sentence1
stringlengths
52
3.87M
sentence2
stringlengths
1
47.2k
label
stringclasses
1 value
def Kdp(scatterer): """ Specific differential phase (K_dp) for the current setup. Args: scatterer: a Scatterer instance. Returns: K_dp [deg/km]. NOTE: This only returns the correct value if the particle diameter and wavelength are given in [mm]. The scatterer object should be set to forward scattering geometry before calling this function. """ if (scatterer.thet0 != scatterer.thet) or \ (scatterer.phi0 != scatterer.phi): raise ValueError("A forward scattering geometry is needed to " + \ "compute the specific differential phase.") S = scatterer.get_S() return 1e-3 * (180.0/np.pi) * scatterer.wavelength * (S[1,1]-S[0,0]).real
Specific differential phase (K_dp) for the current setup. Args: scatterer: a Scatterer instance. Returns: K_dp [deg/km]. NOTE: This only returns the correct value if the particle diameter and wavelength are given in [mm]. The scatterer object should be set to forward scattering geometry before calling this function.
entailment
def mg_refractive(m, mix): """Maxwell-Garnett EMA for the refractive index. Args: m: Tuple of the complex refractive indices of the media. mix: Tuple of the volume fractions of the media, len(mix)==len(m) (if sum(mix)!=1, these are taken relative to sum(mix)) Returns: The Maxwell-Garnett approximation for the complex refractive index of the effective medium If len(m)==2, the first element is taken as the matrix and the second as the inclusion. If len(m)>2, the media are mixed recursively so that the last element is used as the inclusion and the second to last as the matrix, then this mixture is used as the last element on the next iteration, and so on. """ if len(m) == 2: cF = float(mix[1]) / (mix[0]+mix[1]) * \ (m[1]**2-m[0]**2) / (m[1]**2+2*m[0]**2) er = m[0]**2 * (1.0+2.0*cF) / (1.0-cF) m = np.sqrt(er) else: m_last = mg_refractive(m[-2:], mix[-2:]) mix_last = mix[-2] + mix[-1] m = mg_refractive(m[:-2] + (m_last,), mix[:-2] + (mix_last,)) return m
Maxwell-Garnett EMA for the refractive index. Args: m: Tuple of the complex refractive indices of the media. mix: Tuple of the volume fractions of the media, len(mix)==len(m) (if sum(mix)!=1, these are taken relative to sum(mix)) Returns: The Maxwell-Garnett approximation for the complex refractive index of the effective medium If len(m)==2, the first element is taken as the matrix and the second as the inclusion. If len(m)>2, the media are mixed recursively so that the last element is used as the inclusion and the second to last as the matrix, then this mixture is used as the last element on the next iteration, and so on.
entailment
def bruggeman_refractive(m, mix): """Bruggeman EMA for the refractive index. For instructions, see mg_refractive in this module, except this routine only works for two components. """ f1 = mix[0]/sum(mix) f2 = mix[1]/sum(mix) e1 = m[0]**2 e2 = m[1]**2 a = -2*(f1+f2) b = (2*f1*e1 - f1*e2 + 2*f2*e2 - f2*e1) c = (f1+f2)*e1*e2 e_eff = (-b - np.sqrt(b**2-4*a*c))/(2*a) return np.sqrt(e_eff)
Bruggeman EMA for the refractive index. For instructions, see mg_refractive in this module, except this routine only works for two components.
entailment
def ice_refractive(file): """ Interpolator for the refractive indices of ice. Inputs: File to read the refractive index lookup table from. This is supplied as "ice_refr.dat", retrieved from http://www.atmos.washington.edu/ice_optical_constants/ Returns: A callable object that takes as parameters the wavelength [mm] and the snow density [g/cm^3]. """ D = np.loadtxt(file) log_wl = np.log10(D[:,0]/1000) re = D[:,1] log_im = np.log10(D[:,2]) iobj_re = interpolate.interp1d(log_wl, re) iobj_log_im = interpolate.interp1d(log_wl, log_im) def ref(wl, snow_density): lwl = np.log10(wl) try: len(lwl) except TypeError: mi_sqr = complex(iobj_re(lwl), 10**iobj_log_im(lwl))**2 else: mi_sqr = np.array([complex(a,b) for (a,b) in zip(iobj_re(lwl), 10**iobj_log_im(lwl))])**2 c = (mi_sqr-1)/(mi_sqr+2) * snow_density/ice_density return np.sqrt( (1+2*c) / (1-c) ) return ref
Interpolator for the refractive indices of ice. Inputs: File to read the refractive index lookup table from. This is supplied as "ice_refr.dat", retrieved from http://www.atmos.washington.edu/ice_optical_constants/ Returns: A callable object that takes as parameters the wavelength [mm] and the snow density [g/cm^3].
entailment
def dsr_thurai_2007(D_eq): """ Drop shape relationship function from Thurai2007 (http://dx.doi.org/10.1175/JTECH2051.1) paper. Arguments: D_eq: Drop volume-equivalent diameter (mm) Returns: r: The vertical-to-horizontal drop axis ratio. Note: the Scatterer class expects horizontal to vertical, so you should pass 1/dsr_thurai_2007 """ if D_eq < 0.7: return 1.0 elif D_eq < 1.5: return 1.173 - 0.5165*D_eq + 0.4698*D_eq**2 - 0.1317*D_eq**3 - \ 8.5e-3*D_eq**4 else: return 1.065 - 6.25e-2*D_eq - 3.99e-3*D_eq**2 + 7.66e-4*D_eq**3 - \ 4.095e-5*D_eq**4
Drop shape relationship function from Thurai2007 (http://dx.doi.org/10.1175/JTECH2051.1) paper. Arguments: D_eq: Drop volume-equivalent diameter (mm) Returns: r: The vertical-to-horizontal drop axis ratio. Note: the Scatterer class expects horizontal to vertical, so you should pass 1/dsr_thurai_2007
entailment
def feature_importances(data, top_n=None, feature_names=None): """ Get and order feature importances from a scikit-learn model or from an array-like structure. If data is a scikit-learn model with sub-estimators (e.g. RandomForest, AdaBoost) the function will compute the standard deviation of each feature. Parameters ---------- data : sklearn model or array-like structure Object to get the data from. top_n : int Only get results for the top_n features. feature_names : array-like Feature_names Returns ------- numpy structured array Returns a numpy structured array with the data. Columns are feature_name, importance and std_ if an sklearn model with sub-estimators was passed in data. """ # data can be either a sklearn estimator or an iterator with # the actual importances values, try to get the values try: imp = data.feature_importances_ except: imp = np.array(data) # in case the user passed an estimator, it may have an estimators_ # attribute, which includes importnaces for every sub-estimator # get them if possible try: sub_imp = np.array([e.feature_importances_ for e in data.estimators_]) # calculate std std = np.std(sub_imp, axis=0) except: std = None # get the number of features n_features = len(imp) # check that the data has the correct format if top_n and top_n > n_features: raise ValueError(('top_n ({}) cannot be greater than the number of' ' features ({})'.format(top_n, n_features))) if top_n and top_n < 1: raise ValueError('top_n cannot be less than 1') if feature_names and len(feature_names) != n_features: raise ValueError(('feature_names ({}) must match the number of' ' features ({})'.format(len(feature_names), n_features))) # if the user did not pass feature names create generic names if feature_names is None: feature_names = ['Feature {}'.format(n) for n in range(1, n_features+1)] feature_names = np.array(feature_names) else: feature_names = np.array(feature_names) # order the data according to the importance for the feature idx = np.argsort(imp)[::-1] imp = imp[idx] feature_names = feature_names[idx] if std is not None: std = std[idx] # build the structured array if std is not None: names = 'feature_name,importance,std_' res = np.core.records.fromarrays([feature_names, imp, std], names=names) else: names = 'feature_name,importance' res = np.core.records.fromarrays([feature_names, imp], names=names) # get subset if top_n is not none if top_n: res = res[:top_n] return res
Get and order feature importances from a scikit-learn model or from an array-like structure. If data is a scikit-learn model with sub-estimators (e.g. RandomForest, AdaBoost) the function will compute the standard deviation of each feature. Parameters ---------- data : sklearn model or array-like structure Object to get the data from. top_n : int Only get results for the top_n features. feature_names : array-like Feature_names Returns ------- numpy structured array Returns a numpy structured array with the data. Columns are feature_name, importance and std_ if an sklearn model with sub-estimators was passed in data.
entailment
def _group_by(data, criteria): """ Group objects in data using a function or a key """ if isinstance(criteria, str): criteria_str = criteria def criteria(x): return x[criteria_str] res = defaultdict(list) for element in data: key = criteria(element) res[key].append(element) return res
Group objects in data using a function or a key
entailment
def _get_params_value(params): """ Given an iterator (k1, k2), returns a function that when called with an object obj returns a tuple of the form: ((k1, obj.parameters[k1]), (k2, obj.parameters[k2])) """ # sort params for consistency ord_params = sorted(params) def fn(obj): l = [] for p in ord_params: try: l.append((p, obj.parameters[p])) except: raise ValueError('{} is not a valid parameter'.format(p)) return tuple(l) return fn
Given an iterator (k1, k2), returns a function that when called with an object obj returns a tuple of the form: ((k1, obj.parameters[k1]), (k2, obj.parameters[k2]))
entailment
def _product(k, v): """ Perform the product between two objects even if they don't support iteration """ if not _can_iterate(k): k = [k] if not _can_iterate(v): v = [v] return list(product(k, v))
Perform the product between two objects even if they don't support iteration
entailment
def _mapping_to_tuple_pairs(d): """ Convert a mapping object (such as a dictionary) to tuple pairs, using its keys and values to generate the pairs and then generating all possible combinations between those e.g. {1: (1,2,3)} -> (((1, 1),), ((1, 2),), ((1, 3),)) """ # order the keys, this will prevent different implementations of Python, # return different results from the same dictionary since the order of # iteration depends on it t = [] ord_keys = sorted(d.keys()) for k in ord_keys: t.append(_product(k, d[k])) return tuple(product(*t))
Convert a mapping object (such as a dictionary) to tuple pairs, using its keys and values to generate the pairs and then generating all possible combinations between those e.g. {1: (1,2,3)} -> (((1, 1),), ((1, 2),), ((1, 3),))
entailment
def learning_curve(train_scores, test_scores, train_sizes, ax=None): """Plot a learning curve Plot a metric vs number of examples for the training and test set Parameters ---------- train_scores : array-like Scores for the training set test_scores : array-like Scores for the test set train_sizes : array-like Relative or absolute numbers of training examples used to generate the learning curve ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/learning_curve.py """ if ax is None: ax = plt.gca() ax.grid() ax.set_title("Learning Curve") ax.set_xlabel("Training examples") ax.set_ylabel("Score mean") train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) ax.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") ax.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") ax.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") ax.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") ax.legend(loc="best") ax.margins(0.05) return ax
Plot a learning curve Plot a metric vs number of examples for the training and test set Parameters ---------- train_scores : array-like Scores for the training set test_scores : array-like Scores for the test set train_sizes : array-like Relative or absolute numbers of training examples used to generate the learning curve ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/learning_curve.py
entailment
def precision_recall(y_true, y_score, ax=None): """ Plot precision-recall curve. Parameters ---------- y_true : array-like, shape = [n_samples] Correct target values (ground truth). y_score : array-like, shape = [n_samples] or [n_samples, 2] for binary classification or [n_samples, n_classes] for multiclass Target scores (estimator predictions). ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Notes ----- It is assumed that the y_score parameter columns are in order. For example, if ``y_true = [2, 2, 1, 0, 0, 1, 2]``, then the first column in y_score must countain the scores for class 0, second column for class 1 and so on. Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/precision_recall.py """ if any((val is None for val in (y_true, y_score))): raise ValueError('y_true and y_score are needed to plot ' 'Precision-Recall') if ax is None: ax = plt.gca() # get the number of classes from y_score y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score) if y_score_is_vector: n_classes = 2 else: _, n_classes = y_score.shape # check data shape? if n_classes > 2: # convert y_true to binary format y_true_bin = label_binarize(y_true, classes=np.unique(y_true)) _precision_recall_multi(y_true_bin, y_score, ax=ax) for i in range(n_classes): _precision_recall(y_true_bin[:, i], y_score[:, i], ax=ax) else: if y_score_is_vector: _precision_recall(y_true, y_score, ax) else: _precision_recall(y_true, y_score[:, 1], ax) # raise error if n_classes = 1? return ax
Plot precision-recall curve. Parameters ---------- y_true : array-like, shape = [n_samples] Correct target values (ground truth). y_score : array-like, shape = [n_samples] or [n_samples, 2] for binary classification or [n_samples, n_classes] for multiclass Target scores (estimator predictions). ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Notes ----- It is assumed that the y_score parameter columns are in order. For example, if ``y_true = [2, 2, 1, 0, 0, 1, 2]``, then the first column in y_score must countain the scores for class 0, second column for class 1 and so on. Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/precision_recall.py
entailment
def _precision_recall(y_true, y_score, ax=None): """ Plot precision-recall curve. Parameters ---------- y_true : array-like, shape = [n_samples] Correct target values (ground truth). y_score : array-like, shape = [n_samples] Target scores (estimator predictions). ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot """ precision, recall, _ = precision_recall_curve(y_true, y_score) average_precision = average_precision_score(y_true, y_score) if ax is None: ax = plt.gca() ax.plot(recall, precision, label=('Precision-Recall curve: AUC={0:0.2f}' .format(average_precision))) _set_ax_settings(ax) return ax
Plot precision-recall curve. Parameters ---------- y_true : array-like, shape = [n_samples] Correct target values (ground truth). y_score : array-like, shape = [n_samples] Target scores (estimator predictions). ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot
entailment
def _precision_recall_multi(y_true, y_score, ax=None): """ Plot precision-recall curve. Parameters ---------- y_true : array-like, shape = [n_samples, n_classes] Correct target values (ground truth). y_score : array-like, shape = [n_samples, n_classes] Target scores (estimator predictions). ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot """ # Compute micro-average ROC curve and ROC area precision, recall, _ = precision_recall_curve(y_true.ravel(), y_score.ravel()) avg_prec = average_precision_score(y_true, y_score, average="micro") if ax is None: ax = plt.gca() ax.plot(recall, precision, label=('micro-average Precision-recall curve (area = {0:0.2f})' .format(avg_prec))) _set_ax_settings(ax) return ax
Plot precision-recall curve. Parameters ---------- y_true : array-like, shape = [n_samples, n_classes] Correct target values (ground truth). y_score : array-like, shape = [n_samples, n_classes] Target scores (estimator predictions). ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot
entailment
def precision_at(y_true, y_score, proportion, ignore_nas=False): ''' Calculates precision at a given proportion. Only supports binary classification. ''' # Sort scores in descending order scores_sorted = np.sort(y_score)[::-1] # Based on the proportion, get the index to split the data # if value is negative, return 0 cutoff_index = max(int(len(y_true) * proportion) - 1, 0) # Get the cutoff value cutoff_value = scores_sorted[cutoff_index] # Convert scores to binary, by comparing them with the cutoff value scores_binary = np.array([int(y >= cutoff_value) for y in y_score]) # Calculate precision using sklearn function if ignore_nas: precision = __precision(y_true, scores_binary) else: precision = precision_score(y_true, scores_binary) return precision, cutoff_value
Calculates precision at a given proportion. Only supports binary classification.
entailment
def __precision(y_true, y_pred): ''' Precision metric tolerant to unlabeled data in y_true, NA values are ignored for the precision calculation ''' # make copies of the arrays to avoid modifying the original ones y_true = np.copy(y_true) y_pred = np.copy(y_pred) # precision = tp/(tp+fp) # True nehatives do not affect precision value, so for every missing # value in y_true, replace it with 0 and also replace the value # in y_pred with 0 is_nan = np.isnan(y_true) y_true[is_nan] = 0 y_pred[is_nan] = 0 precision = precision_score(y_true, y_pred) return precision
Precision metric tolerant to unlabeled data in y_true, NA values are ignored for the precision calculation
entailment
def labels_at(y_true, y_score, proportion, normalize=False): ''' Return the number of labels encountered in the top X proportion ''' # Get indexes of scores sorted in descending order indexes = np.argsort(y_score)[::-1] # Sort true values in the same order y_true_sorted = y_true[indexes] # Grab top x proportion of true values cutoff_index = max(int(len(y_true_sorted) * proportion) - 1, 0) # add one to index to grab values including that index y_true_top = y_true_sorted[:cutoff_index+1] # Count the number of non-nas in the top x proportion # we are returning a count so it should be an int values = int((~np.isnan(y_true_top)).sum()) if normalize: values = float(values)/(~np.isnan(y_true)).sum() return values
Return the number of labels encountered in the top X proportion
entailment
def validation_curve(train_scores, test_scores, param_range, param_name=None, semilogx=False, ax=None): """Plot a validation curve Plot a metric vs hyperpameter values for the training and test set Parameters ---------- train_scores : array-like Scores for the training set test_scores : array-like Scores for the test set param_range : array-like Hyperparameter values used to generate the curve param_range : str Hyperparameter name semilgo : bool Sets a log scale on the x axis ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/validation_curve.py """ if ax is None: ax = plt.gca() if semilogx: ax.set_xscale('log') train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) ax.set_title("Validation Curve") ax.set_ylabel("Score mean") if param_name: ax.set_xlabel(param_name) ax.plot(param_range, train_scores_mean, label="Training score", color="r") ax.plot(param_range, test_scores_mean, label="Cross-validation score", color="g") ax.fill_between(param_range, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.2, color="r") ax.fill_between(param_range, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.2, color="g") ax.legend(loc="best") ax.margins(0.05) return ax
Plot a validation curve Plot a metric vs hyperpameter values for the training and test set Parameters ---------- train_scores : array-like Scores for the training set test_scores : array-like Scores for the test set param_range : array-like Hyperparameter values used to generate the curve param_range : str Hyperparameter name semilgo : bool Sets a log scale on the x axis ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/validation_curve.py
entailment
def confusion_matrix(y_true, y_pred, target_names=None, normalize=False, cmap=None, ax=None): """ Plot confustion matrix. Parameters ---------- y_true : array-like, shape = [n_samples] Correct target values (ground truth). y_pred : array-like, shape = [n_samples] Target predicted classes (estimator predictions). target_names : list List containing the names of the target classes. List must be in order e.g. ``['Label for class 0', 'Label for class 1']``. If ``None``, generic labels will be generated e.g. ``['Class 0', 'Class 1']`` ax: matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes normalize : bool Normalize the confusion matrix cmap : matplotlib Colormap If ``None`` uses a modified version of matplotlib's OrRd colormap. Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/confusion_matrix.py """ if any((val is None for val in (y_true, y_pred))): raise ValueError("y_true and y_pred are needed to plot confusion " "matrix") # calculate how many names you expect values = set(y_true).union(set(y_pred)) expected_len = len(values) if target_names and (expected_len != len(target_names)): raise ValueError(('Data cointains {} different values, but target' ' names contains {} values.'.format(expected_len, len(target_names) ))) # if the user didn't pass target_names, create generic ones if not target_names: values = list(values) values.sort() target_names = ['Class {}'.format(v) for v in values] cm = sk_confusion_matrix(y_true, y_pred) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] np.set_printoptions(precision=2) if ax is None: ax = plt.gca() # this (y, x) may sound counterintuitive. The reason is that # in a matrix cell (i, j) is in row=i and col=j, translating that # to an x, y plane (which matplotlib uses to plot), we need to use # i as the y coordinate (how many steps down) and j as the x coordinate # how many steps to the right. for (y, x), v in np.ndenumerate(cm): try: label = '{:.2}'.format(v) except: label = v ax.text(x, y, label, horizontalalignment='center', verticalalignment='center') if cmap is None: cmap = default_heatmap() im = ax.imshow(cm, interpolation='nearest', cmap=cmap) plt.colorbar(im, ax=ax) tick_marks = np.arange(len(target_names)) ax.set_xticks(tick_marks) ax.set_xticklabels(target_names) ax.set_yticks(tick_marks) ax.set_yticklabels(target_names) title = 'Confusion matrix' if normalize: title += ' (normalized)' ax.set_title(title) ax.set_ylabel('True label') ax.set_xlabel('Predicted label') return ax
Plot confustion matrix. Parameters ---------- y_true : array-like, shape = [n_samples] Correct target values (ground truth). y_pred : array-like, shape = [n_samples] Target predicted classes (estimator predictions). target_names : list List containing the names of the target classes. List must be in order e.g. ``['Label for class 0', 'Label for class 1']``. If ``None``, generic labels will be generated e.g. ``['Class 0', 'Class 1']`` ax: matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes normalize : bool Normalize the confusion matrix cmap : matplotlib Colormap If ``None`` uses a modified version of matplotlib's OrRd colormap. Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/confusion_matrix.py
entailment
def feature_importances(data, top_n=None, feature_names=None, ax=None): """ Get and order feature importances from a scikit-learn model or from an array-like structure. If data is a scikit-learn model with sub-estimators (e.g. RandomForest, AdaBoost) the function will compute the standard deviation of each feature. Parameters ---------- data : sklearn model or array-like structure Object to get the data from. top_n : int Only get results for the top_n features. feature_names : array-like Feature names ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/feature_importances.py """ if data is None: raise ValueError('data is needed to plot feature importances. ' 'When plotting using the evaluator you need to pass ' 'an estimator ') # If no feature_names is provided, assign numbers res = compute.feature_importances(data, top_n, feature_names) # number of features returned n_feats = len(res) if ax is None: ax = plt.gca() ax.set_title("Feature importances") try: ax.bar(range(n_feats), res.importance, yerr=res.std_, color='red', align="center") except: ax.bar(range(n_feats), res.importance, color='red', align="center") ax.set_xticks(range(n_feats)) ax.set_xticklabels(res.feature_name) ax.set_xlim([-1, n_feats]) return ax
Get and order feature importances from a scikit-learn model or from an array-like structure. If data is a scikit-learn model with sub-estimators (e.g. RandomForest, AdaBoost) the function will compute the standard deviation of each feature. Parameters ---------- data : sklearn model or array-like structure Object to get the data from. top_n : int Only get results for the top_n features. feature_names : array-like Feature names ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/feature_importances.py
entailment
def precision_at_proportions(y_true, y_score, ax=None): """ Plot precision values at different proportions. Parameters ---------- y_true : array-like Correct target values (ground truth). y_score : array-like Target scores (estimator predictions). ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot """ if any((val is None for val in (y_true, y_score))): raise ValueError('y_true and y_score are needed to plot precision at ' 'proportions') if ax is None: ax = plt.gca() y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score) if not y_score_is_vector: y_score = y_score[:, 1] # Calculate points proportions = [0.01 * i for i in range(1, 101)] precs_and_cutoffs = [precision_at(y_true, y_score, p) for p in proportions] precs, cutoffs = zip(*precs_and_cutoffs) # Plot and set nice defaults for title and axis labels ax.plot(proportions, precs) ax.set_title('Precision at various proportions') ax.set_ylabel('Precision') ax.set_xlabel('Proportion') ticks = [0.1 * i for i in range(1, 11)] ax.set_xticks(ticks) ax.set_xticklabels(ticks) ax.set_yticks(ticks) ax.set_yticklabels(ticks) ax.set_ylim([0, 1.0]) ax.set_xlim([0, 1.0]) return ax
Plot precision values at different proportions. Parameters ---------- y_true : array-like Correct target values (ground truth). y_score : array-like Target scores (estimator predictions). ax : matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot
entailment
def feature_importances(data, top_n=None, feature_names=None): """ Get and order feature importances from a scikit-learn model or from an array-like structure. If data is a scikit-learn model with sub-estimators (e.g. RandomForest, AdaBoost) the function will compute the standard deviation of each feature. Parameters ---------- data : sklearn model or array-like structure Object to get the data from. top_n : int Only get results for the top_n features. feature_names : array-like Feature_names Returns ------- table Table object with the data. Columns are feature_name, importance (`std_` only included for models with sub-estimators) """ if data is None: raise ValueError('data is needed to tabulate feature importances. ' 'When plotting using the evaluator you need to pass ' 'an estimator ') res = compute.feature_importances(data, top_n, feature_names) return Table(res, res.dtype.names)
Get and order feature importances from a scikit-learn model or from an array-like structure. If data is a scikit-learn model with sub-estimators (e.g. RandomForest, AdaBoost) the function will compute the standard deviation of each feature. Parameters ---------- data : sklearn model or array-like structure Object to get the data from. top_n : int Only get results for the top_n features. feature_names : array-like Feature_names Returns ------- table Table object with the data. Columns are feature_name, importance (`std_` only included for models with sub-estimators)
entailment
def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one output, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # Here is where we assume there is, at most, one decorator. # Might need to rethink this. decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): # The default ipython_rgx* treat the space following the colon as optional. # However, If the space is there we must consume it or code # employing the cython_magic extension will fail to execute. # # This works with the default ipython_rgx* patterns, # If you modify them, YMMV. nextline = nextline[Nc:] if nextline and nextline[0] == ' ': nextline = nextline[1:] inputline += '\n' + nextline else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block
part is a string of ipython text, comprised of at most one input, one output, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line
entailment
def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin % lineno output_prompt = self.promptout % lineno image_file = None image_directive = None found_input = False for token, data in block: if token == COMMENT: out_data = self.process_comment(data) elif token == INPUT: found_input = True (out_data, input_lines, output, is_doctest, decorator, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token == OUTPUT: if not found_input: TAB = ' ' * 4 linenumber = 0 source = 'Unavailable' content = 'Unavailable' if self.directive: linenumber = self.directive.state.document.current_line source = self.directive.state.document.current_source content = self.directive.content # Add tabs and join into a single string. content = '\n'.join([TAB + line for line in content]) e = ('\n\nInvalid block: Block contains an output prompt ' 'without an input prompt.\n\n' 'Document source: {0}\n\n' 'Content begins at line {1}: \n\n{2}\n\n' 'Problematic block within content: \n\n{TAB}{3}\n\n') e = e.format(source, linenumber, content, block, TAB=TAB) # Write, rather than include in exception, since Sphinx # will truncate tracebacks. sys.stdout.write(e) raise RuntimeError('An invalid block was detected.') out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, decorator, image_file) if out_data: # Then there was user submitted output in verbatim mode. # We need to remove the last element of `ret` that was # added in `process_input`, as it is '' and would introduce # an undesirable newline. assert(ret[-1] == '') del ret[-1] if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive
process block from the block_parser and return a list of processed lines
entailment
def grid_search(grid_scores, change, subset=None, kind='line', cmap=None, ax=None): """ Plot results from a sklearn grid search by changing two parameters at most. Parameters ---------- grid_scores : list of named tuples Results from a sklearn grid search (get them using the `grid_scores_` parameter) change : str or iterable with len<=2 Parameter to change subset : dictionary-like parameter-value(s) pairs to subset from grid_scores. (e.g. ``{'n_estimartors': [1, 10]}``), if None all combinations will be used. kind : ['line', 'bar'] This only applies whe change is a single parameter. Changes the type of plot cmap : matplotlib Colormap This only applies when change are two parameters. Colormap used for the matrix. If None uses a modified version of matplotlib's OrRd colormap. ax: matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/grid_search.py """ if change is None: raise ValueError(('change can\'t be None, you need to select at least' ' one value to make the plot.')) if ax is None: ax = plt.gca() if cmap is None: cmap = default_heatmap() if isinstance(change, string_types) or len(change) == 1: return _grid_search_single(grid_scores, change, subset, kind, ax) elif len(change) == 2: return _grid_search_double(grid_scores, change, subset, cmap, ax) else: raise ValueError('change must have length 1 or 2 or be a string')
Plot results from a sklearn grid search by changing two parameters at most. Parameters ---------- grid_scores : list of named tuples Results from a sklearn grid search (get them using the `grid_scores_` parameter) change : str or iterable with len<=2 Parameter to change subset : dictionary-like parameter-value(s) pairs to subset from grid_scores. (e.g. ``{'n_estimartors': [1, 10]}``), if None all combinations will be used. kind : ['line', 'bar'] This only applies whe change is a single parameter. Changes the type of plot cmap : matplotlib Colormap This only applies when change are two parameters. Colormap used for the matrix. If None uses a modified version of matplotlib's OrRd colormap. ax: matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/grid_search.py
entailment
def confusion_matrix(self): """Confusion matrix plot """ return plot.confusion_matrix(self.y_true, self.y_pred, self.target_names, ax=_gen_ax())
Confusion matrix plot
entailment
def roc(self): """ROC plot """ return plot.roc(self.y_true, self.y_score, ax=_gen_ax())
ROC plot
entailment
def precision_recall(self): """Precision-recall plot """ return plot.precision_recall(self.y_true, self.y_score, ax=_gen_ax())
Precision-recall plot
entailment
def feature_importances(self): """Feature importances plot """ return plot.feature_importances(self.estimator, feature_names=self.feature_names, ax=_gen_ax())
Feature importances plot
entailment
def feature_importances_table(self): """Feature importances table """ from . import table return table.feature_importances(self.estimator, feature_names=self.feature_names)
Feature importances table
entailment
def precision_at_proportions(self): """Precision at proportions plot """ return plot.precision_at_proportions(self.y_true, self.y_score, ax=_gen_ax())
Precision at proportions plot
entailment
def generate_report(self, template, path=None, style=None): """ Generate HTML report Parameters ---------- template : markdown-formatted string or path to the template file used for rendering the report. Any attribute of this object can be included in the report using the {tag} format. e.g.'# Report{estimator_name}{roc}{precision_recall}'. Apart from every attribute, you can also use {date} and {date_utc} tags to include the date for the report generation using local and UTC timezones repectively. path : str Path to save the HTML report. If None, the function will return the HTML code. style: str Path to a css file to apply style to the report. If None, no style will be applied Returns ------- report: str Returns the contents of the report if path is None. """ from .report import generate return generate(self, template, path, style)
Generate HTML report Parameters ---------- template : markdown-formatted string or path to the template file used for rendering the report. Any attribute of this object can be included in the report using the {tag} format. e.g.'# Report{estimator_name}{roc}{precision_recall}'. Apart from every attribute, you can also use {date} and {date_utc} tags to include the date for the report generation using local and UTC timezones repectively. path : str Path to save the HTML report. If None, the function will return the HTML code. style: str Path to a css file to apply style to the report. If None, no style will be applied Returns ------- report: str Returns the contents of the report if path is None.
entailment
def roc(y_true, y_score, ax=None): """ Plot ROC curve. Parameters ---------- y_true : array-like, shape = [n_samples] Correct target values (ground truth). y_score : array-like, shape = [n_samples] or [n_samples, 2] for binary classification or [n_samples, n_classes] for multiclass Target scores (estimator predictions). ax: matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Notes ----- It is assumed that the y_score parameter columns are in order. For example, if ``y_true = [2, 2, 1, 0, 0, 1, 2]``, then the first column in y_score must countain the scores for class 0, second column for class 1 and so on. Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/roc.py """ if any((val is None for val in (y_true, y_score))): raise ValueError("y_true and y_score are needed to plot ROC") if ax is None: ax = plt.gca() # get the number of classes based on the shape of y_score y_score_is_vector = is_column_vector(y_score) or is_row_vector(y_score) if y_score_is_vector: n_classes = 2 else: _, n_classes = y_score.shape # check data shape? if n_classes > 2: # convert y_true to binary format y_true_bin = label_binarize(y_true, classes=np.unique(y_true)) _roc_multi(y_true_bin, y_score, ax=ax) for i in range(n_classes): _roc(y_true_bin[:, i], y_score[:, i], ax=ax) else: if y_score_is_vector: _roc(y_true, y_score, ax) else: _roc(y_true, y_score[:, 1], ax) # raise error if n_classes = 1? return ax
Plot ROC curve. Parameters ---------- y_true : array-like, shape = [n_samples] Correct target values (ground truth). y_score : array-like, shape = [n_samples] or [n_samples, 2] for binary classification or [n_samples, n_classes] for multiclass Target scores (estimator predictions). ax: matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Notes ----- It is assumed that the y_score parameter columns are in order. For example, if ``y_true = [2, 2, 1, 0, 0, 1, 2]``, then the first column in y_score must countain the scores for class 0, second column for class 1 and so on. Returns ------- ax: matplotlib Axes Axes containing the plot Examples -------- .. plot:: ../../examples/roc.py
entailment
def _roc(y_true, y_score, ax=None): """ Plot ROC curve for binary classification. Parameters ---------- y_true : array-like, shape = [n_samples] Correct target values (ground truth). y_score : array-like, shape = [n_samples] Target scores (estimator predictions). ax: matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot """ # check dimensions fpr, tpr, _ = roc_curve(y_true, y_score) roc_auc = auc(fpr, tpr) ax.plot(fpr, tpr, label=('ROC curve (area = {0:0.2f})'.format(roc_auc))) _set_ax_settings(ax) return ax
Plot ROC curve for binary classification. Parameters ---------- y_true : array-like, shape = [n_samples] Correct target values (ground truth). y_score : array-like, shape = [n_samples] Target scores (estimator predictions). ax: matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot
entailment
def _roc_multi(y_true, y_score, ax=None): """ Plot ROC curve for multi classification. Parameters ---------- y_true : array-like, shape = [n_samples, n_classes] Correct target values (ground truth). y_score : array-like, shape = [n_samples, n_classes] Target scores (estimator predictions). ax: matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot """ # Compute micro-average ROC curve and ROC area fpr, tpr, _ = roc_curve(y_true.ravel(), y_score.ravel()) roc_auc = auc(fpr, tpr) if ax is None: ax = plt.gca() ax.plot(fpr, tpr, label=('micro-average ROC curve (area = {0:0.2f})' .format(roc_auc))) _set_ax_settings(ax) return ax
Plot ROC curve for multi classification. Parameters ---------- y_true : array-like, shape = [n_samples, n_classes] Correct target values (ground truth). y_score : array-like, shape = [n_samples, n_classes] Target scores (estimator predictions). ax: matplotlib Axes Axes object to draw the plot onto, otherwise uses current Axes Returns ------- ax: matplotlib Axes Axes containing the plot
entailment
async def get_connection(self, container): ''' Get an exclusive connection, useful for blocked commands and transactions. You must call release or shutdown (not recommanded) to return the connection after use. :param container: routine container :returns: RedisClientBase object, with some commands same as RedisClient like execute_command, batch_execute, register_script etc. ''' if self._connpool: conn = self._connpool.pop() return RedisClientBase(conn, self) else: conn = self._create_client(container) await RedisClientBase._get_connection(self, container, conn) await self._protocol.send_command(conn, container, 'SELECT', str(self.db)) return RedisClientBase(conn, self)
Get an exclusive connection, useful for blocked commands and transactions. You must call release or shutdown (not recommanded) to return the connection after use. :param container: routine container :returns: RedisClientBase object, with some commands same as RedisClient like execute_command, batch_execute, register_script etc.
entailment
async def execute_command(self, container, *args): ''' Execute command on Redis server: - For (P)SUBSCRIBE/(P)UNSUBSCRIBE, the command is sent to the subscribe connection. It is recommended to use (p)subscribe/(p)unsubscribe method instead of directly call the command - For BLPOP, BRPOP, BRPOPLPUSH, the command is sent to a separated connection. The connection is recycled after command returns. - For other commands, the command is sent to the default connection. ''' if args: cmd = _str(args[0]).upper() if cmd in ('SUBSCRIBE', 'UNSUBSCRIBE', 'PSUBSCRIBE', 'PUNSUBSCRIBE'): await self._get_subscribe_connection(container) return await self._protocol.execute_command(self._subscribeconn, container, *args) elif cmd in ('BLPOP', 'BRPOP', 'BRPOPLPUSH'): c = await self.get_connection(container) with c.context(container): return await c.execute_command(container, *args) return await RedisClientBase.execute_command(self, container, *args)
Execute command on Redis server: - For (P)SUBSCRIBE/(P)UNSUBSCRIBE, the command is sent to the subscribe connection. It is recommended to use (p)subscribe/(p)unsubscribe method instead of directly call the command - For BLPOP, BRPOP, BRPOPLPUSH, the command is sent to a separated connection. The connection is recycled after command returns. - For other commands, the command is sent to the default connection.
entailment
async def subscribe(self, container, *keys): ''' Subscribe to specified channels :param container: routine container :param *keys: subscribed channels :returns: list of event matchers for the specified channels ''' await self._get_subscribe_connection(container) realkeys = [] for k in keys: count = self._subscribecounter.get(k, 0) if count == 0: realkeys.append(k) self._subscribecounter[k] = count + 1 if realkeys: await self._protocol.execute_command(self._subscribeconn, container, 'SUBSCRIBE', *realkeys) return [self._protocol.subscribematcher(self._subscribeconn, k, None, RedisSubscribeMessageEvent.MESSAGE) for k in keys]
Subscribe to specified channels :param container: routine container :param *keys: subscribed channels :returns: list of event matchers for the specified channels
entailment
async def unsubscribe(self, container, *keys): ''' Unsubscribe specified channels. Every subscribed key should be unsubscribed exactly once, even if duplicated subscribed. :param container: routine container :param \*keys: subscribed channels ''' await self._get_subscribe_connection(container) realkeys = [] for k in keys: count = self._subscribecounter.get(k, 0) if count <= 1: realkeys.append(k) try: del self._subscribecounter[k] except KeyError: pass else: self._subscribecounter[k] = count - 1 if realkeys: await self._protocol.execute_command(self._subscribeconn, container, 'UNSUBSCRIBE', *realkeys)
Unsubscribe specified channels. Every subscribed key should be unsubscribed exactly once, even if duplicated subscribed. :param container: routine container :param \*keys: subscribed channels
entailment
async def psubscribe(self, container, *keys): ''' Subscribe to specified globs :param container: routine container :param \*keys: subscribed globs :returns: list of event matchers for the specified globs ''' await self._get_subscribe_connection(container) realkeys = [] for k in keys: count = self._psubscribecounter.get(k, 0) if count == 0: realkeys.append(k) self._psubscribecounter[k] = count + 1 await self._protocol.execute_command(self._subscribeconn, container, 'PSUBSCRIBE', *realkeys) return [self._protocol.subscribematcher(self._subscribeconn, k, None, RedisSubscribeMessageEvent.PMESSAGE) for k in keys]
Subscribe to specified globs :param container: routine container :param \*keys: subscribed globs :returns: list of event matchers for the specified globs
entailment
async def shutdown(self, container, force=False): ''' Shutdown all connections. Exclusive connections created by get_connection will shutdown after release() ''' p = self._connpool self._connpool = [] self._shutdown = True if self._defaultconn: p.append(self._defaultconn) self._defaultconn = None if self._subscribeconn: p.append(self._subscribeconn) self._subscribeconn = None await container.execute_all([self._shutdown_conn(container, o, force) for o in p])
Shutdown all connections. Exclusive connections created by get_connection will shutdown after release()
entailment
def subscribe_state_matcher(self, container, connected = True): ''' Return a matcher to match the subscribe connection status. :param container: a routine container. NOTICE: this method is not a routine. :param connected: if True, the matcher matches connection up. If False, the matcher matches connection down. :returns: an event matcher. ''' if not self._subscribeconn: self._subscribeconn = self._create_client(container) return RedisConnectionStateEvent.createMatcher( RedisConnectionStateEvent.CONNECTION_UP if connected else RedisConnectionStateEvent.CONNECTION_DOWN, self._subscribeconn )
Return a matcher to match the subscribe connection status. :param container: a routine container. NOTICE: this method is not a routine. :param connected: if True, the matcher matches connection up. If False, the matcher matches connection down. :returns: an event matcher.
entailment
def _escape_path(key): ''' Replace '/', '\\' in key ''' return _tobytes(key).replace(b'$', b'$_').replace(b'/', b'$+').replace(b'\\', b'$$')
Replace '/', '\\' in key
entailment
def reassemble_options(payload): ''' Reassemble partial options to options, returns a list of dhcp_option DHCP options are basically `|tag|length|value|` structure. When an option is longer than 255 bytes, it can be splitted into multiple structures with the same tag. The splitted structures must be joined back to get the original option. `dhcp_option_partial` is used to present the splitted options, and `dhcp_option` is used for reassembled option. ''' options = [] option_indices = {} def process_option_list(partials): for p in partials: if p.tag == OPTION_END: break if p.tag == OPTION_PAD: continue if p.tag in option_indices: # Reassemble the data options[option_indices[p.tag]][1].append(p.data) else: options.append((p.tag, [p.data])) option_indices[p.tag] = len(options) - 1 # First process options field process_option_list(payload.options) if OPTION_OVERLOAD in option_indices: # There is an overload option data = b''.join(options[option_indices[OPTION_OVERLOAD]][1]) overload_option = dhcp_overload.create(data) if overload_option & OVERLOAD_FILE: process_option_list(dhcp_option_partial[0].create(payload.file)) if overload_option & OVERLOAD_SNAME: process_option_list(dhcp_option_partial[0].create(payload.sname)) def _create_dhcp_option(tag, data): opt = dhcp_option(tag = tag) opt._setextra(data) opt._autosubclass() return opt return [_create_dhcp_option(tag, b''.join(data)) for tag,data in options]
Reassemble partial options to options, returns a list of dhcp_option DHCP options are basically `|tag|length|value|` structure. When an option is longer than 255 bytes, it can be splitted into multiple structures with the same tag. The splitted structures must be joined back to get the original option. `dhcp_option_partial` is used to present the splitted options, and `dhcp_option` is used for reassembled option.
entailment
def build_options(payload, options, maxsize = 576, overload = OVERLOAD_FILE | OVERLOAD_SNAME, allowpartial = True): ''' Split a list of options This is the reverse operation of `reassemble_options`, it splits `dhcp_option` into `dhcp_option_partial` if necessary, and set overload option if field overloading is used. :param options: a list of `dhcp_option` :param maxsize: Limit the maximum DHCP message size. If options cannot fit into the DHCP message, specified fields are overloaded for options. If options cannot fit after overloading, extra options are DROPPED if allowpartial = True. It is important to sort the dhcp options by priority. :param overload: fields that are allowed to be overloaded :param allowpartial: When options cannot fit into the DHCP message, allow the rest options to be dropped. :return: Number of options that are dropped i.e. `options[:-return_value]` are dropped ''' if maxsize < 576: maxsize = 576 max_options_size = maxsize - 240 # Ignore OPTION_PAD and OPTION_END options = [o for o in options if o.tag not in (OPTION_PAD, OPTION_END)] # Only preserve data option_data = [(o.tag, o._tobytes()[2:]) for o in options] def split_options(option_data, limits): """ Split options into multiple fields :param option_data: list of (tag, data) pair :param limits: list of int for limit of each field (excluding PAD and END) :return: number of options that are dropped """ # List of (dhcp_option_partial, option_not_finished) partial_options = [] buffers = [0] if not options: return ([], 0) def create_result(): # Remove any unfinished partial options while partial_options and partial_options[-1][1]: partial_options.pop() buffers.append(len(partial_options)) r = [[po for po,_ in partial_options[buffers[i]:buffers[i+1]]] for i in range(0, len(buffers) - 1)] # Remove empty fields while r and not r[-1]: r.pop() return r # Current field used size current_size = 0 limit_iter = iter(limits) try: next_limit = next(limit_iter) except (StopIteration, GeneratorExit): return ([], False) for i, (tag, data) in enumerate(option_data): # Current used data size data_size = 0 # Do not split very small options on boundary, this may prevent some broken DHCP clients/servers # to cause problem nosplit = (len(data) <= 32) while True: # next partial option size should be: # 1. no more than the current field limit (minus 1-byte tag and 1-byte length) # 2. no more than the single dhcp_option_partial data limit (255 due to single byte length) # 3. no more than the rest data size next_size = min(next_limit - current_size - 2, 255, len(data) - data_size) if next_size < 0 or (next_size == 0 and data_size < len(data)) \ or (next_size < len(data) - data_size and nosplit): # Cannot put this part of data on the current field, find the next field try: next_limit = next(limit_iter) except (StopIteration, GeneratorExit): return (create_result(), len(option_data) - i) # Record field boundary buffers.append(len(partial_options)) current_size = 0 else: # Put this partial option on current field partial_options.append((dhcp_option_partial(tag = tag, data = data[data_size : data_size + next_size]), (next_size < len(data) - data_size))) data_size += next_size current_size += next_size + 2 if data_size >= len(data): # finished current option break return (create_result(), 0) # First try to fit all options in options field # preserve a byte for OPTION_END result, not_finished = split_options(option_data, [max_options_size - 1]) if not_finished: if overload & (OVERLOAD_FILE | OVERLOAD_SNAME): # Try overload # minus a overload option (1-byte tag, 1-byte lenght, 1-byte dhcp_overload) and 1-byte OPTION_END limits = [max_options_size - 4] if overload & OVERLOAD_FILE: # preserve a byte for OPTION_END limits.append(127) if overload & OVERLOAD_SNAME: # preserve a byte for OPTION_END limits.append(63) result2, not_finished2 = split_options(option_data, limits) # Only overload if we have a better result if len(result2) > 1: result = result2 not_finished = not_finished2 if not allowpartial and not_finished: raise ValueError("%d options cannot fit into a DHCP message" % (not_finished,)) if not result: return not_finished elif len(result) <= 1: # No overload payload.options = result[0] + [dhcp_option_partial(tag = OPTION_END)] else: overload_option = 0 if len(result) >= 2 and result[1]: overload_option |= OVERLOAD_FILE # overload file field payload.file = dhcp_option_partial[0].tobytes(result[1] + [dhcp_option_partial(tag = OPTION_END)]) if len(result) >= 3 and result[2]: overload_option |= OVERLOAD_SNAME # overload sname field payload.sname = dhcp_option_partial[0].tobytes(result[2] + [dhcp_option_partial(tag = OPTION_END)]) # Put an overload option before any other options payload.options = [dhcp_option_partial(tag = OPTION_OVERLOAD, data = dhcp_overload.tobytes(overload_option))] \ + result[0] + [dhcp_option_partial(tag = OPTION_END)] return not_finished
Split a list of options This is the reverse operation of `reassemble_options`, it splits `dhcp_option` into `dhcp_option_partial` if necessary, and set overload option if field overloading is used. :param options: a list of `dhcp_option` :param maxsize: Limit the maximum DHCP message size. If options cannot fit into the DHCP message, specified fields are overloaded for options. If options cannot fit after overloading, extra options are DROPPED if allowpartial = True. It is important to sort the dhcp options by priority. :param overload: fields that are allowed to be overloaded :param allowpartial: When options cannot fit into the DHCP message, allow the rest options to be dropped. :return: Number of options that are dropped i.e. `options[:-return_value]` are dropped
entailment
def create_option_from_value(tag, value): """ Set DHCP option with human friendly value """ dhcp_option.parser() fake_opt = dhcp_option(tag = tag) for c in dhcp_option.subclasses: if c.criteria(fake_opt): if hasattr(c, '_parse_from_value'): return c(tag = tag, value = c._parse_from_value(value)) else: raise ValueError('Invalid DHCP option ' + str(tag) + ": " + repr(value)) else: fake_opt._setextra(_tobytes(value)) return fake_opt
Set DHCP option with human friendly value
entailment
def create_dhcp_options(input_dict, ignoreError = False, generateNone = False): """ Try best to create dhcp_options from human friendly values, ignoring invalid values """ retdict = {} for k,v in dict(input_dict).items(): try: if generateNone and v is None: retdict[k] = None else: try: retdict[k] = create_option_from_value(k, v) except _EmptyOptionException: if generateNone: retdict[k] = None except Exception: if ignoreError: continue else: raise return retdict
Try best to create dhcp_options from human friendly values, ignoring invalid values
entailment
def with_indices(*args): ''' Create indices for an event class. Every event class must be decorated with this decorator. ''' def decorator(cls): for c in cls.__bases__: if hasattr(c, '_indicesNames'): cls._classnameIndex = c._classnameIndex + 1 for i in range(0, cls._classnameIndex): setattr(cls, '_classname' + str(i), getattr(c, '_classname' + str(i))) setattr(cls, '_classname' + str(cls._classnameIndex), cls._getTypename()) cls._indicesNames = c._indicesNames + ('_classname' + str(cls._classnameIndex),) + args cls._generateTemplate() return cls cls._classnameIndex = -1 cls._indicesNames = args cls._generateTemplate() return cls return decorator
Create indices for an event class. Every event class must be decorated with this decorator.
entailment
def two_way_difference(self, b, extra_add = (), extra_remove = ()): """ Return (self - b, b - self) """ if self is b: return ((), ()) if isinstance(b, DiffRef_): extra_remove = extra_remove + b.add b = b.origin if extra_add == extra_remove: extra_add = extra_remove = () if isinstance(b, Diff_): if self.base is b.base: first = self.add + b.remove second = self.remove + b.add elif self.base is b: first = self.add second = self.remove elif b.base is self: first = b.remove second = b.add else: first = self second = b else: first = self second = b if not first and not extra_add: return ((), tuple(second) + tuple(extra_remove)) elif not second and not extra_remove: return (tuple(first) + tuple(extra_add), ()) else: first = set(first) first.update(extra_add) second = set(second) second.update(extra_remove) return tuple(first.difference(second)), tuple(second.difference(first))
Return (self - b, b - self)
entailment
def getTypename(cls): ''' :returns: return the proper name to match ''' if cls is Event: return None else: for c in cls.__bases__: if issubclass(c, Event): if c is Event: return cls._getTypename() else: return c.getTypename()
:returns: return the proper name to match
entailment
def createMatcher(cls, *args, **kwargs): ''' :param _ismatch: user-defined function ismatch(event) for matching test :param \*args: indices :param \*\*kwargs: index_name=index_value for matching criteria ''' if kwargs and not args: return EventMatcher(tuple(getattr(cls, ind) if ind[:10] == '_classname' else kwargs.get(ind) for ind in cls.indicesNames()), kwargs.get('_ismatch')) else: return EventMatcher(tuple(cls._generateIndices(args)), kwargs.get('_ismatch'))
:param _ismatch: user-defined function ismatch(event) for matching test :param \*args: indices :param \*\*kwargs: index_name=index_value for matching criteria
entailment
async def limit(self, use = 1): """ Acquire "resources", wait until enough "resources" are acquired. For each loop, `limit` number of "resources" are permitted. :param use: number of "resouces" to be used. :return: True if is limited """ c = self._counter self._counter = c + use if self._task is None: self._task = self._container.subroutine(self._limiter_task(), False) if c >= self._bottom_line: # Limited await RateLimitingEvent.createMatcher(self, c // self._limit) return True else: return False
Acquire "resources", wait until enough "resources" are acquired. For each loop, `limit` number of "resources" are permitted. :param use: number of "resouces" to be used. :return: True if is limited
entailment
async def run_task(self, container, task, newthread = False): "Run task() in task pool. Raise an exception or return the return value" e = TaskEvent(self, task=task, newthread = newthread) await container.wait_for_send(e) ev = await TaskDoneEvent.createMatcher(e) if hasattr(ev, 'exception'): raise ev.exception else: return ev.result
Run task() in task pool. Raise an exception or return the return value
entailment
async def run_gen_task(self, container, gentask, newthread = True): "Run generator gentask() in task pool, yield customized events" e = TaskEvent(self, gen_task = gentask, newthread = newthread) await container.wait_for_send(e) ev = await TaskDoneEvent.createMatcher(e) if hasattr(ev, 'exception'): raise ev.exception else: return ev.result
Run generator gentask() in task pool, yield customized events
entailment
async def run_async_task(self, container, asynctask, newthread = True): "Run asynctask(sender) in task pool, call sender(events) to send customized events, return result" e = TaskEvent(self, async_task = asynctask, newthread = newthread) await container.wait_for_send(e) ev = await TaskDoneEvent.createMatcher(e) if hasattr(ev, 'exception'): raise ev.exception else: return ev.result
Run asynctask(sender) in task pool, call sender(events) to send customized events, return result
entailment
async def lock(self, container = None): "Wait for lock acquire" if container is None: container = RoutineContainer.get_container(self.scheduler) if self.locked: pass elif self.lockroutine: await LockedEvent.createMatcher(self) else: await container.wait_for_send(LockEvent(self.context, self.key, self)) self.locked = True
Wait for lock acquire
entailment
def trylock(self): "Try to acquire lock and return True; if cannot acquire the lock at this moment, return False." if self.locked: return True if self.lockroutine: return False waiter = self.scheduler.send(LockEvent(self.context, self.key, self)) if waiter: return False else: self.locked = True return True
Try to acquire lock and return True; if cannot acquire the lock at this moment, return False.
entailment
def beginlock(self, container): "Start to acquire lock in another routine. Call trylock or lock later to acquire the lock. Call unlock to cancel the lock routine" if self.locked: return True if self.lockroutine: return False self.lockroutine = container.subroutine(self._lockroutine(container), False) return self.locked
Start to acquire lock in another routine. Call trylock or lock later to acquire the lock. Call unlock to cancel the lock routine
entailment
def unlock(self): "Unlock the key" if self.lockroutine: self.lockroutine.close() self.lockroutine = None if self.locked: self.locked = False self.scheduler.ignore(LockEvent.createMatcher(self.context, self.key, self))
Unlock the key
entailment
def create(self): """ Create the subqueue to change the default behavior of Lock to semaphore. """ self.queue = self.scheduler.queue.addSubQueue(self.priority, LockEvent.createMatcher(self.context, self.key), maxdefault = self.size, defaultQueueClass = CBQueue.AutoClassQueue.initHelper('locker', subqueuelimit = 1))
Create the subqueue to change the default behavior of Lock to semaphore.
entailment
async def destroy(self, container = None): """ Destroy the created subqueue to change the behavior back to Lock """ if container is None: container = RoutineContainer(self.scheduler) if self.queue is not None: await container.syscall_noreturn(syscall_removequeue(self.scheduler.queue, self.queue)) self.queue = None
Destroy the created subqueue to change the behavior back to Lock
entailment
async def shutdown(self, force = False, connmark = -1): ''' Can call without delegate ''' if connmark is None: connmark = self.connmark self.scheduler.emergesend(ConnectionControlEvent(self, ConnectionControlEvent.SHUTDOWN, force, connmark))
Can call without delegate
entailment
async def reconnect(self, force = True, connmark = None): ''' Can call without delegate ''' if connmark is None: connmark = self.connmark self.scheduler.emergesend(ConnectionControlEvent(self, ConnectionControlEvent.RECONNECT, force, connmark))
Can call without delegate
entailment
async def reset(self, force = True, connmark = None): ''' Can call without delegate ''' if connmark is None: connmark = self.connmark self.scheduler.emergesend(ConnectionControlEvent(self, ConnectionControlEvent.RESET, force, connmark))
Can call without delegate
entailment
async def write(self, event, ignoreException = True): ''' Can call without delegate ''' connmark = self.connmark if self.connected: def _until(): if not self.connected or self.connmark != connmark: return True r = await self.wait_for_send(event, until=_until) if r: if ignoreException: return else: raise else: if not ignoreException: raise ConnectionResetException
Can call without delegate
entailment
async def shutdown(self, connmark = -1): ''' Can call without delegate ''' if connmark is None: connmark = self.connmark self.scheduler.emergesend(ConnectionControlEvent(self, ConnectionControlEvent.SHUTDOWN, True, connmark))
Can call without delegate
entailment
async def stoplisten(self, connmark = -1): ''' Can call without delegate ''' if connmark is None: connmark = self.connmark self.scheduler.emergesend(ConnectionControlEvent(self, ConnectionControlEvent.STOPLISTEN, True, connmark))
Can call without delegate
entailment
async def startlisten(self, connmark = -1): ''' Can call without delegate ''' if connmark is None: connmark = self.connmark self.scheduler.emergesend(ConnectionControlEvent(self, ConnectionControlEvent.STARTLISTEN, True, connmark))
Can call without delegate
entailment
def default_start(): """ Use `sys.argv` for starting parameters. This is the entry-point of `vlcp-start` """ (config, daemon, pidfile, startup, fork) = parsearg() if config is None: if os.path.isfile('/etc/vlcp.conf'): config = '/etc/vlcp.conf' else: print('/etc/vlcp.conf is not found; start without configurations.') elif not config: config = None main(config, startup, daemon, pidfile, fork)
Use `sys.argv` for starting parameters. This is the entry-point of `vlcp-start`
entailment
def close(self): "Stop the output stream, but further download will still perform" if self.stream: self.stream.close(self.scheduler) self.stream = None
Stop the output stream, but further download will still perform
entailment
async def shutdown(self): "Force stop the output stream, if there are more data to download, shutdown the connection" if self.stream: if not self.stream.dataeof and not self.stream.dataerror: self.stream.close(self.scheduler) await self.connection.shutdown() else: self.stream.close(self.scheduler) self.stream = None
Force stop the output stream, if there are more data to download, shutdown the connection
entailment
def createphysicalnetwork(type, create_processor = partial(default_processor, excluding=('id', 'type')), reorder_dict = default_iterate_dict): """ :param type: physical network type :param create_processor: create_processor(physicalnetwork, walk, write, \*, parameters) """ # create an new physical network def walker(walk, write, timestamp, parameters_dict): for key, parameters in reorder_dict(parameters_dict): try: value = walk(key) except KeyError: pass else: id_ = parameters['id'] new_network = create_new(PhysicalNetwork, value, id_) new_network.type = type create_processor(new_network, walk, write, parameters=parameters) write(key, new_network) new_networkmap = PhysicalNetworkMap.create_instance(id_) new_networkmap.network = new_network.create_weakreference() write(new_networkmap.getkey(), new_networkmap) # Save into network set try: physet = walk(PhysicalNetworkSet.default_key()) except KeyError: pass else: physet.set.dataset().add(new_network.create_weakreference()) write(physet.getkey(), physet) return walker
:param type: physical network type :param create_processor: create_processor(physicalnetwork, walk, write, \*, parameters)
entailment
def deletephysicalnetwork(check_processor = default_physicalnetwork_delete_check, reorder_dict = default_iterate_dict): """ :param check_processor: check_processor(physicalnetwork, physicalnetworkmap, walk, write, \*, parameters) """ def walker(walk, write, timestamp, parameters_dict): for key, parameters in reorder_dict(parameters_dict): try: value = walk(key) except KeyError: pass else: id_ = parameters['id'] try: phy_map = walk(PhysicalNetworkMap.default_key(id_)) except KeyError: pass else: check_processor(value, phy_map, walk, write, parameters=parameters) write(phy_map.getkey(), None) try: phynetset = walk(PhysicalNetworkSet.default_key()) except KeyError: pass else: phynetset.set.dataset().discard(value.create_weakreference()) write(phynetset.getkey(), phynetset) write(key, None) return walker
:param check_processor: check_processor(physicalnetwork, physicalnetworkmap, walk, write, \*, parameters)
entailment
def createphysicalport(create_processor = partial(default_processor, excluding=('vhost', 'systemid', 'bridge', 'name', 'physicalnetwork')), reorder_dict = default_iterate_dict): """ :param create_processor: create_processor(physicalport, physicalnetwork, physicalnetworkmap, walk, write, \*, parameters) """ def walker(walk, write, timestamp, parameters_dict): for key, parameters in reorder_dict(parameters_dict): try: value = walk(key) except KeyError: pass else: p = create_new(PhysicalPort, value, parameters['vhost'], parameters['systemid'], parameters['bridge'], parameters['name']) try: physicalnetwork = walk(PhysicalNetwork.default_key(parameters['physicalnetwork'])) except KeyError: pass else: # Should already been check from outside p.physicalnetwork = physicalnetwork.create_reference() try: phymap = walk(PhysicalNetworkMap._network.leftkey(physicalnetwork)) except KeyError: pass else: create_processor(p, physicalnetwork, phymap, walk, write, parameters=parameters) phymap.ports.dataset().add(p.create_weakreference()) write(phymap.getkey(), phymap) try: phyportset = walk(PhysicalPortSet.default_key()) except KeyError: pass else: phyportset.set.dataset().add(p.create_weakreference()) write(phyportset.getkey(), phyportset) write(p.getkey(), p) return walker
:param create_processor: create_processor(physicalport, physicalnetwork, physicalnetworkmap, walk, write, \*, parameters)
entailment
def updatephysicalport(update_processor = partial(default_processor, excluding=('vhost', 'systemid', 'bridge', 'name'), disabled=('physicalnetwork',)), reorder_dict = default_iterate_dict ): """ :param update_processor: update_processor(physcialport, walk, write, \*, parameters) """ def walker(walk, write, timestamp, parameters_dict): for key, parameters in reorder_dict(parameters_dict): try: value = walk(key) except KeyError: pass else: if update_processor(value, walk, write, parameters=parameters): write(key, value) return walker
:param update_processor: update_processor(physcialport, walk, write, \*, parameters)
entailment
def deletephysicalport(check_processor=_false_processor, reorder_dict = default_iterate_dict): """ :param check_processor: check_processor(physicalport, physicalnetwork, physicalnetworkmap, walk, write \*, parameters) """ def walker(walk, write, timestamp, parameters_dict): for key, parameters in reorder_dict(parameters_dict): try: value = walk(key) except KeyError: pass else: try: phynet = walk(value.physicalnetwork.getkey()) except KeyError: pass else: try: phymap = walk(PhysicalNetworkMap._network.leftkey(phynet)) except KeyError: pass else: check_processor(value, phynet, phymap, walk, write, parameters=parameters) phymap.ports.dataset().discard(value.create_weakreference()) write(phymap.getkey(), phymap) try: physet = walk(PhysicalPortSet.default_key()) except KeyError: pass else: physet.set.dataset().discard(value.create_weakreference()) write(physet.getkey(), physet) write(key, None) return walker
:param check_processor: check_processor(physicalport, physicalnetwork, physicalnetworkmap, walk, write \*, parameters)
entailment
def createlogicalnetwork(create_processor = partial(default_processor, excluding=('id', 'physicalnetwork')), reorder_dict = default_iterate_dict): """ :param create_processor: create_processor(logicalnetwork, logicalnetworkmap, physicalnetwork, physicalnetworkmap, walk, write, \*, parameters) """ def walker(walk, write, timestamp, parameters_dict): for key, parameters in reorder_dict(parameters_dict): try: value = walk(key) except KeyError: pass else: id_ = parameters['id'] lognet = create_new(LogicalNetwork, value, id_) logmap = LogicalNetworkMap.create_instance(id_) logmap.network = lognet.create_reference() try: phynet = walk(PhysicalNetwork.default_key(parameters['physicalnetwork'])) except KeyError: pass else: lognet.physicalnetwork = phynet.create_reference() try: phymap = walk(PhysicalNetworkMap._network.leftkey(phynet)) except KeyError: pass else: create_processor(lognet, logmap, phynet, phymap, walk, write, parameters=parameters) phymap.logicnetworks.dataset().add(lognet.create_weakreference()) write(phymap.getkey(), phymap) write(lognet.getkey(), lognet) write(logmap.getkey(), logmap) try: logicalnetworkset = walk(LogicalNetworkSet.default_key()) except KeyError: pass else: logicalnetworkset.set.dataset().add(lognet.create_weakreference()) write(logicalnetworkset.getkey(), logicalnetworkset) return walker
:param create_processor: create_processor(logicalnetwork, logicalnetworkmap, physicalnetwork, physicalnetworkmap, walk, write, \*, parameters)
entailment
def deletelogicalnetwork(check_processor=default_logicalnetwork_delete_check, reorder_dict = default_iterate_dict): """ :param check_processor: check_processor(logicalnetwork, logicalnetworkmap, physicalnetwork, physicalnetworkmap, walk, write, \*, parameters) """ def walker(walk, write, timestamp, parameters_dict): for key, parameters in reorder_dict(parameters_dict): try: value = walk(key) except KeyError: pass else: try: logmap = walk(LogicalNetworkMap._network.leftkey(key)) except KeyError: pass else: try: phynet = walk(value.physicalnetwork.getkey()) except KeyError: pass else: try: phymap = walk(PhysicalNetworkMap._network.leftkey(phynet)) except KeyError: pass else: check_processor(value, logmap, phynet, phymap, walk, write, parameters=parameters) phymap.logicnetworks.dataset().discard(value.create_weakreference()) write(phymap.getkey(), phymap) write(key, None) write(logmap.getkey(), None) try: logicalnetworkset = walk(LogicalNetworkSet.default_key()) except KeyError: pass else: logicalnetworkset.set.dataset().discard(value.create_weakreference()) write(logicalnetworkset.getkey(), logicalnetworkset) return walker
:param check_processor: check_processor(logicalnetwork, logicalnetworkmap, physicalnetwork, physicalnetworkmap, walk, write, \*, parameters)
entailment
async def restart_walk(self): """ Force a re-walk """ if not self._restartwalk: self._restartwalk = True await self.wait_for_send(FlowUpdaterNotification(self, FlowUpdaterNotification.STARTWALK))
Force a re-walk
entailment
async def _dataobject_update_detect(self, _initialkeys, _savedresult): """ Coroutine that wait for retrieved value update notification """ def expr(newvalues, updatedvalues): if any(v.getkey() in _initialkeys for v in updatedvalues if v is not None): return True else: return self.shouldupdate(newvalues, updatedvalues) while True: updatedvalues, _ = await multiwaitif(_savedresult, self, expr, True) if not self._updatedset: self.scheduler.emergesend(FlowUpdaterNotification(self, FlowUpdaterNotification.DATAUPDATED)) self._updatedset.update(updatedvalues)
Coroutine that wait for retrieved value update notification
entailment
def updateobjects(self, updatedvalues): """ Force a update notification on specified objects, even if they are not actually updated in ObjectDB """ if not self._updatedset: self.scheduler.emergesend(FlowUpdaterNotification(self, FlowUpdaterNotification.DATAUPDATED)) self._updatedset.update(set(updatedvalues).intersection(self._savedresult))
Force a update notification on specified objects, even if they are not actually updated in ObjectDB
entailment
async def _flowupdater(self): """ Coroutine calling `updateflow()` """ lastresult = set(v for v in self._savedresult if v is not None and not v.isdeleted()) flowupdate = FlowUpdaterNotification.createMatcher(self, FlowUpdaterNotification.FLOWUPDATE) while True: currentresult = [v for v in self._savedresult if v is not None and not v.isdeleted()] # Calculating differences additems = [] updateditems = [] updatedset2 = self._updatedset2 for v in currentresult: if v not in lastresult: additems.append(v) else: lastresult.remove(v) if v in updatedset2: # Updated updateditems.append(v) removeitems = lastresult self._updatedset2.clear() # Save current result for next difference lastresult = set(currentresult) if not additems and not removeitems and not updateditems: await flowupdate continue await self.updateflow(self._connection, set(additems), removeitems, set(updateditems))
Coroutine calling `updateflow()`
entailment
async def main(self): """ Main coroutine """ try: lastkeys = set() dataupdate = FlowUpdaterNotification.createMatcher(self, FlowUpdaterNotification.DATAUPDATED) startwalk = FlowUpdaterNotification.createMatcher(self, FlowUpdaterNotification.STARTWALK) self.subroutine(self._flowupdater(), False, '_flowupdateroutine') # Cache updated objects presave_update = set() while True: self._restartwalk = False presave_update.update(self._updatedset) self._updatedset.clear() _initialkeys = set(self._initialkeys) try: walk_result = await call_api(self, 'objectdb', 'walk', {'keys': self._initialkeys, 'walkerdict': self._walkerdict, 'requestid': (self._requstid, self._requestindex)}) except Exception: self._logger.warning("Flow updater %r walk step failed, conn = %r", self, self._connection, exc_info=True) # Cleanup await call_api(self, 'objectdb', 'unwatchall', {'requestid': (self._requstid, self._requestindex)}) await self.wait_with_timeout(2) self._requestindex += 1 if self._restartwalk: continue if self._updatedset: if any(v.getkey() in _initialkeys for v in self._updatedset): # During walk, there are other initial keys that are updated # To make sure we get the latest result, restart the walk continue lastkeys = set(self._savedkeys) _savedkeys, _savedresult = walk_result removekeys = tuple(lastkeys.difference(_savedkeys)) self.reset_initialkeys(_savedkeys, _savedresult) _initialkeys = set(self._initialkeys) if self._dataupdateroutine: self.terminate(self._dataupdateroutine) # Start detecting updates self.subroutine(self._dataobject_update_detect(_initialkeys, _savedresult), False, "_dataupdateroutine") # Set the updates back (potentially merged with newly updated objects) self._updatedset.update(v for v in presave_update) presave_update.clear() await self.walkcomplete(_savedkeys, _savedresult) if removekeys: await call_api(self, 'objectdb', 'munwatch', {'keys': removekeys, 'requestid': (self._requstid, self._requestindex)}) # Transfer updated objects to updatedset2 before a flow update notification # This helps to make `walkcomplete` executes before `updateflow` # # But notice that since there is only a single data object copy in all the program, # it is impossible to hide the change completely during `updateflow` self._updatedset2.update(self._updatedset) self._updatedset.clear() self._savedkeys = _savedkeys self._savedresult = _savedresult await self.wait_for_send(FlowUpdaterNotification(self, FlowUpdaterNotification.FLOWUPDATE)) while not self._restartwalk: if self._updatedset: if any(v.getkey() in _initialkeys for v in self._updatedset): break else: self._updatedset2.update(self._updatedset) self._updatedset.clear() self.scheduler.emergesend(FlowUpdaterNotification(self, FlowUpdaterNotification.FLOWUPDATE)) await M_(dataupdate, startwalk) except Exception: self._logger.exception("Flow updater %r stops update by an exception, conn = %r", self, self._connection) raise finally: self.subroutine(send_api(self, 'objectdb', 'unwatchall', {'requestid': (self._requstid, self._requestindex)}), False) if self._flowupdateroutine: self.terminate(self._flowupdateroutine) self._flowupdateroutine = None if self._dataupdateroutine: self.terminate(self._dataupdateroutine) self._dataupdateroutine = None
Main coroutine
entailment
def syscall_direct(*events): ''' Directly process these events. This should never be used for normal events. ''' def _syscall(scheduler, processor): for e in events: processor(e) return _syscall
Directly process these events. This should never be used for normal events.
entailment
def syscall_generator(generator): ''' Directly process events from a generator function. This should never be used for normal events. ''' def _syscall(scheduler, processor): for e in generator(): processor(e) return _syscall
Directly process events from a generator function. This should never be used for normal events.
entailment
def syscall_clearqueue(queue): ''' Clear a queue ''' def _syscall(scheduler, processor): qes, qees = queue.clear() events = scheduler.queue.unblockqueue(queue) for e in events: scheduler.eventtree.remove(e) for e in qes: processor(e) for e in qees: processor(e) return _syscall
Clear a queue
entailment
def syscall_removequeue(queue, index): ''' Remove subqueue `queue[index]` from queue. ''' def _syscall(scheduler, processor): events = scheduler.queue.unblockqueue(queue[index]) for e in events: scheduler.eventtree.remove(e) qes, qees = queue.removeSubQueue(index) for e in qes: processor(e) for e in qees: processor(e) return _syscall
Remove subqueue `queue[index]` from queue.
entailment
def syscall_clearremovequeue(queue, index): ''' Clear the subqueue `queue[index]` and remove it from queue. ''' def _syscall(scheduler, processor): qes, qees = queue[index].clear() events = scheduler.queue.unblockqueue(queue[index]) for e in events: scheduler.eventtree.remove(e) qes2, qees2 = queue.removeSubQueue(index) for e in qes: processor(e) for e in qes2: processor(e) for e in qees: processor(e) for e in qees2: processor(e) return _syscall
Clear the subqueue `queue[index]` and remove it from queue.
entailment
def register(self, matchers, runnable): ''' Register an iterator(runnable) to scheduler and wait for events :param matchers: sequence of EventMatchers :param runnable: an iterator that accept send method :param daemon: if True, the runnable will be registered as a daemon. ''' if getattr(self, 'syscallfunc', None) is not None and getattr(self, 'syscallrunnable', None) is None: # Inject this register self.syscallrunnable = runnable else: for m in matchers: self.matchtree.insert(m, runnable) events = self.eventtree.findAndRemove(m) for e in events: self.queue.unblock(e) if m.indices[0] == PollEvent._classname0 and len(m.indices) >= 2: self.polling.onmatch(m.indices[1], None if len(m.indices) <= 2 else m.indices[2], True) self.registerIndex.setdefault(runnable, set()).update(matchers)
Register an iterator(runnable) to scheduler and wait for events :param matchers: sequence of EventMatchers :param runnable: an iterator that accept send method :param daemon: if True, the runnable will be registered as a daemon.
entailment
def unregister(self, matchers, runnable): ''' Unregister an iterator(runnable) and stop waiting for events :param matchers: sequence of EventMatchers :param runnable: an iterator that accept send method ''' for m in matchers: self.matchtree.remove(m, runnable) if m.indices[0] == PollEvent._classname0 and len(m.indices) >= 2: self.polling.onmatch(m.indices[1], None if len(m.indices) <= 2 else m.indices[2], False) self.registerIndex.setdefault(runnable, set()).difference_update(matchers)
Unregister an iterator(runnable) and stop waiting for events :param matchers: sequence of EventMatchers :param runnable: an iterator that accept send method
entailment
def unregisterall(self, runnable): ''' Unregister all matches and detach the runnable. Automatically called when runnable returns StopIteration. ''' if runnable in self.registerIndex: for m in self.registerIndex[runnable]: self.matchtree.remove(m, runnable) if m.indices[0] == PollEvent._classname0 and len(m.indices) >= 2: self.polling.onmatch(m.indices[1], None if len(m.indices) <= 2 else m.indices[2], False) del self.registerIndex[runnable] self.daemons.discard(runnable)
Unregister all matches and detach the runnable. Automatically called when runnable returns StopIteration.
entailment
def ignore(self, matcher): ''' Unblock and ignore the matched events, if any. ''' events = self.eventtree.findAndRemove(matcher) for e in events: self.queue.unblock(e) e.canignore = True
Unblock and ignore the matched events, if any.
entailment
def quit(self, daemononly = False): ''' Send quit event to quit the main loop ''' if not self.quitting: self.quitting = True self.queue.append(SystemControlEvent(SystemControlEvent.QUIT, daemononly = daemononly), True)
Send quit event to quit the main loop
entailment
def setTimer(self, start, interval = None): ''' Generate a TimerEvent on specified time :param start: offset for time from now (seconds), or datetime for a fixed time :param interval: if not None, the timer is regenerated by interval seconds. :returns: a timer handle to wait or cancel the timer ''' if isinstance(start, datetime): timestamp = (start - datetime.fromtimestamp(0)).total_seconds() else: timestamp = self.current_time + start if interval is not None: if not (interval > 0): raise ValueError('interval must be positive.') th = self.TimerHandle(timestamp, interval) self.timers.push(th, timestamp) return th
Generate a TimerEvent on specified time :param start: offset for time from now (seconds), or datetime for a fixed time :param interval: if not None, the timer is regenerated by interval seconds. :returns: a timer handle to wait or cancel the timer
entailment
def registerPolling(self, fd, options = POLLING_IN|POLLING_OUT, daemon = False): ''' register a polling file descriptor :param fd: file descriptor or socket object :param options: bit mask flags. Polling object should ignore the incompatible flag. ''' self.polling.register(fd, options, daemon)
register a polling file descriptor :param fd: file descriptor or socket object :param options: bit mask flags. Polling object should ignore the incompatible flag.
entailment
def unregisterPolling(self, fd, daemon = False): ''' Unregister a polling file descriptor :param fd: file descriptor or socket object ''' self.polling.unregister(fd, daemon)
Unregister a polling file descriptor :param fd: file descriptor or socket object
entailment
def setDaemon(self, runnable, isdaemon, noregister = False): ''' If a runnable is a daemon, it will not keep the main loop running. The main loop will end when all alived runnables are daemons. ''' if not noregister and runnable not in self.registerIndex: self.register((), runnable) if isdaemon: self.daemons.add(runnable) else: self.daemons.discard(runnable)
If a runnable is a daemon, it will not keep the main loop running. The main loop will end when all alived runnables are daemons.
entailment
def syscall(self, func): ''' Call the func in core context (main loop). func should like:: def syscall_sample(scheduler, processor): something... where processor is a function which accept an event. When calling processor, scheduler directly process this event without sending it to queue. An event matcher is returned to the caller, and the caller should wait for the event immediately to get the return value from the system call. The SyscallReturnEvent will have 'retvalue' as the return value, or 'exception' as the exception thrown: (type, value, traceback) :param func: syscall function :returns: an event matcher to wait for the SyscallReturnEvent. If None is returned, a syscall is already scheduled; return to core context at first. ''' if getattr(self, 'syscallfunc', None) is not None: return None self.syscallfunc = func self.syscallmatcher = SyscallReturnEvent.createMatcher() return self.syscallmatcher
Call the func in core context (main loop). func should like:: def syscall_sample(scheduler, processor): something... where processor is a function which accept an event. When calling processor, scheduler directly process this event without sending it to queue. An event matcher is returned to the caller, and the caller should wait for the event immediately to get the return value from the system call. The SyscallReturnEvent will have 'retvalue' as the return value, or 'exception' as the exception thrown: (type, value, traceback) :param func: syscall function :returns: an event matcher to wait for the SyscallReturnEvent. If None is returned, a syscall is already scheduled; return to core context at first.
entailment
def main(self, installsignal = True, sendinit = True): ''' Start main loop ''' if installsignal: sigterm = signal(SIGTERM, self._quitsignal) sigint = signal(SIGINT, self._quitsignal) try: from signal import SIGUSR1 sigusr1 = signal(SIGUSR1, self._tracesignal) except Exception: pass try: if sendinit: self.queue.append(SystemControlEvent(SystemControlEvent.INIT), True) def processSyscall(): while self.syscallfunc is not None: r = getattr(self, 'syscallrunnable', None) if r is None: self.syscallfunc = None break try: try: retvalue = self.syscallfunc(self, processEvent) except Exception: (t, v, tr) = sys.exc_info() self.syscallfunc = None self.syscallrunnable = None r.send((SyscallReturnEvent(exception=(t, v, tr)), self.syscallmatcher)) else: self.syscallfunc = None self.syscallrunnable = None r.send((SyscallReturnEvent(retvalue=retvalue), self.syscallmatcher)) except StopIteration: self.unregisterall(r) except QuitException: self.unregisterall(r) except Exception: self.logger.exception('processing syscall failed with exception') self.unregisterall(r) def processEvent(event, emptys = ()): if self.debugging: self.logger.debug('Processing event %s', repr(event)) runnables = self.matchtree.matchesWithMatchers(event) for r, m in runnables: try: self.syscallfunc = None self.syscallrunnable = None if self.debugging: self.logger.debug('Send event to %r, matched with %r', r, m) r.send((event, m)) except StopIteration: self.unregisterall(r) except QuitException: self.unregisterall(r) except Exception: self.logger.exception('processing event %s failed with exception', repr(event)) self.unregisterall(r) processSyscall() if not event.canignore and not event.canignorenow(): self.eventtree.insert(event) self.queue.block(event, emptys) else: for e in emptys: processEvent(e) def processQueueEvent(event): """ Optimized with queue events """ if self.debugging: self.logger.debug('Processing event %s', repr(event)) is_valid = event.is_valid() if is_valid is None: processEvent(event) else: while event.is_valid(): result = self.matchtree.matchfirstwithmatcher(event) if result is None: break r, m = result try: self.syscallfunc = None self.syscallrunnable = None if self.debugging: self.logger.debug('Send event to %r, matched with %r', r, m) r.send((event, m)) except StopIteration: self.unregisterall(r) except QuitException: self.unregisterall(r) except Exception: self.logger.exception('processing event %s failed with exception', repr(event)) self.unregisterall(r) processSyscall() def processYields(): while self._pending_runnables: i = 0 while i < len(self._pending_runnables): r = self._pending_runnables[i] try: next(r) except StopIteration: self.unregisterall(r) except QuitException: self.unregisterall(r) except Exception: self.logger.exception('Resuming %r failed with exception', r) self.unregisterall(r) processSyscall() i += 1 del self._pending_runnables[:i] canquit = False self.logger.info('Main loop started') current_time = self.current_time = time() processYields() quitMatcher = SystemControlEvent.createMatcher(type=SystemControlEvent.QUIT) while len(self.registerIndex) > len(self.daemons): if self.debugging: self.logger.debug('Blocked events: %d', len(self.queue.blockEvents)) self.logger.debug('Blocked events list: %r', list(self.queue.blockEvents.keys())) if self.quitting: self.logger.debug('Routines still not quit: %r', list(self.registerIndex.keys())) if self.quitsignal: self.quit() if canquit and not self.queue.canPop() and not self.timers: if self.quitting: break else: self.quit(True) self.queue.append(SystemControlLowPriorityEvent(SystemControlLowPriorityEvent.LOOP), True) processedEvents = 0 while self.queue.canPop() and (self.processevents is None or processedEvents < self.processevents): e, qes, emptys = self.queue.pop() # Queue events will not enqueue again if not e.canignore and not e.canignorenow(): # The event might block, must process it first processEvent(e, emptys) for qe in qes: processQueueEvent(qe) else: for qe in qes: processQueueEvent(qe) processEvent(e, emptys) processYields() if quitMatcher.isMatch(e): if e.daemononly: runnables = list(self.daemons) else: runnables = list(self.registerIndex.keys()) for r in runnables: try: r.throw(QuitException) except StopIteration: self.unregisterall(r) except QuitException: self.unregisterall(r) except Exception: self.logger.exception('Runnable quit failed with exception') self.unregisterall(r) processSyscall() processYields() if self.quitsignal: self.quit() processedEvents += 1 if len(self.registerIndex) <= len(self.daemons): break end_time = time() if end_time - current_time > 1: self.logger.warning("An iteration takes %r seconds to process", end_time - current_time) if self.generatecontinue or self.queue.canPop(): wait = 0 elif not self.timers: wait = None else: wait = self.timers.top().timestamp - end_time if wait < 0: wait = 0 events, canquit = self.polling.pollEvents(wait) for e in events: self.queue.append(e, True) current_time = self.current_time = time() now = current_time + 0.1 while self.timers and self.timers.topPriority() < now: t = self.timers.top() if t.interval is not None: t.timestamp += t.interval self.timers.setpriority(t, t.timestamp) else: self.timers.pop() self.queue.append(TimerEvent(t), True) if self.generatecontinue: self.queue.append(SystemControlEvent(SystemControlEvent.CONTINUE), True) self.generatecontinue = False if self.registerIndex: if len(self.registerIndex) > len(self.daemons): self.logger.warning('Some runnables are not quit, doing cleanup') self.logger.warning('Runnables list: %r', set(self.registerIndex.keys()).difference(self.daemons)) for r in list(self.registerIndex.keys()): try: r.close() except Exception: self.logger.exception('Runnable quit failed with exception') finally: self.unregisterall(r) self.logger.info('Main loop quit normally') finally: if installsignal: signal(SIGTERM, sigterm) signal(SIGINT, sigint) try: signal(SIGUSR1, sigusr1) except Exception: pass
Start main loop
entailment
def getservers(self, vhost = None): ''' Return current servers :param vhost: return only servers of vhost if specified. '' to return only default servers. None for all servers. ''' if vhost is not None: return [s for s in self.connections if s.protocol.vhost == vhost] else: return list(self.connections)
Return current servers :param vhost: return only servers of vhost if specified. '' to return only default servers. None for all servers.
entailment