [3 4] [1 2] See also -------- LeaveOneLabelOut For splitting the data according to explicit domain-specific stratification of the dataset. """ def __init__(self, n_folds=3): super(LabelKFold, self).__init__(n_folds, shuffle=False, random_state=None) def _iter_test_indices(self, X, y, labels): if labels is None: raise ValueError("The labels parameter should not be None") unique_labels, labels = np.unique(labels, return_inverse=True) n_labels = len(unique_labels) if self.n_folds > n_labels: raise ValueError("Cannot have number of folds n_folds=%d greater" " than the number of labels: %d." % (self.n_folds, n_labels)) # Weight labels by their number of occurrences n_samples_per_label = np.bincount(labels) # Distribute the most frequent labels first indices = np.argsort(n_samples_per_label)[::-1] n_samples_per_label = n_samples_per_label[indices] # Total weight of each fold n_samples_per_fold = np.zeros(self.n_folds) # Mapping from label index to fold index label_to_fold = np.zeros(len(unique_labels)) # Distribute samples by adding the largest weight to the lightest fold for label_index, weight in enumerate(n_samples_per_label): lightest_fold = np.argmin(n_samples_per_fold) n_samples_per_fold[lightest_fold] += weight label_to_fold[indices[label_index]] = lightest_fold indices = label_to_fold[labels] for f in range(self.n_folds): yield np.where(indices == f)[0] class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_folds : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.model_selection import StratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(n_folds=2) >>> skf.get_n_splits(X, y) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE StratifiedKFold(n_folds=2, random_state=None, shuffle=False) >>> for train_index, test_index in skf.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size ``trunc(n_samples / n_folds)``, the last one has the complementary. """ def __init__(self, n_folds=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__(n_folds, shuffle, random_state) def _make_test_folds(self, X, y=None, labels=None): if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state y = np.asarray(y) n_samples = y.shape[0] unique_y, y_inversed = np.unique(y, return_inverse=True) y_counts = bincount(y_inversed) min_labels = np.min(y_counts) if np.all(self.n_folds > y_counts): raise ValueError("All the n_labels for individual classes" " are less than %d folds." % (self.n_folds)) if self.n_folds > min_labels: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of labels for any class cannot" " be less than n_folds=%d." % (min_labels, self.n_folds)), Warning) # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each class so as to respect the balance of # classes # NOTE: Passing the data corresponding to ith class say X[y==class_i] # will break when the data is not 100% stratifiable for all classes. # So we pass np.zeroes(max(c, n_folds)) as data to the KFold per_cls_cvs = [ KFold(self.n_folds, shuffle=self.shuffle, random_state=rng).split(np.zeros(max(count, self.n_folds))) for count in y_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_indices, per_cls_splits in enumerate(zip(*per_cls_cvs)): for cls, (_, test_split) in zip(unique_y, per_cls_splits): cls_test_folds = test_folds[y == cls] # the test split can be too big because we used # KFold(...).split(X[:max(c, n_folds)]) when data is not 100% # stratifiable for all the classes # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(cls_test_folds)] cls_test_folds[test_split] = test_fold_indices test_folds[y == cls] = cls_test_folds return test_folds def _iter_test_masks(self, X, y=None, labels=None): test_folds = self._make_test_folds(X, y) for i in range(self.n_folds): yield test_folds == i def split(self, X, y, labels=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. labels : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ return super(StratifiedKFold, self).split(X, y, labels) class LeaveOneLabelOut(BaseCrossValidator): """Leave One Label Out cross-validator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import LeaveOneLabelOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> labels = np.array([1, 1, 2, 2]) >>> lol = LeaveOneLabelOut() >>> lol.get_n_splits(X, y, labels) 2 >>> print(lol) LeaveOneLabelOut() >>> for train_index, test_index in lol.split(X, y, labels): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] """ def _iter_test_masks(self, X, y, labels): if labels is None: raise ValueError("The labels parameter should not be None") # We make a copy of labels to avoid side-effects during iteration labels = np.array(labels, copy=True) unique_labels = np.unique(labels) for i in unique_labels: yield labels == i def get_n_splits(self, X, y, labels): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. labels : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if labels is None: raise ValueError("The labels parameter should not be None") return len(np.unique(labels)) class LeavePLabelOut(BaseCrossValidator): """Leave P Labels Out cross-validator Provides train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LeaveOneLabelOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the labels while the latter uses samples all assigned the same labels. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_labels : int Number of labels (``p``) to leave out in the test split. Examples -------- >>> from sklearn.model_selection import LeavePLabelOut >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> labels = np.array([1, 2, 3]) >>> lpl = LeavePLabelOut(n_labels=2) >>> lpl.get_n_splits(X, y, labels) 3 >>> print(lpl) LeavePLabelOut(n_labels=2) >>> for train_index, test_index in lpl.split(X, y, labels): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] See also -------- LabelKFold: K-fold iterator variant with non-overlapping labels. """ def __init__(self, n_labels): self.n_labels = n_labels def _iter_test_masks(self, X, y, labels): if labels is None: raise ValueError("The labels parameter should not be None") labels = np.array(labels, copy=True) unique_labels = np.unique(labels) combi = combinations(range(len(unique_labels)), self.n_labels) for indices in combi: test_index = np.zeros(_num_samples(X), dtype=np.bool) for l in unique_labels[np.array(indices)]: test_index[labels == l] = True yield test_index def get_n_splits(self, X, y, labels): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. labels : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if labels is None: raise ValueError("The labels parameter should not be None") return int(comb(len(np.unique(labels)), self.n_labels, exact=True)) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n_iter=10, test_size=0.1, train_size=None, random_state=None): _validate_shuffle_split_init(test_size, train_size) self.n_iter = n_iter self.test_size = test_size self.train_size = train_size self.random_state = random_state def split(self, X, y=None, labels=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. labels : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, labels = indexable(X, y, labels) for train, test in self._iter_indices(X, y, labels): yield train, test @abstractmethod def _iter_indices(self, X, y=None, labels=None): """Generate (train, test) indices""" def get_n_splits(self, X=None, y=None, labels=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. labels : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_iter def __repr__(self): return _build_repr(self) class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validator Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float, int, or None, default 0.1 If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.model_selection import ShuffleSplit >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> rs = ShuffleSplit(n_iter=3, test_size=.25, random_state=0) >>> rs.get_n_splits(X) 3 >>> print(rs) ShuffleSplit(n_iter=3, random_state=0, test_size=0.25, train_size=None) >>> for train_index, test_index in rs.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... # doctest: +ELLIPSIS TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = ShuffleSplit(n_iter=3, train_size=0.5, test_size=.25, ... random_state=0) >>> for train_index, test_index in rs.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... # doctest: +ELLIPSIS TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self, X, y=None, labels=None): n_samples = _num_samples(X) n_train, n_test = _validate_shuffle_split(n_samples, self.test_size, self.train_size) rng = check_random_state(self.random_state) for i in range(self.n_iter): # random partition permutation = rng.permutation(n_samples) ind_test = permutation[:n_test] ind_train = permutation[n_test:(n_test + n_train)] yield ind_train, ind_test class LabelShuffleSplit(ShuffleSplit): '''Shuffle-Labels-Out cross-validation iterator Provides randomized train/test indices to split data according to a third-party provided label. This label information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the labels could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePLabelOut and LabelShuffleSplit is that the former generates splits using all subsets of size ``p`` unique labels, whereas LabelShuffleSplit generates a user-determined number of random test splits, each with a user-determined fraction of unique labels. For example, a less computationally intensive alternative to ``LeavePLabelOut(p=10)`` would be ``LabelShuffleSplit(test_size=10, n_iter=100)``. Note: The parameters ``test_size`` and ``train_size`` refer to labels, and not to samples, as in ShuffleSplit. Parameters ---------- n_iter : int (default 5) Number of re-shuffling & splitting iterations. test_size : float (default 0.2), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the labels to include in the test split. If int, represents the absolute number of test labels. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the labels to include in the train split. If int, represents the absolute number of train labels. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. ''' def __init__(self, n_iter=5, test_size=0.2, train_size=None, random_state=None): super(LabelShuffleSplit, self).__init__( n_iter=n_iter, test_size=test_size, train_size=train_size, random_state=random_state) def _iter_indices(self, X, y, labels): if labels is None: raise ValueError("The labels parameter should not be None") classes, label_indices = np.unique(labels, return_inverse=True) for label_train, label_test in super( LabelShuffleSplit, self)._iter_indices(X=classes): # these are the indices of classes in the partition # invert them into data indices train = np.flatnonzero(np.in1d(label_indices, label_train)) test = np.flatnonzero(np.in1d(label_indices, label_test)) yield train, test class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_iter : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.model_selection import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(n_iter=3, test_size=0.5, random_state=0) >>> sss.get_n_splits(X, y) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(n_iter=3, random_state=0, ...) >>> for train_index, test_index in sss.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, n_iter=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( n_iter, test_size, train_size, random_state) def _iter_indices(self, X, y, labels=None): n_samples = _num_samples(X) n_train, n_test = _validate_shuffle_split(n_samples, self.test_size, self.train_size) classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = bincount(y_indices) if np.min(class_counts) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of labels for any class cannot" " be less than 2.") if n_train < n_classes: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (n_train, n_classes)) if n_test < n_classes: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (n_test, n_classes)) rng = check_random_state(self.random_state) p_i = class_counts / float(n_samples) n_i = np.round(n_train * p_i).astype(int) t_i = np.minimum(class_counts - n_i, np.round(n_test * p_i).astype(int)) for _ in range(self.n_iter): train = [] test = [] for i, class_i in enumerate(classes): permutation = rng.permutation(class_counts[i]) perm_indices_class_i = np.where((y == class_i))[0][permutation] train.extend(perm_indices_class_i[:n_i[i]]) test.extend(perm_indices_class_i[n_i[i]:n_i[i] + t_i[i]]) # Because of rounding issues (as n_train and n_test are not # dividers of the number of elements per class), we may end # up here with less samples in train and test than asked for. if len(train) + len(test) < n_train + n_test: # We complete by affecting randomly the missing indexes missing_indices = np.where(bincount(train + test, minlength=len(y)) == 0)[0] missing_indices = rng.permutation(missing_indices) n_missing_train = n_train - len(train) n_missing_test = n_test - len(test) if n_missing_train > 0: train.extend(missing_indices[:n_missing_train]) if n_missing_test > 0: test.extend(missing_indices[-n_missing_test:]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def split(self, X, y, labels=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. labels : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ return super(StratifiedShuffleSplit, self).split(X, y, labels) def _validate_shuffle_split_init(test_size, train_size): """Validation helper to check the test_size and train_size at init NOTE This does not take into account the number of samples which is known only at split """ if test_size is None and train_size is None: raise ValueError('test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind != 'i': # int values are checked during split based on the input raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif (np.asarray(test_size).dtype.kind == 'f' and (train_size + test_size) > 1.): raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind != 'i': # int values are checked during split based on the input raise ValueError("Invalid value for train_size: %r" % train_size) def _validate_shuffle_split(n_samples, test_size, train_size): """ Validation helper to check if the test/test sizes are meaningful wrt to the size of the data (n_samples) """ if (test_size is not None and np.asarray(test_size).dtype.kind == 'i' and test_size >= n_samples): raise ValueError('test_size=%d should be smaller than the number of ' 'samples %d' % (test_size, n_samples)) if (train_size is not None and np.asarray(train_size).dtype.kind == 'i' and train_size >= n_samples): raise ValueError("train_size=%d should be smaller than the number of" " samples %d" % (train_size, n_samples)) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n_samples) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n_samples - n_test elif np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n_samples) else: n_train = float(train_size) if test_size is None: n_test = n_samples - n_train if n_train + n_test > n_samples: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n_samples)) return int(n_train), int(n_test) class PredefinedSplit(BaseCrossValidator): """Predefined split cross-validator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> test_fold = [0, 1, -1, 1] >>> ps = PredefinedSplit(test_fold) >>> ps.get_n_splits() 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS PredefinedSplit(test_fold=array([ 0, 1, -1, 1])) >>> for train_index, test_index in ps.split(): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def split(self, X=None, y=None, labels=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. labels : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ ind = np.arange(len(self.test_fold)) for test_index in self._iter_test_masks(): train_index = ind[np.logical_not(test_index)] test_index = ind[test_index] yield train_index, test_index def _iter_test_masks(self): """Generates boolean masks corresponding to test sets.""" for f in self.unique_folds: test_index = np.where(self.test_fold == f)[0] test_mask = np.zeros(len(self.test_fold), dtype=np.bool) test_mask[test_index] = True yield test_mask def get_n_splits(self, X=None, y=None, labels=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. labels : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.unique_folds) class _CVIterableWrapper(BaseCrossValidator): """Wrapper class for old style cv objects and iterables.""" def __init__(self, cv): self.cv = cv def get_n_splits(self, X=None, y=None, labels=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. labels : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.cv) # Both iterables and old-cv objects support len def split(self, X=None, y=None, labels=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. labels : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ for train, test in self.cv: yield train, test def check_cv(cv=3, y=None, classifier=False): """Input checker utility for building a cross-validator Parameters ---------- cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if classifier is True and ``y`` is either binary or multiclass, :class:`StratifiedKFold` used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. y : array-like, optional The target variable for supervised learning problems. classifier : boolean, optional, default False Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv : a cross-validator instance. The return value is a cross-validator which generates the train/test splits via the ``split`` method. """ if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if (classifier and (y is not None) and (type_of_target(y) in ('binary', 'multiclass'))): return StratifiedKFold(cv) else: return KFold(cv) if not hasattr(cv, 'split') or isinstance(cv, str): if not isinstance(cv, Iterable) or isinstance(cv, str): raise ValueError("Expected cv as an integer, cross-validation " "object (from sklearn.model_selection) " "or an iterable. Got %s." % cv) return _CVIterableWrapper(cv) return cv # New style cv objects are passed without any modification def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(ShuffleSplit().split(X, y))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of indexables with same length / shape[0] allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes. .. versionadded:: 0.16 preserves input type instead of always casting to numpy array. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the labels array. Returns ------- splitting : list, length=2 * len(arrays) List containing train-test split of inputs. .. versionadded:: 0.16 Output type is the same as the input type. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) stratify = options.pop('stratify', None) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if stratify is not None: CVClass = StratifiedShuffleSplit else: CVClass = ShuffleSplit cv = CVClass(test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(cv.split(X=arrays[0], y=stratify)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests def _safe_split(estimator, X, y, indices, train_indices=None): """Create subset of dataset and properly handle kernels.""" if (hasattr(estimator, 'kernel') and callable(estimator.kernel) and not isinstance(estimator.kernel, GPKernel)): # cannot compute the kernel values with custom function raise ValueError("Cannot use a custom kernel function. " "Precompute the kernel matrix instead.") if not hasattr(X, "shape"): if getattr(estimator, "_pairwise", False): raise ValueError("Precomputed kernels or affinity matrices have " "to be passed as arrays or sparse matrices.") X_subset = [X[index] for index in indices] else: if getattr(estimator, "_pairwise", False): # X is a precomputed square kernel matrix if X.shape[0] != X.shape[1]: raise ValueError("X should be a square kernel matrix") if train_indices is None: X_subset = X[np.ix_(indices, indices)] else: X_subset = X[np.ix_(indices, train_indices)] else: X_subset = safe_indexing(X, indices) if y is not None: y_subset = safe_indexing(y, indices) else: y_subset = None return X_subset, y_subset def _build_repr(self): # XXX This is copied from BaseEstimator's get_params cls = self.__class__ init = getattr(cls.__init__, 'deprecated_original', cls.__init__) # Ignore varargs, kw and default values and pop self init_signature = signature(init) # Consider the constructor parameters excluding 'self' if init is object.__init__: args = [] else: args = sorted([p.name for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD]) class_name = self.__class__.__name__ params = dict() for key in args: # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) params[key] = value return '%s(%s)' % (class_name, _pprint(params, offset=len(class_name)))
bsd-3-clause
ryandougherty/mwa-capstone
MWA_Tools/build/matplotlib/examples/user_interfaces/interactive2.py
3
10375
#!/usr/bin/env python # GTK Interactive Console # (C) 2003, Jon Anderson # See www.python.org/2.2/license.html for # license details. # import gtk import gtk.gdk import code import os, sys import pango import __builtin__ import __main__ banner = """GTK Interactive Python Console Thanks to Jon Anderson %s """ % sys.version banner += """ Welcome to matplotlib. help(matplotlib) -- some general information about matplotlib help(plotting) -- shows a list of plot specific commands """ class Completer: """ Taken from rlcompleter, with readline references stripped, and a local dictionary to use. """ def __init__(self, locals): self.locals = locals def complete(self, text, state): """Return the next possible completion for 'text'. This is called successively with state == 0, 1, 2, ... until it returns None. The completion should begin with 'text'. """ if state == 0: if "." in text: self.matches = self.attr_matches(text) else: self.matches = self.global_matches(text) try: return self.matches[state] except IndexError: return None def global_matches(self, text): """Compute matches when text is a simple name. Return a list of all keywords, built-in functions and names currently defines in __main__ that match. """ import keyword matches = [] n = len(text) for list in [keyword.kwlist,__builtin__.__dict__.keys(),__main__.__dict__.keys(), self.locals.keys()]: for word in list: if word[:n] == text and word != "__builtins__": matches.append(word) return matches def attr_matches(self, text): """Compute matches when text contains a dot. Assuming the text is of the form NAME.NAME....[NAME], and is evaluatable in the globals of __main__, it will be evaluated and its attributes (as revealed by dir()) are used as possible completions. (For class instances, class members are are also considered.) WARNING: this can still invoke arbitrary C code, if an object with a __getattr__ hook is evaluated. """ import re m = re.match(r"(\w+(\.\w+)*)\.(\w*)", text) if not m: return expr, attr = m.group(1, 3) object = eval(expr, __main__.__dict__, self.locals) words = dir(object) if hasattr(object,'__class__'): words.append('__class__') words = words + get_class_members(object.__class__) matches = [] n = len(attr) for word in words: if word[:n] == attr and word != "__builtins__": matches.append("%s.%s" % (expr, word)) return matches def get_class_members(klass): ret = dir(klass) if hasattr(klass,'__bases__'): for base in klass.__bases__: ret = ret + get_class_members(base) return ret class OutputStream: """ A Multiplexing output stream. It can replace another stream, and tee output to the original stream and too a GTK textview. """ def __init__(self,view,old_out,style): self.view = view self.buffer = view.get_buffer() self.mark = self.buffer.create_mark("End",self.buffer.get_end_iter(), False ) self.out = old_out self.style = style self.tee = 1 def write(self,text): if self.tee: self.out.write(text) end = self.buffer.get_end_iter() if not self.view == None: self.view.scroll_to_mark(self.mark, 0, True, 1, 1) self.buffer.insert_with_tags(end,text,self.style) class GTKInterpreterConsole(gtk.ScrolledWindow): """ An InteractiveConsole for GTK. It's an actual widget, so it can be dropped in just about anywhere. """ def __init__(self): gtk.ScrolledWindow.__init__(self) self.set_policy (gtk.POLICY_AUTOMATIC,gtk.POLICY_AUTOMATIC) self.text = gtk.TextView() self.text.set_wrap_mode(True) self.interpreter = code.InteractiveInterpreter() self.completer = Completer(self.interpreter.locals) self.buffer = [] self.history = [] self.banner = banner self.ps1 = ">>> " self.ps2 = "... " self.text.add_events( gtk.gdk.KEY_PRESS_MASK ) self.text.connect( "key_press_event", self.key_pressed ) self.current_history = -1 self.mark = self.text.get_buffer().create_mark("End",self.text.get_buffer().get_end_iter(), False ) #setup colors self.style_banner = gtk.TextTag("banner") self.style_banner.set_property( "foreground", "saddle brown" ) self.style_ps1 = gtk.TextTag("ps1") self.style_ps1.set_property( "foreground", "DarkOrchid4" ) self.style_ps1.set_property( "editable", False ) self.style_ps1.set_property("font", "courier" ) self.style_ps2 = gtk.TextTag("ps2") self.style_ps2.set_property( "foreground", "DarkOliveGreen" ) self.style_ps2.set_property( "editable", False ) self.style_ps2.set_property("font", "courier" ) self.style_out = gtk.TextTag("stdout") self.style_out.set_property( "foreground", "midnight blue" ) self.style_err = gtk.TextTag("stderr") self.style_err.set_property( "style", pango.STYLE_ITALIC ) self.style_err.set_property( "foreground", "red" ) self.text.get_buffer().get_tag_table().add(self.style_banner) self.text.get_buffer().get_tag_table().add(self.style_ps1) self.text.get_buffer().get_tag_table().add(self.style_ps2) self.text.get_buffer().get_tag_table().add(self.style_out) self.text.get_buffer().get_tag_table().add(self.style_err) self.stdout = OutputStream(self.text,sys.stdout,self.style_out) self.stderr = OutputStream(self.text,sys.stderr,self.style_err) sys.stderr = self.stderr sys.stdout = self.stdout self.current_prompt = None self.write_line(self.banner, self.style_banner) self.prompt_ps1() self.add(self.text) self.text.show() def reset_history(self): self.history = [] def reset_buffer(self): self.buffer = [] def prompt_ps1(self): self.current_prompt = self.prompt_ps1 self.write_line(self.ps1,self.style_ps1) def prompt_ps2(self): self.current_prompt = self.prompt_ps2 self.write_line(self.ps2,self.style_ps2) def write_line(self,text,style=None): start,end = self.text.get_buffer().get_bounds() if style==None: self.text.get_buffer().insert(end,text) else: self.text.get_buffer().insert_with_tags(end,text,style) self.text.scroll_to_mark(self.mark, 0, True, 1, 1) def push(self, line): self.buffer.append(line) if len(line) > 0: self.history.append(line) source = "\n".join(self.buffer) more = self.interpreter.runsource(source, "<<console>>") if not more: self.reset_buffer() return more def key_pressed(self,widget,event): if event.keyval == gtk.gdk.keyval_from_name('Return'): return self.execute_line() if event.keyval == gtk.gdk.keyval_from_name('Up'): self.current_history = self.current_history - 1 if self.current_history < - len(self.history): self.current_history = - len(self.history) return self.show_history() elif event.keyval == gtk.gdk.keyval_from_name('Down'): self.current_history = self.current_history + 1 if self.current_history > 0: self.current_history = 0 return self.show_history() elif event.keyval == gtk.gdk.keyval_from_name( 'Home'): l = self.text.get_buffer().get_line_count() - 1 start = self.text.get_buffer().get_iter_at_line_offset(l,4) self.text.get_buffer().place_cursor(start) return True elif event.keyval == gtk.gdk.keyval_from_name( 'space') and event.state & gtk.gdk.CONTROL_MASK: return self.complete_line() return False def show_history(self): if self.current_history == 0: return True else: self.replace_line( self.history[self.current_history] ) return True def current_line(self): start,end = self.current_line_bounds() return self.text.get_buffer().get_text(start,end, True) def current_line_bounds(self): txt_buffer = self.text.get_buffer() l = txt_buffer.get_line_count() - 1 start = txt_buffer.get_iter_at_line(l) if start.get_chars_in_line() >= 4: start.forward_chars(4) end = txt_buffer.get_end_iter() return start,end def replace_line(self,txt): start,end = self.current_line_bounds() self.text.get_buffer().delete(start,end) self.write_line(txt) def execute_line(self, line=None): if line is None: line = self.current_line() self.write_line("\n") else: self.write_line(line + "\n") more = self.push(line) self.text.get_buffer().place_cursor(self.text.get_buffer().get_end_iter()) if more: self.prompt_ps2() else: self.prompt_ps1() self.current_history = 0 self.window.raise_() return True def complete_line(self): line = self.current_line() tokens = line.split() token = tokens[-1] completions = [] p = self.completer.complete(token,len(completions)) while p != None: completions.append(p) p = self.completer.complete(token, len(completions)) if len(completions) != 1: self.write_line("\n") self.write_line("\n".join(completions), self.style_ps1) self.write_line("\n") self.current_prompt() self.write_line(line) else: i = line.rfind(token) line = line[0:i] + completions[0] self.replace_line(line) return True def main(): w = gtk.Window() console = GTKInterpreterConsole() console.set_size_request(640,480) w.add(console) def destroy(arg=None): gtk.main_quit() def key_event(widget,event): if gtk.gdk.keyval_name( event.keyval) == 'd' and \ event.state & gtk.gdk.CONTROL_MASK: destroy() return False w.connect("destroy", destroy) w.add_events( gtk.gdk.KEY_PRESS_MASK ) w.connect( 'key_press_event', key_event) w.show_all() console.execute_line('import matplotlib') console.execute_line("matplotlib.use('GTKAgg')") console.execute_line('matplotlib.interactive(1)') console.execute_line('from pylab import *') if len(sys.argv)>1: fname = sys.argv[1] if not os.path.exists(fname): print >> sys.stderr, '%s does not exist' % fname for line in file(fname): line = line.strip() console.execute_line(line) gtk.main() if __name__ == '__main__': main()
gpl-2.0
hms-dbmi/clodius
clodius/tiles/bigbed.py
1
10629
import bbi import functools as ft import logging import numpy as np import pandas as pd import random import clodius.tiles.bigwig as hgbw from concurrent.futures import ThreadPoolExecutor DEFAULT_RANGE_MODE = "significant" MIN_ELEMENTS = 1 MAX_ELEMENTS = 200 DEFAULT_SCORE = 0 logger = logging.getLogger(__name__) range_modes = {} range_modes["significant"] = {"name": "Significant", "value": "significant"} def tileset_info(bbpath, chromsizes=None): ti = hgbw.tileset_info(bbpath, chromsizes) ti["range_modes"] = range_modes return ti def fetch_data(a): ( bbpath, binsize, chromsizes, range_mode, min_elements, max_elements, cid, start, end, ) = a """ Retrieve tile data from a bigbed file. This approach currently returns a subset of intervals within the bounds of the specified query range. The subset is determined, at this time, by using the population of scores in the score column of the BED data to generate a quantile value that would allow, at most, a maximum number of elements (either a default or specified value). Because intervals are discrete elements, it is possible for a quantile to allow a few more elements than the desired limit; in this case, a uniformly-random sample is drawn from the thresholded set without replacement. Parameters ---------- bbpath: string The path to the bigBed media file binsize: integer Resolution of a bin at a particular zoom level chromsizes: [[chrom, size],...] A 2d array containing chromosome names and sizes. Overrides the chromsizes in chromsizes_map range_mode: string or None If specified, determines what rule is applied to intervals retrieved over the specified chromosome, start, and end range min_elements: integer For fetched intervals, return no fewer than the specified number max_elements: integer For fetched intervals, return no more than the specified number cid: integer Index of chromosome associated with chromsizes start: integer Start position of interval query (relative to chromosome) end: integer End position of interval query (relative to chromosome) Returns ------- intervals: [{'chrOffset': integer, 'importance': integer, 'fields': [interval]}, ... ] A list of beddb-like gene annotation objects """ try: chrom = chromsizes.index[cid] fetch_factory = ft.partial(bbi.fetch_intervals, bbpath, chrom, start, end) if range_mode == "significant": intervals, intervals2 = fetch_factory(), fetch_factory() else: intervals, intervals2 = fetch_factory(), fetch_factory() except IndexError: # beyond the range of the available chromosomes # probably means we've requested a range of absolute # coordinates that stretch beyond the end of the genome intervals, intervals2 = None, None except KeyError: # probably requested a chromosome that doesn't exist (e.g. chrM) intervals, intervals2 = None, None offset = 0 offsetIdx = 0 chrOffsets = {} for chrSize in chromsizes: chrOffsets[chromsizes.index[offsetIdx]] = offset offset += chrSize offsetIdx += 1 final_intervals = [] intervals_length = 0 scores = [] if not intervals: return final_intervals for interval in intervals: try: scores.append(int(interval[4])) except (ValueError, IndexError): scores.append(DEFAULT_SCORE) intervals_length += 1 # generate beddb-like elements for parsing by the higlass plugin if intervals_length >= min_elements and intervals_length <= max_elements: for interval in intervals2: try: score = int(interval[4]) final_intervals.append( { "chrOffset": chrOffsets[chrom], "importance": score, "fields": interval, } ) except (ValueError, IndexError): final_intervals.append( { "chrOffset": chrOffsets[chrom], "importance": DEFAULT_SCORE, "fields": interval, } ) elif intervals_length > max_elements: thresholded_intervals = [] desired_perc = max_elements / intervals_length thresholded_score = int(np.quantile(scores, 1 - desired_perc)) for interval in intervals2: try: score = int(interval[4]) if score >= thresholded_score: thresholded_intervals.append( { "chrOffset": chrOffsets[chrom], "importance": score, "fields": interval, } ) except (ValueError, IndexError): if DEFAULT_SCORE >= thresholded_score: thresholded_intervals.append( { "chrOffset": chrOffsets[chrom], "importance": DEFAULT_SCORE, "fields": interval, } ) thresholded_intervals_length = len(thresholded_intervals) if thresholded_intervals_length > max_elements: indices = random.sample(range(thresholded_intervals_length), max_elements) final_intervals = [thresholded_intervals[i] for i in sorted(indices)] return final_intervals def get_bigbed_tile( bbpath, zoom_level, start_pos, end_pos, chromsizes=None, range_mode=None, min_elements=None, max_elements=None, ): if chromsizes is None: chromsizes = hgbw.get_chromsizes(bbpath) if min_elements is None: min_elements = MIN_ELEMENTS if max_elements is None: max_elements = MAX_ELEMENTS resolutions = hgbw.get_zoom_resolutions(chromsizes) binsize = resolutions[zoom_level] cids_starts_ends = list(hgbw.abs2genomic(chromsizes, start_pos, end_pos)) with ThreadPoolExecutor(max_workers=16) as e: arrays = list( e.map( fetch_data, [ tuple( [ bbpath, binsize, chromsizes, range_mode, min_elements, max_elements, ] + list(c) ) for c in cids_starts_ends ], ) ) # concatenate bigBed tileset data across chromosomes, so that it looks similar to a beddb response results = [x for x in arrays if x != []] return [item for sublist in results for item in sublist] def tiles(bbpath, tile_ids, chromsizes_map={}, chromsizes=None): """ Generate tiles from a bigbed file. Parameters ---------- tileset: tilesets.models.Tileset object The tileset that the tile ids should be retrieved from tile_ids: [str,...] A list of tile_ids (e.g. xyx.0.0) identifying the tiles to be retrieved chromsizes_map: {uid: []} A set of chromsizes listings corresponding to the parameters of the tile_ids. To be used if a chromsizes id is passed in with the tile id with the `|cos:id` tag in the tile id chromsizes: [[chrom, size],...] A 2d array containing chromosome names and sizes. Overrides the chromsizes in chromsizes_map Returns ------- tile_list: [(tile_id, tile_data),...] A list of tile_id, tile_data tuples """ min_elements = -1 max_elements = -1 generated_tiles = [] for tile_id in tile_ids: tile_option_parts = tile_id.split("|")[1:] tile_no_options = tile_id.split("|")[0] tile_id_parts = tile_no_options.split(".") tile_position = list(map(int, tile_id_parts[1:3])) return_value = ( tile_id_parts[3] if len(tile_id_parts) > 3 else DEFAULT_RANGE_MODE ) range_mode = return_value if return_value in range_modes else None tile_options = dict([o.split(":") for o in tile_option_parts]) if "min" in tile_options: min_elements = int(tile_options["min"]) if "max" in tile_options: max_elements = int(tile_options["max"]) if min_elements > max_elements: temp_min_elements = min_elements min_elements = max_elements max_elements = temp_min_elements elif min_elements == max_elements: min_elements = max_elements max_elements = min_elements + 1 if max_elements <= 0: min_elements = MIN_ELEMENTS max_elements = MAX_ELEMENTS if chromsizes: chromnames = [c[0] for c in chromsizes] chromlengths = [int(c[1]) for c in chromsizes] chromsizes_to_use = pd.Series(chromlengths, index=chromnames) else: chromsizes_id = None if "cos" in tile_options: chromsizes_id = tile_options["cos"] if chromsizes_id in chromsizes_map: chromsizes_to_use = chromsizes_map[chromsizes_id] else: chromsizes_to_use = None zoom_level = tile_position[0] tile_pos = tile_position[1] # this doesn't combine multiple consequetive ids, which # would speed things up if chromsizes_to_use is None: chromsizes_to_use = hgbw.get_chromsizes(bbpath) max_depth = hgbw.get_quadtree_depth(chromsizes_to_use) tile_size = hgbw.TILE_SIZE * 2 ** (max_depth - zoom_level) start_pos = tile_pos * tile_size end_pos = start_pos + tile_size tile_value = get_bigbed_tile( bbpath, zoom_level, start_pos, end_pos, chromsizes_to_use, range_mode=range_mode, min_elements=min_elements, max_elements=max_elements, ) generated_tiles += [(tile_id, tile_value)] return generated_tiles def chromsizes(filename): return hgbw.chromsizes(filename)
mit
LeBarbouze/tunacell
tunacell/plotting/dynamics.py
1
34918
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ This module defines plotting functions for the statistics of the dynamics. """ from __future__ import print_function import os import numpy as np import collections import logging import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import ticker import matplotlib.gridspec as gridspec from tunacell.filters.main import FilterSet from tunacell.stats.single import Univariate, StationaryUnivariate from tunacell.stats.two import StationaryBivariate from tunacell.io import text from .helpers import _set_axis_limits, _set_timelabel, _set_time_axis_ticks # few variables that will be used through all functions default_fontsize = mpl.rcParams['font.size'] default_lw = mpl.rcParams['lines.linewidth'] def _set_condition_list(univariate, show_cdts='master'): """Set the list of conditions to show Parameters ---------- show_cdts : str or FilterSet or iterable on these (default 'master') the conditions to plot, use 'all' for all conditions in univariate univariate : Univariate instance conditions will be matched against conditions stored in univariate Returns ------- list of FilterSet (conditions) to show """ conditions = ['master', ] # list of conditions to be plotted if show_cdts == 'all': conditions = ['master', ] + univariate.cset elif show_cdts == 'master': pass elif isinstance(show_cdts, collections.Iterable): for item in show_cdts: _append_cdt(univariate, item, conditions) else: _append_cdt(univariate, show_cdts, conditions) return conditions def _append_cdt(univariate, this_cdt, cdt_list): """Append condition associated to this_cdt in univariate object to cdt_list Parameters ---------- univariate : :class:`Univariate` instance this_cdt : str or :class:`FilterSet` instance either the condition instance or its string representation cdt_list : list of conditions list of conditions to append condition to """ found = False if isinstance(this_cdt, str): # find which for cdt in univariate.cset: # TODO : compare also cdt.label if repr(cdt) == this_cdt: found = True break elif isinstance(this_cdt, FilterSet): for cdt in univariate.cset: if repr(cdt) == repr(this_cdt): found = True break if found: cdt_list.append(cdt) return def plot_onepoint(univariate, show_cdts='all', show_ci=False, mean_ref=None, var_ref=None, axe_xsize=6., axe_ysize=2., time_range=(None, None), time_fractional_pad=.1, counts_range=(None, None), counts_fractional_pad=.1, average_range=(None, None), # auto average_fractional_pad=.1, variance_range=(None, None), variance_fractional_pad=.1, show_legend=True, show_cdt_details_in_legend=False, use_obs_name=None, save=False, user_path=None, ext='.png', verbose=False): """Plot one point statistics: counts, average, abd variance. One point functions are plotted for each condition set up in *show_cdts* argument: 'all' for all conditions, or the string representation (or label) of a particuler condition (or a list thereof). Parameters ---------- univariate : Univariate instance show_cdts : str (default 'all') must be either 'all', or 'master', or the repr of a condition, or a list thereof show_ci : bool {False, True} whether to show 99% confidence interval mean_ref : float reference mean value: what user expect to see as sample average to compare with data var_ref : float reference variance value: what user expect to see as sample variance to compare with data axe_xsize : float (default 6) size of the x-axis (inches) axe_ysize : float (default 2.) size if a single ax y-axis (inches) time_range : couple of floats (default (None, None)) specifies (left, right) bounds time_fractional_pad : float (default .1) fraction of x-range to add as padding counts_range : couple of floats (default (None, None)) specifies range for the Counts y-axis counts_fractional_pad : float (default .2) fractional amount of y-range to add as padding average_range : couple of floats (default (None, None)) sepcifies range for the Average y-axis average_fractional_pad : couple of floats (default .2) fractional amounts of range to padding variance_range : couple of floats (default (None, None)) sepcifies range for the Variance y-axis average_fractional_pad : couple of floats (default .2) fractional amounts of range to padding show_legend : bool {True, False} print out legend show_cdt_details_in_legend : bool {False, True} show details about filters use_obs_name : str (default None) when filled, the plot title will use this observable name instead of looking for the observable registered name save : bool {False, True} whether to save plot user_path : str (default None) user defined path where to save figure; default is canonical path (encouraged) ext : str {'.png', '.pdf'} extension to be used when saving file verbose : bool {False, True} """ if not isinstance(univariate, Univariate): raise TypeError('Input is not {}'.format(Univariate)) fig, axs = plt.subplots(3, 1, figsize=(axe_xsize, 3*axe_ysize)) obs = univariate.obs timelabel = _set_timelabel(obs) # define time label main_handles = [] # main legend ci_handles = [] # additional legend (TODO: check if necessary) all_times = [] all_counts = [] all_average = [] all_variance = [] # build condition list conditions = _set_condition_list(univariate, show_cdts) for index, cdt in enumerate(conditions): if cdt == 'master': c_repr = 'master' c_label = 'all samples' lw = default_lw + 1 alpha = 1 alpha_fill = .5 else: c_repr = repr(cdt) if show_cdt_details_in_legend: c_label = str(cdt) else: c_label = cdt.label lw = default_lw alpha = .8 alpha_fill = 0.3 ok = np.where(univariate[c_repr].count_one > 0) times = univariate[c_repr].time[ok] all_times.extend(times) counts = univariate[c_repr].count_one[ok] all_counts.extend(counts) mean = univariate[c_repr].average[ok] all_average.extend(mean) var = univariate[c_repr].var[ok] all_variance.extend(var) std = univariate[c_repr].std[ok] se = 2.58 * std / np.sqrt(counts) # standard error 99% CI Gaussian # var = np.diagonal(univariate[c_repr].autocorr) line_counts, = axs[0].plot(times, counts, alpha=alpha, lw=lw, label='{}'.format(c_label)) main_handles.append(line_counts) color = line_counts.get_color() average, = axs[1].plot(times, mean, color=color, alpha=0.8, lw=lw, label=c_label) if show_ci: fill_std = axs[1].fill_between(times, mean-se, mean+se, facecolor=color, alpha=alpha_fill) ci_handles.append(fill_std) all_average.extend(mean-se) all_average.extend(mean+se) variance, = axs[2].plot(times, var, color=color, alpha=0.8, lw=lw, label=c_label) # adding reference lines if mean_ref is not None: mref = axs[1].axhline(mean_ref, ls='-.', color='C7', alpha=.7, label='reference value') main_handles.append(mref) all_average.append(mean_ref) if var_ref is not None: vref = axs[2].axhline(var_ref, ls='-.', color='C7', alpha=.7, label='reference value') # check last label if meanèref has been saved last_lab = main_handles[-1].get_label() if last_lab != vref.get_label(): main_handles.append(vref) all_variance.append(var_ref) # print vertical line at tref if obs.timing != 'g' and isinstance(obs.tref, float): for ax in axs: vtref = ax.axvline(univariate.obs.tref, color='C7', ls='--', alpha=.5, label='reference time in obs') main_handles.append(vtref) # only the last one # ## limits and ticks ## # xaxis for ax in axs: left, right = _set_axis_limits(ax, all_times, which='x', pad=time_fractional_pad, force_range=time_range) # locator locator = _set_time_axis_ticks(axs[0], obs, bounds=(left, right)) for ax in axs: ax.xaxis.set_major_locator(locator) # yaxis limits _set_axis_limits(axs[0], all_counts, which='y', pad=counts_fractional_pad, force_range=counts_range) axs[0].yaxis.set_major_locator(ticker.MaxNLocator(nbins=3, integer=True)) # average _set_axis_limits(axs[1], all_average, which='y', pad=average_fractional_pad, force_range=average_range) axs[1].yaxis.set_major_locator(ticker.MaxNLocator(nbins=3)) # variance _set_axis_limits(axs[2], all_variance, which='y', pad=variance_fractional_pad, force_range=variance_range) axs[2].yaxis.set_major_locator(ticker.MaxNLocator(nbins=3)) # tick formatter formatter = ticker.ScalarFormatter(useMathText=True, useOffset=False) formatter.set_powerlimits((-2, 4)) for ax in axs: ax.yaxis.set_major_formatter(formatter) t = ax.yaxis.get_offset_text() plt.draw() msg = t.get_text() ax.text(0, .95, msg, ha='left', va='top', transform=ax.transAxes) t.set_visible(False) axs[0].tick_params(axis='x', direction='in', bottom='on', labelbottom='on', pad=-10) axs[1].tick_params(axis='x', direction='in', bottom='on', labelbottom='on', pad=-10) axs[2].set_xlabel(timelabel, x=.95, horizontalalignment='right', fontsize='medium') # hide intermediate x axis for ax in axs[:2]: ax.spines['bottom'].set_visible(False) ax.tick_params(axis='x', colors='C7') for ax in axs[1:]: ax.spines['top'].set_color('C7') axs[0].set_ylabel('Counts', fontsize='medium') axs[1].set_ylabel('Average', fontsize='medium') axs[2].set_ylabel('Variance', fontsize='medium') # ## legend ## # C.I. if ci_handles: ci = ci_handles[0] # ci.set_color('C7') ci.set_label('.99 C.I.') main_handles.append(ci) handles = main_handles[:] labels = [h.get_label() for h in handles] if show_legend: axs[-1].legend(handles=handles, labels=labels, loc='upper left', bbox_to_anchor=(0, -.5/axe_ysize)) # title latex_obs = obs.latexify(use_name=use_obs_name) axs[0].text(0.5, 1+.2/axe_ysize, r'{}'.format(latex_obs), size='large', horizontalalignment='center', verticalalignment='bottom', transform=axs[0].transAxes) fig.subplots_adjust(hspace=0) if save: univ = univariate try: obs_path = univ._get_obs_path(user_root=user_path, write=False) except text.MissingFolderError: # it means data has not been written yet # export data and then get univ.export_text(analysis_folder=user_path) obs_path = univ._get_obs_path(user_root=user_path, write=False) bname = 'plot_onepoint_' + univ.obs.name + '_' + univ.region.name + ext fname = os.path.join(obs_path, bname) fig.savefig(fname, bbox_inches='tight', pad_inches=0) if verbose: print('Figure saved as {}'.format(fname)) return fig def plot_twopoints(univariate, condition_label=None, trefs=[], ntrefs=4, axe_xsize=6., axe_ysize=2., time_range=(None, None), time_fractional_pad=.1, counts_range=(None, None), counts_fractional_pad=.1, corr_range=(None, None), # auto corr_fractional_pad=.1, delta_t_max=None, show_exp_decay=None, show_legend=True, show_cdt_details_in_legend=False, use_obs_name=None, save=False, ext='.png', verbose=False): """Plot two-point functions: counts and autocorrelation functions. These plots are able to show only one extra condition with 'master', and are plotted for a set of time of references. Parameters ---------- univariate : :class:`Univariate` instance condition_label : str (default None) must be the repr of a given FilterSet trefs : flist of floats indicate the times that you would like to have as references if left empty, reference times will be computed automatically ntrefs : int if trefs is empty, number of times of reference to display axe_xsize : float (default 6) size of the x-axis (inches) axe_ysize : float (default 2.) size if a single ax y-axis (inches) time_range : couple of floats (default (None, None)) specifies (left, right) bounds time_fractional_pad : float (default .1) fraction of x-range to add as padding counts_range : couple of floats (default (None, None)) specifies range for the Counts y-axis counts_fractional_pad : float (default .2) fractional amount of y-range to add as padding corr_range : couple of floats (default (None, None)) sepcifies range for the Average y-axis corr_fractional_pad : couple of floats (default .2) fractional amounts of range to padding delta_t_max : float (default None) when given, bottom plot will be using this max range symmetrically; otherwise, will use the largest intervals found in data (often too large to see something) show_exp_decay : float (default None) when a floating point number is passed, a light exponential decay curve is plotted for each tref show_legend : bool {True, False} print out legend show_cdt_details_in_legend : bool {False, True} show details about filters use_obs_name : str (default None) when filled, the plot title will use this observable name instead of looking for the observable registered name save : bool {False, True} whether to save figure at canonical path ext : str {'.png', '.pdf'} extension to be used when saving figure verbose : bool {False, True} """ obs = univariate.obs timelabel = _set_timelabel(obs) # define time label # get priod from eval times if len(univariate.eval_times) > 0: period = univariate.eval_times[1] - univariate.eval_times[0] # or from experiment metadata else: period = univariate.exp.period fig, axs = plt.subplots(3, 1, figsize=(axe_xsize, 3*axe_ysize)) # choice of index/indices for time of reference times = univariate['master'].time npoints = len(times) if not trefs: logging.info('Determining trefs...') di = npoints // ntrefs + 1 indices = np.arange(0, npoints, di, dtype=int) trefs = times[indices] logging.info(trefs) all_times = [] all_counts = [] all_corr = [] handles = [] # prep work for latex printing latex_ref = '{{\mathrm{{ref}}}}' if obs.timing == 'g': prefix = 'g' units = '' else: prefix = 't' units = 'mins' conditions = ['master', ] + univariate.cset for index, cdt in enumerate(conditions): if cdt == 'master': c_repr = 'master' c_label = 'all samples' lw = default_lw + 1 lt = '-' alpha = .8 elif cdt.label == condition_label or str(cdt) == condition_label or repr(cdt) == condition_label: c_repr = repr(cdt) if show_cdt_details_in_legend: c_label = str(cdt) else: c_label = cdt.label lw = default_lw lt = '--' alpha = .6 # we plot master and one condition if given, not more... else: continue times = univariate[c_repr].time counts = univariate[c_repr].count_two corr = univariate[c_repr].autocorr var = np.diagonal(corr) valid = counts != 0 for tref in trefs: # this tref may not be in conditioned data (who knows) if np.amin(np.abs(times - tref)) > period: continue index = np.argmin(np.abs(times - tref)) if obs.timing == 'g': lab = '{:d}'.format(tref) else: lab = '{:.0f}'.format(tref) line_label = r'$ {}_{} = {}$ {} ({})'.format(prefix, latex_ref, lab, units, c_label) ok = np.where(counts[index, :] > 0) # if len(ok[0]) == 0: # continue # time limits all_times.extend(times[ok]) dat, = axs[0].plot(times[ok], counts[index, :][ok], ls=lt, lw=lw, alpha=alpha, label=line_label) handles.append(dat) all_counts.extend(counts[index, :][ok]) color = dat.get_color() axs[0].plot((tref, tref), (0, counts[index, index]), ls=':', color=color) axs[1].axhline(0, ls='-', color='C7', alpha=.3) # thin line at 0 dat, = axs[1].plot(times[valid[index, :]], corr[index, :][valid[index, :]]/var[index], ls=lt, lw=lw, alpha=alpha) all_corr.extend(corr[index, :][valid[index, :]]/var[index]) color = dat.get_color() axs[1].axvline(tref, ymin=0.1, ymax=0.9, ls=':', color=color) axs[2].axhline(0, ls='-', color='C7', alpha=.3) # thin line at 0 axs[2].plot(times[valid[index, :]] - tref, corr[index, :][valid[index, :]]/var[index], ls=lt, lw=lw, alpha=alpha) # ## limits and ticks ## # xaxis for ax in axs[:2]: left, right = _set_axis_limits(ax, all_times, which='x', pad=time_fractional_pad, force_range=time_range) hrange = right - left ax.xaxis.set_major_locator(ticker.MaxNLocator(integer=True)) # bottom plot : try to zoom over provided range if delta_t_max is not None: axs[2].set_xlim(left=-delta_t_max, right=delta_t_max) # if not provided, compute automatic ranges (not pretty usually) else: axs[2].set_xlim(left=-hrange, right=hrange) axs[2].xaxis.set_major_locator(ticker.MaxNLocator(integer=True)) # add exponential decay if show_exp_decay is not None: tt = np.linspace(left, right, 100) dd = np.linspace(-hrange, hrange, 100) lab = r'$t_{{\mathrm{{decay}}}} = {:.1f}$ {}'.format(1./show_exp_decay, units) for tref in trefs: axs[1].plot(tt, np.exp(-show_exp_decay * np.abs(tt - tref)), ls='-.', color='C7', alpha=.7) dec, = axs[2].plot(dd, np.exp(-show_exp_decay * np.abs(dd)), ls='-.', color='C7', alpha=.7, label=lab) all_corr.extend(np.exp(-show_exp_decay * np.abs(dd))) handles.append(dec) # ## yaxis limits ## # counts _set_axis_limits(axs[0], all_counts, which='y', pad=counts_fractional_pad, force_range=counts_range) axs[0].yaxis.set_major_locator(ticker.MaxNLocator(nbins=3, integer=True)) # corr for ax in axs[1:]: _set_axis_limits(ax, all_corr, which='y', pad=corr_fractional_pad, force_range=corr_range) ax.yaxis.set_major_locator(ticker.MaxNLocator(nbins=3)) # legend labels = [h.get_label() for h in handles] axs[-1].legend(handles=handles, labels=labels, loc='upper left', bbox_to_anchor=(0, -.5/axe_ysize), labelspacing=0.2) # reduce labelspacing because of LaTeX formatter = ticker.ScalarFormatter(useMathText=True, useOffset=False) formatter.set_powerlimits((-2, 4)) for ax in axs: ax.yaxis.set_major_formatter(formatter) t = ax.yaxis.get_offset_text() plt.draw() msg = t.get_text() ax.text(0, .95, msg, ha='left', va='top', transform=ax.transAxes) t.set_visible(False) axs[0].tick_params(axis='x', direction='in', bottom='on', labelbottom='on', pad=-10) axs[1].tick_params(axis='x', direction='in', bottom='on', labelbottom='on', pad=-10) axs[2].set_xlabel(timelabel, x=.95, horizontalalignment='right', fontsize='medium') # hide intermediate x axis for ax in axs[:1]: ax.spines['bottom'].set_visible(False) ax.tick_params(axis='x', colors='C7') for ax in axs[1:2]: ax.spines['top'].set_color('C7') # ylabels axs[0].set_ylabel(r'# $\langle t_{\mathrm{ref}} | t \rangle$', fontsize='medium') axs[1].set_ylabel(r'$a(t_{\mathrm{ref}}, t)$', fontsize='medium') axs[2].set_ylabel(r'$a(t_{\mathrm{ref}}, t- t_{\mathrm{ref}})$', fontsize='medium') # title latex_obs = obs.latexify(use_name=use_obs_name) axs[0].text(0.5, 1+.2/axe_ysize, r'{}'.format(latex_obs), size='large', horizontalalignment='center', verticalalignment='bottom', transform=axs[0].transAxes) fig.subplots_adjust(hspace=0.) # save fig at canonical path if save: # export data files if not existing yet try: obs_path = univariate._get_obs_path(write=False) except text.MissingFolderError: univariate.write_text() if condition_label is None: univc = univariate.master else: univc = univariate[condition_label] cdt_path = univc._get_path() bname = 'plot_twopoints_' + obs.name + '_' + univariate.region.name + ext fname = os.path.join(cdt_path, bname) fig.savefig(fname, bbox_inches='tight', pad_inches=0) if verbose: print('Figure saved as {}'.format(fname)) return fig def plot_stationary(stationary, show_cdts='all', axe_xsize=6., axe_ysize=2., time_range=(None, None), time_fractional_pad=.1, time_guides=[0., ], counts_range=(None, None), counts_fractional_pad=.1, corr_range=(None, None), # auto counts_logscale=False, corr_fractional_pad=.1, corr_logscale=False, corr_guides=[0., ], show_exp_decay=None, show_legend=True, show_cdt_details_in_legend=False, use_obs_name=None, save=False, ext='.png', verbose=False): """Plot stationary autocorrelation. Parameters ---------- stationary : StationaryUnivariate or StationaryBivariate instance axe_xsize : float (default 6) size (in inches) of the x-axis axe_ysize : float (default 2) size (in inches) of the individual y-axis time_range : couple of floats bounds for time (x-axis) time_fractional_pad : float fractional padding for x-axis counts_range : couple of ints bounds for counts axis counts_fractional_pad : float fractional padding for counts axis corr_range : couple of floats bounds for correlation values counts_logscale : bool {False, True} use logscale for counts axis corr_fractional_pad : float fractional padding for correlation values corr_logscale : bool {False, True} use logscale for correlation values (symlog is used to display symmetrically negative values) corr_guides : list of float values where to plot shaded grey horizontal lines show_exp_decay : float (default None) whether to plot an exponential decay with corresponding rate exp(-rate * t) save : bool {False, True} whether to save plot at canonical path use_obs_name : str (default None) when filled, the plot title will use this observable name instead of looking for the observable registered name ext : str {'.png', '.pdf'} extension used for file Returns ------- fig : Figure instance """ if not (isinstance(stationary, StationaryUnivariate) or isinstance(stationary, StationaryBivariate)): msg = ('Input is not an instance of ' '{}'.format(StationaryUnivariate) + 'or of ' '{}'.format(StationaryBivariate)) raise TypeError(msg) if isinstance(stationary, StationaryUnivariate): obs = stationary.obs timelabel = _set_timelabel(obs, use_tref=False) elif isinstance(stationary, StationaryBivariate): obs = [uni.obs for uni in stationary.univariates] timelabel = _set_timelabel(obs[0], use_tref=False) if 'minutes' in timelabel: units = 'mins' prefix = 't' else: units = '' # generations are used prefix = 'g' timelabel = r'$\Delta$'+timelabel nplots = 2 fig = plt.figure(figsize=(axe_xsize, (nplots + 1)*axe_ysize)) gs = gridspec.GridSpec(nplots + 1, 1) ax1 = fig.add_subplot(gs[0]) ax2 = fig.add_subplot(gs[1:]) # build condition list if isinstance(stationary, StationaryUnivariate): conditions = _set_condition_list(stationary.univariate, show_cdts=show_cdts) elif isinstance(stationary, StationaryBivariate): conditions = [] conditions_0 = _set_condition_list(stationary.univariates[0], show_cdts=show_cdts) conditions_1 = _set_condition_list(stationary.univariates[1], show_cdts=show_cdts) # intersect for cdt in conditions_0: if cdt in conditions_1: conditions.append(cdt) all_times = [] all_counts = [] all_corrs = [] main_handles = [] # for legend ci_handles = [] for index, cdt in enumerate(conditions): if cdt == 'master': c_repr = 'master' c_label = 'all samples' lw = default_lw + 1 alpha = 1 alpha_fill = .5 else: c_repr = repr(cdt) if show_cdt_details_in_legend: c_label = str(cdt) else: c_label = cdt.label lw = default_lw alpha = .8 alpha_fill = 0.3 array = stationary[c_repr].array nonzero = np.where(array['counts'] > 1) # 1 sample does not have std dts = array['time_interval'][nonzero] all_times.extend(dts) counts = array['counts'][nonzero] all_counts.extend(counts) if isinstance(stationary, StationaryUnivariate): corr = array['auto_correlation'][nonzero] else: corr = array['cross_correlation'][nonzero] try: dev = array['std_dev'][nonzero] except ValueError: dev = None # counts label = '{}'.format(c_label) line, = ax1.plot(dts, counts, lw=lw, alpha=alpha, label=label) main_handles.append(line) col = line.get_color() # usefule for later stage # autocorrelation: divide by variance if isinstance(stationary, StationaryUnivariate): norm = corr[0] # cross-correlation: divide covariance by product of standard devs elif isinstance(stationary, StationaryBivariate): prod = 1. for single in stationary.univariates: prod *= np.sqrt(single[c_repr].stationary.autocorr[0]) norm = prod dat, = ax2.plot(dts, corr/norm, color=col, lw=lw, alpha=alpha, label=label) all_corrs.extend(corr/norm) if dev is not None: se = 2.58 * dev / np.sqrt(counts) ci = ax2.fill_between(dts, (corr-se)/norm, (corr+se)/norm, facecolor=col, alpha=alpha_fill, label='.99 C.I.') ci_handles.append(ci) all_corrs.extend((corr-se)/norm) all_corrs.extend((corr+se)/norm) # vertical lines for timing for val in time_guides: ax2.axvline(val, ls=':', color='C7', alpha=.5) # horizontal lines for correlation ref for val in corr_guides: ax2.axhline(val, ls=':', color='C7', alpha=.5) # ## limits and ticks ## # xaxis for ax in [ax1, ax2]: left, right = _set_axis_limits(ax, all_times, which='x', pad=time_fractional_pad, force_range=time_range) ax.xaxis.set_major_locator(ticker.MaxNLocator(integer=True)) if show_exp_decay is not None: tt = np.linspace(left, right, 100) yy = np.exp(-show_exp_decay*np.abs(tt)) lab = r'${}_{{\mathrm{{decay}}}} = {:.1f}$ {}'.format(prefix, 1./show_exp_decay, units) ref, = ax2.plot(tt, yy, '-.', color='C7', alpha=1, label=lab) main_handles.append(ref) # ## yaxis limits ## # counts formatter = ticker.ScalarFormatter(useMathText=True, useOffset=False) formatter.set_powerlimits((-2, 4)) if not counts_logscale: _set_axis_limits(ax1, all_counts, which='y', pad=counts_fractional_pad, force_range=counts_range) ax1.yaxis.set_major_locator(ticker.MaxNLocator(nbins=3, integer=True)) ax1.yaxis.set_major_formatter(formatter) t = ax.yaxis.get_offset_text() plt.draw() msg = t.get_text() ax1.text(0, .95, msg, ha='left', va='top', transform=ax.transAxes) t.set_visible(False) else: ax1.set_yscale('symlog', linthresh=1) # corr if not corr_logscale: bottom, top = _set_axis_limits(ax2, all_corrs, which='y', pad=corr_fractional_pad, force_range=corr_range) if top > 2 or bottom < -2: locator = ticker.MaxNLocator(nbins=5, integer=True) else: locator = ticker.FixedLocator([-1, -.5, 0., .5, 1]) ax2.yaxis.set_major_locator(locator) ax2.yaxis.set_major_formatter(formatter) t = ax.yaxis.get_offset_text() plt.draw() msg = t.get_text() ax2.text(0, .95, msg, ha='left', va='top', transform=ax.transAxes) t.set_visible(False) else: ax2.set_yscale('symlog', linthreshy=0.1, linscaley=0.2, subsy=[2, 3, 4, 5, 6, 7, 8, 9]) if corr_range[0] is not None and corr_range[0] > 0.: ax2.set_ylim(bottom=corr_range[0]) ax1.tick_params(axis='x', direction='in', bottom='on', labelbottom='on', pad=-10) ax2.set_xlabel(timelabel, x=.95, horizontalalignment='right', fontsize='medium') # hide intermediate x axis ax1.spines['bottom'].set_visible(False) ax1.tick_params(axis='x', colors='C7') ax2.spines['top'].set_color('C7') # ylabels ax1.set_ylabel(r'Counts', fontsize='medium') if isinstance(stationary, StationaryUnivariate): ax2.set_ylabel(r'$\tilde{{a}}(\Delta {})$'.format(prefix), fontsize='medium') elif isinstance(stationary, StationaryBivariate): ax2.set_ylabel(r'$\tilde{{c}}(\Delta {})$'.format(prefix), fontsize='medium') # writting observable # case: obs is a single observable if isinstance(stationary, StationaryUnivariate): msg = '{}:{}'.format(obs.latexify(shorten_time_variable=True, use_name=use_obs_name), obs.latexify(plus_delta=True, shorten_time_variable=True, use_name=use_obs_name)) # case: obs is a couple of observables else: if use_obs_name is not None: if isinstance(use_obs_name, str): use_name_0 = use_obs_name use_name_1 = None else: if len(use_obs_name) == 1: use_name_0 = use_obs_name[0] use_name_1 = None else: use_name_0 = use_obs_name[0] use_name_1 = use_obs_name[1] else: use_name_0 = None use_name_1 = None msg = '{}:{}'.format(obs[0].latexify(shorten_time_variable=True, use_name=use_name_0), obs[1].latexify(plus_delta=True, shorten_time_variable=True, use_name=use_name_1)) ax1.text(0.5, 1+.2/axe_ysize, r'{}'.format(msg), size='large', horizontalalignment='center', verticalalignment='bottom', transform=ax1.transAxes) # ## legend ## # C.I. if ci_handles: ci = ci_handles[0] # ci.set_color('C7') ci.set_label('.99 C.I.') main_handles.append(ci) handles = main_handles[:] labels = [h.get_label() for h in handles] if show_legend: ax2.legend(handles=handles, labels=labels, loc='upper left', bbox_to_anchor=(0, -.25/axe_ysize), labelspacing=.2) fig.subplots_adjust(hspace=0) if save: # get univariate instance to get path where to save figure bname = 'plot_stationary_' try: obs_path = stationary._get_obs_path(write=False) except text.MissingFolderError: stationary.write_text() obs_path = stationary._get_obs_path(write=False) obsname = os.path.basename(obs_path) bname += obsname + '_' bname += stationary.region.name + ext fname = os.path.join(obs_path, bname) fig.savefig(fname, bbox_inches='tight', pad_inches=0) if verbose: print('Figure saved as {}'.format(fname)) return fig
mit
trankmichael/scikit-learn
sklearn/cluster/tests/test_bicluster.py
226
9457
"""Testing for Spectral Biclustering methods""" import numpy as np from scipy.sparse import csr_matrix, issparse from sklearn.grid_search import ParameterGrid from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_true from sklearn.utils.testing import SkipTest from sklearn.base import BaseEstimator, BiclusterMixin from sklearn.cluster.bicluster import SpectralCoclustering from sklearn.cluster.bicluster import SpectralBiclustering from sklearn.cluster.bicluster import _scale_normalize from sklearn.cluster.bicluster import _bistochastic_normalize from sklearn.cluster.bicluster import _log_normalize from sklearn.metrics import consensus_score from sklearn.datasets import make_biclusters, make_checkerboard class MockBiclustering(BaseEstimator, BiclusterMixin): # Mock object for testing get_submatrix. def __init__(self): pass def get_indices(self, i): # Overridden to reproduce old get_submatrix test. return (np.where([True, True, False, False, True])[0], np.where([False, False, True, True])[0]) def test_get_submatrix(): data = np.arange(20).reshape(5, 4) model = MockBiclustering() for X in (data, csr_matrix(data), data.tolist()): submatrix = model.get_submatrix(0, X) if issparse(submatrix): submatrix = submatrix.toarray() assert_array_equal(submatrix, [[2, 3], [6, 7], [18, 19]]) submatrix[:] = -1 if issparse(X): X = X.toarray() assert_true(np.all(X != -1)) def _test_shape_indices(model): # Test get_shape and get_indices on fitted model. for i in range(model.n_clusters): m, n = model.get_shape(i) i_ind, j_ind = model.get_indices(i) assert_equal(len(i_ind), m) assert_equal(len(j_ind), n) def test_spectral_coclustering(): # Test Dhillon's Spectral CoClustering on a simple problem. param_grid = {'svd_method': ['randomized', 'arpack'], 'n_svd_vecs': [None, 20], 'mini_batch': [False, True], 'init': ['k-means++'], 'n_init': [10], 'n_jobs': [1]} random_state = 0 S, rows, cols = make_biclusters((30, 30), 3, noise=0.5, random_state=random_state) S -= S.min() # needs to be nonnegative before making it sparse S = np.where(S < 1, 0, S) # threshold some values for mat in (S, csr_matrix(S)): for kwargs in ParameterGrid(param_grid): model = SpectralCoclustering(n_clusters=3, random_state=random_state, **kwargs) model.fit(mat) assert_equal(model.rows_.shape, (3, 30)) assert_array_equal(model.rows_.sum(axis=0), np.ones(30)) assert_array_equal(model.columns_.sum(axis=0), np.ones(30)) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) _test_shape_indices(model) def test_spectral_biclustering(): # Test Kluger methods on a checkerboard dataset. S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5, random_state=0) non_default_params = {'method': ['scale', 'log'], 'svd_method': ['arpack'], 'n_svd_vecs': [20], 'mini_batch': [True]} for mat in (S, csr_matrix(S)): for param_name, param_values in non_default_params.items(): for param_value in param_values: model = SpectralBiclustering( n_clusters=3, n_init=3, init='k-means++', random_state=0, ) model.set_params(**dict([(param_name, param_value)])) if issparse(mat) and model.get_params().get('method') == 'log': # cannot take log of sparse matrix assert_raises(ValueError, model.fit, mat) continue else: model.fit(mat) assert_equal(model.rows_.shape, (9, 30)) assert_equal(model.columns_.shape, (9, 30)) assert_array_equal(model.rows_.sum(axis=0), np.repeat(3, 30)) assert_array_equal(model.columns_.sum(axis=0), np.repeat(3, 30)) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) _test_shape_indices(model) def _do_scale_test(scaled): """Check that rows sum to one constant, and columns to another.""" row_sum = scaled.sum(axis=1) col_sum = scaled.sum(axis=0) if issparse(scaled): row_sum = np.asarray(row_sum).squeeze() col_sum = np.asarray(col_sum).squeeze() assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100), decimal=1) assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100), decimal=1) def _do_bistochastic_test(scaled): """Check that rows and columns sum to the same constant.""" _do_scale_test(scaled) assert_almost_equal(scaled.sum(axis=0).mean(), scaled.sum(axis=1).mean(), decimal=1) def test_scale_normalize(): generator = np.random.RandomState(0) X = generator.rand(100, 100) for mat in (X, csr_matrix(X)): scaled, _, _ = _scale_normalize(mat) _do_scale_test(scaled) if issparse(mat): assert issparse(scaled) def test_bistochastic_normalize(): generator = np.random.RandomState(0) X = generator.rand(100, 100) for mat in (X, csr_matrix(X)): scaled = _bistochastic_normalize(mat) _do_bistochastic_test(scaled) if issparse(mat): assert issparse(scaled) def test_log_normalize(): # adding any constant to a log-scaled matrix should make it # bistochastic generator = np.random.RandomState(0) mat = generator.rand(100, 100) scaled = _log_normalize(mat) + 1 _do_bistochastic_test(scaled) def test_fit_best_piecewise(): model = SpectralBiclustering(random_state=0) vectors = np.array([[0, 0, 0, 1, 1, 1], [2, 2, 2, 3, 3, 3], [0, 1, 2, 3, 4, 5]]) best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2) assert_array_equal(best, vectors[:2]) def test_project_and_cluster(): model = SpectralBiclustering(random_state=0) data = np.array([[1, 1, 1], [1, 1, 1], [3, 6, 3], [3, 6, 3]]) vectors = np.array([[1, 0], [0, 1], [0, 0]]) for mat in (data, csr_matrix(data)): labels = model._project_and_cluster(data, vectors, n_clusters=2) assert_array_equal(labels, [0, 0, 1, 1]) def test_perfect_checkerboard(): raise SkipTest("This test is failing on the buildbot, but cannot" " reproduce. Temporarily disabling it until it can be" " reproduced and fixed.") model = SpectralBiclustering(3, svd_method="arpack", random_state=0) S, rows, cols = make_checkerboard((30, 30), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) S, rows, cols = make_checkerboard((40, 30), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) S, rows, cols = make_checkerboard((30, 40), 3, noise=0, random_state=0) model.fit(S) assert_equal(consensus_score(model.biclusters_, (rows, cols)), 1) def test_errors(): data = np.arange(25).reshape((5, 5)) model = SpectralBiclustering(n_clusters=(3, 3, 3)) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_clusters='abc') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_clusters=(3, 'abc')) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(method='unknown') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(svd_method='unknown') assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_components=0) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_best=0) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering(n_components=3, n_best=4) assert_raises(ValueError, model.fit, data) model = SpectralBiclustering() data = np.arange(27).reshape((3, 3, 3)) assert_raises(ValueError, model.fit, data)
bsd-3-clause
ningchi/scikit-learn
examples/ensemble/plot_adaboost_regression.py
26
1523
""" ====================================== Decision Tree Regression with AdaBoost ====================================== A decision tree is boosted using the AdaBoost.R2 [1] algorithm on a 1D sinusoidal dataset with a small amount of Gaussian noise. 299 boosts (300 decision trees) is compared with a single decision tree regressor. As the number of boosts is increased the regressor can fit more detail. .. [1] H. Drucker, "Improving Regressors using Boosting Techniques", 1997. """ print(__doc__) # Author: Noel Dawe <noel.dawe@gmail.com> # # License: BSD 3 clause # importing necessary libraries import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor # Create the dataset rng = np.random.RandomState(1) X = np.linspace(0, 6, 100)[:, np.newaxis] y = np.sin(X).ravel() + np.sin(6 * X).ravel() + rng.normal(0, 0.1, X.shape[0]) # Fit regression model clf_1 = DecisionTreeRegressor(max_depth=4) clf_2 = AdaBoostRegressor(DecisionTreeRegressor(max_depth=4), n_estimators=300, random_state=rng) clf_1.fit(X, y) clf_2.fit(X, y) # Predict y_1 = clf_1.predict(X) y_2 = clf_2.predict(X) # Plot the results plt.figure() plt.scatter(X, y, c="k", label="training samples") plt.plot(X, y_1, c="g", label="n_estimators=1", linewidth=2) plt.plot(X, y_2, c="r", label="n_estimators=300", linewidth=2) plt.xlabel("data") plt.ylabel("target") plt.title("Boosted Decision Tree Regression") plt.legend() plt.show()
bsd-3-clause
zaxtax/scikit-learn
sklearn/tree/tree.py
23
40423
""" This module gathers tree-based methods, including decision, regression and randomized trees. Single and multi-output problems are both handled. """ # Authors: Gilles Louppe <g.louppe@gmail.com> # Peter Prettenhofer <peter.prettenhofer@gmail.com> # Brian Holt <bdholt1@gmail.com> # Noel Dawe <noel@dawe.me> # Satrajit Gosh <satrajit.ghosh@gmail.com> # Joly Arnaud <arnaud.v.joly@gmail.com> # Fares Hedayati <fares.hedayati@gmail.com> # # Licence: BSD 3 clause from __future__ import division import numbers from abc import ABCMeta from abc import abstractmethod from math import ceil import numpy as np from scipy.sparse import issparse from ..base import BaseEstimator from ..base import ClassifierMixin from ..base import RegressorMixin from ..externals import six from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import check_array from ..utils import check_random_state from ..utils import compute_sample_weight from ..utils.multiclass import check_classification_targets from ..exceptions import NotFittedError from ._criterion import Criterion from ._splitter import Splitter from ._tree import DepthFirstTreeBuilder from ._tree import BestFirstTreeBuilder from ._tree import Tree from . import _tree, _splitter, _criterion __all__ = ["DecisionTreeClassifier", "DecisionTreeRegressor", "ExtraTreeClassifier", "ExtraTreeRegressor"] # ============================================================================= # Types and constants # ============================================================================= DTYPE = _tree.DTYPE DOUBLE = _tree.DOUBLE CRITERIA_CLF = {"gini": _criterion.Gini, "entropy": _criterion.Entropy} CRITERIA_REG = {"mse": _criterion.MSE, "friedman_mse": _criterion.FriedmanMSE} DENSE_SPLITTERS = {"best": _splitter.BestSplitter, "random": _splitter.RandomSplitter} SPARSE_SPLITTERS = {"best": _splitter.BestSparseSplitter, "random": _splitter.RandomSparseSplitter} # ============================================================================= # Base decision tree # ============================================================================= class BaseDecisionTree(six.with_metaclass(ABCMeta, BaseEstimator, _LearntSelectorMixin)): """Base class for decision trees. Warning: This class should not be used directly. Use derived classes instead. """ @abstractmethod def __init__(self, criterion, splitter, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_features, max_leaf_nodes, random_state, class_weight=None, presort=False): self.criterion = criterion self.splitter = splitter self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.min_weight_fraction_leaf = min_weight_fraction_leaf self.max_features = max_features self.random_state = random_state self.max_leaf_nodes = max_leaf_nodes self.class_weight = class_weight self.presort = presort self.n_features_ = None self.n_outputs_ = None self.classes_ = None self.n_classes_ = None self.tree_ = None self.max_features_ = None def fit(self, X, y, sample_weight=None, check_input=True, X_idx_sorted=None): """Build a decision tree from the training set (X, y). Parameters ---------- X : array-like or sparse matrix, shape = [n_samples, n_features] The training input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csc_matrix``. y : array-like, shape = [n_samples] or [n_samples, n_outputs] The target values (class labels in classification, real numbers in regression). In the regression case, use ``dtype=np.float64`` and ``order='C'`` for maximum efficiency. sample_weight : array-like, shape = [n_samples] or None Sample weights. If None, then samples are equally weighted. Splits that would create child nodes with net zero or negative weight are ignored while searching for a split in each node. In the case of classification, splits are also ignored if they would result in any single class carrying a negative weight in either child node. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. X_idx_sorted : array-like, shape = [n_samples, n_features], optional The indexes of the sorted training input samples. If many tree are grown on the same dataset, this allows the ordering to be cached between trees. If None, the data will be sorted here. Don't use this parameter unless you know what to do. Returns ------- self : object Returns self. """ random_state = check_random_state(self.random_state) if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csc") y = check_array(y, ensure_2d=False, dtype=None) if issparse(X): X.sort_indices() if X.indices.dtype != np.intc or X.indptr.dtype != np.intc: raise ValueError("No support for np.int64 index based " "sparse matrices") # Determine output settings n_samples, self.n_features_ = X.shape is_classification = isinstance(self, ClassifierMixin) y = np.atleast_1d(y) expanded_class_weight = None if y.ndim == 1: # reshape is necessary to preserve the data contiguity against vs # [:, np.newaxis] that does not. y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] if is_classification: check_classification_targets(y) y = np.copy(y) self.classes_ = [] self.n_classes_ = [] if self.class_weight is not None: y_original = np.copy(y) y_encoded = np.zeros(y.shape, dtype=np.int) for k in range(self.n_outputs_): classes_k, y_encoded[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes_k) self.n_classes_.append(classes_k.shape[0]) y = y_encoded if self.class_weight is not None: expanded_class_weight = compute_sample_weight( self.class_weight, y_original) else: self.classes_ = [None] * self.n_outputs_ self.n_classes_ = [1] * self.n_outputs_ self.n_classes_ = np.array(self.n_classes_, dtype=np.intp) if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous: y = np.ascontiguousarray(y, dtype=DOUBLE) # Check parameters max_depth = ((2 ** 31) - 1 if self.max_depth is None else self.max_depth) max_leaf_nodes = (-1 if self.max_leaf_nodes is None else self.max_leaf_nodes) if isinstance(self.min_samples_leaf, (numbers.Integral, np.integer)): min_samples_leaf = self.min_samples_leaf else: # float min_samples_leaf = int(ceil(self.min_samples_leaf * n_samples)) if isinstance(self.min_samples_split, (numbers.Integral, np.integer)): min_samples_split = self.min_samples_split else: # float min_samples_split = int(ceil(self.min_samples_split * n_samples)) min_samples_split = max(2, min_samples_split) min_samples_split = max(min_samples_split, 2 * min_samples_leaf) if isinstance(self.max_features, six.string_types): if self.max_features == "auto": if is_classification: max_features = max(1, int(np.sqrt(self.n_features_))) else: max_features = self.n_features_ elif self.max_features == "sqrt": max_features = max(1, int(np.sqrt(self.n_features_))) elif self.max_features == "log2": max_features = max(1, int(np.log2(self.n_features_))) else: raise ValueError( 'Invalid value for max_features. Allowed string ' 'values are "auto", "sqrt" or "log2".') elif self.max_features is None: max_features = self.n_features_ elif isinstance(self.max_features, (numbers.Integral, np.integer)): max_features = self.max_features else: # float if self.max_features > 0.0: max_features = max(1, int(self.max_features * self.n_features_)) else: max_features = 0 self.max_features_ = max_features if len(y) != n_samples: raise ValueError("Number of labels=%d does not match " "number of samples=%d" % (len(y), n_samples)) if not (0. < self.min_samples_split <= 1. or 2 <= self.min_samples_split): raise ValueError("min_samples_split must be in at least 2" " or in (0, 1], got %s" % min_samples_split) if not (0. < self.min_samples_leaf <= 0.5 or 1 <= self.min_samples_leaf): raise ValueError("min_samples_leaf must be at least than 1 " "or in (0, 0.5], got %s" % min_samples_leaf) if not 0 <= self.min_weight_fraction_leaf <= 0.5: raise ValueError("min_weight_fraction_leaf must in [0, 0.5]") if max_depth <= 0: raise ValueError("max_depth must be greater than zero. ") if not (0 < max_features <= self.n_features_): raise ValueError("max_features must be in (0, n_features]") if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)): raise ValueError("max_leaf_nodes must be integral number but was " "%r" % max_leaf_nodes) if -1 < max_leaf_nodes < 2: raise ValueError(("max_leaf_nodes {0} must be either smaller than " "0 or larger than 1").format(max_leaf_nodes)) if sample_weight is not None: if (getattr(sample_weight, "dtype", None) != DOUBLE or not sample_weight.flags.contiguous): sample_weight = np.ascontiguousarray( sample_weight, dtype=DOUBLE) if len(sample_weight.shape) > 1: raise ValueError("Sample weights array has more " "than one dimension: %d" % len(sample_weight.shape)) if len(sample_weight) != n_samples: raise ValueError("Number of weights=%d does not match " "number of samples=%d" % (len(sample_weight), n_samples)) if expanded_class_weight is not None: if sample_weight is not None: sample_weight = sample_weight * expanded_class_weight else: sample_weight = expanded_class_weight # Set min_weight_leaf from min_weight_fraction_leaf if self.min_weight_fraction_leaf != 0. and sample_weight is not None: min_weight_leaf = (self.min_weight_fraction_leaf * np.sum(sample_weight)) else: min_weight_leaf = 0. presort = self.presort # Allow presort to be 'auto', which means True if the dataset is dense, # otherwise it will be False. if self.presort == 'auto' and issparse(X): presort = False elif self.presort == 'auto': presort = True if presort is True and issparse(X): raise ValueError("Presorting is not supported for sparse " "matrices.") # If multiple trees are built on the same dataset, we only want to # presort once. Splitters now can accept presorted indices if desired, # but do not handle any presorting themselves. Ensemble algorithms # which desire presorting must do presorting themselves and pass that # matrix into each tree. if X_idx_sorted is None and presort: X_idx_sorted = np.asfortranarray(np.argsort(X, axis=0), dtype=np.int32) if presort and X_idx_sorted.shape != X.shape: raise ValueError("The shape of X (X.shape = {}) doesn't match " "the shape of X_idx_sorted (X_idx_sorted" ".shape = {})".format(X.shape, X_idx_sorted.shape)) # Build tree criterion = self.criterion if not isinstance(criterion, Criterion): if is_classification: criterion = CRITERIA_CLF[self.criterion](self.n_outputs_, self.n_classes_) else: criterion = CRITERIA_REG[self.criterion](self.n_outputs_) SPLITTERS = SPARSE_SPLITTERS if issparse(X) else DENSE_SPLITTERS splitter = self.splitter if not isinstance(self.splitter, Splitter): splitter = SPLITTERS[self.splitter](criterion, self.max_features_, min_samples_leaf, min_weight_leaf, random_state, self.presort) self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_) # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise if max_leaf_nodes < 0: builder = DepthFirstTreeBuilder(splitter, min_samples_split, min_samples_leaf, min_weight_leaf, max_depth) else: builder = BestFirstTreeBuilder(splitter, min_samples_split, min_samples_leaf, min_weight_leaf, max_depth, max_leaf_nodes) builder.build(self.tree_, X, y, sample_weight, X_idx_sorted) if self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] return self def _validate_X_predict(self, X, check_input): """Validate X whenever one tries to predict, apply, predict_proba""" if self.tree_ is None: raise NotFittedError("Estimator not fitted, " "call `fit` before exploiting the model.") if check_input: X = check_array(X, dtype=DTYPE, accept_sparse="csr") if issparse(X) and (X.indices.dtype != np.intc or X.indptr.dtype != np.intc): raise ValueError("No support for np.int64 index based " "sparse matrices") n_features = X.shape[1] if self.n_features_ != n_features: raise ValueError("Number of features of the model must " "match the input. Model n_features is %s and " "input n_features is %s " % (self.n_features_, n_features)) return X def predict(self, X, check_input=True): """Predict class or regression value for X. For a classification model, the predicted class for each sample in X is returned. For a regression model, the predicted value based on X is returned. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- y : array of shape = [n_samples] or [n_samples, n_outputs] The predicted classes, or the predict values. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) n_samples = X.shape[0] # Classification if isinstance(self, ClassifierMixin): if self.n_outputs_ == 1: return self.classes_.take(np.argmax(proba, axis=1), axis=0) else: predictions = np.zeros((n_samples, self.n_outputs_)) for k in range(self.n_outputs_): predictions[:, k] = self.classes_[k].take( np.argmax(proba[:, k], axis=1), axis=0) return predictions # Regression else: if self.n_outputs_ == 1: return proba[:, 0] else: return proba[:, :, 0] def apply(self, X, check_input=True): """ Returns the index of the leaf that each sample is predicted as. .. versionadded:: 0.17 Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- X_leaves : array_like, shape = [n_samples,] For each datapoint x in X, return the index of the leaf x ends up in. Leaves are numbered within ``[0; self.tree_.node_count)``, possibly with gaps in the numbering. """ X = self._validate_X_predict(X, check_input) return self.tree_.apply(X) def decision_path(self, X, check_input=True): """Return the decision path in the tree Parameters ---------- X : array_like or sparse matrix, shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Returns ------- indicator : sparse csr array, shape = [n_samples, n_nodes] Return a node indicator matrix where non zero elements indicates that the samples goes through the nodes. """ X = self._validate_X_predict(X, check_input) return self.tree_.decision_path(X) @property def feature_importances_(self): """Return the feature importances. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance. Returns ------- feature_importances_ : array, shape = [n_features] """ if self.tree_ is None: raise NotFittedError("Estimator not fitted, call `fit` before" " `feature_importances_`.") return self.tree_.compute_feature_importances() # ============================================================================= # Public estimators # ============================================================================= class DecisionTreeClassifier(BaseDecisionTree, ClassifierMixin): """A decision tree classifier. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=sqrt(n_features)`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. class_weight : dict, list of dicts, "balanced" or None, optional (default=None) Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. For multi-output problems, a list of dicts can be provided in the same order as the columns of y. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` For multi-output, the weights of each column of y will be multiplied. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. presort : bool, optional (default=False) Whether to presort the data to speed up the finding of best splits in fitting. For the default settings of a decision tree on large datasets, setting this to true may slow down the training process. When using either a smaller dataset or a restricted depth, this may speed up the training. Attributes ---------- classes_ : array of shape = [n_classes] or a list of such arrays The classes labels (single output problem), or a list of arrays of class labels (multi-output problem). feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_classes_ : int or list The number of classes (for single output problems), or a list containing the number of classes for each output (for multi-output problems). n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeRegressor References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_iris >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeClassifier >>> clf = DecisionTreeClassifier(random_state=0) >>> iris = load_iris() >>> cross_val_score(clf, iris.data, iris.target, cv=10) ... # doctest: +SKIP ... array([ 1. , 0.93..., 0.86..., 0.93..., 0.93..., 0.93..., 0.93..., 1. , 0.93..., 1. ]) """ def __init__(self, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, class_weight=None, presort=False): super(DecisionTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state, presort=presort) def predict_proba(self, X, check_input=True): """Predict class probabilities of the input samples X. The predicted class probability is the fraction of samples of the same class in a leaf. check_input : boolean, (default=True) Allow to bypass several input checking. Don't use this parameter unless you know what you do. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ X = self._validate_X_predict(X, check_input) proba = self.tree_.predict(X) if self.n_outputs_ == 1: proba = proba[:, :self.n_classes_] normalizer = proba.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba /= normalizer return proba else: all_proba = [] for k in range(self.n_outputs_): proba_k = proba[:, k, :self.n_classes_[k]] normalizer = proba_k.sum(axis=1)[:, np.newaxis] normalizer[normalizer == 0.0] = 1.0 proba_k /= normalizer all_proba.append(proba_k) return all_proba def predict_log_proba(self, X): """Predict class log-probabilities of the input samples X. Parameters ---------- X : array-like or sparse matrix of shape = [n_samples, n_features] The input samples. Internally, it will be converted to ``dtype=np.float32`` and if a sparse matrix is provided to a sparse ``csr_matrix``. Returns ------- p : array of shape = [n_samples, n_classes], or a list of n_outputs such arrays if n_outputs > 1. The class log-probabilities of the input samples. The order of the classes corresponds to that in the attribute `classes_`. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: for k in range(self.n_outputs_): proba[k] = np.log(proba[k]) return proba class DecisionTreeRegressor(BaseDecisionTree, RegressorMixin): """A decision tree regressor. Read more in the :ref:`User Guide <tree>`. Parameters ---------- criterion : string, optional (default="mse") The function to measure the quality of a split. The only supported criterion is "mse" for the mean squared error, which is equal to variance reduction as feature selection criterion. splitter : string, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. max_features : int, float, string or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. - If float, then `max_features` is a percentage and `int(max_features * n_features)` features are considered at each split. - If "auto", then `max_features=n_features`. - If "sqrt", then `max_features=sqrt(n_features)`. - If "log2", then `max_features=log2(n_features)`. - If None, then `max_features=n_features`. Note: the search for a split does not stop until at least one valid partition of the node samples is found, even if it requires to effectively inspect more than ``max_features`` features. max_depth : int or None, optional (default=None) The maximum depth of the tree. If None, then nodes are expanded until all leaves are pure or until all leaves contain less than min_samples_split samples. Ignored if ``max_leaf_nodes`` is not None. min_samples_split : int, float, optional (default=2) The minimum number of samples required to split an internal node: - If int, then consider `min_samples_split` as the minimum number. - If float, then `min_samples_split` is a percentage and `ceil(min_samples_split * n_samples)` are the minimum number of samples for each split. min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to be at a leaf node: - If int, then consider `min_samples_leaf` as the minimum number. - If float, then `min_samples_leaf` is a percentage and `ceil(min_samples_leaf * n_samples)` are the minimum number of samples for each node. min_weight_fraction_leaf : float, optional (default=0.) The minimum weighted fraction of the input samples required to be at a leaf node. max_leaf_nodes : int or None, optional (default=None) Grow a tree with ``max_leaf_nodes`` in best-first fashion. Best nodes are defined as relative reduction in impurity. If None then unlimited number of leaf nodes. If not None then ``max_depth`` will be ignored. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. presort : bool, optional (default=False) Whether to presort the data to speed up the finding of best splits in fitting. For the default settings of a decision tree on large datasets, setting this to true may slow down the training process. When using either a smaller dataset or a restricted depth, this may speed up the training. Attributes ---------- feature_importances_ : array of shape = [n_features] The feature importances. The higher, the more important the feature. The importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature. It is also known as the Gini importance [4]_. max_features_ : int, The inferred value of max_features. n_features_ : int The number of features when ``fit`` is performed. n_outputs_ : int The number of outputs when ``fit`` is performed. tree_ : Tree object The underlying Tree object. See also -------- DecisionTreeClassifier References ---------- .. [1] http://en.wikipedia.org/wiki/Decision_tree_learning .. [2] L. Breiman, J. Friedman, R. Olshen, and C. Stone, "Classification and Regression Trees", Wadsworth, Belmont, CA, 1984. .. [3] T. Hastie, R. Tibshirani and J. Friedman. "Elements of Statistical Learning", Springer, 2009. .. [4] L. Breiman, and A. Cutler, "Random Forests", http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm Examples -------- >>> from sklearn.datasets import load_boston >>> from sklearn.model_selection import cross_val_score >>> from sklearn.tree import DecisionTreeRegressor >>> boston = load_boston() >>> regressor = DecisionTreeRegressor(random_state=0) >>> cross_val_score(regressor, boston.data, boston.target, cv=10) ... # doctest: +SKIP ... array([ 0.61..., 0.57..., -0.34..., 0.41..., 0.75..., 0.07..., 0.29..., 0.33..., -1.42..., -1.77...]) """ def __init__(self, criterion="mse", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, presort=False): super(DecisionTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state, presort=presort) class ExtraTreeClassifier(DecisionTreeClassifier): """An extremely randomized tree classifier. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeRegressor, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="gini", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None, class_weight=None): super(ExtraTreeClassifier, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, class_weight=class_weight, random_state=random_state) class ExtraTreeRegressor(DecisionTreeRegressor): """An extremely randomized tree regressor. Extra-trees differ from classic decision trees in the way they are built. When looking for the best split to separate the samples of a node into two groups, random splits are drawn for each of the `max_features` randomly selected features and the best split among those is chosen. When `max_features` is set 1, this amounts to building a totally random decision tree. Warning: Extra-trees should only be used within ensemble methods. Read more in the :ref:`User Guide <tree>`. See also -------- ExtraTreeClassifier, ExtraTreesClassifier, ExtraTreesRegressor References ---------- .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees", Machine Learning, 63(1), 3-42, 2006. """ def __init__(self, criterion="mse", splitter="random", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features="auto", random_state=None, max_leaf_nodes=None): super(ExtraTreeRegressor, self).__init__( criterion=criterion, splitter=splitter, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_features=max_features, max_leaf_nodes=max_leaf_nodes, random_state=random_state)
bsd-3-clause
kjung/scikit-learn
examples/semi_supervised/plot_label_propagation_digits_active_learning.py
294
3417
""" ======================================== Label Propagation digits active learning ======================================== Demonstrates an active learning technique to learn handwritten digits using label propagation. We start by training a label propagation model with only 10 labeled points, then we select the top five most uncertain points to label. Next, we train with 15 labeled points (original 10 + 5 new ones). We repeat this process four times to have a model trained with 30 labeled examples. A plot will appear showing the top 5 most uncertain digits for each iteration of training. These may or may not contain mistakes, but we will train the next model with their true labels. """ print(__doc__) # Authors: Clay Woolam <clay@woolam.org> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import classification_report, confusion_matrix digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 10 unlabeled_indices = np.arange(n_total_samples)[n_labeled_points:] f = plt.figure() for i in range(5): y_train = np.copy(y) y_train[unlabeled_indices] = -1 lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_indices] true_labels = y[unlabeled_indices] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print('Iteration %i %s' % (i, 70 * '_')) print("Label Spreading model: %d labeled & %d unlabeled (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # compute the entropies of transduced label distributions pred_entropies = stats.distributions.entropy( lp_model.label_distributions_.T) # select five digit examples that the classifier is most uncertain about uncertainty_index = uncertainty_index = np.argsort(pred_entropies)[-5:] # keep track of indices that we get labels for delete_indices = np.array([]) f.text(.05, (1 - (i + 1) * .183), "model %d\n\nfit with\n%d labels" % ((i + 1), i * 5 + 10), size=10) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(5, 5, index + 1 + (5 * i)) sub.imshow(image, cmap=plt.cm.gray_r) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index]), size=10) sub.axis('off') # labeling 5 points, remote from labeled set delete_index, = np.where(unlabeled_indices == image_index) delete_indices = np.concatenate((delete_indices, delete_index)) unlabeled_indices = np.delete(unlabeled_indices, delete_indices) n_labeled_points += 5 f.suptitle("Active learning with Label Propagation.\nRows show 5 most " "uncertain labels to learn with the next model.") plt.subplots_adjust(0.12, 0.03, 0.9, 0.8, 0.2, 0.45) plt.show()
bsd-3-clause
zrhans/pythonanywhere
.virtualenvs/django19/lib/python3.4/site-packages/matplotlib/contour.py
3
69667
""" These are classes to support contour plotting and labelling for the axes class """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import xrange import warnings import matplotlib as mpl import numpy as np from numpy import ma import matplotlib._cntr as _cntr import matplotlib._contour as _contour import matplotlib.path as mpath import matplotlib.ticker as ticker import matplotlib.cm as cm import matplotlib.colors as colors import matplotlib.collections as mcoll import matplotlib.font_manager as font_manager import matplotlib.text as text import matplotlib.cbook as cbook import matplotlib.mlab as mlab import matplotlib.mathtext as mathtext import matplotlib.patches as mpatches import matplotlib.texmanager as texmanager import matplotlib.transforms as mtrans # Import needed for adding manual selection capability to clabel from matplotlib.blocking_input import BlockingContourLabeler # We can't use a single line collection for contour because a line # collection can have only a single line style, and we want to be able to have # dashed negative contours, for example, and solid positive contours. # We could use a single polygon collection for filled contours, but it # seems better to keep line and filled contours similar, with one collection # per level. class ClabelText(text.Text): """ Unlike the ordinary text, the get_rotation returns an updated angle in the pixel coordinate assuming that the input rotation is an angle in data coordinate (or whatever transform set). """ def get_rotation(self): angle = text.Text.get_rotation(self) trans = self.get_transform() x, y = self.get_position() new_angles = trans.transform_angles(np.array([angle]), np.array([[x, y]])) return new_angles[0] class ContourLabeler(object): """Mixin to provide labelling capability to ContourSet""" def clabel(self, *args, **kwargs): """ Label a contour plot. Call signature:: clabel(cs, **kwargs) Adds labels to line contours in *cs*, where *cs* is a :class:`~matplotlib.contour.ContourSet` object returned by contour. :: clabel(cs, v, **kwargs) only labels contours listed in *v*. Optional keyword arguments: *fontsize*: size in points or relative size e.g., 'smaller', 'x-large' *colors*: - if *None*, the color of each label matches the color of the corresponding contour - if one string color, e.g., *colors* = 'r' or *colors* = 'red', all labels will be plotted in this color - if a tuple of matplotlib color args (string, float, rgb, etc), different labels will be plotted in different colors in the order specified *inline*: controls whether the underlying contour is removed or not. Default is *True*. *inline_spacing*: space in pixels to leave on each side of label when placing inline. Defaults to 5. This spacing will be exact for labels at locations where the contour is straight, less so for labels on curved contours. *fmt*: a format string for the label. Default is '%1.3f' Alternatively, this can be a dictionary matching contour levels with arbitrary strings to use for each contour level (i.e., fmt[level]=string), or it can be any callable, such as a :class:`~matplotlib.ticker.Formatter` instance, that returns a string when called with a numeric contour level. *manual*: if *True*, contour labels will be placed manually using mouse clicks. Click the first button near a contour to add a label, click the second button (or potentially both mouse buttons at once) to finish adding labels. The third button can be used to remove the last label added, but only if labels are not inline. Alternatively, the keyboard can be used to select label locations (enter to end label placement, delete or backspace act like the third mouse button, and any other key will select a label location). *manual* can be an iterable object of x,y tuples. Contour labels will be created as if mouse is clicked at each x,y positions. *rightside_up*: if *True* (default), label rotations will always be plus or minus 90 degrees from level. *use_clabeltext*: if *True* (default is False), ClabelText class (instead of matplotlib.Text) is used to create labels. ClabelText recalculates rotation angles of texts during the drawing time, therefore this can be used if aspect of the axes changes. .. plot:: mpl_examples/pylab_examples/contour_demo.py """ """ NOTES on how this all works: clabel basically takes the input arguments and uses them to add a list of "label specific" attributes to the ContourSet object. These attributes are all of the form label* and names should be fairly self explanatory. Once these attributes are set, clabel passes control to the labels method (case of automatic label placement) or BlockingContourLabeler (case of manual label placement). """ fontsize = kwargs.get('fontsize', None) inline = kwargs.get('inline', 1) inline_spacing = kwargs.get('inline_spacing', 5) self.labelFmt = kwargs.get('fmt', '%1.3f') _colors = kwargs.get('colors', None) self._use_clabeltext = kwargs.get('use_clabeltext', False) # Detect if manual selection is desired and remove from argument list self.labelManual = kwargs.get('manual', False) self.rightside_up = kwargs.get('rightside_up', True) if len(args) == 0: levels = self.levels indices = list(xrange(len(self.cvalues))) elif len(args) == 1: levlabs = list(args[0]) indices, levels = [], [] for i, lev in enumerate(self.levels): if lev in levlabs: indices.append(i) levels.append(lev) if len(levels) < len(levlabs): msg = "Specified levels " + str(levlabs) msg += "\n don't match available levels " msg += str(self.levels) raise ValueError(msg) else: raise TypeError("Illegal arguments to clabel, see help(clabel)") self.labelLevelList = levels self.labelIndiceList = indices self.labelFontProps = font_manager.FontProperties() self.labelFontProps.set_size(fontsize) font_size_pts = self.labelFontProps.get_size_in_points() self.labelFontSizeList = [font_size_pts] * len(levels) if _colors is None: self.labelMappable = self self.labelCValueList = np.take(self.cvalues, self.labelIndiceList) else: cmap = colors.ListedColormap(_colors, N=len(self.labelLevelList)) self.labelCValueList = list(xrange(len(self.labelLevelList))) self.labelMappable = cm.ScalarMappable(cmap=cmap, norm=colors.NoNorm()) self.labelXYs = [] if cbook.iterable(self.labelManual): for x, y in self.labelManual: self.add_label_near(x, y, inline, inline_spacing) elif self.labelManual: print('Select label locations manually using first mouse button.') print('End manual selection with second mouse button.') if not inline: print('Remove last label by clicking third mouse button.') blocking_contour_labeler = BlockingContourLabeler(self) blocking_contour_labeler(inline, inline_spacing) else: self.labels(inline, inline_spacing) # Hold on to some old attribute names. These are deprecated and will # be removed in the near future (sometime after 2008-08-01), but # keeping for now for backwards compatibility self.cl = self.labelTexts self.cl_xy = self.labelXYs self.cl_cvalues = self.labelCValues self.labelTextsList = cbook.silent_list('text.Text', self.labelTexts) return self.labelTextsList def print_label(self, linecontour, labelwidth): "Return *False* if contours are too short for a label." lcsize = len(linecontour) if lcsize > 10 * labelwidth: return True xmax = np.amax(linecontour[:, 0]) xmin = np.amin(linecontour[:, 0]) ymax = np.amax(linecontour[:, 1]) ymin = np.amin(linecontour[:, 1]) lw = labelwidth if (xmax - xmin) > 1.2 * lw or (ymax - ymin) > 1.2 * lw: return True else: return False def too_close(self, x, y, lw): "Return *True* if a label is already near this location." for loc in self.labelXYs: d = np.sqrt((x - loc[0]) ** 2 + (y - loc[1]) ** 2) if d < 1.2 * lw: return True return False def get_label_coords(self, distances, XX, YY, ysize, lw): """ Return x, y, and the index of a label location. Labels are plotted at a location with the smallest deviation of the contour from a straight line unless there is another label nearby, in which case the next best place on the contour is picked up. If all such candidates are rejected, the beginning of the contour is chosen. """ hysize = int(ysize / 2) adist = np.argsort(distances) for ind in adist: x, y = XX[ind][hysize], YY[ind][hysize] if self.too_close(x, y, lw): continue return x, y, ind ind = adist[0] x, y = XX[ind][hysize], YY[ind][hysize] return x, y, ind def get_label_width(self, lev, fmt, fsize): """ Return the width of the label in points. """ if not cbook.is_string_like(lev): lev = self.get_text(lev, fmt) lev, ismath = text.Text.is_math_text(lev) if ismath == 'TeX': if not hasattr(self, '_TeX_manager'): self._TeX_manager = texmanager.TexManager() lw, _, _ = self._TeX_manager.get_text_width_height_descent(lev, fsize) elif ismath: if not hasattr(self, '_mathtext_parser'): self._mathtext_parser = mathtext.MathTextParser('bitmap') img, _ = self._mathtext_parser.parse(lev, dpi=72, prop=self.labelFontProps) lw = img.get_width() # at dpi=72, the units are PostScript points else: # width is much less than "font size" lw = (len(lev)) * fsize * 0.6 return lw def get_real_label_width(self, lev, fmt, fsize): """ This computes actual onscreen label width. This uses some black magic to determine onscreen extent of non-drawn label. This magic may not be very robust. This method is not being used, and may be modified or removed. """ # Find middle of axes xx = np.mean(np.asarray(self.ax.axis()).reshape(2, 2), axis=1) # Temporarily create text object t = text.Text(xx[0], xx[1]) self.set_label_props(t, self.get_text(lev, fmt), 'k') # Some black magic to get onscreen extent # NOTE: This will only work for already drawn figures, as the canvas # does not have a renderer otherwise. This is the reason this function # can't be integrated into the rest of the code. bbox = t.get_window_extent(renderer=self.ax.figure.canvas.renderer) # difference in pixel extent of image lw = np.diff(bbox.corners()[0::2, 0])[0] return lw def set_label_props(self, label, text, color): "set the label properties - color, fontsize, text" label.set_text(text) label.set_color(color) label.set_fontproperties(self.labelFontProps) label.set_clip_box(self.ax.bbox) def get_text(self, lev, fmt): "get the text of the label" if cbook.is_string_like(lev): return lev else: if isinstance(fmt, dict): return fmt[lev] elif six.callable(fmt): return fmt(lev) else: return fmt % lev def locate_label(self, linecontour, labelwidth): """ Find a good place to plot a label (relatively flat part of the contour). """ nsize = len(linecontour) if labelwidth > 1: xsize = int(np.ceil(nsize / labelwidth)) else: xsize = 1 if xsize == 1: ysize = nsize else: ysize = int(labelwidth) XX = np.resize(linecontour[:, 0], (xsize, ysize)) YY = np.resize(linecontour[:, 1], (xsize, ysize)) # I might have fouled up the following: yfirst = YY[:, 0].reshape(xsize, 1) ylast = YY[:, -1].reshape(xsize, 1) xfirst = XX[:, 0].reshape(xsize, 1) xlast = XX[:, -1].reshape(xsize, 1) s = (yfirst - YY) * (xlast - xfirst) - (xfirst - XX) * (ylast - yfirst) L = np.sqrt((xlast - xfirst) ** 2 + (ylast - yfirst) ** 2).ravel() dist = np.add.reduce(([(abs(s)[i] / L[i]) for i in range(xsize)]), -1) x, y, ind = self.get_label_coords(dist, XX, YY, ysize, labelwidth) # There must be a more efficient way... lc = [tuple(l) for l in linecontour] dind = lc.index((x, y)) return x, y, dind def calc_label_rot_and_inline(self, slc, ind, lw, lc=None, spacing=5): """ This function calculates the appropriate label rotation given the linecontour coordinates in screen units, the index of the label location and the label width. It will also break contour and calculate inlining if *lc* is not empty (lc defaults to the empty list if None). *spacing* is the space around the label in pixels to leave empty. Do both of these tasks at once to avoid calling mlab.path_length multiple times, which is relatively costly. The method used here involves calculating the path length along the contour in pixel coordinates and then looking approximately label width / 2 away from central point to determine rotation and then to break contour if desired. """ if lc is None: lc = [] # Half the label width hlw = lw / 2.0 # Check if closed and, if so, rotate contour so label is at edge closed = mlab.is_closed_polygon(slc) if closed: slc = np.r_[slc[ind:-1], slc[:ind + 1]] if len(lc): # Rotate lc also if not empty lc = np.r_[lc[ind:-1], lc[:ind + 1]] ind = 0 # Path length in pixel space pl = mlab.path_length(slc) pl = pl - pl[ind] # Use linear interpolation to get points around label xi = np.array([-hlw, hlw]) if closed: # Look at end also for closed contours dp = np.array([pl[-1], 0]) else: dp = np.zeros_like(xi) ll = mlab.less_simple_linear_interpolation(pl, slc, dp + xi, extrap=True) # get vector in pixel space coordinates from one point to other dd = np.diff(ll, axis=0).ravel() # Get angle of vector - must be calculated in pixel space for # text rotation to work correctly if np.all(dd == 0): # Must deal with case of zero length label rotation = 0.0 else: rotation = np.arctan2(dd[1], dd[0]) * 180.0 / np.pi if self.rightside_up: # Fix angle so text is never upside-down if rotation > 90: rotation = rotation - 180.0 if rotation < -90: rotation = 180.0 + rotation # Break contour if desired nlc = [] if len(lc): # Expand range by spacing xi = dp + xi + np.array([-spacing, spacing]) # Get indices near points of interest I = mlab.less_simple_linear_interpolation( pl, np.arange(len(pl)), xi, extrap=False) # If those indices aren't beyond contour edge, find x,y if (not np.isnan(I[0])) and int(I[0]) != I[0]: xy1 = mlab.less_simple_linear_interpolation( pl, lc, [xi[0]]) if (not np.isnan(I[1])) and int(I[1]) != I[1]: xy2 = mlab.less_simple_linear_interpolation( pl, lc, [xi[1]]) # Round to integer values but keep as float # To allow check against nan below I = [np.floor(I[0]), np.ceil(I[1])] # Actually break contours if closed: # This will remove contour if shorter than label if np.all(~np.isnan(I)): nlc.append(np.r_[xy2, lc[int(I[1]):int(I[0]) + 1], xy1]) else: # These will remove pieces of contour if they have length zero if not np.isnan(I[0]): nlc.append(np.r_[lc[:int(I[0]) + 1], xy1]) if not np.isnan(I[1]): nlc.append(np.r_[xy2, lc[int(I[1]):]]) # The current implementation removes contours completely # covered by labels. Uncomment line below to keep # original contour if this is the preferred behavior. # if not len(nlc): nlc = [ lc ] return rotation, nlc def _get_label_text(self, x, y, rotation): dx, dy = self.ax.transData.inverted().transform_point((x, y)) t = text.Text(dx, dy, rotation=rotation, horizontalalignment='center', verticalalignment='center') return t def _get_label_clabeltext(self, x, y, rotation): # x, y, rotation is given in pixel coordinate. Convert them to # the data coordinate and create a label using ClabelText # class. This way, the roation of the clabel is along the # contour line always. transDataInv = self.ax.transData.inverted() dx, dy = transDataInv.transform_point((x, y)) drotation = transDataInv.transform_angles(np.array([rotation]), np.array([[x, y]])) t = ClabelText(dx, dy, rotation=drotation[0], horizontalalignment='center', verticalalignment='center') return t def _add_label(self, t, x, y, lev, cvalue): color = self.labelMappable.to_rgba(cvalue, alpha=self.alpha) _text = self.get_text(lev, self.labelFmt) self.set_label_props(t, _text, color) self.labelTexts.append(t) self.labelCValues.append(cvalue) self.labelXYs.append((x, y)) # Add label to plot here - useful for manual mode label selection self.ax.add_artist(t) def add_label(self, x, y, rotation, lev, cvalue): """ Add contour label using :class:`~matplotlib.text.Text` class. """ t = self._get_label_text(x, y, rotation) self._add_label(t, x, y, lev, cvalue) def add_label_clabeltext(self, x, y, rotation, lev, cvalue): """ Add contour label using :class:`ClabelText` class. """ # x, y, rotation is given in pixel coordinate. Convert them to # the data coordinate and create a label using ClabelText # class. This way, the roation of the clabel is along the # contour line always. t = self._get_label_clabeltext(x, y, rotation) self._add_label(t, x, y, lev, cvalue) def add_label_near(self, x, y, inline=True, inline_spacing=5, transform=None): """ Add a label near the point (x, y). If transform is None (default), (x, y) is in data coordinates; if transform is False, (x, y) is in display coordinates; otherwise, the specified transform will be used to translate (x, y) into display coordinates. *inline*: controls whether the underlying contour is removed or not. Default is *True*. *inline_spacing*: space in pixels to leave on each side of label when placing inline. Defaults to 5. This spacing will be exact for labels at locations where the contour is straight, less so for labels on curved contours. """ if transform is None: transform = self.ax.transData if transform: x, y = transform.transform_point((x, y)) # find the nearest contour _in screen units_ conmin, segmin, imin, xmin, ymin = self.find_nearest_contour( x, y, self.labelIndiceList)[:5] # The calc_label_rot_and_inline routine requires that (xmin,ymin) # be a vertex in the path. So, if it isn't, add a vertex here # grab the paths from the collections paths = self.collections[conmin].get_paths() # grab the correct segment active_path = paths[segmin] # grab it's verticies lc = active_path.vertices # sort out where the new vertex should be added data-units xcmin = self.ax.transData.inverted().transform_point([xmin, ymin]) # if there isn't a vertex close enough if not np.allclose(xcmin, lc[imin]): # insert new data into the vertex list lc = np.r_[lc[:imin], np.array(xcmin)[None, :], lc[imin:]] # replace the path with the new one paths[segmin] = mpath.Path(lc) # Get index of nearest level in subset of levels used for labeling lmin = self.labelIndiceList.index(conmin) # Coordinates of contour paths = self.collections[conmin].get_paths() lc = paths[segmin].vertices # In pixel/screen space slc = self.ax.transData.transform(lc) # Get label width for rotating labels and breaking contours lw = self.get_label_width(self.labelLevelList[lmin], self.labelFmt, self.labelFontSizeList[lmin]) # Figure out label rotation. if inline: lcarg = lc else: lcarg = None rotation, nlc = self.calc_label_rot_and_inline( slc, imin, lw, lcarg, inline_spacing) self.add_label(xmin, ymin, rotation, self.labelLevelList[lmin], self.labelCValueList[lmin]) if inline: # Remove old, not looping over paths so we can do this up front paths.pop(segmin) # Add paths if not empty or single point for n in nlc: if len(n) > 1: paths.append(mpath.Path(n)) def pop_label(self, index=-1): """Defaults to removing last label, but any index can be supplied""" self.labelCValues.pop(index) t = self.labelTexts.pop(index) t.remove() def labels(self, inline, inline_spacing): if self._use_clabeltext: add_label = self.add_label_clabeltext else: add_label = self.add_label for icon, lev, fsize, cvalue in zip( self.labelIndiceList, self.labelLevelList, self.labelFontSizeList, self.labelCValueList): con = self.collections[icon] trans = con.get_transform() lw = self.get_label_width(lev, self.labelFmt, fsize) lw *= self.ax.figure.dpi / 72.0 # scale to screen coordinates additions = [] paths = con.get_paths() for segNum, linepath in enumerate(paths): lc = linepath.vertices # Line contour slc0 = trans.transform(lc) # Line contour in screen coords # For closed polygons, add extra point to avoid division by # zero in print_label and locate_label. Other than these # functions, this is not necessary and should probably be # eventually removed. if mlab.is_closed_polygon(lc): slc = np.r_[slc0, slc0[1:2, :]] else: slc = slc0 # Check if long enough for a label if self.print_label(slc, lw): x, y, ind = self.locate_label(slc, lw) if inline: lcarg = lc else: lcarg = None rotation, new = self.calc_label_rot_and_inline( slc0, ind, lw, lcarg, inline_spacing) # Actually add the label add_label(x, y, rotation, lev, cvalue) # If inline, add new contours if inline: for n in new: # Add path if not empty or single point if len(n) > 1: additions.append(mpath.Path(n)) else: # If not adding label, keep old path additions.append(linepath) # After looping over all segments on a contour, remove old # paths and add new ones if inlining if inline: del paths[:] paths.extend(additions) def _find_closest_point_on_leg(p1, p2, p0): """find closest point to p0 on line segment connecting p1 and p2""" # handle degenerate case if np.all(p2 == p1): d = np.sum((p0 - p1)**2) return d, p1 d21 = p2 - p1 d01 = p0 - p1 # project on to line segment to find closest point proj = np.dot(d01, d21) / np.dot(d21, d21) if proj < 0: proj = 0 if proj > 1: proj = 1 pc = p1 + proj * d21 # find squared distance d = np.sum((pc-p0)**2) return d, pc def _find_closest_point_on_path(lc, point): """ lc: coordinates of vertices point: coordinates of test point """ # find index of closest vertex for this segment ds = np.sum((lc - point[None, :])**2, 1) imin = np.argmin(ds) dmin = np.inf xcmin = None legmin = (None, None) closed = mlab.is_closed_polygon(lc) # build list of legs before and after this vertex legs = [] if imin > 0 or closed: legs.append(((imin-1) % len(lc), imin)) if imin < len(lc) - 1 or closed: legs.append((imin, (imin+1) % len(lc))) for leg in legs: d, xc = _find_closest_point_on_leg(lc[leg[0]], lc[leg[1]], point) if d < dmin: dmin = d xcmin = xc legmin = leg return (dmin, xcmin, legmin) class ContourSet(cm.ScalarMappable, ContourLabeler): """ Store a set of contour lines or filled regions. User-callable method: clabel Useful attributes: ax: The axes object in which the contours are drawn collections: a silent_list of LineCollections or PolyCollections levels: contour levels layers: same as levels for line contours; half-way between levels for filled contours. See :meth:`_process_colors`. """ def __init__(self, ax, *args, **kwargs): """ Draw contour lines or filled regions, depending on whether keyword arg 'filled' is *False* (default) or *True*. The first three arguments must be: *ax*: axes object. *levels*: [level0, level1, ..., leveln] A list of floating point numbers indicating the contour levels. *allsegs*: [level0segs, level1segs, ...] List of all the polygon segments for all the *levels*. For contour lines ``len(allsegs) == len(levels)``, and for filled contour regions ``len(allsegs) = len(levels)-1``. level0segs = [polygon0, polygon1, ...] polygon0 = array_like [[x0,y0], [x1,y1], ...] *allkinds*: *None* or [level0kinds, level1kinds, ...] Optional list of all the polygon vertex kinds (code types), as described and used in Path. This is used to allow multiply- connected paths such as holes within filled polygons. If not *None*, len(allkinds) == len(allsegs). level0kinds = [polygon0kinds, ...] polygon0kinds = [vertexcode0, vertexcode1, ...] If *allkinds* is not *None*, usually all polygons for a particular contour level are grouped together so that level0segs = [polygon0] and level0kinds = [polygon0kinds]. Keyword arguments are as described in :class:`~matplotlib.contour.QuadContourSet` object. **Examples:** .. plot:: mpl_examples/misc/contour_manual.py """ self.ax = ax self.levels = kwargs.get('levels', None) self.filled = kwargs.get('filled', False) self.linewidths = kwargs.get('linewidths', None) self.linestyles = kwargs.get('linestyles', None) self.hatches = kwargs.get('hatches', [None]) self.alpha = kwargs.get('alpha', None) self.origin = kwargs.get('origin', None) self.extent = kwargs.get('extent', None) cmap = kwargs.get('cmap', None) self.colors = kwargs.get('colors', None) norm = kwargs.get('norm', None) vmin = kwargs.get('vmin', None) vmax = kwargs.get('vmax', None) self.extend = kwargs.get('extend', 'neither') self.antialiased = kwargs.get('antialiased', None) if self.antialiased is None and self.filled: self.antialiased = False # eliminate artifacts; we are not # stroking the boundaries. # The default for line contours will be taken from # the LineCollection default, which uses the # rcParams['lines.antialiased'] self.nchunk = kwargs.get('nchunk', 0) self.locator = kwargs.get('locator', None) if (isinstance(norm, colors.LogNorm) or isinstance(self.locator, ticker.LogLocator)): self.logscale = True if norm is None: norm = colors.LogNorm() if self.extend is not 'neither': raise ValueError('extend kwarg does not work yet with log ' ' scale') else: self.logscale = False if self.origin not in [None, 'lower', 'upper', 'image']: raise ValueError("If given, *origin* must be one of [ 'lower' |" " 'upper' | 'image']") if self.extent is not None and len(self.extent) != 4: raise ValueError("If given, *extent* must be '[ *None* |" " (x0,x1,y0,y1) ]'") if self.colors is not None and cmap is not None: raise ValueError('Either colors or cmap must be None') if self.origin == 'image': self.origin = mpl.rcParams['image.origin'] self._transform = kwargs.get('transform', None) self._process_args(*args, **kwargs) self._process_levels() if self.colors is not None: ncolors = len(self.levels) if self.filled: ncolors -= 1 i0 = 0 # Handle the case where colors are given for the extended # parts of the contour. extend_min = self.extend in ['min', 'both'] extend_max = self.extend in ['max', 'both'] use_set_under_over = False # if we are extending the lower end, and we've been given enough # colors then skip the first color in the resulting cmap. For the # extend_max case we don't need to worry about passing more colors # than ncolors as ListedColormap will clip. total_levels = ncolors + int(extend_min) + int(extend_max) if (len(self.colors) == total_levels and any([extend_min, extend_max])): use_set_under_over = True if extend_min: i0 = 1 cmap = colors.ListedColormap(self.colors[i0:None], N=ncolors) if use_set_under_over: if extend_min: cmap.set_under(self.colors[0]) if extend_max: cmap.set_over(self.colors[-1]) if self.filled: self.collections = cbook.silent_list('mcoll.PathCollection') else: self.collections = cbook.silent_list('mcoll.LineCollection') # label lists must be initialized here self.labelTexts = [] self.labelCValues = [] kw = {'cmap': cmap} if norm is not None: kw['norm'] = norm # sets self.cmap, norm if needed; cm.ScalarMappable.__init__(self, **kw) if vmin is not None: self.norm.vmin = vmin if vmax is not None: self.norm.vmax = vmax self._process_colors() self.allsegs, self.allkinds = self._get_allsegs_and_allkinds() if self.filled: if self.linewidths is not None: warnings.warn('linewidths is ignored by contourf') # Lower and upper contour levels. lowers, uppers = self._get_lowers_and_uppers() # Ensure allkinds can be zipped below. if self.allkinds is None: self.allkinds = [None] * len(self.allsegs) for level, level_upper, segs, kinds in \ zip(lowers, uppers, self.allsegs, self.allkinds): paths = self._make_paths(segs, kinds) # Default zorder taken from Collection zorder = kwargs.get('zorder', 1) col = mcoll.PathCollection( paths, antialiaseds=(self.antialiased,), edgecolors='none', alpha=self.alpha, transform=self.get_transform(), zorder=zorder) self.ax.add_collection(col, autolim=False) self.collections.append(col) else: tlinewidths = self._process_linewidths() self.tlinewidths = tlinewidths tlinestyles = self._process_linestyles() aa = self.antialiased if aa is not None: aa = (self.antialiased,) for level, width, lstyle, segs in \ zip(self.levels, tlinewidths, tlinestyles, self.allsegs): # Default zorder taken from LineCollection zorder = kwargs.get('zorder', 2) col = mcoll.LineCollection( segs, antialiaseds=aa, linewidths=width, linestyles=[lstyle], alpha=self.alpha, transform=self.get_transform(), zorder=zorder) col.set_label('_nolegend_') self.ax.add_collection(col, autolim=False) self.collections.append(col) self.changed() # set the colors def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` instance used by this ContourSet. """ if self._transform is None: self._transform = self.ax.transData elif (not isinstance(self._transform, mtrans.Transform) and hasattr(self._transform, '_as_mpl_transform')): self._transform = self._transform._as_mpl_transform(self.ax) return self._transform def __getstate__(self): state = self.__dict__.copy() # the C object _contour_generator cannot currently be pickled. This # isn't a big issue as it is not actually used once the contour has # been calculated. state['_contour_generator'] = None return state def legend_elements(self, variable_name='x', str_format=str): """ Return a list of artist and labels suitable for passing through to :func:`plt.legend` which represent this ContourSet. Args: *variable_name*: the string used inside the inequality used on the labels *str_format*: function used to format the numbers in the labels """ artists = [] labels = [] if self.filled: lowers, uppers = self._get_lowers_and_uppers() n_levels = len(self.collections) for i, (collection, lower, upper) in enumerate( zip(self.collections, lowers, uppers)): patch = mpatches.Rectangle( (0, 0), 1, 1, facecolor=collection.get_facecolor()[0], hatch=collection.get_hatch(), alpha=collection.get_alpha()) artists.append(patch) lower = str_format(lower) upper = str_format(upper) if i == 0 and self.extend in ('min', 'both'): labels.append(r'$%s \leq %s$' % (variable_name, lower)) elif i == n_levels - 1 and self.extend in ('max', 'both'): labels.append(r'$%s > %s$' % (variable_name, upper)) else: labels.append(r'$%s < %s \leq %s$' % (lower, variable_name, upper)) else: for collection, level in zip(self.collections, self.levels): patch = mcoll.LineCollection(None) patch.update_from(collection) artists.append(patch) # format the level for insertion into the labels level = str_format(level) labels.append(r'$%s = %s$' % (variable_name, level)) return artists, labels def _process_args(self, *args, **kwargs): """ Process *args* and *kwargs*; override in derived classes. Must set self.levels, self.zmin and self.zmax, and update axes limits. """ self.levels = args[0] self.allsegs = args[1] self.allkinds = len(args) > 2 and args[2] or None self.zmax = np.amax(self.levels) self.zmin = np.amin(self.levels) self._auto = False # Check lengths of levels and allsegs. if self.filled: if len(self.allsegs) != len(self.levels) - 1: raise ValueError('must be one less number of segments as ' 'levels') else: if len(self.allsegs) != len(self.levels): raise ValueError('must be same number of segments as levels') # Check length of allkinds. if (self.allkinds is not None and len(self.allkinds) != len(self.allsegs)): raise ValueError('allkinds has different length to allsegs') # Determine x,y bounds and update axes data limits. havelimits = False for segs in self.allsegs: for seg in segs: seg = np.asarray(seg) if havelimits: min = np.minimum(min, seg.min(axis=0)) max = np.maximum(max, seg.max(axis=0)) else: min = seg.min(axis=0) max = seg.max(axis=0) havelimits = True if havelimits: self.ax.update_datalim([min, max]) self.ax.autoscale_view(tight=True) def _get_allsegs_and_allkinds(self): """ Override in derived classes to create and return allsegs and allkinds. allkinds can be None. """ return self.allsegs, self.allkinds def _get_lowers_and_uppers(self): """ Return (lowers,uppers) for filled contours. """ lowers = self._levels[:-1] if self.zmin == lowers[0]: # Include minimum values in lowest interval lowers = lowers.copy() # so we don't change self._levels if self.logscale: lowers[0] = 0.99 * self.zmin else: lowers[0] -= 1 uppers = self._levels[1:] return (lowers, uppers) def _make_paths(self, segs, kinds): if kinds is not None: return [mpath.Path(seg, codes=kind) for seg, kind in zip(segs, kinds)] else: return [mpath.Path(seg) for seg in segs] def changed(self): tcolors = [(tuple(rgba),) for rgba in self.to_rgba(self.cvalues, alpha=self.alpha)] self.tcolors = tcolors hatches = self.hatches * len(tcolors) for color, hatch, collection in zip(tcolors, hatches, self.collections): if self.filled: collection.set_facecolor(color) # update the collection's hatch (may be None) collection.set_hatch(hatch) else: collection.set_color(color) for label, cv in zip(self.labelTexts, self.labelCValues): label.set_alpha(self.alpha) label.set_color(self.labelMappable.to_rgba(cv)) # add label colors cm.ScalarMappable.changed(self) def _autolev(self, z, N): """ Select contour levels to span the data. We need two more levels for filled contours than for line contours, because for the latter we need to specify the lower and upper boundary of each range. For example, a single contour boundary, say at z = 0, requires only one contour line, but two filled regions, and therefore three levels to provide boundaries for both regions. """ if self.locator is None: if self.logscale: self.locator = ticker.LogLocator() else: self.locator = ticker.MaxNLocator(N + 1) zmax = self.zmax zmin = self.zmin lev = self.locator.tick_values(zmin, zmax) self._auto = True if self.filled: return lev # For line contours, drop levels outside the data range. return lev[(lev > zmin) & (lev < zmax)] def _contour_level_args(self, z, args): """ Determine the contour levels and store in self.levels. """ if self.filled: fn = 'contourf' else: fn = 'contour' self._auto = False if self.levels is None: if len(args) == 0: lev = self._autolev(z, 7) else: level_arg = args[0] try: if type(level_arg) == int: lev = self._autolev(z, level_arg) else: lev = np.asarray(level_arg).astype(np.float64) except: raise TypeError( "Last %s arg must give levels; see help(%s)" % (fn, fn)) self.levels = lev if self.filled and len(self.levels) < 2: raise ValueError("Filled contours require at least 2 levels.") if len(self.levels) > 1 and np.amin(np.diff(self.levels)) <= 0.0: if hasattr(self, '_corner_mask') and self._corner_mask == 'legacy': warnings.warn("Contour levels are not increasing") else: raise ValueError("Contour levels must be increasing") def _process_levels(self): """ Assign values to :attr:`layers` based on :attr:`levels`, adding extended layers as needed if contours are filled. For line contours, layers simply coincide with levels; a line is a thin layer. No extended levels are needed with line contours. """ # The following attributes are no longer needed, and # should be deprecated and removed to reduce confusion. self.vmin = np.amin(self.levels) self.vmax = np.amax(self.levels) # Make a private _levels to include extended regions; we # want to leave the original levels attribute unchanged. # (Colorbar needs this even for line contours.) self._levels = list(self.levels) if self.extend in ('both', 'min'): self._levels.insert(0, min(self.levels[0], self.zmin) - 1) if self.extend in ('both', 'max'): self._levels.append(max(self.levels[-1], self.zmax) + 1) self._levels = np.asarray(self._levels) if not self.filled: self.layers = self.levels return # layer values are mid-way between levels self.layers = 0.5 * (self._levels[:-1] + self._levels[1:]) # ...except that extended layers must be outside the # normed range: if self.extend in ('both', 'min'): self.layers[0] = -np.inf if self.extend in ('both', 'max'): self.layers[-1] = np.inf def _process_colors(self): """ Color argument processing for contouring. Note that we base the color mapping on the contour levels and layers, not on the actual range of the Z values. This means we don't have to worry about bad values in Z, and we always have the full dynamic range available for the selected levels. The color is based on the midpoint of the layer, except for extended end layers. By default, the norm vmin and vmax are the extreme values of the non-extended levels. Hence, the layer color extremes are not the extreme values of the colormap itself, but approach those values as the number of levels increases. An advantage of this scheme is that line contours, when added to filled contours, take on colors that are consistent with those of the filled regions; for example, a contour line on the boundary between two regions will have a color intermediate between those of the regions. """ self.monochrome = self.cmap.monochrome if self.colors is not None: # Generate integers for direct indexing. i0, i1 = 0, len(self.levels) if self.filled: i1 -= 1 # Out of range indices for over and under: if self.extend in ('both', 'min'): i0 = -1 if self.extend in ('both', 'max'): i1 += 1 self.cvalues = list(range(i0, i1)) self.set_norm(colors.NoNorm()) else: self.cvalues = self.layers self.set_array(self.levels) self.autoscale_None() if self.extend in ('both', 'max', 'min'): self.norm.clip = False # self.tcolors are set by the "changed" method def _process_linewidths(self): linewidths = self.linewidths Nlev = len(self.levels) if linewidths is None: tlinewidths = [(mpl.rcParams['lines.linewidth'],)] * Nlev else: if not cbook.iterable(linewidths): linewidths = [linewidths] * Nlev else: linewidths = list(linewidths) if len(linewidths) < Nlev: nreps = int(np.ceil(Nlev / len(linewidths))) linewidths = linewidths * nreps if len(linewidths) > Nlev: linewidths = linewidths[:Nlev] tlinewidths = [(w,) for w in linewidths] return tlinewidths def _process_linestyles(self): linestyles = self.linestyles Nlev = len(self.levels) if linestyles is None: tlinestyles = ['solid'] * Nlev if self.monochrome: neg_ls = mpl.rcParams['contour.negative_linestyle'] eps = - (self.zmax - self.zmin) * 1e-15 for i, lev in enumerate(self.levels): if lev < eps: tlinestyles[i] = neg_ls else: if cbook.is_string_like(linestyles): tlinestyles = [linestyles] * Nlev elif cbook.iterable(linestyles): tlinestyles = list(linestyles) if len(tlinestyles) < Nlev: nreps = int(np.ceil(Nlev / len(linestyles))) tlinestyles = tlinestyles * nreps if len(tlinestyles) > Nlev: tlinestyles = tlinestyles[:Nlev] else: raise ValueError("Unrecognized type for linestyles kwarg") return tlinestyles def get_alpha(self): """returns alpha to be applied to all ContourSet artists""" return self.alpha def set_alpha(self, alpha): """sets alpha for all ContourSet artists""" self.alpha = alpha self.changed() def find_nearest_contour(self, x, y, indices=None, pixel=True): """ Finds contour that is closest to a point. Defaults to measuring distance in pixels (screen space - useful for manual contour labeling), but this can be controlled via a keyword argument. Returns a tuple containing the contour, segment, index of segment, x & y of segment point and distance to minimum point. Call signature:: conmin,segmin,imin,xmin,ymin,dmin = find_nearest_contour( self, x, y, indices=None, pixel=True ) Optional keyword arguments: *indices*: Indexes of contour levels to consider when looking for nearest point. Defaults to using all levels. *pixel*: If *True*, measure distance in pixel space, if not, measure distance in axes space. Defaults to *True*. """ # This function uses a method that is probably quite # inefficient based on converting each contour segment to # pixel coordinates and then comparing the given point to # those coordinates for each contour. This will probably be # quite slow for complex contours, but for normal use it works # sufficiently well that the time is not noticeable. # Nonetheless, improvements could probably be made. if indices is None: indices = list(xrange(len(self.levels))) dmin = np.inf conmin = None segmin = None xmin = None ymin = None point = np.array([x, y]) for icon in indices: con = self.collections[icon] trans = con.get_transform() paths = con.get_paths() for segNum, linepath in enumerate(paths): lc = linepath.vertices # transfer all data points to screen coordinates if desired if pixel: lc = trans.transform(lc) d, xc, leg = _find_closest_point_on_path(lc, point) if d < dmin: dmin = d conmin = icon segmin = segNum imin = leg[1] xmin = xc[0] ymin = xc[1] return (conmin, segmin, imin, xmin, ymin, dmin) class QuadContourSet(ContourSet): """ Create and store a set of contour lines or filled regions. User-callable method: :meth:`clabel` Useful attributes: ax: The axes object in which the contours are drawn collections: A silent_list of LineCollections or PolyCollections levels: Contour levels layers: Same as levels for line contours; half-way between levels for filled contours. See :meth:`_process_colors` method. """ def __init__(self, ax, *args, **kwargs): """ Calculate and draw contour lines or filled regions, depending on whether keyword arg 'filled' is False (default) or True. The first argument of the initializer must be an axes object. The remaining arguments and keyword arguments are described in QuadContourSet.contour_doc. """ ContourSet.__init__(self, ax, *args, **kwargs) def _process_args(self, *args, **kwargs): """ Process args and kwargs. """ if isinstance(args[0], QuadContourSet): if self.levels is None: self.levels = args[0].levels self.zmin = args[0].zmin self.zmax = args[0].zmax self._corner_mask = args[0]._corner_mask if self._corner_mask == 'legacy': contour_generator = args[0].Cntr else: contour_generator = args[0]._contour_generator else: self._corner_mask = kwargs.get('corner_mask', None) if self._corner_mask is None: self._corner_mask = mpl.rcParams['contour.corner_mask'] x, y, z = self._contour_args(args, kwargs) _mask = ma.getmask(z) if _mask is ma.nomask or not _mask.any(): _mask = None if self._corner_mask == 'legacy': cbook.warn_deprecated('1.5', name="corner_mask='legacy'", alternative='corner_mask=False or True') contour_generator = _cntr.Cntr(x, y, z.filled(), _mask) else: contour_generator = _contour.QuadContourGenerator( x, y, z.filled(), _mask, self._corner_mask, self.nchunk) t = self.get_transform() # if the transform is not trans data, and some part of it # contains transData, transform the xs and ys to data coordinates if (t != self.ax.transData and any(t.contains_branch_seperately(self.ax.transData))): trans_to_data = t - self.ax.transData pts = (np.vstack([x.flat, y.flat]).T) transformed_pts = trans_to_data.transform(pts) x = transformed_pts[..., 0] y = transformed_pts[..., 1] x0 = ma.minimum(x) x1 = ma.maximum(x) y0 = ma.minimum(y) y1 = ma.maximum(y) self.ax.update_datalim([(x0, y0), (x1, y1)]) self.ax.autoscale_view(tight=True) if self._corner_mask == 'legacy': self.Cntr = contour_generator else: self._contour_generator = contour_generator def _get_allsegs_and_allkinds(self): """ Create and return allsegs and allkinds by calling underlying C code. """ allsegs = [] if self.filled: lowers, uppers = self._get_lowers_and_uppers() allkinds = [] for level, level_upper in zip(lowers, uppers): if self._corner_mask == 'legacy': nlist = self.Cntr.trace(level, level_upper, nchunk=self.nchunk) nseg = len(nlist) // 2 vertices = nlist[:nseg] kinds = nlist[nseg:] else: vertices, kinds = \ self._contour_generator.create_filled_contour( level, level_upper) allsegs.append(vertices) allkinds.append(kinds) else: allkinds = None for level in self.levels: if self._corner_mask == 'legacy': nlist = self.Cntr.trace(level) nseg = len(nlist) // 2 vertices = nlist[:nseg] else: vertices = self._contour_generator.create_contour(level) allsegs.append(vertices) return allsegs, allkinds def _contour_args(self, args, kwargs): if self.filled: fn = 'contourf' else: fn = 'contour' Nargs = len(args) if Nargs <= 2: z = ma.asarray(args[0], dtype=np.float64) x, y = self._initialize_x_y(z) args = args[1:] elif Nargs <= 4: x, y, z = self._check_xyz(args[:3], kwargs) args = args[3:] else: raise TypeError("Too many arguments to %s; see help(%s)" % (fn, fn)) z = ma.masked_invalid(z, copy=False) self.zmax = ma.maximum(z) self.zmin = ma.minimum(z) if self.logscale and self.zmin <= 0: z = ma.masked_where(z <= 0, z) warnings.warn('Log scale: values of z <= 0 have been masked') self.zmin = z.min() self._contour_level_args(z, args) return (x, y, z) def _check_xyz(self, args, kwargs): """ For functions like contour, check that the dimensions of the input arrays match; if x and y are 1D, convert them to 2D using meshgrid. Possible change: I think we should make and use an ArgumentError Exception class (here and elsewhere). """ x, y = args[:2] self.ax._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x = self.ax.convert_xunits(x) y = self.ax.convert_yunits(y) x = np.asarray(x, dtype=np.float64) y = np.asarray(y, dtype=np.float64) z = ma.asarray(args[2], dtype=np.float64) if z.ndim != 2: raise TypeError("Input z must be a 2D array.") else: Ny, Nx = z.shape if x.ndim != y.ndim: raise TypeError("Number of dimensions of x and y should match.") if x.ndim == 1: nx, = x.shape ny, = y.shape if nx != Nx: raise TypeError("Length of x must be number of columns in z.") if ny != Ny: raise TypeError("Length of y must be number of rows in z.") x, y = np.meshgrid(x, y) elif x.ndim == 2: if x.shape != z.shape: raise TypeError("Shape of x does not match that of z: found " "{0} instead of {1}.".format(x.shape, z.shape)) if y.shape != z.shape: raise TypeError("Shape of y does not match that of z: found " "{0} instead of {1}.".format(y.shape, z.shape)) else: raise TypeError("Inputs x and y must be 1D or 2D.") return x, y, z def _initialize_x_y(self, z): """ Return X, Y arrays such that contour(Z) will match imshow(Z) if origin is not None. The center of pixel Z[i,j] depends on origin: if origin is None, x = j, y = i; if origin is 'lower', x = j + 0.5, y = i + 0.5; if origin is 'upper', x = j + 0.5, y = Nrows - i - 0.5 If extent is not None, x and y will be scaled to match, as in imshow. If origin is None and extent is not None, then extent will give the minimum and maximum values of x and y. """ if z.ndim != 2: raise TypeError("Input must be a 2D array.") else: Ny, Nx = z.shape if self.origin is None: # Not for image-matching. if self.extent is None: return np.meshgrid(np.arange(Nx), np.arange(Ny)) else: x0, x1, y0, y1 = self.extent x = np.linspace(x0, x1, Nx) y = np.linspace(y0, y1, Ny) return np.meshgrid(x, y) # Match image behavior: if self.extent is None: x0, x1, y0, y1 = (0, Nx, 0, Ny) else: x0, x1, y0, y1 = self.extent dx = float(x1 - x0) / Nx dy = float(y1 - y0) / Ny x = x0 + (np.arange(Nx) + 0.5) * dx y = y0 + (np.arange(Ny) + 0.5) * dy if self.origin == 'upper': y = y[::-1] return np.meshgrid(x, y) contour_doc = """ Plot contours. :func:`~matplotlib.pyplot.contour` and :func:`~matplotlib.pyplot.contourf` draw contour lines and filled contours, respectively. Except as noted, function signatures and return values are the same for both versions. :func:`~matplotlib.pyplot.contourf` differs from the MATLAB version in that it does not draw the polygon edges. To draw edges, add line contours with calls to :func:`~matplotlib.pyplot.contour`. Call signatures:: contour(Z) make a contour plot of an array *Z*. The level values are chosen automatically. :: contour(X,Y,Z) *X*, *Y* specify the (x, y) coordinates of the surface :: contour(Z,N) contour(X,Y,Z,N) contour up to *N* automatically-chosen levels. :: contour(Z,V) contour(X,Y,Z,V) draw contour lines at the values specified in sequence *V*, which must be in increasing order. :: contourf(..., V) fill the ``len(V)-1`` regions between the values in *V*, which must be in increasing order. :: contour(Z, **kwargs) Use keyword args to control colors, linewidth, origin, cmap ... see below for more details. *X* and *Y* must both be 2-D with the same shape as *Z*, or they must both be 1-D such that ``len(X)`` is the number of columns in *Z* and ``len(Y)`` is the number of rows in *Z*. ``C = contour(...)`` returns a :class:`~matplotlib.contour.QuadContourSet` object. Optional keyword arguments: *corner_mask*: [ *True* | *False* | 'legacy' ] Enable/disable corner masking, which only has an effect if *Z* is a masked array. If *False*, any quad touching a masked point is masked out. If *True*, only the triangular corners of quads nearest those points are always masked out, other triangular corners comprising three unmasked points are contoured as usual. If 'legacy', the old contouring algorithm is used, which is equivalent to *False* and is deprecated, only remaining whilst the new algorithm is tested fully. If not specified, the default is taken from rcParams['contour.corner_mask'], which is True unless it has been modified. *colors*: [ *None* | string | (mpl_colors) ] If *None*, the colormap specified by cmap will be used. If a string, like 'r' or 'red', all levels will be plotted in this color. If a tuple of matplotlib color args (string, float, rgb, etc), different levels will be plotted in different colors in the order specified. *alpha*: float The alpha blending value *cmap*: [ *None* | Colormap ] A cm :class:`~matplotlib.colors.Colormap` instance or *None*. If *cmap* is *None* and *colors* is *None*, a default Colormap is used. *norm*: [ *None* | Normalize ] A :class:`matplotlib.colors.Normalize` instance for scaling data values to colors. If *norm* is *None* and *colors* is *None*, the default linear scaling is used. *vmin*, *vmax*: [ *None* | scalar ] If not *None*, either or both of these values will be supplied to the :class:`matplotlib.colors.Normalize` instance, overriding the default color scaling based on *levels*. *levels*: [level0, level1, ..., leveln] A list of floating point numbers indicating the level curves to draw, in increasing order; e.g., to draw just the zero contour pass ``levels=[0]`` *origin*: [ *None* | 'upper' | 'lower' | 'image' ] If *None*, the first value of *Z* will correspond to the lower left corner, location (0,0). If 'image', the rc value for ``image.origin`` will be used. This keyword is not active if *X* and *Y* are specified in the call to contour. *extent*: [ *None* | (x0,x1,y0,y1) ] If *origin* is not *None*, then *extent* is interpreted as in :func:`matplotlib.pyplot.imshow`: it gives the outer pixel boundaries. In this case, the position of Z[0,0] is the center of the pixel, not a corner. If *origin* is *None*, then (*x0*, *y0*) is the position of Z[0,0], and (*x1*, *y1*) is the position of Z[-1,-1]. This keyword is not active if *X* and *Y* are specified in the call to contour. *locator*: [ *None* | ticker.Locator subclass ] If *locator* is *None*, the default :class:`~matplotlib.ticker.MaxNLocator` is used. The locator is used to determine the contour levels if they are not given explicitly via the *V* argument. *extend*: [ 'neither' | 'both' | 'min' | 'max' ] Unless this is 'neither', contour levels are automatically added to one or both ends of the range so that all data are included. These added ranges are then mapped to the special colormap values which default to the ends of the colormap range, but can be set via :meth:`matplotlib.colors.Colormap.set_under` and :meth:`matplotlib.colors.Colormap.set_over` methods. *xunits*, *yunits*: [ *None* | registered units ] Override axis units by specifying an instance of a :class:`matplotlib.units.ConversionInterface`. *antialiased*: [ *True* | *False* ] enable antialiasing, overriding the defaults. For filled contours, the default is *True*. For line contours, it is taken from rcParams['lines.antialiased']. *nchunk*: [ 0 | integer ] If 0, no subdivision of the domain. Specify a positive integer to divide the domain into subdomains of *nchunk* by *nchunk* quads. Chunking reduces the maximum length of polygons generated by the contouring algorithm which reduces the rendering workload passed on to the backend and also requires slightly less RAM. It can however introduce rendering artifacts at chunk boundaries depending on the backend, the *antialiased* flag and value of *alpha*. contour-only keyword arguments: *linewidths*: [ *None* | number | tuple of numbers ] If *linewidths* is *None*, the default width in ``lines.linewidth`` in ``matplotlibrc`` is used. If a number, all levels will be plotted with this linewidth. If a tuple, different levels will be plotted with different linewidths in the order specified. *linestyles*: [ *None* | 'solid' | 'dashed' | 'dashdot' | 'dotted' ] If *linestyles* is *None*, the default is 'solid' unless the lines are monochrome. In that case, negative contours will take their linestyle from the ``matplotlibrc`` ``contour.negative_linestyle`` setting. *linestyles* can also be an iterable of the above strings specifying a set of linestyles to be used. If this iterable is shorter than the number of contour levels it will be repeated as necessary. contourf-only keyword arguments: *hatches*: A list of cross hatch patterns to use on the filled areas. If None, no hatching will be added to the contour. Hatching is supported in the PostScript, PDF, SVG and Agg backends only. Note: contourf fills intervals that are closed at the top; that is, for boundaries *z1* and *z2*, the filled region is:: z1 < z <= z2 There is one exception: if the lowest boundary coincides with the minimum value of the *z* array, then that minimum value will be included in the lowest interval. **Examples:** .. plot:: mpl_examples/pylab_examples/contour_demo.py .. plot:: mpl_examples/pylab_examples/contourf_demo.py .. plot:: mpl_examples/pylab_examples/contour_corner_mask.py """
apache-2.0
sshleifer/object_detection_kitti
learned_optimizer/problems/datasets.py
7
7404
# Copyright 2017 Google, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions to generate or load datasets for supervised learning.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import namedtuple import numpy as np from sklearn.datasets import make_classification MAX_SEED = 4294967295 class Dataset(namedtuple("Dataset", "data labels")): """Helper class for managing a supervised learning dataset. Args: data: an array of type float32 with N samples, each of which is the set of features for that sample. (Shape (N, D_i), where N is the number of samples and D_i is the number of features for that sample.) labels: an array of type int32 or int64 with N elements, indicating the class label for the corresponding set of features in data. """ # Since this is an immutable object, we don't need to reserve slots. __slots__ = () @property def size(self): """Dataset size (number of samples).""" return len(self.data) def batch_indices(self, num_batches, batch_size): """Creates indices of shuffled minibatches. Args: num_batches: the number of batches to generate batch_size: the size of each batch Returns: batch_indices: a list of minibatch indices, arranged so that the dataset is randomly shuffled. Raises: ValueError: if the data and labels have different lengths """ if len(self.data) != len(self.labels): raise ValueError("Labels and data must have the same number of samples.") batch_indices = [] # Follows logic in mnist.py to ensure we cover the entire dataset. index_in_epoch = 0 dataset_size = len(self.data) dataset_indices = np.arange(dataset_size) np.random.shuffle(dataset_indices) for _ in range(num_batches): start = index_in_epoch index_in_epoch += batch_size if index_in_epoch > dataset_size: # Finished epoch, reshuffle. np.random.shuffle(dataset_indices) # Start next epoch. start = 0 index_in_epoch = batch_size end = index_in_epoch batch_indices.append(dataset_indices[start:end].tolist()) return batch_indices def noisy_parity_class(n_samples, n_classes=2, n_context_ids=5, noise_prob=0.25, random_seed=None): """Returns a randomly generated sparse-to-sparse dataset. The label is a parity class of a set of context classes. Args: n_samples: number of samples (data points) n_classes: number of class labels (default: 2) n_context_ids: how many classes to take the parity of (default: 5). noise_prob: how often to corrupt the label (default: 0.25) random_seed: seed used for drawing the random data (default: None) Returns: dataset: A Dataset namedtuple containing the generated data and labels """ np.random.seed(random_seed) x = np.random.randint(0, n_classes, [n_samples, n_context_ids]) noise = np.random.binomial(1, noise_prob, [n_samples]) y = (np.sum(x, 1) + noise) % n_classes return Dataset(x.astype("float32"), y.astype("int32")) def random(n_features, n_samples, n_classes=2, sep=1.0, random_seed=None): """Returns a randomly generated classification dataset. Args: n_features: number of features (dependent variables) n_samples: number of samples (data points) n_classes: number of class labels (default: 2) sep: separation of the two classes, a higher value corresponds to an easier classification problem (default: 1.0) random_seed: seed used for drawing the random data (default: None) Returns: dataset: A Dataset namedtuple containing the generated data and labels """ # Generate the problem data. x, y = make_classification(n_samples=n_samples, n_features=n_features, n_informative=n_features, n_redundant=0, n_classes=n_classes, class_sep=sep, random_state=random_seed) return Dataset(x.astype("float32"), y.astype("int32")) def random_binary(n_features, n_samples, random_seed=None): """Returns a randomly generated dataset of binary values. Args: n_features: number of features (dependent variables) n_samples: number of samples (data points) random_seed: seed used for drawing the random data (default: None) Returns: dataset: A Dataset namedtuple containing the generated data and labels """ random_seed = (np.random.randint(MAX_SEED) if random_seed is None else random_seed) np.random.seed(random_seed) x = np.random.randint(2, size=(n_samples, n_features)) y = np.zeros((n_samples, 1)) return Dataset(x.astype("float32"), y.astype("int32")) def random_symmetric(n_features, n_samples, random_seed=None): """Returns a randomly generated dataset of values and their negatives. Args: n_features: number of features (dependent variables) n_samples: number of samples (data points) random_seed: seed used for drawing the random data (default: None) Returns: dataset: A Dataset namedtuple containing the generated data and labels """ random_seed = (np.random.randint(MAX_SEED) if random_seed is None else random_seed) np.random.seed(random_seed) x1 = np.random.normal(size=(int(n_samples/2), n_features)) x = np.concatenate((x1, -x1), axis=0) y = np.zeros((n_samples, 1)) return Dataset(x.astype("float32"), y.astype("int32")) def random_mlp(n_features, n_samples, random_seed=None, n_layers=6, width=20): """Returns a generated output of an MLP with random weights. Args: n_features: number of features (dependent variables) n_samples: number of samples (data points) random_seed: seed used for drawing the random data (default: None) n_layers: number of layers in random MLP width: width of the layers in random MLP Returns: dataset: A Dataset namedtuple containing the generated data and labels """ random_seed = (np.random.randint(MAX_SEED) if random_seed is None else random_seed) np.random.seed(random_seed) x = np.random.normal(size=(n_samples, n_features)) y = x n_in = n_features scale_factor = np.sqrt(2.) / np.sqrt(n_features) for _ in range(n_layers): weights = np.random.normal(size=(n_in, width)) * scale_factor y = np.dot(y, weights).clip(min=0) n_in = width y = y[:, 0] y[y > 0] = 1 return Dataset(x.astype("float32"), y.astype("int32")) EMPTY_DATASET = Dataset(np.array([], dtype="float32"), np.array([], dtype="int32"))
apache-2.0
shusenl/scikit-learn
examples/ensemble/plot_voting_decision_regions.py
230
2386
""" ================================================== Plot the decision boundaries of a VotingClassifier ================================================== Plot the decision boundaries of a `VotingClassifier` for two features of the Iris dataset. Plot the class probabilities of the first sample in a toy dataset predicted by three different classifiers and averaged by the `VotingClassifier`. First, three examplary classifiers are initialized (`DecisionTreeClassifier`, `KNeighborsClassifier`, and `SVC`) and used to initialize a soft-voting `VotingClassifier` with weights `[2, 1, 2]`, which means that the predicted probabilities of the `DecisionTreeClassifier` and `SVC` count 5 times as much as the weights of the `KNeighborsClassifier` classifier when the averaged probability is calculated. """ print(__doc__) from itertools import product import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.ensemble import VotingClassifier # Loading some example data iris = datasets.load_iris() X = iris.data[:, [0, 2]] y = iris.target # Training classifiers clf1 = DecisionTreeClassifier(max_depth=4) clf2 = KNeighborsClassifier(n_neighbors=7) clf3 = SVC(kernel='rbf', probability=True) eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)], voting='soft', weights=[2, 1, 2]) clf1.fit(X, y) clf2.fit(X, y) clf3.fit(X, y) eclf.fit(X, y) # Plotting decision regions x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1), np.arange(y_min, y_max, 0.1)) f, axarr = plt.subplots(2, 2, sharex='col', sharey='row', figsize=(10, 8)) for idx, clf, tt in zip(product([0, 1], [0, 1]), [clf1, clf2, clf3, eclf], ['Decision Tree (depth=4)', 'KNN (k=7)', 'Kernel SVM', 'Soft Voting']): Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) axarr[idx[0], idx[1]].contourf(xx, yy, Z, alpha=0.4) axarr[idx[0], idx[1]].scatter(X[:, 0], X[:, 1], c=y, alpha=0.8) axarr[idx[0], idx[1]].set_title(tt) plt.show()
bsd-3-clause
ianknowles/EarTimeWrangler
src/PDF/table_transformer.py
1
19834
import logging import math import os from collections import defaultdict import pdfminer from pdfminer.converter import PDFPageAggregator from pdfminer.layout import LAParams from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.pdfinterp import PDFTextExtractionNotAllowed from pdfminer.pdfparser import PDFParser, PDFDocument import PDF.rectangles import eartime_table logger = logging.getLogger('meeting_parser').getChild(__name__) def extract_table(pdf_path): layouts = get_page_layouts(pdf_path) tables = [page_to_tables(page_layout) for page_layout in layouts] stitched = new_stitch(tables) return table_review2(stitched) def new_stitch(tables): main_table = [] for page in tables: for n, table in enumerate(page): # try to join lines that run over table breaks if (n == 0 and #len(table['title']) == 0 and # len(list(filter(lambda s: s == '', table[1][0]))) > 0 and table['cells'][0][0] == '' and #table['cells'][0][1] == '' and #table['cells'][0][3] == '' and len(main_table) > 0): logger.info('Stitching rows:' + str(main_table[-1]) + str(table)) rep = main_table[-1]['cells'][-1][0] if any(map(lambda x: x == '', table['cells'][0][1:])): for i in range(min(len(main_table[-1]['cells'][-1]), len(table['cells'][0]))): main_table[-1]['cells'][-1][i] += ' ' main_table[-1]['cells'][-1][i] += table['cells'][0][i] for row in table['cells'][1:]: main_table[-1]['cells'].append(row) if main_table[-1]['cells'][-1][0] == '': main_table[-1]['cells'][-1][0] = rep else: for row in table['cells'][1:]: main_table[-1]['cells'].append(row) if main_table[-1]['cells'][-1][0] == '': main_table[-1]['cells'][-1][0] = rep logger.info('Stitched result:' + str(main_table[-1])) else: main_table.append(table) return main_table def table_review2(tables): tabs = [] for tab in tables: tabs.append(eartime_table.Table(tab['title'], tab['cells'])) return tabs def table_review(tables): for table in tables: # can we do this without copying the cells? pointer to first row is easy, pointer to the rest? cells = list(table['cells']) table['header'] = cells.pop(0) table['rows'] = cells table['tabletype'] = 'unknown' #first = table['header'][0].lower() #print(first) finds = table['header'][0].lower().find('date') if table['header'][0].lower().find('date') >= 0 or (table['header'][0].lower() == 'date of meeting'): #if len(main_table2[-1]['rows']) > 0: # if 'title' not in main_table2[-1]: # main_table2[-1]['title'] = [''] # logger.warning('Warning could not find title:' + str(main_table2[-1])) # main_table2.append({}) # main_table2[-1]['title'] = main_table2[-2]['title'] # main_table2[-1]['header'] = [] # main_table2[-1]['rows'] = [] # main_table2[-1]['tabletype'] = main_table2[-2]['tabletype'] if len(table['header']) >= 3: if table['header'][2].lower().strip() == 'purpose of meeting': logger.info('Probably found a meeting header row:' + str(table['header'])) table['tabletype'] = 'meeting' #for row in table['rows']: # if all(map(lambda s: s == '', row)): # logger.debug('Discarded empty row') # table['rows'] table['rows'] = list(filter(lambda r: not all(map(lambda s: s == '', r)), table['rows'])) #elif len(list(filter(lambda s: s == '', row))) > 0: # logger.warning('Discarded partial row, need to review:' + str(row)) #elif len(row) == 1: # logger.info('Probably found a title:' + str(row)) # if len(main_table2[-1]['rows']) > 0: # main_table2.append({}) # main_table2[-1]['header'] = main_table2[-2]['header'] # main_table2[-1]['rows'] = [] # main_table2[-1]['tabletype'] = main_table2[-2]['tabletype'] # main_table2[-1]['title'] = row #else: # main_table2[-1]['rows'].append(row) if 'title' not in table or table['title'] == "": table['title'] = '' logger.warning('Warning could not find title:' + str(table)) return tables # old funcs def get_tables(pdf_path): dept = os.path.basename(os.path.dirname(pdf_path)) return [page_to_table(page_layout) for page_layout in get_page_layouts(pdf_path)] def stitch_together_tables(tables): main_table = [] main_table2 = [] for page in tables: for n, line in enumerate(page): # try to join lines that run over table breaks if (n == 0 and len(line) > 1 and len(list(filter(lambda s: s == '', line))) > 0 and len(main_table) > 0): #logger.debug('Stitching rows:' + str(main_table[-1]) + str(line)) for i in range(min(len(main_table[-1]), len(line))): main_table[-1][i] += ' ' main_table[-1][i] += line[i] #logger.debug('Stitched result:' + str(main_table[-1])) else: main_table.append(line) tabletype = '' main_table2.append({}) main_table2[-1]['header'] = [] main_table2[-1]['rows'] = [] main_table2[-1]['tabletype'] = 'unknown' for row in main_table: if row[0].lower().find('date') >= 0 or (row[0].lower() == 'date of meeting'): if len(main_table2[-1]['rows']) > 0: if 'title' not in main_table2[-1]: main_table2[-1]['title'] = [''] logger.warning('Warning could not find title:' + str(main_table2[-1])) main_table2.append({}) main_table2[-1]['title'] = main_table2[-2]['title'] main_table2[-1]['header'] = [] main_table2[-1]['rows'] = [] main_table2[-1]['tabletype'] = main_table2[-2]['tabletype'] if len(row) >= 3: if row[2].lower() == 'purpose of meeting': logger.info('Probably found a meeting header row:' + str(row)) main_table2[-1]['tabletype'] = 'meeting' main_table2[-1]['header'].append(row) else: logger.info('Probably found a header row:' + str(row)) main_table2[-1]['header'].append(row) else: logger.info('Probably found a header row:' + str(row)) main_table2[-1]['header'].append(row) elif all(map(lambda s: s == '', row)): logger.debug('Discarded empty row') elif len(list(filter(lambda s: s == '', row))) > 0: logger.warning('Discarded partial row, need to review:' + str(row)) elif len(row) == 1: logger.info('Probably found a title:' + str(row)) if len(main_table2[-1]['rows']) > 0: main_table2.append({}) main_table2[-1]['header'] = main_table2[-2]['header'] main_table2[-1]['rows'] = [] main_table2[-1]['tabletype'] = main_table2[-2]['tabletype'] main_table2[-1]['title'] = row else: main_table2[-1]['rows'].append(row) if 'title' not in main_table2[-1]: main_table2[-1]['title'] = [''] logger.warning('Warning could not find title:' + str(main_table2[-1])) return main_table2 def get_page_layouts(pdf_pathname): try: with open(pdf_pathname, 'rb') as fp: parser = PDFParser(fp) doc = PDFDocument() parser.set_document(doc) doc.set_parser(parser) doc.initialize("") if not doc.is_extractable: raise PDFTextExtractionNotAllowed resource_manager = PDFResourceManager() device = PDFPageAggregator(resource_manager, laparams=LAParams()) interpreter = PDFPageInterpreter(resource_manager, device) layouts = [] for page in doc.get_pages(): interpreter.process_page(page) layouts.append(device.get_result()) logger.debug('Opened PDF with ' + str(len(layouts)) + ' pages') return layouts except EnvironmentError: logger.error('Invalid PDF file: ' + pdf_pathname) return [] except TypeError: logger.error('Invalid PDF file causes problems with pdfminer: ' + pdf_pathname) return [] def parse_test(pdfpath): page_layouts = get_page_layouts(pdfpath) print(len(page_layouts)) print(page_layouts) objects_on_page = set(type(o) for o in page_layouts[3]) print(objects_on_page) current_page = page_layouts[3] texts = [] rects = [] # seperate text and rectangle elements for e in current_page: if isinstance(e, pdfminer.layout.LTTextBoxHorizontal): texts.append(e) elif isinstance(e, pdfminer.layout.LTRect): rects.append(e) # sort them into characters = extract_characters(texts) print(characters) TEXT_ELEMENTS = [ pdfminer.layout.LTTextBox, pdfminer.layout.LTTextBoxHorizontal, pdfminer.layout.LTTextLine, pdfminer.layout.LTTextLineHorizontal ] def flatten(lst): """Flattens a list of lists""" return [subelem for elem in lst for subelem in elem] def extract_characters(element): """ Recursively extracts individual characters from text elements. """ if isinstance(element, pdfminer.layout.LTChar): return [element] if any(isinstance(element, i) for i in TEXT_ELEMENTS): return flatten([extract_characters(e) for e in element]) if isinstance(element, list): return flatten([extract_characters(l) for l in element]) return [] gui_rects = [] chars = [] def get_rects(): return gui_rects def get_chars(): return chars def page_to_tables(page_layout): texts = [] rectangles = [] other = [] logger.debug("Starting page") for e in page_layout: if isinstance(e, pdfminer.layout.LTTextBoxHorizontal): texts.append(e) elif isinstance(e, pdfminer.layout.LTRect): rectangles.append(e) else: other.append(e) characters = extract_characters(texts) # Should set the limit from a reference, eg the area of a character in the smallest font rects_by_size = filter(lambda r: ((r.height * r.width) > 5), rectangles) #rects_by_size = list(filter(lambda x: x.width > 5, rects_by_size)) #rects_by_size = sorted(rects_by_size, key=lambda r: r.height * r.width, reverse=True) rects_by_x = sorted(rects_by_size, key=lambda r: r.x0) table_rects = [] remaining_rects = list(rects_by_x) groups = [] while remaining_rects: groups.append(PDF.rectangles.RectangleGroup(remaining_rects.pop())) groups[-1].add_intersecting_rects(remaining_rects) logger.debug("Grouping done") # try filter(remaining_rects, intersects) ? keep filtering until len(0) result #final_rects = table_rects #for r in final_rects #groups = [] #for k, g in itertools.groupby(rects_by_size, lambda x: x[0]): # groups.append(list(g)) #gui_rects = list(groups) #TODO page by page view #gui_rects.append(groups) bboxs = [] tables = [] for group in groups: table_chars = list(filter(lambda x: PDF.rectangles.intersects(x, group.bbox), characters)) #TODO page by page view #chars.append(table_chars) tables.append([group, table_chars]) tables.reverse() processed_tables = [] for table in tables: processed_tables = processed_tables + process_table(table) return list(filter(lambda x: len(x['cells']) > 0, processed_tables)) def process_table(table): #import matplotlib.pyplot as plt bbox = table[0].bbox rects = table[0].rects tchars = table[1] bottom_line = pdfminer.layout.LTRect(1, (bbox.x0, bbox.y1, bbox.x1, bbox.y1)) top_line = pdfminer.layout.LTRect(1, (bbox.x0, bbox.y0, bbox.x1, bbox.y0)) left_line = pdfminer.layout.LTRect(1, (bbox.x0, bbox.y0, bbox.x0, bbox.y1)) #rects = list(filter(lambda x: x.width > 5, rects)) bottom_row = list(filter(lambda x: PDF.rectangles.intersects(x, bottom_line), rects)) bottom_row = sorted(bottom_row, key=lambda r: r.x0) top_row = list(filter(lambda x: PDF.rectangles.intersects(x, top_line), rects)) top_row = sorted(top_row, key=lambda r: r.x0) top_row = list(filter(lambda x: x.width > 5, top_row)) bottom_row2 = list(filter(lambda x: x.y1 >= bbox.y1 - 10, rects)) bottom_row2 = sorted(bottom_row2, key=lambda r: r.x0) top_row2 = list(filter(lambda x: x.y0 <= bbox.y0 + 10, rects)) top_row2 = sorted(top_row2, key=lambda r: r.x0) columns = [] rows = [] for c in top_row: columns.append(pdfminer.layout.LTRect(1, (c.x0 - 1, bbox.y0 - 1, c.x1 + 1, bbox.y1 + 1))) if len(columns) == 0: logger.debug("Couldn't find any cols in this table, review") return [] first_column = list(filter(lambda x: PDF.rectangles.contains(columns[0], x), rects)) first_column = list(filter(lambda x: PDF.rectangles.intersects(x, left_line), first_column)) first_column = list(filter(lambda x: x.width < 5, first_column)) first_column = sorted(first_column, key=lambda r: r.y0) for r in first_column: rows.append(pdfminer.layout.LTRect(1, (bbox.x0 - 1, r.y0 - 1, bbox.x1 + 1, r.y1 + 1))) rows.reverse() if len(rows) == 0: logger.debug("Couldn't find any rows in this table, review") return [] #cell0 = list(filter(lambda x: PDF.rectangles.contains(columns[0], x) and PDF.rectangles.contains(rows[0], x), tchars)) #cell0 = sorted(cell0, key=lambda r: r.y0) title_row = "" #i, j = 0 tables = [] table_cells = [] header = False for row in rows: title = False rowend = False table_row = [] for col in columns: cell_right = pdfminer.layout.LTRect(1, (col.x1 - 2, row.y0 - 2, col.x1 + 2, row.y1 + 2)) for rect in rects: if PDF.rectangles.contains(cell_right, rect): rowend = True break if not rowend: title = True cell_rect = pdfminer.layout.LTRect(1, (row.x0 - 2, row.y0 - 2, row.x1 + 2, row.y1 + 2)) else: cell_rect = pdfminer.layout.LTRect(1, (col.x0 - 2, row.y0 - 2, col.x1 + 2, row.y1 + 2)) cell_chars = [char for char in tchars if PDF.rectangles.contains(cell_rect, char)] tchars[:] = [char for char in tchars if not PDF.rectangles.contains(cell_rect, char)] cell_chars = sorted(cell_chars, key=lambda x: x.y0) cell_chars.reverse() import itertools string = '' for k, g in itertools.groupby(cell_chars, lambda x: x.y0): t = sorted(g, key=lambda x: x.x0) string += ''.join(list(map(lambda u: u.get_text(), t))) if title: title_row = ''.join(string).strip() break else: table_row.append(string.strip()) t = eartime_table.Table('', [table_row]) if t.tabletype == 'meeting' and header: # new table tables.append({"title": title_row, "cells": table_cells}) table_cells = [title_row] + table_row elif t.tabletype == 'meeting': header = True table_cells.append([title_row] + table_row) #if header row start new table elif not title: table_cells.append([title_row] + table_row) tables.append({"title": title_row, "cells": table_cells}) #print(title_row) #for r in first_column: #plt.plot(*zip(*r.pts)) #plt.show() #print() #plt.show() #print() return tables def compact(groups, remaining_rects): while remaining_rects: r = remaining_rects.pop() for group in groups: for rect in group: if PDF.rectangles.intersects(r, rect): print(str(r) + " intersects " + str(rect)) group.append(r) break else: continue break else: print("found no existing group, starting a new one") groups.append([r]) return groups def old_compact_start(rects_by_x, table_rects): for rect in rects_by_x: rects_by_x.remove(rect) found = False for r in table_rects: for r1 in r: if PDF.rectangles.intersects(r1, rect): r.append(rect) found = True break if found: break if not found: for rect2 in rects_by_x: #if rect == rect2: # continue if PDF.rectangles.intersects(rect2, rect): table_rects.append([rect, rect2]) rects_by_x.remove(rect2) table_rects, compacted = compact_groups(table_rects) while compacted: table_rects, compacted = compact_groups(table_rects) def compact_groups(groups): compacted = False for group in groups: for group2 in groups: found = False if group2 != group: for rect in group: for rect2 in group2: if PDF.rectangles.intersects(rect2, rect): group += group2 groups.remove(group2) found = True compacted = True break if found: break return groups, compacted def page_to_table(page_layout): # todo the table stictching belongs in here texts = [] rects = [] other = [] for e in page_layout: if isinstance(e, pdfminer.layout.LTTextBoxHorizontal): texts.append(e) elif isinstance(e, pdfminer.layout.LTRect): rects.append(e) else: other.append(e) # convert text elements to characters # and rectangles to lines characters = extract_characters(texts) #chars.append(characters) lines = [cast_as_line(r) for r in rects if width(r) < 2 and area(r) > 1] # match each character to a bounding rectangle where possible box_char_dict = {} for c in characters: # choose the bounding box that occurs the majority of times for each of these: bboxes = defaultdict(int) l_x, l_y = c.bbox[0], c.bbox[1] bbox_l = find_bounding_rectangle(l_x, l_y, lines) bboxes[bbox_l] += 1 c_x, c_y = math.floor((c.bbox[0] + c.bbox[2]) / 2), math.floor((c.bbox[1] + c.bbox[3]) / 2) bbox_c = find_bounding_rectangle(c_x, c_y, lines) bboxes[bbox_c] += 1 u_x, u_y = c.bbox[2], c.bbox[3] bbox_u = find_bounding_rectangle(u_x, u_y, lines) bboxes[bbox_u] += 1 # if all values are in different boxes, default to character center. # otherwise choose the majority. if max(bboxes.values()) == 1: bbox = bbox_c else: bbox = max(bboxes.items(), key=lambda x: x[1])[0] if bbox is None: continue if bbox in box_char_dict.keys(): box_char_dict[bbox].append(c) continue box_char_dict[bbox] = [c] # look for empty bounding boxes by scanning # over a grid of values on the page for x in range(100, 550, 10): for y in range(50, 800, 10): bbox = find_bounding_rectangle(x, y, lines) if bbox is None: continue if bbox in box_char_dict.keys(): continue box_char_dict[bbox] = [] return boxes_to_table(box_char_dict) def flatten(lst): return [subelem for elem in lst for subelem in elem] def extract_characters(element): if isinstance(element, pdfminer.layout.LTChar): return [element] if any(isinstance(element, i) for i in TEXT_ELEMENTS): elements = [] for e in element: elements += extract_characters(e) return elements if isinstance(element, list): return flatten([extract_characters(l) for l in element]) return [] def width(rect): x0, y0, x1, y1 = rect.bbox return min(x1 - x0, y1 - y0) def length(rect): x0, y0, x1, y1 = rect.bbox return max(x1 - x0, y1 - y0) def area(rect): x0, y0, x1, y1 = rect.bbox return (x1 - x0) * (y1 - y0) def cast_as_line(rect): x0, y0, x1, y1 = rect.bbox if x1 - x0 > y1 - y0: return (x0, y0, x1, y0, "H") else: return (x0, y0, x0, y1, "V") def does_it_intersect(x, xmin, xmax): return (x <= xmax and x >= xmin) def find_bounding_rectangle(x, y, lines): v_intersects = [l for l in lines if l[4] == "V" and does_it_intersect(y, l[1], l[3])] h_intersects = [l for l in lines if l[4] == "H" and does_it_intersect(x, l[0], l[2])] if len(v_intersects) < 2 or len(h_intersects) < 2: return None v_left = [v[0] for v in v_intersects if v[0] < x] v_right = [v[0] for v in v_intersects if v[0] > x] if len(v_left) == 0 or len(v_right) == 0: return None x0, x1 = max(v_left), min(v_right) h_down = [h[1] for h in h_intersects if h[1] < y] h_up = [h[1] for h in h_intersects if h[1] > y] if len(h_down) == 0 or len(h_up) == 0: return None y0, y1 = max(h_down), min(h_up) return (x0, y0, x1, y1) def chars_to_string(chars): if not chars: return "" rows = sorted(list(set(c.bbox[1] for c in chars)), reverse=True) text = "" for row in rows: sorted_row = sorted([c for c in chars if c.bbox[1] == row], key=lambda c: c.bbox[0]) text += "".join(c.get_text() for c in sorted_row) return text def boxes_to_table(box_record_dict): boxes = box_record_dict.keys() rows = sorted(list(set(b[1] for b in boxes)), reverse=True) table = [] for row in rows: sorted_row = sorted([b for b in boxes if b[1] == row], key=lambda b: b[0]) table.append([chars_to_string(box_record_dict[b]).strip() for b in sorted_row]) return table def find_tables(rects): rects_by_size = sorted(rects, key=lambda r: area(r))
mit
JT5D/scikit-learn
examples/grid_search_digits.py
8
2665
""" ===================================================================== Parameter estimation using grid search with a nested cross-validation ===================================================================== This examples shows how a classifier is optimized by "nested" cross-validation, which is done using the :class:`sklearn.grid_search.GridSearchCV` object on a development set that comprises only half of the available labeled data. The performance of the selected hyper-parameters and trained model is then measured on a dedicated evaluation set that was not used during the model selection step. More details on tools available for model selection can be found in the sections on :ref:`cross_validation` and :ref:`grid_search`. """ from __future__ import print_function from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.svm import SVC print(__doc__) # Loading the Digits dataset digits = datasets.load_digits() # To apply an classifier on this data, we need to flatten the image, to # turn the data in a (samples, feature) matrix: n_samples = len(digits.images) X = digits.images.reshape((n_samples, -1)) y = digits.target # Split the dataset in two equal parts X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.5, random_state=0) # Set the parameters by cross-validation tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4], 'C': [1, 10, 100, 1000]}, {'kernel': ['linear'], 'C': [1, 10, 100, 1000]}] scores = ['precision', 'recall'] for score in scores: print("# Tuning hyper-parameters for %s" % score) print() clf = GridSearchCV(SVC(C=1), tuned_parameters, cv=5, scoring=score) clf.fit(X_train, y_train) print("Best parameters set found on development set:") print() print(clf.best_estimator_) print() print("Grid scores on development set:") print() for params, mean_score, scores in clf.grid_scores_: print("%0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() / 2, params)) print() print("Detailed classification report:") print() print("The model is trained on the full development set.") print("The scores are computed on the full evaluation set.") print() y_true, y_pred = y_test, clf.predict(X_test) print(classification_report(y_true, y_pred)) print() # Note the problem is too easy: the hyperparameter plateau is too flat and the # output model is the same for precision and recall with ties in quality.
bsd-3-clause
fbagirov/scikit-learn
benchmarks/bench_plot_nmf.py
206
5890
""" Benchmarks of Non-Negative Matrix Factorization """ from __future__ import print_function from collections import defaultdict import gc from time import time import numpy as np from scipy.linalg import norm from sklearn.decomposition.nmf import NMF, _initialize_nmf from sklearn.datasets.samples_generator import make_low_rank_matrix from sklearn.externals.six.moves import xrange def alt_nnmf(V, r, max_iter=1000, tol=1e-3, R=None): ''' A, S = nnmf(X, r, tol=1e-3, R=None) Implement Lee & Seung's algorithm Parameters ---------- V : 2-ndarray, [n_samples, n_features] input matrix r : integer number of latent features max_iter : integer, optional maximum number of iterations (default: 1000) tol : double tolerance threshold for early exit (when the update factor is within tol of 1., the function exits) R : integer, optional random seed Returns ------- A : 2-ndarray, [n_samples, r] Component part of the factorization S : 2-ndarray, [r, n_features] Data part of the factorization Reference --------- "Algorithms for Non-negative Matrix Factorization" by Daniel D Lee, Sebastian H Seung (available at http://citeseer.ist.psu.edu/lee01algorithms.html) ''' # Nomenclature in the function follows Lee & Seung eps = 1e-5 n, m = V.shape if R == "svd": W, H = _initialize_nmf(V, r) elif R is None: R = np.random.mtrand._rand W = np.abs(R.standard_normal((n, r))) H = np.abs(R.standard_normal((r, m))) for i in xrange(max_iter): updateH = np.dot(W.T, V) / (np.dot(np.dot(W.T, W), H) + eps) H *= updateH updateW = np.dot(V, H.T) / (np.dot(W, np.dot(H, H.T)) + eps) W *= updateW if i % 10 == 0: max_update = max(updateW.max(), updateH.max()) if abs(1. - max_update) < tol: break return W, H def report(error, time): print("Frobenius loss: %.5f" % error) print("Took: %.2fs" % time) print() def benchmark(samples_range, features_range, rank=50, tolerance=1e-5): it = 0 timeset = defaultdict(lambda: []) err = defaultdict(lambda: []) max_it = len(samples_range) * len(features_range) for n_samples in samples_range: for n_features in features_range: print("%2d samples, %2d features" % (n_samples, n_features)) print('=======================') X = np.abs(make_low_rank_matrix(n_samples, n_features, effective_rank=rank, tail_strength=0.2)) gc.collect() print("benchmarking nndsvd-nmf: ") tstart = time() m = NMF(n_components=30, tol=tolerance, init='nndsvd').fit(X) tend = time() - tstart timeset['nndsvd-nmf'].append(tend) err['nndsvd-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvda-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvda', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvda-nmf'].append(tend) err['nndsvda-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking nndsvdar-nmf: ") tstart = time() m = NMF(n_components=30, init='nndsvdar', tol=tolerance).fit(X) tend = time() - tstart timeset['nndsvdar-nmf'].append(tend) err['nndsvdar-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking random-nmf") tstart = time() m = NMF(n_components=30, init=None, max_iter=1000, tol=tolerance).fit(X) tend = time() - tstart timeset['random-nmf'].append(tend) err['random-nmf'].append(m.reconstruction_err_) report(m.reconstruction_err_, tend) gc.collect() print("benchmarking alt-random-nmf") tstart = time() W, H = alt_nnmf(X, r=30, R=None, tol=tolerance) tend = time() - tstart timeset['alt-random-nmf'].append(tend) err['alt-random-nmf'].append(np.linalg.norm(X - np.dot(W, H))) report(norm(X - np.dot(W, H)), tend) return timeset, err if __name__ == '__main__': from mpl_toolkits.mplot3d import axes3d # register the 3d projection axes3d import matplotlib.pyplot as plt samples_range = np.linspace(50, 500, 3).astype(np.int) features_range = np.linspace(50, 500, 3).astype(np.int) timeset, err = benchmark(samples_range, features_range) for i, results in enumerate((timeset, err)): fig = plt.figure('scikit-learn Non-Negative Matrix Factorization benchmark results') ax = fig.gca(projection='3d') for c, (label, timings) in zip('rbgcm', sorted(results.iteritems())): X, Y = np.meshgrid(samples_range, features_range) Z = np.asarray(timings).reshape(samples_range.shape[0], features_range.shape[0]) # plot the actual surface ax.plot_surface(X, Y, Z, rstride=8, cstride=8, alpha=0.3, color=c) # dummy point plot to stick the legend to since surface plot do not # support legends (yet?) ax.plot([1], [1], [1], color=c, label=label) ax.set_xlabel('n_samples') ax.set_ylabel('n_features') zlabel = 'Time (s)' if i == 0 else 'reconstruction error' ax.set_zlabel(zlabel) ax.legend() plt.show()
bsd-3-clause
bartromgens/climatemaps
bin/create_contour.py
1
4856
#!/usr/bin/env python3 import sys import os import math import numpy import matplotlib.pyplot as plt sys.path.append('../climatemaps') import climatemaps from climatemaps.logger import logger DATA_OUT_DIR = 'website/data' TYPES = { 'precipitation': { 'filepath': 'data/precipitation/cpre6190.dat', 'conversion_factor': 0.1, # (millimetres/day) *10 'config': climatemaps.contour.ContourPlotConfig(0.1, 16, colormap=plt.cm.jet_r, title='Precipitation', unit='mm/day', logscale=True) }, 'cloud': { 'filepath': 'data/cloud/ccld6190.dat', 'conversion_factor': 1, 'config': climatemaps.contour.ContourPlotConfig(0, 100, colormap=plt.cm.jet_r, title='Cloud coverage', unit='%') }, 'mintemp': { 'filepath': 'data/mintemp/ctmn6190.dat', 'conversion_factor': 0.1, 'config': climatemaps.contour.ContourPlotConfig(-40, 28, colormap=plt.cm.jet, title='Min. temperature', unit='C') }, 'meantemp': { 'filepath': 'data/meantemp/ctmp6190.dat', 'conversion_factor': 0.1, 'config': climatemaps.contour.ContourPlotConfig(-30, 35, colormap=plt.cm.jet, title='Mean temperature', unit='C') }, 'maxtemp': { 'filepath': 'data/maxtemp/ctmx6190.dat', 'conversion_factor': 0.1, 'config': climatemaps.contour.ContourPlotConfig(-20, 45, colormap=plt.cm.jet, title='Max. temperature', unit='C') }, 'diurnaltemprange': { 'filepath': 'data/diurnaltemprange/cdtr6190.dat', 'conversion_factor': 0.1, 'config': climatemaps.contour.ContourPlotConfig(5, 20, colormap=plt.cm.jet, title='Diurnal temperature range', unit='C') }, 'wetdays': { 'filepath': 'data/wetdays/cwet6190.dat', 'conversion_factor': 0.1, 'config': climatemaps.contour.ContourPlotConfig(0, 30, colormap=plt.cm.jet_r, title='Wet days', unit='days') }, 'wind': { 'filepath': 'data/wind/cwnd6190.dat', 'conversion_factor': 0.1, 'config': climatemaps.contour.ContourPlotConfig(0, 9, colormap=plt.cm.jet, title='Wind speed', unit='m/s') }, 'radiation': { 'filepath': 'data/radiation/crad6190.dat', 'conversion_factor': 1.0, 'config': climatemaps.contour.ContourPlotConfig(0, 300, colormap=plt.cm.jet, title='Radiation', unit='W/m^2') }, 'vapourpressure': { 'filepath': 'data/vapourpressure/cvap6190.dat', 'conversion_factor': 0.1, 'config': climatemaps.contour.ContourPlotConfig(1, 34, colormap=plt.cm.jet, title='Vapour pressure', unit='hPa') }, } def main(): month_upper = 12 n_data_sets = len(TYPES) * month_upper counter = 0 for data_type, settings in TYPES.items(): for month in range(1, month_upper+1): logger.info('create image and tiles for "' + data_type + '" and month ' + str(month)) progress = counter/n_data_sets*100.0 logger.info("progress: " + str(int(progress)) + '%') latrange, lonrange, Z = climatemaps.data.import_climate_data(settings['filepath'], month, settings['conversion_factor']) contourmap = climatemaps.contour.Contour(settings['config'], lonrange, latrange, Z) contourmap.create_contour_data( DATA_OUT_DIR, data_type, month, figure_dpi=1200 ) counter += 1 # for month in range(1, 13): # create_optimal_map(month) def create_optimal_map(month): settings = TYPES['precipitation'] latrange, lonrange, Zpre = climatemaps.data.import_climate_data(settings['filepath'], month, settings['conversion_factor']) settings = TYPES['cloud'] latrange, lonrange, Zcloud = climatemaps.data.import_climate_data(settings['filepath'], month, settings['conversion_factor']) settings = TYPES['maxtemp'] latrange, lonrange, Ztmax = climatemaps.data.import_climate_data(settings['filepath'], month, settings['conversion_factor']) for x in numpy.nditer(Zpre, op_flags=['readwrite']): if x/16.0 > 1.0: x[...] = 0.0 else: x[...] = 1.0 - x/16.0 for x in numpy.nditer(Ztmax, op_flags=['readwrite']): temp_ideal = 22 x[...] = 1.0 - math.pow((x-temp_ideal)/10.0, 2) Zscore_cloud = (100 - Zcloud)/100 Z = (Zpre + Zscore_cloud + Ztmax) / 3.0 * 10.0 for x in numpy.nditer(Z, op_flags=['readwrite']): x[...] = max(x, 0.0) config = climatemaps.contour.ContourPlotConfig(0.0, 9.0, colormap=plt.cm.RdYlGn, unit='') contourmap = climatemaps.contour.Contour(config, lonrange, latrange, Z) contourmap.create_contour_data( DATA_OUT_DIR, 'optimal', month, figure_dpi=1000 ) print('month done: ' + str(month)) if __name__ == "__main__": main()
mit
Lucas-Armand/genetic-algorithm
dev/6ºSemana/testes of speed.py
5
3255
# -*- coding: utf-8 -*- import os import csv import random import numpy as np import timeit import time as Time import matplotlib.pyplot as plt import matplotlib.animation as animation from itertools import product, combinations class Block: def __init__(self,point,a,b,c,weight,btype): self.p=point self.a=a self.b=b self.c=c self.w=weight self.t=btype def csv_read(name): #Metodo de leitura, transforma um arquivo CSV em um vetor CSV=open(name,'r') dados=CSV.read() dados=dados.replace(',','.') dados=dados.replace(';',',') CSV.close() CSV=open("temp.csv",'w') CSV.write(dados) CSV.close() CSV=open("temp.csv",'r') dados=csv.reader(CSV) v=[] for i in dados: I=[] for j in i: try: j = float(j) except: pass I.append(j) v.append(I) CSV.close() os.remove("temp.csv") return (v) def defineGeometry(name): vect = csv_read(name) blockNumber ={} for i in vect: a = i[1] b = i[2] c = i[3] point = [i[4],i[5],i[6]] weight = i[7] btype = i[-1] block = Block(point,a,b,c,weight,btype) blockNumber[i[0]] = block return blockNumber bNumb=defineGeometry('GeometriaNavio.csv') # Define vicinity #deck vicinity={1:[2]} for i in range(2,16): vicinity[i] = [i-1,i+1] vicinity[16] = [15] #side vicinity[17] = [18,19] vicinity[18] = [17,20] for i in range(19,31): v = i-1 if i%2==0 else i+1 vicinity[i] = [v,i-2,i+2] vicinity[31] = [29,32] vicinity[32] = [30,31] #bott vicinity[33] = [34,35] vicinity[34] = [33,36] for i in range(35,63): v = i-1 if i%2==0 else i+1 vicinity[i] = [v,i-2,i+2] vicinity[63] = [61,64] vicinity[64] = [63,62] #coff vicinity[65] = [66] for i in range(66,70): vicinity[i] = [i-1,i+1] vicinity[70] = [69] alfa = 10 beta = 1 built = [] time = 0 append = built.append def order(x): return vicinity[x] def time(bNumb,vicinity,chromo): t_time = Time.time() alfa = 1 built = [] time = 0 append = built.append def time_vector(x,y): for i in y: if i in built: time = alfa break try:time except: time = 10*alfa append(x) return time vic = [vicinity[x] for x in chromo] time = sum((time_vector(x,y) for x,y in zip(chromo,vic))) return time chromo = [44, 39, 56, 47, 49, 37, 42, 46, 51, 58, 60, 62, 52, 41, 35, 33, 50, 61, 54, 34, 59, 43, 48, 45, 55, 53, 38, 57, 64, 67, 68, 63, 40, 36, 21, 66, 22, 6, 20, 65, 18, 5, 17, 69, 28, 27, 70, 29, 1, 12, 30, 13, 14, 26, 31, 24, 19, 2, 3, 4, 25, 11, 32, 10, 15, 16, 9, 23, 7, 8] import cProfile cProfile.run('time(bNumb,vicinity,chromo)') ## ##print timeit.timeit(setup='from __main__ import chromo;'+ ## 'from __main__ import bNumb;'+ ## 'from __main__ import time;'+ ## 'from __main__ import vicinity ' ## ,stmt='time(bNumb,vicinity,chromo)') #print t.timeit(number = 1000000)
gpl-3.0
tosolveit/scikit-learn
examples/model_selection/plot_roc_crossval.py
247
3253
""" ============================================================= Receiver Operating Characteristic (ROC) with cross validation ============================================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data, and how different the splits generated by K-fold cross-validation are from one another. .. note:: See also :func:`sklearn.metrics.auc_score`, :func:`sklearn.cross_validation.cross_val_score`, :ref:`example_model_selection_plot_roc.py`, """ print(__doc__) import numpy as np from scipy import interp import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import StratifiedKFold ############################################################################### # Data IO and generation # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target X, y = X[y != 2], y[y != 2] n_samples, n_features = X.shape # Add noisy features random_state = np.random.RandomState(0) X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] ############################################################################### # Classification and ROC analysis # Run classifier with cross-validation and plot ROC curves cv = StratifiedKFold(y, n_folds=6) classifier = svm.SVC(kernel='linear', probability=True, random_state=random_state) mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) all_tpr = [] for i, (train, test) in enumerate(cv): probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') mean_tpr /= len(cv) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, 'k--', label='Mean ROC (area = %0.2f)' % mean_auc, lw=2) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show()
bsd-3-clause
nikitasingh981/scikit-learn
examples/ensemble/plot_isolation_forest.py
39
2361
""" ========================================== IsolationForest example ========================================== An example using IsolationForest for anomaly detection. The IsolationForest 'isolates' observations by randomly selecting a feature and then randomly selecting a split value between the maximum and minimum values of the selected feature. Since recursive partitioning can be represented by a tree structure, the number of splittings required to isolate a sample is equivalent to the path length from the root node to the terminating node. This path length, averaged over a forest of such random trees, is a measure of normality and our decision function. Random partitioning produces noticeable shorter paths for anomalies. Hence, when a forest of random trees collectively produce shorter path lengths for particular samples, they are highly likely to be anomalies. .. [1] Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. "Isolation forest." Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import IsolationForest rng = np.random.RandomState(42) # Generate train data X = 0.3 * rng.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rng.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = IsolationForest(max_samples=100, random_state=rng) clf.fit(X_train) y_pred_train = clf.predict(X_train) y_pred_test = clf.predict(X_test) y_pred_outliers = clf.predict(X_outliers) # plot the line, the samples, and the nearest vectors to the plane xx, yy = np.meshgrid(np.linspace(-5, 5, 50), np.linspace(-5, 5, 50)) Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) plt.title("IsolationForest") plt.contourf(xx, yy, Z, cmap=plt.cm.Blues_r) b1 = plt.scatter(X_train[:, 0], X_train[:, 1], c='white') b2 = plt.scatter(X_test[:, 0], X_test[:, 1], c='green') c = plt.scatter(X_outliers[:, 0], X_outliers[:, 1], c='red') plt.axis('tight') plt.xlim((-5, 5)) plt.ylim((-5, 5)) plt.legend([b1, b2, c], ["training observations", "new regular observations", "new abnormal observations"], loc="upper left") plt.show()
bsd-3-clause
RachitKansal/scikit-learn
sklearn/cluster/tests/test_dbscan.py
176
12155
""" Tests for DBSCAN clustering algorithm """ import pickle import numpy as np from scipy.spatial import distance from scipy import sparse from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_in from sklearn.utils.testing import assert_not_in from sklearn.neighbors import NearestNeighbors from sklearn.cluster.dbscan_ import DBSCAN from sklearn.cluster.dbscan_ import dbscan from sklearn.cluster.tests.common import generate_clustered_data from sklearn.metrics.pairwise import pairwise_distances n_clusters = 3 X = generate_clustered_data(n_clusters=n_clusters) def test_dbscan_similarity(): # Tests the DBSCAN algorithm with a similarity array. # Parameters chosen specifically for this task. eps = 0.15 min_samples = 10 # Compute similarities D = distance.squareform(distance.pdist(X)) D /= np.max(D) # Compute DBSCAN core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - (1 if -1 in labels else 0) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric="precomputed", eps=eps, min_samples=min_samples) labels = db.fit(D).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_feature(): # Tests the DBSCAN algorithm with a feature vector array. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 metric = 'euclidean' # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples) labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_sparse(): core_sparse, labels_sparse = dbscan(sparse.lil_matrix(X), eps=.8, min_samples=10) core_dense, labels_dense = dbscan(X, eps=.8, min_samples=10) assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_sparse_precomputed(): D = pairwise_distances(X) nn = NearestNeighbors(radius=.9).fit(X) D_sparse = nn.radius_neighbors_graph(mode='distance') # Ensure it is sparse not merely on diagonals: assert D_sparse.nnz < D.shape[0] * (D.shape[0] - 1) core_sparse, labels_sparse = dbscan(D_sparse, eps=.8, min_samples=10, metric='precomputed') core_dense, labels_dense = dbscan(D, eps=.8, min_samples=10, metric='precomputed') assert_array_equal(core_dense, core_sparse) assert_array_equal(labels_dense, labels_sparse) def test_dbscan_no_core_samples(): rng = np.random.RandomState(0) X = rng.rand(40, 10) X[X < .8] = 0 for X_ in [X, sparse.csr_matrix(X)]: db = DBSCAN(min_samples=6).fit(X_) assert_array_equal(db.components_, np.empty((0, X_.shape[1]))) assert_array_equal(db.labels_, -1) assert_equal(db.core_sample_indices_.shape, (0,)) def test_dbscan_callable(): # Tests the DBSCAN algorithm with a callable metric. # Parameters chosen specifically for this task. # Different eps to other test, because distance is not normalised. eps = 0.8 min_samples = 10 # metric is the function reference, not the string key. metric = distance.euclidean # Compute DBSCAN # parameters chosen for task core_samples, labels = dbscan(X, metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(metric=metric, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) def test_dbscan_balltree(): # Tests the DBSCAN algorithm with balltree for neighbor calculation. eps = 0.8 min_samples = 10 D = pairwise_distances(X) core_samples, labels = dbscan(D, metric="precomputed", eps=eps, min_samples=min_samples) # number of clusters, ignoring noise if present n_clusters_1 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_1, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_2 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_2, n_clusters) db = DBSCAN(p=2.0, eps=eps, min_samples=min_samples, algorithm='kd_tree') labels = db.fit(X).labels_ n_clusters_3 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_3, n_clusters) db = DBSCAN(p=1.0, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_4 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_4, n_clusters) db = DBSCAN(leaf_size=20, eps=eps, min_samples=min_samples, algorithm='ball_tree') labels = db.fit(X).labels_ n_clusters_5 = len(set(labels)) - int(-1 in labels) assert_equal(n_clusters_5, n_clusters) def test_input_validation(): # DBSCAN.fit should accept a list of lists. X = [[1., 2.], [3., 4.]] DBSCAN().fit(X) # must not raise exception def test_dbscan_badargs(): # Test bad argument values: these should all raise ValueErrors assert_raises(ValueError, dbscan, X, eps=-1.0) assert_raises(ValueError, dbscan, X, algorithm='blah') assert_raises(ValueError, dbscan, X, metric='blah') assert_raises(ValueError, dbscan, X, leaf_size=-1) assert_raises(ValueError, dbscan, X, p=-1) def test_pickle(): obj = DBSCAN() s = pickle.dumps(obj) assert_equal(type(pickle.loads(s)), obj.__class__) def test_boundaries(): # ensure min_samples is inclusive of core point core, _ = dbscan([[0], [1]], eps=2, min_samples=2) assert_in(0, core) # ensure eps is inclusive of circumference core, _ = dbscan([[0], [1], [1]], eps=1, min_samples=2) assert_in(0, core) core, _ = dbscan([[0], [1], [1]], eps=.99, min_samples=2) assert_not_in(0, core) def test_weighted_dbscan(): # ensure sample_weight is validated assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2]) assert_raises(ValueError, dbscan, [[0], [1]], sample_weight=[2, 3, 4]) # ensure sample_weight has an effect assert_array_equal([], dbscan([[0], [1]], sample_weight=None, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 5], min_samples=6)[0]) assert_array_equal([0], dbscan([[0], [1]], sample_weight=[6, 5], min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 6], min_samples=6)[0]) # points within eps of each other: assert_array_equal([0, 1], dbscan([[0], [1]], eps=1.5, sample_weight=[5, 1], min_samples=6)[0]) # and effect of non-positive and non-integer sample_weight: assert_array_equal([], dbscan([[0], [1]], sample_weight=[5, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[5.9, 0.1], eps=1.5, min_samples=6)[0]) assert_array_equal([0, 1], dbscan([[0], [1]], sample_weight=[6, 0], eps=1.5, min_samples=6)[0]) assert_array_equal([], dbscan([[0], [1]], sample_weight=[6, -1], eps=1.5, min_samples=6)[0]) # for non-negative sample_weight, cores should be identical to repetition rng = np.random.RandomState(42) sample_weight = rng.randint(0, 5, X.shape[0]) core1, label1 = dbscan(X, sample_weight=sample_weight) assert_equal(len(label1), len(X)) X_repeated = np.repeat(X, sample_weight, axis=0) core_repeated, label_repeated = dbscan(X_repeated) core_repeated_mask = np.zeros(X_repeated.shape[0], dtype=bool) core_repeated_mask[core_repeated] = True core_mask = np.zeros(X.shape[0], dtype=bool) core_mask[core1] = True assert_array_equal(np.repeat(core_mask, sample_weight), core_repeated_mask) # sample_weight should work with precomputed distance matrix D = pairwise_distances(X) core3, label3 = dbscan(D, sample_weight=sample_weight, metric='precomputed') assert_array_equal(core1, core3) assert_array_equal(label1, label3) # sample_weight should work with estimator est = DBSCAN().fit(X, sample_weight=sample_weight) core4 = est.core_sample_indices_ label4 = est.labels_ assert_array_equal(core1, core4) assert_array_equal(label1, label4) est = DBSCAN() label5 = est.fit_predict(X, sample_weight=sample_weight) core5 = est.core_sample_indices_ assert_array_equal(core1, core5) assert_array_equal(label1, label5) assert_array_equal(label1, est.labels_) def test_dbscan_core_samples_toy(): X = [[0], [2], [3], [4], [6], [8], [10]] n_samples = len(X) for algorithm in ['brute', 'kd_tree', 'ball_tree']: # Degenerate case: every sample is a core sample, either with its own # cluster or including other close core samples. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=1) assert_array_equal(core_samples, np.arange(n_samples)) assert_array_equal(labels, [0, 1, 1, 1, 2, 3, 4]) # With eps=1 and min_samples=2 only the 3 samples from the denser area # are core samples. All other points are isolated and considered noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=2) assert_array_equal(core_samples, [1, 2, 3]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # Only the sample in the middle of the dense area is core. Its two # neighbors are edge samples. Remaining samples are noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=3) assert_array_equal(core_samples, [2]) assert_array_equal(labels, [-1, 0, 0, 0, -1, -1, -1]) # It's no longer possible to extract core samples with eps=1: # everything is noise. core_samples, labels = dbscan(X, algorithm=algorithm, eps=1, min_samples=4) assert_array_equal(core_samples, []) assert_array_equal(labels, -np.ones(n_samples)) def test_dbscan_precomputed_metric_with_degenerate_input_arrays(): # see https://github.com/scikit-learn/scikit-learn/issues/4641 for # more details X = np.eye(10) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1) X = np.zeros((10, 10)) labels = DBSCAN(eps=0.5, metric='precomputed').fit(X).labels_ assert_equal(len(set(labels)), 1)
bsd-3-clause
tayebzaidi/HonorsThesisTZ
ThesisCode/DES_Pipeline/gen_lightcurves/visualizeLCurves.py
1
3137
#!/usr/bin/env python import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import json import os import sys import numpy as np import math import pickle def main(): path = "./des_sn.p" output_lightcurves_file = 'selectedLightcurves' output_lightcurves = [] with open(path, 'rb') as f: lightcurves = pickle.load(f) filenames = list(lightcurves.keys()) #Randomize the file order to allow for fairer selection of the sub-sample filenames = np.random.permutation(filenames) num_files = len(filenames) j = 0 for filename in filenames: j += 1 objname = str(filename) file_data = lightcurves[filename] #Ignore all non-CSP or CfA entries #for k in list(file_data.keys()): # if not (k.endswith('CSP') or ('CfA' in k)): # del file_data[k] if len(file_data) == 0: continue N = len(file_data) if N < 3: cols = 1 else: cols = 3 rows = int(math.ceil(N / cols)) gs = gridspec.GridSpec(rows, cols) #fig = plt.figure(figsize=(10, 12)) #fig.suptitle(objname) for i, filt in enumerate(file_data.keys()): mjd = file_data[filt]['mjd'] mag = file_data[filt]['mag'] mag_err = file_data[filt]['dmag'] model_phase = file_data[filt]['modeldate'] model_mag = file_data[filt]['modelmag'] #bspline_mag = file_data[filt]['bsplinemag'] #modelmag_sub = file_data[filt]['modelmag_sub'] type = file_data[filt]['type'] #ax = fig.add_subplot(gs[i]) #ax.errorbar(mjd, mag, fmt='r', yerr=mag_err,label='Original Data', alpha=0.7) #ymin, ymax = ax.get_ylim() #ax.plot(model_phase, model_mag, '-k', label='GP Smoothed Data') #ax.plot(model_phase, bspline_mag, '-g', label='Spline Smoothed Data') #ax.plot(model_phase, modelmag_sub, '-k', label='GP/Bspline subtracted', linewidth=1.5) #ax.set_ylim(ymin, ymax) #Print outlier stats mag_range = np.ptp(model_mag) old_mag_range = np.ptp(mag) #print(objname, filt) #plt.draw() #plt.pause(0.05) print("Number of files currently: ", len(output_lightcurves)) print("Supernova Type: ", type) #keystroke = input("<Hit Enter To Close>") if j>2: keystroke = 'q' else: print(i) keystroke = '.' if keystroke == '.': output_lightcurves.append(objname) elif keystroke == 'q': print("Writing to file") with open(output_lightcurves_file, 'w') as out: for objname in output_lightcurves: out.write(objname + '\n') #plt.close() sys.exit() #plt.close() with open(output_lightcurves_file, 'w') as out: for objname in output_lightcurves: out.write(objname + '\n') if __name__=="__main__": sys.exit(main())
gpl-3.0
ChangLe008/iarc007_hitcsc
iarc/src/pilot/scripts/lidar.py
2
2836
#coding:UTF-8 """ Created on 2017/04/07 @author: Leonidas """ import matplotlib.pyplot as plt import string import math #ResultFormat = "%0.4f" #Usage: ResultFormat%(1/3) str = '/home/hitcsc/catkin_ws/log/iarc/lidar.txt' a = open(str) text = a.readlines() obs_num = 0 class obs: def __init__(self): self.real = 0 # 可靠性 self.x = 0 self.y = 0 self.serial = 0 self.lost_counter = 0 t_m = [] x = [] y = [] temp_x = [] temp_y = [] x0 = [] y0 = [] x1 = [] y1 = [] for ctdata in text: ct = ctdata.split("\t") t_m.append(string.atoi(ct[0])) for item in range(int(string.atof(ct[0]))): temp_x.append(string.atof(ct[1+item*2])) temp_y.append(string.atof(ct[2+item*2])) x.append(temp_x) y.append(temp_y) temp_x = [] temp_y = [] obstacle = [] for lenth in range(len(t_m)): abc_instance = [obs() for i in range(t_m[lenth])] counter = 1 for i in range(t_m[lenth]): if(math.sqrt(x[lenth][i]*x[lenth][i]+y[lenth][i]*y[lenth][i])<=0.5): abc_instance[i].real=0 else: abc_instance[i].real=1 abc_instance[i].x=x[lenth][i] abc_instance[i].y=y[lenth][i] abc_instance[i].serial=counter counter = counter + 1 if len(obstacle)==0: for i in range(t_m[lenth]): obs_temp = 0 if abc_instance[i].real==1: obstacle.append(abc_instance[i]) obstacle[obs_temp].serial= obs_temp+1 obs_temp = obs_temp+1 # elif counter == len(obstacle): # 12 else: temp_dis = [] for h in range(len(obstacle)): for i in range(t_m[lenth]): if abc_instance[i].real==1: temp_dis.append(math.sqrt((abc_instance[i].x-obstacle[h].x)*(abc_instance[i].x-obstacle[h].x)+(abc_instance[i].y-obstacle[h].y)*(abc_instance[i].y-obstacle[h].y))) else: temp_dis.append(100000) aa = temp_dis.index(min(temp_dis)) if aa <=0.05: obstacle[h].x = abc_instance[aa].x obstacle[h].y = abc_instance[aa].y obstacle[h].lost_counter = 0 obstacle[h].real = 1 print obstacle[h].x,obstacle[h].y,h elif obstacle[h].lost_counter>=10: obstacle[h].real = 0 else: obstacle[h].lost_counter = obstacle[h].lost_counter+1 temp_dis = [] # x0.append(obstacle[0].x) # y0.append(obstacle[0].y) x1.append(obstacle[2].x) y1.append(obstacle[2].y) # plt.plot(ttt,ul,'k',label='ul') # plt.legend() # plt.grid() # plt.show() # print xs plt.plot(x1,y1,'r') plt.plot(x0,y0,'b2') plt.grid() plt.show() print abc_instance[0].lost_counter
bsd-2-clause
yunfeilu/scikit-learn
examples/classification/plot_classifier_comparison.py
66
4895
#!/usr/bin/python # -*- coding: utf-8 -*- """ ===================== Classifier comparison ===================== A comparison of a several classifiers in scikit-learn on synthetic datasets. The point of this example is to illustrate the nature of decision boundaries of different classifiers. This should be taken with a grain of salt, as the intuition conveyed by these examples does not necessarily carry over to real datasets. Particularly in high-dimensional spaces, data can more easily be separated linearly and the simplicity of classifiers such as naive Bayes and linear SVMs might lead to better generalization than is achieved by other classifiers. The plots show training points in solid colors and testing points semi-transparent. The lower right shows the classification accuracy on the test set. """ print(__doc__) # Code source: Gaël Varoquaux # Andreas Müller # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes", "Linear Discriminant Analysis", "Quadratic Discriminant Analysis"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB(), LinearDiscriminantAnalysis(), QuadraticDiscriminantAnalysis()] X, y = make_classification(n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(noise=0.3, random_state=0), make_circles(noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
bsd-3-clause
fermiPy/lcpipe
runLCWeekly.py
1
1277
import sys from fermipy import utils utils.init_matplotlib_backend() from fermipy.gtanalysis import GTAnalysis from fermipy.utils import * import yaml import pprint import numpy import argparse from fermipy.gtanalysis import GTAnalysis def main(): usage = "usage: %(prog)s [config file]" description = "Run fermipy analysis chain." parser = argparse.ArgumentParser(usage=usage,description=description) parser.add_argument('--config', default = 'sample_config.yaml') parser.add_argument('--source', default = None) args = parser.parse_args() gta = GTAnalysis(args.config) if args.source is None: src_name = gta.roi.sources[0].name gta.setup() gta.optimize() loc = gta.localize(src_name, free_radius=1.0, update=True, make_plots=True) model = {'Index' : 2.0, 'SpatialModel' : 'PointSource'} srcs = gta.find_sources(model=model, sqrt_ts_threshold=5.0, min_separation=0.5) sed = gta.sed(src_name, free_radius=1.0, make_plots=True) gta.tsmap(make_plots=True) gta.write_roi('fit0') lc = gta.lightcurve(src_name, binsz=86400.*7.0, free_radius=3.0, use_scaled_srcmap=True, multithread=False) if __name__ == "__main__": main()
bsd-3-clause
MattNolanLab/ei-attractor
grid_cell_model/simulations/007_noise/figures/paper/ee_connections/config.py
1
2573
'''Configuration file for the noise paper.''' from __future__ import absolute_import, print_function import os.path import matplotlib.ticker as ti from noisefigs.plotters.base import SeparateMultipageSaver def get_config(): return _config ROOT_DIR = ['simulation_data', 'ee_connections'] _config = { 'grids_data_root': os.path.join(*(ROOT_DIR + ['grids'])), 'bump_data_root': os.path.join(*(ROOT_DIR + ['gamma_bump'])), 'vel_data_root': os.path.join(*(ROOT_DIR + ['velocity'])), 'const_pos_data_root': None, 'singleDataRoot': None, 'GridExampleRectPlotter': { 'fig_saver': SeparateMultipageSaver(None, 'pdf') }, 'MainBumpFormationPlotter': { 'plot_grid_contours': [1, 1, 1], }, 'GammaSweepsPlotter': { 'plot_grid_contours': [0, 1, 0], 'AC_vmin': -0.12, 'AC_vmax': 0.68, 'F_vmin': 30, 'F_vmax': 121.5, 'F_cbar_kw': dict( extend = 'neither', ), }, 'GammaExamplePlotter': { 'yscale_kw': [[ dict( scaleLen=5, unitsText='nA', x=.5, y=.1, size='x-small' ), dict( scaleLen=0.5, unitsText='nA', x=.5, y=.05, size='x-small' ), dict( scaleLen=0.5, unitsText='nA', x=.5, y=.05, size='x-small' )], [dict( scaleLen=3, unitsText='nA', x=.5, y=.05, size='x-small' ), dict( scaleLen=0.5, unitsText='nA', x=.5, y=.05, size='x-small' ), dict( scaleLen=0.5, unitsText='nA', x=.55, y=0, size='x-small' )]], }, 'MaxPopulationFRSweepsPlotter': { 'plot_grid_contours': [1, 1, 1], }, 'PSeizureSweepPlotter': { 'plot_grid_contours': [1, 1, 1], 'FRThreshold': 300, }, 'BumpDriftAtTimePlotter': { 'plot_grid_contours': [1, 1, 1], }, 'VelFitErrSweepPlotter': { 'plot_contours': [1, 1, 1], 'vmin': 0.2, 'vmax': 13.93, }, 'VelFitStdSweepPlotter': { 'plot_contours': [1, 1, 1], }, 'VelSlopeSweepPlotter': { 'plot_contours': [1, 1, 1], 'vmin': -0.26, 'vmax': 1.26, }, }
gpl-3.0
Eward5513/oceanbase
oceanbase_0.4/tools/deploy/perf/1.py
12
1857
import datetime import re import sys try: import matplotlib.pyplot as plt except ImportError: plt = None time_format = "%Y-%m-%d %H:%M:%S" d = dict() start_time = None start_time = None sql_count = 0 sql_time = 0 sql_time_dist = dict() rpc_time = 0 urpc_time = 0 wait_time = 0 qps2time = dict() rpc_times = [] urpc_times = [] wait_times = [] for l in sys.stdin: m = re.search(r'trace_id=\[(\d+)\] sql=\[.*\] sql_to_logicalplan=\[\d+\] logicalplan_to_physicalplan=\[\d+\] handle_sql_time=\[(\d+)\] wait_sql_queue_time=\[(\d+)\] rpc:channel_id=\[\d+\] latency=\[(\d+)\] print_time=\[(\d+)\]', l) if m is not None: end_time = int(m.group(5)) if start_time is None: start_time = end_time trace_id = m.group(1) ts = m.group(5)[:-6] d[trace_id] = dict( sql_time = int(m.group(2)), wait_time = int(m.group(3)), rpc_time = int(m.group(4)), ) sql_count += 1 sql_time += d[trace_id]['sql_time'] if sql_time_dist.has_key(d[trace_id]['sql_time']): sql_time_dist[d[trace_id]['sql_time']] += 1 else: sql_time_dist[d[trace_id]['sql_time']] = 0 wait_time += d[trace_id]['wait_time'] wait_times.append(d[trace_id]['wait_time']) rpc_time += d[trace_id]['rpc_time'] rpc_times.append(d[trace_id]['rpc_time']) if qps2time.has_key(ts): qps2time[ts] += 1 else: qps2time[ts] = 0 elapsed_seconds = (end_time - start_time) / 10**6 qps = sql_count / elapsed_seconds avg_sql_time = float(sql_time) / sql_count avg_rpc_time = float(rpc_time) / sql_count avg_urpc_time = float(urpc_time) / sql_count avg_wait_time = float(wait_time) / sql_count print "QPS: %d" % (qps) print "AVG TIME: %f" % (avg_sql_time) print "AVG RPC TIME: %f" % (avg_rpc_time) print "AVG WAIT TIME: %f" % (avg_wait_time)
gpl-2.0
memo/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_test.py
9
59208
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { embedding_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) model_ops = dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') wire_var = dnn_linear_combined._get_embedding_variable( embedding_wire, 'dnn', 'dnn/input_from_feature_columns') for _ in range(2): _, language_value, wire_value = sess.run( [model_ops.train_op, language_var, wire_var]) initial_value = np.full_like(language_value, 0.1) self.assertTrue(np.all(np.isclose(language_value, initial_value))) self.assertFalse(np.all(np.isclose(wire_value, initial_value))) class DNNEstimatorTest(test.TestCase): def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNEstimator) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels dnn_estimator = dnn.DNNEstimator( head=head_lib.multi_class_head(2, weight_column_name='w'), feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) dnn_estimator.fit(input_fn=_input_fn_train, steps=5) scores = dnn_estimator.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) class DNNClassifierTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNClassifier) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn.DNNClassifier( feature_columns=[embedding_language], hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertEqual(1, classifier.params['input_layer_min_slice_size']) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn classifier.fit(input_fn=input_fn, steps=5) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=5) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def _assertBinaryPredictions(self, expected_len, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, (0, 1)) def _assertProbabilities(self, expected_batch_size, expected_n_classes, probabilities): self.assertEqual(expected_batch_size, len(probabilities)) for b in range(expected_batch_size): self.assertEqual(expected_n_classes, len(probabilities[b])) for i in range(expected_n_classes): self._assertInRange(0.0, 1.0, probabilities[b][i]) def testEstimatorWithCoreFeatureColumns(self): def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = fc_core.categorical_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ fc_core.embedding_column(language_column, dimension=1), fc_core.numeric_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes(input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_float_label, steps=50) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predictions_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self._assertProbabilities(3, 2, predictions_proba) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=200) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but label shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[10, 10], label_keys=label_keys, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn.DNNClassifier( n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testPredict_AsIterableFalse(self): """Tests predict and predict_prob methods with as_iterable=False.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] n_classes = 3 classifier = dnn.DNNClassifier( n_classes=n_classes, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predicted_classes = classifier.predict_classes( input_fn=_input_fn, as_iterable=False) self._assertBinaryPredictions(3, predicted_classes) predictions = classifier.predict(input_fn=_input_fn, as_iterable=False) self.assertAllEqual(predicted_classes, predictions) probabilities = classifier.predict_proba( input_fn=_input_fn, as_iterable=False) self._assertProbabilities(3, n_classes, probabilities) def testPredict_AsIterable(self): """Tests predict and predict_prob methods with as_iterable=True.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertListEqual(predicted_classes, [1, 0, 0]) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predicted_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose( predicted_proba, [[0., 1., 0.], [1., 0., 0.], [1., 0., 0.]], atol=0.3) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) labels = math_ops.cast(labels, predictions.dtype) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn.DNNClassifier( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] model_dir = tempfile.mkdtemp() classifier = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict_classes(input_fn=predict_input_fn) del classifier classifier2 = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict_classes(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) feature_columns = [ feature_column.real_valued_column('age'), feature_column.embedding_column( language, dimension=1) ] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=5) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertIn('dnn/multi_class_head/centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) class DNNRegressorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNRegressor( feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn regressor.fit(input_fn=input_fn, steps=200) scores = regressor.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores) def testRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertIn('loss', scores) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predicted_scores, atol=0.2) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predicted_scores, atol=0.2) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics that use MetricSpec.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertIn('dnn/regression_head/centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertNotIn('centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = dnn.DNNRegressor(feature_columns=feature_columns, hidden_units=[3, 3]) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
apache-2.0
toastedcornflakes/scikit-learn
examples/model_selection/plot_precision_recall.py
74
6377
""" ================ Precision-Recall ================ Example of Precision-Recall metric to evaluate classifier output quality. In information retrieval, precision is a measure of result relevancy, while recall is a measure of how many truly relevant results are returned. A high area under the curve represents both high recall and high precision, where high precision relates to a low false positive rate, and high recall relates to a low false negative rate. High scores for both show that the classifier is returning accurate results (high precision), as well as returning a majority of all positive results (high recall). A system with high recall but low precision returns many results, but most of its predicted labels are incorrect when compared to the training labels. A system with high precision but low recall is just the opposite, returning very few results, but most of its predicted labels are correct when compared to the training labels. An ideal system with high precision and high recall will return many results, with all results labeled correctly. Precision (:math:`P`) is defined as the number of true positives (:math:`T_p`) over the number of true positives plus the number of false positives (:math:`F_p`). :math:`P = \\frac{T_p}{T_p+F_p}` Recall (:math:`R`) is defined as the number of true positives (:math:`T_p`) over the number of true positives plus the number of false negatives (:math:`F_n`). :math:`R = \\frac{T_p}{T_p + F_n}` These quantities are also related to the (:math:`F_1`) score, which is defined as the harmonic mean of precision and recall. :math:`F1 = 2\\frac{P \\times R}{P+R}` It is important to note that the precision may not decrease with recall. The definition of precision (:math:`\\frac{T_p}{T_p + F_p}`) shows that lowering the threshold of a classifier may increase the denominator, by increasing the number of results returned. If the threshold was previously set too high, the new results may all be true positives, which will increase precision. If the previous threshold was about right or too low, further lowering the threshold will introduce false positives, decreasing precision. Recall is defined as :math:`\\frac{T_p}{T_p+F_n}`, where :math:`T_p+F_n` does not depend on the classifier threshold. This means that lowering the classifier threshold may increase recall, by increasing the number of true positive results. It is also possible that lowering the threshold may leave recall unchanged, while the precision fluctuates. The relationship between recall and precision can be observed in the stairstep area of the plot - at the edges of these steps a small change in the threshold considerably reduces precision, with only a minor gain in recall. See the corner at recall = .59, precision = .8 for an example of this phenomenon. Precision-recall curves are typically used in binary classification to study the output of a classifier. In order to extend Precision-recall curve and average precision to multi-class or multi-label classification, it is necessary to binarize the output. One curve can be drawn per label, but one can also draw a precision-recall curve by considering each element of the label indicator matrix as a binary prediction (micro-averaging). .. note:: See also :func:`sklearn.metrics.average_precision_score`, :func:`sklearn.metrics.recall_score`, :func:`sklearn.metrics.precision_score`, :func:`sklearn.metrics.f1_score` """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from itertools import cycle from sklearn import svm, datasets from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target # setup plot details colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) lw = 2 # Binarize the output y = label_binarize(y, classes=[0, 1, 2]) n_classes = y.shape[1] # Add noisy features random_state = np.random.RandomState(0) n_samples, n_features = X.shape X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] # Split into training and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=random_state) # Run classifier classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True, random_state=random_state)) y_score = classifier.fit(X_train, y_train).decision_function(X_test) # Compute Precision-Recall and plot curve precision = dict() recall = dict() average_precision = dict() for i in range(n_classes): precision[i], recall[i], _ = precision_recall_curve(y_test[:, i], y_score[:, i]) average_precision[i] = average_precision_score(y_test[:, i], y_score[:, i]) # Compute micro-average ROC curve and ROC area precision["micro"], recall["micro"], _ = precision_recall_curve(y_test.ravel(), y_score.ravel()) average_precision["micro"] = average_precision_score(y_test, y_score, average="micro") # Plot Precision-Recall curve plt.clf() plt.plot(recall[0], precision[0], lw=lw, color='navy', label='Precision-Recall curve') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title('Precision-Recall example: AUC={0:0.2f}'.format(average_precision[0])) plt.legend(loc="lower left") plt.show() # Plot Precision-Recall curve for each class plt.clf() plt.plot(recall["micro"], precision["micro"], color='gold', lw=lw, label='micro-average Precision-recall curve (area = {0:0.2f})' ''.format(average_precision["micro"])) for i, color in zip(range(n_classes), colors): plt.plot(recall[i], precision[i], color=color, lw=lw, label='Precision-recall curve of class {0} (area = {1:0.2f})' ''.format(i, average_precision[i])) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title('Extension of Precision-Recall curve to multi-class') plt.legend(loc="lower right") plt.show()
bsd-3-clause
bigdataelephants/scikit-learn
sklearn/decomposition/__init__.py
99
1331
""" The :mod:`sklearn.decomposition` module includes matrix decomposition algorithms, including among others PCA, NMF or ICA. Most of the algorithms of this module can be regarded as dimensionality reduction techniques. """ from .nmf import NMF, ProjectedGradientNMF from .pca import PCA, RandomizedPCA from .incremental_pca import IncrementalPCA from .kernel_pca import KernelPCA from .sparse_pca import SparsePCA, MiniBatchSparsePCA from .truncated_svd import TruncatedSVD from .fastica_ import FastICA, fastica from .dict_learning import (dict_learning, dict_learning_online, sparse_encode, DictionaryLearning, MiniBatchDictionaryLearning, SparseCoder) from .factor_analysis import FactorAnalysis from ..utils.extmath import randomized_svd __all__ = ['DictionaryLearning', 'FastICA', 'IncrementalPCA', 'KernelPCA', 'MiniBatchDictionaryLearning', 'MiniBatchSparsePCA', 'NMF', 'PCA', 'ProjectedGradientNMF', 'RandomizedPCA', 'SparseCoder', 'SparsePCA', 'dict_learning', 'dict_learning_online', 'fastica', 'randomized_svd', 'sparse_encode', 'FactorAnalysis', 'TruncatedSVD']
bsd-3-clause
liberatorqjw/scikit-learn
sklearn/datasets/lfw.py
28
17953
"""Loader for the Labeled Faces in the Wild (LFW) dataset This dataset is a collection of JPEG pictures of famous people collected over the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. The typical task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. An alternative task, Face Recognition or Face Identification is: given the picture of the face of an unknown person, identify the name of the person by referring to a gallery of previously seen pictures of identified persons. Both Face Verification and Face Recognition are tasks that are typically performed on the output of a model trained to perform Face Detection. The most popular model for Face Detection is called Viola-Johns and is implemented in the OpenCV library. The LFW faces were extracted by this face detector from various online websites. """ # Copyright (c) 2011 Olivier Grisel <olivier.grisel@ensta.org> # License: BSD 3 clause from os import listdir, makedirs, remove from os.path import join, exists, isdir import logging import numpy as np try: import urllib.request as urllib #for backwards compatibility except ImportError: import urllib from .base import get_data_home, Bunch from ..externals.joblib import Memory from ..externals.six import b logger = logging.getLogger(__name__) BASE_URL = "http://vis-www.cs.umass.edu/lfw/" ARCHIVE_NAME = "lfw.tgz" FUNNELED_ARCHIVE_NAME = "lfw-funneled.tgz" TARGET_FILENAMES = [ 'pairsDevTrain.txt', 'pairsDevTest.txt', 'pairs.txt', ] def scale_face(face): """Scale back to 0-1 range in case of normalization for plotting""" scaled = face - face.min() scaled /= scaled.max() return scaled # # Common private utilities for data fetching from the original LFW website # local disk caching, and image decoding. # def check_fetch_lfw(data_home=None, funneled=True, download_if_missing=True): """Helper function to download any missing LFW data""" data_home = get_data_home(data_home=data_home) lfw_home = join(data_home, "lfw_home") if funneled: archive_path = join(lfw_home, FUNNELED_ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw_funneled") archive_url = BASE_URL + FUNNELED_ARCHIVE_NAME else: archive_path = join(lfw_home, ARCHIVE_NAME) data_folder_path = join(lfw_home, "lfw") archive_url = BASE_URL + ARCHIVE_NAME if not exists(lfw_home): makedirs(lfw_home) for target_filename in TARGET_FILENAMES: target_filepath = join(lfw_home, target_filename) if not exists(target_filepath): if download_if_missing: url = BASE_URL + target_filename logger.warn("Downloading LFW metadata: %s", url) urllib.urlretrieve(url, target_filepath) else: raise IOError("%s is missing" % target_filepath) if not exists(data_folder_path): if not exists(archive_path): if download_if_missing: logger.warn("Downloading LFW data (~200MB): %s", archive_url) urllib.urlretrieve(archive_url, archive_path) else: raise IOError("%s is missing" % target_filepath) import tarfile logger.info("Decompressing the data archive to %s", data_folder_path) tarfile.open(archive_path, "r:gz").extractall(path=lfw_home) remove(archive_path) return lfw_home, data_folder_path def _load_imgs(file_paths, slice_, color, resize): """Internally used to load images""" # Try to import imread and imresize from PIL. We do this here to prevent # the whole sklearn.datasets module from depending on PIL. try: try: from scipy.misc import imread except ImportError: from scipy.misc.pilutil import imread from scipy.misc import imresize except ImportError: raise ImportError("The Python Imaging Library (PIL)" " is required to load data from jpeg files") # compute the portion of the images to load to respect the slice_ parameter # given by the caller default_slice = (slice(0, 250), slice(0, 250)) if slice_ is None: slice_ = default_slice else: slice_ = tuple(s or ds for s, ds in zip(slice_, default_slice)) h_slice, w_slice = slice_ h = (h_slice.stop - h_slice.start) / (h_slice.step or 1) w = (w_slice.stop - w_slice.start) / (w_slice.step or 1) if resize is not None: resize = float(resize) h = int(resize * h) w = int(resize * w) # allocate some contiguous memory to host the decoded image slices n_faces = len(file_paths) if not color: faces = np.zeros((n_faces, h, w), dtype=np.float32) else: faces = np.zeros((n_faces, h, w, 3), dtype=np.float32) # iterate over the collected file path to load the jpeg files as numpy # arrays for i, file_path in enumerate(file_paths): if i % 1000 == 0: logger.info("Loading face #%05d / %05d", i + 1, n_faces) face = np.asarray(imread(file_path)[slice_], dtype=np.float32) face /= 255.0 # scale uint8 coded colors to the [0.0, 1.0] floats if resize is not None: face = imresize(face, resize) if not color: # average the color channels to compute a gray levels # representaion face = face.mean(axis=2) faces[i, ...] = face return faces # # Task #1: Face Identification on picture with names # def _fetch_lfw_people(data_folder_path, slice_=None, color=False, resize=None, min_faces_per_person=0): """Perform the actual data loading for the lfw people dataset This operation is meant to be cached by a joblib wrapper. """ # scan the data folder content to retain people with more that # `min_faces_per_person` face pictures person_names, file_paths = [], [] for person_name in sorted(listdir(data_folder_path)): folder_path = join(data_folder_path, person_name) if not isdir(folder_path): continue paths = [join(folder_path, f) for f in listdir(folder_path)] n_pictures = len(paths) if n_pictures >= min_faces_per_person: person_name = person_name.replace('_', ' ') person_names.extend([person_name] * n_pictures) file_paths.extend(paths) n_faces = len(file_paths) if n_faces == 0: raise ValueError("min_faces_per_person=%d is too restrictive" % min_faces_per_person) target_names = np.unique(person_names) target = np.searchsorted(target_names, person_names) faces = _load_imgs(file_paths, slice_, color, resize) # shuffle the faces with a deterministic RNG scheme to avoid having # all faces of the same person in a row, as it would break some # cross validation and learning algorithms such as SGD and online # k-means that make an IID assumption indices = np.arange(n_faces) np.random.RandomState(42).shuffle(indices) faces, target = faces[indices], target[indices] return faces, target, target_names def fetch_lfw_people(data_home=None, funneled=True, resize=0.5, min_faces_per_person=0, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) people dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Recognition (or Identification): given the picture of a face, find the name of the person given a training set (gallery). Parameters ---------- data_home: optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled: boolean, optional, default: True Download and use the funneled variant of the dataset. resize: float, optional, default 0.5 Ratio used to resize the each face picture. min_faces_per_person: int, optional, default None The extracted dataset will only retain pictures of people that have at least `min_faces_per_person` different pictures. color: boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_: optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- dataset : dict-like object with the following attributes: dataset.data : numpy array of shape (13233, 2914) Each row corresponds to a ravelled face image of original size 62 x 47 pixels. dataset.images : numpy array of shape (13233, 62, 47) Each row is a face image corresponding to one of the 5749 people in the dataset. dataset.target : numpy array of shape (13233,) Labels associated to each face image. Those labels range from 0-5748 and correspond to the person IDs. dataset.DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading LFW people faces from %s', lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_people) # load and memoize the pairs as np arrays faces, target, target_names = load_func( data_folder_path, resize=resize, min_faces_per_person=min_faces_per_person, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=faces.reshape(len(faces), -1), images=faces, target=target, target_names=target_names, DESCR="LFW faces dataset") # # Task #2: Face Verification on pairs of face pictures # def _fetch_lfw_pairs(index_file_path, data_folder_path, slice_=None, color=False, resize=None): """Perform the actual data loading for the LFW pairs dataset This operation is meant to be cached by a joblib wrapper. """ # parse the index file to find the number of pairs to be able to allocate # the right amount of memory before starting to decode the jpeg files with open(index_file_path, 'rb') as index_file: split_lines = [ln.strip().split(b('\t')) for ln in index_file] pair_specs = [sl for sl in split_lines if len(sl) > 2] n_pairs = len(pair_specs) # interating over the metadata lines for each pair to find the filename to # decode and load in memory target = np.zeros(n_pairs, dtype=np.int) file_paths = list() for i, components in enumerate(pair_specs): if len(components) == 3: target[i] = 1 pair = ( (components[0], int(components[1]) - 1), (components[0], int(components[2]) - 1), ) elif len(components) == 4: target[i] = 0 pair = ( (components[0], int(components[1]) - 1), (components[2], int(components[3]) - 1), ) else: raise ValueError("invalid line %d: %r" % (i + 1, components)) for j, (name, idx) in enumerate(pair): try: person_folder = join(data_folder_path, name) except TypeError: person_folder = join(data_folder_path, str(name, 'UTF-8')) filenames = list(sorted(listdir(person_folder))) file_path = join(person_folder, filenames[idx]) file_paths.append(file_path) pairs = _load_imgs(file_paths, slice_, color, resize) shape = list(pairs.shape) n_faces = shape.pop(0) shape.insert(0, 2) shape.insert(0, n_faces // 2) pairs.shape = shape return pairs, target, np.array(['Different persons', 'Same person']) def load_lfw_people(download_if_missing=False, **kwargs): """Alias for fetch_lfw_people(download_if_missing=False) Check fetch_lfw_people.__doc__ for the documentation and parameter list. """ return fetch_lfw_people(download_if_missing=download_if_missing, **kwargs) def fetch_lfw_pairs(subset='train', data_home=None, funneled=True, resize=0.5, color=False, slice_=(slice(70, 195), slice(78, 172)), download_if_missing=True): """Loader for the Labeled Faces in the Wild (LFW) pairs dataset This dataset is a collection of JPEG pictures of famous people collected on the internet, all details are available on the official website: http://vis-www.cs.umass.edu/lfw/ Each picture is centered on a single face. Each pixel of each channel (color in RGB) is encoded by a float in range 0.0 - 1.0. The task is called Face Verification: given a pair of two pictures, a binary classifier must predict whether the two images are from the same person. In the official `README.txt`_ this task is described as the "Restricted" task. As I am not sure as to implement the "Unrestricted" variant correctly, I left it as unsupported for now. .. _`README.txt`: http://vis-www.cs.umass.edu/lfw/README.txt Parameters ---------- subset: optional, default: 'train' Select the dataset to load: 'train' for the development training set, 'test' for the development test set, and '10_folds' for the official evaluation set that is meant to be used with a 10-folds cross validation. data_home: optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. funneled: boolean, optional, default: True Download and use the funneled variant of the dataset. resize: float, optional, default 0.5 Ratio used to resize the each face picture. color: boolean, optional, default False Keep the 3 RGB channels instead of averaging them to a single gray level channel. If color is True the shape of the data has one more dimension than than the shape with color = False. slice_: optional Provide a custom 2D slice (height, width) to extract the 'interesting' part of the jpeg files and avoid use statistical correlation from the background download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Returns ------- The data is returned as a Bunch object with the following attributes: data : numpy array of shape (2200, 5828) Each row corresponds to 2 ravel'd face images of original size 62 x 67 pixels. pairs : numpy array of shape (2200, 2, 62, 67) Each row has 2 face images corresponding to same or different person from the dataset containing 5749 people. target : numpy array of shape (13233,) Labels associated to each pair of images. The two label values being different persons or the same person. DESCR : string Description of the Labeled Faces in the Wild (LFW) dataset. """ lfw_home, data_folder_path = check_fetch_lfw( data_home=data_home, funneled=funneled, download_if_missing=download_if_missing) logger.info('Loading %s LFW pairs from %s', subset, lfw_home) # wrap the loader in a memoizing function that will return memmaped data # arrays for optimal memory usage m = Memory(cachedir=lfw_home, compress=6, verbose=0) load_func = m.cache(_fetch_lfw_pairs) # select the right metadata file according to the requested subset label_filenames = { 'train': 'pairsDevTrain.txt', 'test': 'pairsDevTest.txt', '10_folds': 'pairs.txt', } if subset not in label_filenames: raise ValueError("subset='%s' is invalid: should be one of %r" % ( subset, list(sorted(label_filenames.keys())))) index_file_path = join(lfw_home, label_filenames[subset]) # load and memoize the pairs as np arrays pairs, target, target_names = load_func( index_file_path, data_folder_path, resize=resize, color=color, slice_=slice_) # pack the results as a Bunch instance return Bunch(data=pairs.reshape(len(pairs), -1), pairs=pairs, target=target, target_names=target_names, DESCR="'%s' segment of the LFW pairs dataset" % subset) def load_lfw_pairs(download_if_missing=False, **kwargs): """Alias for fetch_lfw_pairs(download_if_missing=False) Check fetch_lfw_pairs.__doc__ for the documentation and parameter list. """ return fetch_lfw_pairs(download_if_missing=download_if_missing, **kwargs)
bsd-3-clause
jazcollins/models
cognitive_mapping_and_planning/scripts/script_plot_trajectory.py
9
12900
# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r""" Code for plotting trajectories in the top view, and also plot first person views from saved trajectories. Does not run the network but only loads the mesh data to plot the view points. CUDA_VISIBLE_DEVICES=0 LD_LIBRARY_PATH=/opt/cuda-8.0/lib64:/opt/cudnnv51/lib64 PYTHONPATH='.' PYOPENGL_PLATFORM=egl python scripts/script_plot_trajectory.py \ --first_person --num_steps 40 \ --config_name cmp.lmap_Msc.clip5.sbpd_d_r2r \ --imset test --alsologtostderr --base_dir output --out_dir vis """ import os, sys, numpy as np, copy import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.gridspec import GridSpec import tensorflow as tf from tensorflow.contrib import slim import cv2 import logging from tensorflow.python.platform import gfile from tensorflow.python.platform import app from tensorflow.python.platform import flags from datasets import nav_env import scripts.script_nav_agent_release as sna import src.file_utils as fu from src import graph_utils from src import utils FLAGS = flags.FLAGS flags.DEFINE_string('out_dir', 'vis', 'Directory where to store the output') flags.DEFINE_string('type', '', 'Optional type.') flags.DEFINE_bool('first_person', False, 'Visualize the first person view.') flags.DEFINE_bool('top_view', False, 'Visualize the trajectory in the top view.') flags.DEFINE_integer('num_steps', 40, 'Number of steps to run the model for.') flags.DEFINE_string('imset', 'test', '') flags.DEFINE_string('base_dir', 'output', 'Cache directory.') def _get_suffix_str(): return '' def _load_trajectory(): base_dir = FLAGS.base_dir config_name = FLAGS.config_name+_get_suffix_str() dir_name = os.path.join(base_dir, FLAGS.type, config_name) logging.info('Waiting for snapshot in directory %s.', dir_name) last_checkpoint = slim.evaluation.wait_for_new_checkpoint(dir_name, None) checkpoint_iter = int(os.path.basename(last_checkpoint).split('-')[1]) # Load the distances. a = utils.load_variables(os.path.join(dir_name, 'bench_on_'+FLAGS.imset, 'all_locs_at_t_{:d}.pkl'.format(checkpoint_iter))) return a def _compute_hardness(): # Load the stanford data to compute the hardness. if FLAGS.type == '': args = sna.get_args_for_config(FLAGS.config_name+'+bench_'+FLAGS.imset) else: args = sna.get_args_for_config(FLAGS.type+'.'+FLAGS.config_name+'+bench_'+FLAGS.imset) args.navtask.logdir = None R = lambda: nav_env.get_multiplexer_class(args.navtask, 0) R = R() rng_data = [np.random.RandomState(0), np.random.RandomState(0)] # Sample a room. h_dists = [] gt_dists = [] for i in range(250): e = R.sample_env(rng_data) nodes = e.task.nodes # Initialize the agent. init_env_state = e.reset(rng_data) gt_dist_to_goal = [e.episode.dist_to_goal[0][j][s] for j, s in enumerate(e.episode.start_node_ids)] for j in range(args.navtask.task_params.batch_size): start_node_id = e.episode.start_node_ids[j] end_node_id =e.episode.goal_node_ids[0][j] h_dist = graph_utils.heuristic_fn_vec( nodes[[start_node_id],:], nodes[[end_node_id], :], n_ori=args.navtask.task_params.n_ori, step_size=args.navtask.task_params.step_size)[0][0] gt_dist = e.episode.dist_to_goal[0][j][start_node_id] h_dists.append(h_dist) gt_dists.append(gt_dist) h_dists = np.array(h_dists) gt_dists = np.array(gt_dists) e = R.sample_env([np.random.RandomState(0), np.random.RandomState(0)]) input = e.get_common_data() orig_maps = input['orig_maps'][0,0,:,:,0] return h_dists, gt_dists, orig_maps def plot_trajectory_first_person(dt, orig_maps, out_dir): out_dir = os.path.join(out_dir, FLAGS.config_name+_get_suffix_str(), FLAGS.imset) fu.makedirs(out_dir) # Load the model so that we can render. plt.set_cmap('gray') samples_per_action = 8; wait_at_action = 0; Writer = animation.writers['mencoder'] writer = Writer(fps=3*(samples_per_action+wait_at_action), metadata=dict(artist='anonymous'), bitrate=1800) args = sna.get_args_for_config(FLAGS.config_name + '+bench_'+FLAGS.imset) args.navtask.logdir = None navtask_ = copy.deepcopy(args.navtask) navtask_.camera_param.modalities = ['rgb'] navtask_.task_params.modalities = ['rgb'] sz = 512 navtask_.camera_param.height = sz navtask_.camera_param.width = sz navtask_.task_params.img_height = sz navtask_.task_params.img_width = sz R = lambda: nav_env.get_multiplexer_class(navtask_, 0) R = R() b = R.buildings[0] f = [0 for _ in range(wait_at_action)] + \ [float(_)/samples_per_action for _ in range(samples_per_action)]; # Generate things for it to render. inds_to_do = [] inds_to_do += [1, 4, 10] #1291, 1268, 1273, 1289, 1302, 1426, 1413, 1449, 1399, 1390] for i in inds_to_do: fig = plt.figure(figsize=(10,8)) gs = GridSpec(3,4) gs.update(wspace=0.05, hspace=0.05, left=0.0, top=0.97, right=1.0, bottom=0.) ax = fig.add_subplot(gs[:,:-1]) ax1 = fig.add_subplot(gs[0,-1]) ax2 = fig.add_subplot(gs[1,-1]) ax3 = fig.add_subplot(gs[2,-1]) axes = [ax, ax1, ax2, ax3] # ax = fig.add_subplot(gs[:,:]) # axes = [ax] for ax in axes: ax.set_axis_off() node_ids = dt['all_node_ids'][i, :, 0]*1 # Prune so that last node is not repeated more than 3 times? if np.all(node_ids[-4:] == node_ids[-1]): while node_ids[-4] == node_ids[-1]: node_ids = node_ids[:-1] num_steps = np.minimum(FLAGS.num_steps, len(node_ids)) xyt = b.to_actual_xyt_vec(b.task.nodes[node_ids]) xyt_diff = xyt[1:,:] - xyt[:-1:,:] xyt_diff[:,2] = np.mod(xyt_diff[:,2], 4) ind = np.where(xyt_diff[:,2] == 3)[0] xyt_diff[ind, 2] = -1 xyt_diff = np.expand_dims(xyt_diff, axis=1) to_cat = [xyt_diff*_ for _ in f] perturbs_all = np.concatenate(to_cat, axis=1) perturbs_all = np.concatenate([perturbs_all, np.zeros_like(perturbs_all[:,:,:1])], axis=2) node_ids_all = np.expand_dims(node_ids, axis=1)*1 node_ids_all = np.concatenate([node_ids_all for _ in f], axis=1) node_ids_all = np.reshape(node_ids_all[:-1,:], -1) perturbs_all = np.reshape(perturbs_all, [-1, 4]) imgs = b.render_nodes(b.task.nodes[node_ids_all,:], perturb=perturbs_all) # Get action at each node. actions = [] _, action_to_nodes = b.get_feasible_actions(node_ids) for j in range(num_steps-1): action_to_node = action_to_nodes[j] node_to_action = dict(zip(action_to_node.values(), action_to_node.keys())) actions.append(node_to_action[node_ids[j+1]]) def init_fn(): return fig, gt_dist_to_goal = [] # Render trajectories. def worker(j): # Plot the image. step_number = j/(samples_per_action + wait_at_action) img = imgs[j]; ax = axes[0]; ax.clear(); ax.set_axis_off(); img = img.astype(np.uint8); ax.imshow(img); tt = ax.set_title( "First Person View\n" + "Top corners show diagnostics (distance, agents' action) not input to agent.", fontsize=12) plt.setp(tt, color='white') # Distance to goal. t = 'Dist to Goal:\n{:2d} steps'.format(int(dt['all_d_at_t'][i, step_number])) t = ax.text(0.01, 0.99, t, horizontalalignment='left', verticalalignment='top', fontsize=20, color='red', transform=ax.transAxes, alpha=1.0) t.set_bbox(dict(color='white', alpha=0.85, pad=-0.1)) # Action to take. action_latex = ['$\odot$ ', '$\curvearrowright$ ', '$\curvearrowleft$ ', '$\Uparrow$ '] t = ax.text(0.99, 0.99, action_latex[actions[step_number]], horizontalalignment='right', verticalalignment='top', fontsize=40, color='green', transform=ax.transAxes, alpha=1.0) t.set_bbox(dict(color='white', alpha=0.85, pad=-0.1)) # Plot the map top view. ax = axes[-1] if j == 0: # Plot the map locs = dt['all_locs'][i,:num_steps,:] goal_loc = dt['all_goal_locs'][i,:,:] xymin = np.minimum(np.min(goal_loc, axis=0), np.min(locs, axis=0)) xymax = np.maximum(np.max(goal_loc, axis=0), np.max(locs, axis=0)) xy1 = (xymax+xymin)/2. - 0.7*np.maximum(np.max(xymax-xymin), 24) xy2 = (xymax+xymin)/2. + 0.7*np.maximum(np.max(xymax-xymin), 24) ax.set_axis_on() ax.patch.set_facecolor((0.333, 0.333, 0.333)) ax.set_xticks([]); ax.set_yticks([]); ax.imshow(orig_maps, origin='lower', vmin=-1.0, vmax=2.0) ax.plot(goal_loc[:,0], goal_loc[:,1], 'g*', markersize=12) locs = dt['all_locs'][i,:1,:] ax.plot(locs[:,0], locs[:,1], 'b.', markersize=12) ax.set_xlim([xy1[0], xy2[0]]) ax.set_ylim([xy1[1], xy2[1]]) locs = dt['all_locs'][i,step_number,:] locs = np.expand_dims(locs, axis=0) ax.plot(locs[:,0], locs[:,1], 'r.', alpha=1.0, linewidth=0, markersize=4) tt = ax.set_title('Trajectory in topview', fontsize=14) plt.setp(tt, color='white') return fig, line_ani = animation.FuncAnimation(fig, worker, (num_steps-1)*(wait_at_action+samples_per_action), interval=500, blit=True, init_func=init_fn) tmp_file_name = 'tmp.mp4' line_ani.save(tmp_file_name, writer=writer, savefig_kwargs={'facecolor':'black'}) out_file_name = os.path.join(out_dir, 'vis_{:04d}.mp4'.format(i)) print out_file_name if fu.exists(out_file_name): gfile.Remove(out_file_name) gfile.Copy(tmp_file_name, out_file_name) gfile.Remove(tmp_file_name) plt.close(fig) def plot_trajectory(dt, hardness, orig_maps, out_dir): out_dir = os.path.join(out_dir, FLAGS.config_name+_get_suffix_str(), FLAGS.imset) fu.makedirs(out_dir) out_file = os.path.join(out_dir, 'all_locs_at_t.pkl') dt['hardness'] = hardness utils.save_variables(out_file, dt.values(), dt.keys(), overwrite=True) #Plot trajectories onto the maps plt.set_cmap('gray') for i in range(4000): goal_loc = dt['all_goal_locs'][i, :, :] locs = np.concatenate((dt['all_locs'][i,:,:], dt['all_locs'][i,:,:]), axis=0) xymin = np.minimum(np.min(goal_loc, axis=0), np.min(locs, axis=0)) xymax = np.maximum(np.max(goal_loc, axis=0), np.max(locs, axis=0)) xy1 = (xymax+xymin)/2. - 1.*np.maximum(np.max(xymax-xymin), 24) xy2 = (xymax+xymin)/2. + 1.*np.maximum(np.max(xymax-xymin), 24) fig, ax = utils.tight_imshow_figure(plt, figsize=(6,6)) ax.set_axis_on() ax.patch.set_facecolor((0.333, 0.333, 0.333)) ax.set_xticks([]) ax.set_yticks([]) all_locs = dt['all_locs'][i,:,:]*1 uniq = np.where(np.any(all_locs[1:,:] != all_locs[:-1,:], axis=1))[0]+1 uniq = np.sort(uniq).tolist() uniq.insert(0,0) uniq = np.array(uniq) all_locs = all_locs[uniq, :] ax.plot(dt['all_locs'][i, 0, 0], dt['all_locs'][i, 0, 1], 'b.', markersize=24) ax.plot(dt['all_goal_locs'][i, 0, 0], dt['all_goal_locs'][i, 0, 1], 'g*', markersize=19) ax.plot(all_locs[:,0], all_locs[:,1], 'r', alpha=0.4, linewidth=2) ax.scatter(all_locs[:,0], all_locs[:,1], c=5+np.arange(all_locs.shape[0])*1./all_locs.shape[0], cmap='Reds', s=30, linewidth=0) ax.imshow(orig_maps, origin='lower', vmin=-1.0, vmax=2.0, aspect='equal') ax.set_xlim([xy1[0], xy2[0]]) ax.set_ylim([xy1[1], xy2[1]]) file_name = os.path.join(out_dir, 'trajectory_{:04d}.png'.format(i)) print file_name with fu.fopen(file_name, 'w') as f: plt.savefig(f) plt.close(fig) def main(_): a = _load_trajectory() h_dists, gt_dists, orig_maps = _compute_hardness() hardness = 1.-h_dists*1./ gt_dists if FLAGS.top_view: plot_trajectory(a, hardness, orig_maps, out_dir=FLAGS.out_dir) if FLAGS.first_person: plot_trajectory_first_person(a, orig_maps, out_dir=FLAGS.out_dir) if __name__ == '__main__': app.run()
apache-2.0
uvNikita/image-proc-demo
app/main/views.py
1
6528
import os import numpy as np from scipy import ndimage from scipy import fftpack as fp from matplotlib import pyplot, cm from PIL import Image from flask import Blueprint, render_template, url_for, send_file from flask import redirect, request, g, current_app from .util import get_image_path, get_no_image_path, clear_data_folder from .util import get_image_url, check_image from .filters import filter_image, FILTERS from ..util_math import dft2, idft2, showfft, image_diff from ..compression import compress_dft, compress_dct main = Blueprint('main', __name__, template_folder='templates') VALID_EXTENSIONS = {'png', 'jpg'} IMAGE_TYPES = { 'origin', 'rec', 'fft', 'fft-real', 'fft-imag', 'fft-phase', 'filtered_low_pass', 'filtered_high_pass', 'filtered_band_pass', 'filtered_band_reject', 'compressed' } @main.route('/') def index(): return redirect(url_for('main.upload')) @main.route('/upload', methods=['GET', 'POST']) def upload(): if request.method == 'POST': file = request.files['file'] image = Image.open(file) if file: _, ext = os.path.splitext(file.filename) ext = ext[1:] if ext in VALID_EXTENSIONS: clear_data_folder() response = current_app.make_response(redirect(url_for('.upload'))) g.current_image = ext response.set_cookie('current_image', g.current_image) image = image.convert('L') image.save(get_image_path()) return response return redirect(url_for('.upload')) return render_template('main/upload.jinja', image_url=get_image_url()) @main.route('/image') def get_image(): type = request.args['type'] if type not in IMAGE_TYPES or not g.get('current_image'): image_path = get_no_image_path() else: image_path = get_image_path(type=type) if not os.path.exists(image_path): image_path = get_no_image_path() return send_file(image_path, mimetype='image/gif') @main.route('/fourier', methods=['GET', 'POST']) @check_image def fourier(): if request.method == 'POST': image = ndimage.imread(get_image_path()) dft_res = fp.fftshift(dft2(image)) x_max = dft_res.shape[1]/2 y_max = dft_res.shape[0]/2 dims = [-x_max, x_max, -y_max, y_max] pyplot.imshow(showfft(abs(dft_res)), cmap=cm.Greys_r, extent=dims) pyplot.savefig(get_image_path(type='fft')) pyplot.close() pyplot.imshow(np.angle(dft_res), cmap=cm.Greys_r, extent=dims) pyplot.savefig(get_image_path(type='fft-phase')) pyplot.close() pyplot.imshow(showfft(np.real(dft_res)), cmap=cm.Greys_r, extent=dims) pyplot.savefig(get_image_path(type='fft-real')) pyplot.close() pyplot.imshow(showfft(np.imag(dft_res)), cmap=cm.Greys_r, extent=dims) pyplot.savefig(get_image_path(type='fft-imag')) pyplot.close() return redirect(url_for('.fourier')) return render_template('main/fourier.jinja') @main.route('/inv-fourier', methods=['GET', 'POST']) @check_image def inv_fourier(): orig_im = ndimage.imread(get_image_path()) if os.path.exists(get_image_path(type='rec')): rec_im = ndimage.imread(get_image_path(type='rec')) diff = image_diff(orig_im, rec_im) else: diff = 0 if request.method == 'POST': image = ndimage.imread(get_image_path()) rec_im = Image.fromarray(idft2(dft2(image)).astype(np.uint8)) rec_im.save(get_image_path(type='rec')) return redirect(url_for('.inv_fourier')) return render_template('main/inv_fourier.jinja', diff=diff) @main.route('/low-pass', methods=['GET', 'POST']) @check_image def low_pass(): return process_filter('low_pass', ['cutoff']) @main.route('/high-pass', methods=['GET', 'POST']) @check_image def high_pass(): return process_filter('high_pass', ['cutoff']) @main.route('/band-pass', methods=['GET', 'POST']) @check_image def band_pass(): return process_filter('band_pass', ['cutoff', 'width']) @main.route('/band-reject', methods=['GET', 'POST']) @check_image def band_reject(): return process_filter('band_reject', ['cutoff', 'width']) @main.route('/compression', methods=['GET', 'POST']) @check_image def compression(): orig_im = ndimage.imread(get_image_path()) if os.path.exists(get_image_path(type='compressed')): comp_im = ndimage.imread(get_image_path(type='compressed')) diff = image_diff(orig_im, comp_im) else: diff = 0 if request.method == 'POST': compression_method = request.form['compression_method'] compression_level = float(request.form['compression_level']) if compression_method == 'dft': compression_function = compress_dft elif compression_method == 'dct': compression_function = compress_dct else: return about(400) image = ndimage.imread(get_image_path()) image_c = compression_function(image, compression_level) Image.fromarray(image_c.astype(np.uint8)).save(get_image_path(type='compressed')) return redirect(url_for('.compression', **request.form)) return render_template('main/compression.jinja', diff=diff) def process_filter(filter_type, options): filtered_image_path = get_image_path(type='filtered_{}'.format(filter_type)) orig_im = ndimage.imread(get_image_path()) if os.path.exists(filtered_image_path): comp_im = ndimage.imread(filtered_image_path) diff = image_diff(orig_im, comp_im) else: diff = 0 if request.method == 'POST': filter_name = request.form['filter_name'] option_values = { option: float(request.form[option]) for option in options } if filter_name == 'butterworth': option_values['order'] = int(request.form['order']) image = ndimage.imread(get_image_path()) filter_func = FILTERS[filter_type][filter_name] image_filtered = filter_image(image, filter_func, option_values) im = Image.fromarray(image_filtered.astype(np.uint8)) im.save(filtered_image_path) return redirect(url_for('.{}'.format(filter_type), **request.form)) return render_template('main/filter.jinja', filter_type=filter_type, options=options, diff=diff) @main.route('/about') def about(): return render_template('main/about.jinja')
mit
tntnatbry/tensorflow
tensorflow/examples/learn/iris_run_config.py
86
2087
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Example of DNNClassifier for Iris plant dataset, with run config.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from sklearn import cross_validation from sklearn import datasets from sklearn import metrics import tensorflow as tf def main(unused_argv): # Load dataset. iris = datasets.load_iris() x_train, x_test, y_train, y_test = cross_validation.train_test_split( iris.data, iris.target, test_size=0.2, random_state=42) # You can define you configurations by providing a RunConfig object to # estimator to control session configurations, e.g. num_cores # and gpu_memory_fraction run_config = tf.contrib.learn.estimators.RunConfig( num_cores=3, gpu_memory_fraction=0.6) # Build 3 layer DNN with 10, 20, 10 units respectively. feature_columns = tf.contrib.learn.infer_real_valued_columns_from_input( x_train) classifier = tf.contrib.learn.DNNClassifier(feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3, config=run_config) # Fit and predict. classifier.fit(x_train, y_train, steps=200) predictions = list(classifier.predict(x_test, as_iterable=True)) score = metrics.accuracy_score(y_test, predictions) print('Accuracy: {0:f}'.format(score)) if __name__ == '__main__': tf.app.run()
apache-2.0
Titan-C/scikit-learn
sklearn/decomposition/base.py
5
5613
"""Principal Component Analysis Base Classes""" # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # Olivier Grisel <olivier.grisel@ensta.org> # Mathieu Blondel <mathieu@mblondel.org> # Denis A. Engemann <denis-alexander.engemann@inria.fr> # Kyle Kastner <kastnerkyle@gmail.com> # # License: BSD 3 clause import numpy as np from scipy import linalg from ..base import BaseEstimator, TransformerMixin from ..utils import check_array from ..utils.validation import check_is_fitted from ..externals import six from abc import ABCMeta, abstractmethod class _BasePCA(six.with_metaclass(ABCMeta, BaseEstimator, TransformerMixin)): """Base class for PCA methods. Warning: This class should not be used directly. Use derived classes instead. """ def get_covariance(self): """Compute data covariance with the generative model. ``cov = components_.T * S**2 * components_ + sigma2 * eye(n_features)`` where S**2 contains the explained variances, and sigma2 contains the noise variances. Returns ------- cov : array, shape=(n_features, n_features) Estimated covariance of data. """ components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) cov = np.dot(components_.T * exp_var_diff, components_) cov.flat[::len(cov) + 1] += self.noise_variance_ # modify diag inplace return cov def get_precision(self): """Compute data precision matrix with the generative model. Equals the inverse of the covariance but computed with the matrix inversion lemma for efficiency. Returns ------- precision : array, shape=(n_features, n_features) Estimated precision of data. """ n_features = self.components_.shape[1] # handle corner cases first if self.n_components_ == 0: return np.eye(n_features) / self.noise_variance_ if self.n_components_ == n_features: return linalg.inv(self.get_covariance()) # Get precision using matrix inversion lemma components_ = self.components_ exp_var = self.explained_variance_ if self.whiten: components_ = components_ * np.sqrt(exp_var[:, np.newaxis]) exp_var_diff = np.maximum(exp_var - self.noise_variance_, 0.) precision = np.dot(components_, components_.T) / self.noise_variance_ precision.flat[::len(precision) + 1] += 1. / exp_var_diff precision = np.dot(components_.T, np.dot(linalg.inv(precision), components_)) precision /= -(self.noise_variance_ ** 2) precision.flat[::len(precision) + 1] += 1. / self.noise_variance_ return precision @abstractmethod def fit(X, y=None): """Placeholder for fit. Subclasses should implement this method! Fit the model with X. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Returns ------- self : object Returns the instance itself. """ def transform(self, X, y=None): """Apply dimensionality reduction to X. X is projected on the first principal components previously extracted from a training set. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Examples -------- >>> import numpy as np >>> from sklearn.decomposition import IncrementalPCA >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> ipca = IncrementalPCA(n_components=2, batch_size=3) >>> ipca.fit(X) IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False) >>> ipca.transform(X) # doctest: +SKIP """ check_is_fitted(self, ['mean_', 'components_'], all_or_any=all) X = check_array(X) if self.mean_ is not None: X = X - self.mean_ X_transformed = np.dot(X, self.components_.T) if self.whiten: X_transformed /= np.sqrt(self.explained_variance_) return X_transformed def inverse_transform(self, X, y=None): """Transform data back to its original space. In other words, return an input X_original whose transform would be X. Parameters ---------- X : array-like, shape (n_samples, n_components) New data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original array-like, shape (n_samples, n_features) Notes ----- If whitening is enabled, inverse_transform will compute the exact inverse operation, which includes reversing whitening. """ if self.whiten: return np.dot(X, np.sqrt(self.explained_variance_[:, np.newaxis]) * self.components_) + self.mean_ else: return np.dot(X, self.components_) + self.mean_
bsd-3-clause
DataReplyUK/datareplyuk
GenesAssociation/__init__.py
1
6038
""" Program: RUNNING GRAPH ANALYTICS WITH SPARK GRAPH-FRAMES: Author: Dr. C. Hadjinikolis Date: 14/09/2016 Description: This is the application's core module from where everything is executed. The module is responsible for: 1. Loading Spark 2. Loading GraphFrames 3. Running analytics by leveraging other modules in the package. """ # IMPORT OTHER LIBS -------------------------------------------------------------------------------# import os import sys import pandas as pd # IMPORT SPARK ------------------------------------------------------------------------------------# # Path to Spark source folder USER_FILE_PATH = "/Users/christoshadjinikolis" SPARK_PATH = "/PycharmProjects/GenesAssociation" SPARK_FILE = "/spark-2.0.0-bin-hadoop2.7" SPARK_HOME = USER_FILE_PATH + SPARK_PATH + SPARK_FILE os.environ['SPARK_HOME'] = SPARK_HOME # Append pySpark to Python Path sys.path.append(SPARK_HOME + "/python") sys.path.append(SPARK_HOME + "/python" + "/lib/py4j-0.10.1-src.zip") try: from pyspark import SparkContext from pyspark import SparkConf from pyspark.sql import SQLContext from pyspark.graphframes import graphframe as GF except ImportError as ex: print "Can not import Spark Modules", ex sys.exit(1) # GLOBAL VARIABLES --------------------------------------------------------------------------------# # Configure spark properties CONF = (SparkConf() .setMaster("local") .setAppName("My app") .set("spark.executor.memory", "10g") .set("spark.executor.instances", "4")) # Instantiate SparkContext object SC = SparkContext(conf=CONF) # Instantiate SQL_SparkContext object SQL_CONTEXT = SQLContext(SC) # MAIN CODE ---------------------------------------------------------------------------------------# if __name__ == "__main__": # Main Path to CSV files DATA_PATH = '/PycharmProjects/GenesAssociation/data/' FILE_NAME = 'gene_gene_associations_50k.csv' # LOAD DATA CSV USING PANDAS -----------------------------------------------------------------# print "STEP 1: Loading Gene Nodes -------------------------------------------------------------" # Read csv file and load as df GENES = pd.read_csv(USER_FILE_PATH + DATA_PATH + FILE_NAME, usecols=['OFFICIAL_SYMBOL_A'], low_memory=True, iterator=True, chunksize=1000) # Concatenate chunks into list & convert to dataFrame GENES_DF = pd.DataFrame(pd.concat(list(GENES), ignore_index=True)) # Remove duplicates GENES_DF_CLEAN = GENES_DF.drop_duplicates(keep='first') # Name Columns GENES_DF_CLEAN.columns = ['id'] # Output dataFrame print GENES_DF_CLEAN # Create vertices VERTICES = SQL_CONTEXT.createDataFrame(GENES_DF_CLEAN) # Show some vertices print VERTICES.take(5) print "STEP 2: Loading Gene Edges -------------------------------------------------------------" # Read csv file and load as df EDGES = pd.read_csv(USER_FILE_PATH + DATA_PATH + FILE_NAME, usecols=['OFFICIAL_SYMBOL_A', 'OFFICIAL_SYMBOL_B', 'EXPERIMENTAL_SYSTEM'], low_memory=True, iterator=True, chunksize=1000) # Concatenate chunks into list & convert to dataFrame EDGES_DF = pd.DataFrame(pd.concat(list(EDGES), ignore_index=True)) # Name Columns EDGES_DF.columns = ["src", "dst", "rel_type"] # Output dataFrame print EDGES_DF # Create vertices EDGES = SQL_CONTEXT.createDataFrame(EDGES_DF) # Show some edges print EDGES.take(5) print "STEP 3: Generating the Graph -----------------------------------------------------------" GENES_GRAPH = GF.GraphFrame(VERTICES, EDGES) print "STEP 4: Running Various Basic Analytics ------------------------------------------------" print "Vertex in-Degree -----------------------------------------------------------------------" GENES_GRAPH.inDegrees.sort('inDegree', ascending=False).show() print "Vertex out-Degree ----------------------------------------------------------------------" GENES_GRAPH.outDegrees.sort('outDegree', ascending=False).show() print "Vertex degree --------------------------------------------------------------------------" GENES_GRAPH.degrees.sort('degree', ascending=False).show() print "Triangle Count -------------------------------------------------------------------------" RESULTS = GENES_GRAPH.triangleCount() RESULTS.select("id", "count").show() print "Label Propagation ----------------------------------------------------------------------" GENES_GRAPH.labelPropagation(maxIter=10).show() # Convergence is not guaranteed print "PageRank -------------------------------------------------------------------------------" GENES_GRAPH.pageRank(resetProbability=0.15, tol=0.01)\ .vertices.sort('pagerank', ascending=False).show() print "STEP 5: Find Shortest Paths w.r.t. Landmarks -------------------------------------------" # Shortest paths SHORTEST_PATH = GENES_GRAPH.shortestPaths(landmarks=["ARF3", "MAP2K4"]) SHORTEST_PATH.select("id", "distances").show() print "STEP 6: Save Vertices and Edges --------------------------------------------------------" # Save vertices and edges as Parquet to some location. # Note: You can't overwrite existing vertices and edges directories. GENES_GRAPH.vertices.write.parquet("vertices") GENES_GRAPH.edges.write.parquet("edges") print "STEP 7: Load " # Load the vertices and edges back. SAME_VERTICES = GENES_GRAPH.read.parquet("vertices") SAME_EDGES = GENES_GRAPH.read.parquet("edges") # Create an identical GraphFrame. SAME_GENES_GRAPH = GF.GraphFrame(SAME_VERTICES, SAME_EDGES) # END OF FILE -------------------------------------------------------------------------------------#
apache-2.0
reiinakano/ensemble_helper
src/parameterspinner.py
1
2420
# This module contains the class for a parameter spinner, containing different methods to automatically generate valid # hyperparameters from a hyperparameter information dictionary i.e. dictionary "hyperparam" in a hyperparam.py file, from sklearn.grid_search import ParameterGrid from collections import Mapping class ParameterSpinner: def __init__(self, hyperdict): self.hyperdict = hyperdict # Returns the list of hyperparameter names to the dictionary @staticmethod def get_parameter_list(hyperdict): return [key for key in hyperdict] # Returns valid hyperparameters using only the default values of the dictionary @staticmethod def use_default_values(hyperdict): return {key: value["default"] for key, value in hyperdict.iteritems()} # This method takes the hyperdict AND another dictionary argument_dict. # argument_dict is a dictionary containing key-value pairs oin the form hyperparameter: hyperparameter_value # The method returns a valid hyperparameter dictionary. @staticmethod def change_default(hyperdict, argument_dict): default = ParameterSpinner.use_default_values(hyperdict) for key, value in argument_dict.iteritems(): if key not in default: raise KeyError("Parameter '{}' not in dictionary.".format(key)) default[key] = value return default # This function is pretty much the exhaustive grid search using sklearn's GridSearchCV. # "params" is a list of dictionaries representing various grids to be generated. # The function returns an iterator that yields a valid hyperparam dictionary per iteration. @staticmethod def exhaustive_search_iterator(hyperdict, param_grid): if isinstance(param_grid, Mapping): param_grid = [param_grid] for argument_dict in ParameterGrid(param_grid): yield ParameterSpinner.change_default(hyperdict, argument_dict) if __name__ == "__main__": import modulemanager m = modulemanager.ModuleManager() hyperdictt = m.get_model_hyperparams("Logistic Regression") print "default: ", ParameterSpinner.use_default_values(hyperdictt) param_grid = [{"C": [2, 3], "n_jobs": [2, 1, 3, -1]}, {"C": [2, 4], "penalty": ["l1", "l2"]}] for my_dict in ParameterSpinner.exhaustive_search_iterator(hyperdictt, param_grid): print my_dict
mit
BorisJeremic/Real-ESSI-Examples
analytic_solution/test_cases/Contact/Dynamic_Shear_Behaviour/Total_Energy_Verification/dt_1e-4/Plot_Results.py
2
2935
#!/usr/bin/env python #!/usr/bin/python import h5py from matplotlib import pylab import matplotlib.pylab as plt import sys from matplotlib.font_manager import FontProperties import math import numpy as np import h5py import matplotlib.pylab as plt import matplotlib as mpl import sys import numpy as np; plt.rcParams.update({'font.size': 24}) # set tick width mpl.rcParams['xtick.major.size'] = 10 mpl.rcParams['xtick.major.width'] = 4 mpl.rcParams['xtick.minor.size'] = 5 mpl.rcParams['xtick.minor.width'] = 10 plt.rcParams['xtick.labelsize']=30 mpl.rcParams['ytick.major.size'] = 10 mpl.rcParams['ytick.major.width'] = 4 mpl.rcParams['ytick.minor.size'] = 5 mpl.rcParams['ytick.minor.width'] = 10 plt.rcParams['ytick.labelsize']=30 # Plot the figure. Add labels and titles. plt.figure(figsize=(12,10)) ax = plt.subplot(111) ax.grid() ax.set_xlabel("Time [s] ",fontsize=30) ax.set_ylabel(r"Energy [J] ",fontsize=30) # ######################################################################### thefile = "Frictional_SDOF_freeVibration.h5.feioutput"; finput = h5py.File(thefile) # Read the time and displacement times = finput["time"][:] disp = finput["/Model/Nodes/Generalized_Displacements"][3,:] acc = finput["/Model/Nodes/Generalized_Accelerations"][3,:] n = len(acc); dt = times[1] - times[0]; vel = acc; vel[0]=0; for i in xrange(1,n): vel[i]=vel[i-1]+(acc[i])*dt; E_k = 0.5*vel*vel; E_s = 0.5*100*disp*disp; # kinetic energy ax.plot(times,E_k,'b',linewidth=4,label=r'$E_{kinetic}$'); ax.hold(True); # potential energy ax.plot(times,E_s,'k',linewidth=4,label=r'$E_{potential}$'); ax.hold(True); # Contact Energy # ######################################################################### # Read the time and displacement times = finput["time"][:] Fx = finput["/Model/Elements/Element_Outputs"][5,:] Deltax = finput["/Model/Elements/Element_Outputs"][8,:] E_inc_d = Fx*Deltax; E_inc_d[0] =0; Deltax[0]=0; E_d = Fx*Deltax; E_d[0] =0; for i in xrange(1,n): E_d[i]=E_d[i-1]+ E_d[i]; ax.plot(times,E_d,'r',linewidth=4,label=r'$E_{dis}$'); ax.hold(True); # Total Energy # ######################################################################### E_total = E_k +E_s + E_d; ax.plot(times,E_total,'g',linewidth=4,label=r'$E_{total}$'); # ax.hold(True); ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.155), ncol=4, fancybox=True, shadow=True) # plt.show() pylab.savefig("Total_Energy_Plot_With_Components.pdf", bbox_inches='tight') ax.hold(False); fig = plt.figure(); ax = plt.subplot(111) ax.plot(times,E_inc_d*1000,'r',linewidth=4,label=r'$E^{incr}_{dis}$'); # ax.plot(times,E_d,'b',linewidth=4,label=r'$E_{dis}$'); ax.grid() ax.set_xlabel("Time [s] ") ax.set_ylabel(r"Energy [mJ] ") ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.24), ncol=4, fancybox=True, shadow=True) pylab.savefig("Incremental_Dissipated_Energy.pdf", bbox_inches='tight') # plt.show()
cc0-1.0
matthew-tucker/mne-python
examples/time_frequency/plot_source_label_time_frequency.py
19
3767
""" ========================================================= Compute power and phase lock in label of the source space ========================================================= Compute time-frequency maps of power and phase lock in the source space. The inverse method is linear based on dSPM inverse operator. The example also shows the difference in the time-frequency maps when they are computed with and without subtracting the evoked response from each epoch. The former results in induced activity only while the latter also includes evoked (stimulus-locked) activity. """ # Authors: Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io from mne.datasets import sample from mne.minimum_norm import read_inverse_operator, source_induced_power print(__doc__) ############################################################################### # Set parameters data_path = sample.data_path() raw_fname = data_path + '/MEG/sample/sample_audvis_raw.fif' fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' label_name = 'Aud-rh' fname_label = data_path + '/MEG/sample/labels/%s.label' % label_name tmin, tmax, event_id = -0.2, 0.5, 2 # Setup for reading the raw data raw = io.Raw(raw_fname) events = mne.find_events(raw, stim_channel='STI 014') inverse_operator = read_inverse_operator(fname_inv) include = [] raw.info['bads'] += ['MEG 2443', 'EEG 053'] # bads + 2 more # Picks MEG channels picks = mne.pick_types(raw.info, meg=True, eeg=False, eog=True, stim=False, include=include, exclude='bads') reject = dict(grad=4000e-13, mag=4e-12, eog=150e-6) # Load epochs epochs = mne.Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), reject=reject, preload=True) # Compute a source estimate per frequency band including and excluding the # evoked response frequencies = np.arange(7, 30, 2) # define frequencies of interest label = mne.read_label(fname_label) n_cycles = frequencies / 3. # different number of cycle per frequency # subtract the evoked response in order to exclude evoked activity epochs_induced = epochs.copy().subtract_evoked() plt.close('all') for ii, (this_epochs, title) in enumerate(zip([epochs, epochs_induced], ['evoked + induced', 'induced only'])): # compute the source space power and phase lock power, phase_lock = source_induced_power( this_epochs, inverse_operator, frequencies, label, baseline=(-0.1, 0), baseline_mode='percent', n_cycles=n_cycles, n_jobs=1) power = np.mean(power, axis=0) # average over sources phase_lock = np.mean(phase_lock, axis=0) # average over sources times = epochs.times ########################################################################## # View time-frequency plots plt.subplots_adjust(0.1, 0.08, 0.96, 0.94, 0.2, 0.43) plt.subplot(2, 2, 2 * ii + 1) plt.imshow(20 * power, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', vmin=0., vmax=30., cmap='RdBu_r') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('Power (%s)' % title) plt.colorbar() plt.subplot(2, 2, 2 * ii + 2) plt.imshow(phase_lock, extent=[times[0], times[-1], frequencies[0], frequencies[-1]], aspect='auto', origin='lower', vmin=0, vmax=0.7, cmap='RdBu_r') plt.xlabel('Time (s)') plt.ylabel('Frequency (Hz)') plt.title('Phase-lock (%s)' % title) plt.colorbar() plt.show()
bsd-3-clause
DGrady/pandas
pandas/tests/indexes/datetimes/test_missing.py
15
2132
import pandas as pd import pandas.util.testing as tm class TestDatetimeIndex(object): def test_fillna_datetime64(self): # GH 11343 for tz in ['US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01 09:00', pd.NaT, '2011-01-01 11:00']) exp = pd.DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00']) tm.assert_index_equal( idx.fillna(pd.Timestamp('2011-01-01 10:00')), exp) # tz mismatch exp = pd.Index([pd.Timestamp('2011-01-01 09:00'), pd.Timestamp('2011-01-01 10:00', tz=tz), pd.Timestamp('2011-01-01 11:00')], dtype=object) tm.assert_index_equal( idx.fillna(pd.Timestamp('2011-01-01 10:00', tz=tz)), exp) # object exp = pd.Index([pd.Timestamp('2011-01-01 09:00'), 'x', pd.Timestamp('2011-01-01 11:00')], dtype=object) tm.assert_index_equal(idx.fillna('x'), exp) idx = pd.DatetimeIndex(['2011-01-01 09:00', pd.NaT, '2011-01-01 11:00'], tz=tz) exp = pd.DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], tz=tz) tm.assert_index_equal( idx.fillna(pd.Timestamp('2011-01-01 10:00', tz=tz)), exp) exp = pd.Index([pd.Timestamp('2011-01-01 09:00', tz=tz), pd.Timestamp('2011-01-01 10:00'), pd.Timestamp('2011-01-01 11:00', tz=tz)], dtype=object) tm.assert_index_equal( idx.fillna(pd.Timestamp('2011-01-01 10:00')), exp) # object exp = pd.Index([pd.Timestamp('2011-01-01 09:00', tz=tz), 'x', pd.Timestamp('2011-01-01 11:00', tz=tz)], dtype=object) tm.assert_index_equal(idx.fillna('x'), exp)
bsd-3-clause
blackball/an-test6
util/sip_plot_distortion.py
1
2423
import matplotlib matplotlib.use('Agg') import sys from optparse import * import numpy as np from pylab import * from numpy import * #from astrometry.util.sip import * from astrometry.util.util import * def plot_distortions(wcsfn, ex=1, ngridx=10, ngridy=10, stepx=10, stepy=10): wcs = Sip(wcsfn) W,H = wcs.wcstan.imagew, wcs.wcstan.imageh xgrid = np.linspace(0, W, ngridx) ygrid = np.linspace(0, H, ngridy) X = np.linspace(0, W, int(ceil(W/stepx))) Y = np.linspace(0, H, int(ceil(H/stepy))) xlo,xhi,ylo,yhi = 0,W,0,H for x in xgrid: DX,DY = [],[] xx,yy = [],[] for y in Y: dx,dy = wcs.get_distortion(x, y) xx.append(x) yy.append(y) DX.append(dx) DY.append(dy) DX = array(DX) DY = array(DY) xx = array(xx) yy = array(yy) EX = DX + ex * (DX - xx) EY = DY + ex * (DY - yy) plot(xx, yy, 'k-', alpha=0.5) plot(EX, EY, 'r-') xlo = min(xlo, min(EX)) xhi = max(xhi, max(EX)) ylo = min(ylo, min(EY)) yhi = max(yhi, max(EY)) for y in ygrid: DX,DY = [],[] xx,yy = [],[] for x in X: dx,dy = wcs.get_distortion(x, y) DX.append(dx) DY.append(dy) xx.append(x) yy.append(y) DX = array(DX) DY = array(DY) xx = array(xx) yy = array(yy) EX = DX + ex * (DX - xx) EY = DY + ex * (DY - yy) plot(xx, yy, 'k-', alpha=0.5) plot(EX, EY, 'r-') xlo = min(xlo, min(EX)) xhi = max(xhi, max(EX)) ylo = min(ylo, min(EY)) yhi = max(yhi, max(EY)) plot([wcs.wcstan.crpix[0]], [wcs.wcstan.crpix[1]], 'rx') #axis([0, W, 0, H]) axis('scaled') axis([xlo,xhi,ylo,yhi]) #axis('tight') if __name__ == '__main__': parser = OptionParser(usage='%prog [options] <wcs-filename> <plot-filename>') parser.add_option('-e', '--ex', '--exaggerate', dest='ex', type='float', help='Exaggerate the distortion by this factor') #parser.add_option('-s', '--scale', dest='scale', type='float', help='Scale the parser.add_option('-n', dest='nsteps', type='int', help='Number of grid lines to plot') parser.set_defaults(ex=1.) opt,args = parser.parse_args() if len(args) != 2: parser.print_help() sys.exit(-1) wcsfn = args[0] outfn = args[1] args = {} if opt.ex is not None: args['ex'] = opt.ex if opt.nsteps is not None: args['ngridx'] = opt.nsteps args['ngridy'] = opt.nsteps clf() plot_distortions(wcsfn, **args) tt = 'SIP distortions: %s' % wcsfn if opt.ex != 1: tt += ' (exaggerated by %g)' % opt.ex title(tt) savefig(outfn)
gpl-2.0
Nyker510/scikit-learn
examples/decomposition/plot_pca_vs_lda.py
182
1743
""" ======================================================= Comparison of LDA and PCA 2D projection of Iris dataset ======================================================= The Iris dataset represents 3 kind of Iris flowers (Setosa, Versicolour and Virginica) with 4 attributes: sepal length, sepal width, petal length and petal width. Principal Component Analysis (PCA) applied to this data identifies the combination of attributes (principal components, or directions in the feature space) that account for the most variance in the data. Here we plot the different samples on the 2 first principal components. Linear Discriminant Analysis (LDA) tries to identify attributes that account for the most variance *between classes*. In particular, LDA, in contrast to PCA, is a supervised method, using known class labels. """ print(__doc__) import matplotlib.pyplot as plt from sklearn import datasets from sklearn.decomposition import PCA from sklearn.lda import LDA iris = datasets.load_iris() X = iris.data y = iris.target target_names = iris.target_names pca = PCA(n_components=2) X_r = pca.fit(X).transform(X) lda = LDA(n_components=2) X_r2 = lda.fit(X, y).transform(X) # Percentage of variance explained for each components print('explained variance ratio (first two components): %s' % str(pca.explained_variance_ratio_)) plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r[y == i, 0], X_r[y == i, 1], c=c, label=target_name) plt.legend() plt.title('PCA of IRIS dataset') plt.figure() for c, i, target_name in zip("rgb", [0, 1, 2], target_names): plt.scatter(X_r2[y == i, 0], X_r2[y == i, 1], c=c, label=target_name) plt.legend() plt.title('LDA of IRIS dataset') plt.show()
bsd-3-clause
robertwb/incubator-beam
sdks/python/apache_beam/dataframe/convert.py
6
9567
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import weakref from typing import TYPE_CHECKING from typing import Any from typing import Dict from typing import Tuple from typing import Union import pandas as pd import apache_beam as beam from apache_beam import pvalue from apache_beam.dataframe import expressions from apache_beam.dataframe import frame_base from apache_beam.dataframe import schemas from apache_beam.dataframe import transforms if TYPE_CHECKING: # pylint: disable=ungrouped-imports from typing import Optional # TODO: Or should this be called as_dataframe? def to_dataframe( pcoll, # type: pvalue.PCollection proxy=None, # type: Optional[pd.core.generic.NDFrame] label=None, # type: Optional[str] ): # type: (...) -> frame_base.DeferredFrame """Converts a PCollection to a deferred dataframe-like object, which can manipulated with pandas methods like `filter` and `groupby`. For example, one might write:: pcoll = ... df = to_dataframe(pcoll, proxy=...) result = df.groupby('col').sum() pcoll_result = to_pcollection(result) A proxy object must be given if the schema for the PCollection is not known. """ if proxy is None: if pcoll.element_type is None: raise ValueError( "Cannot infer a proxy because the input PCollection does not have a " "schema defined. Please make sure a schema type is specified for " "the input PCollection, or provide a proxy.") # If no proxy is given, assume this is an element-wise schema-aware # PCollection that needs to be batched. if label is None: # Attempt to come up with a reasonable, stable label by retrieving # the name of these variables in the calling context. label = 'BatchElements(%s)' % _var_name(pcoll, 2) proxy = schemas.generate_proxy(pcoll.element_type) pcoll = pcoll | label >> schemas.BatchRowsAsDataFrame(proxy=proxy) return frame_base.DeferredFrame.wrap( expressions.PlaceholderExpression(proxy, pcoll)) # PCollections generated by to_pcollection are memoized, keyed by expression id. # WeakValueDictionary is used so the caches are cleaned up with the parent # pipelines # Note that the pipeline (indirectly) holds references to the transforms which # keeps both the PCollections and expressions alive. This ensures the # expression's ids are never accidentally re-used. TO_PCOLLECTION_CACHE = weakref.WeakValueDictionary( ) # type: weakref.WeakValueDictionary[str, pvalue.PCollection] UNBATCHED_CACHE = weakref.WeakValueDictionary( ) # type: weakref.WeakValueDictionary[str, pvalue.PCollection] def _make_unbatched_pcoll( pc: pvalue.PCollection, expr: expressions.Expression, include_indexes: bool): label = f"Unbatch '{expr._id}'" if include_indexes: label += " with indexes" if label not in UNBATCHED_CACHE: UNBATCHED_CACHE[label] = pc | label >> schemas.UnbatchPandas( expr.proxy(), include_indexes=include_indexes) # Note unbatched cache is keyed by the expression id as well as parameters # for the unbatching (i.e. include_indexes) return UNBATCHED_CACHE[label] # TODO: Or should this be called from_dataframe? def to_pcollection( *dataframes, # type: Union[frame_base.DeferredFrame, pd.DataFrame, pd.Series] label=None, always_return_tuple=False, yield_elements='schemas', include_indexes=False, pipeline=None) -> Union[pvalue.PCollection, Tuple[pvalue.PCollection, ...]]: """Converts one or more deferred dataframe-like objects back to a PCollection. This method creates and applies the actual Beam operations that compute the given deferred dataframes, returning a PCollection of their results. By default the resulting PCollections are schema-aware PCollections where each element is one row from the output dataframes, excluding indexes. This behavior can be modified with the `yield_elements` and `include_indexes` arguments. Also accepts non-deferred pandas dataframes, which are converted to deferred, schema'd PCollections. In this case the contents of the entire dataframe are serialized into the graph, so for large amounts of data it is preferable to write them to disk and read them with one of the read methods. If more than one (related) result is desired, it can be more efficient to pass them all at the same time to this method. Args: label: (optional, default "ToPCollection(...)"") the label to use for the conversion transform. always_return_tuple: (optional, default: False) If true, always return a tuple of PCollections, even if there's only one output. yield_elements: (optional, default: "schemas") If set to "pandas", return PCollections containing the raw Pandas objects (DataFrames or Series), if set to "schemas", return an element-wise PCollection, where DataFrame and Series instances are expanded to one element per row. DataFrames are converted to schema-aware PCollections, where column values can be accessed by attribute. include_indexes: (optional, default: False) When yield_elements="schemas", if include_indexes=True, attempt to include index columns in the output schema for expanded DataFrames. Raises an error if any of the index levels are unnamed (name=None), or if any of the names are not unique among all column and index names. pipeline: (optional, unless non-deferred dataframes are passed) Used when creating a PCollection from a non-deferred dataframe. """ if not yield_elements in ("pandas", "schemas"): raise ValueError( "Invalid value for yield_elements argument, '%s'. " "Allowed values are 'pandas' and 'schemas'" % yield_elements) if label is None: # Attempt to come up with a reasonable, stable label by retrieving the name # of these variables in the calling context. label = 'ToPCollection(%s)' % ', '.join(_var_name(e, 3) for e in dataframes) # Support for non-deferred dataframes. deferred_dataframes = [] for ix, df in enumerate(dataframes): if isinstance(df, frame_base.DeferredBase): # TODO(robertwb): Maybe extract pipeline object? deferred_dataframes.append(df) elif isinstance(df, (pd.Series, pd.DataFrame)): if pipeline is None: raise ValueError( 'Pipeline keyword required for non-deferred dataframe conversion.') deferred = pipeline | '%s_Defer%s' % (label, ix) >> beam.Create([df]) deferred_dataframes.append( frame_base.DeferredFrame.wrap( expressions.PlaceholderExpression(df.iloc[:0], deferred))) else: raise TypeError( 'Unable to convert objects of type %s to a PCollection' % type(df)) dataframes = tuple(deferred_dataframes) def extract_input(placeholder): if not isinstance(placeholder._reference, pvalue.PCollection): raise TypeError( 'Expression roots must have been created with to_dataframe.') return placeholder._reference placeholders = frozenset.union( frozenset(), *[df._expr.placeholders() for df in dataframes]) # Exclude any dataframes that have already been converted to PCollections. # We only want to convert each DF expression once, then re-use. new_dataframes = [ df for df in dataframes if df._expr._id not in TO_PCOLLECTION_CACHE ] if len(new_dataframes): new_results = {p: extract_input(p) for p in placeholders } | label >> transforms._DataframeExpressionsTransform({ ix: df._expr for (ix, df) in enumerate(new_dataframes) }) # type: Dict[Any, pvalue.PCollection] TO_PCOLLECTION_CACHE.update( {new_dataframes[ix]._expr._id: pc for ix, pc in new_results.items()}) raw_results = { ix: TO_PCOLLECTION_CACHE[df._expr._id] for ix, df in enumerate(dataframes) } if yield_elements == "schemas": def maybe_unbatch(pc, value): if isinstance(value, frame_base._DeferredScalar): return pc else: return _make_unbatched_pcoll(pc, value._expr, include_indexes) results = { ix: maybe_unbatch(pc, dataframes[ix]) for (ix, pc) in raw_results.items() } else: results = raw_results if len(results) == 1 and not always_return_tuple: return results[0] else: return tuple(value for key, value in sorted(results.items())) def _var_name(obj, level): frame = inspect.currentframe() for _ in range(level): if frame is None: return '...' frame = frame.f_back for key, value in frame.f_locals.items(): if obj is value: return key for key, value in frame.f_globals.items(): if obj is value: return key return '...'
apache-2.0
pap/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/pylab.py
70
10245
""" This is a procedural interface to the matplotlib object-oriented plotting library. The following plotting commands are provided; the majority have Matlab(TM) analogs and similar argument. _Plotting commands acorr - plot the autocorrelation function annotate - annotate something in the figure arrow - add an arrow to the axes axes - Create a new axes axhline - draw a horizontal line across axes axvline - draw a vertical line across axes axhspan - draw a horizontal bar across axes axvspan - draw a vertical bar across axes axis - Set or return the current axis limits bar - make a bar chart barh - a horizontal bar chart broken_barh - a set of horizontal bars with gaps box - set the axes frame on/off state boxplot - make a box and whisker plot cla - clear current axes clabel - label a contour plot clf - clear a figure window clim - adjust the color limits of the current image close - close a figure window colorbar - add a colorbar to the current figure cohere - make a plot of coherence contour - make a contour plot contourf - make a filled contour plot csd - make a plot of cross spectral density delaxes - delete an axes from the current figure draw - Force a redraw of the current figure errorbar - make an errorbar graph figlegend - make legend on the figure rather than the axes figimage - make a figure image figtext - add text in figure coords figure - create or change active figure fill - make filled polygons findobj - recursively find all objects matching some criteria gca - return the current axes gcf - return the current figure gci - get the current image, or None getp - get a handle graphics property grid - set whether gridding is on hist - make a histogram hold - set the axes hold state ioff - turn interaction mode off ion - turn interaction mode on isinteractive - return True if interaction mode is on imread - load image file into array imshow - plot image data ishold - return the hold state of the current axes legend - make an axes legend loglog - a log log plot matshow - display a matrix in a new figure preserving aspect pcolor - make a pseudocolor plot pcolormesh - make a pseudocolor plot using a quadrilateral mesh pie - make a pie chart plot - make a line plot plot_date - plot dates plotfile - plot column data from an ASCII tab/space/comma delimited file pie - pie charts polar - make a polar plot on a PolarAxes psd - make a plot of power spectral density quiver - make a direction field (arrows) plot rc - control the default params rgrids - customize the radial grids and labels for polar savefig - save the current figure scatter - make a scatter plot setp - set a handle graphics property semilogx - log x axis semilogy - log y axis show - show the figures specgram - a spectrogram plot spy - plot sparsity pattern using markers or image stem - make a stem plot subplot - make a subplot (numrows, numcols, axesnum) subplots_adjust - change the params controlling the subplot positions of current figure subplot_tool - launch the subplot configuration tool suptitle - add a figure title table - add a table to the plot text - add some text at location x,y to the current axes thetagrids - customize the radial theta grids and labels for polar title - add a title to the current axes xcorr - plot the autocorrelation function of x and y xlim - set/get the xlimits ylim - set/get the ylimits xticks - set/get the xticks yticks - set/get the yticks xlabel - add an xlabel to the current axes ylabel - add a ylabel to the current axes autumn - set the default colormap to autumn bone - set the default colormap to bone cool - set the default colormap to cool copper - set the default colormap to copper flag - set the default colormap to flag gray - set the default colormap to gray hot - set the default colormap to hot hsv - set the default colormap to hsv jet - set the default colormap to jet pink - set the default colormap to pink prism - set the default colormap to prism spring - set the default colormap to spring summer - set the default colormap to summer winter - set the default colormap to winter spectral - set the default colormap to spectral _Event handling connect - register an event handler disconnect - remove a connected event handler _Matrix commands cumprod - the cumulative product along a dimension cumsum - the cumulative sum along a dimension detrend - remove the mean or besdt fit line from an array diag - the k-th diagonal of matrix diff - the n-th differnce of an array eig - the eigenvalues and eigen vectors of v eye - a matrix where the k-th diagonal is ones, else zero find - return the indices where a condition is nonzero fliplr - flip the rows of a matrix up/down flipud - flip the columns of a matrix left/right linspace - a linear spaced vector of N values from min to max inclusive logspace - a log spaced vector of N values from min to max inclusive meshgrid - repeat x and y to make regular matrices ones - an array of ones rand - an array from the uniform distribution [0,1] randn - an array from the normal distribution rot90 - rotate matrix k*90 degress counterclockwise squeeze - squeeze an array removing any dimensions of length 1 tri - a triangular matrix tril - a lower triangular matrix triu - an upper triangular matrix vander - the Vandermonde matrix of vector x svd - singular value decomposition zeros - a matrix of zeros _Probability levypdf - The levy probability density function from the char. func. normpdf - The Gaussian probability density function rand - random numbers from the uniform distribution randn - random numbers from the normal distribution _Statistics corrcoef - correlation coefficient cov - covariance matrix amax - the maximum along dimension m mean - the mean along dimension m median - the median along dimension m amin - the minimum along dimension m norm - the norm of vector x prod - the product along dimension m ptp - the max-min along dimension m std - the standard deviation along dimension m asum - the sum along dimension m _Time series analysis bartlett - M-point Bartlett window blackman - M-point Blackman window cohere - the coherence using average periodiogram csd - the cross spectral density using average periodiogram fft - the fast Fourier transform of vector x hamming - M-point Hamming window hanning - M-point Hanning window hist - compute the histogram of x kaiser - M length Kaiser window psd - the power spectral density using average periodiogram sinc - the sinc function of array x _Dates date2num - convert python datetimes to numeric representation drange - create an array of numbers for date plots num2date - convert numeric type (float days since 0001) to datetime _Other angle - the angle of a complex array griddata - interpolate irregularly distributed data to a regular grid load - load ASCII data into array polyfit - fit x, y to an n-th order polynomial polyval - evaluate an n-th order polynomial roots - the roots of the polynomial coefficients in p save - save an array to an ASCII file trapz - trapezoidal integration __end """ import sys, warnings from cbook import flatten, is_string_like, exception_to_str, popd, \ silent_list, iterable, dedent import numpy as np from numpy import ma from matplotlib import mpl # pulls in most modules from matplotlib.dates import date2num, num2date,\ datestr2num, strpdate2num, drange,\ epoch2num, num2epoch, mx2num,\ DateFormatter, IndexDateFormatter, DateLocator,\ RRuleLocator, YearLocator, MonthLocator, WeekdayLocator,\ DayLocator, HourLocator, MinuteLocator, SecondLocator,\ rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY,\ WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY, relativedelta import matplotlib.dates # bring all the symbols in so folks can import them from # pylab in one fell swoop from matplotlib.mlab import window_hanning, window_none,\ conv, detrend, detrend_mean, detrend_none, detrend_linear,\ polyfit, polyval, entropy, normpdf, griddata,\ levypdf, find, trapz, prepca, rem, norm, orth, rank,\ sqrtm, prctile, center_matrix, rk4, exp_safe, amap,\ sum_flat, mean_flat, rms_flat, l1norm, l2norm, norm, frange,\ diagonal_matrix, base_repr, binary_repr, log2, ispower2,\ bivariate_normal, load, save from matplotlib.mlab import stineman_interp, slopes, \ stineman_interp, inside_poly, poly_below, poly_between, \ is_closed_polygon, path_length, distances_along_curve, vector_lengths from numpy import * from numpy.fft import * from numpy.random import * from numpy.linalg import * from matplotlib.mlab import window_hanning, window_none, conv, detrend, demean, \ detrend_mean, detrend_none, detrend_linear, entropy, normpdf, levypdf, \ find, longest_contiguous_ones, longest_ones, prepca, prctile, prctile_rank, \ center_matrix, rk4, bivariate_normal, get_xyz_where, get_sparse_matrix, dist, \ dist_point_to_segment, segments_intersect, fftsurr, liaupunov, movavg, \ save, load, exp_safe, \ amap, rms_flat, l1norm, l2norm, norm_flat, frange, diagonal_matrix, identity, \ base_repr, binary_repr, log2, ispower2, fromfunction_kw, rem, norm, orth, rank, sqrtm,\ mfuncC, approx_real, rec_append_field, rec_drop_fields, rec_join, csv2rec, rec2csv, isvector from matplotlib.pyplot import * # provide the recommended module abbrevs in the pylab namespace import matplotlib.pyplot as plt import numpy as np
agpl-3.0
clsb/miles
miles/plot.py
1
12891
"""Module for plotting routines. """ __all__ = ['plot'] import os import sys from typing import Optional, Tuple import scipy.ndimage import scipy.linalg import scipy.spatial matplotlib = None # type: Optional[module] plt = None # type: Optional[module] sns = None # type: Optional[module] import numpy as np from miles import Milestones, Simulation, load_distributions # noqa: E501 EPSILON = sys.float_info.epsilon TICKS = [-180, -90, 0, 90, 180] def latex_preamble() -> None: """LaTeX preamble for publication-quality figures. """ fig_width_pt = 397.48499 inches_per_pt = 1.0/72.27 golden_mean = (np.sqrt(5)-1.0) / 2.0 fig_width = 1.4 * fig_width_pt * inches_per_pt fig_height = fig_width * 1.25 * golden_mean fig_size = (fig_width, fig_height) params = { 'backend': 'pdf', 'pgf.texsystem': 'pdflatex', 'font.family': 'serif', 'font.serif': 'cm', 'font.size': 12, 'axes.labelsize': 12, 'xtick.labelsize': 12, 'ytick.labelsize': 12, 'text.usetex': True, 'text.latex.unicode': True, 'figure.figsize': fig_size } matplotlib.rcParams.update(params) plt.axes([0.2, 0.2, 1.0 - 0.2, 1.0 - 0.2]) plt.figure(figsize=fig_size) def set_xticks() -> None: plt.axes().set_xticks(TICKS) plt.axes().set_xlim([TICKS[0], TICKS[-1]]) def set_yticks() -> None: plt.axes().set_yticks(TICKS) plt.axes().set_ylim([TICKS[0], TICKS[-1]]) def pbc(points: np.array) -> np.array: """Apply periodic boundary conditions to a set of points. """ return np.concatenate((points, points + np.array([0, -360]), points + np.array([0, 360]), points + np.array([-360, -360]), points + np.array([-360, 0]), points + np.array([-360, +360]), points + np.array([360, -360]), points + np.array([360, 0]), points + np.array([360, 360]))) def plot_voronoi(vor: scipy.spatial.Voronoi, milestones: Milestones, data: np.array, ax: 'matplotlib.axes._axes.Axes', **kwargs): """Plot 2D Voronoi diagram. Parameters ---------- vor : scipy.spatial.Voronoi Voronoi tessellation to plot. milestones : Milestones Milestone factory. data : np.array Dataset to plot onto the milestones. ax : matplotlib.axes._axes.Axes Axes where the figure will be plotted. Returns ------- fig : matplotlib.figure.Figure Matplotlib figure. """ if vor.points.shape[1] != 2: raise ValueError("Voronoi diagram is not 2-D") if data is None: data = np.ones(milestones.max_milestones) plot_colorbar = False else: plot_colorbar = True import matplotlib.cm as cm cmap = cm.get_cmap(kwargs['colors']) valid_elements = np.logical_not(np.isnan(data)) minimum = np.min(data[valid_elements]) maximum = np.max(data[valid_elements]) norm = cm.colors.Normalize(vmin=minimum, vmax=maximum) alpha = 0.9 sz = kwargs['marker_size'] labels = kwargs['labels'] num_anchors = len(milestones.anchors) for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices): simplex = np.asarray(simplex) if np.all(simplex >= 0): try: m = milestones.make_from_indices(pointidx[0] % num_anchors, pointidx[1] % num_anchors) except IndexError: continue if labels: point = vor.vertices[simplex, :].mean(axis=0) ax.text(point[0], point[1], [a.index for a in m.anchors], clip_on=True, size=sz, zorder=10) datum = data[m.index] if not np.isnan(datum): c = cmap(norm(datum)) ax.plot(vor.vertices[simplex, 0], vor.vertices[simplex, 1], color=c, alpha=alpha, linewidth=sz, zorder=-10+datum) length_far_point = 1e6 # XXX hard-coded center = vor.points.mean(axis=0) for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices): simplex = np.asarray(simplex) if np.any(simplex < 0): i = simplex[simplex >= 0][0] # finite end Voronoi vertex t = vor.points[pointidx[1]] - vor.points[pointidx[0]] # tangent t /= np.linalg.norm(t) n = np.array([-t[1], t[0]]) # normal midpoint = vor.points[pointidx].mean(axis=0) direction = np.sign(np.dot(midpoint - center, n)) * n far_point = vor.vertices[i] + length_far_point * direction try: m = milestones.make_from_indices(pointidx[0] % num_anchors, pointidx[1] % num_anchors) except IndexError: continue if labels: point = vor.vertices[i] + direction * 0.5 # XXX hardcoded ax.text(point[0], point[1], [a.index for a in m.anchors], clip_on=True, size=sz, zorder=10) datum = data[m.index] if not np.isnan(datum): c = cmap(norm(datum)) ax.plot([vor.vertices[i, 0], far_point[0]], [vor.vertices[i, 1], far_point[1]], color=c, alpha=alpha, linewidth=sz, zorder=-10+datum) if plot_colorbar: ax1, _ = matplotlib.colorbar.make_axes(ax) cb = matplotlib.colorbar.ColorbarBase(ax1, cmap=cmap, norm=norm) if kwargs['colorbar_title']: cb.set_label(kwargs['colorbar_title']) text = cb.ax.yaxis.label font = matplotlib.font_manager.FontProperties(style='normal') text.set_font_properties(font) return ax.figure def plot_free_energy(): # from matplotlib.colors import LogNorm ala3 = np.load('ala3.npy') d = ala3[:, [1, -1]] num_bins = 50 zz, xx, yy = scipy.histogram2d(d[:, 0], d[:, 1], bins=num_bins, normed=True) x, y = np.meshgrid(xx[:-1], yy[:-1]) z = scipy.ndimage.gaussian_filter(zz, sigma=1.0, order=0) plt.contour(y, x, z, colors='k', zorder=-900) plt.imshow(z.T, extent=(-180, 180, -180, 180), origin='lower', cmap='Greys', zorder=-1000) # cmap='YlGnBu', zorder=-1000) # plt.colorbar(label='Density') def plot_milestones(simulation: Simulation, **kwargs) -> None: """Plot a dataset on the faces of a Voronoi tessellation. """ milestones = simulation.milestones anchors = milestones.anchors assert len(anchors) >= 2 if kwargs['input']: input_files = kwargs['input'] input_file_name = input_files[0] try: data = np.load(input_file_name) except OSError: data = np.loadtxt(input_file_name) else: data = None sns.set(style='ticks') if kwargs['output']: latex_preamble() plot_free_energy() coordinates = np.array([a.coordinates for a in anchors]) voronoi = scipy.spatial.Voronoi(pbc(coordinates)) # XXX PBC hardcoded # voronoi = scipy.spatial.Voronoi(coordinates, qhull_options='Qp Pp') plot_voronoi(voronoi, milestones, data, ax=plt.axes(), **kwargs) set_xticks() set_yticks() plt.axes().set_aspect('equal') if kwargs['title']: plt.title(kwargs['title']) if kwargs['xlabel']: plt.xlabel(kwargs['xlabel']) if kwargs['ylabel']: plt.ylabel(kwargs['ylabel']) if kwargs['output']: plt.savefig(kwargs['output']) else: plt.show() def orthogonal_distance_regression(data: np.array) \ -> Tuple[np.array, np.array]: """Fit data to best hyperplane (best in the least-squares sense). Parameters ---------- data : np.array Points to fit. Returns ------- projected_points : np.array The points projected onto the best hyperplane. coordinates : np.array The (n-1) coordinates of the points on the best hyperplane. """ d = np.array(data, dtype=data.dtype) center_of_mass = np.mean(d, axis=0) d -= center_of_mass U, D, V = scipy.linalg.svd(d.T, full_matrices=False) # Subspace spanned by the best hyperplane. span = U[:, 0:-1] # Projection of the data points onto the best hyperplane. projection = np.matrix(center_of_mass) + d @ span @ span.T # Coordinates of the data points in the hyperplane. Note that # since U is an orthogonal matrix, its inverse coincides with its # transpose. d += center_of_mass coordinates = -U.T @ d.T return np.array(projection), coordinates[0:-1, :].T def sample_data(distribution, key, num_samples=1000): # XXX Hardcoded. """Draw samples from a given distribution. """ data = [] for _ in range(num_samples): transition = distribution.sample() data.append(key(transition)) return np.array(data) def get_rows_and_columns(num_milestones: int) -> Tuple[int, int]: """Get optimal number of rows and columns to display histograms. Parameters ---------- num_milestones : int Number of milestones Returns ------- rows : int Optimal number of rows. cols : int Optimal number of columns. """ if num_milestones <= 10: layouts = { 1: (1, 1), 2: (1, 2), 3: (1, 3), 4: (2, 2), 5: (2, 3), 6: (2, 3), 7: (2, 4), 8: (2, 4), 9: (3, 9), 10: (2, 5) } rows, cols = layouts[num_milestones] else: rows = int(np.ceil(np.sqrt(num_milestones))) cols = rows return rows, cols def plot_histograms(simulation: Simulation, **kwargs) -> None: """Plot histograms on milestones. """ sns.set(style='ticks') if kwargs['output'] is not None: latex_preamble() all_distributions = [] known_milestones = set() file_names = kwargs['input'] num_bins = kwargs['num_bins'] min_value, max_value = kwargs['min_value'], kwargs['max_value'] for file_name in file_names: dists = load_distributions(file_name) all_distributions.append(dists) known_milestones = known_milestones.union({m for m in dists.keys()}) plot_kde = len(file_names) > 1 if num_bins: pts = np.linspace(-180, 180, num_bins) # XXX hardcoded. bins = pts[:-1] plot_hist = True else: bins = None plot_hist = not plot_kde rows, cols = get_rows_and_columns(len(known_milestones)) for idx, milestone in enumerate(sorted(known_milestones)): for file_name, dists in zip(file_names, all_distributions): try: distribution = dists[milestone] except KeyError: continue data = sample_data(distribution, key=lambda x: x.colvars) _, x = orthogonal_distance_regression(data) # x = data[:, 1] # XXX BUG plt.subplot(rows, cols, idx + 1) _, name = os.path.split(file_name) sns.distplot(x, hist=plot_hist, norm_hist=True, kde=plot_kde, bins=bins, label=name) sns.despine() plt.xlabel('Position at milestone') plt.xlim([TICKS[0], TICKS[-1]]) plt.xticks(TICKS) plt.ylabel('Density') if min_value is not None and max_value is not None: plt.ylim([min_value, max_value]) plt.yticks([]) plt.legend() plt.title(milestone) plt.tight_layout() if kwargs['output']: plt.savefig(kwargs['output']) else: plt.show() def import_modules() -> None: """Import slow-loading modules.""" global matplotlib import matplotlib # matplotlib.use('pgf') global plt import matplotlib.pyplot as plt global sns import seaborn as sns def plot(simulation: Simulation, **kwargs) -> None: """Plot simulation results. Parameters ---------- simulation : Simulation Object containing all the relevant info about the simulation. """ import_modules() # cv = kwargs['colvars'] # colvars_spec = [int(c) for c in cv.strip().split(',')] # # print(colvars_spec) # # collective_variables = simulation.collective_variables # # cvs = [] # for i, cv in enumerate(collective_variables.collective_variables): # cvs.append(cv) if kwargs['histograms']: plot_histograms(simulation, **kwargs) else: plot_milestones(simulation, **kwargs)
mit
ldirer/scikit-learn
examples/linear_model/plot_multi_task_lasso_support.py
102
2319
#!/usr/bin/env python """ ============================================= Joint feature selection with multi-task Lasso ============================================= The multi-task lasso allows to fit multiple regression problems jointly enforcing the selected features to be the same across tasks. This example simulates sequential measurements, each task is a time instant, and the relevant features vary in amplitude over time while being the same. The multi-task lasso imposes that features that are selected at one time point are select for all time point. This makes feature selection by the Lasso more stable. """ print(__doc__) # Author: Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import MultiTaskLasso, Lasso rng = np.random.RandomState(42) # Generate some 2D coefficients with sine waves with random frequency and phase n_samples, n_features, n_tasks = 100, 30, 40 n_relevant_features = 5 coef = np.zeros((n_tasks, n_features)) times = np.linspace(0, 2 * np.pi, n_tasks) for k in range(n_relevant_features): coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1)) X = rng.randn(n_samples, n_features) Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks) coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T]) coef_multi_task_lasso_ = MultiTaskLasso(alpha=1.).fit(X, Y).coef_ ############################################################################### # Plot support and time series fig = plt.figure(figsize=(8, 5)) plt.subplot(1, 2, 1) plt.spy(coef_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'Lasso') plt.subplot(1, 2, 2) plt.spy(coef_multi_task_lasso_) plt.xlabel('Feature') plt.ylabel('Time (or Task)') plt.text(10, 5, 'MultiTaskLasso') fig.suptitle('Coefficient non-zero location') feature_to_plot = 0 plt.figure() lw = 2 plt.plot(coef[:, feature_to_plot], color='seagreen', linewidth=lw, label='Ground truth') plt.plot(coef_lasso_[:, feature_to_plot], color='cornflowerblue', linewidth=lw, label='Lasso') plt.plot(coef_multi_task_lasso_[:, feature_to_plot], color='gold', linewidth=lw, label='MultiTaskLasso') plt.legend(loc='upper center') plt.axis('tight') plt.ylim([-1.1, 1.1]) plt.show()
bsd-3-clause
misterwindupbird/IBO
demo.py
1
7518
# Copyright (C) 2010, 2011 by Eric Brochu # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #!/usr/bin/env python # encoding: utf-8 """ demo.py Just a little script to demonstrate how to call the interactive Bayesian optimization (IBO/EGO) code. Created by Eric on 2010-03-20. """ from copy import deepcopy from numpy import array, arange from matplotlib.pylab import * from ego.gaussianprocess import GaussianProcess, PrefGaussianProcess from ego.gaussianprocess.kernel import GaussianKernel_ard from ego.acquisition import EI, UCB, maximizeEI, maximizeUCB from ego.acquisition.prefutil import query2prefs from ego.acquisition.gallery import fastUCBGallery from ego.utils.testfunctions import Hartman6 def demoObservations(): """ Simple demo for a scenario where we have direct observations (ie ratings or responses) with noise. The model has three parameters, but after initial training, we fix one to be 1.0 and optimize the other two. At each step, we visualize the posterior mean, variance and expected improvement. We then find the point of maximum expected improvement and ask the user for the scalar response value. To see how the model adapts to inputs, try rating the first few values higher or lower than predicted and see what happens to the visualizations. """ # the kernel parameters control the impact of different values on the # parameters. we are defining a model with three parameters kernel = GaussianKernel_ard(array([.5, .5, .3])) # we want to allow some noise in the observations -- the noise parameter # is the variance of the additive Gaussian noise Y + N(0, noise) noise = 0.1 # create the Gaussian Process using the kernel we've just defined GP = GaussianProcess(kernel, noise=noise) # add some data to the model. the data must have the same dimensionality # as the kernel X = [array([1, 1.5, 0.9]), array([.8, -.2, -0.1]), array([2, .8, -.2]), array([0, 0, .5])] Y = [1, .7, .6, -.1] print 'adding data to model' for x, y in zip(X, Y): print '\tx = %s, y = %.1f' % (x, y) GP.addData(X, Y) # the GP.posterior(x) function returns, for x, the posterior distribution # at x, characterized as a normal distribution with mean mu, variance # sigma^2 testX = [array([1, 1.45, 1.0]), array([-10, .5, -10])] for tx in testX: mu, sig2 = GP.posterior(tx) print 'the posterior of %s is a normal distribution N(%.3f, %.3f)' % (tx, mu, sig2) # now, let's find the best points to evaluate next. we fix the first # dimension to be 1 and for the others, we search the range [-2, 2] bound = [[1, 1], [-1.99, 1.98], [-1.99, 1.98]] figure(1, figsize=(5, 10)) while True: _, optx = maximizeEI(GP, bound, xi=.1) # visualize the mean, variance and expected improvement functions on # the free parameters x1 = arange(bound[1][0], bound[1][1], 0.1) x2 = arange(bound[2][0], bound[2][1], 0.1) X1, X2 = meshgrid(x1, x2) ei = zeros_like(X1) m = zeros_like(X1) v = zeros_like(X1) for i in xrange(X1.shape[0]): for j in xrange(X1.shape[1]): z = array([1.0, X1[i,j], X2[i,j]]) ei[i,j] = -EI(GP).negf(z) m[i,j], v[i,j] = GP.posterior(z) clf() for i, (func, title) in enumerate(([m, 'prediction (posterior mean)'], [v, 'uncertainty (posterior variance)'], [ei, 'utility (expected improvement)'])): ax = subplot(3, 1, i+1) cs = ax.contourf(X1, X2, func, 20) ax.plot(optx[1], optx[2], 'wo') colorbar(cs) ax.set_title(title) ax.set_xlabel('x[1]') ax.set_ylabel('x[2]') ax.set_xticks([-2,0,2]) ax.set_yticks([-2,0,2]) show() m, v = GP.posterior(optx) try: response = input('\nmaximum expected improvement is at parameters x = [%.3f, %.3f, %.3f], where mean is %.3f, variance is %.3f. \nwhat is the value there (non-numeric to quit)? ' % (optx[0], optx[1], optx[2], m, v)) except: break GP.addData(optx, response) print 'updating model.' def demoPrefGallery(): """ A simpler demo, showing how to use a preference gallery. This demo is not interactive -- it uses the 6D Hartman test function to generate the preferences. """ N = 3 # gallery size # use the Hartman6 test function, which has a kernel and bounds predefined tf = Hartman6() bounds = tf.bounds kernel = tf.createKernel(GaussianKernel_ard) # set up a Preference Gaussian Process, in which the observations are # preferences, rather than scalars GP = PrefGaussianProcess(kernel) # initial preferences -- since we have no informative prior on the space, # the gallery will be a set of points that maximize variance gallery = fastUCBGallery(GP, bounds, N) # this is a utility function for automtically testing the preferences -- # given a test functions and some sample points, it will return a list of # preferences prefs = query2prefs(gallery, tf.f) # preferences have the form [r, c, degree], where r is preferred to c. # degree is degree of preference. Just leave degree at 0 for now. for r, c, _ in prefs: print '%s preferred to %s' % (r, c) # add preferences to the model GP.addPreferences(prefs) # get another gallery, but with the first three dimensions fixed to .5 nbounds = deepcopy(bounds) nbounds[:3] = [[.5,.5]]*3 gallery = fastUCBGallery(GP, nbounds, N) prefs = query2prefs(gallery, tf.f) for r, c, _ in prefs: print '%s preferred to %s' % (r, c) # get another gallery, but with the *last* three dimensions fixed to .5 nbounds = deepcopy(bounds) nbounds[3:] = [[.5,.5]]*3 gallery = fastUCBGallery(GP, nbounds, N) prefs = query2prefs(gallery, tf.f) for r, c, _ in prefs: print '%s preferred to %s' % (r, c) # preferences don't have to come from the gallery r = array([0, 0, .5, 0, 1, .25]) c = array([1, 1, .75, 1, 0, .5]) pref = (r, c, 0) GP.addPreferences([pref]) if __name__ == '__main__': demoObservations() # demoPrefGallery()
mit
andaag/scikit-learn
sklearn/externals/joblib/__init__.py
86
4795
""" Joblib is a set of tools to provide **lightweight pipelining in Python**. In particular, joblib offers: 1. transparent disk-caching of the output values and lazy re-evaluation (memoize pattern) 2. easy simple parallel computing 3. logging and tracing of the execution Joblib is optimized to be **fast** and **robust** in particular on large data and has specific optimizations for `numpy` arrays. It is **BSD-licensed**. ============================== ============================================ **User documentation**: http://pythonhosted.org/joblib **Download packages**: http://pypi.python.org/pypi/joblib#downloads **Source code**: http://github.com/joblib/joblib **Report issues**: http://github.com/joblib/joblib/issues ============================== ============================================ Vision -------- The vision is to provide tools to easily achieve better performance and reproducibility when working with long running jobs. * **Avoid computing twice the same thing**: code is rerun over an over, for instance when prototyping computational-heavy jobs (as in scientific development), but hand-crafted solution to alleviate this issue is error-prone and often leads to unreproducible results * **Persist to disk transparently**: persisting in an efficient way arbitrary objects containing large data is hard. Using joblib's caching mechanism avoids hand-written persistence and implicitly links the file on disk to the execution context of the original Python object. As a result, joblib's persistence is good for resuming an application status or computational job, eg after a crash. Joblib strives to address these problems while **leaving your code and your flow control as unmodified as possible** (no framework, no new paradigms). Main features ------------------ 1) **Transparent and fast disk-caching of output value:** a memoize or make-like functionality for Python functions that works well for arbitrary Python objects, including very large numpy arrays. Separate persistence and flow-execution logic from domain logic or algorithmic code by writing the operations as a set of steps with well-defined inputs and outputs: Python functions. Joblib can save their computation to disk and rerun it only if necessary:: >>> import numpy as np >>> from sklearn.externals.joblib import Memory >>> mem = Memory(cachedir='/tmp/joblib') >>> import numpy as np >>> a = np.vander(np.arange(3)).astype(np.float) >>> square = mem.cache(np.square) >>> b = square(a) # doctest: +ELLIPSIS ________________________________________________________________________________ [Memory] Calling square... square(array([[ 0., 0., 1.], [ 1., 1., 1.], [ 4., 2., 1.]])) ___________________________________________________________square - 0...s, 0.0min >>> c = square(a) >>> # The above call did not trigger an evaluation 2) **Embarrassingly parallel helper:** to make is easy to write readable parallel code and debug it quickly:: >>> from sklearn.externals.joblib import Parallel, delayed >>> from math import sqrt >>> Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10)) [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0] 3) **Logging/tracing:** The different functionalities will progressively acquire better logging mechanism to help track what has been ran, and capture I/O easily. In addition, Joblib will provide a few I/O primitives, to easily define define logging and display streams, and provide a way of compiling a report. We want to be able to quickly inspect what has been run. 4) **Fast compressed Persistence**: a replacement for pickle to work efficiently on Python objects containing large data ( *joblib.dump* & *joblib.load* ). .. >>> import shutil ; shutil.rmtree('/tmp/joblib/') """ # PEP0440 compatible formatted version, see: # https://www.python.org/dev/peps/pep-0440/ # # Generic release markers: # X.Y # X.Y.Z # For bugfix releases # # Admissible pre-release markers: # X.YaN # Alpha release # X.YbN # Beta release # X.YrcN # Release Candidate # X.Y # Final release # # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer. # 'X.Y.dev0' is the canonical version of 'X.Y.dev' # __version__ = '0.9.0b3' from .memory import Memory, MemorizedResult from .logger import PrintTime from .logger import Logger from .hashing import hash from .numpy_pickle import dump from .numpy_pickle import load from .parallel import Parallel from .parallel import delayed from .parallel import cpu_count
bsd-3-clause
tonyao-/iozone-results-comparator
old_version/iozone_results_comparator.py
7
56394
#!/usr/bin/python # iozone_results_comparator.py - parse iozone output files and write stats and plots to output html # Copyright (C) 2011 # Adam Okuliar aokuliar at redhat dot com # Jiri Hladky hladky dot jiri at gmail dot com # Petr Benas petrbenas at gmail dot com # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sys sys.path.append('/exports/perf/python') import os import argparse import re import numpy from scipy import stats import warnings import shutil import math import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.font_manager import fontManager, FontProperties out_dir='Compare-html' # normal mode output directory name out_file='index.html' # main html file name tabdDir = 'Tab_delimited' # tab delimited output directory # write html header and page beginning # htmldoc - where to write # baseFiles - input files used to get baseline data # set1Files - input files used to get set1 data def write_header(htmldoc, baseFiles, set1Files, title='Iozone', header='Iozone results'): html_header=''' <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/> <title>'''+title+'''</title> </head> <body> <link rel="stylesheet" type="text/css" href="stylesheet.css"> <div class="main"> <div class="inner"> <h1 id="top"> '''+header+''' </h1> ''' htmldoc.write(html_header) htmldoc.write('<DL class="filelist">') htmldoc.write('<DT><STRONG>Baseline data set</STRONG><UL>') for file_name in baseFiles: htmldoc.write('<LI>'+file_name) htmldoc.write('</UL>') htmldoc.write('<DT><STRONG>Investigated data set</STRONG><UL>') for file_name in set1Files: htmldoc.write('<LI>'+file_name) htmldoc.write('</UL>') htmldoc.write('</DL>') htmldoc.write('<p>mean => Arithmetic mean<br>') htmldoc.write('standar dev. => Sample standard deviation<br>') htmldoc.write('ci. max 90%, ci.min => confidence interval at confidence level 90% => it means that mean value of the distribution lies with 90% propability in interval ci_min-ci_max<br>') htmldoc.write('geom. mean => Geometric mean<br>') htmldoc.write('median => Second quartile = cuts data set in half = 50th percentile <br>') htmldoc.write('first quartile => cuts off lowest 25% of data = 25th percentile <br>') htmldoc.write('third quartile => cuts off highest 25% of data, or lowest 75% = 75th percentile <br>') htmldoc.write('minimum => Lowest value of data set <br>') htmldoc.write('maximum => Hightest value of data set <br>') htmldoc.write('baseline set1 difference => Difference of medians of both sets in percennt. Arithmetic means are used in detail mode instead.<br>') htmldoc.write('ttest p-value => Student\'s t-test p-value = probability the both data sets are equal <br>') htmldoc.write('ttest equality => If p-value is higher than 0.1, data sets are considered being equal with 90% probability. Otherwise the data sets are considered being different.<br>') htmldoc.write('Linear regression of all results regression line is in y = ax form, b coeficient is zero. </p>') htmldoc.write('<p>for details about operations performed see <a href="http://www.iozone.org/docs/IOzone_msword_98.pdf">Iozone documentation</a>') htmldoc.write('</p>') return; # end the page and close htmldoc # htmldoc - where to write def write_footer(htmldoc): html_footer=''' </div> </div> </body> </html> ''' htmldoc.write(html_footer) return # create the plot image file # graphlabel - label on the top of plot # xlabel - label of x axis # ylabel - label of y axis # data - data in write_operation format # name - figure name # semilogx - wheather use logaritmic scale on X axis # semilogy - wheather use logaritmic scale on Y axis # type - to differ normal and detail mode plots def make_plot(graphlabel,xlabel,ylabel,data,name,semilogx=False,semilogy=False, type='normal'): # check for data delimeters, wheather it can be plotted ok=True l=len(data[0][2])+1 #JH for data_item in data[1:]: for run in data_item[2]: if len(run)!=l: ok=False if not ok: print 'figure '+name+' has different vector sizes, skipping plot' sys.stdout.flush() print l, for data_item in data[1:]: for run in data_item[2]: print len(run), print '' return # different values are being plotted in normal and detail mode datalines = [] errorbars_maxes = [] errorbars_mins = [] if (type == 'normal'): datalines.append(data[1][9]) datalines.append(data[2][9]) errorbars_mins.append(numpy.array(data[1][9]) - numpy.array(data[1][10])) errorbars_mins.append(numpy.array(data[2][9]) - numpy.array(data[2][10])) errorbars_maxes.append(numpy.array(data[1][11]) - numpy.array(data[1][9])) errorbars_maxes.append(numpy.array(data[2][11]) - numpy.array(data[2][9])) textstr = 'Plotted values are\n - first quartile\n - median\n - third quartile\nfor each datapoint.' elif (type == 'detail'): datalines.append(data[1][3]) datalines.append(data[2][3]) errorbars_mins.append(numpy.array(data[1][3]) - numpy.array(data[1][5])) errorbars_mins.append(numpy.array(data[2][3]) - numpy.array(data[2][5])) errorbars_maxes.append(numpy.array(data[1][6]) - numpy.array(data[1][3])) errorbars_maxes.append(numpy.array(data[2][6]) - numpy.array(data[2][3])) textstr = 'Plotted values are\n - ci. min. 90%\n - mean val.\n - ci. max 90%\nfor each datapoint.' else: print 'unknown make_plot function type parameter' return # get rid of starting and/or ending zero values - useful for detail mode minIndex = 0 maxIndex = len(data[0][2]) while (datalines[0][minIndex] == datalines[1][minIndex] == 0): minIndex += 1 while (datalines[0][maxIndex - 1] == datalines[1][maxIndex - 1] == 0): maxIndex -= 1 plt.clf() # create plot lines for both sets for i in range(len(datalines)): p=plt.plot(data[0][2][minIndex:maxIndex],datalines[i][minIndex:maxIndex],'o-',color=data[i+1][1],label=data[i+1][0]) plt.errorbar(data[0][2][minIndex:maxIndex],datalines[i][minIndex:maxIndex], yerr=[errorbars_mins[i][minIndex:maxIndex], errorbars_maxes[i][minIndex:maxIndex]] ,color=data[i+1][1], fmt='o-',) plt.grid(True) if semilogx: plt.semilogx() if semilogy: plt.semilogy() plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(graphlabel) # add legend details font = FontProperties(size='small'); a = plt.legend(loc=0, prop=font); txt = matplotlib.offsetbox.TextArea(textstr, textprops=dict(size=7)) box = a._legend_box box.get_children().append(txt) box.set_figure(box.figure) # Fedora 14 bug 562421 workaround with warnings.catch_warnings(): warnings.filterwarnings("ignore",category=UserWarning) plt.savefig(out_dir+'/'+name) plt.clf() return # class to parse iozone results from input data files class Parse_iozone: # init, check wheather input files are readable def __init__(self,iozone_file_list): self.names=["iwrite", "rewrite", "iread", "reread", "randrd", "randwr", "bkwdrd", "recrewr", "striderd", "fwrite", "frewrite", "fread", "freread"] self.names_dictionary = {} count = 0 for item in self.names: self.names_dictionary[item]=count ++count self.files=[] self.operations = [] #List of operations self.columns = {} assert (iozone_file_list is not None) for file_name in iozone_file_list: if os.access(file_name, os.R_OK): self.files.append(file_name) else: sys.stderr.write('File "%s" is not readable.\n' % (file_name)) self.read_all_files() self.get_all_operations() # split line to get data for operations def split_iozone_line(self,line): field_list = [16, 8, 8, 8, 9, 9, 8, 8, 8, 9, 9, 9, 9, 8, 9] offset = 0 output = [] line=line.rstrip('\n') for i in range(len(field_list)): width = field_list[i] substring=line[offset:width+offset] offset += width if len(substring) == width: matchObj = re.match( r'^\s+$', substring, re.M) if matchObj: output.append(None) else: output.append(int(substring)) else: output.append(None) if i != len(field_list) -1 or ( width - len(substring) ) > 3 : sys.stderr.write('%s "%s"\n' % ("Line:", line ) ) sys.stderr.write('\t%s "%s"\n' % ("Substring:", substring ) ) sys.stderr.write('\t%s %d, %s %d\n' % ("Length:", len(substring), "Expecting:", width ) ) return output # read data from input files def read_all_files(self): file_counter = 0 for file_name in self.files: this_file_columns = {} ++file_counter f = open(file_name, "r") for line in f: matchObj = re.match( r'^\s+\d+\s+\d+\s+\d+', line, re.M) if matchObj: #Data lines line_in_array = self.split_iozone_line(line); #sys.stderr.write('%s\t%s\n' % (line_in_array[0],line_in_array[-1]) ) file_size = line_in_array.pop(0); block_size = line_in_array.pop(0); for j in range( 0, len(self.names), 1 ): column_name = self.names[j] full_column_name = 'FS_' + str(file_size) + '_BLOCK_' + str(block_size) + '_' + column_name key=(file_size,block_size,column_name) if ( j>len(line_in_array) ) or ( line_in_array[j] is None ): #Check if key exists already if ( file_counter > 1 and self.columns.has_key(key) ): sys.stderr.write('%s: file number %d: value %s exists in previous files but not in this one!\n' %(file_name, file_counter, full_column_name) ) self.columns[key].append(None) this_file_columns[key]=None else: # We have non-empty value if ( file_counter > 1 and not (self.columns.has_key(key) ) ): sys.stderr.write('%s: file number %d: value %s is not defined in previous files!\n' %(file_name, file_counter, full_column_name) ) self.columns[key]=[] for temp_file_counter in range (1,file_counter-1,1): self.columns[key].append(None) #Now add values to the array if not (self.columns.has_key(key) ): self.columns[key]=[] self.columns[key].append(line_in_array[j]/1024.0) this_file_columns[key]=None #File parsing is complete. for key in self.columns.iterkeys(): if ( not ( this_file_columns.has_key(key) ) ): sys.stderr.write('%s: file number %d: value %s exists in previous files but not in this one!\n' %(file_name, file_counter, full_column_name) ) self.columns[key].append(None) this_file_columns[key]=None return # check which operations were present on inut iozone files def get_all_operations(self): all_names = {} for key in self.columns.iterkeys(): (FS,BS,NAME) = key all_names[NAME] = self.names_dictionary[NAME] for item in self.names: if item in all_names.keys(): self.operations.append(item) return # return part of write_operation format data for operation , FS oriented def get_FS_list_for_any_BS(self,operation): all_BS = {} all_FS = {} x = [] y = [] for key in self.columns.iterkeys(): (FS,BS,NAME) = key if ( NAME == operation): if not all_BS.has_key(BS): all_BS[BS]=[] all_BS[BS].append(FS) if not all_FS.has_key(FS): all_FS[FS]=[] all_FS[FS].append(BS) for FS in sorted(all_FS.keys()): #List of all file sizes x.append(FS) for BS in sorted(all_BS.keys()): for file_number in range (len(self.files)): row = [] row.append(BS) for FS in sorted(all_FS.keys()): #We are creating a row of table #Columns - different file sizes (FS) # format is array ['label',Y_for_FS1, Y_for_FS2] #We need to check if Y_for_FS1 exists if self.columns.has_key((FS,BS,operation)): assert(len( self.columns[(FS,BS,operation)] ) == len(self.files)) row.append(self.columns[FS,BS,operation][file_number]) else: row.append(0) y.append(row) return (x,y) # return part of write_operation format data for operation , BS oriented def get_BS_list_for_any_FS(self,operation): all_BS = {} all_FS = {} x = [] y = [] for key in self.columns.iterkeys(): (FS,BS,NAME) = key if ( NAME == operation): if not all_BS.has_key(BS): all_BS[BS]=[] all_BS[BS].append(FS) if not all_FS.has_key(FS): all_FS[FS]=[] all_FS[FS].append(BS) for BS in sorted(all_BS.keys()): #List of all block sizes x.append(BS) for FS in sorted(all_FS.keys()): for file_number in range (len(self.files)): row = [] row.append(FS) for BS in sorted(all_BS.keys()): #We are creating a row of table #Columns - different block sizes (BS) # format is array ['label',Y_for_BS1, Y_for_BS2] #We need to check if Y_for_BS1 exists if self.columns.has_key((FS,BS,operation)): assert(len( self.columns[(FS,BS,operation)] ) == len(self.files)) row.append(self.columns[FS,BS,operation][file_number]) else: row.append(0) y.append(row) return (x,y) # return all set data for operation given def get_all_for_operation(self,operation): result = [] for key in self.columns.iterkeys(): (FS,BS,NAME) = key if ( NAME == operation): for val in self.columns[key]: result.append(val) return result # get all set data for all operations def get_all_data_list(self): result = [] for key in self.columns.iterkeys(): for val in self.columns[key]: result.append(val) return result # checks wheather is file readable # file_name - file to check def is_file_readable(file_name): if os.access(file_name, os.R_OK): return file_name else: msg='File "%s" is not readable.\n' % (file_name) raise argparse.ArgumentTypeError(msg) # count mean, standard deviation and confidence interval of data given in list # data = input data onedimensional list # confidence = confidence interval probability rate in percent # m = mean # sd = standard deviation # h = error # m-h = confidence interval min # m+h = confidence interval max # gm = geometric mean # med = median # frstQrt = first quartile # thrdQrt = third quartile # minVal = sample minimum # maxVal = sample maximum def mean_confidence_interval(data, confidence=0.90): actualInput = remove_zeros_from_list(data) # if input were all zeros if not actualInput: return (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) n = len(actualInput) m = numpy.mean(actualInput) # arithmetic mean gm = stats.gmean(actualInput) # geometric mean med = numpy.median(actualInput) # median frstQrt = stats.scoreatpercentile(actualInput, 25) # first quartile thrdQrt = stats.scoreatpercentile(actualInput, 75) # third quartile minVal = sorted(actualInput)[0] maxVal = sorted(actualInput)[-1] sd = numpy.std(actualInput, ddof=1) # delta degree of freedom = 1 - sample standard deviation (Bessel's correction) se = sd/numpy.sqrt(n) # standard error h = se * stats.t._ppf((1+confidence)/2., n-1) # confidence interval return (m, sd, h, m-h, m+h, gm, med, frstQrt, thrdQrt, minVal, maxVal) # compute all statistical values here # data is twodimensional array # order - order of column data values # returns vectors of statistical values describing input data columns def compute_all_stats(data, order=None): # if no order given, just walk through data if (order == None): order = range(len(data)) devs=[] avgs=[] ci_mins=[] ci_maxes=[] errs=[] gms=[] meds=[] frstQrts=[] thrdQrts=[] minVals=[] maxVals=[] for colNr in order: (avg, dev, err, ci_min, ci_max, gm, med, frstQrt, thrdQrt, minVal, maxVal) = mean_confidence_interval(data[colNr]) avgs.append(avg) devs.append(dev) errs.append(err) ci_mins.append(ci_min) ci_maxes.append(ci_max) gms.append(gm) meds.append(med) frstQrts.append(frstQrt) thrdQrts.append(thrdQrt) minVals.append(minVal) maxVals.append(maxVal) return (avgs, devs, errs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) # count ttest p-value from two sets of tada # data[[baseline col1, baseline col2, ...], [set1 col1, set1 col2, ]] # return [col1 result, col2 result] def ttest_equality(data): res = [] for i in range(len(data[0])): # scipy's ttest uses mean from scipy, which is deprecated. this is temporary workout # until it's fixed to use mean from numpy with warnings.catch_warnings(): warnings.filterwarnings("ignore",category=DeprecationWarning) (tstat, pval) = stats.ttest_ind(remove_zeros_from_list(data[0][i]), remove_zeros_from_list(data[1][i])) res.append(pval) return res # self-explanatory # list input, outputs list with zero values erased def remove_zeros_from_list(dataIn): # get rid of zeros. Zero indicates value missing, so there is no # intention to take it as a valid value. actualInput = [] for i in dataIn: if (i != float(0)): actualInput.append(i) return actualInput # count statistics in one dimension for data given # input data format: #data[0][0]=label for x values #data[0][1]=label for values to be agregated in second col #data[0][2]=[column names] #data[1][0]=label for set #data[1][1]=color for set #data[1][2]=[[row1_name, run1_value_for_col1,run1_value_for_col2], [row2_name, run1_value_for_col1,run1_value_for_col2],] # adds folloiwing to input data: # data[i][3] = arithmetic means # data[i][4] = deviations # data[i][5] = ci_mins # data[i][6] = ci_maxes # data[i][7] = errors # data[i][8] = geometric means # data[i][9] = medians # data[i][10] = first quartiles # data[i][11] = third quartiles # data[i][12] = minimal Values # data[i][13] = maximal Values # data[-1] = ttest results def stats_one_dim(data): # basic check for expected data format assert(len(data)==3) for i in range(1,len(data)): nrOfCols=len(data[1][2][0])-1 cols=[] # list of lists of colunn values. for f in range(nrOfCols): cols.append([]) # get data from input format to cols data structure for v in range(len(data[i][2])): for j in range(nrOfCols): cols[j].append(float(data[i][2][v][j+1])) # fill column list # compute statistics (avgs, devs, errs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) = compute_all_stats(cols, range(nrOfCols)) # append results to input data[i].append(avgs) data[i].append(devs) data[i].append(ci_mins) data[i].append(ci_maxes) data[i].append(errs) data[i].append(gms) data[i].append(meds) data[i].append(frstQrts) data[i].append(thrdQrts) data[i].append(minVals) data[i].append(maxVals) if (i == 1): # computing baseline baselineCols = cols # compute ttest ttestInput=[baselineCols] ttestInput.append(cols) data.append(ttest_equality(ttestInput)) return # remove columns full of zeros in both sets # data - data - [setNr][row] # data are changed in situ, return index of firs non-zero column(from original data) def remove_all_zeros_columns(data): # detect all-zeros columns oldNrOfCols=len(data[0][0]) zeros = [] for i in range(oldNrOfCols): zeros.append(True) # if there is single non-zero value, the column is not emply for colNr in range(oldNrOfCols): # for every column for set in data: # for both sets for row in set: # for every line if (row[colNr] != 0): zeros[colNr] = False # remove all-zeros columns - we count averages, otherwise we would divide by a zero for colNr in reversed(range(oldNrOfCols)): # for every column for setNr in range(len(data)): # for both sets for rowNr in range(len(data[setNr])): # for every line if (zeros[colNr]): del data[setNr][rowNr][colNr] # return index of first valid column for i in range(len(zeros)): if not (zeros[i]): return i # detail mode for closer view to one operation results # it basicaly does what __main__ does in normal mode # base - Parse_iozone object with baseline data # set1 - Parse_iozone object with set1 data # operation - operation to write def detail(base, set1, operation): global out_dir # all operations - recursively call detail function for all operations if (operation == 'ALL'): for op in set1.names: detail(base, set1, op) sys.exit(0) if not (operation in set1.names): print 'Unknown operation ' + operation print 'Valid operations are: ' + ', '.join(set1.names) + ', ALL' sys.exit(1) # Fixed Block Size print 'writing detailed info about ' + operation + ' for fixed block size' out_dir='Compare_' + operation + '_for_fixed_Block_Size' try: shutil.rmtree('./'+out_dir) except: pass os.makedirs(out_dir) shutil.copyfile('./stylesheet.css',out_dir+'/stylesheet.css') htmldoc=open(out_dir+'/'+out_file,'w') # prepare data to write_operation data format write_header(htmldoc, base.files, set1.files, operation + ' for fixed BS', 'Iozone results for ' + operation +', data are arranged by block size'); data = [] data.append(['File size [kB]','Block size [kB]']) data.append(['baseline','black']) (x1,y1)=base.get_FS_list_for_any_BS(operation) data[0].append(x1) data[1].append(y1) data.append(['set1','red']) (x2,y2)=set1.get_FS_list_for_any_BS(operation) assert(x1==x2) data[2].append(y2) # call write function write_detail_html(htmldoc,operation,data) write_footer(htmldoc) htmldoc.close() # Fixed file size print 'writing detailed info about ' + operation + ' for fixed file size' out_dir='Compare_' + operation + '_for_fixed_File_Size' try: shutil.rmtree('./'+out_dir) except: pass os.makedirs(out_dir) shutil.copyfile('./stylesheet.css',out_dir+'/stylesheet.css') htmldoc=open(out_dir+'/'+out_file,'w') # prepare data to write_operation data format write_header(htmldoc, base.files, set1.files, operation + ' for fixed FS', 'Iozone results for ' + operation + ', data are arranged by file size'); data = [] data.append(['Block size [kB]', 'File size [kB]']) data.append(['baseline','black']) (x1,y1)=base.get_BS_list_for_any_FS(operation) data[0].append(x1) data[1].append(y1) data.append(['set1','red']) (x2,y2)=set1.get_BS_list_for_any_FS(operation) assert(x1==x2) data[2].append(y2) # call write function write_detail_html(htmldoc,operation,data) write_footer(htmldoc) htmldoc.close() print 'Finished.\nTo view detailed info about ' + operation + ' see following pages in your web browser' print 'file://' + os.getcwd() + '/Compare_' + operation + '_for_fixed_Block_Size/index.html' print 'file://' + os.getcwd() + '/Compare_' + operation + '_for_fixed_File_Size/index.html' # write tables and plots in detail mode # basicaly what write_operation function does in normal mode, although not only stats are printed, also prints the data # htmldoc - where to write # operation - name of operation being currently written # data - data in write_operation function format def write_detail_html(htmldoc,operation,data): # aggregate values agrVals = [{},{}] # {'block size': [[file1_col1, file1_col2, ..], [file2_col1, file2_col2,...] ...]} # for every set for i in range(len(data)-1): # for every block/file size for v in range(len(data[i+1][2])): key = data[i+1][2][v][0] val = data[i+1][2][v][1:] # cutting row name if not key in agrVals[i].keys(): agrVals[i][key] = [] agrVals[i][key].append(val) # for every key for key in sorted(agrVals[0].keys()): # remove all zeros columns. starColNr = first valid column number, needed for propriate legend startColNr = remove_all_zeros_columns([ agrVals[0][key], agrVals[1][key] ]) nrOfCols=len(agrVals[0][key][0]) htmldoc.write('<a name="'+str(key)+'"></a> \n') htmldoc.write('<img src=\"'+str(key)+'.png\" alt=\"'+str(key)+'\" class="plot" />\n') htmldoc.write('<table>\n') htmldoc.write('<tr class=\"bottomline\">') htmldoc.write('<td rowspan=\"2\"/>\n') htmldoc.write('<td rowspan=\"2\">'+data[0][1]+'</td>\n') htmldoc.write('<td colspan=\"'+str(nrOfCols)+'\">' + data[0][0] + '</td>\n') htmldoc.write('</tr>\n') htmldoc.write('<tr>') for m in range(startColNr, startColNr + nrOfCols): htmldoc.write('<td>'+str(int(data[0][2][m]))+'</td>\n') htmldoc.write('</tr>\n') # for both sets for i in range(len(data)-1): for rowNr in range(len(agrVals[i][key])): if (rowNr == 0): htmldoc.write('<tr class=\"topline\">') htmldoc.write('<td rowspan=\"'+str(len(agrVals[i][key])+10)+'\">'+data[i+1][0]+'</td>') htmldoc.write('<td>'+str(int(key))+'</td>') else: htmldoc.write('<tr>') htmldoc.write('<td>'+str(int(key))+'</td>') for val in agrVals[i][key][rowNr]: htmldoc.write('<td>'+str(round(val,2))+'</td>') htmldoc.write('</tr>\n') # prepare data for stats columnValues = [] # [[col1_row1, col1_row2, ...], [col2_row1, col2_row2, ...], ...] for m in data[0][2]: columnValues.append([]) for row in agrVals[i][key]: for colNr in range(len(row)): columnValues[colNr].append(row[colNr]) # compute statistics (avgs, devs, errs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) = compute_all_stats(columnValues) if (i == 0): avgs_baseline = avgs columnValues_baseline = columnValues # statistic vals statVals = (avgs, devs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) # data nr value name valNames = ('mean val.', 'standard dev.', 'ci. min. 90%', 'ci. max 90%', 'geom. mean', 'median', 'first quartile', 'third quartile', 'minimum', 'maximum') # write all statistic values for v in range(len(statVals)): if (v == 0): htmldoc.write('<tr class=\"topline\">\n') else: htmldoc.write('<tr>\n') htmldoc.write('<td>' + valNames[v] + '</td>\n') for m in range(nrOfCols): htmldoc.write('<td>'+str(round(statVals[v][m],2))+'</td>\n') htmldoc.write('</tr>\n') # append results to input data[i+1].append(avgs) data[i+1].append(devs) data[i+1].append(ci_mins) data[i+1].append(ci_maxes) data[i+1].append(errs) # count differences a ttest differences = [] for m in range(nrOfCols): differences.append((avgs[m] /avgs_baseline[m] - 1) * 100) ttestInput=[[],[]] for i in range(nrOfCols): ttestInput[0].append(columnValues_baseline[i]) ttestInput[1].append(columnValues[i]) ttestResults = ttest_equality(ttestInput) # and let it be written write_diff_ttest(htmldoc, differences, ttestResults) # make plot make_plot(data[0][1]+' = '+str(key),data[0][0],'Operation speed [MB/s]',data,str(key),semilogx=True,semilogy=False, type='detail') # delete what was appended above to use make_plot function del data[1][3:] del data[2][3:] return # write differences and ttest results and close table # htmldoc - where to write # differences - list of set1 baseline differences # tterst Results - list of t-test p-values def write_diff_ttest(htmldoc, differences, ttestResults): # write differences nrOfCols = len(differences) htmldoc.write('<tr class=\"bottomline topline\">\n') htmldoc.write('<td colspan="2">baseline set1 difference</td>\n') for m in range(nrOfCols): htmldoc.write('<td>'+str(round(differences[m],2))+' % </td>\n') htmldoc.write('</tr>\n') # write p-values htmldoc.write('<tr class=\"bottomline\">\n') htmldoc.write('<td colspan="2">ttest p-value</td>\n') for m in range(nrOfCols): htmldoc.write('<td>'+str(round(ttestResults[m],4))+'</td>\n') htmldoc.write('</tr>\n') # tuple ternary operator workaround ternary_op = ('DIFF', 'SAME') htmldoc.write('<tr class=\"bottomline\">\n') htmldoc.write('<td colspan="2">ttest equality</td>\n') # write ttest result according p-val for m in range(nrOfCols): if (math.isnan(ttestResults[m])): res = 'nan' else: res = ternary_op[(ttestResults[m] > 0.1)] htmldoc.write('<td>'+res+'</td>\n') # 90% probability htmldoc.write('</tr>\n') htmldoc.write('</table>\n') return # write table of operation stats # htmldoc - where to write # operation - operation name # data - input data in following format: #data[0][0]=label for x values #data[0][1]=label for values to be agregated in second col #data[0][2]=[column names] #data[1][0]=label for set #data[1][1]=color for set #data[1][2]=[[row1_name, run1_value_for_col1,run1_value_for_col2], [row2_name, run1_value_for_col1,run1_value_for_col2],] # data[i][3] = arithmetic means # data[i][4] = deviations # data[i][5] = ci_mins # data[i][6] = ci_maxes # data[i][7] = errors # data[i][8] = geometric means # data[i][9] = medians # data[i][10] = first quartiles # data[i][11] = third quartiles # data[i][12] = minimal Values # data[i][13] = maximal Values # data[-1] = ttest results # filename - how to name plot image file def write_operation(htmldoc,operation,data,filename): htmldoc.write('<img src=\"'+filename+'.png\" alt=\"'+filename+'\" class="plot"/>\n') htmldoc.write('<table>\n') # table header htmldoc.write('<tr>') htmldoc.write('<th class=\"bottomline\">'+operation_name(operation)+'</th>\n') htmldoc.write('<th class=\"bottomline\">'+data[0][0]+'</th>\n') for m in data[0][2]: htmldoc.write('<th>'+str(int(m))+'</th>\n') htmldoc.write('</tr>\n') nrOfCols=len(data[1][2][0])-1 # compute statistics stats_one_dim(data) # for both data sets for i in range(1,(len(data)-1)): # agregate rows with the same row main value(BS/FS) agrVals={} # {'block size': [column number][val_file1, val_file2, ..], ...} for v in range(len(data[i][2])): for j in range(nrOfCols): # agregate by row name key = data[i][2][v][0] val = data[i][2][v][j+1] if not key in agrVals.keys(): agrVals[key] = [] for column in range(nrOfCols): agrVals[key].append([]) agrVals[key][j].append(val) # recognize set name htmldoc.write('<tr class=\"topline\">\n') if (i == 1): htmldoc.write('<td rowspan="10">baseline</td><td>mean val.</td>\n') else: htmldoc.write('<td rowspan="10">set1</td><td>mean val.</td>\n') for m in range(nrOfCols): htmldoc.write('<td class=\"topline\">'+str(round((data[i][3][m]),2))+'</td>\n') htmldoc.write('</tr>\n') # data nr value name valNames = {4:'standard dev.', 5:'ci. min. 90%', 6:'ci. max 90%', 8:'geom. mean', 9:'median', 10:'first quartile', 11:'third quartile', 12:'minimum', 13:'maximum'} # write all statistic values for v in sorted(valNames.keys()): htmldoc.write('<tr>\n') htmldoc.write('<td>' + valNames[v] + '</td>\n') for m in range(nrOfCols): htmldoc.write('<td>'+str(round(data[i][v][m],2))+'</td>\n') htmldoc.write('</tr>\n') # count differences differences = [] for m in range(nrOfCols): differences.append((data[2][9][m] / data[1][9][m] - 1) * 100) # write differences and ttest results write_diff_ttest(htmldoc, differences, data[-1]) # link to tabd, need inverse agregation if (filename == operation + '_BS'): inverseFSBS = '_FS' else: inverseFSBS = '_BS' hrefBaseline = operation + inverseFSBS + '_baseline.tsv' hrefSet1 = operation + inverseFSBS + '_set1.tsv' htmldoc.write('<div class=\"rawdata belowtable\">See raw data <a href=\"../'+tabdDir+'/'+hrefBaseline+'\">'+hrefBaseline+'</a>') htmldoc.write(' and <a href=\"../'+tabdDir+'/'+hrefSet1+'\">'+hrefSet1+'</a>.</div>\n') # dataXX[:-1] cuts data[3] where ttest results are stored, make_plot function cannot handle it itself make_plot(operation_name(operation),data[0][0],'Operation speed [MB/s]',data[:-1],filename,semilogx=True,semilogy=False, type='normal') return # write Overall Summary plot and table # data - both sets data in [[(FS, BSdata)],[(FS, BSdata)]] # [0] = base, [1] = set1 format # operations - operations order for tab delimited # regLines - Linear regression of all results def write_overFSBS_summary(resultsForOp, operations, regLines): htmldoc.write('<h3 id="summary">Overall summary</h3>') htmldoc.write('<img src=\"summary.png\" alt=\"summary\" class="plot"/>\n') htmldoc.write('<table>\n') htmldoc.write('<tr>') htmldoc.write('<td/><td>Operation</td>\n') for operation in operations: htmldoc.write('<td>'+operation_name(operation)+'</td>\n') htmldoc.write('</tr>\n') nrOfOps = len(resultsForOp[0].keys()) setNr = 0 # for both sets for i in range(len(resultsForOp)): setNr += 1 # compute statistics (avgs, devs, errs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) = compute_all_stats(resultsForOp[i], operations) # save some values from baseline to not to be replaced by set1 values in second iteration if (i == 0): setname = 'baseline' meds_baseline = meds frstQrts_baseline = frstQrts thrdQrts_baseline = thrdQrts minVals_baseline = minVals maxVals_baseline = maxVals else: setname = 'set1' htmldoc.write('<tr class=\"topline\">\n') htmldoc.write('<td rowspan="10">'+setname+'</td><td>mean val.</td>\n') for m in range(nrOfOps): htmldoc.write('<td class=\"topline\">'+str(round(avgs[m],2))+'</td>\n') htmldoc.write('</tr>\n') # statistic vals statVals = (devs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) # data nr value name valNames = ('standard dev.', 'ci. min. 90%', 'ci. max 90%', 'geom. mean', 'median', 'first quartile', 'third quartile', 'minimum', 'maximum') # write all statistic values for v in range(len(statVals)): htmldoc.write('<tr>\n') htmldoc.write('<td>' + valNames[v] + '</td>\n') for m in range(len(statVals[v])): htmldoc.write('<td>'+str(round(statVals[v][m],2))+'</td>\n') htmldoc.write('</tr>\n') if (setNr == 1): baseline_avgs = avgs htmldoc.write('<tr class=\"bottomline topline\">\n') htmldoc.write('<td colspan="2">linear regression slope 90%</td><td></td>\n') # excluding operation ALL for m in range(nrOfOps - 1): (slope, std_err, ci_min, ci_max) = regLines[m] htmldoc.write('<td>'+str(numpy.around(ci_min,2))+' - '+str(numpy.around(ci_max,2))+'</td>\n') htmldoc.write('</tr>\n') # compute and write differences and t-test values differences = [] for m in range(nrOfOps): differences.append((meds[m] / meds_baseline[m] - 1) * 100) ttestInput=[[],[]] for operation in operations: ttestInput[0].append(resultsForOp[0][operation]) ttestInput[1].append(resultsForOp[1][operation]) ttestResults = ttest_equality(ttestInput) write_diff_ttest(htmldoc, differences, ttestResults) # link tab delimited hrefSorted = 'summary_sorted_by_operation_' htmldoc.write('<div class=\"rawdata belowtable\">See raw data <a href=\"../'+tabdDir+'/'+hrefSorted+'baseline.tsv\">'+hrefSorted+'baseline.tsv</a>') htmldoc.write(' and <a href=\"../'+tabdDir+'/'+hrefSorted+'set1.tsv\">'+hrefSorted+'set1.tsv</a>.<br>') htmldoc.write('All data are aggregated in <a href=\"../'+tabdDir+'/summary_all_baseline.tsv\">summary_all_baseline.tsv</a>.</div>') # create the whiskers summary plot textstr = 'Plotted values are\n - (sample minimum)\n - lower quartile \n - median\n - upper quartine\n - (sample maximum)\nfor each datapoint.' plt.clf() width=0.35 x=numpy.arange(len(operations)) # baseline set1 bars one next another x1=x+width/2 x2=x+1.5*width fig = plt.figure() DefaultSize = fig.get_size_inches() fig.set_size_inches( (DefaultSize[0]*1.5, DefaultSize[1])) ax = fig.add_subplot(111) # whiskers ax.errorbar(x1,meds_baseline,yerr=[numpy.array(meds_baseline) - numpy.array(minVals_baseline),numpy.array(maxVals_baseline) - numpy.array(meds_baseline)],color='red',linestyle='None',marker='None') ax.errorbar(x2,meds,yerr=[numpy.array(meds) - numpy.array(minVals),numpy.array(maxVals) - numpy.array(meds)],color='black',linestyle='None',marker='None') # baseline bars rects1 = ax.bar(x,numpy.array(meds_baseline) - numpy.array(frstQrts_baseline),width,bottom=frstQrts_baseline,color='red') ax.bar(x,numpy.array(thrdQrts_baseline) - numpy.array(meds_baseline),width,bottom=meds_baseline,color='red') # set1 bars rects2 = ax.bar(x+width,numpy.array(meds) - numpy.array(frstQrts),width,bottom=frstQrts,color='white') ax.bar(x+width,numpy.array(thrdQrts) - numpy.array(meds),width,bottom=meds,color='white') ax.set_ylabel('Operation speed [MB/s]') ax.set_title('Summary sorted by operation') ax.set_xticks(x+width) opNames = [] # operations names on X axis for op in operations: opNames.append(operation_name(op)) ax.set_xticklabels(tuple(opNames), size=9) # legend font = FontProperties(size='small'); a = plt.legend((rects1[0], rects2[0]), ('Baseline', 'Set1'), loc=0, prop=font); txt = matplotlib.offsetbox.TextArea(textstr, textprops=dict(size=7)) box = a._legend_box box.get_children().append(txt) box.set_figure(box.figure) # Fedora 14 bug 562421 workaround with warnings.catch_warnings(): warnings.filterwarnings("ignore",category=UserWarning) plt.savefig(out_dir+'/'+'summary') plt.clf() return # Return full iozone documentation name of operation # operation this script internal operation name(no spaces, usable in filename) def operation_name(operation): names={"iwrite":"Write", "rewrite":"Re-write", "iread":"Read", "reread":"Re-read", "randrd":"Random\nread", "randwr":"Random\nwrite", "bkwdrd":"Backwards\nread", "recrewr":"Record\nrewrite", "striderd":"Strided\nRead", "fwrite":"Fwrite","frewrite":"Frewrite", "fread":"Fread", "freread":"Freread", "ALL":"ALL"} return names[operation] # write statistical values to the bottom lines of tab delimited output # tabd - where to write # statVals - list of values in specific order(see valNames var in this function) def write_tabd_stats(tabd, statVals): # data nr value name valNames = ('mean val.', 'standard dev.', 'ci. min. 90%', 'ci. max 90%', 'geom. mean', 'median', 'first quartile', 'third quartile', 'minimum', 'maximum') tabd.write('# Statistics (excluding 0 values)\n') for v in range(len(statVals)): tabd.write('#' + valNames[v]) for m in range(len(statVals[v])): tabd.write('\t'+str(round(statVals[v][m],2))) tabd.write('\n') return # write oocalc formulas to the end of tabd # it's useful in verification this script computes the same stat values OO does # tabd - where to write # dataEnd - line number of last dataline def write_oocalc_formulas(tabd, dataEnd): tabd.write('#OOCALC formulas\n') tabd.write('#mean val.\t=AVERAGE(B5:B' + dataEnd + ')\n') tabd.write('#standard dev.\t=STDEV(B5:B' + dataEnd + ')\n') tabd.write('#ci. min. 90%\t=AVERAGE(B5:B' + dataEnd + ')-TINV(1/10;COUNT(B5:B' + dataEnd + ')-1)*STDEV(B5:B' + dataEnd + ')/SQRT(COUNT(B5:B' + dataEnd + '))\n') tabd.write('#ci. max 90%\t=AVERAGE(B5:B' + dataEnd + ')+TINV(1/10;COUNT(B5:B' + dataEnd + ')-1)*STDEV(B5:B' + dataEnd + ')/SQRT(COUNT(B5:B' + dataEnd + '))\n') tabd.write('#geom. mean\t=GEOMEAN(B5:B' + dataEnd + ')\n') tabd.write('#median\t=MEDIAN(B5:B' + dataEnd + ')\n') tabd.write('#first quatile\t=QUARTILE(B5:B' + dataEnd + ';1)\n') tabd.write('#third quartile\t=QUARTILE(B5:B' + dataEnd + ';3)\n') tabd.write('#minimum\t=QUARTILE(B5:B' + dataEnd + ';0)\n') tabd.write('#maximum\t=QUARTILE(B5:B' + dataEnd + ';4)\n') # craate tab delimieted output for single operation # data - input in write_operation function format # operation - name of operation being written # fsbs - determines whether the data has FS or BS orientation - needed for file name def tab_delimited(data, operation, fsbs): for setNr in range(1, len(data) - 1): if (setNr == 1): setName = 'baseline' else: setName = 'set1' tabdName = operation + '_' + fsbs + '_' + setName + '.tsv' tabd = open(tabdDir+'/'+tabdName, 'w') tabd.write('# ' + operation + ' throughput for any ' + fsbs + '. Open it with: LC_ALL=en_US.UTF-8\n') tabd.write('# Read this file into Open Office with command oocalc <filename>\n') tabd.write('# Read this file into language R with command data <- read.delim("<filename>",comment.char = "#")\n') tabd.write(data[0][0]) for i in data[0][2]: tabd.write('\t'+str(i)) tabd.write('\n') # write the data dataLineNr = 4 rowNr = 0 rowName = data[setNr][0] for row in data[setNr][2]: if (row[0] == rowName): rowNr += 1 else: rowName = row[0] rowNr = 1 tabd.write(data[0][1] + ' = ' + str(row[0])+' Run='+str(rowNr)) for val in row[1:]: if (val != 0): val2write = str(round(val,2)) else: val2write = '' tabd.write('\t' + val2write) tabd.write('\n') dataLineNr += 1 # prepare data for stats columnValues = [] # [[col1_row1, col1_row2, ...], [col2_row1, col2_row2, ...], ...] for m in data[setNr][2][0][1:]: columnValues.append([]) for row in data[setNr][2]: for colNr in range(1, len(row)): columnValues[colNr-1].append(row[colNr]) # compute statistics (avgs, devs, errs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) = compute_all_stats(columnValues) # write all statistic values statVals = (avgs, devs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) write_tabd_stats(tabd, statVals) write_oocalc_formulas(tabd, str(dataLineNr)) tabd.close() return # craate tab delimited output of sumary sorted by operation and overall summary # data - both sets data in [[(FS, BSdata)],[(FS, BSdata)]] # [0] = base, [1] = set1 format # operations - operations order for tab delimited def tab_delimited_summary(data, order): for setNr in range(len(data)): if (setNr == 0): setName = 'baseline' else: setName = 'set1' tabdOperationName = 'summary_sorted_by_operation' + '_' + setName + '.tsv' tabdAllName = 'summary_all' + '_' + setName + '.tsv' tabdOperation = open(tabdDir+'/'+tabdOperationName, 'w') tabdAll = open(tabdDir+'/'+tabdAllName, 'w') tabdOperation.write('# iozone measured throughput[MB/s] for any FS and any BS. Open it with: LC_ALL=en_US.UTF-8\n') tabdOperation.write('# Read this file into Open Office with command oocalc <filename>\n') tabdOperation.write('# Read this file into language R with command data <- read.delim("<filename>",comment.char = "#")\n') tabdAll.write('# iozone measured throughput[MB/s] for any FS, any BS and any operation. Open it with: LC_ALL=en_US.UTF-8\n') tabdAll.write('# Read this file into Open Office with command oocalc <filename>\n') tabdAll.write('# Read this file into language R with command data <- read.delim("<filename>",comment.char = "#")\n') tabdAll.write('ALL\n') tabdOperation.write('Operation') for operation in order: tabdOperation.write('\t'+operation) tabdOperation.write('\n') # prepare data for stats columnValues = [] # [[col1_row1, col1_row2, ...], [col2_row1, col2_row2, ...], ...] allSetData = [] valsOp = {} valsAll = {} for m in order: columnValues.append([]) # prepare data in format more usable for what will follow for opNr in range(len(data[setNr])): (x, y) = data[setNr][opNr] Run = 0 FS = y[0][0] for row in y: if (row[0] == FS): Run += 1 else: FS = row[0] Run = 1 for bsNr in range(len(x)): valsOp[(FS, x[bsNr], Run, opNr)] = row[bsNr+1] valsAll[(opNr, FS, x[bsNr], Run)] = row[bsNr+1] columnValues[opNr].append(row[bsNr+1]) allSetData.append(row[bsNr+1]) # write conted of tabd sorted by operation row = [] dataLineNr = 4 for key in sorted(valsOp.keys()): (FS, BS, Run, opNr) = key if (valsOp[key] != 0): val = str(round(valsOp[key],2)) else: val = '' row.append(val) if (opNr == 0): caption = 'Filesize[kB] = ' + str(FS) + ' Block size [kB] = ' + str(BS) + ' Run=' + str(Run) if (opNr == (len(order) - 1 )): empty = True; for val in row: if val: empty = False; if not (empty): tabdOperation.write(caption) for val in row: tabdOperation.write('\t' + val) tabdOperation.write('\n') dataLineNr += 1 row = [] # write overall tabd content tabdAllLine = 4 for key in sorted(valsAll.keys()): (opNr, FS, BS, Run) = key if (valsAll[key] != 0): tabdAll.write('Operation ' + order[opNr] + ' Filesize[kB] = ' + str(FS) + ' Block size [kB] = ' + str(BS) + ' Run = ' + str(Run) + '\t' + str(round(valsAll[key],2)) + '\n') tabdAllLine += 1 # compute statistics (avgs, devs, errs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) = compute_all_stats(columnValues) # write all statistic values to tabd sorted by operation statValsOperation = (avgs, devs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) write_tabd_stats(tabdOperation, statValsOperation) write_oocalc_formulas(tabdOperation, str(dataLineNr)) tabdOperation.close() # write all statistic values to all data tabd columnValues = [allSetData] (avgs, devs, errs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) = compute_all_stats(columnValues) statValsAll = (avgs, devs, ci_mins, ci_maxes, gms, meds, frstQrts, thrdQrts, minVals, maxVals) write_tabd_stats(tabdAll, statValsAll) write_oocalc_formulas(tabdAll, str(tabdAllLine)) tabdAll.close() return # create visual comparisions of both sets plots and tab delimited # data - both sets data in [[(FS, BSdata)],[(FS, BSdata)]] # [0] = base, [1] = set1 format # operations - operations order for tab delimited def xy_fsbs_avg(data, operations): tabd = open(tabdDir+'/comparison_of_averages.tsv', 'w') tabd.write('# comparison of averages for iozone measured throughput[MB/s] for any FS and any BS. Open it with: LC_ALL=en_US.UTF-8\n') tabd.write('# Read this file into Open Office with command oocalc <filename>\n') tabd.write('# Read this file into language R with command data <- read.delim("<filename>",comment.char = "#")\n') tabd.write('Operation') for operation in operations: tabd.write('\t'+operation+' baseline\t'+operation+' set1') tabd.write('\n') vals = {} # this might look strange, but when we don't have to search if key exists for every value, # it saves a lot of runtime. Nicer code with key check will run for 30 secs, this one for four. for setNr in range(len(data)): for opNr in range(len(data[setNr])): (x, y) = data[setNr][opNr] Run = 0 FS = y[0][0] for row in y: if (row[0] == FS): Run += 1 else: FS = row[0] Run = 1 for bsNr in range(len(x)): vals[(FS, x[bsNr], opNr, setNr)] = [] # now is sure key exist, so place the values for setNr in range(len(data)): for opNr in range(len(data[setNr])): (x, y) = data[setNr][opNr] Run = 0 FS = y[0][0] for row in y: if (row[0] == FS): Run += 1 else: FS = row[0] Run = 1 for bsNr in range(len(x)): if (row[bsNr+1] != 0): vals[(FS, x[bsNr], opNr, setNr)].append(row[bsNr+1]) # compute averages of vals lists avgs = {} for key in sorted(vals.keys()): (FS, BS, opNr, setNr) = key if (vals[(FS, BS, opNr, setNr)]): avgs[(FS, BS, opNr, setNr)] = numpy.mean(vals[(FS, BS, opNr, setNr)]) # column values for operations columnValues = [] for op in operations: # two times - for both sets columnValues.append([]) columnValues.append([]) # write tab delimited and fill columnValues list row = [] for key in sorted(avgs.keys()): (FS, BS, opNr, setNr) = key val = avgs[(FS, BS, opNr, setNr)] row.append(val) if (opNr == 0 and setNr == 0): caption = 'Filesize[kB] = ' + str(FS) + ' Block size [kB] = ' + str(BS) if (opNr == (len(operations) - 1 ) and setNr == 1): tabd.write(caption) for val in row: tabd.write('\t' + str(round(val,2))) tabd.write('\n') row = [] columnValues[2 * opNr + setNr].append(val) # compute stats slopes = [] std_errs = [] ci_mins = [] ci_maxes = [] for opNr in range(len(operations)): (slope, std_err, ci_min, ci_max) = regline_slope(columnValues[2*opNr], columnValues[2*opNr+1]) slopes.append(slope) std_errs.append(std_err) ci_mins.append(ci_min) ci_maxes.append(ci_max) # create plots for opNr in range(len(operations)): name = operations[opNr] + '_compare' baselineFasterX = [] baselineFasterY = [] set1FasterX = [] set1FasterY = [] # faster in baseline will be plotted in red, faster in set1 in black for i in range(len(columnValues[2*opNr])): if (columnValues[2*opNr][i] >= columnValues[2*opNr+1][i]): baselineFasterX.append(columnValues[2*opNr][i]) baselineFasterY.append(columnValues[2*opNr+1][i]) else: set1FasterX.append(columnValues[2*opNr][i]) set1FasterY.append(columnValues[2*opNr+1][i]) if (sorted(columnValues[2*opNr])[-1] > sorted(columnValues[2*opNr+1])[-1]): max = sorted(columnValues[2*opNr])[-1] else: max = sorted(columnValues[2*opNr+1])[-1] plt.clf() fig = plt.figure() ax = fig.add_subplot(111) # Legend does not support <class 'matplotlib.collections.PolyCollection'> workaround. This line is not actually visible d = ax.plot([0, 1.05*max], [0, 1.05*max*((ci_maxes[opNr]+ci_mins[opNr])/2)], '-', color='pink') a = ax.plot(baselineFasterX, baselineFasterY, 'r.') b = ax.plot(set1FasterX, set1FasterY, 'k.') # y = x line c = ax.plot([0, 1.05*max], [0, 1.05*max], 'k-') # ci_min line ax.plot([0, 1.05*max], [0, 1.05*max*ci_mins[opNr]], 'r-') # ci_max line ax.plot([0, 1.05*max], [0, 1.05*max*ci_maxes[opNr]], 'r-') # filling between ci_min and ci_max lines ax.fill_between([0, 1.05*max], [0, 1.05*max*ci_mins[opNr]], [0, 1.05*max*ci_maxes[opNr]], color='pink') plt.grid(True) plt.xlabel('baseline throughput [MB/s]') plt.ylabel('set1 throughput [MB/s]') plt.title('Linear regression of all ' + operations[opNr] + ' values') font = FontProperties(size='x-small'); leg = plt.legend((a, b, c, d), ('Faster in baseline', 'Faster in set1', 'y = x line', 'reg. line 90% conf. int.'), loc=0, prop=font); # Fedora 14 bug 562421 workaround with warnings.catch_warnings(): warnings.filterwarnings("ignore",category=UserWarning) plt.savefig(out_dir+'/'+name) regLines = [] # regression lines info will be returned to be writted in form of tabs in __main__ tabd.write('# Slope of regression line') for opNr in range(len(operations)): tabd.write('\t' + str(round(slopes[opNr],5)) + '\t') regLines.append((slopes[opNr], std_errs[opNr], ci_mins[opNr], ci_maxes[opNr])) tabd.write('\n') tabd.write('# Standard error of regression line slope') for opNr in range(len(operations)): tabd.write('\t' + str(round(std_errs[opNr],5)) + '\t') tabd.write('\n') tabd.write('# Regression line slope ci. min. 90%.') for opNr in range(len(operations)): tabd.write('\t' + str(round(ci_mins[opNr],5)) + '\t') tabd.write('\n') tabd.write('# Regression line slope ci. max 90%') for opNr in range(len(operations)): tabd.write('\t' + str(round(ci_maxes[opNr],5)) + '\t') tabd.write('\n') tabd.close() return regLines # compute slope of regression line # Xvals - array of X-axis values # Yvals - array of Y-axis values of same lenght as Xvals # return counted slope, standard error, confidence interval min and max def regline_slope(Xvals, Yvals): x = numpy.array(Xvals) y = numpy.array(Yvals) AverageX = numpy.mean(Xvals) # slope a solves # a^2 * Sum[xi yi] + a * Sum [xi^2 - yi^2] - Sum [xi yi] = 0 A = numpy.sum(x*y) B = numpy.sum([x**2 - y**2]) discriminant = numpy.sqrt( B**2 + 4 * A**2) a = ( -B + discriminant ) / ( 2 * A ) # distance of points from line with slope=a D = numpy.abs(a*x-y) / numpy.sqrt(a**2 + 1) # standard error of a a_se = numpy.sqrt( numpy.sum(D**2) / numpy.sum((x - AverageX)**2) / (len(x) - 1) ) # 90% confidence interval h = a_se * stats.t._ppf((1+0.90)/2., len(x)-1) return (a, a_se, a-h, a+h) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Parse iozone files') parser.add_argument('--baseline', nargs='+',type=is_file_readable,required=True, help='Set of iozone result files to form the baseline.') parser.add_argument('--set1', nargs='+',type=is_file_readable,required=True, help='Set of iozone results files to compared against baseline.') parser.add_argument('--detail', nargs=1, required=False, action='store', help='Name of operation to have a closer look at.') args = parser.parse_args() # parse input files base=Parse_iozone(args.baseline) set1=Parse_iozone(args.set1) print 'Creating plots. This will take several seconds.' # detail mode if (args.detail != None): operation = ''.join(args.detail) detail(base, set1, operation) sys.exit() try: shutil.rmtree('./'+out_dir) shutil.rmtree('./'+tabdDir) except: pass # prepare output directories os.makedirs(out_dir) os.makedirs(tabdDir) shutil.copyfile('./stylesheet.css',out_dir+'/stylesheet.css') htmldoc=open(out_dir+'/'+out_file,'w') write_header(htmldoc, base.files, set1.files); for operation in set1.operations: htmldoc.write('<a href=\"#' + operation + '\">' + operation_name(operation) + '</a><br>\n') htmldoc.write('<a href=\"#summary\">Summary</a><br><hr>\n') # all results for operation for both sets for tab delimited #resultsForOp = [[(FS, BSdata)],[(FS, BSdata)]] # [0] = base, [1] = set1 resultsForOp = [[],[]] for operation in set1.operations: (x1,y1)=base.get_BS_list_for_any_FS(operation) (x2,y2)=set1.get_BS_list_for_any_FS(operation) resultsForOp[0].append((x1, y1)) resultsForOp[1].append((x2, y2)) tab_delimited_summary(resultsForOp, set1.operations) regLines = xy_fsbs_avg(resultsForOp, set1.operations) opNr = 0 # write tables, tab delimited output and create plots for every operation for operation in set1.operations: # block size oriented tables and plots data = [] data.append(['File size [kB]','Block size [kB]']) data.append(['baseline','black']) (x1,y1)=base.get_FS_list_for_any_BS(operation) data[0].append(x1) data[1].append(y1) data.append(['set1','red']) (x2,y2)=set1.get_FS_list_for_any_BS(operation) assert(x1==x2) data[2].append(y2) htmldoc.write('<h3 id="' + operation + '">' + operation_name(operation) + '</h3>\n') write_operation(htmldoc,operation,data,operation+'_FS') tab_delimited(data, operation, 'BS') # file size oriented tables and plots data = [] data.append(['Block size [kB]','File size [kB]']) data.append(['baseline','black']) (x1,y1)=base.get_BS_list_for_any_FS(operation) data[0].append(x1) data[1].append(y1) data.append(['set1','red']) (x2,y2)=set1.get_BS_list_for_any_FS(operation) assert(x1==x2) data[2].append(y2) write_operation(htmldoc,operation,data,operation+'_BS') tab_delimited(data, operation, 'FS') # visual comparision of both sets plot and table htmldoc.write('<img src=\"'+operation+'_compare.png\" alt=\"'+operation+'\_compare" class="plot"/>\n') (slope, std_err, ci_min, ci_max) = regLines[opNr] htmldoc.write('<div class=\"rawdata abovetable\">See <a href=\"../'+tabdDir+'/comparison_of_averages.tsv\">comparison_of_averages.tsv</a>.</div>\n') htmldoc.write('<table><tr><th colspan="2"> Regression line </th></tr>\n') htmldoc.write('<tr class=\"topline\"><td> slope </td><td>' + str(round(slope,5)) + '</td></tr>\n') htmldoc.write('<tr class=\"topline\"><td> std. error </td><td>' + str(round(std_err,5)) + '</td></tr>\n') htmldoc.write('<tr class=\"topline bottomline\"><td> ci. max 90% </td><td>' + str(round(ci_min,5)) + '</td></tr>\n') htmldoc.write('<tr><td> ci. min. 90% </td><td>' + str(round(ci_max,5)) + '</td></tr></table>\n') opNr += 1 htmldoc.write('<a href="#top">Back on top</a>\n') htmldoc.write('<hr>\n') # all results for operation for both sets for html resultsForOp = [{},{}] # [0] = base, [1] = set1; dict key is op name for operation in set1.operations: y1 = base.get_all_for_operation(operation) resultsForOp[0][operation] = y1 y2 = set1.get_all_for_operation(operation) resultsForOp[1][operation] = y2 # results for all blocksizes and filesizes for one set, needed for summary at the end allSetData = [] # [0] = base, [1] = set1 allSetData.append(base.get_all_data_list()) allSetData.append(set1.get_all_data_list()) resultsForOp[0]['ALL'] = allSetData[0] resultsForOp[1]['ALL'] = allSetData[1] write_overFSBS_summary(resultsForOp, ['ALL'] + set1.operations, regLines) htmldoc.write('<a href="#top">Back on top</a>\n') write_footer(htmldoc) htmldoc.close() print 'Finished.\nTo view results open in your web browser:' print 'file://' + os.getcwd() + '/Compare-html/index.html'
gpl-3.0
3drobotics/MAVProxy
MAVProxy/modules/lib/live_graph.py
4
8385
#!/usr/bin/env python """ MAVProxy realtime graphing module, partly based on the wx graphing demo by Eli Bendersky (eliben@gmail.com) http://eli.thegreenplace.net/files/prog_code/wx_mpl_dynamic_graph.py.txt """ from MAVProxy.modules.lib import mp_util class LiveGraph(): ''' a live graph object using wx and matplotlib All of the GUI work is done in a child process to provide some insulation from the parent mavproxy instance and prevent instability in the GCS New data is sent to the LiveGraph instance via a pipe ''' def __init__(self, fields, title='MAVProxy: LiveGraph', timespan=20.0, tickresolution=0.2, colors=[ 'red', 'green', 'blue', 'orange', 'olive', 'cyan', 'magenta', 'brown', 'darkgreen', 'violet', 'purple', 'grey', 'black']): import multiprocessing self.fields = fields self.colors = colors self.title = title self.timespan = timespan self.tickresolution = tickresolution self.values = [None]*len(self.fields) self.parent_pipe,self.child_pipe = multiprocessing.Pipe() self.close_graph = multiprocessing.Event() self.close_graph.clear() self.child = multiprocessing.Process(target=self.child_task) self.child.start() def child_task(self): '''child process - this holds all the GUI elements''' mp_util.child_close_fds() import wx, matplotlib matplotlib.use('WXAgg') app = wx.PySimpleApp() app.frame = GraphFrame(state=self) app.frame.Show() app.MainLoop() def add_values(self, values): '''add some data to the graph''' if self.child.is_alive(): self.parent_pipe.send(values) def close(self): '''close the graph''' self.close_graph.set() if self.is_alive(): self.child.join(2) def is_alive(self): '''check if graph is still going''' return self.child.is_alive() import wx class GraphFrame(wx.Frame): """ The main frame of the application """ def __init__(self, state): wx.Frame.__init__(self, None, -1, state.title) self.state = state self.data = [] for i in range(len(state.fields)): self.data.append([]) self.paused = False self.create_main_panel() self.Bind(wx.EVT_IDLE, self.on_idle) self.redraw_timer = wx.Timer(self) self.Bind(wx.EVT_TIMER, self.on_redraw_timer, self.redraw_timer) self.redraw_timer.Start(1000*self.state.tickresolution) def create_main_panel(self): from matplotlib.backends.backend_wxagg import \ FigureCanvasWxAgg as FigCanvas self.panel = wx.Panel(self) self.init_plot() self.canvas = FigCanvas(self.panel, -1, self.fig) self.close_button = wx.Button(self.panel, -1, "Close") self.Bind(wx.EVT_BUTTON, self.on_close_button, self.close_button) self.pause_button = wx.Button(self.panel, -1, "Pause") self.Bind(wx.EVT_BUTTON, self.on_pause_button, self.pause_button) self.Bind(wx.EVT_UPDATE_UI, self.on_update_pause_button, self.pause_button) self.hbox1 = wx.BoxSizer(wx.HORIZONTAL) self.hbox1.Add(self.close_button, border=5, flag=wx.ALL | wx.ALIGN_CENTER_VERTICAL) self.hbox1.AddSpacer(1) self.hbox1.Add(self.pause_button, border=5, flag=wx.ALL | wx.ALIGN_CENTER_VERTICAL) self.vbox = wx.BoxSizer(wx.VERTICAL) self.vbox.Add(self.canvas, 1, flag=wx.LEFT | wx.TOP | wx.GROW) self.vbox.Add(self.hbox1, 0, flag=wx.ALIGN_LEFT | wx.TOP) self.panel.SetSizer(self.vbox) self.vbox.Fit(self) def init_plot(self): self.dpi = 100 import pylab, numpy from matplotlib.figure import Figure self.fig = Figure((6.0, 3.0), dpi=self.dpi) self.axes = self.fig.add_subplot(111) self.axes.set_axis_bgcolor('white') pylab.setp(self.axes.get_xticklabels(), fontsize=8) pylab.setp(self.axes.get_yticklabels(), fontsize=8) # plot the data as a line series, and save the reference # to the plotted line series # self.plot_data = [] if len(self.data[0]) == 0: max_y = min_y = 0 else: max_y = min_y = self.data[0][0] for i in range(len(self.data)): p = self.axes.plot( self.data[i], linewidth=1, color=self.state.colors[i], label=self.state.fields[i], )[0] self.plot_data.append(p) if len(self.data[i]) != 0: min_y = min(min_y, min(self.data[i])) max_y = max(max_y, max(self.data[i])) # create X data self.xdata = numpy.arange(-self.state.timespan, 0, self.state.tickresolution) self.axes.set_xbound(lower=self.xdata[0], upper=0) if min_y == max_y: self.axes.set_ybound(min_y, max_y+0.1) self.axes.legend(self.state.fields, loc='upper left', bbox_to_anchor=(0, 1.1)) def draw_plot(self): """ Redraws the plot """ import numpy, pylab state = self.state if len(self.data[0]) == 0: print("no data to plot") return vhigh = max(self.data[0]) vlow = min(self.data[0]) for i in range(1,len(self.plot_data)): vhigh = max(vhigh, max(self.data[i])) vlow = min(vlow, min(self.data[i])) ymin = vlow - 0.05*(vhigh-vlow) ymax = vhigh + 0.05*(vhigh-vlow) if ymin == ymax: ymax = ymin + 0.1 ymin = ymin - 0.1 self.axes.set_ybound(lower=ymin, upper=ymax) self.axes.grid(True, color='gray') pylab.setp(self.axes.get_xticklabels(), visible=True) pylab.setp(self.axes.get_legend().get_texts(), fontsize='small') for i in range(len(self.plot_data)): ydata = numpy.array(self.data[i]) xdata = self.xdata if len(ydata) < len(self.xdata): xdata = xdata[-len(ydata):] self.plot_data[i].set_xdata(xdata) self.plot_data[i].set_ydata(ydata) self.canvas.draw() def on_pause_button(self, event): self.paused = not self.paused def on_update_pause_button(self, event): label = "Resume" if self.paused else "Pause" self.pause_button.SetLabel(label) def on_close_button(self, event): self.redraw_timer.Stop() self.Destroy() def on_idle(self, event): import time time.sleep(self.state.tickresolution*0.5) def on_redraw_timer(self, event): # if paused do not add data, but still redraw the plot # (to respond to scale modifications, grid change, etc.) # state = self.state if state.close_graph.wait(0.001): self.redraw_timer.Stop() self.Destroy() return while state.child_pipe.poll(): state.values = state.child_pipe.recv() if self.paused: return for i in range(len(self.plot_data)): if state.values[i] is not None: self.data[i].append(state.values[i]) while len(self.data[i]) > len(self.xdata): self.data[i].pop(0) for i in range(len(self.plot_data)): if state.values[i] is None or len(self.data[i]) < 2: return self.draw_plot() if __name__ == "__main__": # test the graph import time, math livegraph = LiveGraph(['sin(t)', 'cos(t)', 'sin(t+1)', 'cos(t+1)', 'sin(t+2)', 'cos(t+2)', 'cos(t+1)', 'sin(t+2)', 'cos(t+2)', 'x'], timespan=30, title='Graph Test') while livegraph.is_alive(): t = time.time() livegraph.add_values([math.sin(t), math.cos(t), math.sin(t+1), math.cos(t+1), math.sin(t+1), math.cos(t+1), math.sin(t+1), math.cos(t+1), math.sin(t+2), math.cos(t+2)]) time.sleep(0.05)
gpl-3.0
idiap/zentas
python/experiments/skl_eak_zen.py
1
5111
# Copyright (c) 2017 Idiap Research Institute, http://www.idiap.ch/ # Written by James Newling <jnewling@idiap.ch> """ experiments comparing: - scikit-learn, - eakmeans and - zentas. """ import matplotlib.pyplot as pl import sys import random import numpy as np import numpy.random as npr #where is pyzentas.so ? Make sure this is correct. sys.path.append("../../build/python") import pyzentas from IPython.core.debugger import Tracer import time import rna reload(rna) def go(X, K, withskl, witheak, withzen): """ X : data K : number of clusters withskl, witheak, withzen : bools indicating whether to run with em. """ indices_init = np.arange(K, dtype = np.uint64) C_init = X[indices_init] results = {} if withskl == True: results["skl"] = {} from sklearn.cluster import KMeans # run until convergence, initialise with scikit-learn's special version of k-means++ (see zentas wiki entry for discussion). sklc = KMeans(n_clusters = K, init = "k-means++", max_iter = 100000000, tol = 1e-20, verbose = 0, n_init = 1) tsk0 = time.time() sklc.fit(X) tsk1 = time.time() sklacc = np.sum(np.min(np.sum((np.expand_dims(X, axis = 1) - np.expand_dims(sklc.cluster_centers_, axis = 0))**2, axis = 2), axis = 1)) / X.shape[0] results["skl"]["t"] = tsk1 - tsk0 results["skl"]["mse"] = sklacc if witheak: results["eak"] = {} sys.path.append(datapaths.datapath["eaklibdir"]) import kmeans teak0 = time.time() eak = kmeans.get_clustering(X, K, verbose = 1, init = "kmeans++", n_threads = 4) teak1 = time.time() results["eak"]["t"] = teak1 - teak0 results["eak"]['mse'] = eak["mse"] if withzen: results["zen"] = {} # run with zentas. pipeline here is (1) kmeans++ (2) clarans (3) lloyd. z = pyzentas.pyzen(K = K, metric = 'l2', energy = 'quadratic', max_itok = 10.0, max_time = 5.0, max_proposals = K**2, seed = npr.randint(1000), patient = True, nthreads = 4, init = "kmeans++-4", with_tests = False, capture_output = True, rooted = False) tzen0 = time.time() tangerine = z.den(X, do_vdimap = True, do_refinement = True, rf_max_rounds = 10000000) tzen1 = time.time() results["zen"]["t"] = tzen0 - tzen1 results["zen"]["out"] = pyzentas.get_processed_output(tangerine['output']) results["zen"]['mse'] = results["zen"]["out"]["mE"][-1] return results def experiment1(): #set the experiment settings here : withskl = True witheak = False withzen = True K = 200 ndata = 30*K seed = 107 nruns = 10 npr.seed(seed) dataset = "rna" #"random" # or "rna" or "mnist". if dataset == "mnist": import mnist reload(mnist) X = mnist.read_MNIST(dataset = "original", ndata = ndata)/1000. elif dataset == "rna": X = rna.get_rna()[0:ndata, 2::] X += 0.001*npr.randn(X.shape[0], X.shape[1]) npr.seed() elif dataset == "random": X = npr.randn(ndata, 2) else: raise RuntimeError("unrecognised dataset string") for i in range(nruns): npr.seed() results = go(X, K, withskl, witheak, withzen) if withskl: label = "scikit-learn" if i == 0 else None pl.plot(results["skl"]["t"], results["skl"]["mse"], marker = "o", color = 'k', markersize = 15, label = label) if witheak: label = "eakmeans" if i == 0 else None pl.plot(results["eak"]["t"], results["eak"]["mse"], marker = "x", color = 'k', markersize = 15, label = label) if withzen: pl.plot(results["zen"]["out"]["Tt"]/1000., results["zen"]["out"]["mE"], color = 'k', marker = "+", markersize = 2, linestyle = "none") label = "zentas" if i == 0 else None pl.plot(results["zen"]["out"]["Tt"][-1]/1000., results["zen"]["out"]["mE"][-1], color = 'k', marker = "+", markersize = 15, linestyle = "none", label = label) pl.ion() pl.figure(1) pl.legend() pl.show() def sklearn_elkan(): """ a scikit-learn inconsisitency due to numerical rounding """ import numpy.random as npr from sklearn.cluster import KMeans seed = 51220 npr.seed(seed) N = 1200 K = 100 X = npr.randn(N, 2)**7 indices_init = np.arange(K, dtype = np.uint64) C_init = X[indices_init] for alg in ["elkan", "full"]: sklc = KMeans(n_clusters = K, init = C_init, max_iter = int(1e6), tol = 1e-20, verbose = 0, n_init = 1, algorithm = alg) sklc.fit(X) print "final E with algorithm ", alg, "\t : \t", np.sum(np.min(np.sum((np.expand_dims(X, axis = 1) - np.expand_dims(sklc.cluster_centers_, axis = 0))**2, axis = 2), axis = 1)) / X.shape[0] def mnist_example(): """ Showing how do_vdimap can help. """ import mnist reload(mnist) ndata = int(1e3) X = mnist.read_MNIST(dataset = "original", ndata = ndata)/1000. dimension = X[0].shape[-1] npr.seed(1000) z = pyzentas.pyzen(K = 100, metric = 'l2', energy = 'quadratic', exponent_coeff = 0, max_itok = 10000, max_rounds = 20, seed = 1011, nthreads = 1, init = "kmeans++-5", with_tests = False, patient = False) do_vdimap = True tangerine = z.den(X, do_vdimap, do_refinement = True)
gpl-3.0
bigdataelephants/scikit-learn
examples/ensemble/plot_forest_importances.py
241
1761
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(10): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(10), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(10), indices) plt.xlim([-1, 10]) plt.show()
bsd-3-clause
brev/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_qtagg.py
73
4972
""" Render to qt from agg """ from __future__ import division import os, sys import matplotlib from matplotlib import verbose from matplotlib.figure import Figure from backend_agg import FigureCanvasAgg from backend_qt import qt, FigureManagerQT, FigureCanvasQT,\ show, draw_if_interactive, backend_version, \ NavigationToolbar2QT DEBUG = False def new_figure_manager( num, *args, **kwargs ): """ Create a new figure manager instance """ if DEBUG: print 'backend_qtagg.new_figure_manager' FigureClass = kwargs.pop('FigureClass', Figure) thisFig = FigureClass( *args, **kwargs ) canvas = FigureCanvasQTAgg( thisFig ) return FigureManagerQTAgg( canvas, num ) class NavigationToolbar2QTAgg(NavigationToolbar2QT): def _get_canvas(self, fig): return FigureCanvasQTAgg(fig) class FigureManagerQTAgg(FigureManagerQT): def _get_toolbar(self, canvas, parent): # must be inited after the window, drawingArea and figure # attrs are set if matplotlib.rcParams['toolbar']=='classic': print "Classic toolbar is not yet supported" elif matplotlib.rcParams['toolbar']=='toolbar2': toolbar = NavigationToolbar2QTAgg(canvas, parent) else: toolbar = None return toolbar class FigureCanvasQTAgg( FigureCanvasAgg, FigureCanvasQT ): """ The canvas the figure renders into. Calls the draw and print fig methods, creates the renderers, etc... Public attribute figure - A Figure instance """ def __init__( self, figure ): if DEBUG: print 'FigureCanvasQtAgg: ', figure FigureCanvasQT.__init__( self, figure ) FigureCanvasAgg.__init__( self, figure ) self.drawRect = False self.rect = [] self.replot = True self.pixmap = qt.QPixmap() def resizeEvent( self, e ): FigureCanvasQT.resizeEvent( self, e ) def drawRectangle( self, rect ): self.rect = rect self.drawRect = True # False in repaint does not clear the image before repainting self.repaint( False ) def paintEvent( self, e ): """ Draw to the Agg backend and then copy the image to the qt.drawable. In Qt, all drawing should be done inside of here when a widget is shown onscreen. """ FigureCanvasQT.paintEvent( self, e ) if DEBUG: print 'FigureCanvasQtAgg.paintEvent: ', self, \ self.get_width_height() p = qt.QPainter( self ) # only replot data when needed if type(self.replot) is bool: # might be a bbox for blitting if self.replot: FigureCanvasAgg.draw( self ) #stringBuffer = str( self.buffer_rgba(0,0) ) # matplotlib is in rgba byte order. # qImage wants to put the bytes into argb format and # is in a 4 byte unsigned int. little endian system is LSB first # and expects the bytes in reverse order (bgra). if ( qt.QImage.systemByteOrder() == qt.QImage.LittleEndian ): stringBuffer = self.renderer._renderer.tostring_bgra() else: stringBuffer = self.renderer._renderer.tostring_argb() qImage = qt.QImage( stringBuffer, self.renderer.width, self.renderer.height, 32, None, 0, qt.QImage.IgnoreEndian ) self.pixmap.convertFromImage( qImage, qt.QPixmap.Color ) p.drawPixmap( qt.QPoint( 0, 0 ), self.pixmap ) # draw the zoom rectangle to the QPainter if ( self.drawRect ): p.setPen( qt.QPen( qt.Qt.black, 1, qt.Qt.DotLine ) ) p.drawRect( self.rect[0], self.rect[1], self.rect[2], self.rect[3] ) # we are blitting here else: bbox = self.replot l, b, r, t = bbox.extents w = int(r) - int(l) h = int(t) - int(b) reg = self.copy_from_bbox(bbox) stringBuffer = reg.to_string_argb() qImage = qt.QImage(stringBuffer, w, h, 32, None, 0, qt.QImage.IgnoreEndian) self.pixmap.convertFromImage(qImage, qt.QPixmap.Color) p.drawPixmap(qt.QPoint(l, self.renderer.height-t), self.pixmap) p.end() self.replot = False self.drawRect = False def draw( self ): """ Draw the figure when xwindows is ready for the update """ if DEBUG: print "FigureCanvasQtAgg.draw", self self.replot = True FigureCanvasAgg.draw(self) self.repaint(False) def blit(self, bbox=None): """ Blit the region in bbox """ self.replot = bbox self.repaint(False) def print_figure(self, *args, **kwargs): FigureCanvasAgg.print_figure(self, *args, **kwargs) self.draw()
agpl-3.0
vasudevk/sklearn_pycon2015
notebooks/fig_code/ML_flow_chart.py
61
4970
""" Tutorial Diagrams ----------------- This script plots the flow-charts used in the scikit-learn tutorials. """ import numpy as np import pylab as pl from matplotlib.patches import Circle, Rectangle, Polygon, Arrow, FancyArrow def create_base(box_bg = '#CCCCCC', arrow1 = '#88CCFF', arrow2 = '#88FF88', supervised=True): fig = pl.figure(figsize=(9, 6), facecolor='w') ax = pl.axes((0, 0, 1, 1), xticks=[], yticks=[], frameon=False) ax.set_xlim(0, 9) ax.set_ylim(0, 6) patches = [Rectangle((0.3, 3.6), 1.5, 1.8, zorder=1, fc=box_bg), Rectangle((0.5, 3.8), 1.5, 1.8, zorder=2, fc=box_bg), Rectangle((0.7, 4.0), 1.5, 1.8, zorder=3, fc=box_bg), Rectangle((2.9, 3.6), 0.2, 1.8, fc=box_bg), Rectangle((3.1, 3.8), 0.2, 1.8, fc=box_bg), Rectangle((3.3, 4.0), 0.2, 1.8, fc=box_bg), Rectangle((0.3, 0.2), 1.5, 1.8, fc=box_bg), Rectangle((2.9, 0.2), 0.2, 1.8, fc=box_bg), Circle((5.5, 3.5), 1.0, fc=box_bg), Polygon([[5.5, 1.7], [6.1, 1.1], [5.5, 0.5], [4.9, 1.1]], fc=box_bg), FancyArrow(2.3, 4.6, 0.35, 0, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(3.75, 4.2, 0.5, -0.2, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(5.5, 2.4, 0, -0.4, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(2.0, 1.1, 0.5, 0, fc=arrow2, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(3.3, 1.1, 1.3, 0, fc=arrow2, width=0.25, head_width=0.5, head_length=0.2), FancyArrow(6.2, 1.1, 0.8, 0, fc=arrow2, width=0.25, head_width=0.5, head_length=0.2)] if supervised: patches += [Rectangle((0.3, 2.4), 1.5, 0.5, zorder=1, fc=box_bg), Rectangle((0.5, 2.6), 1.5, 0.5, zorder=2, fc=box_bg), Rectangle((0.7, 2.8), 1.5, 0.5, zorder=3, fc=box_bg), FancyArrow(2.3, 2.9, 2.0, 0, fc=arrow1, width=0.25, head_width=0.5, head_length=0.2), Rectangle((7.3, 0.85), 1.5, 0.5, fc=box_bg)] else: patches += [Rectangle((7.3, 0.2), 1.5, 1.8, fc=box_bg)] for p in patches: ax.add_patch(p) pl.text(1.45, 4.9, "Training\nText,\nDocuments,\nImages,\netc.", ha='center', va='center', fontsize=14) pl.text(3.6, 4.9, "Feature\nVectors", ha='left', va='center', fontsize=14) pl.text(5.5, 3.5, "Machine\nLearning\nAlgorithm", ha='center', va='center', fontsize=14) pl.text(1.05, 1.1, "New Text,\nDocument,\nImage,\netc.", ha='center', va='center', fontsize=14) pl.text(3.3, 1.7, "Feature\nVector", ha='left', va='center', fontsize=14) pl.text(5.5, 1.1, "Predictive\nModel", ha='center', va='center', fontsize=12) if supervised: pl.text(1.45, 3.05, "Labels", ha='center', va='center', fontsize=14) pl.text(8.05, 1.1, "Expected\nLabel", ha='center', va='center', fontsize=14) pl.text(8.8, 5.8, "Supervised Learning Model", ha='right', va='top', fontsize=18) else: pl.text(8.05, 1.1, "Likelihood\nor Cluster ID\nor Better\nRepresentation", ha='center', va='center', fontsize=12) pl.text(8.8, 5.8, "Unsupervised Learning Model", ha='right', va='top', fontsize=18) def plot_supervised_chart(annotate=False): create_base(supervised=True) if annotate: fontdict = dict(color='r', weight='bold', size=14) pl.text(1.9, 4.55, 'X = vec.fit_transform(input)', fontdict=fontdict, rotation=20, ha='left', va='bottom') pl.text(3.7, 3.2, 'clf.fit(X, y)', fontdict=fontdict, rotation=20, ha='left', va='bottom') pl.text(1.7, 1.5, 'X_new = vec.transform(input)', fontdict=fontdict, rotation=20, ha='left', va='bottom') pl.text(6.1, 1.5, 'y_new = clf.predict(X_new)', fontdict=fontdict, rotation=20, ha='left', va='bottom') def plot_unsupervised_chart(): create_base(supervised=False) if __name__ == '__main__': plot_supervised_chart(False) plot_supervised_chart(True) plot_unsupervised_chart() pl.show()
bsd-3-clause
yavalvas/yav_com
build/matplotlib/lib/matplotlib/offsetbox.py
11
53384
""" The OffsetBox is a simple container artist. The child artist are meant to be drawn at a relative position to its parent. The [VH]Packer, DrawingArea and TextArea are derived from the OffsetBox. The [VH]Packer automatically adjust the relative postisions of their children, which should be instances of the OffsetBox. This is used to align similar artists together, e.g., in legend. The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height. The position of children relative to the parent is fixed. The TextArea is contains a single Text instance. The width and height of the TextArea instance is the width and height of the its child text. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import six from six.moves import xrange, zip import warnings import matplotlib.transforms as mtransforms import matplotlib.artist as martist import matplotlib.text as mtext import numpy as np from matplotlib.transforms import Bbox, BboxBase, TransformedBbox from matplotlib.font_manager import FontProperties from matplotlib.patches import FancyBboxPatch, FancyArrowPatch from matplotlib import rcParams from matplotlib import docstring #from bboximage import BboxImage from matplotlib.image import BboxImage from matplotlib.patches import bbox_artist as mbbox_artist from matplotlib.text import _AnnotationBase DEBUG = False # for debuging use def bbox_artist(*args, **kwargs): if DEBUG: mbbox_artist(*args, **kwargs) # _get_packed_offsets() and _get_aligned_offsets() are coded assuming # that we are packing boxes horizontally. But same function will be # used with vertical packing. def _get_packed_offsets(wd_list, total, sep, mode="fixed"): """ Geiven a list of (width, xdescent) of each boxes, calculate the total width and the x-offset positions of each items according to *mode*. xdescent is analagous to the usual descent, but along the x-direction. xdescent values are currently ignored. *wd_list* : list of (width, xdescent) of boxes to be packed. *sep* : spacing between boxes *total* : Intended total length. None if not used. *mode* : packing mode. 'fixed', 'expand', or 'equal'. """ w_list, d_list = list(zip(*wd_list)) # d_list is currently not used. if mode == "fixed": offsets_ = np.add.accumulate([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] if total is None: total = offsets_[-1] - sep return total, offsets elif mode == "expand": if len(w_list) > 1: sep = (total - sum(w_list)) / (len(w_list) - 1.) else: sep = 0. offsets_ = np.add.accumulate([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] return total, offsets elif mode == "equal": maxh = max(w_list) if total is None: total = (maxh + sep) * len(w_list) else: sep = float(total) / (len(w_list)) - maxh offsets = np.array([(maxh + sep) * i for i in range(len(w_list))]) return total, offsets else: raise ValueError("Unknown mode : %s" % (mode,)) def _get_aligned_offsets(hd_list, height, align="baseline"): """ Given a list of (height, descent) of each boxes, align the boxes with *align* and calculate the y-offsets of each boxes. total width and the offset positions of each items according to *mode*. xdescent is analogous to the usual descent, but along the x-direction. xdescent values are currently ignored. *hd_list* : list of (width, xdescent) of boxes to be aligned. *sep* : spacing between boxes *height* : Intended total length. None if not used. *align* : align mode. 'baseline', 'top', 'bottom', or 'center'. """ if height is None: height = max([h for h, d in hd_list]) if align == "baseline": height_descent = max([h - d for h, d in hd_list]) descent = max([d for h, d in hd_list]) height = height_descent + descent offsets = [0. for h, d in hd_list] elif align in ["left", "top"]: descent = 0. offsets = [d for h, d in hd_list] elif align in ["right", "bottom"]: descent = 0. offsets = [height - h + d for h, d in hd_list] elif align == "center": descent = 0. offsets = [(height - h) * .5 + d for h, d in hd_list] else: raise ValueError("Unknown Align mode : %s" % (align,)) return height, descent, offsets class OffsetBox(martist.Artist): """ The OffsetBox is a simple container artist. The child artist are meant to be drawn at a relative position to its parent. """ def __init__(self, *args, **kwargs): super(OffsetBox, self).__init__(*args, **kwargs) # Clipping has not been implemented in the OffesetBox family, so # disable the clip flag for consistency. It can always be turned back # on to zero effect. self.set_clip_on(False) self._children = [] self._offset = (0, 0) def __getstate__(self): state = martist.Artist.__getstate__(self) # pickle cannot save instancemethods, so handle them here from .cbook import _InstanceMethodPickler import inspect offset = state['_offset'] if inspect.ismethod(offset): state['_offset'] = _InstanceMethodPickler(offset) return state def __setstate__(self, state): self.__dict__ = state from .cbook import _InstanceMethodPickler if isinstance(self._offset, _InstanceMethodPickler): self._offset = self._offset.get_instancemethod() def set_figure(self, fig): """ Set the figure accepts a class:`~matplotlib.figure.Figure` instance """ martist.Artist.set_figure(self, fig) for c in self.get_children(): c.set_figure(fig) def contains(self, mouseevent): for c in self.get_children(): a, b = c.contains(mouseevent) if a: return a, b return False, {} def set_offset(self, xy): """ Set the offset accepts x, y, tuple, or a callable object. """ self._offset = xy def get_offset(self, width, height, xdescent, ydescent, renderer): """ Get the offset accepts extent of the box """ if six.callable(self._offset): return self._offset(width, height, xdescent, ydescent, renderer) else: return self._offset def set_width(self, width): """ Set the width accepts float """ self.width = width def set_height(self, height): """ Set the height accepts float """ self.height = height def get_visible_children(self): """ Return a list of visible artists it contains. """ return [c for c in self._children if c.get_visible()] def get_children(self): """ Return a list of artists it contains. """ return self._children def get_extent_offsets(self, renderer): raise Exception("") def get_extent(self, renderer): """ Return with, height, xdescent, ydescent of box """ w, h, xd, yd, offsets = self.get_extent_offsets(renderer) return w, h, xd, yd def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd, offsets = self.get_extent_offsets(renderer) px, py = self.get_offset(w, h, xd, yd, renderer) return mtransforms.Bbox.from_bounds(px - xd, py - yd, w, h) def draw(self, renderer): """ Update the location of children if necessary and draw them to the given *renderer*. """ width, height, xdescent, ydescent, offsets = self.get_extent_offsets( renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) for c, (ox, oy) in zip(self.get_visible_children(), offsets): c.set_offset((px + ox, py + oy)) c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) class PackerBase(OffsetBox): def __init__(self, pad=None, sep=None, width=None, height=None, align=None, mode=None, children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional Width and height of the container box, calculated if `None`. align : str, optional Alignment of boxes. Can be one of ``top``, ``bottom``, ``left``, ``right``, ``center`` and ``baseline`` mode : str, optional Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(PackerBase, self).__init__() self.height = height self.width = width self.sep = sep self.pad = pad self.mode = mode self.align = align self._children = children class VPacker(PackerBase): """ The VPacker has its children packed vertically. It automatically adjust the relative positions of children in the drawing time. """ def __init__(self, pad=None, sep=None, width=None, height=None, align="baseline", mode="fixed", children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional width and height of the container box, calculated if `None`. align : str, optional Alignment of boxes. mode : str, optional Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(VPacker, self).__init__(pad, sep, width, height, align, mode, children) def get_extent_offsets(self, renderer): """ update offset of childrens and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor sep = self.sep * dpicor if self.width is not None: for c in self.get_visible_children(): if isinstance(c, PackerBase) and c.mode == "expand": c.set_width(self.width) whd_list = [c.get_extent(renderer) for c in self.get_visible_children()] whd_list = [(w, h, xd, (h - yd)) for w, h, xd, yd in whd_list] wd_list = [(w, xd) for w, h, xd, yd in whd_list] width, xdescent, xoffsets = _get_aligned_offsets(wd_list, self.width, self.align) pack_list = [(h, yd) for w, h, xd, yd in whd_list] height, yoffsets_ = _get_packed_offsets(pack_list, self.height, sep, self.mode) yoffsets = yoffsets_ + [yd for w, h, xd, yd in whd_list] ydescent = height - yoffsets[0] yoffsets = height - yoffsets #w, h, xd, h_yd = whd_list[-1] yoffsets = yoffsets - ydescent return width + 2 * pad, height + 2 * pad, \ xdescent + pad, ydescent + pad, \ list(zip(xoffsets, yoffsets)) class HPacker(PackerBase): """ The HPacker has its children packed horizontally. It automatically adjusts the relative positions of children at draw time. """ def __init__(self, pad=None, sep=None, width=None, height=None, align="baseline", mode="fixed", children=None): """ Parameters ---------- pad : float, optional Boundary pad. sep : float, optional Spacing between items. width : float, optional height : float, optional Width and height of the container box, calculated if `None`. align : str Alignment of boxes. mode : str Packing mode. Notes ----- *pad* and *sep* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(HPacker, self).__init__(pad, sep, width, height, align, mode, children) def get_extent_offsets(self, renderer): """ update offset of children and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor sep = self.sep * dpicor whd_list = [c.get_extent(renderer) for c in self.get_visible_children()] if not whd_list: return 2 * pad, 2 * pad, pad, pad, [] if self.height is None: height_descent = max([h - yd for w, h, xd, yd in whd_list]) ydescent = max([yd for w, h, xd, yd in whd_list]) height = height_descent + ydescent else: height = self.height - 2 * pad # width w/o pad hd_list = [(h, yd) for w, h, xd, yd in whd_list] height, ydescent, yoffsets = _get_aligned_offsets(hd_list, self.height, self.align) pack_list = [(w, xd) for w, h, xd, yd in whd_list] width, xoffsets_ = _get_packed_offsets(pack_list, self.width, sep, self.mode) xoffsets = xoffsets_ + [xd for w, h, xd, yd in whd_list] xdescent = whd_list[0][2] xoffsets = xoffsets - xdescent return width + 2 * pad, height + 2 * pad, \ xdescent + pad, ydescent + pad, \ list(zip(xoffsets, yoffsets)) class PaddedBox(OffsetBox): def __init__(self, child, pad=None, draw_frame=False, patch_attrs=None): """ *pad* : boundary pad .. note:: *pad* need to given in points and will be scale with the renderer dpi, while *width* and *height* need to be in pixels. """ super(PaddedBox, self).__init__() self.pad = pad self._children = [child] self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=1, # self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=0) if patch_attrs is not None: self.patch.update(patch_attrs) self._drawFrame = draw_frame def get_extent_offsets(self, renderer): """ update offset of childrens and return the extents of the box """ dpicor = renderer.points_to_pixels(1.) pad = self.pad * dpicor w, h, xd, yd = self._children[0].get_extent(renderer) return w + 2 * pad, h + 2 * pad, \ xd + pad, yd + pad, \ [(0, 0)] def draw(self, renderer): """ Update the location of children if necessary and draw them to the given *renderer*. """ width, height, xdescent, ydescent, offsets = self.get_extent_offsets( renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) for c, (ox, oy) in zip(self.get_visible_children(), offsets): c.set_offset((px + ox, py + oy)) self.draw_frame(renderer) for c in self.get_visible_children(): c.draw(renderer) #bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) def update_frame(self, bbox, fontsize=None): self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) if fontsize: self.patch.set_mutation_scale(fontsize) def draw_frame(self, renderer): # update the location and size of the legend bbox = self.get_window_extent(renderer) self.update_frame(bbox) if self._drawFrame: self.patch.draw(renderer) class DrawingArea(OffsetBox): """ The DrawingArea can contain any Artist as a child. The DrawingArea has a fixed width and height. The position of children relative to the parent is fixed. """ def __init__(self, width, height, xdescent=0., ydescent=0., clip=True): """ *width*, *height* : width and height of the container box. *xdescent*, *ydescent* : descent of the box in x- and y-direction. """ super(DrawingArea, self).__init__() self.width = width self.height = height self.xdescent = xdescent self.ydescent = ydescent self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) self.dpi_transform = mtransforms.Affine2D() def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` applied to the children """ return self.dpi_transform + self.offset_transform def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y cooridnate in disokay units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): """ Return with, height, xdescent, ydescent of box """ dpi_cor = renderer.points_to_pixels(1.) return self.width * dpi_cor, self.height * dpi_cor, \ self.xdescent * dpi_cor, self.ydescent * dpi_cor def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the container box' self._children.append(a) if not a.is_transform_set(): a.set_transform(self.get_transform()) def draw(self, renderer): """ Draw the children """ dpi_cor = renderer.points_to_pixels(1.) self.dpi_transform.clear() self.dpi_transform.scale(dpi_cor, dpi_cor) for c in self._children: c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) class TextArea(OffsetBox): """ The TextArea is contains a single Text instance. The text is placed at (0,0) with baseline+left alignment. The width and height of the TextArea instance is the width and height of the its child text. """ def __init__(self, s, textprops=None, multilinebaseline=None, minimumdescent=True, ): """ Parameters ---------- s : str a string to be displayed. textprops : `~matplotlib.font_manager.FontProperties`, optional multilinebaseline : bool, optional If `True`, baseline for multiline text is adjusted so that it is (approximatedly) center-aligned with singleline text. minimumdescent : bool, optional If `True`, the box has a minimum descent of "p". """ if textprops is None: textprops = {} if "va" not in textprops: textprops["va"] = "baseline" self._text = mtext.Text(0, 0, s, **textprops) OffsetBox.__init__(self) self._children = [self._text] self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) self._baseline_transform = mtransforms.Affine2D() self._text.set_transform(self.offset_transform + self._baseline_transform) self._multilinebaseline = multilinebaseline self._minimumdescent = minimumdescent def set_text(self, s): "set text" self._text.set_text(s) def get_text(self): "get text" return self._text.get_text() def set_multilinebaseline(self, t): """ Set multilinebaseline . If True, baseline for multiline text is adjusted so that it is (approximatedly) center-aligned with singleline text. """ self._multilinebaseline = t def get_multilinebaseline(self): """ get multilinebaseline . """ return self._multilinebaseline def set_minimumdescent(self, t): """ Set minimumdescent . If True, extent of the single line text is adjusted so that it has minimum descent of "p" """ self._minimumdescent = t def get_minimumdescent(self): """ get minimumdescent. """ return self._minimumdescent def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y coordinates in display units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): clean_line, ismath = self._text.is_math_text(self._text._text) _, h_, d_ = renderer.get_text_width_height_descent( "lp", self._text._fontproperties, ismath=False) bbox, info, d = self._text._get_layout(renderer) w, h = bbox.width, bbox.height line = info[-1][0] # last line self._baseline_transform.clear() if len(info) > 1 and self._multilinebaseline: d_new = 0.5 * h - 0.5 * (h_ - d_) self._baseline_transform.translate(0, d - d_new) d = d_new else: # single line h_d = max(h_ - d_, h - d) if self.get_minimumdescent(): ## to have a minimum descent, #i.e., "l" and "p" have same ## descents. d = max(d, d_) #else: # d = d h = h_d + d return w, h, 0., d def draw(self, renderer): """ Draw the children """ self._text.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) class AuxTransformBox(OffsetBox): """ Offset Box with the aux_transform . Its children will be transformed with the aux_transform first then will be offseted. The absolute coordinate of the aux_transform is meaning as it will be automatically adjust so that the left-lower corner of the bounding box of children will be set to (0,0) before the offset transform. It is similar to drawing area, except that the extent of the box is not predetermined but calculated from the window extent of its children. Furthermore, the extent of the children will be calculated in the transformed coordinate. """ def __init__(self, aux_transform): self.aux_transform = aux_transform OffsetBox.__init__(self) self.offset_transform = mtransforms.Affine2D() self.offset_transform.clear() self.offset_transform.translate(0, 0) # ref_offset_transform is used to make the offset_transform is # always reference to the lower-left corner of the bbox of its # children. self.ref_offset_transform = mtransforms.Affine2D() self.ref_offset_transform.clear() def add_artist(self, a): 'Add any :class:`~matplotlib.artist.Artist` to the container box' self._children.append(a) a.set_transform(self.get_transform()) def get_transform(self): """ Return the :class:`~matplotlib.transforms.Transform` applied to the children """ return self.aux_transform + \ self.ref_offset_transform + \ self.offset_transform def set_transform(self, t): """ set_transform is ignored. """ pass def set_offset(self, xy): """ set offset of the container. Accept : tuple of x,y coordinate in disokay units. """ self._offset = xy self.offset_transform.clear() self.offset_transform.translate(xy[0], xy[1]) def get_offset(self): """ return offset of the container. """ return self._offset def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() # w, h, xd, yd) return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): # clear the offset transforms _off = self.offset_transform.to_values() # to be restored later self.ref_offset_transform.clear() self.offset_transform.clear() # calculate the extent bboxes = [c.get_window_extent(renderer) for c in self._children] ub = mtransforms.Bbox.union(bboxes) # adjust ref_offset_tansform self.ref_offset_transform.translate(-ub.x0, -ub.y0) # restor offset transform mtx = self.offset_transform.matrix_from_values(*_off) self.offset_transform.set_matrix(mtx) return ub.width, ub.height, 0., 0. def draw(self, renderer): """ Draw the children """ for c in self._children: c.draw(renderer) bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) class AnchoredOffsetbox(OffsetBox): """ An offset box placed according to the legend location loc. AnchoredOffsetbox has a single child. When multiple children is needed, use other OffsetBox class to enclose them. By default, the offset box is anchored against its parent axes. You may explicitly specify the bbox_to_anchor. """ zorder = 5 # zorder of the legend def __init__(self, loc, pad=0.4, borderpad=0.5, child=None, prop=None, frameon=True, bbox_to_anchor=None, bbox_transform=None, **kwargs): """ loc is a string or an integer specifying the legend location. The valid location codes are:: 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10, pad : pad around the child for drawing a frame. given in fraction of fontsize. borderpad : pad between offsetbox frame and the bbox_to_anchor, child : OffsetBox instance that will be anchored. prop : font property. This is only used as a reference for paddings. frameon : draw a frame box if True. bbox_to_anchor : bbox to anchor. Use self.axes.bbox if None. bbox_transform : with which the bbox_to_anchor will be transformed. """ super(AnchoredOffsetbox, self).__init__(**kwargs) self.set_bbox_to_anchor(bbox_to_anchor, bbox_transform) self.set_child(child) self.loc = loc self.borderpad = borderpad self.pad = pad if prop is None: self.prop = FontProperties(size=rcParams["legend.fontsize"]) elif isinstance(prop, dict): self.prop = FontProperties(**prop) if "size" not in prop: self.prop.set_size(rcParams["legend.fontsize"]) else: self.prop = prop self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=0) self._drawFrame = frameon def set_child(self, child): "set the child to be anchored" self._child = child def get_child(self): "return the child" return self._child def get_children(self): "return the list of children" return [self._child] def get_extent(self, renderer): """ return the extent of the artist. The extent of the child added with the pad is returned """ w, h, xd, yd = self.get_child().get_extent(renderer) fontsize = renderer.points_to_pixels(self.prop.get_size_in_points()) pad = self.pad * fontsize return w + 2 * pad, h + 2 * pad, xd + pad, yd + pad def get_bbox_to_anchor(self): """ return the bbox that the legend will be anchored """ if self._bbox_to_anchor is None: return self.axes.bbox else: transform = self._bbox_to_anchor_transform if transform is None: return self._bbox_to_anchor else: return TransformedBbox(self._bbox_to_anchor, transform) def set_bbox_to_anchor(self, bbox, transform=None): """ set the bbox that the child will be anchored. *bbox* can be a Bbox instance, a list of [left, bottom, width, height], or a list of [left, bottom] where the width and height will be assumed to be zero. The bbox will be transformed to display coordinate by the given transform. """ if bbox is None or isinstance(bbox, BboxBase): self._bbox_to_anchor = bbox else: try: l = len(bbox) except TypeError: raise ValueError("Invalid argument for bbox : %s" % str(bbox)) if l == 2: bbox = [bbox[0], bbox[1], 0, 0] self._bbox_to_anchor = Bbox.from_bounds(*bbox) self._bbox_to_anchor_transform = transform def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' self._update_offset_func(renderer) w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset(w, h, xd, yd, renderer) return Bbox.from_bounds(ox - xd, oy - yd, w, h) def _update_offset_func(self, renderer, fontsize=None): """ Update the offset func which depends on the dpi of the renderer (because of the padding). """ if fontsize is None: fontsize = renderer.points_to_pixels( self.prop.get_size_in_points()) def _offset(w, h, xd, yd, renderer, fontsize=fontsize, self=self): bbox = Bbox.from_bounds(0, 0, w, h) borderpad = self.borderpad * fontsize bbox_to_anchor = self.get_bbox_to_anchor() x0, y0 = self._get_anchored_bbox(self.loc, bbox, bbox_to_anchor, borderpad) return x0 + xd, y0 + yd self.set_offset(_offset) def update_frame(self, bbox, fontsize=None): self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) if fontsize: self.patch.set_mutation_scale(fontsize) def draw(self, renderer): "draw the artist" if not self.get_visible(): return fontsize = renderer.points_to_pixels(self.prop.get_size_in_points()) self._update_offset_func(renderer, fontsize) if self._drawFrame: # update the location and size of the legend bbox = self.get_window_extent(renderer) self.update_frame(bbox, fontsize) self.patch.draw(renderer) width, height, xdescent, ydescent = self.get_extent(renderer) px, py = self.get_offset(width, height, xdescent, ydescent, renderer) self.get_child().set_offset((px, py)) self.get_child().draw(renderer) def _get_anchored_bbox(self, loc, bbox, parentbbox, borderpad): """ return the position of the bbox anchored at the parentbbox with the loc code, with the borderpad. """ assert loc in range(1, 11) # called only internally BEST, UR, UL, LL, LR, R, CL, CR, LC, UC, C = list(xrange(11)) anchor_coefs = {UR: "NE", UL: "NW", LL: "SW", LR: "SE", R: "E", CL: "W", CR: "E", LC: "S", UC: "N", C: "C"} c = anchor_coefs[loc] container = parentbbox.padded(-borderpad) anchored_box = bbox.anchored(c, container=container) return anchored_box.x0, anchored_box.y0 class AnchoredText(AnchoredOffsetbox): """ AnchoredOffsetbox with Text. """ def __init__(self, s, loc, pad=0.4, borderpad=0.5, prop=None, **kwargs): """ Parameters ---------- s : string Text. loc : str Location code. pad : float, optional Pad between the text and the frame as fraction of the font size. borderpad : float, optional Pad between the frame and the axes (or *bbox_to_anchor*). prop : `matplotlib.font_manager.FontProperties` Font properties. Notes ----- Other keyword parameters of `AnchoredOffsetbox` are also allowed. """ if prop is None: prop = {} propkeys = list(six.iterkeys(prop)) badkwargs = ('ha', 'horizontalalignment', 'va', 'verticalalignment') if set(badkwargs) & set(propkeys): warnings.warn("Mixing horizontalalignment or verticalalignment " "with AnchoredText is not supported.") self.txt = TextArea(s, textprops=prop, minimumdescent=False) fp = self.txt._text.get_fontproperties() super(AnchoredText, self).__init__(loc, pad=pad, borderpad=borderpad, child=self.txt, prop=fp, **kwargs) class OffsetImage(OffsetBox): def __init__(self, arr, zoom=1, cmap=None, norm=None, interpolation=None, origin=None, filternorm=1, filterrad=4.0, resample=False, dpi_cor=True, **kwargs ): self._dpi_cor = dpi_cor self.image = BboxImage(bbox=self.get_window_extent, cmap=cmap, norm=norm, interpolation=interpolation, origin=origin, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs ) self._children = [self.image] self.set_zoom(zoom) self.set_data(arr) OffsetBox.__init__(self) def set_data(self, arr): self._data = np.asarray(arr) self.image.set_data(self._data) def get_data(self): return self._data def set_zoom(self, zoom): self._zoom = zoom def get_zoom(self): return self._zoom # def set_axes(self, axes): # self.image.set_axes(axes) # martist.Artist.set_axes(self, axes) # def set_offset(self, xy): # """ # set offset of the container. # Accept : tuple of x,y coordinate in disokay units. # """ # self._offset = xy # self.offset_transform.clear() # self.offset_transform.translate(xy[0], xy[1]) def get_offset(self): """ return offset of the container. """ return self._offset def get_children(self): return [self.image] def get_window_extent(self, renderer): ''' get the bounding box in display space. ''' w, h, xd, yd = self.get_extent(renderer) ox, oy = self.get_offset() return mtransforms.Bbox.from_bounds(ox - xd, oy - yd, w, h) def get_extent(self, renderer): # FIXME dpi_cor is never used if self._dpi_cor: # True, do correction dpi_cor = renderer.points_to_pixels(1.) else: dpi_cor = 1. zoom = self.get_zoom() data = self.get_data() ny, nx = data.shape[:2] w, h = nx * zoom, ny * zoom return w, h, 0, 0 def draw(self, renderer): """ Draw the children """ self.image.draw(renderer) #bbox_artist(self, renderer, fill=False, props=dict(pad=0.)) class AnnotationBbox(martist.Artist, _AnnotationBase): """ Annotation-like class, but with offsetbox instead of Text. """ zorder = 3 def __str__(self): return "AnnotationBbox(%g,%g)" % (self.xy[0], self.xy[1]) @docstring.dedent_interpd def __init__(self, offsetbox, xy, xybox=None, xycoords='data', boxcoords=None, frameon=True, pad=0.4, # BboxPatch annotation_clip=None, box_alignment=(0.5, 0.5), bboxprops=None, arrowprops=None, fontsize=None, **kwargs): """ *offsetbox* : OffsetBox instance *xycoords* : same as Annotation but can be a tuple of two strings which are interpreted as x and y coordinates. *boxcoords* : similar to textcoords as Annotation but can be a tuple of two strings which are interpreted as x and y coordinates. *box_alignment* : a tuple of two floats for a vertical and horizontal alignment of the offset box w.r.t. the *boxcoords*. The lower-left corner is (0.0) and upper-right corner is (1.1). other parameters are identical to that of Annotation. """ self.offsetbox = offsetbox self.arrowprops = arrowprops self.set_fontsize(fontsize) if xybox is None: self.xybox = xy else: self.xybox = xybox if boxcoords is None: self.boxcoords = xycoords else: self.boxcoords = boxcoords if arrowprops is not None: self._arrow_relpos = self.arrowprops.pop("relpos", (0.5, 0.5)) self.arrow_patch = FancyArrowPatch((0, 0), (1, 1), **self.arrowprops) else: self._arrow_relpos = None self.arrow_patch = None _AnnotationBase.__init__(self, xy, xycoords=xycoords, annotation_clip=annotation_clip) martist.Artist.__init__(self, **kwargs) #self._fw, self._fh = 0., 0. # for alignment self._box_alignment = box_alignment # frame self.patch = FancyBboxPatch( xy=(0.0, 0.0), width=1., height=1., facecolor='w', edgecolor='k', mutation_scale=self.prop.get_size_in_points(), snap=True ) self.patch.set_boxstyle("square", pad=pad) if bboxprops: self.patch.set(**bboxprops) self._drawFrame = frameon @property def xyann(self): return self.xybox @xyann.setter def xyann(self, xyann): self.xybox = xyann @property def anncoords(self): return self.boxcoords @anncoords.setter def anncoords(self, coords): self.boxcoords = coords def contains(self, event): t, tinfo = self.offsetbox.contains(event) #if self.arrow_patch is not None: # a,ainfo=self.arrow_patch.contains(event) # t = t or a # self.arrow_patch is currently not checked as this can be a line - JJ return t, tinfo def get_children(self): children = [self.offsetbox, self.patch] if self.arrow_patch: children.append(self.arrow_patch) return children def set_figure(self, fig): if self.arrow_patch is not None: self.arrow_patch.set_figure(fig) self.offsetbox.set_figure(fig) martist.Artist.set_figure(self, fig) def set_fontsize(self, s=None): """ set fontsize in points """ if s is None: s = rcParams["legend.fontsize"] self.prop = FontProperties(size=s) def get_fontsize(self, s=None): """ return fontsize in points """ return self.prop.get_size_in_points() def update_positions(self, renderer): """ Update the pixel positions of the annotated point and the text. """ xy_pixel = self._get_position_xy(renderer) self._update_position_xybox(renderer, xy_pixel) mutation_scale = renderer.points_to_pixels(self.get_fontsize()) self.patch.set_mutation_scale(mutation_scale) if self.arrow_patch: self.arrow_patch.set_mutation_scale(mutation_scale) def _update_position_xybox(self, renderer, xy_pixel): """ Update the pixel positions of the annotation text and the arrow patch. """ x, y = self.xybox if isinstance(self.boxcoords, tuple): xcoord, ycoord = self.boxcoords x1, y1 = self._get_xy(renderer, x, y, xcoord) x2, y2 = self._get_xy(renderer, x, y, ycoord) ox0, oy0 = x1, y2 else: ox0, oy0 = self._get_xy(renderer, x, y, self.boxcoords) w, h, xd, yd = self.offsetbox.get_extent(renderer) _fw, _fh = self._box_alignment self.offsetbox.set_offset((ox0 - _fw * w + xd, oy0 - _fh * h + yd)) # update patch position bbox = self.offsetbox.get_window_extent(renderer) #self.offsetbox.set_offset((ox0-_fw*w, oy0-_fh*h)) self.patch.set_bounds(bbox.x0, bbox.y0, bbox.width, bbox.height) x, y = xy_pixel ox1, oy1 = x, y if self.arrowprops: x0, y0 = x, y d = self.arrowprops.copy() # Use FancyArrowPatch if self.arrowprops has "arrowstyle" key. # adjust the starting point of the arrow relative to # the textbox. # TODO : Rotation needs to be accounted. relpos = self._arrow_relpos ox0 = bbox.x0 + bbox.width * relpos[0] oy0 = bbox.y0 + bbox.height * relpos[1] # The arrow will be drawn from (ox0, oy0) to (ox1, # oy1). It will be first clipped by patchA and patchB. # Then it will be shrinked by shirnkA and shrinkB # (in points). If patch A is not set, self.bbox_patch # is used. self.arrow_patch.set_positions((ox0, oy0), (ox1, oy1)) fs = self.prop.get_size_in_points() mutation_scale = d.pop("mutation_scale", fs) mutation_scale = renderer.points_to_pixels(mutation_scale) self.arrow_patch.set_mutation_scale(mutation_scale) patchA = d.pop("patchA", self.patch) self.arrow_patch.set_patchA(patchA) def draw(self, renderer): """ Draw the :class:`Annotation` object to the given *renderer*. """ if renderer is not None: self._renderer = renderer if not self.get_visible(): return xy_pixel = self._get_position_xy(renderer) if not self._check_xy(renderer, xy_pixel): return self.update_positions(renderer) if self.arrow_patch is not None: if self.arrow_patch.figure is None and self.figure is not None: self.arrow_patch.figure = self.figure self.arrow_patch.draw(renderer) if self._drawFrame: self.patch.draw(renderer) self.offsetbox.draw(renderer) class DraggableBase(object): """ helper code for a draggable artist (legend, offsetbox) The derived class must override following two method. def saveoffset(self): pass def update_offset(self, dx, dy): pass *saveoffset* is called when the object is picked for dragging and it is meant to save reference position of the artist. *update_offset* is called during the dragging. dx and dy is the pixel offset from the point where the mouse drag started. Optionally you may override following two methods. def artist_picker(self, artist, evt): return self.ref_artist.contains(evt) def finalize_offset(self): pass *artist_picker* is a picker method that will be used. *finalize_offset* is called when the mouse is released. In current implementaion of DraggableLegend and DraggableAnnotation, *update_offset* places the artists simply in display coordinates. And *finalize_offset* recalculate their position in the normalized axes coordinate and set a relavant attribute. """ def __init__(self, ref_artist, use_blit=False): self.ref_artist = ref_artist self.got_artist = False self.canvas = self.ref_artist.figure.canvas self._use_blit = use_blit and self.canvas.supports_blit c2 = self.canvas.mpl_connect('pick_event', self.on_pick) c3 = self.canvas.mpl_connect('button_release_event', self.on_release) ref_artist.set_picker(self.artist_picker) self.cids = [c2, c3] def on_motion(self, evt): if self.got_artist: dx = evt.x - self.mouse_x dy = evt.y - self.mouse_y self.update_offset(dx, dy) self.canvas.draw() def on_motion_blit(self, evt): if self.got_artist: dx = evt.x - self.mouse_x dy = evt.y - self.mouse_y self.update_offset(dx, dy) self.canvas.restore_region(self.background) self.ref_artist.draw(self.ref_artist.figure._cachedRenderer) self.canvas.blit(self.ref_artist.figure.bbox) def on_pick(self, evt): if evt.artist == self.ref_artist: self.mouse_x = evt.mouseevent.x self.mouse_y = evt.mouseevent.y self.got_artist = True if self._use_blit: self.ref_artist.set_animated(True) self.canvas.draw() self.background = self.canvas.copy_from_bbox( self.ref_artist.figure.bbox) self.ref_artist.draw(self.ref_artist.figure._cachedRenderer) self.canvas.blit(self.ref_artist.figure.bbox) self._c1 = self.canvas.mpl_connect('motion_notify_event', self.on_motion_blit) else: self._c1 = self.canvas.mpl_connect('motion_notify_event', self.on_motion) self.save_offset() def on_release(self, event): if self.got_artist: self.finalize_offset() self.got_artist = False self.canvas.mpl_disconnect(self._c1) if self._use_blit: self.ref_artist.set_animated(False) def disconnect(self): """disconnect the callbacks""" for cid in self.cids: self.canvas.mpl_disconnect(cid) def artist_picker(self, artist, evt): return self.ref_artist.contains(evt) def save_offset(self): pass def update_offset(self, dx, dy): pass def finalize_offset(self): pass class DraggableOffsetBox(DraggableBase): def __init__(self, ref_artist, offsetbox, use_blit=False): DraggableBase.__init__(self, ref_artist, use_blit=use_blit) self.offsetbox = offsetbox def save_offset(self): offsetbox = self.offsetbox renderer = offsetbox.figure._cachedRenderer w, h, xd, yd = offsetbox.get_extent(renderer) offset = offsetbox.get_offset(w, h, xd, yd, renderer) self.offsetbox_x, self.offsetbox_y = offset self.offsetbox.set_offset(offset) def update_offset(self, dx, dy): loc_in_canvas = self.offsetbox_x + dx, self.offsetbox_y + dy self.offsetbox.set_offset(loc_in_canvas) def get_loc_in_canvas(self): offsetbox = self.offsetbox renderer = offsetbox.figure._cachedRenderer w, h, xd, yd = offsetbox.get_extent(renderer) ox, oy = offsetbox._offset loc_in_canvas = (ox - xd, oy - yd) return loc_in_canvas class DraggableAnnotation(DraggableBase): def __init__(self, annotation, use_blit=False): DraggableBase.__init__(self, annotation, use_blit=use_blit) self.annotation = annotation def save_offset(self): ann = self.annotation x, y = ann.xyann if isinstance(ann.anncoords, tuple): xcoord, ycoord = ann.anncoords x1, y1 = ann._get_xy(self.canvas.renderer, x, y, xcoord) x2, y2 = ann._get_xy(self.canvas.renderer, x, y, ycoord) ox0, oy0 = x1, y2 else: ox0, oy0 = ann._get_xy(self.canvas.renderer, x, y, ann.anncoords) self.ox, self.oy = ox0, oy0 self.annotation.anncoords = "figure pixels" self.update_offset(0, 0) def update_offset(self, dx, dy): ann = self.annotation ann.xyann = self.ox + dx, self.oy + dy x, y = ann.xyann def finalize_offset(self): loc_in_canvas = self.annotation.xyann self.annotation.anncoords = "axes fraction" pos_axes_fraction = self.annotation.axes.transAxes.inverted() pos_axes_fraction = pos_axes_fraction.transform_point(loc_in_canvas) self.annotation.xyann = tuple(pos_axes_fraction) if __name__ == "__main__": import matplotlib.pyplot as plt fig = plt.figure(1) fig.clf() ax = plt.subplot(121) #txt = ax.text(0.5, 0.5, "Test", size=30, ha="center", color="w") kwargs = dict() a = np.arange(256).reshape(16, 16) / 256. myimage = OffsetImage(a, zoom=2, norm=None, origin=None, **kwargs ) ax.add_artist(myimage) myimage.set_offset((100, 100)) myimage2 = OffsetImage(a, zoom=2, norm=None, origin=None, **kwargs ) ann = AnnotationBbox(myimage2, (0.5, 0.5), xybox=(30, 30), xycoords='data', boxcoords="offset points", frameon=True, pad=0.4, # BboxPatch bboxprops=dict(boxstyle="round", fc="y"), fontsize=None, arrowprops=dict(arrowstyle="->"), ) ax.add_artist(ann) plt.draw() plt.show()
mit
npuichigo/ttsflow
third_party/tensorflow/tensorflow/contrib/learn/python/learn/tests/dataframe/arithmetic_transform_test.py
62
2343
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for arithmetic transforms.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.contrib.learn.python.learn.dataframe import tensorflow_dataframe as df from tensorflow.python.platform import test # pylint: disable=g-import-not-at-top try: import pandas as pd HAS_PANDAS = True except ImportError: HAS_PANDAS = False class SumTestCase(test.TestCase): """Test class for `Sum` transform.""" def testSum(self): if not HAS_PANDAS: return num_rows = 100 pandas_df = pd.DataFrame({ "a": np.arange(num_rows), "b": np.arange(num_rows, 2 * num_rows) }) frame = df.TensorFlowDataFrame.from_pandas( pandas_df, shuffle=False, batch_size=num_rows) frame["a+b"] = frame["a"] + frame["b"] expected_sum = pandas_df["a"] + pandas_df["b"] actual_sum = frame.run_one_batch()["a+b"] np.testing.assert_array_equal(expected_sum, actual_sum) class DifferenceTestCase(test.TestCase): """Test class for `Difference` transform.""" def testDifference(self): if not HAS_PANDAS: return num_rows = 100 pandas_df = pd.DataFrame({ "a": np.arange(num_rows), "b": np.arange(num_rows, 2 * num_rows) }) frame = df.TensorFlowDataFrame.from_pandas( pandas_df, shuffle=False, batch_size=num_rows) frame["a-b"] = frame["a"] - frame["b"] expected_diff = pandas_df["a"] - pandas_df["b"] actual_diff = frame.run_one_batch()["a-b"] np.testing.assert_array_equal(expected_diff, actual_diff) if __name__ == "__main__": test.main()
apache-2.0
neuropoly/spinalcordtoolbox
spinalcordtoolbox/registration/landmarks.py
1
14660
#!/usr/bin/env python ######################################################################################### # # This file contains an implementation of the iterative closest point algorithm. # This algo registers two sets of points (3D coordinates) together. # # Adapted from: # http://stackoverflow.com/questions/20120384/iterative-closest-point-icp-implementation-on-python # # NOTES ON ITK Transform Files: # http://www.neuro.polymtl.ca/tips_and_tricks/how_to_use_ants#itk_transform_file # # --------------------------------------------------------------------------------------- # Copyright (c) 2013 Polytechnique Montreal <www.neuro.polymtl.ca> # Author: Benjamin De Leener, Julien Cohen-Adad # Created: 2015-06-10 # # About the license: see the file LICENSE.TXT ######################################################################################### # TODO: homogeneize input parameters: (src=src, dest=dest), instead of (dest, src). # TODO: add full affine transfo # TODO: normalize SSE: currently, it depends on the number of landmarks import sys, io, os import logging from operator import itemgetter from nibabel import load import numpy as np from scipy.optimize import minimize from spinalcordtoolbox.image import Image logger = logging.getLogger(__name__) sse_results = [] ini_param_rotation = 0.5 # rad ini_param_trans_x = 270.0 # pix ini_param_trans_y = -150.0 # pix initial_step = 2 def register_landmarks(fname_src, fname_dest, dof, fname_affine='affine.txt', verbose=1): """ Register two NIFTI volumes containing landmarks :param fname_src: fname of source landmarks :param fname_dest: fname of destination landmarks :param dof: degree of freedom. Separate with "_". Example: Tx_Ty_Tz_Rx_Ry_Sz :param fname_affine: output affine transformation :param verbose: 0, 1, 2 :return: """ # open src label im_src = Image(fname_src) # coord_src = im_src.getNonZeroCoordinates(sorting='value') # landmarks are sorted by value coord_src = im_src.getCoordinatesAveragedByValue() # landmarks are sorted by value # open dest labels im_dest = Image(fname_dest) # coord_dest = im_dest.getNonZeroCoordinates(sorting='value') coord_dest = im_dest.getCoordinatesAveragedByValue() # Reorganize landmarks points_src, points_dest = [], [] for coord in coord_src: point_src = im_src.transfo_pix2phys([[coord.x, coord.y, coord.z]]) # convert NIFTI to ITK world coordinate # points_src.append([point_src[0][0], point_src[0][1], point_src[0][2]]) points_src.append([-point_src[0][0], -point_src[0][1], point_src[0][2]]) for coord in coord_dest: point_dest = im_dest.transfo_pix2phys([[coord.x, coord.y, coord.z]]) # convert NIFTI to ITK world coordinate # points_dest.append([point_dest[0][0], point_dest[0][1], point_dest[0][2]]) points_dest.append([-point_dest[0][0], -point_dest[0][1], point_dest[0][2]]) # display logger.info(f"Labels src: {str(points_src)}") logger.info(f"Labels dest: {str(points_dest)}") logger.info(f"Degrees of freedom (dof): {dof}") if len(coord_src) != len(coord_dest): raise Exception('Error: number of source and destination landmarks are not the same, so landmarks cannot be paired.') # estimate transformation # N.B. points_src and points_dest are inverted below, because ITK uses inverted transformation matrices, i.e., src->dest is defined in dest instead of src. # (rotation_matrix, translation_array, points_moving_reg, points_moving_barycenter) = getRigidTransformFromLandmarks(points_dest, points_src, constraints=dof, verbose=verbose, path_qc=path_qc) (rotation_matrix, translation_array, points_moving_reg, points_moving_barycenter) = getRigidTransformFromLandmarks(points_src, points_dest, constraints=dof, verbose=verbose) # writing rigid transformation file # N.B. x and y dimensions have a negative sign to ensure compatibility between Python and ITK transfo text_file = open(fname_affine, 'w') text_file.write("#Insight Transform File V1.0\n") text_file.write("#Transform 0\n") text_file.write("Transform: AffineTransform_double_3_3\n") text_file.write("Parameters: %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f %.9f\n" % ( rotation_matrix[0, 0], rotation_matrix[0, 1], rotation_matrix[0, 2], rotation_matrix[1, 0], rotation_matrix[1, 1], rotation_matrix[1, 2], rotation_matrix[2, 0], rotation_matrix[2, 1], rotation_matrix[2, 2], translation_array[0, 0], translation_array[0, 1], translation_array[0, 2])) text_file.write("FixedParameters: %.9f %.9f %.9f\n" % (points_moving_barycenter[0], points_moving_barycenter[1], points_moving_barycenter[2])) text_file.close() def getNeighbors(point, set_points, k=1): ''' Locate most similar neighbours :param point: the point for which we want to compute the neighbors :param trainingSet: list of other Points :param k: number of neighbors wanted :return: k nearest neighbors of input point ''' distances = [] for other_point in set_points: dist = point.euclideanDistance(other_point) distances.append((other_point, dist)) distances.sort(key=itemgetter(1)) return [distances[x][0] for x in range(k)] def SSE(pointsA, pointsB): """ Compute sum of squared error between pair-wise landmarks :param pointsA: :param pointsB: :return: """ return np.sum(np.array(pointsA[:, 0:3] - pointsB[:, 0:3])**2.0) def real_optimization_parameters(param_from_optimizer, initial_param = 0, initial_step = 10): # The initial step for the Nelder-Mead algorithm is of (initial_param * 5e-2) which is too small when we want initial_param = 30 pix and step = 5 or 10. # This function allows to choose the scale of the steps after the first movement step_factor = float(initial_step) / float(initial_param * 5e-2) real_param = initial_param + (param_from_optimizer - initial_param) * step_factor return real_param def Metric_Images(imageA, imageB, type=''): data_A_list = load(imageA).get_data().tolist() data_B_list = load(imageB).get_data().tolist() # Define both list of intensity list_A = [] list_B = [] for i in range(len(data_A_list)): list_A = list_A + data_A_list[i] list_B = list_B + data_B_list[i] # Calculate metric depending on the type if type == 'MeanSquares': result_metric = 1.0 / (len(list_A)) * np.sum(np.array([list_A[i][0] - list_B[i][0] for i in range(len(list_A))])**2) #result_metric = 1/(len(list_A)) * np.sum(np.array(list_A - list_B)**2) if type == 'Correlation': result_metric = 1.0 / (len(list_A)) * np.sum(np.absolute(np.array([list_A[i][0] - list_B[i][0] for i in range(len(list_A))]))) if type == 'MI': logger.info(f"\nto do: MI") # Return results logger.info(f"\nResult of metric is: {str(result_metric)}") return result_metric def minimize_transform(params, points_dest, points_src, constraints): """ Cost function to minimize :param params: :param points_dest: :param points_src: :param constraints: :return: sum of squared error between pair-wise landmarks """ # initialize dof dof = [0, 0, 0, 0, 0, 0, 1, 1, 1] # initialize dictionary to relate constraints index to dof dict_dof = {'Tx': 0, 'Ty': 1, 'Tz': 2, 'Rx': 3, 'Ry': 4, 'Rz': 5, 'Sx': 6, 'Sy': 7, 'Sz': 8} # extract constraints list_constraints = constraints.split('_') # loop across constraints and update dof for i in range(len(list_constraints)): dof[dict_dof[list_constraints[i]]] = params[i] # convert dof to more intuitive variables tx, ty, tz, alpha, beta, gamma, scx, scy, scz = dof[0], dof[1], dof[2], dof[3], dof[4], dof[5], dof[6], dof[7], dof[8] # build rotation matrix rotation_matrix = np.matrix([[np.cos(alpha) * np.cos(beta), np.cos(alpha) * np.sin(beta) * np.sin(gamma) - np.sin(alpha) * np.cos(gamma), np.cos(alpha) * np.sin(beta) * np.cos(gamma) + np.sin(alpha) * np.sin(gamma)], [np.sin(alpha) * np.cos(beta), np.sin(alpha) * np.sin(beta) * np.sin(gamma) + np.cos(alpha) * np.cos(gamma), np.sin(alpha) * np.sin(beta) * np.cos(gamma) - np.cos(alpha) * np.sin(gamma)], [-np.sin(beta), np.cos(beta) * np.sin(gamma), np.cos(beta) * np.cos(gamma)]]) # build scaling matrix scaling_matrix = np.matrix([[scx, 0.0, 0.0], [0.0, scy, 0.0], [0.0, 0.0, scz]]) # compute rotation+scaling matrix rotsc_matrix = scaling_matrix * rotation_matrix # compute center of mass from moving points (src) points_src_barycenter = np.mean(points_src, axis=0) # apply transformation to moving points (src) points_src_reg = ((rotsc_matrix * (np.matrix(points_src) - points_src_barycenter).T).T + points_src_barycenter) + np.matrix([tx, ty, tz]) # record SSE for later display sse_results.append(SSE(np.matrix(points_dest), points_src_reg)) # return SSE return SSE(np.matrix(points_dest), points_src_reg) def getRigidTransformFromLandmarks(points_dest, points_src, constraints='Tx_Ty_Tz_Rx_Ry_Rz', verbose=0): """ Compute affine transformation to register landmarks :param points_src: :param points_dest: :param constraints: :param verbose: 0, 1, 2 :return: rotsc_matrix, translation_array, points_src_reg, points_src_barycenter """ # TODO: check input constraints # initialize default parameters init_param = [0, 0, 0, 0, 0, 0, 1, 1, 1] # initialize parameters for optimizer init_param_optimizer = [] # initialize dictionary to relate constraints index to dof dict_dof = {'Tx': 0, 'Ty': 1, 'Tz': 2, 'Rx': 3, 'Ry': 4, 'Rz': 5, 'Sx': 6, 'Sy': 7, 'Sz': 8} # extract constraints list_constraints = constraints.split('_') # loop across constraints and build initial_parameters for i in range(len(list_constraints)): init_param_optimizer.append(init_param[dict_dof[list_constraints[i]]]) # launch optimizer # res = minimize(minimize_transform, x0=init_param_optimizer, args=(points_src, points_dest, constraints), method='Nelder-Mead', tol=1e-8, options={'xtol': 1e-8, 'ftol': 1e-8, 'maxiter': 10000, 'maxfev': 10000, 'disp': show}) res = minimize(minimize_transform, x0=init_param_optimizer, args=(points_dest, points_src, constraints), method='Powell', tol=1e-8, options={'xtol': 1e-8, 'ftol': 1e-8, 'maxiter': 100000, 'maxfev': 100000, 'disp': verbose}) # res = minimize(minAffineTransform, x0=initial_parameters, args=points, method='COBYLA', tol=1e-8, options={'tol': 1e-8, 'rhobeg': 0.1, 'maxiter': 100000, 'catol': 0, 'disp': show}) # loop across constraints and update dof dof = init_param for i in range(len(list_constraints)): dof[dict_dof[list_constraints[i]]] = res.x[i] # convert dof to more intuitive variables tx, ty, tz, alpha, beta, gamma, scx, scy, scz = dof[0], dof[1], dof[2], dof[3], dof[4], dof[5], dof[6], dof[7], dof[8] # convert results to intuitive variables # tx, ty, tz, alpha, beta, gamma, scx, scy, scz = res.x[0], res.x[1], res.x[2], res.x[3], res.x[4], res.x[5], res.x[6], res.x[7], res.x[8] # build translation matrix translation_array = np.matrix([tx, ty, tz]) # build rotation matrix rotation_matrix = np.matrix([[np.cos(alpha) * np.cos(beta), np.cos(alpha) * np.sin(beta) * np.sin(gamma) - np.sin(alpha) * np.cos(gamma), np.cos(alpha) * np.sin(beta) * np.cos(gamma) + np.sin(alpha) * np.sin(gamma)], [np.sin(alpha) * np.cos(beta), np.sin(alpha) * np.sin(beta) * np.sin(gamma) + np.cos(alpha) * np.cos(gamma), np.sin(alpha) * np.sin(beta) * np.cos(gamma) - np.cos(alpha) * np.sin(gamma)], [-np.sin(beta), np.cos(beta) * np.sin(gamma), np.cos(beta) * np.cos(gamma)]]) # build scaling matrix scaling_matrix = np.matrix([[scx, 0.0, 0.0], [0.0, scy, 0.0], [0.0, 0.0, scz]]) # compute rotation+scaling matrix rotsc_matrix = scaling_matrix * rotation_matrix # compute center of mass from moving points (src) points_src_barycenter = np.mean(points_src, axis=0) # apply transformation to moving points (src) points_src_reg = ((rotsc_matrix * (np.matrix(points_src) - points_src_barycenter).T).T + points_src_barycenter) + translation_array logger.info(f"Matrix:\n {rotation_matrix}") logger.info(f"Center:\n {points_src_barycenter}") logger.info(f"Translation:\n {translation_array}") if verbose == 2: import matplotlib # use Agg to prevent display matplotlib.use('Agg') import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.gca(projection='3d') points_src_matrix = np.matrix(points_src) points_dest_matrix = np.matrix(points_dest) number_points = len(points_dest) ax.scatter([points_dest_matrix[i, 0] for i in range(0, number_points)], [points_dest_matrix[i, 1] for i in range(0, number_points)], [points_dest_matrix[i, 2] for i in range(0, number_points)], c='g', marker='+', s=500, label='dest') ax.scatter([points_src_matrix[i, 0] for i in range(0, number_points)], [points_src_matrix[i, 1] for i in range(0, number_points)], [points_src_matrix[i, 2] for i in range(0, number_points)], c='r', label='src') ax.scatter([points_src_reg[i, 0] for i in range(0, number_points)], [points_src_reg[i, 1] for i in range(0, number_points)], [points_src_reg[i, 2] for i in range(0, number_points)], c='b', label='src_reg') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') ax.set_aspect('auto') plt.legend() # plt.show() plt.savefig('getRigidTransformFromLandmarks_plot.png') fig2 = plt.figure() plt.plot(sse_results) plt.grid() plt.title('#Iterations: ' + str(res.nit) + ', #FuncEval: ' + str(res.nfev) + ', Error: ' + str(res.fun)) plt.show() plt.savefig(os.path.join('getRigidTransformFromLandmarks_iterations.png')) # transform numpy matrix to list structure because it is easier to handle points_src_reg = points_src_reg.tolist() return rotsc_matrix, translation_array, points_src_reg, points_src_barycenter
mit
nigroup/pypet
pypet/environment.py
1
148936
""" Module containing the environment to run experiments. An :class:`~pypet.environment.Environment` provides an interface to run experiments based on parameter exploration. The environment contains and might even create a :class:`~pypet.trajectory.Trajectory` container which can be filled with parameters and results (see :mod:`pypet.parameter`). Instance of this trajectory are distributed to the user's job function to perform a single run of an experiment. An `Environment` is the handyman for scheduling, it can be used for multiprocessing and takes care of organizational issues like logging. """ __author__ = 'Robert Meyer' try: import __main__ as main except ImportError as exc: main = None # We can end up here in an interactive IPython console import os import sys import logging import shutil import multiprocessing as multip import traceback import hashlib import time import datetime import inspect try: from sumatra.projects import load_project from sumatra.programs import PythonExecutable except ImportError: load_project = None PythonExecutable = None try: import dill # If you do not set this log-level dill will flood any log file :-( logging.getLogger(dill.__name__).setLevel(logging.WARNING) except ImportError: dill = None try: import psutil except ImportError: psutil = None try: import scoop from scoop import futures, shared except ImportError: scoop = None try: import git except ImportError: git = None try: import zmq except ImportError: zmq = None import pypet.compat as compat import pypet.pypetconstants as pypetconstants from pypet.pypetlogging import LoggingManager, HasLogger, simple_logging_config from pypet.trajectory import Trajectory from pypet.storageservice import HDF5StorageService, LazyStorageService from pypet.utils.mpwrappers import QueueStorageServiceWriter, LockWrapper, \ PipeStorageServiceSender, PipeStorageServiceWriter, ReferenceWrapper, \ ReferenceStore, QueueStorageServiceSender, LockerServer, LockerClient, \ ForkAwareLockerClient, TimeOutLockerServer, QueuingClient, QueuingServer, \ ForkAwareQueuingClient from pypet.utils.siginthandling import sigint_handling from pypet.utils.gitintegration import make_git_commit from pypet._version import __version__ as VERSION from pypet.utils.decorators import deprecated, kwargs_api_change, prefix_naming from pypet.utils.helpful_functions import is_debug, result_sort, format_time, port_to_tcp, \ racedirs from pypet.utils.storagefactory import storage_factory from pypet.utils.configparsing import parse_config from pypet.parameter import Parameter def _pool_single_run(kwargs): """Starts a pool single run and passes the storage service""" wrap_mode = kwargs['wrap_mode'] traj = kwargs['traj'] traj.v_storage_service = _pool_single_run.storage_service if wrap_mode == pypetconstants.WRAP_MODE_LOCAL: # Free references from previous runs traj.v_storage_service.free_references() return _sigint_handling_single_run(kwargs) def _frozen_pool_single_run(kwargs): """Single run wrapper for the frozen pool, makes a single run and passes kwargs""" idx = kwargs.pop('idx') frozen_kwargs = _frozen_pool_single_run.kwargs frozen_kwargs.update(kwargs) # in case of `run_map` # we need to update job's args and kwargs traj = frozen_kwargs['traj'] traj.f_set_crun(idx) return _sigint_handling_single_run(frozen_kwargs) def _configure_pool(kwargs): """Configures the pool and keeps the storage service""" _pool_single_run.storage_service = kwargs['storage_service'] _configure_niceness(kwargs) _configure_logging(kwargs, extract=False) def _configure_frozen_pool(kwargs): """Configures the frozen pool and keeps all kwargs""" _frozen_pool_single_run.kwargs = kwargs _configure_niceness(kwargs) _configure_logging(kwargs, extract=False) # Reset full copy to it's old value traj = kwargs['traj'] traj.v_full_copy = kwargs['full_copy'] def _process_single_run(kwargs): """Wrapper function that first configures logging and starts a single run afterwards.""" _configure_niceness(kwargs) _configure_logging(kwargs) result_queue = kwargs['result_queue'] result = _sigint_handling_single_run(kwargs) result_queue.put(result) result_queue.close() def _configure_frozen_scoop(kwargs): """Wrapper function that configures a frozen SCOOP set up. Deletes of data if necessary. """ def _delete_old_scoop_rev_data(old_scoop_rev): if old_scoop_rev is not None: try: elements = shared.elements for key in elements: var_dict = elements[key] if old_scoop_rev in var_dict: del var_dict[old_scoop_rev] logging.getLogger('pypet.scoop').debug('Deleted old SCOOP data from ' 'revolution `%s`.' % old_scoop_rev) except AttributeError: logging.getLogger('pypet.scoop').error('Could not delete old SCOOP data from ' 'revolution `%s`.' % old_scoop_rev) scoop_rev = kwargs.pop('scoop_rev') # Check if we need to reconfigure SCOOP try: old_scoop_rev = _frozen_scoop_single_run.kwargs['scoop_rev'] configured = old_scoop_rev == scoop_rev except (AttributeError, KeyError): old_scoop_rev = None configured = False if not configured: _frozen_scoop_single_run.kwargs = shared.getConst(scoop_rev, timeout=424.2) frozen_kwargs = _frozen_scoop_single_run.kwargs frozen_kwargs['scoop_rev'] = scoop_rev frozen_kwargs['traj'].v_full_copy = frozen_kwargs['full_copy'] if not scoop.IS_ORIGIN: _configure_niceness(frozen_kwargs) _configure_logging(frozen_kwargs, extract=False) _delete_old_scoop_rev_data(old_scoop_rev) logging.getLogger('pypet.scoop').info('Configured Worker %s' % str(scoop.worker)) def _frozen_scoop_single_run(kwargs): try: _configure_frozen_scoop(kwargs) idx = kwargs.pop('idx') frozen_kwargs = _frozen_scoop_single_run.kwargs frozen_kwargs.update(kwargs) traj = frozen_kwargs['traj'] traj.f_set_crun(idx) return _single_run(frozen_kwargs) except Exception: scoop.logger.exception('ERROR occurred during a single run!') raise def _scoop_single_run(kwargs): """Wrapper function for scoop, that does not configure logging""" try: try: is_origin = scoop.IS_ORIGIN except AttributeError: # scoop is not properly started, i.e. with `python -m scoop...` # in this case scoop uses default `map` function, i.e. # the main process is_origin = True if not is_origin: # configure logging and niceness if not the main process: _configure_niceness(kwargs) _configure_logging(kwargs) return _single_run(kwargs) except Exception: scoop.logger.exception('ERROR occurred during a single run!') raise def _configure_logging(kwargs, extract=True): """Requests the logging manager to configure logging. :param extract: If naming data should be extracted from the trajectory """ try: logging_manager = kwargs['logging_manager'] if extract: logging_manager.extract_replacements(kwargs['traj']) logging_manager.make_logging_handlers_and_tools(multiproc=True) except Exception as exc: sys.stderr.write('Could not configure logging system because of: %s' % repr(exc)) traceback.print_exc() def _configure_niceness(kwargs): """Sets niceness of a process""" niceness = kwargs['niceness'] if niceness is not None: try: try: current = os.nice(0) if niceness - current > 0: # Under Linux you cannot decrement niceness if set elsewhere os.nice(niceness-current) except AttributeError: # Fall back on psutil under Windows psutil.Process().nice(niceness) except Exception as exc: sys.stderr.write('Could not configure niceness because of: %s' % repr(exc)) traceback.print_exc() def _sigint_handling_single_run(kwargs): """Wrapper that allow graceful exits of single runs""" try: graceful_exit = kwargs['graceful_exit'] if graceful_exit: sigint_handling.start() if sigint_handling.hit: result = (sigint_handling.SIGINT, None) else: result = _single_run(kwargs) if sigint_handling.hit: result = (sigint_handling.SIGINT, result) return result return _single_run(kwargs) except: # Log traceback of exception pypet_root_logger = logging.getLogger('pypet') pypet_root_logger.exception('ERROR occurred during a single run! ') raise def _single_run(kwargs): """ Performs a single run of the experiment. :param kwargs: Dict of arguments traj: The trajectory containing all parameters set to the corresponding run index. runfunc: The user's job function runargs: The arguments handed to the user's job function (as *args) runkwargs: The keyword arguments handed to the user's job function (as **kwargs) clean_up_after_run: Whether to clean up after the run automatic_storing: Whether or not the data should be automatically stored result_queue: A queue object to store results into in case a pool is used, otherwise None :return: Results computed by the user's job function which are not stored into the trajectory. Returns a nested tuple of run index and result and run information: ``((traj.v_idx, result), run_information_dict)`` """ pypet_root_logger = logging.getLogger('pypet') traj = kwargs['traj'] runfunc = kwargs['runfunc'] runargs = kwargs['runargs'] kwrunparams = kwargs['runkwargs'] clean_up_after_run = kwargs['clean_up_runs'] automatic_storing = kwargs['automatic_storing'] wrap_mode = kwargs['wrap_mode'] idx = traj.v_idx total_runs = len(traj) pypet_root_logger.info('\n=========================================\n ' 'Starting single run #%d of %d ' '\n=========================================\n' % (idx, total_runs)) # Measure start time traj.f_start_run(turn_into_run=True) # Run the job function of the user result = runfunc(traj, *runargs, **kwrunparams) # Store data if desired if automatic_storing: traj.f_store() # Add the index to the result and the run information if wrap_mode == pypetconstants.WRAP_MODE_LOCAL: result = ((traj.v_idx, result), traj.f_get_run_information(traj.v_idx, copy=False), traj.v_storage_service.references) traj.v_storage_service.free_references() else: result = ((traj.v_idx, result), traj.f_get_run_information(traj.v_idx, copy=False)) # Measure time of finishing traj.f_finalize_run(store_meta_data=False, clean_up=clean_up_after_run) pypet_root_logger.info('\n=========================================\n ' 'Finished single run #%d of %d ' '\n=========================================\n' % (idx, total_runs)) return result def _wrap_handling(kwargs): """ Starts running a queue handler and creates a log file for the queue.""" _configure_logging(kwargs, extract=False) # Main job, make the listener to the queue start receiving message for writing to disk. handler=kwargs['handler'] graceful_exit = kwargs['graceful_exit'] # import cProfile as profile # profiler = profile.Profile() # profiler.enable() if graceful_exit: sigint_handling.start() handler.run() # profiler.disable() # profiler.dump_stats('./queue.profile2') @prefix_naming class Environment(HasLogger): """ The environment to run a parameter exploration. The first thing you usually do is to create and environment object that takes care about the running of the experiment. You can provide the following arguments: :param trajectory: String or trajectory instance. If a string is supplied, a novel trajectory is created with that name. Note that the comment and the dynamically imported classes (see below) are only considered if a novel trajectory is created. If you supply a trajectory instance, these fields can be ignored. :param add_time: If True the current time is added to the trajectory name if created new. :param comment: Comment added to the trajectory if a novel trajectory is created. :param dynamic_imports: Only considered if a new trajectory is created. If you've written custom parameters or results that need to be loaded dynamically during runtime, the module containing the class needs to be specified here as a list of classes or strings naming classes and there module paths. For example: `dynamic_imports = ['pypet.parameter.PickleParameter', MyCustomParameter]` If you only have a single class to import, you do not need the list brackets: `dynamic_imports = 'pypet.parameter.PickleParameter'` :param wildcard_functions: Dictionary of wildcards like `$` and corresponding functions that are called upon finding such a wildcard. For example, to replace the `$` aka `crun` wildcard, you can pass the following: ``wildcard_functions = {('$', 'crun'): myfunc}``. Your wildcard function `myfunc` must return a unique run name as a function of a given integer run index. Moreover, your function must also return a unique *dummy* name for the run index being `-1`. Of course, you can define your own wildcards like `wildcard_functions = {('$mycard', 'mycard'): myfunc)}. These are not required to return a unique name for each run index, but can be used to group runs into buckets by returning the same name for several run indices. Yet, all wildcard functions need to return a dummy name for the index `-1`. :param automatic_storing: If `True` the trajectory will be stored at the end of the simulation and single runs will be stored after their completion. Be aware of data loss if you set this to `False` and not manually store everything. :param log_config: Can be path to a logging `.ini` file specifying the logging configuration. For an example of such a file see :ref:`more-on-logging`. Can also be a dictionary that is accepted by the built-in logging module. Set to `None` if you don't want *pypet* to configure logging. If not specified, the default settings are used. Moreover, you can manually tweak the default settings without creating a new `ini` file. Instead of the `log_config` parameter, pass a ``log_folder``, a list of `logger_names` and corresponding `log_levels` to fine grain the loggers to which the default settings apply. For example: ``log_folder='logs', logger_names='('pypet', 'MyCustomLogger'), log_levels=(logging.ERROR, logging.INFO)`` You can further disable multiprocess logging via setting ``log_multiproc=False``. :param log_stdout: Whether the output of ``stdout`` should be recorded into the log files. Disable if only logging statement should be recorded. Note if you work with an interactive console like *IPython*, it is a good idea to set ``log_stdout=False`` to avoid messing up the console output. Can also be a tuple: ('mylogger', 10), specifying a logger name as well as a log-level. The log-level defines with what level `stdout` is logged, it is *not* a filter. :param report_progress: If progress of runs and an estimate of the remaining time should be shown. Can be `True` or `False` or a triple ``(10, 'pypet', logging.Info)`` where the first number is the percentage and update step of the resulting progressbar and the second one is a corresponding logger name with which the progress should be logged. If you use `'print'`, the `print` statement is used instead. The third value specifies the logging level (level of logging statement *not* a filter) with which the progress should be logged. Note that the progress is based on finished runs. If you use the `QUEUE` wrapping in case of multiprocessing and if storing takes long, the estimate of the remaining time might not be very accurate. :param multiproc: Whether or not to use multiprocessing. Default is ``False``. Besides the wrap_mode (see below) that deals with how storage to disk is carried out in case of multiprocessing, there are two ways to do multiprocessing. By using a fixed pool of processes (choose `use_pool=True`, default option) or by spawning an individual process for every run and parameter combination (`use_pool=False`). The former will only spawn not more than *ncores* processes and all simulation runs are sent over to to the pool one after the other. This requires all your data to be pickled. If your data cannot be pickled (which could be the case for some BRIAN networks, for instance) choose `use_pool=False` (also make sure to set `continuable=False`). This will also spawn at most *ncores* processes at a time, but as soon as a process terminates a new one is spawned with the next parameter combination. Be aware that you will have as many logfiles in your logfolder as processes were spawned. If your simulation returns results besides storing results directly into the trajectory, these returned results still need to be pickled. :param ncores: If multiproc is ``True``, this specifies the number of processes that will be spawned to run your experiment. Note if you use QUEUE mode (see below) the queue process is not included in this number and will add another extra process for storing. If you have *psutil* installed, you can set `ncores=0` to let *psutil* determine the number of CPUs available. :param use_scoop: If python should be used in a SCOOP_ framework to distribute runs amond a cluster or multiple servers. If so you need to start your script via ``python -m scoop my_script.py``. Currently, SCOOP_ only works with ``'LOCAL'`` ``wrap_mode`` (see below). .. _SCOOP: http://scoop.readthedocs.org/ :param use_pool: Whether to use a fixed pool of processes or whether to spawn a new process for every run. Use the former if you perform many runs (50k and more) which are in terms of memory and runtime inexpensive. Be aware that everything you use must be picklable. Use the latter for fewer runs (50k and less) and which are longer lasting and more expensive runs (in terms of memory consumption). In case your operating system allows forking, your data does not need to be picklable. If you choose ``use_pool=False`` you can also make use of the `cap` values, see below. :param freeze_input: Can be set to ``True`` if the run function as well as all additional arguments are immutable. This will prevent the trajectory from getting pickled again and again. Thus, the run function, the trajectory, as well as all arguments are passed to the pool or SCOOP workers at initialisation. Works also under `run_map`. In this case the iterable arguments are, of course, not frozen but passed for every run. :param timeout: Timeout parameter in seconds passed on to SCOOP_ and ``'NETLOCK'`` wrapping. Leave `None` for no timeout. After `timeout` seconds SCOOP_ will assume that a single run failed and skip waiting for it. Moreover, if using ``'NETLOCK'`` wrapping, after `timeout` seconds a lock is automatically released and again available for other waiting processes. :param cpu_cap: If `multiproc=True` and `use_pool=False` you can specify a maximum cpu utilization between 0.0 (excluded) and 100.0 (included) as fraction of maximum capacity. If the current cpu usage is above the specified level (averaged across all cores), *pypet* will not spawn a new process and wait until activity falls below the threshold again. Note that in order to avoid dead-lock at least one process will always be running regardless of the current utilization. If the threshold is crossed a warning will be issued. The warning won't be repeated as long as the threshold remains crossed. For example `cpu_cap=70.0`, `ncores=3`, and currently on average 80 percent of your cpu are used. Moreover, let's assume that at the moment only 2 processes are computing single runs simultaneously. Due to the usage of 80 percent of your cpu, *pypet* will wait until cpu usage drops below (or equal to) 70 percent again until it starts a third process to carry out another single run. The parameters `memory_cap` and `swap_cap` are analogous. These three thresholds are combined to determine whether a new process can be spawned. Accordingly, if only one of these thresholds is crossed, no new processes will be spawned. To disable the cap limits simply set all three values to 100.0. You need the psutil_ package to use this cap feature. If not installed and you choose cap values different from 100.0 a ValueError is thrown. :param memory_cap: Cap value of RAM usage. If more RAM than the threshold is currently in use, no new processes are spawned. Can also be a tuple ``(limit, memory_per_process)``, first value is the cap value (between 0.0 and 100.0), second one is the estimated memory per process in mega bytes (MB). If an estimate is given a new process is not started if the threshold would be crossed including the estimate. :param swap_cap: Analogous to `cpu_cap` but the swap memory is considered. :param niceness: If you are running on a UNIX based system or you have psutil_ (under Windows) installed, you can choose a niceness value to prioritize the child processes executing the single runs in case you use multiprocessing. Under Linux these usually range from 0 (highest priority) to 19 (lowest priority). For Windows values check the psutil_ homepage. Leave ``None`` if you don't care about niceness. Under Linux the `niceness`` value is a minimum value, if the OS decides to nice your program (maybe you are running on a server) *pypet* does not try to decrease the `niceness` again. :param wrap_mode: If multiproc is ``True``, specifies how storage to disk is handled via the storage service. There are a few options: :const:`~pypet.pypetconstants.WRAP_MODE_QUEUE`: ('QUEUE') Another process for storing the trajectory is spawned. The sub processes running the individual single runs will add their results to a multiprocessing queue that is handled by an additional process. Note that this requires additional memory since the trajectory will be pickled and send over the queue for storage! :const:`~pypet.pypetconstants.WRAP_MODE_LOCK`: ('LOCK') Each individual process takes care about storage by itself. Before carrying out the storage, a lock is placed to prevent the other processes to store data. Accordingly, sometimes this leads to a lot of processes waiting until the lock is released. Allows loading of data during runs. :const:`~pypet.pypetconstants.WRAP_MODE_PIPE`: ('PIPE) Experimental mode based on a single pipe. Is faster than ``'QUEUE'`` wrapping but data corruption may occur, does not work under Windows (since it relies on forking). :const:`~pypet.pypetconstant.WRAP_MODE_LOCAL` ('LOCAL') Data is not stored during the single runs but after they completed. Storing is only performed in the main process. Note that removing data during a single run has no longer an effect on memory whatsoever, because there are references kept for all data that is supposed to be stored. :const:`~pypet.pypetconstant.WRAP_MODE_NETLOCK` ('NETLOCK') Similar to 'LOCK' but locks can be shared across a network. Sharing is established by running a lock server that distributes locks to the individual processes. Can be used with SCOOP_ if all hosts have access to a shared home directory. Allows loading of data during runs. :const:`~pypet.pypetconstant.WRAP_MODE_NETQUEUE` ('NETQUEUE') Similar to 'QUEUE' but data can be shared across a network. Sharing is established by running a queue server that distributes locks to the individual processes. If you don't want wrapping at all use :const:`~pypet.pypetconstants.WRAP_MODE_NONE` ('NONE') :param queue_maxsize: Maximum size of the Storage Queue, in case of ``'QUEUE'`` wrapping. ``0`` means infinite, ``-1`` (default) means the educated guess of ``2 * ncores``. :param port: Port to be used by lock server in case of ``'NETLOCK'`` wrapping. Can be a single integer as well as a tuple ``(7777, 9999)`` to specify a range of ports from which to pick a random one. Leave `None` for using pyzmq's default range. In case automatic determining of the host's IP address fails, you can also pass the full address (including the protocol and the port) of the host in the network like ``'tcp://127.0.0.1:7777'``. :param gc_interval: Interval (in runs or storage operations) with which ``gc.collect()`` should be called in case of the ``'LOCAL'``, ``'QUEUE'``, or ``'PIPE'`` wrapping. Leave ``None`` for never. In case of ``'LOCAL'`` wrapping ``1`` means after every run ``2`` after every second run, and so on. In case of ``'QUEUE'`` or ``'PIPE''`` wrapping ``1`` means after every store operation, ``2`` after every second store operation, and so on. Only calls ``gc.collect()`` in the main (if ``'LOCAL'`` wrapping) or the queue/pipe process. If you need to garbage collect data within your single runs, you need to manually call ``gc.collect()``. Usually, there is no need to set this parameter since the Python garbage collection works quite nicely and schedules collection automatically. :param clean_up_runs: In case of single core processing, whether all results under groups named `run_XXXXXXXX` should be removed after the completion of the run. Note in case of multiprocessing this happens anyway since the single run container will be destroyed after finishing of the process. Moreover, if set to ``True`` after post-processing it is checked if there is still data under `run_XXXXXXXX` and this data is removed if the trajectory is expanded. :param immediate_postproc: If you use post- and multiprocessing, you can immediately start analysing the data as soon as the trajectory runs out of tasks, i.e. is fully explored but the final runs are not completed. Thus, while executing the last batch of parameter space points, you can already analyse the finished runs. This is especially helpful if you perform some sort of adaptive search within the parameter space. The difference to normal post-processing is that you do not have to wait until all single runs are finished, but your analysis already starts while there are still runs being executed. This can be a huge time saver especially if your simulation time differs a lot between individual runs. Accordingly, you don't have to wait for a very long run to finish to start post-processing. In case you use immediate postprocessing, the storage service of your trajectory is still multiprocessing safe (except when using the wrap_mode ``'LOCAL'``). Accordingly, you could even use multiprocessing in your immediate post-processing phase if you dare, like use a multiprocessing pool_, for instance. Note that after the execution of the final run, your post-processing routine will be called again as usual. **IMPORTANT**: If you use immediate post-processing, the results that are passed to your post-processing function are not sorted by their run indices but by finishing time! .. _pool: https://docs.python.org/2/library/multiprocessing.html :param resumable: Whether the environment should take special care to allow to resume or continue crashed trajectories. Default is ``False``. You need to install dill_ to use this feature. *dill* will make snapshots of your simulation function as well as the passed arguments. BE AWARE that dill is still rather experimental! Assume you run experiments that take a lot of time. If during your experiments there is a power failure, you can resume your trajectory after the last single run that was still successfully stored via your storage service. The environment will create several `.ecnt` and `.rcnt` files in a folder that you specify (see below). Using this data you can resume crashed trajectories. In order to resume trajectories use :func:`~pypet.environment.Environment.resume`. Be aware that your individual single runs must be completely independent of one another to allow continuing to work. Thus, they should **NOT** be based on shared data that is manipulated during runtime (like a multiprocessing manager list) in the positional and keyword arguments passed to the run function. If you use post-processing, the expansion of trajectories and continuing of trajectories is NOT supported properly. There is no guarantee that both work together. .. _dill: https://pypi.python.org/pypi/dill :param resume_folder: The folder where the resume files will be placed. Note that *pypet* will create a sub-folder with the name of the environment. :param delete_resume: If true, *pypet* will delete the resume files after a successful simulation. :param storage_service: Pass a given storage service or a class constructor (default ``HDF5StorageService``) if you want the environment to create the service for you. The environment will pass the additional keyword arguments you pass directly to the constructor. If the trajectory already has a service attached, the one from the trajectory will be used. :param git_repository: If your code base is under git version control you can specify here the path (relative or absolute) to the folder containing the `.git` directory as a string. Note in order to use this tool you need GitPython_. If you set this path the environment will trigger a commit of your code base adding all files that are currently under version control. Similar to calling `git add -u` and `git commit -m 'My Message'` on the command line. The user can specify the commit message, see below. Note that the message will be augmented by the name and the comment of the trajectory. A commit will only be triggered if there are changes detected within your working copy. This will also add information about the revision to the trajectory, see below. .. _GitPython: http://pythonhosted.org/GitPython/0.3.1/index.html :param git_message: Message passed onto git command. Only relevant if a new commit is triggered. If no changes are detected, the information about the previous commit and the previous commit message are added to the trajectory and this user passed message is discarded. :param git_fail: If `True` the program fails instead of triggering a commit if there are not committed changes found in the code base. In such a case a `GitDiffError` is raised. :param sumatra_project: If your simulation is managed by sumatra_, you can specify here the path to the *sumatra* root folder. Note that you have to initialise the *sumatra* project at least once before via ``smt init MyFancyProjectName``. *pypet* will automatically ad ALL parameters to the *sumatra* record. If a parameter is explored, the WHOLE range is added instead of the default value. *pypet* will add the label and reason (only if provided, see below) to your trajectory as config parameters. .. _sumatra : http://neuralensemble.org/sumatra/ :param sumatra_reason: You can add an additional reason string that is added to the *sumatra* record. Regardless if `sumatra_reason` is empty, the name of the trajectory, the comment as well as a list of all explored parameters is added to the *sumatra* record. Note that the augmented label is not stored into the trajectory as config parameter, but the original one (without the name of the trajectory, the comment, and the list of explored parameters) in case it is not the empty string. :param sumatra_label: The label or name of your sumatra record. Set to `None` if you want sumatra to choose a label in form of a timestamp for you. :param do_single_runs: Whether you intend to actually to compute single runs with the trajectory. If you do not intend to do single runs, than set to ``False`` and the environment won't add config information like number of processors to the trajectory. :param graceful_exit: If ``True`` hitting CTRL+C (i.e.sending SIGINT) will not terminate the program immediately. Instead, active single runs will be finished and stored before shutdown. Hitting CTRL+C twice will raise a KeyboardInterrupt as usual. :param lazy_debug: If ``lazy_debug=True`` and in case you debug your code (aka you use pydevd and the expression ``'pydevd' in sys.modules`` is ``True``), the environment will use the :class:`~pypet.storageservice.LazyStorageService` instead of the HDF5 one. Accordingly, no files are created and your trajectory and results are not saved. This allows faster debugging and prevents *pypet* from blowing up your hard drive with trajectories that you probably not want to use anyway since you just debug your code. The Environment will automatically add some config settings to your trajectory. Thus, you can always look up how your trajectory was run. This encompasses most of the above named parameters as well as some information about the environment. This additional information includes a timestamp as well as a SHA-1 hash code that uniquely identifies your environment. If you use git integration, the SHA-1 hash code will be the one from your git commit. Otherwise the code will be calculated from the trajectory name, the current time, and your current *pypet* version. The environment will be named `environment_XXXXXXX_XXXX_XX_XX_XXhXXmXXs`. The first seven `X` are the first seven characters of the SHA-1 hash code followed by a human readable timestamp. All information about the environment can be found in your trajectory under `config.environment.environment_XXXXXXX_XXXX_XX_XX_XXhXXmXXs`. Your trajectory could potentially be run by several environments due to merging or extending an existing trajectory. Thus, you will be able to track how your trajectory was built over time. Git information is added to your trajectory as follows: * git.commit_XXXXXXX_XXXX_XX_XX_XXh_XXm_XXs.hexsha The SHA-1 hash of the commit. `commit_XXXXXXX_XXXX_XX_XX_XXhXXmXXs` is mapped to the first seven items of the SHA-1 hash and the formatted data of the commit, e.g. `commit_7ef7hd4_2015_10_21_16h29m00s`. * git.commit_XXXXXXX_XXXX_XX_XX_XXh_XXm_XXs.name_rev String describing the commits hexsha based on the closest reference * git.commit_XXXXXXX_XXXX_XX_XX_XXh_XXm_XXs.committed_date Commit date as Unix Epoch data * git.commit_XXXXXXX_XXXX_XX_XX_XXh_XXm_XXs.message The commit message Moreover, if you use the standard ``HDF5StorageService`` you can pass the following keyword arguments in ``**kwargs``: :param filename: The name of the hdf5 file. If none is specified the default `./hdf5/the_name_of_your_trajectory.hdf5` is chosen. If `filename` contains only a path like `filename='./myfolder/', it is changed to `filename='./myfolder/the_name_of_your_trajectory.hdf5'`. :param file_title: Title of the hdf5 file (only important if file is created new) :param overwrite_file: If the file already exists it will be overwritten. Otherwise, the trajectory will simply be added to the file and already existing trajectories are **not** deleted. :param encoding: Format to encode and decode unicode strings stored to disk. The default ``'utf8'`` is highly recommended. :param complevel: You can specify your compression level. 0 means no compression and 9 is the highest compression level. See `PyTables Compression`_ for a detailed description. .. _`PyTables Compression`: http://pytables.github.io/usersguide/optimization.html#compression-issues :param complib: The library used for compression. Choose between *zlib*, *blosc*, and *lzo*. Note that 'blosc' and 'lzo' are usually faster than 'zlib' but it may be the case that you can no longer open your hdf5 files with third-party applications that do not rely on PyTables. :param shuffle: Whether or not to use the shuffle filters in the HDF5 library. This normally improves the compression ratio. :param fletcher32: Whether or not to use the *Fletcher32* filter in the HDF5 library. This is used to add a checksum on hdf5 data. :param pandas_format: How to store pandas data frames. Either in 'fixed' ('f') or 'table' ('t') format. Fixed format allows fast reading and writing but disables querying the hdf5 data and appending to the store (with other 3rd party software other than *pypet*). :param purge_duplicate_comments: If you add a result via :func:`~pypet.naturalnaming.ResultGroup.f_add_result` or a derived parameter :func:`~pypet.naturalnaming.DerivedParameterGroup.f_add_derived_parameter` and you set a comment, normally that comment would be attached to each and every instance. This can produce a lot of unnecessary overhead if the comment is the same for every instance over all runs. If `purge_duplicate_comments=1` than only the comment of the first result or derived parameter instance created in a run is stored or comments that differ from this first comment. For instance, during a single run you call `traj.f_add_result('my_result`,42, comment='Mostly harmless!')` and the result will be renamed to `results.run_00000000.my_result`. After storage in the node associated with this result in your hdf5 file, you will find the comment `'Mostly harmless!'` there. If you call `traj.f_add_result('my_result',-43, comment='Mostly harmless!')` in another run again, let's say run 00000001, the name will be mapped to `results.run_00000001.my_result`. But this time the comment will not be saved to disk since `'Mostly harmless!'` is already part of the very first result with the name 'results.run_00000000.my_result'. Note that the comments will be compared and storage will only be discarded if the strings are exactly the same. If you use multiprocessing, the storage service will take care that the comment for the result or derived parameter with the lowest run index will be considered regardless of the order of the finishing of your runs. Note that this only works properly if all comments are the same. Otherwise the comment in the overview table might not be the one with the lowest run index. You need summary tables (see below) to be able to purge duplicate comments. This feature only works for comments in *leaf* nodes (aka Results and Parameters). So try to avoid to add comments in *group* nodes within single runs. :param summary_tables: Whether the summary tables should be created, i.e. the 'derived_parameters_runs_summary', and the `results_runs_summary`. The 'XXXXXX_summary' tables give a summary about all results or derived parameters. It is assumed that results and derived parameters with equal names in individual runs are similar and only the first result or derived parameter that was created is shown as an example. The summary table can be used in combination with `purge_duplicate_comments` to only store a single comment for every result with the same name in each run, see above. :param small_overview_tables: Whether the small overview tables should be created. Small tables are giving overview about 'config','parameters', 'derived_parameters_trajectory', , 'results_trajectory', 'results_runs_summary'. Note that these tables create some overhead. If you want very small hdf5 files set `small_overview_tables` to False. :param large_overview_tables: Whether to add large overview tables. This encompasses information about every derived parameter, result, and the explored parameter in every single run. If you want small hdf5 files set to ``False`` (default). :param results_per_run: Expected results you store per run. If you give a good/correct estimate storage to hdf5 file is much faster in case you store LARGE overview tables. Default is 0, i.e. the number of results is not estimated! :param derived_parameters_per_run: Analogous to the above. Finally, you can also pass properties of the trajectory, like ``v_with_links=True`` (you can leave the prefix ``v_``, i.e. ``with_links`` works, too). Thus, you can change the settings of the trajectory immediately. .. _psutil: http://psutil.readthedocs.org/ """ @parse_config @kwargs_api_change('delete_continue', 'delete_resume') @kwargs_api_change('continue_folder', 'resume_folder') @kwargs_api_change('continuable', 'resumable') @kwargs_api_change('freeze_pool_input', 'freeze_input') @kwargs_api_change('use_hdf5', 'storage_service') @kwargs_api_change('dynamically_imported_classes', 'dynamic_imports') @kwargs_api_change('pandas_append') @simple_logging_config def __init__(self, trajectory='trajectory', add_time=False, comment='', dynamic_imports=None, wildcard_functions=None, automatic_storing=True, log_config=pypetconstants.DEFAULT_LOGGING, log_stdout=False, report_progress = (5, 'pypet', logging.INFO), multiproc=False, ncores=1, use_scoop=False, use_pool=False, freeze_input=False, timeout=None, cpu_cap=100.0, memory_cap=100.0, swap_cap=100.0, niceness=None, wrap_mode=pypetconstants.WRAP_MODE_LOCK, queue_maxsize=-1, port=None, gc_interval=None, clean_up_runs=True, immediate_postproc=False, resumable=False, resume_folder=None, delete_resume=True, storage_service=HDF5StorageService, git_repository=None, git_message='', git_fail=False, sumatra_project=None, sumatra_reason='', sumatra_label=None, do_single_runs=True, graceful_exit=False, lazy_debug=False, **kwargs): if git_repository is not None and git is None: raise ValueError('You cannot specify a git repository without having ' 'GitPython. Please install the GitPython package to use ' 'pypet`s git integration.') if resumable and dill is None: raise ValueError('Please install `dill` if you want to use the feature to ' 'resume halted trajectories') if load_project is None and sumatra_project is not None: raise ValueError('`sumatra` package has not been found, either install ' '`sumatra` or set `sumatra_project=None`.') if sumatra_label is not None and '.' in sumatra_label: raise ValueError('Your sumatra label is not allowed to contain dots.') if wrap_mode == pypetconstants.WRAP_MODE_NETLOCK and zmq is None: raise ValueError('You need to install `zmq` for `NETLOCK` wrapping.') if (use_pool or use_scoop) and immediate_postproc: raise ValueError('You CANNOT perform immediate post-processing if you DO ' 'use a pool or scoop.') if use_pool and use_scoop: raise ValueError('You can either `use_pool` or `use_scoop` or none of both, ' 'but not both together') if use_scoop and scoop is None: raise ValueError('Cannot use `scoop` because it is not installed.') if (wrap_mode not in (pypetconstants.WRAP_MODE_NONE, pypetconstants.WRAP_MODE_LOCAL, pypetconstants.WRAP_MODE_LOCK, pypetconstants.WRAP_MODE_NETLOCK) and resumable): raise ValueError('Continuing trajectories does only work with ' '`LOCK`, `NETLOCK` or `LOCAL`wrap mode.') if resumable and not automatic_storing: raise ValueError('Continuing only works with `automatic_storing=True`') if use_scoop and wrap_mode not in (pypetconstants.WRAP_MODE_LOCAL, pypetconstants.WRAP_MODE_NONE, pypetconstants.WRAP_MODE_NETLOCK, pypetconstants.WRAP_MODE_NETQUEUE): raise ValueError('SCOOP mode only works with `LOCAL`, `NETLOCK` or ' '`NETQUEUE` wrap mode!') if niceness is not None and not hasattr(os, 'nice') and psutil is None: raise ValueError('You cannot set `niceness` if your operating system does not ' 'support the `nice` operation. Alternatively you can install ' '`psutil`.') if freeze_input and not use_pool and not use_scoop: raise ValueError('You can only use `freeze_input=True` if you either use ' 'a pool or SCOOP.') if not isinstance(memory_cap, tuple): memory_cap = (memory_cap, 0.0) if (cpu_cap <= 0.0 or cpu_cap > 100.0 or memory_cap[0] <= 0.0 or memory_cap[0] > 100.0 or swap_cap <= 0.0 or swap_cap > 100.0): raise ValueError('Please choose cap values larger than 0.0 ' 'and smaller or equal to 100.0.') check_usage = cpu_cap < 100.0 or memory_cap[0] < 100.0 or swap_cap < 100.0 if check_usage and psutil is None: raise ValueError('You cannot enable monitoring without having ' 'installed psutil. Please install psutil or set ' 'cpu_cap, memory_cap, and swap_cap to 100.0') if ncores == 0 and psutil is None: raise ValueError('You cannot set `ncores=0` for auto detection of CPUs if you did not ' 'installed psutil. Please install psutil or ' 'set `ncores` manually.') if port is not None and wrap_mode not in (pypetconstants.WRAP_MODE_NETLOCK, pypetconstants.WRAP_MODE_NETQUEUE): raise ValueError('You can only specify a port for the `NETLOCK` wrapping.') if use_scoop and graceful_exit: raise ValueError('You cannot exit gracefully using SCOOP.') unused_kwargs = set(kwargs.keys()) self._logging_manager = LoggingManager(log_config=log_config, log_stdout=log_stdout, report_progress=report_progress) self._logging_manager.check_log_config() self._logging_manager.add_null_handler() self._set_logger() self._map_arguments = False self._stop_iteration = False # Marker to cancel # iteration in case of Keyboard interrupt self._graceful_exit = graceful_exit # Helper attributes defined later on self._start_timestamp = None self._finish_timestamp = None self._runtime = None self._cpu_cap = cpu_cap self._memory_cap = memory_cap if psutil is not None: # Total memory in MB self._total_memory = psutil.virtual_memory().total / 1024.0 / 1024.0 # Estimated memory needed by each process as ratio self._est_per_process = self._memory_cap[1] / self._total_memory * 100.0 self._swap_cap = swap_cap self._check_usage = check_usage self._last_cpu_check = 0.0 self._last_cpu_usage = 0.0 if self._check_usage: # For initialisation self._estimate_cpu_utilization() self._niceness = niceness self._sumatra_project = sumatra_project self._sumatra_reason = sumatra_reason self._sumatra_label = sumatra_label self._loaded_sumatatra_project = None self._sumatra_record = None self._runfunc = None self._args = () self._kwargs = {} self._postproc = None self._postproc_args = () self._postproc_kwargs = {} self._immediate_postproc = immediate_postproc self._user_pipeline = False self._git_repository = git_repository self._git_message = git_message self._git_fail = git_fail # Check if a novel trajectory needs to be created. if isinstance(trajectory, compat.base_type): # Create a new trajectory self._traj = Trajectory(trajectory, add_time=add_time, dynamic_imports=dynamic_imports, wildcard_functions=wildcard_functions, comment=comment) self._timestamp = self.trajectory.v_timestamp # Timestamp of creation self._time = self.trajectory.v_time # Formatted timestamp else: self._traj = trajectory # If no new trajectory is created the time of the environment differs # from the trajectory and must be computed from the current time. init_time = time.time() formatted_time = format_time(init_time) self._timestamp = init_time self._time = formatted_time # In case the user provided a git repository path, a git commit is performed # and the environment's hexsha is taken from the commit if the commit was triggered by # this particular environment, otherwise a new one is generated if self._git_repository is not None: new_commit, self._hexsha = make_git_commit(self, self._git_repository, self._git_message, self._git_fail) # Identifier hexsha else: new_commit = False if not new_commit: # Otherwise we need to create a novel hexsha self._hexsha = hashlib.sha1(compat.tobytes(self.trajectory.v_name + str(self.trajectory.v_timestamp) + str(self.timestamp) + VERSION)).hexdigest() # Create the name of the environment short_hexsha = self._hexsha[0:7] name = 'environment' self._name = name + '_' + str(short_hexsha) + '_' + self._time # Name of environment # The trajectory should know the hexsha of the current environment. # Thus, for all runs, one can identify by which environment they were run. self._traj._environment_hexsha = self._hexsha self._traj._environment_name = self._name self._logging_manager.extract_replacements(self._traj) self._logging_manager.remove_null_handler() self._logging_manager.make_logging_handlers_and_tools() # Drop a message if we made a commit. We cannot drop the message directly after the # commit, because the logging files do not exist yet, # and we want this commit to be tracked if self._git_repository is not None: if new_commit: self._logger.info('Triggered NEW GIT commit `%s`.' % str(self._hexsha)) else: self._logger.info('No changes detected, added PREVIOUS GIT commit `%s`.' % str(self._hexsha)) # Create the storage service if storage_service is True: # to allow compatibility with older python versions, i.e. old # keyword use_hdf5 storage_service = HDF5StorageService if self._traj.v_storage_service is not None: # Use the service of the trajectory self._logger.info('Found storage service attached to Trajectory. Will use ' 'this storage service.') self._storage_service = self.trajectory.v_storage_service else: # Create a new service self._storage_service, unused_factory_kwargs = storage_factory(storage_service, self._traj, **kwargs) unused_kwargs = unused_kwargs - (set(kwargs.keys()) - unused_factory_kwargs) if lazy_debug and is_debug(): self._storage_service = LazyStorageService() self._traj.v_storage_service = self._storage_service # Create resume path if desired self._resumable = resumable if self._resumable: if resume_folder is None: resume_folder = os.path.join(os.getcwd(), 'resume') resume_path = os.path.join(resume_folder, self._traj.v_name) else: resume_path = None self._resume_folder = resume_folder self._resume_path = resume_path self._delete_resume = delete_resume # Check multiproc self._multiproc = multiproc if ncores == 0: # Let *pypet* detect CPU count via psutil ncores = psutil.cpu_count() self._logger.info('Determined CPUs automatically, found `%d` cores.' % ncores) self._ncores = ncores if queue_maxsize == -1: # Educated guess of queue size queue_maxsize = 2 * ncores self._queue_maxsize = queue_maxsize if wrap_mode is None: # None cannot be used in HDF5 files, accordingly we need a string representation wrap_mode = pypetconstants.WRAP_MODE_NONE self._wrap_mode = wrap_mode # Whether to use a pool of processes self._use_pool = use_pool self._use_scoop = use_scoop self._freeze_input = freeze_input self._gc_interval = gc_interval self._multiproc_wrapper = None # The wrapper Service self._do_single_runs = do_single_runs self._automatic_storing = automatic_storing self._clean_up_runs = clean_up_runs if (wrap_mode == pypetconstants.WRAP_MODE_NETLOCK and not isinstance(port, compat.base_type)): url = port_to_tcp(port) self._logger.info('Determined lock-server URL automatically, it is `%s`.' % url) else: url = port self._url = url self._timeout = timeout # self._deep_copy_data = False # deep_copy_data # For future reference deep_copy_arguments # Notify that in case of lazy debuggin we won't record anythin if lazy_debug and is_debug(): self._logger.warning('Using the LazyStorageService, nothing will be saved to disk.') # Current run index to avoid quadratic runtime complexity in case of re-running self._current_idx = 0 self._trajectory_name = self._traj.v_name for kwarg in list(unused_kwargs): try: val = kwargs[kwarg] self._traj.f_set_properties(**{kwarg: val}) self._logger.info('Set trajectory property `%s` to `%s`.' % (kwarg, str(val))) unused_kwargs.remove(kwarg) except AttributeError: pass if len(unused_kwargs) > 0: raise ValueError('You passed keyword arguments to the environment that you ' 'did not use. The following keyword arguments were ignored: ' '`%s`' % str(unused_kwargs)) # Add all config data to the environment self._add_config() self._logger.info('Environment initialized.') def _add_config(self): # Add config data to the trajectory if self._do_single_runs: # Only add parameters if we actually want single runs to be performed config_name = 'environment.%s.multiproc' % self.name self._traj.f_add_config(Parameter, config_name, self._multiproc, comment='Whether or not to use multiprocessing.').f_lock() if self._multiproc: config_name = 'environment.%s.use_pool' % self.name self._traj.f_add_config(Parameter, config_name, self._use_pool, comment='Whether to use a pool of processes or ' 'spawning individual processes for ' 'each run.').f_lock() config_name = 'environment.%s.use_scoop' % self.name self._traj.f_add_config(Parameter, config_name, self._use_scoop, comment='Whether to use scoop to launch single ' 'runs').f_lock() if self._niceness is not None: config_name = 'environment.%s.niceness' % self.name self._traj.f_add_config(Parameter, config_name, self._niceness, comment='Niceness value of child processes.').f_lock() if self._use_pool: config_name = 'environment.%s.freeze_input' % self.name self._traj.f_add_config(Parameter, config_name, self._freeze_input, comment='If inputs to each run are static and ' 'are not mutated during each run, ' 'can speed up pool running.').f_lock() elif self._use_scoop: pass else: config_name = 'environment.%s.cpu_cap' % self.name self._traj.f_add_config(Parameter, config_name, self._cpu_cap, comment='Maximum cpu usage beyond ' 'which no new processes ' 'are spawned.').f_lock() config_name = 'environment.%s.memory_cap' % self.name self._traj.f_add_config(Parameter, config_name, self._memory_cap, comment='Tuple, first entry: Maximum RAM usage beyond ' 'which no new processes are spawned; ' 'second entry: Estimated usage per ' 'process in MB. 0 if not estimated.').f_lock() config_name = 'environment.%s.swap_cap' % self.name self._traj.f_add_config(Parameter, config_name, self._swap_cap, comment='Maximum Swap memory usage beyond ' 'which no new ' 'processes are spawned').f_lock() config_name = 'environment.%s.immediate_postprocessing' % self.name self._traj.f_add_config(Parameter, config_name, self._immediate_postproc, comment='Whether to use immediate ' 'postprocessing.').f_lock() config_name = 'environment.%s.ncores' % self.name self._traj.f_add_config(Parameter, config_name, self._ncores, comment='Number of processors in case of ' 'multiprocessing').f_lock() config_name = 'environment.%s.wrap_mode' % self.name self._traj.f_add_config(Parameter, config_name, self._wrap_mode, comment='Multiprocessing mode (if multiproc),' ' i.e. whether to use QUEUE' ' or LOCK or NONE' ' for thread/process safe storing').f_lock() if (self._wrap_mode == pypetconstants.WRAP_MODE_QUEUE or self._wrap_mode == pypetconstants.WRAP_MODE_PIPE): config_name = 'environment.%s.queue_maxsize' % self.name self._traj.f_add_config(Parameter, config_name, self._queue_maxsize, comment='Maximum size of Storage Queue/Pipe in case of ' 'multiprocessing and QUEUE/PIPE wrapping').f_lock() if self._wrap_mode == pypetconstants.WRAP_MODE_NETLOCK: config_name = 'environment.%s.url' % self.name self._traj.f_add_config(Parameter, config_name, self._url, comment='URL of lock distribution server, including ' 'protocol and port.').f_lock() if self._wrap_mode == pypetconstants.WRAP_MODE_NETLOCK or self._use_scoop: config_name = 'environment.%s.timeout' % self.name timeout = self._timeout if timeout is None: timeout = -1.0 self._traj.f_add_config(Parameter, config_name, timeout, comment='Timout for scoop and NETLOCK, ' '-1.0 means no timeout.').f_lock() if (self._gc_interval and (self._wrap_mode == pypetconstants.WRAP_MODE_LOCAL or self._wrap_mode == pypetconstants.WRAP_MODE_QUEUE or self._wrap_mode == pypetconstants.WRAP_MODE_PIPE)): config_name = 'environment.%s.gc_interval' % self.name self._traj.f_add_config(Parameter, config_name, self._gc_interval, comment='Intervals with which ``gc.collect()`` ' 'is called.').f_lock() config_name = 'environment.%s.clean_up_runs' % self._name self._traj.f_add_config(Parameter, config_name, self._clean_up_runs, comment='Whether or not results should be removed after the ' 'completion of a single run. ' 'You are not advised to set this ' 'to `False`. Only do it if you know what you are ' 'doing.').f_lock() config_name = 'environment.%s.resumable' % self._name self._traj.f_add_config(Parameter, config_name, self._resumable, comment='Whether or not resume files should ' 'be created. If yes, everything is ' 'handled by `dill`.').f_lock() config_name = 'environment.%s.graceful_exit' % self._name self._traj.f_add_config(Parameter, config_name, self._graceful_exit, comment='Whether or not to allow graceful handling ' 'of `SIGINT` (`CTRL+C`).').f_lock() config_name = 'environment.%s.trajectory.name' % self.name self._traj.f_add_config(Parameter, config_name, self.trajectory.v_name, comment='Name of trajectory').f_lock() config_name = 'environment.%s.trajectory.timestamp' % self.name self._traj.f_add_config(Parameter, config_name, self.trajectory.v_timestamp, comment='Timestamp of trajectory').f_lock() config_name = 'environment.%s.timestamp' % self.name self._traj.f_add_config(Parameter, config_name, self.timestamp, comment='Timestamp of environment creation').f_lock() config_name = 'environment.%s.hexsha' % self.name self._traj.f_add_config(Parameter, config_name, self.hexsha, comment='SHA-1 identifier of the environment').f_lock() config_name = 'environment.%s.automatic_storing' % self.name if not self._traj.f_contains('config.' + config_name): self._traj.f_add_config(Parameter, config_name, self._automatic_storing, comment='If trajectory should be stored automatically in the ' 'end.').f_lock() try: config_name = 'environment.%s.script' % self.name self._traj.f_add_config(Parameter, config_name, main.__file__, comment='Name of the executed main script').f_lock() except AttributeError: pass # We end up here if we use pypet within an ipython console for package_name, version in pypetconstants.VERSIONS_TO_STORE.items(): config_name = 'environment.%s.versions.%s' % (self.name, package_name) self._traj.f_add_config(Parameter, config_name, version, comment='Particular version of a package or distribution ' 'used during experiment. N/A if package could not ' 'be imported.').f_lock() self._traj.config.environment.v_comment = 'Settings for the different environments ' \ 'used to run the experiments' def __repr__(self): """String representation of environment""" repr_string = '<%s %s for Trajectory %s>' % (self.__class__.__name__, self.name, self.trajectory.v_name) return repr_string def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.disable_logging() def disable_logging(self, remove_all_handlers=True): """Removes all logging handlers and stops logging to files and logging stdout. :param remove_all_handlers: If `True` all logging handlers are removed. If you want to keep the handlers set to `False`. """ self._logging_manager.finalize(remove_all_handlers) @kwargs_api_change('continue_folder', 'resume_folder') def resume(self, trajectory_name=None, resume_folder=None): """Resumes crashed trajectories. :param trajectory_name: Name of trajectory to resume, if not specified the name passed to the environment is used. Be aware that if `add_time=True` the name you passed to the environment is altered and the current date is added. :param resume_folder: The folder where resume files can be found. Do not pass the name of the sub-folder with the trajectory name, but to the name of the parental folder. If not specified the resume folder passed to the environment is used. :return: List of the individual results returned by your run function. Returns a LIST OF TUPLES, where first entry is the run idx and second entry is the actual result. In case of multiprocessing these are not necessarily ordered according to their run index, but ordered according to their finishing time. Does not contain results stored in the trajectory! In order to access these simply interact with the trajectory object, potentially after calling`~pypet.trajectory.Trajectory.f_update_skeleton` and loading all results at once with :func:`~pypet.trajectory.f_load` or loading manually with :func:`~pypet.trajectory.f_load_items`. Even if you use multiprocessing without a pool the results returned by `runfunc` still need to be pickled. """ if trajectory_name is None: self._trajectory_name = self.trajectory.v_name else: self._trajectory_name = trajectory_name if resume_folder is not None: self._resume_folder = resume_folder return self._execute_runs(None) @property def trajectory(self): """ The trajectory of the Environment""" return self._traj @property def traj(self): """ Equivalent to env.trajectory""" return self.trajectory @property def current_idx(self): """The current run index that is the next one to be executed. Can be set manually to make the environment consider old non-completed ones. """ return self._current_idx @current_idx.setter def current_idx(self, idx): self._current_idx = idx @property def hexsha(self): """The SHA1 identifier of the environment. It is identical to the SHA1 of the git commit. If version control is not used, the environment hash is computed from the trajectory name, the current timestamp and your current *pypet* version.""" return self._hexsha @property def time(self): """ Time of the creation of the environment, human readable.""" return self._time @property def timestamp(self): """Time of creation as python datetime float""" return self._timestamp @property def name(self): """ Name of the Environment""" return self._name def add_postprocessing(self, postproc, *args, **kwargs): """ Adds a post processing function. The environment will call this function via ``postproc(traj, result_list, *args, **kwargs)`` after the completion of the single runs. This function can load parts of the trajectory id needed and add additional results. Moreover, the function can be used to trigger an expansion of the trajectory. This can be useful if the user has an `optimization` task. Either the function calls `f_expand` directly on the trajectory or returns an dictionary. If latter `f_expand` is called by the environment. Note that after expansion of the trajectory, the post-processing function is called again (and again for further expansions). Thus, this allows an iterative approach to parameter exploration. Note that in case post-processing is called after all runs have been executed, the storage service of the trajectory is no longer multiprocessing safe. If you want to use multiprocessing in your post-processing you can still manually wrap the storage service with the :class:`~pypet.environment.MultiprocessWrapper`. In case you use **immediate** postprocessing, the storage service of your trajectory is still multiprocessing safe (except when using the wrap_mode ``'LOCAL'``). Accordingly, you could even use multiprocessing in your immediate post-processing phase if you dare, like use a multiprocessing pool_, for instance. You can easily check in your post-processing function if the storage service is multiprocessing safe via the ``multiproc_safe`` attribute, i.e. ``traj.v_storage_service.multiproc_safe``. :param postproc: The post processing function :param args: Additional arguments passed to the post-processing function :param kwargs: Additional keyword arguments passed to the postprocessing function :return: """ self._postproc = postproc self._postproc_args = args self._postproc_kwargs = kwargs def pipeline(self, pipeline): """ You can make *pypet* supervise your whole experiment by defining a pipeline. `pipeline` is a function that defines the entire experiment. From pre-processing including setting up the trajectory over defining the actual simulation runs to post processing. The `pipeline` function needs to return TWO tuples with a maximum of three entries each. For example: :: return (runfunc, args, kwargs), (postproc, postproc_args, postproc_kwargs) Where `runfunc` is the actual simulation function thet gets passed the trajectory container and potentially additional arguments `args` and keyword arguments `kwargs`. This will be run by your environment with all parameter combinations. `postproc` is a post processing function that handles your computed results. The function must accept as arguments the trajectory container, a list of results (list of tuples (run idx, result) ) and potentially additional arguments `postproc_args` and keyword arguments `postproc_kwargs`. As for :func:`~pypet.environment.Environment.f_add_postproc`, this function can potentially extend the trajectory. If you don't want to apply post-processing, your pipeline function can also simply return the run function and the arguments: :: return runfunc, args, kwargs Or :: return runfunc, args Or :: return runfunc ``return runfunc, kwargs`` does NOT work, if you don't want to pass `args` do ``return runfunc, (), kwargs``. Analogously combinations like :: return (runfunc, args), (postproc,) work as well. :param pipeline: The pipleine function, taking only a single argument `traj`. And returning all functions necessary for your experiment. :return: List of the individual results returned by `runfunc`. Returns a LIST OF TUPLES, where first entry is the run idx and second entry is the actual result. In case of multiprocessing these are not necessarily ordered according to their run index, but ordered according to their finishing time. Does not contain results stored in the trajectory! In order to access these simply interact with the trajectory object, potentially after calling :func:`~pypet.trajectory.Trajectory.f_update_skeleton` and loading all results at once with :func:`~pypet.trajectory.f_load` or loading manually with :func:`~pypet.trajectory.f_load_items`. Even if you use multiprocessing without a pool the results returned by `runfunc` still need to be pickled. Results computed from `postproc` are not returned. `postproc` should not return any results except dictionaries if the trajectory should be expanded. """ self._user_pipeline = True self._map_arguments = False return self._execute_runs(pipeline) def pipeline_map(self, pipeline): """Creates a pipeline with iterable arguments""" self._user_pipeline = True self._map_arguments = True return self._execute_runs(pipeline) def run(self, runfunc, *args, **kwargs): """ Runs the experiments and explores the parameter space. :param runfunc: The task or job to do :param args: Additional arguments (not the ones in the trajectory) passed to `runfunc` :param kwargs: Additional keyword arguments (not the ones in the trajectory) passed to `runfunc` :return: List of the individual results returned by `runfunc`. Returns a LIST OF TUPLES, where first entry is the run idx and second entry is the actual result. They are always ordered according to the run index. Does not contain results stored in the trajectory! In order to access these simply interact with the trajectory object, potentially after calling`~pypet.trajectory.Trajectory.f_update_skeleton` and loading all results at once with :func:`~pypet.trajectory.f_load` or loading manually with :func:`~pypet.trajectory.f_load_items`. If you use multiprocessing without a pool the results returned by `runfunc` still need to be pickled. """ pipeline = lambda traj: ((runfunc, args, kwargs), (self._postproc, self._postproc_args, self._postproc_kwargs)) self._user_pipeline = False self._map_arguments = False return self._execute_runs(pipeline) def run_map(self, runfunc, *iter_args, **iter_kwargs): """Calls runfunc with different args and kwargs each time. Similar to `:func:`~pypet.environment.Environment.run` but all ``iter_args`` and ``iter_kwargs`` need to be iterables, iterators, or generators that return new arguments for each run. """ if len(iter_args) == 0 and len(iter_kwargs) == 0: raise ValueError('Use `run` if you don`t have any other arguments.') pipeline = lambda traj: ((runfunc, iter_args, iter_kwargs), (self._postproc, self._postproc_args, self._postproc_kwargs)) self._user_pipeline = False self._map_arguments = True return self._execute_runs(pipeline) def _trigger_resume_snapshot(self): """ Makes the trajectory continuable in case the user wants that""" dump_dict = {} dump_filename = os.path.join(self._resume_path, 'environment.ecnt') # Store the trajectory before the first runs prev_full_copy = self._traj.v_full_copy dump_dict['full_copy'] = prev_full_copy self._traj.v_full_copy = True prev_storage_service = self._traj.v_storage_service self._traj.v_storage_service = self._storage_service dump_dict['trajectory'] = self._traj dump_dict['args'] = self._args dump_dict['kwargs'] = self._kwargs dump_dict['runfunc'] = self._runfunc dump_dict['postproc'] = self._postproc dump_dict['postproc_args'] = self._postproc_args dump_dict['postproc_kwargs'] = self._postproc_kwargs dump_dict['start_timestamp'] = self._start_timestamp dump_file = open(dump_filename, 'wb') dill.dump(dump_dict, dump_file, protocol=2) dump_file.flush() dump_file.close() self._traj.v_full_copy = prev_full_copy self._traj.v_storage_service = prev_storage_service def _prepare_sumatra(self): """ Prepares a sumatra record """ reason = self._sumatra_reason if reason: reason += ' -- ' if self._traj.v_comment: commentstr = ' (`%s`)' % self._traj.v_comment else: commentstr = '' reason += 'Trajectory %s%s -- Explored Parameters: %s' % \ (self._traj.v_name, commentstr, str(compat.listkeys(self._traj._explored_parameters))) self._logger.info('Preparing sumatra record with reason: %s' % reason) self._sumatra_reason = reason self._loaded_sumatatra_project = load_project(self._sumatra_project) if self._traj.f_contains('parameters', shortcuts=False): param_dict = self._traj.parameters.f_to_dict(fast_access=False) for param_name in compat.listkeys(param_dict): param = param_dict[param_name] if param.f_has_range(): param_dict[param_name] = param.f_get_range() else: param_dict[param_name] = param.f_get() else: param_dict = {} relpath = os.path.relpath(sys.modules['__main__'].__file__, self._sumatra_project) executable = PythonExecutable(path=sys.executable) self._sumatra_record = self._loaded_sumatatra_project.new_record( parameters=param_dict, main_file=relpath, executable=executable, label=self._sumatra_label, reason=reason) def _finish_sumatra(self): """ Saves a sumatra record """ finish_time = self._start_timestamp - self._finish_timestamp self._sumatra_record.duration = finish_time self._sumatra_record.output_data = self._sumatra_record.datastore.find_new_data(self._sumatra_record.timestamp) self._loaded_sumatatra_project.add_record(self._sumatra_record) self._loaded_sumatatra_project.save() sumatra_label = self._sumatra_record.label config_name = 'sumatra.record_%s.label' % str(sumatra_label) conf_list = [] if not self._traj.f_contains('config.' + config_name): conf1 = self._traj.f_add_config(Parameter, config_name, str(sumatra_label), comment='The label of the sumatra record') conf_list.append(conf1) if self._sumatra_reason: config_name = 'sumatra.record_%s.reason' % str(sumatra_label) if not self._traj.f_contains('config.' + config_name): conf2 = self._traj.f_add_config(Parameter, config_name, str(self._sumatra_reason), comment='Reason of sumatra run.') conf_list.append(conf2) if self._automatic_storing and conf_list: self._traj.f_store_items(conf_list) self._logger.info('Saved sumatra project record with reason: ' '%s' % str(self._sumatra_reason)) def _prepare_resume(self): """ Prepares the continuation of a crashed trajectory """ if not self._resumable: raise RuntimeError('If you create an environment to resume a run, you need to ' 'set `continuable=True`.') if not self._do_single_runs: raise RuntimeError('You cannot resume a run if you did create an environment ' 'with `do_single_runs=False`.') self._resume_path = os.path.join(self._resume_folder, self._trajectory_name) cnt_filename = os.path.join(self._resume_path, 'environment.ecnt') cnt_file = open(cnt_filename, 'rb') resume_dict = dill.load(cnt_file) cnt_file.close() traj = resume_dict['trajectory'] # We need to update the information about the trajectory name config_name = 'config.environment.%s.trajectory.name' % self.name if self._traj.f_contains(config_name, shortcuts=False): param = self._traj.f_get(config_name, shortcuts=False) param.f_unlock() param.f_set(traj.v_name) param.f_lock() config_name = 'config.environment.%s.trajectory.timestamp' % self.name if self._traj.f_contains(config_name, shortcuts=False): param = self._traj.f_get(config_name, shortcuts=False) param.f_unlock() param.f_set(traj.v_timestamp) param.f_lock() # Merge the information so that we keep a record about the current environment if not traj.config.environment.f_contains(self.name, shortcuts=False): traj._merge_config(self._traj) self._traj = traj # User's job function self._runfunc = resume_dict['runfunc'] # Arguments to the user's job function self._args = resume_dict['args'] # Keyword arguments to the user's job function self._kwargs = resume_dict['kwargs'] # Postproc Function self._postproc = resume_dict['postproc'] # Postprog args self._postproc_args = resume_dict['postproc_args'] # Postproc Kwargs self._postproc_kwargs = resume_dict['postproc_kwargs'] # Unpack the trajectory self._traj.v_full_copy = resume_dict['full_copy'] # Load meta data self._traj.f_load(load_parameters=pypetconstants.LOAD_NOTHING, load_derived_parameters=pypetconstants.LOAD_NOTHING, load_results=pypetconstants.LOAD_NOTHING, load_other_data=pypetconstants.LOAD_NOTHING) # Now we have to reconstruct previous results result_list = [] full_filename_list = [] for filename in os.listdir(self._resume_path): _, ext = os.path.splitext(filename) if ext != '.rcnt': continue full_filename = os.path.join(self._resume_path, filename) cnt_file = open(full_filename, 'rb') result_list.append(dill.load(cnt_file)) cnt_file.close() full_filename_list.append(full_filename) new_result_list = [] for result_tuple in result_list: run_information = result_tuple[1] self._traj._update_run_information(run_information) new_result_list.append(result_tuple[0]) result_sort(new_result_list) # Add a config parameter signalling that an experiment was resumed, and how many of them config_name = 'environment.%s.resumed' % self.name if not config_name in self._traj: self._traj.f_add_config(Parameter, config_name, True, comment='Added if a crashed trajectory was continued.') self._logger.info('I will resume trajectory `%s`.' % self._traj.v_name) return new_result_list def _prepare_runs(self, pipeline): """Prepares the running of an experiment :param pipeline: A pipeline function that defines the task """ pip_result = pipeline(self._traj) # Call the pipeline function # Extract the task to do from the pipeline result raise_error = False if pip_result is None: if self._do_single_runs: raise RuntimeError('Your pipeline function did return `None`.' 'Accordingly, I assume you just do data analysis. ' 'Please create and environment with `do_single_runs=False`.') self._logger.info('Your pipeline returned no runfunction, I assume you do some ' 'sort of data analysis and will skip any single run execution.') self._runfunc = None return elif (len(pip_result) == 2 and isinstance(pip_result[0], tuple) and isinstance(pip_result[1], tuple)): # Extract the run and post-processing functions and arguments run_tuple = pip_result[0] self._runfunc = run_tuple[0] if len(run_tuple) > 1: self._args = run_tuple[1] if len(run_tuple) > 2: self._kwargs = run_tuple[2] if len(run_tuple) > 3: raise_error = True postproc_tuple = pip_result[1] if len(postproc_tuple) > 0: self._postproc = postproc_tuple[0] if len(postproc_tuple) > 1: self._postproc_args = postproc_tuple[1] if len(postproc_tuple) > 2: self._postproc_kwargs = postproc_tuple[2] if len(run_tuple) > 3: raise_error = True elif len(pip_result) <= 3: self._runfunc = pip_result[0] if len(pip_result) > 1: self._args = pip_result[1] if len(pip_result) > 2: self._kwargs = pip_result[2] else: raise_error = True if raise_error: raise RuntimeError('Your pipeline result is not understood please return' 'a tuple of maximum length 3: ``(runfunc, args, kwargs)`` ' 'Or return two tuple of maximum length 3: ' '``(runfunc, args, kwargs), ' '(postproc, postproc_args, postproc_kwargs)') if self._runfunc is not None and not self._do_single_runs: raise RuntimeError('You cannot make a run if you did create an environment ' 'with `do_single_runs=False`.') if self._resumable: racedirs(self._resume_path) if os.listdir(self._resume_path): raise RuntimeError('Your resume folder `%s` needs ' 'to be empty to allow continuing!' % self._resume_path) if self._user_pipeline: self._logger.info('\n************************************************************\n' 'STARTING PPREPROCESSING for trajectory\n`%s`' '\n************************************************************\n' % self._traj.v_name) # Make some preparations (locking of parameters etc) and store the trajectory self._logger.info('I am preparing the Trajectory for the experiment and ' 'initialise the store.') self._traj._prepare_experiment() self._logger.info('Initialising the storage for the trajectory.') self._traj.f_store(only_init=True) def _show_progress(self, n, total_runs): """Displays a progressbar""" self._logging_manager.show_progress(n, total_runs) def _make_kwargs(self, **kwargs): """Creates the keyword arguments for the single run handling""" result_dict = {'traj': self._traj, 'logging_manager': self._logging_manager, 'runfunc': self._runfunc, 'runargs': self._args, 'runkwargs': self._kwargs, 'clean_up_runs': self._clean_up_runs, 'automatic_storing': self._automatic_storing, 'wrap_mode': self._wrap_mode, 'niceness': self._niceness, 'graceful_exit': self._graceful_exit} result_dict.update(kwargs) if self._multiproc: if self._use_pool or self._use_scoop: if self._use_scoop: del result_dict['graceful_exit'] if self._freeze_input: # Remember the full copy setting for the frozen input to # change this back once the trajectory is received by # each process result_dict['full_copy'] = self.traj.v_full_copy if self._map_arguments: del result_dict['runargs'] del result_dict['runkwargs'] else: result_dict['clean_up_runs'] = False if self._use_pool: # Needs only be deleted in case of using a pool but necessary for scoop del result_dict['logging_manager'] del result_dict['niceness'] else: result_dict['clean_up_runs'] = False return result_dict def _make_index_iterator(self, start_run_idx): """Returns an iterator over the run indices that are not completed""" total_runs = len(self._traj) for n in compat.xrange(start_run_idx, total_runs): self._current_idx = n + 1 if self._stop_iteration: self._logger.debug('I am stopping new run iterations now!') break if not self._traj._is_completed(n): self._traj.f_set_crun(n) yield n else: self._logger.debug('Run `%d` has already been completed, I am skipping it.' % n) def _make_iterator(self, start_run_idx, copy_data=False, **kwargs): """ Returns an iterator over all runs and yields the keyword arguments """ if (not self._freeze_input) or (not self._multiproc): kwargs = self._make_kwargs(**kwargs) def _do_iter(): if self._map_arguments: self._args = tuple(iter(arg) for arg in self._args) for key in compat.listkeys(self._kwargs): self._kwargs[key] = iter(self._kwargs[key]) for idx in self._make_index_iterator(start_run_idx): iter_args = tuple(next(x) for x in self._args) iter_kwargs = {} for key in self._kwargs: iter_kwargs[key] = next(self._kwargs[key]) kwargs['runargs'] = iter_args kwargs['runkwargs'] = iter_kwargs if self._freeze_input: # Frozen pool needs current run index kwargs['idx'] = idx if copy_data: copied_kwargs = kwargs.copy() if not self._freeze_input: copied_kwargs['traj'] = self._traj.f_copy(copy_leaves='explored', with_links=True) yield copied_kwargs else: yield kwargs else: for idx in self._make_index_iterator(start_run_idx): if self._freeze_input: # Frozen pool needs current run index kwargs['idx'] = idx if copy_data: copied_kwargs = kwargs.copy() if not self._freeze_input: copied_kwargs['traj'] = self._traj.f_copy(copy_leaves='explored', with_links=True) yield copied_kwargs else: yield kwargs return _do_iter() def _execute_postproc(self, results): """ Executes a postprocessing function :param results: List of tuples containing the run indices and the results :return: 1. Whether to new single runs, since the trajectory was enlarged 2. Index of next new run 3. Number of new runs """ repeat = False start_run_idx = 0 new_runs = 0 # Do some finalization self._traj._finalize(store_meta_data=True) old_traj_length = len(self._traj) postproc_res = self._postproc(self._traj, results, *self._postproc_args, **self._postproc_kwargs) if postproc_res is None: pass elif isinstance(postproc_res, dict): if postproc_res: self._traj.f_expand(postproc_res) elif isinstance(postproc_res, tuple): expand_dict = postproc_res[0] if len(postproc_res) > 1: self._args = postproc_res[1] if len(postproc_res) > 2: self._kwargs = postproc_res[2] if len(postproc_res) > 3: self._postproc_args = postproc_res[3] if len(postproc_res) > 4: self._postproc_kwargs = postproc_res[4] if expand_dict: self._traj.f_expand(expand_dict) else: self._logger.error('Your postproc result `%s` was not understood.' % str(postproc_res)) new_traj_length = len(self._traj) if new_traj_length != old_traj_length: start_run_idx = old_traj_length repeat = True if self._resumable: self._logger.warning('Continuing a trajectory AND expanding it during runtime is ' 'NOT supported properly, there is no guarantee that this ' 'works!') self._traj.f_store(only_init=True) new_traj_length = len(self._traj) new_runs = new_traj_length - old_traj_length return repeat, start_run_idx, new_runs def _estimate_cpu_utilization(self): """Estimates the cpu utilization within the last 500ms""" now = time.time() if now - self._last_cpu_check >= 0.5: try: self._last_cpu_usage = psutil.cpu_percent() self._last_cpu_check = now except (psutil.NoSuchProcess, ZeroDivisionError): pass # psutil sometimes produces ZeroDivisionErrors, has been fixed in newer # Versions but we want to support older as well return self._last_cpu_usage def _estimate_memory_utilization(self, process_dict): """Estimates memory utilization to come if process was started""" n_processes = len(process_dict) total_utilization = psutil.virtual_memory().percent sum = 0.0 for proc in compat.itervalues(process_dict): try: sum += psutil.Process(proc.pid).memory_percent() except (psutil.NoSuchProcess, ZeroDivisionError): pass curr_all_processes = sum missing_utilization = max(0.0, n_processes * self._est_per_process - curr_all_processes) estimated_utilization = total_utilization estimated_utilization += missing_utilization estimated_utilization += self._est_per_process return estimated_utilization def _execute_runs(self, pipeline): """ Starts the individual single runs. Starts runs sequentially or initiates multiprocessing. :param pipeline: A pipeline function producing the run function the corresponding arguments and postprocessing function and arguments :return: List of tuples, where each tuple contains the run idx and the result. """ if self._start_timestamp is None: self._start_timestamp = time.time() if self._map_arguments and self._resumable: raise ValueError('You cannot use `run_map` or `pipeline_map` in combination ' 'with continuing option.') if self._sumatra_project is not None: self._prepare_sumatra() if pipeline is not None: results = [] self._prepare_runs(pipeline) else: results = self._prepare_resume() if self._runfunc is not None: self._traj._run_by_environment = True if self._graceful_exit: sigint_handling.start() try: self._inner_run_loop(results) finally: self._traj._run_by_environment = False self._stop_iteration = False if self._graceful_exit: sigint_handling.finalize() self._add_wildcard_config() if self._automatic_storing: self._logger.info('\n************************************************************\n' 'STARTING FINAL STORING of trajectory\n`%s`' '\n************************************************************\n' % self._traj.v_name) self._traj.f_store() self._logger.info('\n************************************************************\n' 'FINISHED FINAL STORING of trajectory\n`%s`.' '\n************************************************************\n' % self._traj.v_name) self._finish_timestamp = time.time() findatetime = datetime.datetime.fromtimestamp(self._finish_timestamp) startdatetime = datetime.datetime.fromtimestamp(self._start_timestamp) self._runtime = str(findatetime - startdatetime) conf_list = [] config_name = 'environment.%s.start_timestamp' % self.name if not self._traj.f_contains('config.' + config_name): conf1 = self._traj.f_add_config(Parameter, config_name, self._start_timestamp, comment='Timestamp of starting of experiment ' '(when the actual simulation was ' 'started (either by calling `run`, ' '`resume`, or `pipeline`).') conf_list.append(conf1) config_name = 'environment.%s.finish_timestamp' % self.name if not self._traj.f_contains('config.' + config_name): conf2 = self._traj.f_add_config(Parameter, config_name, self._finish_timestamp, comment='Timestamp of finishing of an experiment.') else: conf2 = self._traj.f_get('config.' + config_name) conf2.f_unlock() conf2.f_set(self._finish_timestamp) conf_list.append(conf2) config_name = 'environment.%s.runtime' % self.name if not self._traj.f_contains('config.' + config_name): conf3 = self._traj.f_add_config(Parameter, config_name, self._runtime, comment='Runtime of whole experiment.') else: conf3 = self._traj.f_get('config.' + config_name) conf3.f_unlock() conf3.f_set(self._runtime) conf_list.append(conf3) if self._automatic_storing: self._traj.f_store_items(conf_list, store_data=pypetconstants.OVERWRITE_DATA) if hasattr(self._traj.v_storage_service, 'finalize'): # Finalize the storage service if this is supported self._traj.v_storage_service.finalize() incomplete = [] for run_name in self._traj.f_get_run_names(): if not self._traj._is_completed(run_name): incomplete.append(run_name) if len(incomplete) > 0: self._logger.error('Following runs of trajectory `%s` ' 'did NOT complete: `%s`' % (self._traj.v_name, ', '.join(incomplete))) else: self._logger.info('All runs of trajectory `%s` were completed successfully.' % self._traj.v_name) if self._sumatra_project is not None: self._finish_sumatra() return results def _add_wildcard_config(self): """Adds config data about the wildcard functions""" for idx, pair in enumerate(self._traj._wildcard_functions.items()): wildcards, wc_function = pair for jdx, wildcard in enumerate(wildcards): config_name = ('environment.%s.wildcards.function_%d.wildcard_%d' % (self.name, idx, jdx)) if not self._traj.f_contains('config.' + config_name): self._traj.f_add_config(Parameter, config_name, wildcard, comment='Wildcard symbol for the wildcard function').f_lock() if hasattr(wc_function, '__name__'): config_name = ('environment.%s.wildcards.function_%d.name' % (self.name, idx)) if not self._traj.f_contains('config.' + config_name): self._traj.f_add_config(Parameter, config_name, wc_function.__name__, comment='Nme of wildcard function').f_lock() if wc_function.__doc__: config_name = ('environment.%s.wildcards.function_%d.doc' % (self.name, idx)) if not self._traj.f_contains('config.' + config_name): self._traj.f_add_config(Parameter, config_name, wc_function.__doc__, comment='Docstring of wildcard function').f_lock() try: source = inspect.getsource(wc_function) config_name = ('environment.%s.wildcards.function_%d.source' % (self.name, idx)) if not self._traj.f_contains('config.' + config_name): self._traj.f_add_config(Parameter, config_name, source, comment='Source code of wildcard function').f_lock() except Exception: pass # We cannot find the source, just leave it def _inner_run_loop(self, results): """Performs the inner loop of the run execution""" start_run_idx = self._current_idx expanded_by_postproc = False self._storage_service = self._traj.v_storage_service self._multiproc_wrapper = None if self._resumable: self._trigger_resume_snapshot() self._logger.info( '\n************************************************************\n' 'STARTING runs of trajectory\n`%s`.' '\n************************************************************\n' % self._traj.v_name) while True: if self._multiproc: expanded_by_postproc = self._execute_multiprocessing(start_run_idx, results) else: # Create a generator to generate the tasks iterator = self._make_iterator(start_run_idx) n = start_run_idx total_runs = len(self._traj) # Signal start of progress calculation self._show_progress(n - 1, total_runs) for task in iterator: result = _sigint_handling_single_run(task) n = self._check_result_and_store_references(result, results, n, total_runs) repeat = False if self._postproc is not None: self._logger.info('Performing POSTPROCESSING') repeat, start_run_idx, new_runs = self._execute_postproc(results) if not repeat: break else: expanded_by_postproc = True self._logger.info('POSTPROCESSING expanded the trajectory and added %d new runs' % new_runs) # Do some finalization self._traj._finalize(store_meta_data=True) self._logger.info( '\n************************************************************\n' 'FINISHED all runs of trajectory\n`%s`.' '\n************************************************************\n' % self._traj.v_name) if self._resumable and self._delete_resume: # We remove all resume files if the simulation was successfully completed shutil.rmtree(self._resume_path) if expanded_by_postproc: config_name = 'environment.%s.postproc_expand' % self.name if not self._traj.f_contains('config.' + config_name): self._traj.f_add_config(Parameter, config_name, True, comment='Added if trajectory was expanded ' 'by postprocessing.') def _get_results_from_queue(self, result_queue, results, n, total_runs): """Extract all available results from the queue and returns the increased n""" # Get all results from the result queue while not result_queue.empty(): result = result_queue.get() n = self._check_result_and_store_references(result, results, n, total_runs) return n def _check_result_and_store_references(self, result, results, n, total_runs): """Checks for SIGINT and if reference wrapping and stores references.""" if result[0] == sigint_handling.SIGINT: self._stop_iteration = True result = result[1] # If SIGINT result is a nested tuple if result is not None: if self._wrap_mode == pypetconstants.WRAP_MODE_LOCAL: self._multiproc_wrapper.store_references(result[2]) self._traj._update_run_information(result[1]) results.append(result[0]) if self._resumable: # [0:2] to not store references self._trigger_result_snapshot(result[0:2]) self._show_progress(n, total_runs) n += 1 return n def _trigger_result_snapshot(self, result): """ Triggers a snapshot of the results for continuing :param result: Currently computed result """ timestamp = result[1]['finish_timestamp'] timestamp_str = repr(timestamp).replace('.', '_') filename = 'result_%s' % timestamp_str extension = '.ncnt' dump_filename = os.path.join(self._resume_path, filename + extension) dump_file = open(dump_filename, 'wb') dill.dump(result, dump_file, protocol=2) dump_file.flush() dump_file.close() # We rename the file to be certain that the trajectory did not crash during taking # the snapshot! extension = '.rcnt' rename_filename = os.path.join(self._resume_path, filename + extension) shutil.move(dump_filename, rename_filename) def _execute_multiprocessing(self, start_run_idx, results): """Performs multiprocessing and signals expansion by postproc""" n = start_run_idx total_runs = len(self._traj) expanded_by_postproc = False if (self._wrap_mode == pypetconstants.WRAP_MODE_NONE or self._storage_service.multiproc_safe): self._logger.info('I assume that your storage service is multiprocessing safe.') else: use_manager = (self._wrap_mode == pypetconstants.WRAP_MODE_QUEUE or self._immediate_postproc) self._multiproc_wrapper = MultiprocContext(self._traj, self._wrap_mode, full_copy=None, manager=None, use_manager=use_manager, lock=None, queue=None, queue_maxsize=self._queue_maxsize, port=self._url, timeout=self._timeout, gc_interval=self._gc_interval, log_config=self._logging_manager.log_config, log_stdout=self._logging_manager.log_stdout, graceful_exit=self._graceful_exit) self._multiproc_wrapper.start() try: if self._use_pool: self._logger.info('Starting Pool with %d processes' % self._ncores) if self._freeze_input: self._logger.info('Freezing pool input') init_kwargs = self._make_kwargs() # To work under windows we must allow the full-copy now! # Because windows does not support forking! pool_full_copy = self._traj.v_full_copy self._traj.v_full_copy = True initializer = _configure_frozen_pool target = _frozen_pool_single_run else: # We don't want to pickle the storage service pool_service = self._traj.v_storage_service self._traj.v_storage_service = None init_kwargs = dict(logging_manager=self._logging_manager, storage_service=pool_service, niceness=self._niceness) initializer = _configure_pool target = _pool_single_run try: iterator = self._make_iterator(start_run_idx) mpool = multip.Pool(self._ncores, initializer=initializer, initargs=(init_kwargs,)) pool_results = mpool.imap(target, iterator) # Signal start of progress calculation self._show_progress(n - 1, total_runs) for result in pool_results: n = self._check_result_and_store_references(result, results, n, total_runs) # Everything is done mpool.close() mpool.join() finally: if self._freeze_input: self._traj.v_full_copy = pool_full_copy else: self._traj.v_storage_service = pool_service self._logger.info('Pool has joined, will delete it.') del mpool elif self._use_scoop: self._logger.info('Starting SCOOP jobs') if self._freeze_input: self._logger.info('Freezing SCOOP input') if hasattr(_frozen_scoop_single_run, 'kwargs'): self._logger.warning('You already did run an experiment with ' 'SCOOP and a frozen input. Frozen input ' 'is realized as a shared constant, so' 'over time your memory might get bloated. ' 'If you experience trouble, ' 'restart your python interpreter and ' 'SCOOP.') _frozen_scoop_single_run.kwargs = {} scoop_full_copy = self._traj.v_full_copy self._traj.v_full_copy = True init_kwargs = self._make_kwargs() scoop_rev = self.name + '_' + str(time.time()).replace('.','_') shared.setConst(**{scoop_rev: init_kwargs}) iterator = self._make_iterator(start_run_idx, copy_data=True, scoop_rev=scoop_rev) target = _frozen_scoop_single_run else: iterator = self._make_iterator(start_run_idx, copy_data=True) target = _scoop_single_run try: if scoop.IS_RUNNING: scoop_results = futures.map(target, iterator, timeout=self._timeout) else: self._logger.error('SCOOP is NOT running, I will use Python`s map ' 'function. To activate scoop, start your script via ' '`python -m scoop your_script.py`.') scoop_results = map(target, iterator) # Signal start of progress calculation self._show_progress(n - 1, total_runs) for result in scoop_results: n = self._check_result_and_store_references(result, results, n, total_runs) finally: if self._freeze_input: self._traj.v_full_copy = scoop_full_copy else: # If we spawn a single process for each run, we need an additional queue # for the results of `runfunc` if self._immediate_postproc: maxsize = 0 else: maxsize = total_runs start_result_length = len(results) result_queue = multip.Queue(maxsize=maxsize) # Create a generator to generate the tasks for multiprocessing iterator = self._make_iterator(start_run_idx, result_queue=result_queue) self._logger.info('Starting multiprocessing with at most ' '%d processes running at the same time.' % self._ncores) if self._check_usage: self._logger.info( 'Monitoring usage statistics. I will not spawn new processes ' 'if one of the following cap thresholds is crossed, ' 'CPU: %.1f %%, RAM: %.1f %%, Swap: %.1f %%.' % (self._cpu_cap, self._memory_cap[0], self._swap_cap)) keep_running = True # Evaluates to false if trajectory produces # no more single runs process_dict = {} # Dict containing all subprocees # For the cap values, we lazily evaluate them cpu_usage_func = lambda: self._estimate_cpu_utilization() memory_usage_func = lambda: self._estimate_memory_utilization(process_dict) swap_usage_func = lambda: psutil.swap_memory().percent signal_cap = True # If True cap warning is emitted max_signals = 10 # Maximum number of warnings, after that warnings are # no longer signaled # Signal start of progress calculation self._show_progress(n - 1, total_runs) while len(process_dict) > 0 or keep_running: # First check if some processes did finish their job for pid in compat.listkeys(process_dict): proc = process_dict[pid] # Delete the terminated processes if not proc.is_alive(): proc.join() del process_dict[pid] del proc # Check if caps are reached. # Cap is only checked if there is at least one # process working to prevent deadlock. no_cap = True if self._check_usage and self._ncores > len(process_dict) > 0: for cap_name, cap_function, threshold in ( ('CPU Cap', cpu_usage_func, self._cpu_cap), ('Memory Cap', memory_usage_func, self._memory_cap[0]), ('Swap Cap', swap_usage_func, self._swap_cap)): cap_value = cap_function() if cap_value > threshold: no_cap = False if signal_cap: if cap_name == 'Memory Cap': add_on_str = ' [including estimate]' else: add_on_str = '' self._logger.warning('Could not start next process ' 'immediately [currently running ' '%d process(es)]. ' '%s reached, ' '%.1f%% >= %.1f%%%s.' % (len(process_dict), cap_name, cap_value, threshold, add_on_str)) signal_cap = False max_signals -= 1 if max_signals == 0: self._logger.warning('Maximum number of cap warnings ' 'reached. I will no longer ' 'notify about cap violations, ' 'but cap values are still applied ' 'silently in background.') break # If one cap value is reached we can skip the rest # If we have less active processes than # self._ncores and there is still # a job to do, add another process if len(process_dict) < self._ncores and keep_running and no_cap: try: task = next(iterator) proc = multip.Process(target=_process_single_run, args=(task,)) proc.start() process_dict[proc.pid] = proc signal_cap = max_signals > 0 # Only signal max_signals times except StopIteration: # All simulation runs have been started keep_running = False if self._postproc is not None and self._immediate_postproc: if self._wrap_mode == pypetconstants.WRAP_MODE_LOCAL: reference_service = self._traj._storage_service self._traj.v_storage_service = self._storage_service try: self._logger.info('Performing IMMEDIATE POSTPROCESSING.') keep_running, start_run_idx, new_runs = \ self._execute_postproc(results) finally: if self._wrap_mode == pypetconstants.WRAP_MODE_LOCAL: self._traj._storage_service = reference_service if keep_running: expanded_by_postproc = True self._logger.info('IMMEDIATE POSTPROCESSING expanded ' 'the trajectory and added %d ' 'new runs' % new_runs) n = start_run_idx total_runs = len(self._traj) iterator = self._make_iterator(start_run_idx, result_queue=result_queue) if not keep_running: self._logger.debug('All simulation runs have been started. ' 'No new runs will be started. ' 'The simulation will finish after the still ' 'active runs completed.') else: time.sleep(0.001) # Get all results from the result queue n = self._get_results_from_queue(result_queue, results, n, total_runs) # Finally get all results from the result queue once more and finalize the queue self._get_results_from_queue(result_queue, results, n, total_runs) result_queue.close() result_queue.join_thread() del result_queue result_sort(results, start_result_length) finally: # Finalize the wrapper if self._multiproc_wrapper is not None: self._multiproc_wrapper.finalize() self._multiproc_wrapper = None return expanded_by_postproc @prefix_naming class MultiprocContext(HasLogger): """ A lightweight environment that allows the usage of multiprocessing. Can be used if you don't want a full-blown :class:`~pypet.environment.Environment` to enable multiprocessing or if you want to implement your own custom multiprocessing. This Wrapper tool will take a trajectory container and take care that the storage service is multiprocessing safe. Supports the ``'LOCK'`` as well as the ``'QUEUE'`` mode. In case of the latter an extra queue process is created if desired. This process will handle all storage requests and write data to the hdf5 file. Not that in case of ``'QUEUE'`` wrapping data can only be stored not loaded, because the queue will only be read in one direction. :param trajectory: The trajectory which storage service should be wrapped :param wrap_mode: There are four options: :const:`~pypet.pypetconstants.WRAP_MODE_QUEUE`: ('QUEUE') If desired another process for storing the trajectory is spawned. The sub processes running the individual trajectories will add their results to a multiprocessing queue that is handled by an additional process. Note that this requires additional memory since data will be pickled and send over the queue for storage! :const:`~pypet.pypetconstants.WRAP_MODE_LOCK`: ('LOCK') Each individual process takes care about storage by itself. Before carrying out the storage, a lock is placed to prevent the other processes to store data. Accordingly, sometimes this leads to a lot of processes waiting until the lock is released. Yet, data does not need to be pickled before storage! :const:`~pypet.pypetconstants.WRAP_MODE_PIPE`: ('PIPE) Experimental mode based on a single pipe. Is faster than ``'QUEUE'`` wrapping but data corruption may occur, does not work under Windows (since it relies on forking). :const:`~pypet.pypetconstant.WRAP_MODE_LOCAL` ('LOCAL') Data is not stored in spawned child processes, but data needs to be retunred manually in terms of *references* dictionaries (the ``reference`` property of the ``ReferenceWrapper`` class).. Storing is only performed in the main process. Note that removing data during a single run has no longer an effect on memory whatsoever, because there are references kept for all data that is supposed to be stored. :param full_copy: In case the trajectory gets pickled (sending over a queue or a pool of processors) if the full trajectory should be copied each time (i.e. all parameter points) or only a particular point. A particular point can be chosen beforehand with :func:`~pypet.trajectory.Trajectory.f_set_crun`. Leave ``full_copy=None`` if the setting from the passed trajectory should be used. Otherwise ``v_full_copy`` of the trajectory is changed to your chosen value. :param manager: You can pass an optional multiprocessing manager here, if you already have instantiated one. Leave ``None`` if you want the wrapper to create one. :param use_manager: If your lock and queue should be created with a manager or if wrapping should be created from the multiprocessing module directly. For example: ``multiprocessing.Lock()`` or via a manager ``multiprocessing.Manager().Lock()`` (if you specified a manager, this manager will be used). The former is usually faster whereas the latter is more flexible and can be used in an environment where fork is not available, for instance. :param lock: You can pass a multiprocessing lock here, if you already have instantiated one. Leave ``None`` if you want the wrapper to create one in case of ``'LOCK'`` wrapping. :param queue: You can pass a multiprocessing queue here, if you already instantiated one. Leave ``None`` if you want the wrapper to create one in case of ''`QUEUE'`` wrapping. :param queue_maxsize: Maximum size of queue if created new. 0 means infinite. :param port: Port to be used by lock server in case of ``'NETLOCK'`` wrapping. Can be a single integer as well as a tuple ``(7777, 9999)`` to specify a range of ports from which to pick a random one. Leave `None` for using pyzmq's default range. In case automatic determining of the host's ip address fails, you can also pass the full address (including the protocol and the port) of the host in the network like ``'tcp://127.0.0.1:7777'``. :param timeout: Timeout for a NETLOCK wrapping in seconds. After ``timeout`` seconds a lock is automatically released and free for other processes. :param gc_interval: Interval (in runs or storage operations) with which ``gc.collect()`` should be called in case of the ``'LOCAL'``, ``'QUEUE'``, or ``'PIPE'`` wrapping. Leave ``None`` for never. ``1`` means after every storing, ``2`` after every second storing, and so on. Only calls ``gc.collect()`` in the main (if ``'LOCAL'`` wrapping) or the queue/pipe process. If you need to garbage collect data within your single runs, you need to manually call ``gc.collect()``. Usually, there is no need to set this parameter since the Python garbage collection works quite nicely and schedules collection automatically. :param log_config: Path to logging config file or dictionary to configure logging for the spawned queue process. Thus, only considered if the queue wrap mode is chosen. :param log_stdout: If stdout of the queue process should also be logged. :param graceful_exit: Hitting Ctrl+C won't kill a server process unless hit twice. For an usage example see :ref:`example-16`. """ def __init__(self, trajectory, wrap_mode=pypetconstants.WRAP_MODE_LOCK, full_copy=None, manager=None, use_manager=True, lock=None, queue=None, queue_maxsize=0, port=None, timeout=None, gc_interval=None, log_config=None, log_stdout=False, graceful_exit=False): self._set_logger() self._manager = manager self._traj = trajectory self._storage_service = self._traj.v_storage_service self._queue_process = None self._pipe_process = None self._lock_wrapper = None self._queue_wrapper = None self._reference_wrapper = None self._wrap_mode = wrap_mode self._queue = queue self._queue_maxsize = queue_maxsize self._pipe = queue self._max_buffer_size = queue_maxsize self._lock = lock self._lock_process = None self._port = port self._timeout = timeout self._use_manager = use_manager self._logging_manager = None self._gc_interval = gc_interval self._graceful_exit = graceful_exit if (self._wrap_mode == pypetconstants.WRAP_MODE_QUEUE or self._wrap_mode == pypetconstants.WRAP_MODE_PIPE or self._wrap_mode == pypetconstants.WRAP_MODE_NETLOCK or self._wrap_mode == pypetconstants.WRAP_MODE_NETQUEUE): self._logging_manager = LoggingManager(log_config=log_config, log_stdout=log_stdout) self._logging_manager.extract_replacements(self._traj) self._logging_manager.check_log_config() if full_copy is not None: self._traj.v_full_copy=full_copy @property def lock(self): return self._lock @property def queue(self): return self._queue @property def pipe(self): return self._pipe @property def queue_wrapper(self): return self._queue_wrapper @property def reference_wrapper(self): return self._reference_wrapper @property def lock_wrapper(self): return self._lock_wrapper @property def pipe_wrapper(self): return self._pipe_wrapper def __enter__(self): self.start() return self def __exit__(self, exc_type, exc_val, exc_tb): self.finalize() def store_references(self, references): """In case of reference wrapping, stores data. :param references: References dictionary from a ReferenceWrapper. :param gc_collect: If ``gc.collect`` should be called. :param n: Alternatively if ``gc_interval`` is set, a current index can be passed. Data is stored in case ``n % gc_interval == 0``. """ self._reference_store.store_references(references) def start(self): """Starts the multiprocess wrapping. Automatically called when used as context manager. """ self._do_wrap() def _do_wrap(self): """ Wraps a Storage Service """ # First take care that the storage is initialised self._traj.f_store(only_init=True) if self._wrap_mode == pypetconstants.WRAP_MODE_QUEUE: self._prepare_queue() elif self._wrap_mode == pypetconstants.WRAP_MODE_LOCK: self._prepare_lock() elif self._wrap_mode == pypetconstants.WRAP_MODE_PIPE: self._prepare_pipe() elif self._wrap_mode == pypetconstants.WRAP_MODE_LOCAL: self._prepare_local() elif self._wrap_mode == pypetconstants.WRAP_MODE_NETLOCK: self._prepare_netlock() elif self._wrap_mode == pypetconstants.WRAP_MODE_NETQUEUE: self._prepare_netqueue() else: raise RuntimeError('The mutliprocessing mode %s, your choice is ' 'not supported, use %s`, `%s`, %s, `%s`, or `%s`.' % (self._wrap_mode, pypetconstants.WRAP_MODE_QUEUE, pypetconstants.WRAP_MODE_LOCK, pypetconstants.WRAP_MODE_PIPE, pypetconstants.WRAP_MODE_LOCAL, pypetconstants.WRAP_MODE_NETLOCK)) def _prepare_local(self): reference_wrapper = ReferenceWrapper() self._traj.v_storage_service = reference_wrapper self._reference_wrapper = reference_wrapper self._reference_store = ReferenceStore(self._storage_service, self._gc_interval) def _prepare_netlock(self): """ Replaces the trajectory's service with a LockWrapper """ if not isinstance(self._port, compat.base_type): url = port_to_tcp(self._port) self._logger.info('Determined Server URL: `%s`' % url) else: url = self._port if self._lock is None: if hasattr(os, 'fork'): self._lock = ForkAwareLockerClient(url) else: self._lock = LockerClient(url) if self._timeout is None: lock_server = LockerServer(url) else: lock_server = TimeOutLockerServer(url, self._timeout) self._logger.info('Using timeout aware lock server.') self._lock_process = multip.Process(name='LockServer', target=_wrap_handling, args=(dict(handler=lock_server, logging_manager=self._logging_manager, graceful_exit=self._graceful_exit),)) # self._lock_process = threading.Thread(name='LockServer', target=_wrap_handling, # args=(dict(handler=lock_server, # logging_manager=self._logging_manager),)) self._lock_process.start() self._lock.start() # Wrap around the storage service to allow the placement of locks around # the storage procedure. lock_wrapper = LockWrapper(self._storage_service, self._lock) self._traj.v_storage_service = lock_wrapper self._lock_wrapper = lock_wrapper def _prepare_lock(self): """ Replaces the trajectory's service with a LockWrapper """ if self._lock is None: if self._use_manager: if self._manager is None: self._manager = multip.Manager() # We need a lock that is shared by all processes. self._lock = self._manager.Lock() else: self._lock = multip.Lock() # Wrap around the storage service to allow the placement of locks around # the storage procedure. lock_wrapper = LockWrapper(self._storage_service, self._lock) self._traj.v_storage_service = lock_wrapper self._lock_wrapper = lock_wrapper def _prepare_pipe(self): """ Replaces the trajectory's service with a queue sender and starts the queue process. """ if self._pipe is None: self._pipe = multip.Pipe(True) if self._lock is None: self._lock = multip.Lock() self._logger.info('Starting the Storage Pipe!') # Wrap a queue writer around the storage service pipe_handler = PipeStorageServiceWriter(self._storage_service, self._pipe[0], max_buffer_size=self._max_buffer_size) # Start the queue process self._pipe_process = multip.Process(name='PipeProcess', target=_wrap_handling, args=(dict(handler=pipe_handler, logging_manager=self._logging_manager, graceful_exit=self._graceful_exit),)) self._pipe_process.start() # Replace the storage service of the trajectory by a sender. # The sender will put all data onto the pipe. # The writer from above will receive the data from # the pipe and hand it over to # the storage service self._pipe_wrapper = PipeStorageServiceSender(self._pipe[1], self._lock) self._traj.v_storage_service = self._pipe_wrapper def _prepare_queue(self): """ Replaces the trajectory's service with a queue sender and starts the queue process. """ if self._queue is None: if self._use_manager: if self._manager is None: self._manager = multip.Manager() self._queue = self._manager.Queue(maxsize=self._queue_maxsize) else: self._queue = multip.Queue(maxsize=self._queue_maxsize) self._logger.info('Starting the Storage Queue!') # Wrap a queue writer around the storage service queue_handler = QueueStorageServiceWriter(self._storage_service, self._queue, self._gc_interval) # Start the queue process self._queue_process = multip.Process(name='QueueProcess', target=_wrap_handling, args=(dict(handler=queue_handler, logging_manager=self._logging_manager, graceful_exit=self._graceful_exit),)) self._queue_process.start() # Replace the storage service of the trajectory by a sender. # The sender will put all data onto the queue. # The writer from above will receive the data from # the queue and hand it over to # the storage service self._queue_wrapper = QueueStorageServiceSender(self._queue) self._traj.v_storage_service = self._queue_wrapper def _prepare_netqueue(self): """ Replaces the trajectory's service with a queue sender and starts the queue process. """ self._logger.info('Starting Network Queue!') if not isinstance(self._port, compat.base_type): url = port_to_tcp(self._port) self._logger.info('Determined Server URL: `%s`' % url) else: url = self._port if self._queue is None: if hasattr(os, 'fork'): self._queue = ForkAwareQueuingClient(url) else: self._queue = QueuingClient(url) # Wrap a queue writer around the storage service queuing_server_handler = QueuingServer(url, self._storage_service, self._queue_maxsize, self._gc_interval) # Start the queue process self._queue_process = multip.Process(name='QueuingServerProcess', target=_wrap_handling, args=(dict(handler=queuing_server_handler, logging_manager=self._logging_manager, graceful_exit=self._graceful_exit),)) self._queue_process.start() self._queue.start() # Replace the storage service of the trajectory by a sender. # The sender will put all data onto the queue. # The writer from above will receive the data from # the queue and hand it over to # the storage service self._queue_wrapper = QueueStorageServiceSender(self._queue) self._traj.v_storage_service = self._queue_wrapper def finalize(self): """ Restores the original storage service. If a queue process and a manager were used both are shut down. Automatically called when used as context manager. """ if (self._wrap_mode == pypetconstants.WRAP_MODE_QUEUE and self._queue_process is not None): self._logger.info('The Storage Queue will no longer accept new data. ' 'Hang in there for a little while. ' 'There still might be some data in the queue that ' 'needs to be stored.') # We might have passed the queue implicitly, # to be sure we add the queue here again self._traj.v_storage_service.queue = self._queue self._traj.v_storage_service.send_done() self._queue_process.join() if hasattr(self._queue, 'join'): self._queue.join() if hasattr(self._queue, 'close'): self._queue.close() if hasattr(self._queue, 'join_thread'): self._queue.join_thread() self._logger.info('The Storage Queue has joined.') elif (self._wrap_mode == pypetconstants.WRAP_MODE_PIPE and self._pipe_process is not None): self._logger.info('The Storage Pipe will no longer accept new data. ' 'Hang in there for a little while. ' 'There still might be some data in the pipe that ' 'needs to be stored.') self._traj.v_storage_service.conn = self._pipe[1] self._traj.v_storage_service.send_done() self._pipe_process.join() self._pipe[1].close() self._pipe[0].close() elif (self._wrap_mode == pypetconstants.WRAP_MODE_NETLOCK and self._lock_process is not None): self._lock.send_done() self._lock.finalize() self._lock_process.join() elif (self._wrap_mode == pypetconstants.WRAP_MODE_NETQUEUE and self._queue_process is not None): self._queue.send_done() self._queue.finalize() self._queue_process.join() if self._manager is not None: self._manager.shutdown() self._manager = None self._queue_process = None self._queue = None self._queue_wrapper = None self._lock = None self._lock_wrapper = None self._lock_process = None self._reference_wrapper = None self._pipe = None self._pipe_process = None self._pipe_wrapper = None self._logging_manager = None self._traj._storage_service = self._storage_service def __del__(self): self.finalize()
bsd-3-clause
salma1601/process-asl
procasl/externals/nistats/first_level_model.py
2
21160
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ This module presents an interface to use the glm implemented in nistats.regression. It contains the GLM and contrast classes that are meant to be the main objects of fMRI data analyses. """ from warnings import warn import time import sys import numpy as np from nibabel import Nifti1Image from sklearn.base import BaseEstimator, TransformerMixin, clone from sklearn.externals.joblib import Memory from nilearn._utils.niimg_conversions import check_niimg from nilearn._utils import CacheMixin from nilearn.input_data import NiftiMasker from sklearn.externals.joblib import Parallel, delayed from .regression import OLSModel, ARModel, SimpleRegressionResults from .design_matrix import make_design_matrix from .contrasts import _fixed_effect_contrast from .utils import _basestring, _check_run_tables def mean_scaling(Y, axis=0): """Scaling of the data to have percent of baseline change along the specified axis Parameters ---------- Y : array of shape (n_time_points, n_voxels) The input data. Returns ------- Y : array of shape (n_time_points, n_voxels), The data after mean-scaling, de-meaning and multiplication by 100. mean : array of shape (n_voxels,) The data mean. """ mean = Y.mean(axis=axis) if (mean == 0).any(): warn('Mean values of 0 observed.' 'The data have probably been centered.' 'Scaling might not work as expected') mean = np.maximum(mean, 1) Y = 100 * (Y / mean - 1) return Y, mean def _ar_model_fit(X, val, Y): """Wrapper for fit method of ARModel to allow parallelization with joblib""" return ARModel(X, val).fit(Y) def run_glm(Y, X, noise_model='ar1', bins=100, n_jobs=1, verbose=0): """ GLM fit for an fMRI data matrix Parameters ---------- Y : array of shape (n_time_points, n_voxels) The fMRI data. X : array of shape (n_time_points, n_regressors) The design matrix. noise_model : {'ar1', 'ols'}, optional The temporal variance model. Defaults to 'ar1'. bins : int, optional Maximum number of discrete bins for the AR(1) coef histogram. n_jobs : int, optional The number of CPUs to use to do the computation. -1 means 'all CPUs'. verbose : int, optional The verbosity level. Defaut is 0 Returns ------- labels : array of shape (n_voxels,), A map of values on voxels used to identify the corresponding model. results : dict, Keys correspond to the different labels values values are RegressionResults instances corresponding to the voxels. """ acceptable_noise_models = ['ar1', 'ols'] if noise_model not in acceptable_noise_models: raise ValueError( "Acceptable noise models are {0}. You provided 'noise_model={1}'".\ format(acceptable_noise_models, noise_model)) if Y.shape[0] != X.shape[0]: raise ValueError( 'The number of rows of Y should match the number of rows of X.' ' You provided X with shape {0} and Y with shape {1}'.\ format(X.shape, Y.shape)) # Create the model ols_result = OLSModel(X).fit(Y) if noise_model == 'ar1': # compute and discretize the AR1 coefs ar1 = ((ols_result.resid[1:] * ols_result.resid[:-1]).sum(axis=0) / (ols_result.resid ** 2).sum(axis=0)) del ols_result ar1 = (ar1 * bins).astype(np.int) * 1. / bins # Fit the AR model acccording to current AR(1) estimates results = {} labels = ar1 # Parallelize by creating a job per ARModel vals = np.unique(ar1) ar_result = Parallel(n_jobs=n_jobs, verbose=verbose)( delayed(_ar_model_fit)(X, val, Y[:, labels == val]) for val in vals) for val, result in zip(vals, ar_result): results[val] = result del vals del ar_result else: labels = np.zeros(Y.shape[1]) results = {0.0: ols_result} return labels, results class FirstLevelModel(BaseEstimator, TransformerMixin, CacheMixin): """ Implementation of the General Linear Model for single session fMRI data Parameters ---------- t_r: float This parameter indicates repetition times of the experimental runs. In seconds. It is necessary to correctly consider times in the design matrix. This parameter is also passed to nilearn.signal.clean. Please see the related documentation for details. slice_time_ref: float, optional (default 0.) This parameter indicates the time of the reference slice used in the slice timing preprocessing step of the experimental runs. It is expressed as a percentage of the t_r (time repetition), so it can have values between 0. and 1. hrf_model : string, optional This parameter specifies the hemodynamic response function (HRF) for the design matrices. It can be 'canonical', 'canonical with derivative' or 'fir'. drift_model : string, optional This parameter specifies the desired drift model for the design matrices. It can be 'polynomial', 'cosine' or 'blank'. period_cut : float, optional This parameter specifies the cut period of the low-pass filter in seconds for the design matrices. drift_order : int, optional This parameter specifices the order of the drift model (in case it is polynomial) for the design matrices. fir_delays : array of shape(n_onsets) or list, optional In case of FIR design, yields the array of delays used in the FIR model, in seconds. min_onset : float, optional This parameter specifies the minimal onset relative to the design (in seconds). Events that start before (slice_time_ref * t_r + min_onset) are not considered. mask: Niimg-like, NiftiMasker or MultiNiftiMasker object, optional, Mask to be used on data. If an instance of masker is passed, then its mask will be used. If no mask is given, it will be computed automatically by a MultiNiftiMasker with default parameters. target_affine: 3x3 or 4x4 matrix, optional This parameter is passed to nilearn.image.resample_img. Please see the related documentation for details. target_shape: 3-tuple of integers, optional This parameter is passed to nilearn.image.resample_img. Please see the related documentation for details. smoothing_fwhm: float, optional If smoothing_fwhm is not None, it gives the size in millimeters of the spatial smoothing to apply to the signal. memory: string, optional Path to the directory used to cache the masking process and the glm fit. By default, no caching is done. Creates instance of joblib.Memory. memory_level: integer, optional Rough estimator of the amount of memory used by caching. Higher value means more memory for caching. standardize : boolean, optional If standardize is True, the time-series are centered and normed: their variance is put to 1 in the time dimension. signal_scaling: False, int or (int, int), optional, If not False, fMRI signals are scaled to the mean value of scaling_axis given, which can be 0, 1 or (0, 1). 0 refers to mean scaling each voxel with respect to time, 1 refers to mean scaling each time point with respect to all voxels and (0, 1) refers to scaling with respect to voxels and time, which is known as grand mean scaling. Incompatible with standardize (standardize=False is enforced when signal_scaling is not False). noise_model : {'ar1', 'ols'}, optional The temporal variance model. Defaults to 'ar1' verbose : integer, optional Indicate the level of verbosity. By default, nothing is printed. n_jobs : integer, optional The number of CPUs to use to do the computation. -1 means 'all CPUs', -2 'all CPUs but one', and so on. minimize_memory : boolean, optional Gets rid of some variables on the model fit results that are not necessary for contrast computation and would only be useful for further inspection of model details. This has an important impact on memory consumption. True by default. Attributes ---------- labels : array of shape (n_voxels,), a map of values on voxels used to identify the corresponding model results : dict, with keys corresponding to the different labels values values are RegressionResults instances corresponding to the voxels """ def __init__(self, t_r=None, slice_time_ref=0., hrf_model='glover', drift_model='cosine', period_cut=128, drift_order=1, fir_delays=[0], min_onset=-24, mask=None, target_affine=None, target_shape=None, smoothing_fwhm=None, memory=Memory(None), memory_level=1, standardize=False, signal_scaling=0, noise_model='ar1', verbose=1, n_jobs=1, minimize_memory=True): # design matrix parameters self.t_r = t_r self.slice_time_ref = slice_time_ref self.hrf_model = hrf_model self.drift_model = drift_model self.period_cut = period_cut self.drift_order = drift_order self.fir_delays = fir_delays self.min_onset = min_onset # glm parameters self.mask = mask self.target_affine = target_affine self.target_shape = target_shape self.smoothing_fwhm = smoothing_fwhm if isinstance(memory, _basestring): self.memory = Memory(memory) else: self.memory = memory self.memory_level = memory_level self.standardize = standardize if signal_scaling in [0, 1, (0, 1)]: self.scaling_axis = signal_scaling self.signal_scaling = True self.standardize = False elif signal_scaling is False: self.signal_scaling = signal_scaling else: raise ValueError('signal_scaling must be "False", "0", "1"' ' or "(0, 1)"') self.noise_model = noise_model self.verbose = verbose self.n_jobs = n_jobs self.minimize_memory = minimize_memory # attributes self.labels_ = None self.results_ = None def fit(self, run_imgs, paradigms=None, confounds=None, design_matrices=None): """ Fit the GLM For each run: 1. create design matrix X 2. do a masker job: fMRI_data -> Y 3. fit regression to (Y, X) Parameters ---------- run_imgs: Niimg-like object or list of Niimg-like objects, See http://nilearn.github.io/building_blocks/manipulating_mr_images.html#niimg. Data on which the GLM will be fitted. If this is a list, the affine is considered the same for all. paradigms: pandas Dataframe or string or list of pandas DataFrames or strings, fMRI paradigms used to build design matrices. One paradigm expected per run_img. Ignored in case designs is not None. confounds: pandas Dataframe or string or list of pandas DataFrames or strings, Each column in a DataFrame corresponds to a confound variable to be included in the regression model of the respective run_img. The number of rows must match the number of volumes in the respective run_img. Ignored in case designs is not None. design_matrices: pandas DataFrame or list of pandas DataFrames, Design matrices that will be used to fit the GLM. """ # Check arguments # Check imgs type if not isinstance(run_imgs, (list, tuple)): run_imgs = [run_imgs] for rimg in run_imgs: if not isinstance(rimg, (_basestring, Nifti1Image)): raise ValueError('run_imgs must be Niimg-like object or list' ' of Niimg-like objects') # check all information necessary to build design matrices is available if design_matrices is None: if paradigms is None: raise ValueError('paradigms or design matrices must be provided') if self.t_r is None: raise ValueError('t_r not given to FirstLevelModel object' ' to compute design from paradigm') else: design_matrices = _check_run_tables(run_imgs, design_matrices, 'design_matrices') # check the number of paradigm and confound files match number of runs # Also check paradigm and confound files can be loaded as DataFrame if paradigms is not None: paradigms = _check_run_tables(run_imgs, paradigms, 'paradigms') if confounds is not None: confounds = _check_run_tables(run_imgs, confounds, 'confounds') # Learn the mask if not isinstance(self.mask, NiftiMasker): self.masker_ = NiftiMasker( mask_img=self.mask, smoothing_fwhm=self.smoothing_fwhm, target_affine=self.target_affine, standardize=self.standardize, mask_strategy='epi', t_r=self.t_r, memory=self.memory, verbose=max(0, self.verbose - 1), target_shape=self.target_shape, memory_level=self.memory_level) else: self.masker_ = clone(self.mask) for param_name in ['target_affine', 'target_shape', 'smoothing_fwhm', 'low_pass', 'high_pass', 't_r', 'memory', 'memory_level']: our_param = getattr(self, param_name) if our_param is None: continue if getattr(self.masker_, param_name) is not None: warn('Parameter %s of the masker overriden' % param_name) setattr(self.masker_, param_name, our_param) self.masker_.fit(run_imgs[0]) # For each run fit the model and keep only the regression results. self.labels_, self.results_, self.design_matrices_ = [], [], [] n_runs = len(run_imgs) t0 = time.time() for run_idx, run_img in enumerate(run_imgs): # Report progress if self.verbose > 0: percent = float(run_idx) / n_runs percent = round(percent * 100, 2) dt = time.time() - t0 # We use a max to avoid a division by zero if run_idx == 0: remaining = 'go take a coffee, a big one' else: remaining = (100. - percent) / max(0.01, percent) * dt remaining = '%i seconds remaining' % remaining sys.stderr.write(" " * 100 + "\r") sys.stderr.write( "Computing run %d out of %d runs (%s)\r" % (run_idx, n_runs, remaining)) # Build the experimental design for the glm run_img = check_niimg(run_img, ensure_ndim=4) if design_matrices is None: n_scans = run_img.get_data().shape[3] if confounds is not None: confounds_matrix = confounds[run_idx].values if confounds_matrix.shape[0] != n_scans: raise ValueError('Rows in confounds does not match' 'n_scans in run_img at index %d' % (run_idx,)) confounds_names = confounds[run_idx].columns else: confounds_matrix = None confounds_names = None start_time = self.slice_time_ref * self.t_r end_time = (n_scans - 1 + self.slice_time_ref) * self.t_r frame_times = np.linspace(start_time, end_time, n_scans) design = make_design_matrix(frame_times, paradigms[run_idx], self.hrf_model, self.drift_model, self.period_cut, self.drift_order, self.fir_delays, confounds_matrix, confounds_names, self.min_onset) else: design = design_matrices[run_idx] self.design_matrices_.append(design) # Compute GLM Y = self.masker_.transform(run_img) if self.signal_scaling: Y, _ = mean_scaling(Y, self.scaling_axis) if self.memory is not None: mem_glm = self.memory.cache(run_glm) else: mem_glm = run_glm labels, results = mem_glm(Y, design, noise_model=self.noise_model, bins=100, n_jobs=self.n_jobs) self.labels_.append(labels) # We save memory if inspecting model details is not necessary if self.minimize_memory: for key in results: results[key] = SimpleRegressionResults(results[key]) self.results_.append(results) del Y # Report progress if self.verbose > 0: sys.stderr.write("\nComputation of %d runs done in %i seconds\n" % (n_runs, time.time() - t0)) return self def compute_contrast(self, contrast_def, contrast_name=None, stat_type=None, output_type='z_score'): """Generate different outputs corresponding to the contrasts provided e.g. z_map, t_map, effects and variance. In multi-session case, outputs the fixed effects map. Parameters ---------- contrast_def : array or list of arrays of shape (n_col) or (n_run, n_col) where ``n_col`` is the number of columns of the design matrix, (one array per run). If only one array is provided when there are several runs, it will be assumed that the same contrast is desired for all runs contrast_name : str, optional name of the contrast stat_type : {'t', 'F'}, optional type of the contrast output_type : str, optional Type of the output map. Can be 'z_score', 'stat', 'p_value', 'effect_size' or 'effect_variance' Returns ------- output_image : Nifti1Image The desired output image """ if self.labels_ is None or self.results_ is None: raise ValueError('The model has not been fit yet') if isinstance(contrast_def, np.ndarray): con_vals = [contrast_def] elif isinstance(contrast_def, (list, tuple)): con_vals = contrast_def for cidx, con in enumerate(contrast_def): if not isinstance(con, np.ndarray): raise ValueError('contrast_def at index %i is not an' ' array' % cidx) else: raise ValueError('contrast_def must be an array or list of arrays') n_runs = len(self.labels_) if len(con_vals) != n_runs: warn('One contrast given, assuming it for all %d runs' % n_runs) con_vals = con_vals * n_runs if isinstance(output_type, _basestring): if output_type not in ['z_score', 'stat', 'p_value', 'effect_size', 'effect_variance']: raise ValueError('output_type must be one of "z_score", "stat",' ' "p_value","effect_size" or "effect_variance"') else: raise ValueError('output_type must be one of "z_score", "stat",' ' "p_value","effect_size" or "effect_variance"') if self.memory is not None: arg_ignore = ['labels', 'results'] mem_contrast = self.memory.cache(_fixed_effect_contrast, ignore=arg_ignore) else: mem_contrast = _fixed_effect_contrast contrast = mem_contrast(self.labels_, self.results_, con_vals, stat_type) estimate_ = getattr(contrast, output_type)() # Prepare the returned images output = self.masker_.inverse_transform(estimate_) if contrast_name is None: contrast_name = str(con_vals) output.get_header()['descrip'] = ( '%s of contrast %s' % (output_type, contrast_name)) return output
bsd-3-clause
viisar/brew
brew/selection/dynamic/base.py
3
1144
from sklearn.neighbors.classification import KNeighborsClassifier from abc import abstractmethod class DCS(object): @abstractmethod def select(self, ensemble, x): pass def __init__(self, Xval, yval, K=5, weighted=False, knn=None): self.Xval = Xval self.yval = yval self.K = K if knn is None: self.knn = KNeighborsClassifier(n_neighbors=K, algorithm='brute') else: self.knn = knn self.knn.fit(Xval, yval) self.weighted = weighted def get_neighbors(self, x, return_distance=False): # obtain the K nearest neighbors of test sample in the validation set if not return_distance: [idx] = self.knn.kneighbors(x, return_distance=return_distance) else: rd = return_distance [dists], [idx] = self.knn.kneighbors(x, return_distance=rd) X_nn = self.Xval[idx] # k neighbors y_nn = self.yval[idx] # k neighbors target if return_distance: return X_nn, y_nn, dists else: return X_nn, y_nn
mit
luo66/scikit-learn
sklearn/metrics/scorer.py
211
13141
""" The :mod:`sklearn.metrics.scorer` submodule implements a flexible interface for model selection and evaluation using arbitrary score functions. A scorer object is a callable that can be passed to :class:`sklearn.grid_search.GridSearchCV` or :func:`sklearn.cross_validation.cross_val_score` as the ``scoring`` parameter, to specify how a model should be evaluated. The signature of the call is ``(estimator, X, y)`` where ``estimator`` is the model to be evaluated, ``X`` is the test data and ``y`` is the ground truth labeling (or ``None`` in the case of unsupervised models). """ # Authors: Andreas Mueller <amueller@ais.uni-bonn.de> # Lars Buitinck <L.J.Buitinck@uva.nl> # Arnaud Joly <arnaud.v.joly@gmail.com> # License: Simplified BSD from abc import ABCMeta, abstractmethod from functools import partial import numpy as np from . import (r2_score, median_absolute_error, mean_absolute_error, mean_squared_error, accuracy_score, f1_score, roc_auc_score, average_precision_score, precision_score, recall_score, log_loss) from .cluster import adjusted_rand_score from ..utils.multiclass import type_of_target from ..externals import six from ..base import is_regressor class _BaseScorer(six.with_metaclass(ABCMeta, object)): def __init__(self, score_func, sign, kwargs): self._kwargs = kwargs self._score_func = score_func self._sign = sign @abstractmethod def __call__(self, estimator, X, y, sample_weight=None): pass def __repr__(self): kwargs_string = "".join([", %s=%s" % (str(k), str(v)) for k, v in self._kwargs.items()]) return ("make_scorer(%s%s%s%s)" % (self._score_func.__name__, "" if self._sign > 0 else ", greater_is_better=False", self._factory_args(), kwargs_string)) def _factory_args(self): """Return non-default make_scorer arguments for repr.""" return "" class _PredictScorer(_BaseScorer): def __call__(self, estimator, X, y_true, sample_weight=None): """Evaluate predicted target values for X relative to y_true. Parameters ---------- estimator : object Trained estimator to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to estimator.predict. y_true : array-like Gold standard target values for X. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = estimator.predict(X) if sample_weight is not None: return self._sign * self._score_func(y_true, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y_true, y_pred, **self._kwargs) class _ProbaScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate predicted probabilities for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not probabilities. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_pred = clf.predict_proba(X) if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_proba=True" class _ThresholdScorer(_BaseScorer): def __call__(self, clf, X, y, sample_weight=None): """Evaluate decision function output for X relative to y_true. Parameters ---------- clf : object Trained classifier to use for scoring. Must have either a decision_function method or a predict_proba method; the output of that is used to compute the score. X : array-like or sparse matrix Test data that will be fed to clf.decision_function or clf.predict_proba. y : array-like Gold standard target values for X. These must be class labels, not decision function values. sample_weight : array-like, optional (default=None) Sample weights. Returns ------- score : float Score function applied to prediction of estimator on X. """ y_type = type_of_target(y) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if is_regressor(clf): y_pred = clf.predict(X) else: try: y_pred = clf.decision_function(X) # For multi-output multi-class estimator if isinstance(y_pred, list): y_pred = np.vstack(p for p in y_pred).T except (NotImplementedError, AttributeError): y_pred = clf.predict_proba(X) if y_type == "binary": y_pred = y_pred[:, 1] elif isinstance(y_pred, list): y_pred = np.vstack([p[:, -1] for p in y_pred]).T if sample_weight is not None: return self._sign * self._score_func(y, y_pred, sample_weight=sample_weight, **self._kwargs) else: return self._sign * self._score_func(y, y_pred, **self._kwargs) def _factory_args(self): return ", needs_threshold=True" def get_scorer(scoring): if isinstance(scoring, six.string_types): try: scorer = SCORERS[scoring] except KeyError: raise ValueError('%r is not a valid scoring value. ' 'Valid options are %s' % (scoring, sorted(SCORERS.keys()))) else: scorer = scoring return scorer def _passthrough_scorer(estimator, *args, **kwargs): """Function that wraps estimator.score""" return estimator.score(*args, **kwargs) def check_scoring(estimator, scoring=None, allow_none=False): """Determine scorer from user options. A TypeError will be thrown if the estimator cannot be scored. Parameters ---------- estimator : estimator object implementing 'fit' The object to use to fit the data. scoring : string, callable or None, optional, default: None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. allow_none : boolean, optional, default: False If no scoring is specified and the estimator has no score function, we can either return None or raise an exception. Returns ------- scoring : callable A scorer callable object / function with signature ``scorer(estimator, X, y)``. """ has_scoring = scoring is not None if not hasattr(estimator, 'fit'): raise TypeError("estimator should a be an estimator implementing " "'fit' method, %r was passed" % estimator) elif has_scoring: return get_scorer(scoring) elif hasattr(estimator, 'score'): return _passthrough_scorer elif allow_none: return None else: raise TypeError( "If no scoring is specified, the estimator passed should " "have a 'score' method. The estimator %r does not." % estimator) def make_scorer(score_func, greater_is_better=True, needs_proba=False, needs_threshold=False, **kwargs): """Make a scorer from a performance metric or loss function. This factory function wraps scoring functions for use in GridSearchCV and cross_val_score. It takes a score function, such as ``accuracy_score``, ``mean_squared_error``, ``adjusted_rand_index`` or ``average_precision`` and returns a callable that scores an estimator's output. Read more in the :ref:`User Guide <scoring>`. Parameters ---------- score_func : callable, Score function (or loss function) with signature ``score_func(y, y_pred, **kwargs)``. greater_is_better : boolean, default=True Whether score_func is a score function (default), meaning high is good, or a loss function, meaning low is good. In the latter case, the scorer object will sign-flip the outcome of the score_func. needs_proba : boolean, default=False Whether score_func requires predict_proba to get probability estimates out of a classifier. needs_threshold : boolean, default=False Whether score_func takes a continuous decision certainty. This only works for binary classification using estimators that have either a decision_function or predict_proba method. For example ``average_precision`` or the area under the roc curve can not be computed using discrete predictions alone. **kwargs : additional arguments Additional parameters to be passed to score_func. Returns ------- scorer : callable Callable object that returns a scalar score; greater is better. Examples -------- >>> from sklearn.metrics import fbeta_score, make_scorer >>> ftwo_scorer = make_scorer(fbeta_score, beta=2) >>> ftwo_scorer make_scorer(fbeta_score, beta=2) >>> from sklearn.grid_search import GridSearchCV >>> from sklearn.svm import LinearSVC >>> grid = GridSearchCV(LinearSVC(), param_grid={'C': [1, 10]}, ... scoring=ftwo_scorer) """ sign = 1 if greater_is_better else -1 if needs_proba and needs_threshold: raise ValueError("Set either needs_proba or needs_threshold to True," " but not both.") if needs_proba: cls = _ProbaScorer elif needs_threshold: cls = _ThresholdScorer else: cls = _PredictScorer return cls(score_func, sign, kwargs) # Standard regression scores r2_scorer = make_scorer(r2_score) mean_squared_error_scorer = make_scorer(mean_squared_error, greater_is_better=False) mean_absolute_error_scorer = make_scorer(mean_absolute_error, greater_is_better=False) median_absolute_error_scorer = make_scorer(median_absolute_error, greater_is_better=False) # Standard Classification Scores accuracy_scorer = make_scorer(accuracy_score) f1_scorer = make_scorer(f1_score) # Score functions that need decision values roc_auc_scorer = make_scorer(roc_auc_score, greater_is_better=True, needs_threshold=True) average_precision_scorer = make_scorer(average_precision_score, needs_threshold=True) precision_scorer = make_scorer(precision_score) recall_scorer = make_scorer(recall_score) # Score function for probabilistic classification log_loss_scorer = make_scorer(log_loss, greater_is_better=False, needs_proba=True) # Clustering scores adjusted_rand_scorer = make_scorer(adjusted_rand_score) SCORERS = dict(r2=r2_scorer, median_absolute_error=median_absolute_error_scorer, mean_absolute_error=mean_absolute_error_scorer, mean_squared_error=mean_squared_error_scorer, accuracy=accuracy_scorer, roc_auc=roc_auc_scorer, average_precision=average_precision_scorer, log_loss=log_loss_scorer, adjusted_rand_score=adjusted_rand_scorer) for name, metric in [('precision', precision_score), ('recall', recall_score), ('f1', f1_score)]: SCORERS[name] = make_scorer(metric) for average in ['macro', 'micro', 'samples', 'weighted']: qualified_name = '{0}_{1}'.format(name, average) SCORERS[qualified_name] = make_scorer(partial(metric, pos_label=None, average=average))
bsd-3-clause
zaxtax/scikit-learn
sklearn/linear_model/stochastic_gradient.py
34
50761
# Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com> (main author) # Mathieu Blondel (partial_fit support) # # License: BSD 3 clause """Classification and regression using Stochastic Gradient Descent (SGD).""" import numpy as np from abc import ABCMeta, abstractmethod from ..externals.joblib import Parallel, delayed from .base import LinearClassifierMixin, SparseCoefMixin from .base import make_dataset from ..base import BaseEstimator, RegressorMixin from ..feature_selection.from_model import _LearntSelectorMixin from ..utils import (check_array, check_random_state, check_X_y, deprecated) from ..utils.extmath import safe_sparse_dot from ..utils.multiclass import _check_partial_fit_first_call from ..utils.validation import check_is_fitted from ..externals import six from .sgd_fast import plain_sgd, average_sgd from ..utils.fixes import astype from ..utils import compute_class_weight from .sgd_fast import Hinge from .sgd_fast import SquaredHinge from .sgd_fast import Log from .sgd_fast import ModifiedHuber from .sgd_fast import SquaredLoss from .sgd_fast import Huber from .sgd_fast import EpsilonInsensitive from .sgd_fast import SquaredEpsilonInsensitive LEARNING_RATE_TYPES = {"constant": 1, "optimal": 2, "invscaling": 3, "pa1": 4, "pa2": 5} PENALTY_TYPES = {"none": 0, "l2": 2, "l1": 1, "elasticnet": 3} DEFAULT_EPSILON = 0.1 # Default value of ``epsilon`` parameter. class BaseSGD(six.with_metaclass(ABCMeta, BaseEstimator, SparseCoefMixin)): """Base class for SGD classification and regression.""" def __init__(self, loss, penalty='l2', alpha=0.0001, C=1.0, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=0.1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, warm_start=False, average=False): self.loss = loss self.penalty = penalty self.learning_rate = learning_rate self.epsilon = epsilon self.alpha = alpha self.C = C self.l1_ratio = l1_ratio self.fit_intercept = fit_intercept self.n_iter = n_iter self.shuffle = shuffle self.random_state = random_state self.verbose = verbose self.eta0 = eta0 self.power_t = power_t self.warm_start = warm_start self.average = average self._validate_params() self.coef_ = None if self.average > 0: self.standard_coef_ = None self.average_coef_ = None # iteration count for learning rate schedule # must not be int (e.g. if ``learning_rate=='optimal'``) self.t_ = None def set_params(self, *args, **kwargs): super(BaseSGD, self).set_params(*args, **kwargs) self._validate_params() return self @abstractmethod def fit(self, X, y): """Fit model.""" def _validate_params(self): """Validate input params. """ if not isinstance(self.shuffle, bool): raise ValueError("shuffle must be either True or False") if self.n_iter <= 0: raise ValueError("n_iter must be > zero") if not (0.0 <= self.l1_ratio <= 1.0): raise ValueError("l1_ratio must be in [0, 1]") if self.alpha < 0.0: raise ValueError("alpha must be >= 0") if self.learning_rate in ("constant", "invscaling"): if self.eta0 <= 0.0: raise ValueError("eta0 must be > 0") if self.learning_rate == "optimal" and self.alpha == 0: raise ValueError("alpha must be > 0 since " "learning_rate is 'optimal'. alpha is used " "to compute the optimal learning rate.") # raises ValueError if not registered self._get_penalty_type(self.penalty) self._get_learning_rate_type(self.learning_rate) if self.loss not in self.loss_functions: raise ValueError("The loss %s is not supported. " % self.loss) def _get_loss_function(self, loss): """Get concrete ``LossFunction`` object for str ``loss``. """ try: loss_ = self.loss_functions[loss] loss_class, args = loss_[0], loss_[1:] if loss in ('huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'): args = (self.epsilon, ) return loss_class(*args) except KeyError: raise ValueError("The loss %s is not supported. " % loss) def _get_learning_rate_type(self, learning_rate): try: return LEARNING_RATE_TYPES[learning_rate] except KeyError: raise ValueError("learning rate %s " "is not supported. " % learning_rate) def _get_penalty_type(self, penalty): penalty = str(penalty).lower() try: return PENALTY_TYPES[penalty] except KeyError: raise ValueError("Penalty %s is not supported. " % penalty) def _validate_sample_weight(self, sample_weight, n_samples): """Set the sample weight array.""" if sample_weight is None: # uniform sample weights sample_weight = np.ones(n_samples, dtype=np.float64, order='C') else: # user-provided array sample_weight = np.asarray(sample_weight, dtype=np.float64, order="C") if sample_weight.shape[0] != n_samples: raise ValueError("Shapes of X and sample_weight do not match.") return sample_weight def _allocate_parameter_mem(self, n_classes, n_features, coef_init=None, intercept_init=None): """Allocate mem for parameters; initialize if provided.""" if n_classes > 2: # allocate coef_ for multi-class if coef_init is not None: coef_init = np.asarray(coef_init, order="C") if coef_init.shape != (n_classes, n_features): raise ValueError("Provided ``coef_`` does not match " "dataset. ") self.coef_ = coef_init else: self.coef_ = np.zeros((n_classes, n_features), dtype=np.float64, order="C") # allocate intercept_ for multi-class if intercept_init is not None: intercept_init = np.asarray(intercept_init, order="C") if intercept_init.shape != (n_classes, ): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init else: self.intercept_ = np.zeros(n_classes, dtype=np.float64, order="C") else: # allocate coef_ for binary problem if coef_init is not None: coef_init = np.asarray(coef_init, dtype=np.float64, order="C") coef_init = coef_init.ravel() if coef_init.shape != (n_features,): raise ValueError("Provided coef_init does not " "match dataset.") self.coef_ = coef_init else: self.coef_ = np.zeros(n_features, dtype=np.float64, order="C") # allocate intercept_ for binary problem if intercept_init is not None: intercept_init = np.asarray(intercept_init, dtype=np.float64) if intercept_init.shape != (1,) and intercept_init.shape != (): raise ValueError("Provided intercept_init " "does not match dataset.") self.intercept_ = intercept_init.reshape(1,) else: self.intercept_ = np.zeros(1, dtype=np.float64, order="C") # initialize average parameters if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = np.zeros(self.coef_.shape, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(self.standard_intercept_.shape, dtype=np.float64, order="C") def _prepare_fit_binary(est, y, i): """Initialization for fit_binary. Returns y, coef, intercept. """ y_i = np.ones(y.shape, dtype=np.float64, order="C") y_i[y != est.classes_[i]] = -1.0 average_intercept = 0 average_coef = None if len(est.classes_) == 2: if not est.average: coef = est.coef_.ravel() intercept = est.intercept_[0] else: coef = est.standard_coef_.ravel() intercept = est.standard_intercept_[0] average_coef = est.average_coef_.ravel() average_intercept = est.average_intercept_[0] else: if not est.average: coef = est.coef_[i] intercept = est.intercept_[i] else: coef = est.standard_coef_[i] intercept = est.standard_intercept_[i] average_coef = est.average_coef_[i] average_intercept = est.average_intercept_[i] return y_i, coef, intercept, average_coef, average_intercept def fit_binary(est, i, X, y, alpha, C, learning_rate, n_iter, pos_weight, neg_weight, sample_weight): """Fit a single binary classifier. The i'th class is considered the "positive" class. """ # if average is not true, average_coef, and average_intercept will be # unused y_i, coef, intercept, average_coef, average_intercept = \ _prepare_fit_binary(est, y, i) assert y_i.shape[0] == y.shape[0] == sample_weight.shape[0] dataset, intercept_decay = make_dataset(X, y_i, sample_weight) penalty_type = est._get_penalty_type(est.penalty) learning_rate_type = est._get_learning_rate_type(learning_rate) # XXX should have random_state_! random_state = check_random_state(est.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if not est.average: return plain_sgd(coef, intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay) else: standard_coef, standard_intercept, average_coef, \ average_intercept = average_sgd(coef, intercept, average_coef, average_intercept, est.loss_function, penalty_type, alpha, C, est.l1_ratio, dataset, n_iter, int(est.fit_intercept), int(est.verbose), int(est.shuffle), seed, pos_weight, neg_weight, learning_rate_type, est.eta0, est.power_t, est.t_, intercept_decay, est.average) if len(est.classes_) == 2: est.average_intercept_[0] = average_intercept else: est.average_intercept_[i] = average_intercept return standard_coef, standard_intercept class BaseSGDClassifier(six.with_metaclass(ABCMeta, BaseSGD, LinearClassifierMixin)): loss_functions = { "hinge": (Hinge, 1.0), "squared_hinge": (SquaredHinge, 1.0), "perceptron": (Hinge, 0.0), "log": (Log, ), "modified_huber": (ModifiedHuber, ), "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(BaseSGDClassifier, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) self.class_weight = class_weight self.classes_ = None self.n_jobs = int(n_jobs) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, classes, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape self._validate_params() _check_partial_fit_first_call(self, classes) n_classes = self.classes_.shape[0] # Allocate datastructures from input arguments self._expanded_class_weight = compute_class_weight(self.class_weight, self.classes_, y) sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None or coef_init is not None: self._allocate_parameter_mem(n_classes, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) self.loss_function = self._get_loss_function(loss) if self.t_ is None: self.t_ = 1.0 # delegate to concrete training procedure if n_classes > 2: self._fit_multiclass(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) elif n_classes == 2: self._fit_binary(X, y, alpha=alpha, C=C, learning_rate=learning_rate, sample_weight=sample_weight, n_iter=n_iter) else: raise ValueError("The number of class labels must be " "greater than one.") return self def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if hasattr(self, "classes_"): self.classes_ = None X, y = check_X_y(X, y, 'csr', dtype=np.float64, order="C") n_samples, n_features = X.shape # labels can be encoded as float, int, or string literals # np.unique sorts in asc order; largest class id is positive class classes = np.unique(y) if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_coef_ = self.coef_ self.standard_intercept_ = self.intercept_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, classes, sample_weight, coef_init, intercept_init) return self def _fit_binary(self, X, y, alpha, C, sample_weight, learning_rate, n_iter): """Fit a binary classifier on X and y. """ coef, intercept = fit_binary(self, 1, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[1], self._expanded_class_weight[0], sample_weight) self.t_ += n_iter * X.shape[0] # need to be 2d if self.average > 0: if self.average <= self.t_ - 1: self.coef_ = self.average_coef_.reshape(1, -1) self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_.reshape(1, -1) self.standard_intercept_ = np.atleast_1d(intercept) self.intercept_ = self.standard_intercept_ else: self.coef_ = coef.reshape(1, -1) # intercept is a float, need to convert it to an array of length 1 self.intercept_ = np.atleast_1d(intercept) def _fit_multiclass(self, X, y, alpha, C, learning_rate, sample_weight, n_iter): """Fit a multi-class classifier by combining binary classifiers Each binary classifier predicts one class versus all others. This strategy is called OVA: One Versus All. """ # Use joblib to fit OvA in parallel. result = Parallel(n_jobs=self.n_jobs, backend="threading", verbose=self.verbose)( delayed(fit_binary)(self, i, X, y, alpha, C, learning_rate, n_iter, self._expanded_class_weight[i], 1., sample_weight) for i in range(len(self.classes_))) for i, (_, intercept) in enumerate(result): self.intercept_[i] = intercept self.t_ += n_iter * X.shape[0] if self.average > 0: if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.standard_intercept_ = np.atleast_1d(self.intercept_) self.intercept_ = self.standard_intercept_ def partial_fit(self, X, y, classes=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of the training data y : numpy array, shape (n_samples,) Subset of the target values classes : array, shape (n_classes,) Classes across all calls to partial_fit. Can be obtained by via `np.unique(y_all)`, where y_all is the target vector of the entire dataset. This argument is required for the first call to partial_fit and can be omitted in the subsequent calls. Note that y doesn't need to contain all labels in `classes`. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ if self.class_weight in ['balanced', 'auto']: raise ValueError("class_weight '{0}' is not supported for " "partial_fit. In order to use 'balanced' weights," " use compute_class_weight('{0}', classes, y). " "In place of y you can us a large enough sample " "of the full training set target to properly " "estimate the class frequency distributions. " "Pass the resulting weights as the class_weight " "parameter.".format(self.class_weight)) return self._partial_fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, classes=classes, sample_weight=sample_weight, coef_init=None, intercept_init=None) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_classes, n_features) The initial coefficients to warm-start the optimization. intercept_init : array, shape (n_classes,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. These weights will be multiplied with class_weight (passed through the constructor) if class_weight is specified Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) class SGDClassifier(BaseSGDClassifier, _LearntSelectorMixin): """Linear classifiers (SVM, logistic regression, a.o.) with SGD training. This estimator implements regularized linear models with stochastic gradient descent (SGD) learning: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). SGD allows minibatch (online/out-of-core) learning, see the partial_fit method. For best results using the default learning rate schedule, the data should have zero mean and unit variance. This implementation works with data represented as dense or sparse arrays of floating point values for the features. The model it fits can be controlled with the loss parameter; by default, it fits a linear support vector machine (SVM). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'hinge', 'log', 'modified_huber', 'squared_hinge',\ 'perceptron', or a regression loss: 'squared_loss', 'huber',\ 'epsilon_insensitive', or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'hinge', which gives a linear SVM. The 'log' loss gives logistic regression, a probabilistic classifier. 'modified_huber' is another smooth loss that brings tolerance to outliers as well as probability estimates. 'squared_hinge' is like hinge but is quadratically penalized. 'perceptron' is the linear loss used by the perceptron algorithm. The other losses are designed for regression but can be useful in classification as well; see SGDRegressor for a description. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. n_jobs : integer, optional The number of CPUs to use to do the OVA (One Versus All, for multi-class problems) computation. -1 means 'all CPUs'. Defaults to 1. learning_rate : string, optional The learning rate schedule: constant: eta = eta0 optimal: eta = 1.0 / (alpha * (t + t0)) [default] invscaling: eta = eta0 / pow(t, power_t) where t0 is chosen by a heuristic proposed by Leon Bottou. eta0 : double The initial learning rate for the 'constant' or 'invscaling' schedules. The default value is 0.0 as eta0 is not used by the default schedule 'optimal'. power_t : double The exponent for inverse scaling learning rate [default 0.5]. class_weight : dict, {class_label: weight} or "balanced" or None, optional Preset for the class_weight fit parameter. Weights associated with classes. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))`` warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So average=10 will begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (1, n_features) if n_classes == 2 else (n_classes,\ n_features) Weights assigned to the features. intercept_ : array, shape (1,) if n_classes == 2 else (n_classes,) Constants in decision function. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> X = np.array([[-1, -1], [-2, -1], [1, 1], [2, 1]]) >>> Y = np.array([1, 1, 2, 2]) >>> clf = linear_model.SGDClassifier() >>> clf.fit(X, Y) ... #doctest: +NORMALIZE_WHITESPACE SGDClassifier(alpha=0.0001, average=False, class_weight=None, epsilon=0.1, eta0=0.0, fit_intercept=True, l1_ratio=0.15, learning_rate='optimal', loss='hinge', n_iter=5, n_jobs=1, penalty='l2', power_t=0.5, random_state=None, shuffle=True, verbose=0, warm_start=False) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- LinearSVC, LogisticRegression, Perceptron """ def __init__(self, loss="hinge", penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=1, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, class_weight=None, warm_start=False, average=False): super(SGDClassifier, self).__init__( loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, n_jobs=n_jobs, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, class_weight=class_weight, warm_start=warm_start, average=average) def _check_proba(self): check_is_fitted(self, "t_") if self.loss not in ("log", "modified_huber"): raise AttributeError("probability estimates are not available for" " loss=%r" % self.loss) @property def predict_proba(self): """Probability estimates. This method is only available for log loss and modified Huber loss. Multiclass probability estimates are derived from binary (one-vs.-rest) estimates by simple normalization, as recommended by Zadrozny and Elkan. Binary probability estimates for loss="modified_huber" are given by (clip(decision_function(X), -1, 1) + 1) / 2. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples, n_classes) Returns the probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. References ---------- Zadrozny and Elkan, "Transforming classifier scores into multiclass probability estimates", SIGKDD'02, http://www.research.ibm.com/people/z/zadrozny/kdd2002-Transf.pdf The justification for the formula in the loss="modified_huber" case is in the appendix B in: http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf """ self._check_proba() return self._predict_proba def _predict_proba(self, X): if self.loss == "log": return self._predict_proba_lr(X) elif self.loss == "modified_huber": binary = (len(self.classes_) == 2) scores = self.decision_function(X) if binary: prob2 = np.ones((scores.shape[0], 2)) prob = prob2[:, 1] else: prob = scores np.clip(scores, -1, 1, prob) prob += 1. prob /= 2. if binary: prob2[:, 0] -= prob prob = prob2 else: # the above might assign zero to all classes, which doesn't # normalize neatly; work around this to produce uniform # probabilities prob_sum = prob.sum(axis=1) all_zero = (prob_sum == 0) if np.any(all_zero): prob[all_zero, :] = 1 prob_sum[all_zero] = len(self.classes_) # normalize prob /= prob_sum.reshape((prob.shape[0], -1)) return prob else: raise NotImplementedError("predict_(log_)proba only supported when" " loss='log' or loss='modified_huber' " "(%r given)" % self.loss) @property def predict_log_proba(self): """Log of probability estimates. This method is only available for log loss and modified Huber loss. When loss="modified_huber", probability estimates may be hard zeros and ones, so taking the logarithm is not possible. See ``predict_proba`` for details. Parameters ---------- X : array-like, shape (n_samples, n_features) Returns ------- T : array-like, shape (n_samples, n_classes) Returns the log-probability of the sample for each class in the model, where classes are ordered as they are in `self.classes_`. """ self._check_proba() return self._predict_log_proba def _predict_log_proba(self, X): return np.log(self.predict_proba(X)) class BaseSGDRegressor(BaseSGD, RegressorMixin): loss_functions = { "squared_loss": (SquaredLoss, ), "huber": (Huber, DEFAULT_EPSILON), "epsilon_insensitive": (EpsilonInsensitive, DEFAULT_EPSILON), "squared_epsilon_insensitive": (SquaredEpsilonInsensitive, DEFAULT_EPSILON), } @abstractmethod def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(BaseSGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average) def _partial_fit(self, X, y, alpha, C, loss, learning_rate, n_iter, sample_weight, coef_init, intercept_init): X, y = check_X_y(X, y, "csr", copy=False, order='C', dtype=np.float64) y = astype(y, np.float64, copy=False) n_samples, n_features = X.shape self._validate_params() # Allocate datastructures from input arguments sample_weight = self._validate_sample_weight(sample_weight, n_samples) if self.coef_ is None: self._allocate_parameter_mem(1, n_features, coef_init, intercept_init) elif n_features != self.coef_.shape[-1]: raise ValueError("Number of features %d does not match previous " "data %d." % (n_features, self.coef_.shape[-1])) if self.average > 0 and self.average_coef_ is None: self.average_coef_ = np.zeros(n_features, dtype=np.float64, order="C") self.average_intercept_ = np.zeros(1, dtype=np.float64, order="C") self._fit_regressor(X, y, alpha, C, loss, learning_rate, sample_weight, n_iter) return self def partial_fit(self, X, y, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Subset of training data y : numpy array of shape (n_samples,) Subset of target values sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples. If not provided, uniform weights are assumed. Returns ------- self : returns an instance of self. """ return self._partial_fit(X, y, self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, n_iter=1, sample_weight=sample_weight, coef_init=None, intercept_init=None) def _fit(self, X, y, alpha, C, loss, learning_rate, coef_init=None, intercept_init=None, sample_weight=None): if self.warm_start and self.coef_ is not None: if coef_init is None: coef_init = self.coef_ if intercept_init is None: intercept_init = self.intercept_ else: self.coef_ = None self.intercept_ = None if self.average > 0: self.standard_intercept_ = self.intercept_ self.standard_coef_ = self.coef_ self.average_coef_ = None self.average_intercept_ = None # Clear iteration count for multiple call to fit. self.t_ = None return self._partial_fit(X, y, alpha, C, loss, learning_rate, self.n_iter, sample_weight, coef_init, intercept_init) def fit(self, X, y, coef_init=None, intercept_init=None, sample_weight=None): """Fit linear model with Stochastic Gradient Descent. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data y : numpy array, shape (n_samples,) Target values coef_init : array, shape (n_features,) The initial coefficients to warm-start the optimization. intercept_init : array, shape (1,) The initial intercept to warm-start the optimization. sample_weight : array-like, shape (n_samples,), optional Weights applied to individual samples (1. for unweighted). Returns ------- self : returns an instance of self. """ return self._fit(X, y, alpha=self.alpha, C=1.0, loss=self.loss, learning_rate=self.learning_rate, coef_init=coef_init, intercept_init=intercept_init, sample_weight=sample_weight) @deprecated(" and will be removed in 0.19.") def decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _decision_function(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ check_is_fitted(self, ["t_", "coef_", "intercept_"], all_or_any=all) X = check_array(X, accept_sparse='csr') scores = safe_sparse_dot(X, self.coef_.T, dense_output=True) + self.intercept_ return scores.ravel() def predict(self, X): """Predict using the linear model Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Returns ------- array, shape (n_samples,) Predicted target values per element in X. """ return self._decision_function(X) def _fit_regressor(self, X, y, alpha, C, loss, learning_rate, sample_weight, n_iter): dataset, intercept_decay = make_dataset(X, y, sample_weight) loss_function = self._get_loss_function(loss) penalty_type = self._get_penalty_type(self.penalty) learning_rate_type = self._get_learning_rate_type(learning_rate) if self.t_ is None: self.t_ = 1.0 random_state = check_random_state(self.random_state) # numpy mtrand expects a C long which is a signed 32 bit integer under # Windows seed = random_state.randint(0, np.iinfo(np.int32).max) if self.average > 0: self.standard_coef_, self.standard_intercept_, \ self.average_coef_, self.average_intercept_ =\ average_sgd(self.standard_coef_, self.standard_intercept_[0], self.average_coef_, self.average_intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay, self.average) self.average_intercept_ = np.atleast_1d(self.average_intercept_) self.standard_intercept_ = np.atleast_1d(self.standard_intercept_) self.t_ += n_iter * X.shape[0] if self.average <= self.t_ - 1.0: self.coef_ = self.average_coef_ self.intercept_ = self.average_intercept_ else: self.coef_ = self.standard_coef_ self.intercept_ = self.standard_intercept_ else: self.coef_, self.intercept_ = \ plain_sgd(self.coef_, self.intercept_[0], loss_function, penalty_type, alpha, C, self.l1_ratio, dataset, n_iter, int(self.fit_intercept), int(self.verbose), int(self.shuffle), seed, 1.0, 1.0, learning_rate_type, self.eta0, self.power_t, self.t_, intercept_decay) self.t_ += n_iter * X.shape[0] self.intercept_ = np.atleast_1d(self.intercept_) class SGDRegressor(BaseSGDRegressor, _LearntSelectorMixin): """Linear model fitted by minimizing a regularized empirical loss with SGD SGD stands for Stochastic Gradient Descent: the gradient of the loss is estimated each sample at a time and the model is updated along the way with a decreasing strength schedule (aka learning rate). The regularizer is a penalty added to the loss function that shrinks model parameters towards the zero vector using either the squared euclidean norm L2 or the absolute norm L1 or a combination of both (Elastic Net). If the parameter update crosses the 0.0 value because of the regularizer, the update is truncated to 0.0 to allow for learning sparse models and achieve online feature selection. This implementation works with data represented as dense numpy arrays of floating point values for the features. Read more in the :ref:`User Guide <sgd>`. Parameters ---------- loss : str, 'squared_loss', 'huber', 'epsilon_insensitive', \ or 'squared_epsilon_insensitive' The loss function to be used. Defaults to 'squared_loss' which refers to the ordinary least squares fit. 'huber' modifies 'squared_loss' to focus less on getting outliers correct by switching from squared to linear loss past a distance of epsilon. 'epsilon_insensitive' ignores errors less than epsilon and is linear past that; this is the loss function used in SVR. 'squared_epsilon_insensitive' is the same but becomes squared loss past a tolerance of epsilon. penalty : str, 'none', 'l2', 'l1', or 'elasticnet' The penalty (aka regularization term) to be used. Defaults to 'l2' which is the standard regularizer for linear SVM models. 'l1' and 'elasticnet' might bring sparsity to the model (feature selection) not achievable with 'l2'. alpha : float Constant that multiplies the regularization term. Defaults to 0.0001 Also used to compute learning_rate when set to 'optimal'. l1_ratio : float The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1. l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1. Defaults to 0.15. fit_intercept : bool Whether the intercept should be estimated or not. If False, the data is assumed to be already centered. Defaults to True. n_iter : int, optional The number of passes over the training data (aka epochs). The number of iterations is set to 1 if using partial_fit. Defaults to 5. shuffle : bool, optional Whether or not the training data should be shuffled after each epoch. Defaults to True. random_state : int seed, RandomState instance, or None (default) The seed of the pseudo random number generator to use when shuffling the data. verbose : integer, optional The verbosity level. epsilon : float Epsilon in the epsilon-insensitive loss functions; only if `loss` is 'huber', 'epsilon_insensitive', or 'squared_epsilon_insensitive'. For 'huber', determines the threshold at which it becomes less important to get the prediction exactly right. For epsilon-insensitive, any differences between the current prediction and the correct label are ignored if they are less than this threshold. learning_rate : string, optional The learning rate: constant: eta = eta0 optimal: eta = 1.0/(alpha * t) invscaling: eta = eta0 / pow(t, power_t) [default] eta0 : double, optional The initial learning rate [default 0.01]. power_t : double, optional The exponent for inverse scaling learning rate [default 0.25]. warm_start : bool, optional When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. average : bool or int, optional When set to True, computes the averaged SGD weights and stores the result in the ``coef_`` attribute. If set to an int greater than 1, averaging will begin once the total number of samples seen reaches average. So ``average=10 will`` begin averaging after seeing 10 samples. Attributes ---------- coef_ : array, shape (n_features,) Weights assigned to the features. intercept_ : array, shape (1,) The intercept term. average_coef_ : array, shape (n_features,) Averaged weights assigned to the features. average_intercept_ : array, shape (1,) The averaged intercept term. Examples -------- >>> import numpy as np >>> from sklearn import linear_model >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = linear_model.SGDRegressor() >>> clf.fit(X, y) ... #doctest: +NORMALIZE_WHITESPACE SGDRegressor(alpha=0.0001, average=False, epsilon=0.1, eta0=0.01, fit_intercept=True, l1_ratio=0.15, learning_rate='invscaling', loss='squared_loss', n_iter=5, penalty='l2', power_t=0.25, random_state=None, shuffle=True, verbose=0, warm_start=False) See also -------- Ridge, ElasticNet, Lasso, SVR """ def __init__(self, loss="squared_loss", penalty="l2", alpha=0.0001, l1_ratio=0.15, fit_intercept=True, n_iter=5, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, random_state=None, learning_rate="invscaling", eta0=0.01, power_t=0.25, warm_start=False, average=False): super(SGDRegressor, self).__init__(loss=loss, penalty=penalty, alpha=alpha, l1_ratio=l1_ratio, fit_intercept=fit_intercept, n_iter=n_iter, shuffle=shuffle, verbose=verbose, epsilon=epsilon, random_state=random_state, learning_rate=learning_rate, eta0=eta0, power_t=power_t, warm_start=warm_start, average=average)
bsd-3-clause