sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def _skip_section(self): """Skip a section""" self._last = self._f.readline() while len(self._last) > 0 and len(self._last[0].strip()) == 0: self._last = self._f.readline()
Skip a section
entailment
def _read_section(self): """Read and return an entire section""" lines = [self._last[self._last.find(":")+1:]] self._last = self._f.readline() while len(self._last) > 0 and len(self._last[0].strip()) == 0: lines.append(self._last) self._last = self._f.readline() return lines
Read and return an entire section
entailment
def get_next(self, label): """Get the next section with the given label""" while self._get_current_label() != label: self._skip_section() return self._read_section()
Get the next section with the given label
entailment
def _read_frame(self): """Read a single frame from the trajectory""" self._secfile.get_next("Frame Number") frame = ATRJFrame() # Read the time and energy energy_lines = self._secfile.get_next("Time/Energy") energy_words = energy_lines[0].split() frame.time = float(energy_words[0])*picosecond frame.step = int(energy_words[1]) frame.total_energy = float(energy_words[2])*kcalmol # Read the coordinates coord_lines = self._secfile.get_next("Coordinates") frame.coordinates = np.zeros((self.num_atoms, 3), float) for index, line in enumerate(coord_lines): words = line.split() frame.coordinates[index, 0] = float(words[1]) frame.coordinates[index, 1] = float(words[2]) frame.coordinates[index, 2] = float(words[3]) frame.coordinates *= angstrom # Done return frame
Read a single frame from the trajectory
entailment
def get_cube_points(origin, axes, nrep): '''Generate the Cartesian coordinates of the points in a cube file *Arguemnts:* origin The cartesian coordinate for the origin of the grid. axes The 3 by 3 array with the grid spacings as rows. nrep The number of grid points along each axis. ''' points = np.zeros((nrep[0], nrep[1], nrep[2], 3), float) points[:] = origin points[:] += np.outer(np.arange(nrep[0], dtype=float), axes[0]).reshape((-1,1,1,3)) points[:] += np.outer(np.arange(nrep[1], dtype=float), axes[1]).reshape((1,-1,1,3)) points[:] += np.outer(np.arange(nrep[2], dtype=float), axes[2]).reshape((1,1,-1,3)) return points
Generate the Cartesian coordinates of the points in a cube file *Arguemnts:* origin The cartesian coordinate for the origin of the grid. axes The 3 by 3 array with the grid spacings as rows. nrep The number of grid points along each axis.
entailment
def from_file(cls, filename): '''Create a cube object by loading data from a file. *Arguemnts:* filename The file to load. It must contain the header with the description of the grid and the molecule. ''' with open(filename) as f: molecule, origin, axes, nrep, subtitle, nuclear_charges = \ read_cube_header(f) data = np.zeros(tuple(nrep), float) tmp = data.ravel() counter = 0 while True: line = f.readline() if len(line) == 0: break words = line.split() for word in words: tmp[counter] = float(word) counter += 1 return cls(molecule, origin, axes, nrep, data, subtitle, nuclear_charges)
Create a cube object by loading data from a file. *Arguemnts:* filename The file to load. It must contain the header with the description of the grid and the molecule.
entailment
def write_to_file(self, fn): '''Write the cube to a file in the Gaussian cube format.''' with open(fn, 'w') as f: f.write(' {}\n'.format(self.molecule.title)) f.write(' {}\n'.format(self.subtitle)) def write_grid_line(n, v): f.write('%5i % 11.6f % 11.6f % 11.6f\n' % (n, v[0], v[1], v[2])) write_grid_line(self.molecule.size, self.origin) write_grid_line(self.data.shape[0], self.axes[0]) write_grid_line(self.data.shape[1], self.axes[1]) write_grid_line(self.data.shape[2], self.axes[2]) def write_atom_line(n, nc, v): f.write('%5i % 11.6f % 11.6f % 11.6f % 11.6f\n' % (n, nc, v[0], v[1], v[2])) for i in range(self.molecule.size): write_atom_line(self.molecule.numbers[i], self.nuclear_charges[i], self.molecule.coordinates[i]) for i0 in range(self.data.shape[0]): for i1 in range(self.data.shape[1]): col = 0 for i2 in range(self.data.shape[2]): value = self.data[i0, i1, i2] if col % 6 == 5: f.write(' % 12.5e\n' % value) else: f.write(' % 12.5e' % value) col += 1 if col % 6 != 5: f.write('\n')
Write the cube to a file in the Gaussian cube format.
entailment
def copy(self, newdata=None): '''Return a copy of the cube with optionally new data.''' if newdata is None: newdata = self.data.copy() return self.__class__( self.molecule, self.origin.copy(), self.axes.copy(), self.nrep.copy(), newdata, self.subtitle, self.nuclear_charges )
Return a copy of the cube with optionally new data.
entailment
def _consistent(self): """Checks the constency between self.__index and self.__order""" if len(self.__order) != sum(len(values) for values in self.__index.values()): return False import copy tmp = copy.copy(self.__order) for key, values in self.__index.items(): for value in values: if value.name != key: return False if value in tmp: tmp.remove(value) else: return False if isinstance(value, CP2KSection): if not value._consistent(): return False return True
Checks the constency between self.__index and self.__order
entailment
def append(self, child): """Add a child section or keyword""" if not (isinstance(child, CP2KSection) or isinstance(child, CP2KKeyword)): raise TypeError("The child must be a CP2KSection or a CP2KKeyword, got: %s." % child) l = self.__index.setdefault(child.name, []) l.append(child) self.__order.append(child)
Add a child section or keyword
entailment
def dump_children(self, f, indent=''): """Dump the children of the current section to a file-like object""" for child in self.__order: child.dump(f, indent+' ')
Dump the children of the current section to a file-like object
entailment
def dump(self, f, indent=''): """Dump this section and its children to a file-like object""" print(("%s&%s %s" % (indent, self.__name, self.section_parameters)).rstrip(), file=f) self.dump_children(f, indent) print("%s&END %s" % (indent, self.__name), file=f)
Dump this section and its children to a file-like object
entailment
def readline(self, f): """A helper method that only reads uncommented lines""" while True: line = f.readline() if len(line) == 0: raise EOFError line = line[:line.find('#')] line = line.strip() if len(line) > 0: return line
A helper method that only reads uncommented lines
entailment
def load_children(self, f): """Load the children of this section from a file-like object""" while True: line = self.readline(f) if line[0] == '&': if line[1:].startswith("END"): check_name = line[4:].strip().upper() if check_name != self.__name: raise FileFormatError("CP2KSection end mismatch, pos=%s", f.tell()) break else: section = CP2KSection() section.load(f, line) self.append(section) else: keyword = CP2KKeyword() keyword.load(line) self.append(keyword)
Load the children of this section from a file-like object
entailment
def load(self, f, line=None): """Load this section from a file-like object""" if line is None: # in case the file contains only a fragment of an input file, # this is useful. line = f.readlin() words = line[1:].split() self.__name = words[0].upper() self.section_parameters = " ".join(words[1:]) try: self.load_children(f) except EOFError: raise FileFormatError("Unexpected end of file, section '%s' not ended." % self.__name)
Load this section from a file-like object
entailment
def dump(self, f, indent=''): """Dump this keyword to a file-like object""" if self.__unit is None: print(("%s%s %s" % (indent, self.__name, self.__value)).rstrip(), file=f) else: print(("%s%s [%s] %s" % (indent, self.__name, self.__unit, self.__value)).rstrip(), file=f)
Dump this keyword to a file-like object
entailment
def load(self, line): """Load this keyword from a file-like object""" words = line.split() try: float(words[0]) self.__name = "" self.__value = " ".join(words) except ValueError: self.__name = words[0].upper() if len(words) > 2 and words[1][0]=="[" and words[1][-1]=="]": self.unit = words[1][1:-1] self.__value = " ".join(words[2:]) else: self.__value = " ".join(words[1:])
Load this keyword from a file-like object
entailment
def set_value(self, value): """Set the value associated with the keyword""" if not isinstance(value, str): raise TypeError("A value must be a string, got %s." % value) self.__value = value
Set the value associated with the keyword
entailment
def read_from_file(filename): """ Arguments: | ``filename`` -- the filename of the input file Use as follows:: >>> if = CP2KInputFile.read_from_file("somefile.inp") >>> for section in if: ... print section.name """ with open(filename) as f: result = CP2KInputFile() try: while True: result.load_children(f) except EOFError: pass return result
Arguments: | ``filename`` -- the filename of the input file Use as follows:: >>> if = CP2KInputFile.read_from_file("somefile.inp") >>> for section in if: ... print section.name
entailment
def _read_frame(self): """Read and return the next time frame""" pos = np.zeros((self.num_atoms, 3), float) vel = np.zeros((self.num_atoms, 3), float) for i in range(self.num_atoms): line = next(self._f) words = line.split() pos[i, 0] = float(words[1]) pos[i, 1] = float(words[2]) pos[i, 2] = float(words[3]) vel[i, 0] = float(words[4]) vel[i, 1] = float(words[5]) vel[i, 2] = float(words[6]) return pos, vel
Read and return the next time frame
entailment
def check_matrix(m): """Check the sanity of the given 4x4 transformation matrix""" if m.shape != (4, 4): raise ValueError("The argument must be a 4x4 array.") if max(abs(m[3, 0:3])) > eps: raise ValueError("The given matrix does not have correct translational part") if abs(m[3, 3] - 1.0) > eps: raise ValueError("The lower right element of the given matrix must be 1.0.")
Check the sanity of the given 4x4 transformation matrix
entailment
def superpose(ras, rbs, weights=None): """Compute the transformation that minimizes the RMSD between the points ras and rbs Arguments: | ``ras`` -- a ``np.array`` with 3D coordinates of geometry A, shape=(N,3) | ``rbs`` -- a ``np.array`` with 3D coordinates of geometry B, shape=(N,3) Optional arguments: | ``weights`` -- a numpy array with fitting weights for each coordinate, shape=(N,) Return value: | ``transformation`` -- the transformation that brings geometry A into overlap with geometry B Each row in ras and rbs represents a 3D coordinate. Corresponding rows contain the points that are brought into overlap by the fitting procedure. The implementation is based on the Kabsch Algorithm: http://dx.doi.org/10.1107%2FS0567739476001873 """ if weights is None: ma = ras.mean(axis=0) mb = rbs.mean(axis=0) else: total_weight = weights.sum() ma = np.dot(weights, ras)/total_weight mb = np.dot(weights, rbs)/total_weight # Kabsch if weights is None: A = np.dot((rbs-mb).transpose(), ras-ma) else: weights = weights.reshape((-1, 1)) A = np.dot(((rbs-mb)*weights).transpose(), (ras-ma)*weights) v, s, wt = np.linalg.svd(A) s[:] = 1 if np.linalg.det(np.dot(v, wt)) < 0: s[2] = -1 r = np.dot(wt.T*s, v.T) return Complete(r, np.dot(r, -mb) + ma)
Compute the transformation that minimizes the RMSD between the points ras and rbs Arguments: | ``ras`` -- a ``np.array`` with 3D coordinates of geometry A, shape=(N,3) | ``rbs`` -- a ``np.array`` with 3D coordinates of geometry B, shape=(N,3) Optional arguments: | ``weights`` -- a numpy array with fitting weights for each coordinate, shape=(N,) Return value: | ``transformation`` -- the transformation that brings geometry A into overlap with geometry B Each row in ras and rbs represents a 3D coordinate. Corresponding rows contain the points that are brought into overlap by the fitting procedure. The implementation is based on the Kabsch Algorithm: http://dx.doi.org/10.1107%2FS0567739476001873
entailment
def fit_rmsd(ras, rbs, weights=None): """Fit geometry rbs onto ras, returns more info than superpose Arguments: | ``ras`` -- a numpy array with 3D coordinates of geometry A, shape=(N,3) | ``rbs`` -- a numpy array with 3D coordinates of geometry B, shape=(N,3) Optional arguments: | ``weights`` -- a numpy array with fitting weights for each coordinate, shape=(N,) Return values: | ``transformation`` -- the transformation that brings geometry A into overlap with geometry B | ``rbs_trans`` -- the transformed coordinates of geometry B | ``rmsd`` -- the rmsd of the distances between corresponding atoms in geometry A and B This is a utility routine based on the function superpose. It just computes rbs_trans and rmsd after calling superpose with the same arguments """ transformation = superpose(ras, rbs, weights) rbs_trans = transformation * rbs rmsd = compute_rmsd(ras, rbs_trans) return transformation, rbs_trans, rmsd
Fit geometry rbs onto ras, returns more info than superpose Arguments: | ``ras`` -- a numpy array with 3D coordinates of geometry A, shape=(N,3) | ``rbs`` -- a numpy array with 3D coordinates of geometry B, shape=(N,3) Optional arguments: | ``weights`` -- a numpy array with fitting weights for each coordinate, shape=(N,) Return values: | ``transformation`` -- the transformation that brings geometry A into overlap with geometry B | ``rbs_trans`` -- the transformed coordinates of geometry B | ``rmsd`` -- the rmsd of the distances between corresponding atoms in geometry A and B This is a utility routine based on the function superpose. It just computes rbs_trans and rmsd after calling superpose with the same arguments
entailment
def inv(self): """The inverse translation""" result = Translation(-self.t) result._cache_inv = self return result
The inverse translation
entailment
def apply_to(self, x, columns=False): """Apply this translation to the given object The argument can be several sorts of objects: * ``np.array`` with shape (3, ) * ``np.array`` with shape (N, 3) * ``np.array`` with shape (3, N), use ``columns=True`` * ``Translation`` * ``Rotation`` * ``Complete`` * ``UnitCell`` In case of arrays, the 3D vectors are translated. In case of trans- formations, a new transformation is returned that consists of this translation applied AFTER the given translation. In case of a unit cell, the original object is returned. This method is equivalent to ``self*x``. """ if isinstance(x, np.ndarray) and len(x.shape) == 2 and x.shape[0] == 3 and columns: return x + self.t.reshape((3,1)) if isinstance(x, np.ndarray) and (x.shape == (3, ) or (len(x.shape) == 2 and x.shape[1] == 3)) and not columns: return x + self.t elif isinstance(x, Complete): return Complete(x.r, x.t + self.t) elif isinstance(x, Translation): return Translation(x.t + self.t) elif isinstance(x, Rotation): return Complete(x.r, self.t) elif isinstance(x, UnitCell): return x else: raise ValueError("Can not apply this translation to %s" % x)
Apply this translation to the given object The argument can be several sorts of objects: * ``np.array`` with shape (3, ) * ``np.array`` with shape (N, 3) * ``np.array`` with shape (3, N), use ``columns=True`` * ``Translation`` * ``Rotation`` * ``Complete`` * ``UnitCell`` In case of arrays, the 3D vectors are translated. In case of trans- formations, a new transformation is returned that consists of this translation applied AFTER the given translation. In case of a unit cell, the original object is returned. This method is equivalent to ``self*x``.
entailment
def compare(self, other, t_threshold=1e-3): """Compare two translations The RMSD of the translation vectors is computed. The return value is True when the RMSD is below the threshold, i.e. when the two translations are almost identical. """ return compute_rmsd(self.t, other.t) < t_threshold
Compare two translations The RMSD of the translation vectors is computed. The return value is True when the RMSD is below the threshold, i.e. when the two translations are almost identical.
entailment
def _check_r(self, r): """the columns must orthogonal""" if abs(np.dot(r[:, 0], r[:, 0]) - 1) > eps or \ abs(np.dot(r[:, 0], r[:, 0]) - 1) > eps or \ abs(np.dot(r[:, 0], r[:, 0]) - 1) > eps or \ np.dot(r[:, 0], r[:, 1]) > eps or \ np.dot(r[:, 1], r[:, 2]) > eps or \ np.dot(r[:, 2], r[:, 0]) > eps: raise ValueError("The rotation matrix is significantly non-orthonormal.")
the columns must orthogonal
entailment
def random(cls): """Return a random rotation""" axis = random_unit() angle = np.random.uniform(0,2*np.pi) invert = bool(np.random.randint(0,2)) return Rotation.from_properties(angle, axis, invert)
Return a random rotation
entailment
def from_properties(cls, angle, axis, invert): """Initialize a rotation based on the properties""" norm = np.linalg.norm(axis) if norm > 0: x = axis[0] / norm y = axis[1] / norm z = axis[2] / norm c = np.cos(angle) s = np.sin(angle) r = (1-2*invert) * np.array([ [x*x*(1-c)+c , x*y*(1-c)-z*s, x*z*(1-c)+y*s], [x*y*(1-c)+z*s, y*y*(1-c)+c , y*z*(1-c)-x*s], [x*z*(1-c)-y*s, y*z*(1-c)+x*s, z*z*(1-c)+c ] ]) else: r = np.identity(3) * (1-2*invert) return cls(r)
Initialize a rotation based on the properties
entailment
def properties(self): """Rotation properties: angle, axis, invert""" # determine wether an inversion rotation has been applied invert = (np.linalg.det(self.r) < 0) factor = {True: -1, False: 1}[invert] # get the rotation data # trace(r) = 1+2*cos(angle) cos_angle = 0.5*(factor*np.trace(self.r) - 1) if cos_angle > 1: cos_angle = 1.0 if cos_angle < -1: cos_angle = -1.0 # the antisymmetric part of the non-diagonal vector tell us something # about sin(angle) and n. axis = 0.5*factor*np.array([-self.r[1, 2] + self.r[2, 1], self.r[0, 2] - self.r[2, 0], -self.r[0, 1] + self.r[1, 0]]) sin_angle = np.linalg.norm(axis) # look for the best way to normalize the if (sin_angle == 0.0) and (cos_angle > 0): axis[2] = 1.0 elif abs(sin_angle) < (1-cos_angle): for index in range(3): axis[index] = {True: -1, False: 1}[axis[index] < 0] * np.sqrt(abs((factor*self.r[index, index] - cos_angle) / (1 - cos_angle))) else: axis = axis / sin_angle # Finally calculate the angle: angle = np.arctan2(sin_angle, cos_angle) return angle, axis, invert
Rotation properties: angle, axis, invert
entailment
def matrix(self): """The 4x4 matrix representation of this rotation""" result = np.identity(4, float) result[0:3, 0:3] = self.r return result
The 4x4 matrix representation of this rotation
entailment
def inv(self): """The inverse rotation""" result = Rotation(self.r.transpose()) result._cache_inv = self return result
The inverse rotation
entailment
def apply_to(self, x, columns=False): """Apply this rotation to the given object The argument can be several sorts of objects: * ``np.array`` with shape (3, ) * ``np.array`` with shape (N, 3) * ``np.array`` with shape (3, N), use ``columns=True`` * ``Translation`` * ``Rotation`` * ``Complete`` * ``UnitCell`` In case of arrays, the 3D vectors are rotated. In case of trans- formations, a transformation is returned that consists of this rotation applied AFTER the given translation. In case of a unit cell, a unit cell with rotated cell vectors is returned. This method is equivalent to ``self*x``. """ if isinstance(x, np.ndarray) and len(x.shape) == 2 and x.shape[0] == 3 and columns: return np.dot(self.r, x) if isinstance(x, np.ndarray) and (x.shape == (3, ) or (len(x.shape) == 2 and x.shape[1] == 3)) and not columns: return np.dot(x, self.r.transpose()) elif isinstance(x, Complete): return Complete(np.dot(self.r, x.r), np.dot(self.r, x.t)) elif isinstance(x, Translation): return Complete(self.r, np.dot(self.r, x.t)) elif isinstance(x, Rotation): return Rotation(np.dot(self.r, x.r)) elif isinstance(x, UnitCell): return UnitCell(np.dot(self.r, x.matrix), x.active) else: raise ValueError("Can not apply this rotation to %s" % x)
Apply this rotation to the given object The argument can be several sorts of objects: * ``np.array`` with shape (3, ) * ``np.array`` with shape (N, 3) * ``np.array`` with shape (3, N), use ``columns=True`` * ``Translation`` * ``Rotation`` * ``Complete`` * ``UnitCell`` In case of arrays, the 3D vectors are rotated. In case of trans- formations, a transformation is returned that consists of this rotation applied AFTER the given translation. In case of a unit cell, a unit cell with rotated cell vectors is returned. This method is equivalent to ``self*x``.
entailment
def compare(self, other, r_threshold=1e-3): """Compare two rotations The RMSD of the rotation matrices is computed. The return value is True when the RMSD is below the threshold, i.e. when the two rotations are almost identical. """ return compute_rmsd(self.r, other.r) < r_threshold
Compare two rotations The RMSD of the rotation matrices is computed. The return value is True when the RMSD is below the threshold, i.e. when the two rotations are almost identical.
entailment
def from_properties(cls, angle, axis, invert, translation): """Initialize a transformation based on the properties""" rot = Rotation.from_properties(angle, axis, invert) return Complete(rot.r, translation)
Initialize a transformation based on the properties
entailment
def cast(cls, c): """Convert the first argument into a Complete object""" if isinstance(c, Complete): return c elif isinstance(c, Translation): return Complete(np.identity(3, float), c.t) elif isinstance(c, Rotation): return Complete(c.r, np.zeros(3, float))
Convert the first argument into a Complete object
entailment
def about_axis(cls, center, angle, axis, invert=False): """Create transformation that represents a rotation about an axis Arguments: | ``center`` -- Point on the axis | ``angle`` -- Rotation angle | ``axis`` -- Rotation axis | ``invert`` -- When True, an inversion rotation is constructed [default=False] """ return Translation(center) * \ Rotation.from_properties(angle, axis, invert) * \ Translation(-center)
Create transformation that represents a rotation about an axis Arguments: | ``center`` -- Point on the axis | ``angle`` -- Rotation angle | ``axis`` -- Rotation axis | ``invert`` -- When True, an inversion rotation is constructed [default=False]
entailment
def properties(self): """Transformation properties: angle, axis, invert, translation""" rot = Rotation(self.r) angle, axis, invert = rot.properties return angle, axis, invert, self.t
Transformation properties: angle, axis, invert, translation
entailment
def inv(self): """The inverse transformation""" result = Complete(self.r.transpose(), np.dot(self.r.transpose(), -self.t)) result._cache_inv = self return result
The inverse transformation
entailment
def compare(self, other, t_threshold=1e-3, r_threshold=1e-3): """Compare two transformations The RMSD values of the rotation matrices and the translation vectors are computed. The return value is True when the RMSD values are below the thresholds, i.e. when the two transformations are almost identical. """ return compute_rmsd(self.t, other.t) < t_threshold and compute_rmsd(self.r, other.r) < r_threshold
Compare two transformations The RMSD values of the rotation matrices and the translation vectors are computed. The return value is True when the RMSD values are below the thresholds, i.e. when the two transformations are almost identical.
entailment
def _read_frame(self): """Read and return the next time frame""" # Read one frame, we assume that the current file position is at the # line 'ITEM: TIMESTEP' and that this line marks the beginning of a # time frame. line = next(self._f) if line != 'ITEM: TIMESTEP\n': raise FileFormatError("Expecting line 'ITEM: TIMESTEP' at the beginning of a time frame.") try: line = next(self._f) step = int(line) except ValueError: raise FileFormatError("Could not read the step number. Expected an integer. Got '%s'" % line[:-1]) # Now we assume that the next section contains (again) the number of # atoms. line = next(self._f) if line != 'ITEM: NUMBER OF ATOMS\n': raise FileFormatError("Expecting line 'ITEM: NUMBER OF ATOMS'.") try: line = next(self._f) num_atoms = int(line) except ValueError: raise FileFormatError("Could not read the number of atoms. Expected an integer. Got '%s'" % line[:-1]) if num_atoms != self.num_atoms: raise FileFormatError("A variable number of atoms is not supported.") # The next section contains the box boundaries. We will skip it for i in range(4): next(self._f) # The next and last section contains the atom related properties line = next(self._f) if line != 'ITEM: ATOMS\n': raise FileFormatError("Expecting line 'ITEM: ATOMS'.") fields = [list() for i in range(len(self.units))] for i in range(self.num_atoms): line = next(self._f) words = line.split()[1:] for j in range(len(fields)): fields[j].append(float(words[j])) fields = [step] + [np.array(field)*unit for field, unit in zip(fields, self.units)] return fields
Read and return the next time frame
entailment
def _skip_frame(self): """Skip the next time frame""" for line in self._f: if line == 'ITEM: ATOMS\n': break for i in range(self.num_atoms): next(self._f)
Skip the next time frame
entailment
def _add_atom_info(self, atom_info): """Add an atom info object to the database""" self.atoms_by_number[atom_info.number] = atom_info self.atoms_by_symbol[atom_info.symbol.lower()] = atom_info
Add an atom info object to the database
entailment
def update(self, other): """Extend the current cluster with data from another cluster""" Cluster.update(self, other) self.rules.extend(other.rules)
Extend the current cluster with data from another cluster
entailment
def add_related(self, *objects): """Add related items The arguments can be individual items or cluster objects containing several items. When two groups of related items share one or more common members, they will be merged into one cluster. """ master = None # this will become the common cluster of all related items slaves = set([]) # set of clusters that are going to be merged in the master solitaire = set([]) # set of new items that are not yet part of a cluster for new in objects: if isinstance(new, self.cls): if master is None: master = new else: slaves.add(new) for item in new.items: existing = self.lookup.get(item) if existing is not None: slaves.add(existing) else: cluster = self.lookup.get(new) if cluster is None: #print "solitaire", new solitaire.add(new) elif master is None: #print "starting master", new master = cluster elif master != cluster: #print "in slave", new slaves.add(cluster) #else: ##nothing to do #print "new in master", new if master is None: master = self.cls([]) for slave in slaves: master.update(slave) for item in solitaire: master.add_item(item) for item in master.items: self.lookup[item] = master
Add related items The arguments can be individual items or cluster objects containing several items. When two groups of related items share one or more common members, they will be merged into one cluster.
entailment
def _read_frame(self): """Read a single frame from the trajectory""" # auxiliary read function def read_three(msg): """Read three words as floating point numbers""" line = next(self._f) try: return [float(line[:12]), float(line[12:24]), float(line[24:])] except ValueError: raise FileFormatError(msg) frame = {} # read the frame header line words = next(self._f).split() if len(words) != 6: raise FileFormatError("The first line of each time frame must contain 6 words. (%i'th frame)" % self._counter) if words[0] != "timestep": raise FileFormatError("The first word of the first line of each time frame must be 'timestep'. (%i'th frame)" % self._counter) try: step = int(words[1]) frame["step"] = step if int(words[2]) != self.num_atoms: raise FileFormatError("The number of atoms has changed. (%i'th frame, %i'th step)" % (self._counter, step)) if int(words[3]) != self.keytrj: raise FileFormatError("keytrj has changed. (%i'th frame, %i'th step)" % (self._counter, step)) if int(words[4]) != self.imcon: raise FileFormatError("imcon has changed. (%i'th frame, %i'th step)" % (self._counter, step)) frame["timestep"] = float(words[5])*self.time_unit frame["time"] = frame["timestep"]*step # this is ugly, or wait ... dlpoly is a bit ugly. we are not to blame! except ValueError: raise FileFormatError("Could not convert all numbers on the first line of the current time frame. (%i'th frame)" % self._counter) # the three cell lines cell = np.zeros((3, 3), float) frame["cell"] = cell cell_msg = "The cell lines must consist of three floating point values. (%i'th frame, %i'th step)" % (self._counter, step) for i in range(3): cell[:, i] = read_three(cell_msg) cell *= self.pos_unit # the atoms symbols = [] frame["symbols"] = symbols masses = np.zeros(self.num_atoms, float) frame["masses"] = masses charges = np.zeros(self.num_atoms, float) frame["charges"] = charges pos = np.zeros((self.num_atoms, 3), float) frame["pos"] = pos if self.keytrj > 0: vel = np.zeros((self.num_atoms, 3), float) frame["vel"] = vel if self.keytrj > 1: frc = np.zeros((self.num_atoms, 3), float) frame["frc"] = frc for i in range(self.num_atoms): # the atom header line words = next(self._f).split() if len(words) != 4: raise FileFormatError("The atom header line must contain 4 words. (%i'th frame, %i'th step, %i'th atom)" % (self._counter, step, i+1)) symbols.append(words[0]) try: masses[i] = float(words[2])*self.mass_unit charges[i] = float(words[3]) except ValueError: raise FileFormatError("The numbers in the atom header line could not be interpreted.") # the pos line pos_msg = "The position lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)" % (self._counter, step, i+1) pos[i] = read_three(pos_msg) if self.keytrj > 0: vel_msg = "The velocity lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)" % (self._counter, step, i+1) vel[i] = read_three(vel_msg) if self.keytrj > 1: frc_msg = "The force lines must consist of three floating point values. (%i'th frame, %i'th step, %i'th atom)" % (self._counter, step, i+1) frc[i] = read_three(frc_msg) pos *= self.pos_unit # convert to au if self.keytrj > 0: vel *= self.vel_unit # convert to au if self.keytrj > 1: frc *= self.frc_unit # convert to au return frame
Read a single frame from the trajectory
entailment
def goto_next_frame(self): """Continue reading until the next frame is reached""" marked = False while True: line = next(self._f)[:-1] if marked and len(line) > 0 and not line.startswith(" --------"): try: step = int(line[:10]) return step, line except ValueError: pass marked = (len(line) == 131 and line == self._marker)
Continue reading until the next frame is reached
entailment
def _read_frame(self): """Read a single frame from the trajectory""" # optionally skip the equilibration if self.skip_equi_period: while True: step, line = self.goto_next_frame() self._counter += 1 if step >= self.equi_period: break self.skip_equi_period = False else: step, line = self.goto_next_frame() # read the three lines try: row = [step] for i in range(9): row.append(float(line[10+i*12:10+(i+1)*12])) line = next(self._f)[:-1] row.append(float(line[:10])) for i in range(9): row.append(float(line[10+i*12:10+(i+1)*12])) line = next(self._f)[:-1] row.append(float(line[:10])) for i in range(9): row.append(float(line[10+i*12:10+(i+1)*12])) except ValueError: raise FileFormatError("Some numbers in the output file could not be read. (expecting floating point numbers)") # convert all the numbers to atomic units for i in range(30): row[i] *= self._conv[i] # done return row
Read a single frame from the trajectory
entailment
def _read_frame(self): """Read a frame from the XYZ file""" size = self.read_size() title = self._f.readline()[:-1] if self.symbols is None: symbols = [] coordinates = np.zeros((size, 3), float) for counter in range(size): line = self._f.readline() if len(line) == 0: raise StopIteration words = line.split() if len(words) < 4: raise StopIteration if self.symbols is None: symbols.append(words[0]) try: coordinates[counter, 0] = float(words[1]) coordinates[counter, 1] = float(words[2]) coordinates[counter, 2] = float(words[3]) except ValueError: raise StopIteration coordinates *= self.file_unit if self.symbols is None: self.symbols = symbols return title, coordinates
Read a frame from the XYZ file
entailment
def _skip_frame(self): """Skip a single frame from the trajectory""" size = self.read_size() for i in range(size+1): line = self._f.readline() if len(line) == 0: raise StopIteration
Skip a single frame from the trajectory
entailment
def get_first_molecule(self): """Get the first molecule from the trajectory This can be useful to configure your program before handeling the actual trajectory. """ title, coordinates = self._first molecule = Molecule(self.numbers, coordinates, title, symbols=self.symbols) return molecule
Get the first molecule from the trajectory This can be useful to configure your program before handeling the actual trajectory.
entailment
def dump(self, title, coordinates): """Dump a frame to the trajectory file Arguments: | ``title`` -- the title of the frame | ``coordinates`` -- a numpy array with coordinates in atomic units """ print("% 8i" % len(self.symbols), file=self._f) print(str(title), file=self._f) for symbol, coordinate in zip(self.symbols, coordinates): print("% 2s % 12.9f % 12.9f % 12.9f" % ((symbol, ) + tuple(coordinate/self.file_unit)), file=self._f)
Dump a frame to the trajectory file Arguments: | ``title`` -- the title of the frame | ``coordinates`` -- a numpy array with coordinates in atomic units
entailment
def get_molecule(self, index=0): """Get a molecule from the trajectory Optional argument: | ``index`` -- The frame index [default=0] """ return Molecule(self.numbers, self.geometries[index], self.titles[index], symbols=self.symbols)
Get a molecule from the trajectory Optional argument: | ``index`` -- The frame index [default=0]
entailment
def write_to_file(self, f, file_unit=angstrom): """Write the trajectory to a file Argument: | ``f`` -- a filename or a file-like object to write to Optional argument: | ``file_unit`` -- the unit of the values written to file [default=angstrom] """ xyz_writer = XYZWriter(f, self.symbols, file_unit=file_unit) for title, coordinates in zip(self.titles, self.geometries): xyz_writer.dump(title, coordinates)
Write the trajectory to a file Argument: | ``f`` -- a filename or a file-like object to write to Optional argument: | ``file_unit`` -- the unit of the values written to file [default=angstrom]
entailment
def slice_match(sub, counter): """Efficiently test if counter is in ``xrange(*sub)`` Arguments: | ``sub`` -- a slice object | ``counter`` -- an integer The function returns True if the counter is in ``xrange(sub.start, sub.stop, sub.step)``. """ if sub.start is not None and counter < sub.start: return False if sub.stop is not None and counter >= sub.stop: raise StopIteration if sub.step is not None: if sub.start is None: if counter % sub.step != 0: return False else: if (counter - sub.start) % sub.step != 0: return False return True
Efficiently test if counter is in ``xrange(*sub)`` Arguments: | ``sub`` -- a slice object | ``counter`` -- an integer The function returns True if the counter is in ``xrange(sub.start, sub.stop, sub.step)``.
entailment
def check_anagrad(fun, x0, epsilon, threshold): """Check the analytical gradient using finite differences Arguments: | ``fun`` -- the function to be tested, more info below | ``x0`` -- the reference point around which the function should be tested | ``epsilon`` -- a small scalar used for the finite differences | ``threshold`` -- the maximum acceptable difference between the analytical gradient and the gradient obtained by finite differentiation The function ``fun`` takes a mandatory argument ``x`` and an optional argument ``do_gradient``: | ``x`` -- the arguments of the function to be tested | ``do_gradient`` -- When False, only the function value is returned. When True, a 2-tuple with the function value and the gradient are returned [default=False] """ N = len(x0) f0, ana_grad = fun(x0, do_gradient=True) for i in range(N): xh = x0.copy() xh[i] += 0.5*epsilon xl = x0.copy() xl[i] -= 0.5*epsilon num_grad_comp = (fun(xh)-fun(xl))/epsilon if abs(num_grad_comp - ana_grad[i]) > threshold: raise AssertionError("Error in the analytical gradient, component %i, got %s, should be about %s" % (i, ana_grad[i], num_grad_comp))
Check the analytical gradient using finite differences Arguments: | ``fun`` -- the function to be tested, more info below | ``x0`` -- the reference point around which the function should be tested | ``epsilon`` -- a small scalar used for the finite differences | ``threshold`` -- the maximum acceptable difference between the analytical gradient and the gradient obtained by finite differentiation The function ``fun`` takes a mandatory argument ``x`` and an optional argument ``do_gradient``: | ``x`` -- the arguments of the function to be tested | ``do_gradient`` -- When False, only the function value is returned. When True, a 2-tuple with the function value and the gradient are returned [default=False]
entailment
def check_delta(fun, x, dxs, period=None): """Check the difference between two function values using the analytical gradient Arguments: | ``fun`` -- The function to be tested, more info below. | ``x`` -- The argument vector. | ``dxs`` -- A matrix where each row is a vector of small differences to be added to the argument vector. Optional argument: | ``period`` -- If the function value is periodic, one may provide the period such that differences are computed using periodic boundary conditions. The function ``fun`` takes a mandatory argument ``x`` and an optional argument ``do_gradient``: | ``x`` -- The arguments of the function to be tested. | ``do_gradient`` -- When False, only the function value is returned. When True, a 2-tuple with the function value and the gradient are returned. [default=False] For every row in dxs, the following computation is repeated: 1) D1 = 'f(x+dx) - f(x)' is computed. 2) D2 = '0.5 (grad f(x+dx) + grad f(x)) . dx' is computed. A threshold is set to the median of the D1 set. For each case where |D1| is larger than the threshold, |D1 - D2|, should be smaller than the threshold. """ dn1s = [] dn2s = [] dnds = [] for dx in dxs: f0, grad0 = fun(x, do_gradient=True) f1, grad1 = fun(x+dx, do_gradient=True) grad = 0.5*(grad0+grad1) d1 = f1 - f0 if period is not None: d1 -= np.floor(d1/period + 0.5)*period if hasattr(d1, '__iter__'): norm = np.linalg.norm else: norm = abs d2 = np.dot(grad, dx) dn1s.append(norm(d1)) dn2s.append(norm(d2)) dnds.append(norm(d1-d2)) dn1s = np.array(dn1s) dn2s = np.array(dn2s) dnds = np.array(dnds) # Get the threshold (and mask) threshold = np.median(dn1s) mask = dn1s > threshold # Make sure that all cases for which dn1 is above the treshold, dnd is below # the threshold if not (dnds[mask] < threshold).all(): raise AssertionError(( 'The first order approximation on the difference is too wrong. The ' 'threshold is %.1e.\n\nDifferences:\n%s\n\nFirst order ' 'approximation to differences:\n%s\n\nAbsolute errors:\n%s') % (threshold, ' '.join('%.1e' % v for v in dn1s[mask]), ' '.join('%.1e' % v for v in dn2s[mask]), ' '.join('%.1e' % v for v in dnds[mask]) ))
Check the difference between two function values using the analytical gradient Arguments: | ``fun`` -- The function to be tested, more info below. | ``x`` -- The argument vector. | ``dxs`` -- A matrix where each row is a vector of small differences to be added to the argument vector. Optional argument: | ``period`` -- If the function value is periodic, one may provide the period such that differences are computed using periodic boundary conditions. The function ``fun`` takes a mandatory argument ``x`` and an optional argument ``do_gradient``: | ``x`` -- The arguments of the function to be tested. | ``do_gradient`` -- When False, only the function value is returned. When True, a 2-tuple with the function value and the gradient are returned. [default=False] For every row in dxs, the following computation is repeated: 1) D1 = 'f(x+dx) - f(x)' is computed. 2) D2 = '0.5 (grad f(x+dx) + grad f(x)) . dx' is computed. A threshold is set to the median of the D1 set. For each case where |D1| is larger than the threshold, |D1 - D2|, should be smaller than the threshold.
entailment
def compute_fd_hessian(fun, x0, epsilon, anagrad=True): """Compute the Hessian using the finite difference method Arguments: | ``fun`` -- the function for which the Hessian should be computed, more info below | ``x0`` -- the point at which the Hessian must be computed | ``epsilon`` -- a small scalar step size used to compute the finite differences Optional argument: | ``anagrad`` -- when True, analytical gradients are used [default=True] The function ``fun`` takes a mandatory argument ``x`` and an optional argument ``do_gradient``: | ``x`` -- the arguments of the function to be tested | ``do_gradient`` -- When False, only the function value is returned. When True, a 2-tuple with the function value and the gradient are returned [default=False] """ N = len(x0) def compute_gradient(x): if anagrad: return fun(x, do_gradient=True)[1] else: gradient = np.zeros(N, float) for i in range(N): xh = x.copy() xh[i] += 0.5*epsilon xl = x.copy() xl[i] -= 0.5*epsilon gradient[i] = (fun(xh)-fun(xl))/epsilon return gradient hessian = np.zeros((N,N), float) for i in range(N): xh = x0.copy() xh[i] += 0.5*epsilon xl = x0.copy() xl[i] -= 0.5*epsilon hessian[i] = (compute_gradient(xh) - compute_gradient(xl))/epsilon return 0.5*(hessian + hessian.transpose())
Compute the Hessian using the finite difference method Arguments: | ``fun`` -- the function for which the Hessian should be computed, more info below | ``x0`` -- the point at which the Hessian must be computed | ``epsilon`` -- a small scalar step size used to compute the finite differences Optional argument: | ``anagrad`` -- when True, analytical gradients are used [default=True] The function ``fun`` takes a mandatory argument ``x`` and an optional argument ``do_gradient``: | ``x`` -- the arguments of the function to be tested | ``do_gradient`` -- When False, only the function value is returned. When True, a 2-tuple with the function value and the gradient are returned [default=False]
entailment
def update(self, gradient, step): """Update the search direction given the latest gradient and step""" do_sd = self.gradient_old is None self.gradient_old = self.gradient self.gradient = gradient if do_sd: self._update_sd() else: self._update_cg()
Update the search direction given the latest gradient and step
entailment
def _update_cg(self): """Update the conjugate gradient""" beta = self._beta() # Automatic direction reset if beta < 0: self.direction = -self.gradient self.status = "SD" else: self.direction = self.direction * beta - self.gradient self.status = "CG"
Update the conjugate gradient
entailment
def update(self, gradient, step): """Update the search direction given the latest gradient and step""" self.old_gradient = self.gradient self.gradient = gradient N = len(self.gradient) if self.inv_hessian is None: # update the direction self.direction = -self.gradient self.status = "SD" # new guess of the inverse hessian self.inv_hessian = np.identity(N, float) else: # update the direction self.direction = -np.dot(self.inv_hessian, self.gradient) self.status = "QN" # new guess of the inverse hessian (BFGS) y = self.gradient - self.old_gradient s = step sy = abs(np.dot(s, y))+1e-5 A = np.outer(-y/sy, s) A.ravel()[::N+1] += 1 self.inv_hessian = ( np.dot(np.dot(A.transpose(), self.inv_hessian), A) + np.outer(s/sy, s) )
Update the search direction given the latest gradient and step
entailment
def limit_step(self, step): """Clip the a step within the maximum allowed range""" if self.qmax is None: return step else: return np.clip(step, -self.qmax, self.qmax)
Clip the a step within the maximum allowed range
entailment
def _bracket(self, qinit, f0, fun): """Find a bracket that does contain the minimum""" self.num_bracket = 0 qa = qinit fa = fun(qa) counter = 0 if fa >= f0: while True: self.num_bracket += 1 #print " bracket shrink" qb, fb = qa, fa qa /= 1+phi fa = fun(qa) if qa < self.qtol: return if fa < f0: return (0, f0), (qa, fa), (qb, fb) counter += 1 if self.max_iter is not None and counter > self.max_iter: return else: self.num_bracket += 1 #print " bracket grow1" qb, fb = qa, fa qa *= (1+phi) fa = fun(qa) if fa >= fb: return (0, f0), (qb, fb), (qa, fa) while True: self.num_bracket += 1 #print " bracket grow2" qc, fc = qb, fb qb, fb = qa, fa qa = qb*(1+phi) - qc fa = fun(qa) if fa >= fb: return (qc, fc), (qb, fb), (qa, fa) counter += 1 if self.max_iter is not None and counter > self.max_iter: return
Find a bracket that does contain the minimum
entailment
def _golden(self, triplet, fun): """Reduce the size of the bracket until the minimum is found""" self.num_golden = 0 (qa, fa), (qb, fb), (qc, fc) = triplet while True: self.num_golden += 1 qd = qa + (qb-qa)*phi/(1+phi) fd = fun(qd) if fd < fb: #print "golden d" (qa, fa), (qb, fb) = (qb, fb), (qd, fd) else: #print "golden b" (qa, fa), (qc, fc) = (qd, fd), (qa, fa) if abs(qa-qb) < self.qtol: return qc, fc
Reduce the size of the bracket until the minimum is found
entailment
def update(self, counter, f, x_orig, gradient_orig): """Perform an update of the linear transformation Arguments: | ``counter`` -- the iteration counter of the minimizer | ``f`` -- the function value at ``x_orig`` | ``x_orig`` -- the unknowns in original coordinates | ``gradient_orig`` -- the gradient in original coordinates Return value: | ``do_update`` -- True when an update is required. Derived classes must call this method to test of the preconditioner requires updating. Derived classes must also return this boolean to their caller. """ if counter - self.last_update > self.each: grad_rms = np.sqrt((gradient_orig**2).mean()) if grad_rms < self.grad_rms: self.last_update = counter return True return False
Perform an update of the linear transformation Arguments: | ``counter`` -- the iteration counter of the minimizer | ``f`` -- the function value at ``x_orig`` | ``x_orig`` -- the unknowns in original coordinates | ``gradient_orig`` -- the gradient in original coordinates Return value: | ``do_update`` -- True when an update is required. Derived classes must call this method to test of the preconditioner requires updating. Derived classes must also return this boolean to their caller.
entailment
def update(self, counter, f, x_orig, gradient_orig): """Perform an update of the linear transformation Arguments: | ``counter`` -- the iteration counter of the minimizer | ``f`` -- the function value at ``x_orig`` | ``x_orig`` -- the unknowns in original coordinates | ``gradient_orig`` -- the gradient in original coordinates Return value: | ``done_update`` -- True when an update has been done The minimizer must reset the search direction method when an updated has been done. """ do_update = Preconditioner.update(self, counter, f, x_orig, gradient_orig) if do_update: # determine a new preconditioner N = len(x_orig) if self.scales is None: self.scales = np.ones(N, float) for i in range(N): epsilon = self.epsilon/self.scales[i] xh = x_orig.copy() xh[i] += 0.5*epsilon fh = self.fun(xh) xl = x_orig.copy() xl[i] -= 0.5*epsilon fl = self.fun(xl) curv = (fh+fl-2*f)/epsilon**2 self.scales[i] = np.sqrt(abs(curv)) if self.scales.max() <= 0: self.scales = np.ones(N, float) else: self.scales /= self.scales.max() self.scales[self.scales<self.scale_limit] = self.scale_limit return do_update
Perform an update of the linear transformation Arguments: | ``counter`` -- the iteration counter of the minimizer | ``f`` -- the function value at ``x_orig`` | ``x_orig`` -- the unknowns in original coordinates | ``gradient_orig`` -- the gradient in original coordinates Return value: | ``done_update`` -- True when an update has been done The minimizer must reset the search direction method when an updated has been done.
entailment
def update(self, counter, f, x_orig, gradient_orig): """Perform an update of the linear transformation Arguments: | ``counter`` -- the iteration counter of the minimizer | ``f`` -- the function value at ``x_orig`` | ``x_orig`` -- the unknowns in original coordinates | ``gradient_orig`` -- the gradient in original coordinates Return value: | ``done_update`` -- True when an update has been done The minimizer must reset the search direction method when an updated has been done. """ if Preconditioner.update(self, counter, f, x_orig, gradient_orig): # determine a new preconditioner hessian = compute_fd_hessian(self.fun, x_orig, self.epsilon) evals, evecs = np.linalg.eigh(hessian) self.scales = np.sqrt(abs(evals))+self.epsilon self.rotation = evecs return True return False
Perform an update of the linear transformation Arguments: | ``counter`` -- the iteration counter of the minimizer | ``f`` -- the function value at ``x_orig`` | ``x_orig`` -- the unknowns in original coordinates | ``gradient_orig`` -- the gradient in original coordinates Return value: | ``done_update`` -- True when an update has been done The minimizer must reset the search direction method when an updated has been done.
entailment
def do(self, x_orig): """Transform the unknowns to preconditioned coordinates This method also transforms the gradient to original coordinates """ if self.scales is None: return x_orig else: return np.dot(self.rotation.transpose(), x_orig)*self.scales
Transform the unknowns to preconditioned coordinates This method also transforms the gradient to original coordinates
entailment
def undo(self, x_prec): """Transform the unknowns to original coordinates This method also transforms the gradient to preconditioned coordinates """ if self.scales is None: return x_prec else: return np.dot(self.rotation, x_prec/self.scales)
Transform the unknowns to original coordinates This method also transforms the gradient to preconditioned coordinates
entailment
def get_header(self): """Returns the header for screen logging of the minimization""" result = " " if self.step_rms is not None: result += " Step RMS" if self.step_max is not None: result += " Step MAX" if self.grad_rms is not None: result += " Grad RMS" if self.grad_max is not None: result += " Grad MAX" if self.rel_grad_rms is not None: result += " Grad/F RMS" if self.rel_grad_max is not None: result += " Grad/F MAX" return result
Returns the header for screen logging of the minimization
entailment
def configure(self, x0, axis): """Configure the 1D function for a line search Arguments: x0 -- the reference point (q=0) axis -- a unit vector in the direction of the line search """ self.x0 = x0 self.axis = axis
Configure the 1D function for a line search Arguments: x0 -- the reference point (q=0) axis -- a unit vector in the direction of the line search
entailment
def _compute_equations(self, x, verbose=False): '''Compute the values and the normals (gradients) of active constraints. Arguments: | ``x`` -- The unknowns. ''' # compute the error and the normals. normals = [] values = [] signs = [] error = 0.0 if verbose: print() print(' '.join('% 10.3e' % val for val in x), end=' ') active_str = '' for i, (sign, equation) in enumerate(self.equations): value, normal = equation(x) if (i < len(self.lock) and self.lock[i]) or \ (sign==-1 and value > -self.threshold) or \ (sign==0) or (sign==1 and value < self.threshold): values.append(value) normals.append(normal) signs.append(sign) error += value**2 if verbose: active_str += 'X' if i < len(self.lock): self.lock[i] = True elif verbose: active_str += '-' error = np.sqrt(error) normals = np.array(normals, float) values = np.array(values, float) signs = np.array(signs, int) if verbose: print('[%s]' % active_str, end=' ') if error < self.threshold: print('OK') else: print('%.5e' % error) return normals, values, error, signs
Compute the values and the normals (gradients) of active constraints. Arguments: | ``x`` -- The unknowns.
entailment
def _rough_shake(self, x, normals, values, error): '''Take a robust, but not very efficient step towards the constraints. Arguments: | ``x`` -- The unknowns. | ``normals`` -- A numpy array with the gradients of the active constraints. Each row is one gradient. | ``values`` -- A numpy array with the values of the constraint functions. | ``error`` -- The square root of the constraint cost function. ''' counter = 0 while error > self.threshold and counter < self.max_iter: dxs = [] for i in range(len(normals)): dx = -normals[i]*values[i]/np.dot(normals[i], normals[i]) dxs.append(dx) dxs = np.array(dxs) dx = dxs[abs(values).argmax()] x = x+dx self.lock[:] = False normals, values, error = self._compute_equations(x)[:-1] counter += 1 return x, normals, values, error
Take a robust, but not very efficient step towards the constraints. Arguments: | ``x`` -- The unknowns. | ``normals`` -- A numpy array with the gradients of the active constraints. Each row is one gradient. | ``values`` -- A numpy array with the values of the constraint functions. | ``error`` -- The square root of the constraint cost function.
entailment
def _fast_shake(self, x, normals, values, error): '''Take an efficient (not always robust) step towards the constraints. Arguments: | ``x`` -- The unknowns. | ``normals`` -- A numpy array with the gradients of the active constraints. Each row is one gradient. | ``values`` -- A numpy array with the values of the constraint functions. | ``error`` -- The square root of the constraint cost function. ''' # filter out the degrees of freedom that do not feel the constraints. mask = (normals!=0).any(axis=0) > 0 normals = normals[:,mask] # Take a step to lower the constraint cost function. If the step is too # large, it is reduced iteratively towards a small steepest descent # step. This is very similar to the Levenberg-Marquardt algorithm. # Singular Value decomposition is used to make this procedure # numerically more stable and efficient. U, S, Vt = np.linalg.svd(normals, full_matrices=False) rcond = None counter = 0 while True: if rcond is None: rcond = 0.0 elif rcond == 0.0: rcond = self.rcond1 else: rcond *= 10 # perform the least-norm correction Sinv = (S**2+rcond) if Sinv.max() == 0.0: continue Sinv = S/Sinv # compute the step dx = -np.dot(Vt.transpose(), np.dot(U.transpose(), values)*Sinv) new_x = x.copy() new_x[mask] += dx # try the step new_normals, new_values, new_error = self._compute_equations(new_x)[:-1] if new_error < 0.9*error: # Only if it decreases the constraint cost sufficiently, the # step is accepted. This routine is pointless of it converges # slowly. return new_x, new_normals, new_values, new_error elif abs(dx).sum() < self.threshold: # If the step becomes too small, then give up. break elif counter > self.max_iter: raise ConstraintError('Exceeded maximum number of shake iterations.') counter += 1
Take an efficient (not always robust) step towards the constraints. Arguments: | ``x`` -- The unknowns. | ``normals`` -- A numpy array with the gradients of the active constraints. Each row is one gradient. | ``values`` -- A numpy array with the values of the constraint functions. | ``error`` -- The square root of the constraint cost function.
entailment
def free_shake(self, x): '''Brings unknowns to the constraints. Arguments: | ``x`` -- The unknowns. ''' self.lock[:] = False normals, values, error = self._compute_equations(x)[:-1] counter = 0 while True: if error <= self.threshold: break # try a well-behaved move to the constrains result = self._fast_shake(x, normals, values, error) counter += 1 if result is not None: x, normals, values, error = result else: # well-behaved move is too slow. # do a cumbersome move to satisfy constraints approximately. x, normals, values, error = self._rough_shake(x, normals, values, error) counter += 1 # When too many iterations are required, just give up. if counter > self.max_iter: raise ConstraintError('Exceeded maximum number of shake iterations.') return x, counter, len(values)
Brings unknowns to the constraints. Arguments: | ``x`` -- The unknowns.
entailment
def safe_shake(self, x, fun, fmax): '''Brings unknowns to the constraints, without increasing fun above fmax. Arguments: | ``x`` -- The unknowns. | ``fun`` -- The function being minimized. | ``fmax`` -- The highest allowed value of the function being minimized. The function ``fun`` takes a mandatory argument ``x`` and an optional argument ``do_gradient``: | ``x`` -- the arguments of the function to be tested | ``do_gradient`` -- when False, only the function value is returned. when True, a 2-tuple with the function value and the gradient are returned [default=False] ''' self.lock[:] = False def extra_equation(xx): f, g = fun(xx, do_gradient=True) return (f-fmax)/abs(fmax), g/abs(fmax) self.equations.append((-1,extra_equation)) x, shake_counter, constraint_couter = self.free_shake(x) del self.equations[-1] return x, shake_counter, constraint_couter
Brings unknowns to the constraints, without increasing fun above fmax. Arguments: | ``x`` -- The unknowns. | ``fun`` -- The function being minimized. | ``fmax`` -- The highest allowed value of the function being minimized. The function ``fun`` takes a mandatory argument ``x`` and an optional argument ``do_gradient``: | ``x`` -- the arguments of the function to be tested | ``do_gradient`` -- when False, only the function value is returned. when True, a 2-tuple with the function value and the gradient are returned [default=False]
entailment
def project(self, x, vector): '''Project a vector (gradient or direction) on the active constraints. Arguments: | ``x`` -- The unknowns. | ``vector`` -- A numpy array with a direction or a gradient. The return value is a gradient or direction, where the components that point away from the constraints are projected out. In case of half-open constraints, the projection is only active of the vector points into the infeasible region. ''' scale = np.linalg.norm(vector) if scale == 0.0: return vector self.lock[:] = False normals, signs = self._compute_equations(x)[::3] if len(normals) == 0: return vector vector = vector/scale mask = signs == 0 result = vector.copy() changed = True counter = 0 while changed: changed = False y = np.dot(normals, result) for i, sign in enumerate(signs): if sign != 0: if sign*y[i] < -self.threshold: mask[i] = True changed = True elif mask[i] and np.dot(normals[i], result-vector) < 0: mask[i] = False changed = True if mask.any(): normals_select = normals[mask] y = np.dot(normals_select, vector) U, S, Vt = np.linalg.svd(normals_select, full_matrices=False) if S.min() == 0.0: Sinv = S/(S**2+self.rcond1) else: Sinv = 1.0/S result = vector - np.dot(Vt.transpose(), np.dot(U.transpose(), y)*Sinv) else: result = vector.copy() if counter > self.max_iter: raise ConstraintError('Exceeded maximum number of shake iterations.') counter += 1 return result*scale
Project a vector (gradient or direction) on the active constraints. Arguments: | ``x`` -- The unknowns. | ``vector`` -- A numpy array with a direction or a gradient. The return value is a gradient or direction, where the components that point away from the constraints are projected out. In case of half-open constraints, the projection is only active of the vector points into the infeasible region.
entailment
def get_final(self): """Return the final solution in the original coordinates""" if self.prec is None: return self.x else: return self.prec.undo(self.x)
Return the final solution in the original coordinates
entailment
def _run(self): """Run the iterative optimizer""" success = self.initialize() while success is None: success = self.propagate() return success
Run the iterative optimizer
entailment
def _print_header(self): """Print the header for screen logging""" header = " Iter Dir " if self.constraints is not None: header += ' SC CC' header += " Function" if self.convergence_condition is not None: header += self.convergence_condition.get_header() header += " Time" self._screen("-"*(len(header)), newline=True) self._screen(header, newline=True) self._screen("-"*(len(header)), newline=True)
Print the header for screen logging
entailment
def _screen(self, s, newline=False): """Print something on screen when self.verbose == True""" if self.verbose: if newline: print(s) else: print(s, end=' ')
Print something on screen when self.verbose == True
entailment
def _line_opt(self): """Perform a line search along the current direction""" direction = self.search_direction.direction if self.constraints is not None: try: direction = self.constraints.project(self.x, direction) except ConstraintError: self._screen("CONSTRAINT PROJECT FAILED", newline=True) return False direction_norm = np.linalg.norm(direction) if direction_norm == 0: return False self.line.configure(self.x, direction/direction_norm) success, wolfe, qopt, fopt = \ self.line_search(self.line, self.initial_step_size, self.epsilon) if success: self.step = qopt*self.line.axis self.initial_step_size = np.linalg.norm(self.step) self.x = self.x + self.step self.f = fopt if wolfe: self._screen("W") else: self._screen(" ") self.search_direction.reset() return True else: if self.debug_line: import matplotlib.pyplot as pt import datetime pt.clf() qs = np.arange(0.0, 100.1)*(5*self.initial_step_size/100.0) fs = np.array([self.line(q) for q in qs]) pt.plot(qs, fs) pt.xlim(qs[0], qs[-1]) fdelta = fs.max() - fs.min() if fdelta == 0.0: fdelta = fs.mean() fmargin = fdelta*0.1 pt.ylim(fs.min() - fmargin, fs.max() + fmargin) pt.title('fdelta = %.2e fmean = %.2e' % (fdelta, fs.mean())) pt.xlabel('Line coordinate, q') pt.ylabel('Function value, f') pt.savefig('line_failed_%s.png' % (datetime.datetime.now().isoformat())) self._reset_state() return False
Perform a line search along the current direction
entailment
def edge_index(self): """A map to look up the index of a edge""" return dict((edge, index) for index, edge in enumerate(self.edges))
A map to look up the index of a edge
entailment
def neighbors(self): """A dictionary with neighbors The dictionary will have the following form: ``{vertexX: (vertexY1, vertexY2, ...), ...}`` This means that vertexX and vertexY1 are connected etc. This also implies that the following elements are part of the dictionary: ``{vertexY1: (vertexX, ...), vertexY2: (vertexX, ...), ...}``. """ neighbors = dict( (vertex, []) for vertex in range(self.num_vertices) ) for a, b in self.edges: neighbors[a].append(b) neighbors[b].append(a) # turn lists into frozensets neighbors = dict((key, frozenset(val)) for key, val in neighbors.items()) return neighbors
A dictionary with neighbors The dictionary will have the following form: ``{vertexX: (vertexY1, vertexY2, ...), ...}`` This means that vertexX and vertexY1 are connected etc. This also implies that the following elements are part of the dictionary: ``{vertexY1: (vertexX, ...), vertexY2: (vertexX, ...), ...}``.
entailment
def distances(self): """The matrix with the all-pairs shortest path lenghts""" from molmod.ext import graphs_floyd_warshall distances = np.zeros((self.num_vertices,)*2, dtype=int) #distances[:] = -1 # set all -1, which is just a very big integer #distances.ravel()[::len(distances)+1] = 0 # set diagonal to zero for i, j in self.edges: # set edges to one distances[i, j] = 1 distances[j, i] = 1 graphs_floyd_warshall(distances) return distances
The matrix with the all-pairs shortest path lenghts
entailment
def central_vertices(self): """Vertices that have the lowest maximum distance to any other vertex""" max_distances = self.distances.max(0) max_distances_min = max_distances[max_distances > 0].min() return (max_distances == max_distances_min).nonzero()[0]
Vertices that have the lowest maximum distance to any other vertex
entailment
def independent_vertices(self): """Lists of vertices that are only interconnected within each list This means that there is no path from a vertex in one list to a vertex in another list. In case of a molecular graph, this would yield the atoms that belong to individual molecules. """ candidates = set(range(self.num_vertices)) result = [] while len(candidates) > 0: pivot = candidates.pop() group = [ vertex for vertex, distance in self.iter_breadth_first(pivot) ] candidates.difference_update(group) # this sort makes sure that the order of the vertices is respected group.sort() result.append(group) return result
Lists of vertices that are only interconnected within each list This means that there is no path from a vertex in one list to a vertex in another list. In case of a molecular graph, this would yield the atoms that belong to individual molecules.
entailment
def fingerprint(self): """A total graph fingerprint The result is invariant under permutation of the vertex indexes. The chance that two different (molecular) graphs yield the same fingerprint is small but not zero. (See unit tests.)""" if self.num_vertices == 0: return np.zeros(20, np.ubyte) else: return sum(self.vertex_fingerprints)
A total graph fingerprint The result is invariant under permutation of the vertex indexes. The chance that two different (molecular) graphs yield the same fingerprint is small but not zero. (See unit tests.)
entailment
def vertex_fingerprints(self): """A fingerprint for each vertex The result is invariant under permutation of the vertex indexes. Vertices that are symmetrically equivalent will get the same fingerprint, e.g. the hydrogens in methane would get the same fingerprint. """ return self.get_vertex_fingerprints( [self.get_vertex_string(i) for i in range(self.num_vertices)], [self.get_edge_string(i) for i in range(self.num_edges)], )
A fingerprint for each vertex The result is invariant under permutation of the vertex indexes. Vertices that are symmetrically equivalent will get the same fingerprint, e.g. the hydrogens in methane would get the same fingerprint.
entailment
def equivalent_vertices(self): """A dictionary with symmetrically equivalent vertices.""" level1 = {} for i, row in enumerate(self.vertex_fingerprints): key = row.tobytes() l = level1.get(key) if l is None: l = set([i]) level1[key] = l else: l.add(i) level2 = {} for key, vertices in level1.items(): for vertex in vertices: level2[vertex] = vertices return level2
A dictionary with symmetrically equivalent vertices.
entailment
def symmetries(self): """Graph symmetries (permutations) that map the graph onto itself.""" symmetry_cycles = set([]) symmetries = set([]) for match in GraphSearch(EqualPattern(self))(self): match.cycles = match.get_closed_cycles() if match.cycles in symmetry_cycles: raise RuntimeError("Duplicates in EqualMatch") symmetry_cycles.add(match.cycles) symmetries.add(match) return symmetries
Graph symmetries (permutations) that map the graph onto itself.
entailment
def symmetry_cycles(self): """The cycle representations of the graph symmetries""" result = set([]) for symmetry in self.symmetries: result.add(symmetry.cycles) return result
The cycle representations of the graph symmetries
entailment
def canonical_order(self): """The vertices in a canonical or normalized order. This routine will return a list of vertices in an order that does not depend on the initial order, but only depends on the connectivity and the return values of the function self.get_vertex_string. Only the vertices that are involved in edges will be included. The result can be given as first argument to self.get_subgraph, with reduce=True as second argument. This will return a complete canonical graph. The routine is designed not to use symmetry relations that are obtained with the GraphSearch routine. We also tried to create an ordering that feels like natural, i.e. starting in the center and pushing vertices with few equivalents to the front. If necessary, the nature of the vertices and their bonds to atoms closer to the center will also play a role, but only as a last resort. """ # A) find an appropriate starting vertex. # Here we take a central vertex that has a minimal number of symmetrical # equivalents, 'the highest atom number', and the highest fingerprint. # Note that the symmetrical equivalents are computed from the vertex # fingerprints, i.e. without the GraphSearch. starting_vertex = max( ( -len(self.equivalent_vertices[vertex]), self.get_vertex_string(vertex), self.vertex_fingerprints[vertex].tobytes(), vertex ) for vertex in self.central_vertices )[-1] # B) sort all vertices based on # 1) distance from central vertex # 2) number of equivalent vertices # 3) vertex string, (higher atom numbers come first) # 4) fingerprint # 5) vertex index # The last field is only included to collect the result of the sort. # The fingerprint on itself would be sufficient, but the three first are # there to have a naturally appealing result. l = [ [ -distance, -len(self.equivalent_vertices[vertex]), self.get_vertex_string(vertex), self.vertex_fingerprints[vertex].tobytes(), vertex ] for vertex, distance in self.iter_breadth_first(starting_vertex) if len(self.neighbors[vertex]) > 0 ] l.sort(reverse=True) # C) The order of some vertices is still not completely set. e.g. # consider the case of allene. The four hydrogen atoms are equivalent, # but one can have two different orders: make geminiles consecutive or # don't. It is more trikcy than one would think at first sight. In the # case of allene, geminility could easily solve the problem. Consider a # big flat rotationally symmetric molecule (order 2). The first five # shells are order 4 and one would just give a random order to four # segemnts in the first shell. Only when one reaches the outer part that # has order two, it turns out that the arbitrary choices in the inner # shell play a role. So it does not help to look at relations with # vertices at inner or current shells only. One has to consider the # whole picture. (unit testing reveals troubles like these) # I need some sleep now. The code below checks for potential fuzz and # will raise an error if the ordering is not fully determined yet. One # day, I'll need this code more than I do now, and I'll fix things up. # I know how to do this, but I don't care enough right now. # -- Toon for i in range(1, len(l)): if l[i][:-1] == l[i-1][:-1]: raise NotImplementedError # D) Return only the vertex indexes. return [record[-1] for record in l]
The vertices in a canonical or normalized order. This routine will return a list of vertices in an order that does not depend on the initial order, but only depends on the connectivity and the return values of the function self.get_vertex_string. Only the vertices that are involved in edges will be included. The result can be given as first argument to self.get_subgraph, with reduce=True as second argument. This will return a complete canonical graph. The routine is designed not to use symmetry relations that are obtained with the GraphSearch routine. We also tried to create an ordering that feels like natural, i.e. starting in the center and pushing vertices with few equivalents to the front. If necessary, the nature of the vertices and their bonds to atoms closer to the center will also play a role, but only as a last resort.
entailment
def iter_breadth_first(self, start=None, do_paths=False, do_duplicates=False): """Iterate over the vertices with the breadth first algorithm. See http://en.wikipedia.org/wiki/Breadth-first_search for more info. If not start vertex is given, the central vertex is taken. By default, the distance to the starting vertex is also computed. If the path to the starting vertex should be computed instead, set path to True. When duplicate is True, then vertices that can be reached through different paths of equal length, will be iterated twice. This typically only makes sense when path==True. """ if start is None: start = self.central_vertex else: try: start = int(start) except ValueError: raise TypeError("First argument (start) must be an integer.") if start < 0 or start >= self.num_vertices: raise ValueError("start must be in the range [0, %i[" % self.num_vertices) from collections import deque work = np.zeros(self.num_vertices, int) work[:] = -1 work[start] = 0 if do_paths: result = (start, 0, (start, )) else: result = (start, 0) yield result todo = deque([result]) while len(todo) > 0: if do_paths: parent, parent_length, parent_path = todo.popleft() else: parent, parent_length = todo.popleft() current_length = parent_length + 1 for current in self.neighbors[parent]: visited = work[current] if visited == -1 or (do_duplicates and visited == current_length): work[current] = current_length if do_paths: current_path = parent_path + (current, ) result = (current, current_length, current_path) else: result = (current, current_length) #print "iter_breadth_first", result yield result todo.append(result)
Iterate over the vertices with the breadth first algorithm. See http://en.wikipedia.org/wiki/Breadth-first_search for more info. If not start vertex is given, the central vertex is taken. By default, the distance to the starting vertex is also computed. If the path to the starting vertex should be computed instead, set path to True. When duplicate is True, then vertices that can be reached through different paths of equal length, will be iterated twice. This typically only makes sense when path==True.
entailment
def iter_breadth_first_edges(self, start=None): """Iterate over the edges with the breadth first convention. We need this for the pattern matching algorithms, but a quick look at Wikipedia did not result in a known and named algorithm. The edges are yielded one by one, together with the distance of the edge from the starting vertex and a flag that indicates whether the yielded edge connects two vertices that are at the same distance from the starting vertex. If that flag is False, the distance from the starting vertex to edge[0] is equal to the distance variable and the distance from edge[1] to the starting vertex is equal to distance+1. One item has the following format: ((i, j), distance, flag) """ if start is None: start = self.central_vertex else: try: start = int(start) except ValueError: raise TypeError("First argument (start) must be an integer.") if start < 0 or start >= self.num_vertices: raise ValueError("start must be in the range [0, %i[" % self.num_vertices) from collections import deque work = np.zeros(self.num_vertices, int) work[:] = -1 work[start] = 0 todo = deque([start]) while len(todo) > 0: parent = todo.popleft() distance = work[parent] for current in self.neighbors[parent]: if work[current] == -1: yield (parent, current), distance, False work[current] = distance+1 todo.append(current) elif work[current] == distance and current > parent: # second equation in elif avoids duplicates yield (parent, current), distance, True elif work[current] == distance+1: yield (parent, current), distance, False
Iterate over the edges with the breadth first convention. We need this for the pattern matching algorithms, but a quick look at Wikipedia did not result in a known and named algorithm. The edges are yielded one by one, together with the distance of the edge from the starting vertex and a flag that indicates whether the yielded edge connects two vertices that are at the same distance from the starting vertex. If that flag is False, the distance from the starting vertex to edge[0] is equal to the distance variable and the distance from edge[1] to the starting vertex is equal to distance+1. One item has the following format: ((i, j), distance, flag)
entailment
def get_subgraph(self, subvertices, normalize=False): """Constructs a subgraph of the current graph Arguments: | ``subvertices`` -- The vertices that should be retained. | ``normalize`` -- Whether or not the vertices should renumbered and reduced to the given set of subvertices. When True, also the edges are sorted. It the end, this means that new order of the edges does not depend on the original order, but only on the order of the argument subvertices. This option is False by default. When False, only edges will be discarded, but the retained data remain unchanged. Also the parameter num_vertices is not affected. The returned graph will have an attribute ``old_edge_indexes`` that relates the positions of the new and the old edges as follows:: >>> self.edges[result._old_edge_indexes[i]] = result.edges[i] In derived classes, the following should be supported:: >>> self.edge_property[result._old_edge_indexes[i]] = result.edge_property[i] When ``normalize==True``, also the vertices are affected and the derived classes should make sure that the following works:: >>> self.vertex_property[result._old_vertex_indexes[i]] = result.vertex_property[i] The attribute ``old_vertex_indexes`` is only constructed when ``normalize==True``. """ if normalize: revorder = dict((j, i) for i, j in enumerate(subvertices)) new_edges = [] old_edge_indexes = [] for counter, (i, j) in enumerate(self.edges): new_i = revorder.get(i) if new_i is None: continue new_j = revorder.get(j) if new_j is None: continue new_edges.append((new_i, new_j)) old_edge_indexes.append(counter) # sort the edges order = list(range(len(new_edges))) # argsort in pure python order.sort( key=(lambda i: tuple(sorted(new_edges[i]))) ) new_edges = [new_edges[i] for i in order] old_edge_indexes = [old_edge_indexes[i] for i in order] result = Graph(new_edges, num_vertices=len(subvertices)) result._old_vertex_indexes = np.array(subvertices, dtype=int) #result.new_vertex_indexes = revorder result._old_edge_indexes = np.array(old_edge_indexes, dtype=int) else: subvertices = set(subvertices) old_edge_indexes = np.array([ i for i, edge in enumerate(self.edges) if edge.issubset(subvertices) ], dtype=int) new_edges = tuple(self.edges[i] for i in old_edge_indexes) result = Graph(new_edges, self.num_vertices) result._old_edge_indexes = old_edge_indexes # no need for old and new vertex_indexes because they remain the # same. return result
Constructs a subgraph of the current graph Arguments: | ``subvertices`` -- The vertices that should be retained. | ``normalize`` -- Whether or not the vertices should renumbered and reduced to the given set of subvertices. When True, also the edges are sorted. It the end, this means that new order of the edges does not depend on the original order, but only on the order of the argument subvertices. This option is False by default. When False, only edges will be discarded, but the retained data remain unchanged. Also the parameter num_vertices is not affected. The returned graph will have an attribute ``old_edge_indexes`` that relates the positions of the new and the old edges as follows:: >>> self.edges[result._old_edge_indexes[i]] = result.edges[i] In derived classes, the following should be supported:: >>> self.edge_property[result._old_edge_indexes[i]] = result.edge_property[i] When ``normalize==True``, also the vertices are affected and the derived classes should make sure that the following works:: >>> self.vertex_property[result._old_vertex_indexes[i]] = result.vertex_property[i] The attribute ``old_vertex_indexes`` is only constructed when ``normalize==True``.
entailment
def get_vertex_fingerprints(self, vertex_strings, edge_strings, num_iter=None): """Return an array with fingerprints for each vertex""" import hashlib def str2array(x): """convert a hash string to a numpy array of bytes""" if len(x) == 0: return np.zeros(0, np.ubyte) elif sys.version_info[0] == 2: return np.frombuffer(x, np.ubyte) else: return np.frombuffer(x.encode(), np.ubyte) hashrow = lambda x: np.frombuffer(hashlib.sha1(x.data).digest(), np.ubyte) # initialization result = np.zeros((self.num_vertices, 20), np.ubyte) for i in range(self.num_vertices): result[i] = hashrow(str2array(vertex_strings[i])) for i in range(self.num_edges): a, b = self.edges[i] tmp = hashrow(str2array(edge_strings[i])) result[a] += tmp result[b] += tmp work = result.copy() # iterations if num_iter is None: num_iter = self.max_distance for i in range(num_iter): for a, b in self.edges: work[a] += result[b] work[b] += result[a] #for a in xrange(self.num_vertices): # for b in xrange(self.num_vertices): # work[a] += hashrow(result[b]*self.distances[a, b]) for a in range(self.num_vertices): result[a] = hashrow(work[a]) return result
Return an array with fingerprints for each vertex
entailment
def get_halfs(self, vertex1, vertex2): """Split the graph in two halfs by cutting the edge: vertex1-vertex2 If this is not possible (due to loops connecting both ends), a GraphError is raised. Returns the vertices in both halfs. """ def grow(origin, other): frontier = set(self.neighbors[origin]) frontier.discard(other) result = set([origin]) while len(frontier) > 0: pivot = frontier.pop() if pivot == other: raise GraphError("The graph can not be separated in two halfs " "by disconnecting vertex1 and vertex2.") pivot_neighbors = set(self.neighbors[pivot]) pivot_neighbors -= result frontier |= pivot_neighbors result.add(pivot) return result vertex1_part = grow(vertex1, vertex2) vertex2_part = grow(vertex2, vertex1) return vertex1_part, vertex2_part
Split the graph in two halfs by cutting the edge: vertex1-vertex2 If this is not possible (due to loops connecting both ends), a GraphError is raised. Returns the vertices in both halfs.
entailment
def get_part(self, vertex_in, vertices_border): """List all vertices that are connected to vertex_in, but are not included in or 'behind' vertices_border. """ vertices_new = set(self.neighbors[vertex_in]) vertices_part = set([vertex_in]) while len(vertices_new) > 0: pivot = vertices_new.pop() if pivot in vertices_border: continue vertices_part.add(pivot) pivot_neighbors = set(self.neighbors[pivot]) pivot_neighbors -= vertices_part vertices_new |= pivot_neighbors return vertices_part
List all vertices that are connected to vertex_in, but are not included in or 'behind' vertices_border.
entailment
def get_halfs_double(self, vertex_a1, vertex_b1, vertex_a2, vertex_b2): """Compute the two parts separated by ``(vertex_a1, vertex_b1)`` and ``(vertex_a2, vertex_b2)`` Raise a GraphError when ``(vertex_a1, vertex_b1)`` and ``(vertex_a2, vertex_b2)`` do not separate the graph in two disconnected parts. The edges must be neighbors. If not a GraphError is raised. The for vertices must not coincide or a GraphError is raised. Returns the vertices of the two halfs and the four 'hinge' vertices in the correct order, i.e. both ``vertex_a1`` and ``vertex_a2`` are in the first half and both ``vertex_b1`` and ``vertex_b2`` are in the second half. """ if vertex_a1 not in self.neighbors[vertex_b1]: raise GraphError("vertex_a1 must be a neighbor of vertex_b1.") if vertex_a2 not in self.neighbors[vertex_b2]: raise GraphError("vertex_a2 must be a neighbor of vertex_b2.") # find vertex_a_part (and possibly switch vertex_a2, vertex_b2) vertex_a_new = set(self.neighbors[vertex_a1]) vertex_a_new.discard(vertex_b1) if vertex_a1 == vertex_b2: # we now that we have to swap vertex_a2 and vertex_b2. The algo # below will fail otherwise in this 'exotic' case. vertex_a2, vertex_b2 = vertex_b2, vertex_a2 #vertex_a_new.discard(vertex_a2) # in case there is overlap if vertex_a1 == vertex_a2: vertex_a_new.discard(vertex_b2) # in case there is overlap vertex_a_part = set([vertex_a1]) touched = False # True if (the switched) vertex_a2 has been reached. while len(vertex_a_new) > 0: pivot = vertex_a_new.pop() if pivot == vertex_b1: raise GraphError("The graph can not be separated in two halfs. " "vertex_b1 reached by vertex_a1.") vertex_a_part.add(pivot) # create a new set that we can modify pivot_neighbors = set(self.neighbors[pivot]) pivot_neighbors -= vertex_a_part if pivot == vertex_a2 or pivot == vertex_b2: if pivot == vertex_b2: if touched: raise GraphError("The graph can not be separated in " "two halfs. vertex_b2 reached by " "vertex_a1.") else: # put them in the correct order vertex_a2, vertex_b2 = vertex_b2, vertex_a2 pivot_neighbors.discard(vertex_b2) touched = True vertex_a_new |= pivot_neighbors if vertex_a2 not in vertex_a_part: raise GraphError("The graph can not be separated in two halfs. " "vertex_a1 can not reach vertex_a2 trough " "vertex_a_part") # find vertex_b_part: easy, is just the rest ... #vertex_b_part = set(xrange(self.num_vertices)) - vertex_a_part # ... but we also want that there is a path in vertex_b_part from # vertex_b1 to vertex_b2 if vertex_b1 == vertex_b2: closed = True else: vertex_b_new = set(self.neighbors[vertex_b1]) vertex_b_new.discard(vertex_a1) vertex_b_part = set([vertex_b1]) closed = False while len(vertex_b_new) > 0: pivot = vertex_b_new.pop() if pivot == vertex_b2: closed = True break pivot_neighbors = set(self.neighbors[pivot]) pivot_neighbors -= vertex_b_part vertex_b_new |= pivot_neighbors vertex_b_part.add(pivot) if not closed: raise GraphError("The graph can not be separated in two halfs. " "vertex_b1 can not reach vertex_b2 trough " "vertex_b_part") # finaly compute the real vertex_b_part, the former loop might break # early for efficiency. vertex_b_part = set(range(self.num_vertices)) - vertex_a_part # done! return vertex_a_part, vertex_b_part, \ (vertex_a1, vertex_b1, vertex_a2, vertex_b2)
Compute the two parts separated by ``(vertex_a1, vertex_b1)`` and ``(vertex_a2, vertex_b2)`` Raise a GraphError when ``(vertex_a1, vertex_b1)`` and ``(vertex_a2, vertex_b2)`` do not separate the graph in two disconnected parts. The edges must be neighbors. If not a GraphError is raised. The for vertices must not coincide or a GraphError is raised. Returns the vertices of the two halfs and the four 'hinge' vertices in the correct order, i.e. both ``vertex_a1`` and ``vertex_a2`` are in the first half and both ``vertex_b1`` and ``vertex_b2`` are in the second half.
entailment