hexsha
stringlengths
40
40
size
int64
10
805k
ext
stringclasses
6 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
176
max_stars_repo_name
stringlengths
7
114
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
176
max_issues_repo_name
stringlengths
7
114
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
48.5k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
176
max_forks_repo_name
stringlengths
7
114
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
10
805k
avg_line_length
float64
5.53
11k
max_line_length
int64
10
129k
alphanum_fraction
float64
0.13
0.93
content_no_comment
stringlengths
0
449k
is_comment_constant_removed
bool
2 classes
is_sharp_comment_removed
bool
1 class
f717df2260eeca7af7e3eeca0a806d32faa65970
26,960
py
Python
coops_ndbc_obs_collector.py
saeed-moghimi-noaa/prep_obs_ca
6a23128326c5d8fa32f972ebd5ce8cd4aa626b08
[ "CC0-1.0" ]
null
null
null
coops_ndbc_obs_collector.py
saeed-moghimi-noaa/prep_obs_ca
6a23128326c5d8fa32f972ebd5ce8cd4aa626b08
[ "CC0-1.0" ]
null
null
null
coops_ndbc_obs_collector.py
saeed-moghimi-noaa/prep_obs_ca
6a23128326c5d8fa32f972ebd5ce8cd4aa626b08
[ "CC0-1.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Read obs from NDBC and Co-opc Generate csv data files functions to write and read the data Observations will be chosen based on the hurricane track to avoid more than neccessary download. """ __author__ = "Saeed Moghimi" __copyright__ = "Copyright 2018, UCAR/NOAA" __license__ = "GPL" __version__ = "1.0" __email__ = "moghimis@gmail.com" # import pandas as pd import numpy as np # from bs4 import BeautifulSoup import requests import lxml.html import sys,os # from pyoos.collectors.ndbc.ndbc_sos import NdbcSos from pyoos.collectors.coops.coops_sos import CoopsSos from retrying import retry import datetime import dateparser import cf_units from io import BytesIO from ioos_tools.ioos import collector2table import pickle import arrow # sys.path.append('/disks/NASARCHIVE/saeed_moghimi/opt/python-packages/') import geopandas as gpd from shapely.geometry import LineString ##################################################### if 'base_info' in sys.modules: del(sys.modules["base_info"]) from base_info import * # ##### Fucnstions ##### def url_lister(url): urls = [] connection = urlopen(url) dom = lxml.html.fromstring(connection.read()) for link in dom.xpath('//a/@href'): urls.append(link) return urls ################# def download(url, path, fname): sys.stdout.write(fname + '\n') if not os.path.isfile(path): urlretrieve( url, filename=path, reporthook=progress_hook(sys.stdout) ) sys.stdout.write('\n') sys.stdout.flush() ################# def progress_hook(out): """ Return a progress hook function, suitable for passing to urllib.retrieve, that writes to the file object *out*. """ def it(n, bs, ts): got = n * bs if ts < 0: outof = '' else: # On the last block n*bs can exceed ts, so we clamp it # to avoid awkward questions. got = min(got, ts) outof = '/%d [%d%%]' % (ts, 100 * got // ts) out.write("\r %d%s" % (got, outof)) out.flush() return it ################# def get_nhc_storm_info (year,name): """ """ print('Read list of hurricanes from NHC based on year') if int(year) < 2008: print (' ERROR: GIS Data is not available for storms before 2008 ') sys.exit('Exiting .....') url = 'http://www.nhc.noaa.gov/gis/archive_wsurge.php?year='+year r = requests.get(url,headers=headers,verify=False) soup = BeautifulSoup(r.content, 'lxml') table = soup.find('table') #table = [row.get_text().strip().split(maxsplit=1) for row in table.find_all('tr')] tab = [] for row in table.find_all('tr'): tmp = row.get_text().strip().split() tab.append([tmp[0],tmp[-1]]) print (tab) df = pd.DataFrame( data=tab[:], columns=['identifier', 'name'], ).set_index('name') ############################### print(' > based on specific storm go fetch gis files') hid = df.to_dict()['identifier'][name.upper()] al_code = ('{}'+year).format(hid) hurricane_gis_files = '{}_5day'.format(al_code) return al_code,hurricane_gis_files ################# #@retry(stop_max_attempt_number=5, wait_fixed=3000) def download_nhc_gis_files(hurricane_gis_files): """ """ base = os.path.abspath( os.path.join(os.path.curdir, 'data', hurricane_gis_files) ) if len (glob(base+'/*')) < 1: nhc = 'http://www.nhc.noaa.gov/gis/forecast/archive/' # We don't need the latest file b/c that is redundant to the latest number. fnames = [ fname for fname in url_lister(nhc) if fname.startswith(hurricane_gis_files) and 'latest' not in fname ] if not os.path.exists(base): os.makedirs(base) for fname in fnames: path1 = os.path.join(base, fname) if not os.path.exists(path1): url = '{}/{}'.format(nhc, fname) download(url, path1,fname) return base ################################# def read_advisory_cones_info(hurricane_gis_files,base,year,code): print(' > Read cones shape file ...') cones, points = [], [] for fname in sorted(glob(os.path.join(base, '{}_*.zip'.format(hurricane_gis_files)))): number = os.path.splitext(os.path.split(fname)[-1])[0].split('_')[-1] # read cone shapefiles if int(year) < 2014: #al092008.001_5day_pgn.shp divd = '.' else: divd = '-' pgn = gpd.read_file( ('/{}'+divd+'{}_5day_pgn.shp').format(code, number), vfs='zip://{}'.format(fname) ) cones.append(pgn) #read points shapefiles pts = gpd.read_file( ('/{}'+divd+'{}_5day_pts.shp').format(code, number), vfs='zip://{}'.format(fname) ) # Only the first "obsevartion." points.append(pts.iloc[0]) return cones,points,pts ################# ################# @retry(stop_max_attempt_number=5, wait_fixed=3000) def get_coops(start, end, sos_name, units, bbox,datum='NAVD', verbose=True): """ function to read COOPS data We need to retry in case of failure b/c the server cannot handle the high traffic during hurricane season. """ collector = CoopsSos() collector.set_bbox(bbox) collector.end_time = end collector.start_time = start collector.variables = [sos_name] ofrs = collector.server.offerings title = collector.server.identification.title config = dict( units=units, sos_name=sos_name, datum = datum, ###Saeed added ["MLLW","MSL","MHW","STND","IGLD", "NAVD"] ) data = collector2table( collector=collector, config=config, col='{} ({})'.format(sos_name, units.format(cf_units.UT_ISO_8859_1)) ) # Clean the table. table = dict( station_name = [s._metadata.get('station_name') for s in data], station_code = [s._metadata.get('station_code') for s in data], sensor = [s._metadata.get('sensor') for s in data], lon = [s._metadata.get('lon') for s in data], lat = [s._metadata.get('lat') for s in data], depth = [s._metadata.get('depth', 'NA') for s in data], ) table = pd.DataFrame(table).set_index('station_name') if verbose: print('Collector offerings') print('{}: {} offerings'.format(title, len(ofrs))) return data, table ################# @retry(stop_max_attempt_number=5, wait_fixed=3000) def get_ndbc(start, end, bbox , sos_name='waves',datum='MSL', verbose=True): """ function to read NBDC data ################### sos_name = waves all_col = (['station_id', 'sensor_id', 'latitude (degree)', 'longitude (degree)', 'date_time', 'sea_surface_wave_significant_height (m)', 'sea_surface_wave_peak_period (s)', 'sea_surface_wave_mean_period (s)', 'sea_surface_swell_wave_significant_height (m)', 'sea_surface_swell_wave_period (s)', 'sea_surface_wind_wave_significant_height (m)', 'sea_surface_wind_wave_period (s)', 'sea_water_temperature (c)', 'sea_surface_wave_to_direction (degree)', 'sea_surface_swell_wave_to_direction (degree)', 'sea_surface_wind_wave_to_direction (degree)', 'number_of_frequencies (count)', 'center_frequencies (Hz)', 'bandwidths (Hz)', 'spectral_energy (m**2/Hz)', 'mean_wave_direction (degree)', 'principal_wave_direction (degree)', 'polar_coordinate_r1 (1)', 'polar_coordinate_r2 (1)', 'calculation_method', 'sampling_rate (Hz)', 'name']) sos_name = winds all_col = (['station_id', 'sensor_id', 'latitude (degree)', 'longitude (degree)', 'date_time', 'depth (m)', 'wind_from_direction (degree)', 'wind_speed (m/s)', 'wind_speed_of_gust (m/s)', 'upward_air_velocity (m/s)', 'name']) """ #add remove from above if sos_name == 'waves': col = ['sea_surface_wave_significant_height (m)','sea_surface_wave_peak_period (s)', 'sea_surface_wave_mean_period (s)','sea_water_temperature (c)', 'sea_surface_wave_to_direction (degree)'] elif sos_name == 'winds': col = ['wind_from_direction (degree)','wind_speed (m/s)', 'wind_speed_of_gust (m/s)','upward_air_velocity (m/s)'] #if sos_name == 'waves': # col = ['sea_surface_wave_significant_height (m)'] #elif sos_name == 'winds': # col = ['wind_speed (m/s)'] collector = NdbcSos() collector.set_bbox(bbox) collector.start_time = start collector.variables = [sos_name] ofrs = collector.server.offerings title = collector.server.identification.title collector.features = None collector.end_time = start + datetime.timedelta(1) response = collector.raw(responseFormat='text/csv') df = pd.read_csv(BytesIO(response), parse_dates=True) g = df.groupby('station_id') df = dict() for station in g.groups.keys(): df.update({station: g.get_group(station).iloc[0]}) df = pd.DataFrame.from_dict(df).T station_dict = {} for offering in collector.server.offerings: station_dict.update({offering.name: offering.description}) names = [] for sta in df.index: names.append(station_dict.get(sta, sta)) df['name'] = names #override short time collector.end_time = end data = [] for k, row in df.iterrows(): station_id = row['station_id'].split(':')[-1] collector.features = [station_id] response = collector.raw(responseFormat='text/csv') kw = dict(parse_dates=True, index_col='date_time') obs = pd.read_csv(BytesIO(response), **kw).reset_index() obs = obs.drop_duplicates(subset='date_time').set_index('date_time') series = obs[col] series._metadata = dict( station=row.get('station_id'), station_name=row.get('name'), station_code=str(row.get('station_id').split(':')[-1]), sensor=row.get('sensor_id'), lon=row.get('longitude (degree)'), lat=row.get('latitude (degree)'), depth=row.get('depth (m)'), ) data.append(series) # Clean the table. table = dict( station_name = [s._metadata.get('station_name') for s in data], station_code = [s._metadata.get('station_code') for s in data], sensor = [s._metadata.get('sensor') for s in data], lon = [s._metadata.get('lon') for s in data], lat = [s._metadata.get('lat') for s in data], depth = [s._metadata.get('depth', 'NA') for s in data], ) table = pd.DataFrame(table).set_index('station_name') if verbose: print('Collector offerings') print('{}: {} offerings'.format(title, len(ofrs))) return data, table ################# def write_csv(obs_dir, name, year, table, data, label): """ examples print(' > write csv files') write_csv(obs_dir, name, year, table=wnd_ocn_table, data= wnd_ocn , label='ndbc_wind' ) write_csv(obs_dir, name, year, table=wav_ocn_table, data= wav_ocn , label='ndbc_wave' ) write_csv(obs_dir, name, year, table=ssh_table , data= ssh , label='coops_ssh' ) write_csv(obs_dir, name, year, table=wnd_obs_table, data= wnd_obs , label='coops_wind') """ #label = 'coops_ssh' #table = ssh_table #data = ssh outt = os.path.join(obs_dir, name+year,label) outd = os.path.join(outt,'data') if not os.path.exists(outd): os.makedirs(outd) table.to_csv(os.path.join(outt,'table.csv')) stations = table['station_code'] for ista in range(len(stations)): sta = str(stations [ista]) fname = os.path.join(outd,sta+'.csv') df = data[ista] try: #in case it is still a series like ssh df = df.to_frame() except: pass df.to_csv(fname) fmeta = os.path.join(outd,sta)+'_metadata.csv' metadata = pd.DataFrame.from_dict( data[ista]._metadata , orient="index") metadata.to_csv(fmeta) def read_csv(obs_dir, name, year, label): """ examples print(' > write csv files') write_csv(base_dir, name, year, table=wnd_ocn_table, data= wnd_ocn , label='ndbc_wind' ) write_csv(base_dir, name, year, table=wav_ocn_table, data= wav_ocn , label='ndbc_wave' ) write_csv(base_dir, name, year, table=ssh_table , data= ssh , label='coops_ssh' ) write_csv(base_dir, name, year, table=wnd_obs_table, data= wnd_obs , label='coops_wind') """ outt = os.path.join(obs_dir, name+year,label) outd = os.path.join(outt,'data') if not os.path.exists(outd): sys.exit('ERROR: check path to: ',outd ) table = pd.read_csv(os.path.join(outt,'table.csv')).set_index('station_name') table['station_code'] = table['station_code'].astype('str') stations = table['station_code'] data = [] metadata = [] for ista in range(len(stations)): sta = stations [ista] fname8 = os.path.join(outd,sta)+'.csv' df = pd.read_csv(fname8,parse_dates = ['date_time']).set_index('date_time') fmeta = os.path.join(outd,sta) + '_metadata.csv' meta = pd.read_csv(fmeta, header=0, names = ['names','info']).set_index('names') meta_dict = meta.to_dict()['info'] meta_dict['lon'] = float(meta_dict['lon']) meta_dict['lat'] = float(meta_dict['lat']) df._metadata = meta_dict data.append(df) return table,data ################# def write_csv(obs_dir, name, year, table, data, label): """ examples print(' > write csv files') write_csv(obs_dir, name, year, table=wnd_ocn_table, data= wnd_ocn , label='ndbc_wind' ) write_csv(obs_dir, name, year, table=wav_ocn_table, data= wav_ocn , label='ndbc_wave' ) write_csv(obs_dir, name, year, table=ssh_table , data= ssh , label='coops_ssh' ) write_csv(obs_dir, name, year, table=wnd_obs_table, data= wnd_obs , label='coops_wind') """ #label = 'coops_ssh' #table = ssh_table #data = ssh outt = os.path.join(obs_dir, name+year,label) outd = os.path.join(outt,'data') if not os.path.exists(outd): os.makedirs(outd) table.to_csv(os.path.join(outt,'table.csv')) stations = table['station_code'] for ista in range(len(stations)): sta = str(stations [ista]) fname = os.path.join(outd,sta+'.csv') df = data[ista] try: #in case it is still a series like ssh df = df.to_frame() except: pass df.to_csv(fname) fmeta = os.path.join(outd,sta)+'_metadata.csv' metadata = pd.DataFrame.from_dict( data[ista]._metadata , orient="index") metadata.to_csv(fmeta) def read_csv(obs_dir, name, year, label): """ examples print(' > write csv files') write_csv(base_dir, name, year, table=wnd_ocn_table, data= wnd_ocn , label='ndbc_wind' ) write_csv(base_dir, name, year, table=wav_ocn_table, data= wav_ocn , label='ndbc_wave' ) write_csv(base_dir, name, year, table=ssh_table , data= ssh , label='coops_ssh' ) write_csv(base_dir, name, year, table=wnd_obs_table, data= wnd_obs , label='coops_wind') """ outt = os.path.join(obs_dir, name+year,label) outd = os.path.join(outt,'data') if not os.path.exists(outd): sys.exit('ERROR: check path to: ',outd ) table = pd.read_csv(os.path.join(outt,'table.csv')).set_index('station_name') table['station_code'] = table['station_code'].astype('str') stations = table['station_code'] data = [] metadata = [] for ista in range(len(stations)): sta = stations [ista] fname8 = os.path.join(outd,sta)+'.csv' df = pd.read_csv(fname8,parse_dates = ['date_time']).set_index('date_time') fmeta = os.path.join(outd,sta) + '_metadata.csv' meta = pd.read_csv(fmeta, header=0, names = ['names','info']).set_index('names') meta_dict = meta.to_dict()['info'] meta_dict['lon'] = float(meta_dict['lon']) meta_dict['lat'] = float(meta_dict['lat']) df._metadata = meta_dict data.append(df) return table,data def write_high_water_marks(obs_dir, name, year): url = 'https://stn.wim.usgs.gov/STNServices/HWMs/FilteredHWMs.json' params = {'EventType': 2, # 2 for hurricane 'EventStatus': 0} # 0 for completed default_filter = {"riverine": True, "non_still_water": True} nameyear = (name+year).lower() out_dir = os.path.join(obs_dir,'hwm') if not os.path.exists(out_dir): os.makedirs(out_dir) fname = os.path.join(out_dir,nameyear+'.csv') usgs_json_file = os.path.join(out_dir,'usgs_hwm_tmp.json') if not os.path.exists( usgs_json_file): response = requests.get(url, params=params, headers=headers,verify=False) response.raise_for_status() json_data = json.loads(response.text) with open(usgs_json_file, 'w') as outfile: json.dump(json_data, outfile ) else: with open(usgs_json_file) as json_file: json_data = json.load(json_file) hwm_stations = dict() for data in json_data: if 'elev_ft' in data.keys() and name.lower() in data['eventName'].lower(): hwm_stations[str(data['hwm_id'])] = data log = pd.DataFrame.from_dict(hwm_stations) hwm = [] ii = 0 for key in log.keys(): l0 = [] for key0 in log[key].keys() : l0.append(log[key][key0]) hwm.append(l0) # hwm = np.array(hwm) df = pd.DataFrame(data=hwm, columns=log[key].keys()) drop_poor = False if drop_poor: for i in range(len(df)): tt = df.hwmQualityName[i] if 'poor' in tt.lower(): df.hwmQualityName[i] = np.nan df = df.dropna() df['elev_m'] = pd.to_numeric(df['elev_ft']) * 0.3048 #in meter # df.to_csv(fname) def get_all_data() ############################################### ############################################### ############ MAIN code Starts here ############ if False: # not needed. will take from the storm specific obs list from coops and ndbc obs_station_list_gen() # ####### # out dir obs_dir = os.path.join(base_dirf,'obs') if get_usgs_hwm: for key in storms.keys(): name = storms[key]['name'] year = storms[key]['year'] print(' > Get USGS HWM for ', name) try: write_high_water_marks(obs_dir, name, year) except: print (' > Get USGS HWM for ', name , ' ERROR ...') for key in storms.keys(): name = storms[key]['name'] year = storms[key]['year'] print('\n\n\n\n\n\n********************************************************') print( '***** Storm name ',name, ' Year ', year, ' *********') print( '******************************************************** \n\n\n\n\n\n') #if bbox_from_best_track: try: #bbox_from_best_track = False code,hurricane_gis_files = get_nhc_storm_info (year,name) ############################################################################### #download gis zip files base = download_nhc_gis_files(hurricane_gis_files) # get advisory cones and track points cones,pts_actual,points_actual = read_advisory_cones_info(hurricane_gis_files,base,year,code) start = pts_actual[0] ['FLDATELBL'] end = pts_actual[-1]['FLDATELBL'] #start_txt_actual = ('20' + start[:-2]).replace('/','') #end_txt_actual = ('20' + end [:-2]).replace('/','') #print('\n\n\n\n\n\n ********************************************************') #for key1 in pts_actual[0].keys(): # print( '***** pts_actual[0] [', key1, ']',pts_actual[0] [key1] , '*********') #print( '******************************************************** \n\n\n\n\n\n') start_dt = dateparser.parse(start,settings={"TO_TIMEZONE": "UTC"}).replace(tzinfo=None) - obs_xtra_days end_dt = dateparser.parse(end ,settings={"TO_TIMEZONE": "UTC"}).replace(tzinfo=None) + obs_xtra_days #try: # # bbox_from_best_track: # start_txt = start_txt_best # end_txt = end_txt_best # #bbox = bbox_best #except: # start_txt = start_txt_actual # end_txt = end_txt_actual # #start_dt = arrow.get(start_txt, 'YYYYMMDDhh').datetime - obs_xtra_days #end_dt = arrow.get(end_txt , 'YYYYMMDDhh').datetime + obs_xtra_days #if False: # get bbox from actual data last_cone = cones[-1]['geometry'].iloc[0] track = LineString([point['geometry'] for point in pts_actual]) lons_actual = track.coords.xy[0] lats_actual = track.coords.xy[1] bbox_actual = min(lons_actual)-2, min(lats_actual)-2, max(lons_actual)+2, max(lats_actual)+2 ################################################################################ # Find the bounding box to search the data. bbox_from_best_track = False bbox = bbox_actual except: start_dt = storms[key]['start'] end_dt = storms[key]['end' ] bounds = storms[key]['bbox' ] if storms[key]['bbox'] is not None: bbox = storms[key]['bbox'] #print('\n\n\n\n >>>>> Download and read all GIS data for Storm >',name, ' Year > ', year, '\n ** This is an old STORM !!!!!! \n\n\n\n') # # Note that the bounding box is derived from the track and the latest prediction cone. strbbox = ', '.join(format(v, '.2f') for v in bbox) # # Note that the bounding box is derived from the track and the latest prediction cone. strbbox = ', '.join(format(v, '.2f') for v in bbox) print('\n\n\n\n\n\n********************************************************') print( '***** Storm name ',name, ' Year ', year, ' *********') print('bbox: {}\nstart: {}\n end: {}'.format(strbbox, start_dt, end_dt)) print( '******************************************************** \n\n\n\n\n\n') # ######### if get_cops_wlev: try: print(' > Get water level information CO-OPS ... ') # ["MLLW","MSL","MHW","STND","IGLD", "NAVD"] datum = 'NAVD' datum = 'MSL' print ('datum=', datum ) ssh, ssh_table = get_coops( start=start_dt, end=end_dt, sos_name='water_surface_height_above_reference_datum', units=cf_units.Unit('meters'), datum = datum , bbox=bbox, ) write_csv(obs_dir, name, year, table=ssh_table , data= ssh , label='coops_ssh' ) except: print(' > Get water level information CO-OPS >>>> ERRORRRRR') ###### if get_cops_wind: try: print(' > Get wind information CO-OPS ... ') wnd_obs, wnd_obs_table = get_coops( start=start_dt, end=end_dt, sos_name='wind_speed', units=cf_units.Unit('m/s'), bbox=bbox, ) write_csv(obs_dir, name, year, table=wnd_obs_table, data= wnd_obs , label='coops_wind') except: print(' > Get wind information CO-OPS >>> ERORRRR') ###### if get_ndbc_wind: try: print(' > Get wind ocean information (ndbc) ... ') wnd_ocn, wnd_ocn_table = get_ndbc( start=start_dt, end=end_dt, sos_name='winds', bbox=bbox, ) write_csv(obs_dir, name, year, table=wnd_ocn_table, data= wnd_ocn , label='ndbc_wind' ) except: print(' > Get wind ocean information (ndbc) >>> ERRRORRRR') ###### if get_ndbc_wave: try: print(' > Get wave ocean information (ndbc) ... ') wav_ocn, wav_ocn_table = get_ndbc( start=start_dt, end=end_dt, sos_name='waves', bbox=bbox, ) write_csv(obs_dir, name, year, table=wav_ocn_table, data= wav_ocn , label='ndbc_wave' ) except: print(' > Get wave ocean information (ndbc) >>> ERRORRRR ') ###### if False: # test reading files ssh_table1 , ssh1 = read_csv (obs_dir, name, year, label='coops_ssh' ) wnd_obs_table1, wnd_obs1 = read_csv (obs_dir, name, year, label='coops_wind') wnd_ocn_table1, wnd_ocn1 = read_csv (obs_dir, name, year, label='ndbc_wind' ) wav_ocn_table1, wav_ocn1 = read_csv (obs_dir, name, year, label='ndbc_wave' ) #if False: # # back up script file args=sys.argv scr_name = args[0] scr_dir = os.path.join(obs_dir, name+year) os.system('cp -fr ' + scr_name + ' ' + scr_dir) # #with open(pick, "rb") as f: # w = pickle.load(f) #f = open(pick, "rb") #w = pickle.load(f) #if __name__ == "__main__": # main() if __name__ == "__main__": get_all_data()
33.997478
155
0.541728
""" Read obs from NDBC and Co-opc Generate csv data files functions to write and read the data Observations will be chosen based on the hurricane track to avoid more than neccessary download. """ __author__ = "Saeed Moghimi" __copyright__ = "Copyright 2018, UCAR/NOAA" __license__ = "GPL" __version__ = "1.0" __email__ = "moghimis@gmail.com" import pandas as pd import numpy as np from bs4 import BeautifulSoup import requests import lxml.html import sys,os from pyoos.collectors.ndbc.ndbc_sos import NdbcSos from pyoos.collectors.coops.coops_sos import CoopsSos from retrying import retry import datetime import dateparser import cf_units from io import BytesIO from ioos_tools.ioos import collector2table import pickle import arrow sys.path.append('/disks/NASARCHIVE/saeed_moghimi/opt/python-packages/') import geopandas as gpd from shapely.geometry import LineString if not os.path.exists(base): os.makedirs(base) for fname in fnames: path1 = os.path.join(base, fname) if not os.path.exists(path1): url = '{}/{}'.format(nhc, fname) download(url, path1,fname) return base ################################# def read_advisory_cones_info(hurricane_gis_files,base,year,code): print(' > Read cones shape file ...') cones, points = [], [] for fname in sorted(glob(os.path.join(base, '{}_*.zip'.format(hurricane_gis_files)))): number = os.path.splitext(os.path.split(fname)[-1])[0].split('_')[-1] # read cone shapefiles if int(year) < 2014: #al092008.001_5day_pgn.shp divd = '.' else: divd = '-' pgn = gpd.read_file( ('/{}'+divd+'{}_5day_pgn.shp').format(code, number), vfs='zip://{}'.format(fname) ) cones.append(pgn) #read points shapefiles pts = gpd.read_file( ('/{}'+divd+'{}_5day_pts.shp').format(code, number), vfs='zip://{}'.format(fname) ) # Only the first "obsevartion." points.append(pts.iloc[0]) return cones,points,pts ################# ################# @retry(stop_max_attempt_number=5, wait_fixed=3000) def get_coops(start, end, sos_name, units, bbox,datum='NAVD', verbose=True): """ function to read COOPS data We need to retry in case of failure b/c the server cannot handle the high traffic during hurricane season. """ collector = CoopsSos() collector.set_bbox(bbox) collector.end_time = end collector.start_time = start collector.variables = [sos_name] ofrs = collector.server.offerings title = collector.server.identification.title config = dict( units=units, sos_name=sos_name, datum = datum, ###Saeed added ["MLLW","MSL","MHW","STND","IGLD", "NAVD"] ) data = collector2table( collector=collector, config=config, col='{} ({})'.format(sos_name, units.format(cf_units.UT_ISO_8859_1)) ) # Clean the table. table = dict( station_name = [s._metadata.get('station_name') for s in data], station_code = [s._metadata.get('station_code') for s in data], sensor = [s._metadata.get('sensor') for s in data], lon = [s._metadata.get('lon') for s in data], lat = [s._metadata.get('lat') for s in data], depth = [s._metadata.get('depth', 'NA') for s in data], ) table = pd.DataFrame(table).set_index('station_name') if verbose: print('Collector offerings') print('{}: {} offerings'.format(title, len(ofrs))) return data, table ################# @retry(stop_max_attempt_number=5, wait_fixed=3000) def get_ndbc(start, end, bbox , sos_name='waves',datum='MSL', verbose=True): """ function to read NBDC data ################### sos_name = waves all_col = (['station_id', 'sensor_id', 'latitude (degree)', 'longitude (degree)', 'date_time', 'sea_surface_wave_significant_height (m)', 'sea_surface_wave_peak_period (s)', 'sea_surface_wave_mean_period (s)', 'sea_surface_swell_wave_significant_height (m)', 'sea_surface_swell_wave_period (s)', 'sea_surface_wind_wave_significant_height (m)', 'sea_surface_wind_wave_period (s)', 'sea_water_temperature (c)', 'sea_surface_wave_to_direction (degree)', 'sea_surface_swell_wave_to_direction (degree)', 'sea_surface_wind_wave_to_direction (degree)', 'number_of_frequencies (count)', 'center_frequencies (Hz)', 'bandwidths (Hz)', 'spectral_energy (m**2/Hz)', 'mean_wave_direction (degree)', 'principal_wave_direction (degree)', 'polar_coordinate_r1 (1)', 'polar_coordinate_r2 (1)', 'calculation_method', 'sampling_rate (Hz)', 'name']) sos_name = winds all_col = (['station_id', 'sensor_id', 'latitude (degree)', 'longitude (degree)', 'date_time', 'depth (m)', 'wind_from_direction (degree)', 'wind_speed (m/s)', 'wind_speed_of_gust (m/s)', 'upward_air_velocity (m/s)', 'name']) """ #add remove from above if sos_name == 'waves': col = ['sea_surface_wave_significant_height (m)','sea_surface_wave_peak_period (s)', 'sea_surface_wave_mean_period (s)','sea_water_temperature (c)', 'sea_surface_wave_to_direction (degree)'] elif sos_name == 'winds': col = ['wind_from_direction (degree)','wind_speed (m/s)', 'wind_speed_of_gust (m/s)','upward_air_velocity (m/s)'] #if sos_name == 'waves': # col = ['sea_surface_wave_significant_height (m)'] #elif sos_name == 'winds': # col = ['wind_speed (m/s)'] collector = NdbcSos() collector.set_bbox(bbox) collector.start_time = start collector.variables = [sos_name] ofrs = collector.server.offerings title = collector.server.identification.title collector.features = None collector.end_time = start + datetime.timedelta(1) response = collector.raw(responseFormat='text/csv') df = pd.read_csv(BytesIO(response), parse_dates=True) g = df.groupby('station_id') df = dict() for station in g.groups.keys(): df.update({station: g.get_group(station).iloc[0]}) df = pd.DataFrame.from_dict(df).T station_dict = {} for offering in collector.server.offerings: station_dict.update({offering.name: offering.description}) names = [] for sta in df.index: names.append(station_dict.get(sta, sta)) df['name'] = names #override short time collector.end_time = end data = [] for k, row in df.iterrows(): station_id = row['station_id'].split(':')[-1] collector.features = [station_id] response = collector.raw(responseFormat='text/csv') kw = dict(parse_dates=True, index_col='date_time') obs = pd.read_csv(BytesIO(response), **kw).reset_index() obs = obs.drop_duplicates(subset='date_time').set_index('date_time') series = obs[col] series._metadata = dict( station=row.get('station_id'), station_name=row.get('name'), station_code=str(row.get('station_id').split(':')[-1]), sensor=row.get('sensor_id'), lon=row.get('longitude (degree)'), lat=row.get('latitude (degree)'), depth=row.get('depth (m)'), ) data.append(series) # Clean the table. table = dict( station_name = [s._metadata.get('station_name') for s in data], station_code = [s._metadata.get('station_code') for s in data], sensor = [s._metadata.get('sensor') for s in data], lon = [s._metadata.get('lon') for s in data], lat = [s._metadata.get('lat') for s in data], depth = [s._metadata.get('depth', 'NA') for s in data], ) table = pd.DataFrame(table).set_index('station_name') if verbose: print('Collector offerings') print('{}: {} offerings'.format(title, len(ofrs))) return data, table ################# def write_csv(obs_dir, name, year, table, data, label): """ examples print(' > write csv files') write_csv(obs_dir, name, year, table=wnd_ocn_table, data= wnd_ocn , label='ndbc_wind' ) write_csv(obs_dir, name, year, table=wav_ocn_table, data= wav_ocn , label='ndbc_wave' ) write_csv(obs_dir, name, year, table=ssh_table , data= ssh , label='coops_ssh' ) write_csv(obs_dir, name, year, table=wnd_obs_table, data= wnd_obs , label='coops_wind') """ #label = 'coops_ssh' #table = ssh_table #data = ssh outt = os.path.join(obs_dir, name+year,label) outd = os.path.join(outt,'data') if not os.path.exists(outd): os.makedirs(outd) table.to_csv(os.path.join(outt,'table.csv')) stations = table['station_code'] for ista in range(len(stations)): sta = str(stations [ista]) fname = os.path.join(outd,sta+'.csv') df = data[ista] try: #in case it is still a series like ssh df = df.to_frame() except: pass df.to_csv(fname) fmeta = os.path.join(outd,sta)+'_metadata.csv' metadata = pd.DataFrame.from_dict( data[ista]._metadata , orient="index") metadata.to_csv(fmeta) def read_csv(obs_dir, name, year, label): """ examples print(' > write csv files') write_csv(base_dir, name, year, table=wnd_ocn_table, data= wnd_ocn , label='ndbc_wind' ) write_csv(base_dir, name, year, table=wav_ocn_table, data= wav_ocn , label='ndbc_wave' ) write_csv(base_dir, name, year, table=ssh_table , data= ssh , label='coops_ssh' ) write_csv(base_dir, name, year, table=wnd_obs_table, data= wnd_obs , label='coops_wind') """ outt = os.path.join(obs_dir, name+year,label) outd = os.path.join(outt,'data') if not os.path.exists(outd): sys.exit('ERROR: check path to: ',outd ) table = pd.read_csv(os.path.join(outt,'table.csv')).set_index('station_name') table['station_code'] = table['station_code'].astype('str') stations = table['station_code'] data = [] metadata = [] for ista in range(len(stations)): sta = stations [ista] fname8 = os.path.join(outd,sta)+'.csv' df = pd.read_csv(fname8,parse_dates = ['date_time']).set_index('date_time') fmeta = os.path.join(outd,sta) + '_metadata.csv' meta = pd.read_csv(fmeta, header=0, names = ['names','info']).set_index('names') meta_dict = meta.to_dict()['info'] meta_dict['lon'] = float(meta_dict['lon']) meta_dict['lat'] = float(meta_dict['lat']) df._metadata = meta_dict data.append(df) return table,data ################# def write_csv(obs_dir, name, year, table, data, label): """ examples print(' > write csv files') write_csv(obs_dir, name, year, table=wnd_ocn_table, data= wnd_ocn , label='ndbc_wind' ) write_csv(obs_dir, name, year, table=wav_ocn_table, data= wav_ocn , label='ndbc_wave' ) write_csv(obs_dir, name, year, table=ssh_table , data= ssh , label='coops_ssh' ) write_csv(obs_dir, name, year, table=wnd_obs_table, data= wnd_obs , label='coops_wind') """ #label = 'coops_ssh' #table = ssh_table #data = ssh outt = os.path.join(obs_dir, name+year,label) outd = os.path.join(outt,'data') if not os.path.exists(outd): os.makedirs(outd) table.to_csv(os.path.join(outt,'table.csv')) stations = table['station_code'] for ista in range(len(stations)): sta = str(stations [ista]) fname = os.path.join(outd,sta+'.csv') df = data[ista] try: #in case it is still a series like ssh df = df.to_frame() except: pass df.to_csv(fname) fmeta = os.path.join(outd,sta)+'_metadata.csv' metadata = pd.DataFrame.from_dict( data[ista]._metadata , orient="index") metadata.to_csv(fmeta) def read_csv(obs_dir, name, year, label): """ examples print(' > write csv files') write_csv(base_dir, name, year, table=wnd_ocn_table, data= wnd_ocn , label='ndbc_wind' ) write_csv(base_dir, name, year, table=wav_ocn_table, data= wav_ocn , label='ndbc_wave' ) write_csv(base_dir, name, year, table=ssh_table , data= ssh , label='coops_ssh' ) write_csv(base_dir, name, year, table=wnd_obs_table, data= wnd_obs , label='coops_wind') """ outt = os.path.join(obs_dir, name+year,label) outd = os.path.join(outt,'data') if not os.path.exists(outd): sys.exit('ERROR: check path to: ',outd ) table = pd.read_csv(os.path.join(outt,'table.csv')).set_index('station_name') table['station_code'] = table['station_code'].astype('str') stations = table['station_code'] data = [] metadata = [] for ista in range(len(stations)): sta = stations [ista] fname8 = os.path.join(outd,sta)+'.csv' df = pd.read_csv(fname8,parse_dates = ['date_time']).set_index('date_time') fmeta = os.path.join(outd,sta) + '_metadata.csv' meta = pd.read_csv(fmeta, header=0, names = ['names','info']).set_index('names') meta_dict = meta.to_dict()['info'] meta_dict['lon'] = float(meta_dict['lon']) meta_dict['lat'] = float(meta_dict['lat']) df._metadata = meta_dict data.append(df) return table,data def write_high_water_marks(obs_dir, name, year): url = 'https://stn.wim.usgs.gov/STNServices/HWMs/FilteredHWMs.json' params = {'EventType': 2, # 2 for hurricane 'EventStatus': 0} # 0 for completed default_filter = {"riverine": True, "non_still_water": True} nameyear = (name+year).lower() out_dir = os.path.join(obs_dir,'hwm') if not os.path.exists(out_dir): os.makedirs(out_dir) fname = os.path.join(out_dir,nameyear+'.csv') usgs_json_file = os.path.join(out_dir,'usgs_hwm_tmp.json') if not os.path.exists( usgs_json_file): response = requests.get(url, params=params, headers=headers,verify=False) response.raise_for_status() json_data = json.loads(response.text) with open(usgs_json_file, 'w') as outfile: json.dump(json_data, outfile ) else: with open(usgs_json_file) as json_file: json_data = json.load(json_file) hwm_stations = dict() for data in json_data: if 'elev_ft' in data.keys() and name.lower() in data['eventName'].lower(): hwm_stations[str(data['hwm_id'])] = data log = pd.DataFrame.from_dict(hwm_stations) hwm = [] ii = 0 for key in log.keys(): l0 = [] for key0 in log[key].keys() : l0.append(log[key][key0]) hwm.append(l0) # hwm = np.array(hwm) df = pd.DataFrame(data=hwm, columns=log[key].keys()) drop_poor = False if drop_poor: for i in range(len(df)): tt = df.hwmQualityName[i] if 'poor' in tt.lower(): df.hwmQualityName[i] = np.nan df = df.dropna() df['elev_m'] = pd.to_numeric(df['elev_ft']) * 0.3048 #in meter # df.to_csv(fname) def get_all_data() ############################################### ############################################### ############ MAIN code Starts here ############ if False: # not needed. will take from the storm specific obs list from coops and ndbc obs_station_list_gen() # ####### # out dir obs_dir = os.path.join(base_dirf,'obs') if get_usgs_hwm: for key in storms.keys(): name = storms[key]['name'] year = storms[key]['year'] print(' > Get USGS HWM for ', name) try: write_high_water_marks(obs_dir, name, year) except: print (' > Get USGS HWM for ', name , ' ERROR ...') for key in storms.keys(): name = storms[key]['name'] year = storms[key]['year'] print('\n\n\n\n\n\n********************************************************') print( '***** Storm name ',name, ' Year ', year, ' *********') print( '******************************************************** \n\n\n\n\n\n') #if bbox_from_best_track: try: #bbox_from_best_track = False code,hurricane_gis_files = get_nhc_storm_info (year,name) ############################################################################### #download gis zip files base = download_nhc_gis_files(hurricane_gis_files) # get advisory cones and track points cones,pts_actual,points_actual = read_advisory_cones_info(hurricane_gis_files,base,year,code) start = pts_actual[0] ['FLDATELBL'] end = pts_actual[-1]['FLDATELBL'] #start_txt_actual = ('20' + start[:-2]).replace('/','') #end_txt_actual = ('20' + end [:-2]).replace('/','') #print('\n\n\n\n\n\n ********************************************************') #for key1 in pts_actual[0].keys(): # print( '***** pts_actual[0] [', key1, ']',pts_actual[0] [key1] , '*********') #print( '******************************************************** \n\n\n\n\n\n') start_dt = dateparser.parse(start,settings={"TO_TIMEZONE": "UTC"}).replace(tzinfo=None) - obs_xtra_days end_dt = dateparser.parse(end ,settings={"TO_TIMEZONE": "UTC"}).replace(tzinfo=None) + obs_xtra_days #try: # # bbox_from_best_track: # start_txt = start_txt_best # end_txt = end_txt_best # #bbox = bbox_best #except: # start_txt = start_txt_actual # end_txt = end_txt_actual # #start_dt = arrow.get(start_txt, 'YYYYMMDDhh').datetime - obs_xtra_days #end_dt = arrow.get(end_txt , 'YYYYMMDDhh').datetime + obs_xtra_days #if False: # get bbox from actual data last_cone = cones[-1]['geometry'].iloc[0] track = LineString([point['geometry'] for point in pts_actual]) lons_actual = track.coords.xy[0] lats_actual = track.coords.xy[1] bbox_actual = min(lons_actual)-2, min(lats_actual)-2, max(lons_actual)+2, max(lats_actual)+2 ################################################################################ # Find the bounding box to search the data. bbox_from_best_track = False bbox = bbox_actual except: start_dt = storms[key]['start'] end_dt = storms[key]['end' ] bounds = storms[key]['bbox' ] if storms[key]['bbox'] is not None: bbox = storms[key]['bbox'] #print('\n\n\n\n >>>>> Download and read all GIS data for Storm >',name, ' Year > ', year, '\n ** This is an old STORM !!!!!! \n\n\n\n') # # Note that the bounding box is derived from the track and the latest prediction cone. strbbox = ', '.join(format(v, '.2f') for v in bbox) # # Note that the bounding box is derived from the track and the latest prediction cone. strbbox = ', '.join(format(v, '.2f') for v in bbox) print('\n\n\n\n\n\n********************************************************') print( '***** Storm name ',name, ' Year ', year, ' *********') print('bbox: {}\nstart: {}\n end: {}'.format(strbbox, start_dt, end_dt)) print( '******************************************************** \n\n\n\n\n\n') # ######### if get_cops_wlev: try: print(' > Get water level information CO-OPS ... ') # ["MLLW","MSL","MHW","STND","IGLD", "NAVD"] datum = 'NAVD' datum = 'MSL' print ('datum=', datum ) ssh, ssh_table = get_coops( start=start_dt, end=end_dt, sos_name='water_surface_height_above_reference_datum', units=cf_units.Unit('meters'), datum = datum , bbox=bbox, ) write_csv(obs_dir, name, year, table=ssh_table , data= ssh , label='coops_ssh' ) except: print(' > Get water level information CO-OPS >>>> ERRORRRRR') ###### if get_cops_wind: try: print(' > Get wind information CO-OPS ... ') wnd_obs, wnd_obs_table = get_coops( start=start_dt, end=end_dt, sos_name='wind_speed', units=cf_units.Unit('m/s'), bbox=bbox, ) write_csv(obs_dir, name, year, table=wnd_obs_table, data= wnd_obs , label='coops_wind') except: print(' > Get wind information CO-OPS >>> ERORRRR') ###### if get_ndbc_wind: try: print(' > Get wind ocean information (ndbc) ... ') wnd_ocn, wnd_ocn_table = get_ndbc( start=start_dt, end=end_dt, sos_name='winds', bbox=bbox, ) write_csv(obs_dir, name, year, table=wnd_ocn_table, data= wnd_ocn , label='ndbc_wind' ) except: print(' > Get wind ocean information (ndbc) >>> ERRRORRRR') ###### if get_ndbc_wave: try: print(' > Get wave ocean information (ndbc) ... ') wav_ocn, wav_ocn_table = get_ndbc( start=start_dt, end=end_dt, sos_name='waves', bbox=bbox, ) write_csv(obs_dir, name, year, table=wav_ocn_table, data= wav_ocn , label='ndbc_wave' ) except: print(' > Get wave ocean information (ndbc) >>> ERRORRRR ') ###### if False: # test reading files ssh_table1 , ssh1 = read_csv (obs_dir, name, year, label='coops_ssh' ) wnd_obs_table1, wnd_obs1 = read_csv (obs_dir, name, year, label='coops_wind') wnd_ocn_table1, wnd_ocn1 = read_csv (obs_dir, name, year, label='ndbc_wind' ) wav_ocn_table1, wav_ocn1 = read_csv (obs_dir, name, year, label='ndbc_wave' ) #if False: # # back up script file args=sys.argv scr_name = args[0] scr_dir = os.path.join(obs_dir, name+year) os.system('cp -fr ' + scr_name + ' ' + scr_dir) # #with open(pick, "rb") as f: # w = pickle.load(f) #f = open(pick, "rb") #w = pickle.load(f) #if __name__ == "__main__": # main() if __name__ == "__main__": get_all_data()
false
true
f717df53a4c80dee569899eb3e7c32f7b58fef74
12,004
py
Python
main.py
lakmalniranga/OpenCV-average-color-detection
615ca69002d2bc37191c118247ddd8986f04edb1
[ "MIT" ]
null
null
null
main.py
lakmalniranga/OpenCV-average-color-detection
615ca69002d2bc37191c118247ddd8986f04edb1
[ "MIT" ]
null
null
null
main.py
lakmalniranga/OpenCV-average-color-detection
615ca69002d2bc37191c118247ddd8986f04edb1
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ OpenCV Python image average color detection script. You can use this to finding darkest color. Coded by : Lakmal Niranga. 2016 """ import os import cv2 from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName(_fromUtf8("Dialog")) Dialog.setWindowModality(QtCore.Qt.ApplicationModal) Dialog.resize(790, 550) Dialog.setSizeGripEnabled(True) self.frame = QtGui.QFrame(Dialog) self.frame.setGeometry(QtCore.QRect(10, 10, 381, 281)) self.frame.setFrameShape(QtGui.QFrame.StyledPanel) self.frame.setFrameShadow(QtGui.QFrame.Raised) self.frame.setObjectName(_fromUtf8("frame")) self.horizontalLayoutWidget = QtGui.QWidget(self.frame) self.horizontalLayoutWidget.setGeometry(QtCore.QRect(10, 230, 361, 41)) self.horizontalLayoutWidget.setObjectName(_fromUtf8("horizontalLayoutWidget")) self.horizontalLayout = QtGui.QHBoxLayout(self.horizontalLayoutWidget) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.btnImg1_pc = QtGui.QPushButton(self.horizontalLayoutWidget) self.btnImg1_pc.setObjectName(_fromUtf8("btnImg1_pc")) self.horizontalLayout.addWidget(self.btnImg1_pc) self.btnImg1_cam = QtGui.QPushButton(self.horizontalLayoutWidget) self.btnImg1_cam.setObjectName(_fromUtf8("btnImg1_cam")) self.horizontalLayout.addWidget(self.btnImg1_cam) self.label_img1 = QtGui.QLabel(self.frame) self.label_img1.setGeometry(QtCore.QRect(10, 10, 361, 211)) self.label_img1.setText(_fromUtf8("")) self.label_img1.setAlignment(QtCore.Qt.AlignCenter) self.label_img1.setObjectName(_fromUtf8("label_img1")) self.horizontalLayoutWidget.raise_() self.label_img1.raise_() self.frame_3 = QtGui.QFrame(Dialog) self.frame_3.setGeometry(QtCore.QRect(400, 10, 381, 281)) self.frame_3.setFrameShape(QtGui.QFrame.StyledPanel) self.frame_3.setFrameShadow(QtGui.QFrame.Raised) self.frame_3.setObjectName(_fromUtf8("frame_3")) self.horizontalLayoutWidget_2 = QtGui.QWidget(self.frame_3) self.horizontalLayoutWidget_2.setGeometry(QtCore.QRect(10, 230, 361, 41)) self.horizontalLayoutWidget_2.setObjectName(_fromUtf8("horizontalLayoutWidget_2")) self.horizontalLayout_2 = QtGui.QHBoxLayout(self.horizontalLayoutWidget_2) self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.btnImg2_pc = QtGui.QPushButton(self.horizontalLayoutWidget_2) self.btnImg2_pc.setObjectName(_fromUtf8("btnImg2_pc")) self.horizontalLayout_2.addWidget(self.btnImg2_pc) self.btnImg2_cam = QtGui.QPushButton(self.horizontalLayoutWidget_2) self.btnImg2_cam.setObjectName(_fromUtf8("btnImg2_cam")) self.horizontalLayout_2.addWidget(self.btnImg2_cam) self.label_img2 = QtGui.QLabel(self.frame_3) self.label_img2.setGeometry(QtCore.QRect(10, 10, 361, 211)) self.label_img2.setText(_fromUtf8("")) self.label_img2.setAlignment(QtCore.Qt.AlignCenter) self.label_img2.setObjectName(_fromUtf8("label_img2")) self.verticalLayoutWidget = QtGui.QWidget(Dialog) self.verticalLayoutWidget.setGeometry(QtCore.QRect(10, 370, 771, 41)) self.verticalLayoutWidget.setObjectName(_fromUtf8("verticalLayoutWidget")) self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.label = QtGui.QLabel(self.verticalLayoutWidget) font = QtGui.QFont() font.setPointSize(14) font.setBold(False) font.setWeight(50) self.label.setFont(font) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setObjectName(_fromUtf8("label")) self.verticalLayout.addWidget(self.label) self.verticalLayoutWidget_2 = QtGui.QWidget(Dialog) self.verticalLayoutWidget_2.setGeometry(QtCore.QRect(10, 410, 381, 143)) self.verticalLayoutWidget_2.setObjectName(_fromUtf8("verticalLayoutWidget_2")) self.verticalLayout_2 = QtGui.QVBoxLayout(self.verticalLayoutWidget_2) self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) self.colorbox_1 = QtGui.QLabel(self.verticalLayoutWidget_2) self.colorbox_1.setText(_fromUtf8("")) self.colorbox_1.setObjectName(_fromUtf8("colorbox_1")) self.verticalLayout_2.addWidget(self.colorbox_1) self.lable_img1 = QtGui.QLabel(self.verticalLayoutWidget_2) font = QtGui.QFont() font.setPointSize(20) font.setBold(True) font.setWeight(75) self.lable_img1.setFont(font) self.lable_img1.setAlignment(QtCore.Qt.AlignCenter) self.lable_img1.setObjectName(_fromUtf8("lable_img1")) self.verticalLayout_2.addWidget(self.lable_img1) self.verticalLayoutWidget_3 = QtGui.QWidget(Dialog) self.verticalLayoutWidget_3.setGeometry(QtCore.QRect(400, 410, 381, 143)) self.verticalLayoutWidget_3.setObjectName(_fromUtf8("verticalLayoutWidget_3")) self.verticalLayout_3 = QtGui.QVBoxLayout(self.verticalLayoutWidget_3) self.verticalLayout_3.setObjectName(_fromUtf8("verticalLayout_3")) self.colorbox_2 = QtGui.QLabel(self.verticalLayoutWidget_3) self.colorbox_2.setText(_fromUtf8("")) self.colorbox_2.setObjectName(_fromUtf8("colorbox_2")) self.verticalLayout_3.addWidget(self.colorbox_2) self.lable_img2 = QtGui.QLabel(self.verticalLayoutWidget_3) font = QtGui.QFont() font.setPointSize(20) font.setBold(True) font.setWeight(75) self.lable_img2.setFont(font) self.label_img1.setObjectName(_fromUtf8("label_img1")) self.horizontalLayoutWidget.raise_() self.lable_img2.setAlignment(QtCore.Qt.AlignCenter) self.lable_img2.setObjectName(_fromUtf8("lable_img2")) self.verticalLayout_3.addWidget(self.lable_img2) self.btnComp = QtGui.QPushButton(Dialog) self.btnComp.setGeometry(QtCore.QRect(310, 310, 171, 51)) font = QtGui.QFont() font.setPointSize(14) font.setBold(True) font.setWeight(75) self.btnComp.setFont(font) self.btnComp.setObjectName(_fromUtf8("btnComp")) self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): Dialog.setWindowTitle(_translate("Dialog", "OpenCV Darkest Cloth Identifier", None)) self.btnImg1_pc.setText(_translate("Dialog", "Select image from PC", None)) self.btnImg1_cam.setText(_translate("Dialog", "Take image from camera", None)) self.btnImg2_pc.setText(_translate("Dialog", "Select image from PC", None)) self.btnImg2_cam.setText(_translate("Dialog", "Take image from camera", None)) self.label.setText(_translate("Dialog", "Most Suitable Average Color", None)) self.lable_img1.setText(_translate("Dialog", "", None)) self.lable_img2.setText(_translate("Dialog", "", None)) self.btnComp.setText(_translate("Dialog", "Compare", None)) self.btnImg1_pc.clicked.connect(self.openimg1) self.btnImg2_pc.clicked.connect(self.openimg2) self.btnComp.clicked.connect(self.compare_color) self.btnImg1_cam.clicked.connect(self.cameraImg1) self.btnImg2_cam.clicked.connect(self.cameraImg2) avg1=None avg2=None def get_avg_color(self, img_path): img = cv2.imread(img_path,cv2.IMREAD_COLOR) img_width = img.shape[1] img_height = img.shape[0] rows_cols = 10 part_of_width = img_width/rows_cols part_of_height = img_height/rows_cols avg_B=0 avg_G=0 avg_R=0 for x in range(part_of_width,img_width-part_of_width,part_of_width): for y in range(part_of_height,img_height-part_of_height,part_of_height): color = img[y,x] #[y and x] - gives BGR avg_B+=color[0] avg_G+=color[1] avg_R+=color[2] cv2.circle(img,(x,y), 5, (0,0,0), -1) #[x and y] return (avg_B/81,avg_G/81,avg_R/81)[::-1] #return tuple in BGR def openimg1(self): global avg1 img1_path = QtGui.QFileDialog.getOpenFileName(Dialog, 'Open file', os.getcwd() ,"Image files (*.jpg *.gif)") self.label_img1.setScaledContents(True) self.label_img1.setPixmap(QtGui.QPixmap(img1_path)) avg1 = self.get_avg_color(str(img1_path)) self.colorbox_1.setStyleSheet('background-color: rgb'+ str(avg1)) def openimg2(self): global avg2 img2_path = QtGui.QFileDialog.getOpenFileName(Dialog, 'Open file', os.getcwd() ,"Image files (*.jpg *.gif)") self.label_img2.setScaledContents(True) self.label_img2.setPixmap(QtGui.QPixmap(img2_path)) avg2 = self.get_avg_color(str(img2_path)) self.colorbox_2.setStyleSheet('background-color: rgb'+ str(avg2)) def compare_color(self): global avg1, avg2 msgBox = QtGui.QMessageBox() msgBox.setIcon(QtGui.QMessageBox.Critical) try: img1_avarage = sum(i for i in avg1) img2_avarage = sum(i for i in avg2) avg1_per = (float(img1_avarage)/(img1_avarage+img2_avarage))*100 avg2_per = (float(img2_avarage)/(img1_avarage+img2_avarage))*100 self.lable_img1.setText(str(round(100-avg1_per, 2)) + "%") self.lable_img2.setText(str(round(100-avg2_per, 2)) + "%") except NameError as e: msgBox.setText("Please select images first!") msgBox.setWindowTitle("Error") msgBox.exec_() def cameraImg1(self): global avg1 cap = cv2.VideoCapture(0) while(True): global avg1 ret, frame = cap.read() cv2.imshow('press S to take image | press C to cancel',frame) k = cv2.waitKey(3) & 0xFF if k == ord('s'): img_path="image1.jpg" cv2.imwrite(img_path, frame) self.label_img1.setScaledContents(True) self.label_img1.setPixmap(QtGui.QPixmap(img_path)) avg1 = self.get_avg_color(str(img_path)) self.colorbox_1.setStyleSheet('background-color: rgb'+ str(avg1)) break if k == ord('c'): break cap.release() cv2.destroyAllWindows() def cameraImg2(self): global avg2 cap = cv2.VideoCapture(0) while(True): global avg2 ret, frame = cap.read() cv2.imshow('press S to take image | press C to cancel',frame) k = cv2.waitKey(3) & 0xFF if k == ord('s'): img_path="image2.jpg" cv2.imwrite(img_path, frame) self.label_img2.setScaledContents(True) self.label_img2.setPixmap(QtGui.QPixmap(img_path)) avg2 = self.get_avg_color(str(img_path)) self.colorbox_2.setStyleSheet('background-color: rgb'+ str(avg2)) break if k == ord('c'): break cap.release() cv2.destroyAllWindows() if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) Dialog = QtGui.QDialog() Dialog.setFixedSize(790, 550) ui = Ui_Dialog() ui.setupUi(Dialog) Dialog.show() sys.exit(app.exec_())
43.02509
116
0.673692
import os import cv2 from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName(_fromUtf8("Dialog")) Dialog.setWindowModality(QtCore.Qt.ApplicationModal) Dialog.resize(790, 550) Dialog.setSizeGripEnabled(True) self.frame = QtGui.QFrame(Dialog) self.frame.setGeometry(QtCore.QRect(10, 10, 381, 281)) self.frame.setFrameShape(QtGui.QFrame.StyledPanel) self.frame.setFrameShadow(QtGui.QFrame.Raised) self.frame.setObjectName(_fromUtf8("frame")) self.horizontalLayoutWidget = QtGui.QWidget(self.frame) self.horizontalLayoutWidget.setGeometry(QtCore.QRect(10, 230, 361, 41)) self.horizontalLayoutWidget.setObjectName(_fromUtf8("horizontalLayoutWidget")) self.horizontalLayout = QtGui.QHBoxLayout(self.horizontalLayoutWidget) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.btnImg1_pc = QtGui.QPushButton(self.horizontalLayoutWidget) self.btnImg1_pc.setObjectName(_fromUtf8("btnImg1_pc")) self.horizontalLayout.addWidget(self.btnImg1_pc) self.btnImg1_cam = QtGui.QPushButton(self.horizontalLayoutWidget) self.btnImg1_cam.setObjectName(_fromUtf8("btnImg1_cam")) self.horizontalLayout.addWidget(self.btnImg1_cam) self.label_img1 = QtGui.QLabel(self.frame) self.label_img1.setGeometry(QtCore.QRect(10, 10, 361, 211)) self.label_img1.setText(_fromUtf8("")) self.label_img1.setAlignment(QtCore.Qt.AlignCenter) self.label_img1.setObjectName(_fromUtf8("label_img1")) self.horizontalLayoutWidget.raise_() self.label_img1.raise_() self.frame_3 = QtGui.QFrame(Dialog) self.frame_3.setGeometry(QtCore.QRect(400, 10, 381, 281)) self.frame_3.setFrameShape(QtGui.QFrame.StyledPanel) self.frame_3.setFrameShadow(QtGui.QFrame.Raised) self.frame_3.setObjectName(_fromUtf8("frame_3")) self.horizontalLayoutWidget_2 = QtGui.QWidget(self.frame_3) self.horizontalLayoutWidget_2.setGeometry(QtCore.QRect(10, 230, 361, 41)) self.horizontalLayoutWidget_2.setObjectName(_fromUtf8("horizontalLayoutWidget_2")) self.horizontalLayout_2 = QtGui.QHBoxLayout(self.horizontalLayoutWidget_2) self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.btnImg2_pc = QtGui.QPushButton(self.horizontalLayoutWidget_2) self.btnImg2_pc.setObjectName(_fromUtf8("btnImg2_pc")) self.horizontalLayout_2.addWidget(self.btnImg2_pc) self.btnImg2_cam = QtGui.QPushButton(self.horizontalLayoutWidget_2) self.btnImg2_cam.setObjectName(_fromUtf8("btnImg2_cam")) self.horizontalLayout_2.addWidget(self.btnImg2_cam) self.label_img2 = QtGui.QLabel(self.frame_3) self.label_img2.setGeometry(QtCore.QRect(10, 10, 361, 211)) self.label_img2.setText(_fromUtf8("")) self.label_img2.setAlignment(QtCore.Qt.AlignCenter) self.label_img2.setObjectName(_fromUtf8("label_img2")) self.verticalLayoutWidget = QtGui.QWidget(Dialog) self.verticalLayoutWidget.setGeometry(QtCore.QRect(10, 370, 771, 41)) self.verticalLayoutWidget.setObjectName(_fromUtf8("verticalLayoutWidget")) self.verticalLayout = QtGui.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.label = QtGui.QLabel(self.verticalLayoutWidget) font = QtGui.QFont() font.setPointSize(14) font.setBold(False) font.setWeight(50) self.label.setFont(font) self.label.setAlignment(QtCore.Qt.AlignCenter) self.label.setObjectName(_fromUtf8("label")) self.verticalLayout.addWidget(self.label) self.verticalLayoutWidget_2 = QtGui.QWidget(Dialog) self.verticalLayoutWidget_2.setGeometry(QtCore.QRect(10, 410, 381, 143)) self.verticalLayoutWidget_2.setObjectName(_fromUtf8("verticalLayoutWidget_2")) self.verticalLayout_2 = QtGui.QVBoxLayout(self.verticalLayoutWidget_2) self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) self.colorbox_1 = QtGui.QLabel(self.verticalLayoutWidget_2) self.colorbox_1.setText(_fromUtf8("")) self.colorbox_1.setObjectName(_fromUtf8("colorbox_1")) self.verticalLayout_2.addWidget(self.colorbox_1) self.lable_img1 = QtGui.QLabel(self.verticalLayoutWidget_2) font = QtGui.QFont() font.setPointSize(20) font.setBold(True) font.setWeight(75) self.lable_img1.setFont(font) self.lable_img1.setAlignment(QtCore.Qt.AlignCenter) self.lable_img1.setObjectName(_fromUtf8("lable_img1")) self.verticalLayout_2.addWidget(self.lable_img1) self.verticalLayoutWidget_3 = QtGui.QWidget(Dialog) self.verticalLayoutWidget_3.setGeometry(QtCore.QRect(400, 410, 381, 143)) self.verticalLayoutWidget_3.setObjectName(_fromUtf8("verticalLayoutWidget_3")) self.verticalLayout_3 = QtGui.QVBoxLayout(self.verticalLayoutWidget_3) self.verticalLayout_3.setObjectName(_fromUtf8("verticalLayout_3")) self.colorbox_2 = QtGui.QLabel(self.verticalLayoutWidget_3) self.colorbox_2.setText(_fromUtf8("")) self.colorbox_2.setObjectName(_fromUtf8("colorbox_2")) self.verticalLayout_3.addWidget(self.colorbox_2) self.lable_img2 = QtGui.QLabel(self.verticalLayoutWidget_3) font = QtGui.QFont() font.setPointSize(20) font.setBold(True) font.setWeight(75) self.lable_img2.setFont(font) self.label_img1.setObjectName(_fromUtf8("label_img1")) self.horizontalLayoutWidget.raise_() self.lable_img2.setAlignment(QtCore.Qt.AlignCenter) self.lable_img2.setObjectName(_fromUtf8("lable_img2")) self.verticalLayout_3.addWidget(self.lable_img2) self.btnComp = QtGui.QPushButton(Dialog) self.btnComp.setGeometry(QtCore.QRect(310, 310, 171, 51)) font = QtGui.QFont() font.setPointSize(14) font.setBold(True) font.setWeight(75) self.btnComp.setFont(font) self.btnComp.setObjectName(_fromUtf8("btnComp")) self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): Dialog.setWindowTitle(_translate("Dialog", "OpenCV Darkest Cloth Identifier", None)) self.btnImg1_pc.setText(_translate("Dialog", "Select image from PC", None)) self.btnImg1_cam.setText(_translate("Dialog", "Take image from camera", None)) self.btnImg2_pc.setText(_translate("Dialog", "Select image from PC", None)) self.btnImg2_cam.setText(_translate("Dialog", "Take image from camera", None)) self.label.setText(_translate("Dialog", "Most Suitable Average Color", None)) self.lable_img1.setText(_translate("Dialog", "", None)) self.lable_img2.setText(_translate("Dialog", "", None)) self.btnComp.setText(_translate("Dialog", "Compare", None)) self.btnImg1_pc.clicked.connect(self.openimg1) self.btnImg2_pc.clicked.connect(self.openimg2) self.btnComp.clicked.connect(self.compare_color) self.btnImg1_cam.clicked.connect(self.cameraImg1) self.btnImg2_cam.clicked.connect(self.cameraImg2) avg1=None avg2=None def get_avg_color(self, img_path): img = cv2.imread(img_path,cv2.IMREAD_COLOR) img_width = img.shape[1] img_height = img.shape[0] rows_cols = 10 part_of_width = img_width/rows_cols part_of_height = img_height/rows_cols avg_B=0 avg_G=0 avg_R=0 for x in range(part_of_width,img_width-part_of_width,part_of_width): for y in range(part_of_height,img_height-part_of_height,part_of_height): color = img[y,x] avg_B+=color[0] avg_G+=color[1] avg_R+=color[2] cv2.circle(img,(x,y), 5, (0,0,0), -1) return (avg_B/81,avg_G/81,avg_R/81)[::-1] def openimg1(self): global avg1 img1_path = QtGui.QFileDialog.getOpenFileName(Dialog, 'Open file', os.getcwd() ,"Image files (*.jpg *.gif)") self.label_img1.setScaledContents(True) self.label_img1.setPixmap(QtGui.QPixmap(img1_path)) avg1 = self.get_avg_color(str(img1_path)) self.colorbox_1.setStyleSheet('background-color: rgb'+ str(avg1)) def openimg2(self): global avg2 img2_path = QtGui.QFileDialog.getOpenFileName(Dialog, 'Open file', os.getcwd() ,"Image files (*.jpg *.gif)") self.label_img2.setScaledContents(True) self.label_img2.setPixmap(QtGui.QPixmap(img2_path)) avg2 = self.get_avg_color(str(img2_path)) self.colorbox_2.setStyleSheet('background-color: rgb'+ str(avg2)) def compare_color(self): global avg1, avg2 msgBox = QtGui.QMessageBox() msgBox.setIcon(QtGui.QMessageBox.Critical) try: img1_avarage = sum(i for i in avg1) img2_avarage = sum(i for i in avg2) avg1_per = (float(img1_avarage)/(img1_avarage+img2_avarage))*100 avg2_per = (float(img2_avarage)/(img1_avarage+img2_avarage))*100 self.lable_img1.setText(str(round(100-avg1_per, 2)) + "%") self.lable_img2.setText(str(round(100-avg2_per, 2)) + "%") except NameError as e: msgBox.setText("Please select images first!") msgBox.setWindowTitle("Error") msgBox.exec_() def cameraImg1(self): global avg1 cap = cv2.VideoCapture(0) while(True): global avg1 ret, frame = cap.read() cv2.imshow('press S to take image | press C to cancel',frame) k = cv2.waitKey(3) & 0xFF if k == ord('s'): img_path="image1.jpg" cv2.imwrite(img_path, frame) self.label_img1.setScaledContents(True) self.label_img1.setPixmap(QtGui.QPixmap(img_path)) avg1 = self.get_avg_color(str(img_path)) self.colorbox_1.setStyleSheet('background-color: rgb'+ str(avg1)) break if k == ord('c'): break cap.release() cv2.destroyAllWindows() def cameraImg2(self): global avg2 cap = cv2.VideoCapture(0) while(True): global avg2 ret, frame = cap.read() cv2.imshow('press S to take image | press C to cancel',frame) k = cv2.waitKey(3) & 0xFF if k == ord('s'): img_path="image2.jpg" cv2.imwrite(img_path, frame) self.label_img2.setScaledContents(True) self.label_img2.setPixmap(QtGui.QPixmap(img_path)) avg2 = self.get_avg_color(str(img_path)) self.colorbox_2.setStyleSheet('background-color: rgb'+ str(avg2)) break if k == ord('c'): break cap.release() cv2.destroyAllWindows() if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) Dialog = QtGui.QDialog() Dialog.setFixedSize(790, 550) ui = Ui_Dialog() ui.setupUi(Dialog) Dialog.show() sys.exit(app.exec_())
true
true
f717e0abb049f00234b9b3cbf5c4910e36250c30
1,028
py
Python
pyvortex/__init__.py
pankajkarman/pyvortex
ba92d9b7702c33218377ac88f3045e880339f3ad
[ "MIT" ]
5
2021-01-12T16:52:45.000Z
2021-10-13T23:26:42.000Z
pyvortex/__init__.py
pankajkarman/pyvortex
ba92d9b7702c33218377ac88f3045e880339f3ad
[ "MIT" ]
2
2020-12-18T15:16:37.000Z
2021-12-02T14:47:07.000Z
pyvortex/__init__.py
pankajkarman/pyvortex
ba92d9b7702c33218377ac88f3045e880339f3ad
[ "MIT" ]
3
2021-01-12T16:52:18.000Z
2021-10-14T02:18:06.000Z
""" This module consists of functions to calculate the [equivalent latitude](https://journals.ametsoc.org/doi/citedby/10.1175/1520-0469%282003%29060%3C0287%3ATELADT%3E2.0.CO%3B2) and edge of a polar vortex using [Nash criteria](https://agupubs.onlinelibrary.wiley.com/doi/10.1029/96JD00066). ### Installation ``` pip install -U pyvortex ``` install the latest version using ``` pip install git+https://github.com/pankajkarman/pyvortex.git ``` ### Usage `pyvortex` is easy to use. Just import: ```python import pyvortex as vr ``` #### Northern Hemisphere Instantiate the `PolarVortex` class using: ```python pol = PolarVortex(pv, uwind) ``` Get equivalent lqtitude for the provided vorticity data as: ```python eql = pol.get_eql() ``` If you want to get both equivalent latitude and Vortex edge, just use: ```python eql = pol.get_edge(min_eql=30) ``` #### Southern Hemisphere Flip pv and uwind along latitude dimension and multiply pv by -1. All other things will be the same. """ from .pyvortex import PolarVortex
22.844444
287
0.737354
from .pyvortex import PolarVortex
true
true
f717e10070ef6a2f208a3ff8fb842d2f4dcf4f84
3,440
py
Python
simulation/simulation.py
cyberImperial/attack-graphs
40c5c2bcc3eaf01c484e51d8339d29da5154dd42
[ "MIT" ]
18
2018-02-21T13:14:11.000Z
2021-07-25T05:15:56.000Z
simulation/simulation.py
BenDerPan/attack-graphs
40c5c2bcc3eaf01c484e51d8339d29da5154dd42
[ "MIT" ]
70
2017-10-16T22:18:26.000Z
2020-05-11T14:01:06.000Z
simulation/simulation.py
BenDerPan/attack-graphs
40c5c2bcc3eaf01c484e51d8339d29da5154dd42
[ "MIT" ]
14
2019-04-24T23:26:39.000Z
2021-12-03T09:36:13.000Z
from __future__ import absolute_import import logging logger = logging.getLogger(__name__) import sys import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) from topology.graph.graph import Graph from topology.graph.graph import Node from clint.textui import colored import json import ast import time from random import randrange class Simulation(): """ Class used to mock sniffer connections and ip discovery for running simulations. General description: The simulation module is lightweight and can easily handle overlay topologies of magnitude of thousands. The simulations are run on random overlay topologies with fixed number of nodes and edges. Random packets get generated whenever the simulation module connection gets a call within a fixed timeout of 0.5 seconds, whereas the scans are generated within a timeout of 3 seconds. """ def __init__(self, conf_file, connection_timeout = 0.5, scan_timeout = 10): """ Construct a new simulation object from a given configuartion file. :param conf_file: The configuration file must be a json that contains a graph. For an example see: `confs/simple.json` :param connection_timeout: packets get generated each connection_timeout seconds :param scan_timeout: the time to run a scan """ self.connection_timeout = connection_timeout self.scan_timeout = scan_timeout dir_path = os.path.dirname(os.path.realpath(__file__)) dir_path = os.path.join(dir_path, "confs") with open(os.path.join(dir_path, conf_file), 'r') as f: data = json.dumps(ast.literal_eval(f.read())) self.conf = json.loads(data) logger.info("Configuration successfully parsed...") self.graph = Graph.from_json(self.conf) logger.info("Graph successfully loaded...") def connection(self): """ Return a Connection class. The internals of the topology module use only the next function from the `libpcap` Python wrapper. """ def build_packet(src, dest): time.sleep(self.connection_timeout) return "header", { "src" : str(src), "dest" : str(dest) } class Connection(): def __init__(self, graph): self.graph = graph def next(self): # return a new random packet sent between 2 nodes of the graph link_idx = randrange(len(self.graph.edges)) for (n1, n2) in self.graph.edges: if link_idx == 0: return build_packet(n1.ip, n2.ip) link_idx -= 1 logger.error("Simulated connection crashed.") raise Exception("Malformed simulation graph!") return Connection(self.graph) def discovery_ip(self, ip): """ Function used as a seam instead of the original `discovery_ip` function. See sniffer module for more details. """ logger.info(colored.cyan("Started scan.")) time.sleep(self.scan_timeout) for node in self.graph.nodes: if Node(ip) == node: logger.info(colored.green("Successful scan.")) return node.running logger.info("Failed scan.") return {}
34.4
80
0.62936
from __future__ import absolute_import import logging logger = logging.getLogger(__name__) import sys import os sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) from topology.graph.graph import Graph from topology.graph.graph import Node from clint.textui import colored import json import ast import time from random import randrange class Simulation(): def __init__(self, conf_file, connection_timeout = 0.5, scan_timeout = 10): self.connection_timeout = connection_timeout self.scan_timeout = scan_timeout dir_path = os.path.dirname(os.path.realpath(__file__)) dir_path = os.path.join(dir_path, "confs") with open(os.path.join(dir_path, conf_file), 'r') as f: data = json.dumps(ast.literal_eval(f.read())) self.conf = json.loads(data) logger.info("Configuration successfully parsed...") self.graph = Graph.from_json(self.conf) logger.info("Graph successfully loaded...") def connection(self): def build_packet(src, dest): time.sleep(self.connection_timeout) return "header", { "src" : str(src), "dest" : str(dest) } class Connection(): def __init__(self, graph): self.graph = graph def next(self): link_idx = randrange(len(self.graph.edges)) for (n1, n2) in self.graph.edges: if link_idx == 0: return build_packet(n1.ip, n2.ip) link_idx -= 1 logger.error("Simulated connection crashed.") raise Exception("Malformed simulation graph!") return Connection(self.graph) def discovery_ip(self, ip): logger.info(colored.cyan("Started scan.")) time.sleep(self.scan_timeout) for node in self.graph.nodes: if Node(ip) == node: logger.info(colored.green("Successful scan.")) return node.running logger.info("Failed scan.") return {}
true
true
f717e11a8a97f2e8f936ce7233ccad30aa232626
7,806
py
Python
examples/pwr_run/checkpointing/final_trace/top50/job48.py
boringlee24/keras_old
1e1176c45c4952ba1b9b9e58e9cc4df027ab111d
[ "MIT" ]
null
null
null
examples/pwr_run/checkpointing/final_trace/top50/job48.py
boringlee24/keras_old
1e1176c45c4952ba1b9b9e58e9cc4df027ab111d
[ "MIT" ]
null
null
null
examples/pwr_run/checkpointing/final_trace/top50/job48.py
boringlee24/keras_old
1e1176c45c4952ba1b9b9e58e9cc4df027ab111d
[ "MIT" ]
null
null
null
""" #Trains a ResNet on the CIFAR10 dataset. """ from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau, TensorBoard from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras.datasets import cifar10 from keras.applications.resnet import ResNet50, ResNet101, ResNet152 from keras import models, layers, optimizers from datetime import datetime import tensorflow as tf import numpy as np import os import pdb import sys import argparse import time import signal import glob import json import send_signal parser = argparse.ArgumentParser(description='Tensorflow Cifar10 Training') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='specific testcase name') parser.add_argument('--resume', dest='resume', action='store_true', help='if True, resume training from a checkpoint') parser.add_argument('--gpu_num', metavar='GPU_NUMBER', type=str, help='select which gpu to use') parser.add_argument('--node', metavar='HOST_NODE', type=str, help='node of the host (scheduler)') parser.set_defaults(resume=False) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_num # Training parameters batch_size = 32 args_lr = 0.0014 args_model = 'resnet101' epoch_begin_time = 0 job_name = sys.argv[0].split('.')[0] save_files = '/scratch/li.baol/checkpoint_final4/' + job_name + '*' total_epochs = 36 starting_epoch = 0 # first step is to update the PID pid = os.getpid() message = job_name + ' pid ' + str(pid) # 'job50 pid 3333' send_signal.send(args.node, 10002, message) if args.resume: save_file = glob.glob(save_files)[0] # epochs = int(save_file.split('/')[4].split('_')[1].split('.')[0]) starting_epoch = int(save_file.split('/')[4].split('.')[0].split('_')[-1]) data_augmentation = True num_classes = 10 # Subtracting pixel mean improves accuracy subtract_pixel_mean = True n = 3 # Model name, depth and version model_type = args.tc #'P100_resnet50_he_256_1' # Load the CIFAR10 data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Normalize data. x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # If subtract pixel mean is enabled if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) if args.resume: print('resume from checkpoint') message = job_name + ' b_end' send_signal.send(args.node, 10002, message) model = keras.models.load_model(save_file) message = job_name + ' c_end' send_signal.send(args.node, 10002, message) else: print('train from start') model = models.Sequential() if '50' in args_model: base_model = ResNet50(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '101' in args_model: base_model = ResNet101(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '152' in args_model: base_model = ResNet152(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) #base_model.summary() #pdb.set_trace() #model.add(layers.UpSampling2D((2,2))) #model.add(layers.UpSampling2D((2,2))) #model.add(layers.UpSampling2D((2,2))) model.add(base_model) model.add(layers.Flatten()) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(128, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) #model.add(layers.Dense(64, activation='relu')) #model.add(layers.Dropout(0.5)) #model.add(layers.BatchNormalization()) model.add(layers.Dense(10, activation='softmax'))#, kernel_initializer='he_uniform')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=args_lr), metrics=['accuracy']) #model.summary() print(model_type) #pdb.set_trace() current_epoch = 0 ################### connects interrupt signal to the process ##################### def terminateProcess(signalNumber, frame): # first record the wasted epoch time global epoch_begin_time if epoch_begin_time == 0: epoch_waste_time = 0 else: epoch_waste_time = int(time.time() - epoch_begin_time) message = job_name + ' waste ' + str(epoch_waste_time) # 'job50 waste 100' if epoch_waste_time > 0: send_signal.send(args.node, 10002, message) print('checkpointing the model triggered by kill -15 signal') # delete whatever checkpoint that already exists for f in glob.glob(save_files): os.remove(f) model.save('/scratch/li.baol/checkpoint_final4/' + job_name + '_' + str(current_epoch) + '.h5') print ('(SIGTERM) terminating the process') message = job_name + ' checkpoint' send_signal.send(args.node, 10002, message) sys.exit() signal.signal(signal.SIGTERM, terminateProcess) ################################################################################# logdir = '/scratch/li.baol/tsrbrd_log/job_runs/' + model_type + '/' + job_name tensorboard_callback = TensorBoard(log_dir=logdir)#, update_freq='batch') first_epoch_start = 0 class PrintEpoch(keras.callbacks.Callback): def on_epoch_begin(self, epoch, logs=None): global current_epoch, first_epoch_start #remaining_epochs = epochs - epoch current_epoch = epoch print('current epoch ' + str(current_epoch)) global epoch_begin_time epoch_begin_time = time.time() if epoch == starting_epoch and args.resume: first_epoch_start = time.time() message = job_name + ' d_end' send_signal.send(args.node, 10002, message) elif epoch == starting_epoch: first_epoch_start = time.time() if epoch == starting_epoch: # send signal to indicate checkpoint is qualified message = job_name + ' ckpt_qual' send_signal.send(args.node, 10002, message) def on_epoch_end(self, epoch, logs=None): if epoch == starting_epoch: first_epoch_time = int(time.time() - first_epoch_start) message = job_name + ' 1st_epoch ' + str(first_epoch_time) send_signal.send(args.node, 10002, message) progress = round((epoch+1) / round(total_epochs/2), 2) message = job_name + ' completion ' + str(progress) send_signal.send(args.node, 10002, message) my_callback = PrintEpoch() callbacks = [tensorboard_callback, my_callback] #[checkpoint, lr_reducer, lr_scheduler, tensorboard_callback] # Run training model.fit(x_train, y_train, batch_size=batch_size, epochs=round(total_epochs/2), validation_data=(x_test, y_test), shuffle=True, callbacks=callbacks, initial_epoch=starting_epoch, verbose=1 ) # Score trained model. scores = model.evaluate(x_test, y_test, verbose=1) print('Test loss:', scores[0]) print('Test accuracy:', scores[1]) # send signal to indicate job has finished message = job_name + ' finish' send_signal.send(args.node, 10002, message)
32.936709
118
0.691135
from __future__ import print_function import keras from keras.layers import Dense, Conv2D, BatchNormalization, Activation from keras.layers import AveragePooling2D, Input, Flatten from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras.callbacks import ReduceLROnPlateau, TensorBoard from keras.preprocessing.image import ImageDataGenerator from keras.regularizers import l2 from keras import backend as K from keras.models import Model from keras.datasets import cifar10 from keras.applications.resnet import ResNet50, ResNet101, ResNet152 from keras import models, layers, optimizers from datetime import datetime import tensorflow as tf import numpy as np import os import pdb import sys import argparse import time import signal import glob import json import send_signal parser = argparse.ArgumentParser(description='Tensorflow Cifar10 Training') parser.add_argument('--tc', metavar='TESTCASE', type=str, help='specific testcase name') parser.add_argument('--resume', dest='resume', action='store_true', help='if True, resume training from a checkpoint') parser.add_argument('--gpu_num', metavar='GPU_NUMBER', type=str, help='select which gpu to use') parser.add_argument('--node', metavar='HOST_NODE', type=str, help='node of the host (scheduler)') parser.set_defaults(resume=False) args = parser.parse_args() os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu_num batch_size = 32 args_lr = 0.0014 args_model = 'resnet101' epoch_begin_time = 0 job_name = sys.argv[0].split('.')[0] save_files = '/scratch/li.baol/checkpoint_final4/' + job_name + '*' total_epochs = 36 starting_epoch = 0 pid = os.getpid() message = job_name + ' pid ' + str(pid) send_signal.send(args.node, 10002, message) if args.resume: save_file = glob.glob(save_files)[0] starting_epoch = int(save_file.split('/')[4].split('.')[0].split('_')[-1]) data_augmentation = True num_classes = 10 subtract_pixel_mean = True n = 3 model_type = args.tc (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 if subtract_pixel_mean: x_train_mean = np.mean(x_train, axis=0) x_train -= x_train_mean x_test -= x_train_mean print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print('y_train shape:', y_train.shape) y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) if args.resume: print('resume from checkpoint') message = job_name + ' b_end' send_signal.send(args.node, 10002, message) model = keras.models.load_model(save_file) message = job_name + ' c_end' send_signal.send(args.node, 10002, message) else: print('train from start') model = models.Sequential() if '50' in args_model: base_model = ResNet50(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '101' in args_model: base_model = ResNet101(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) elif '152' in args_model: base_model = ResNet152(weights=None, include_top=False, input_shape=(32, 32, 3), pooling=None) model.add(base_model) model.add(layers.Flatten()) model.add(layers.Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=args_lr), metrics=['accuracy']) print(model_type) current_epoch = 0
true
true
f717e184728b5d47b6b0a24c1fd6cd16b391b36a
35,865
py
Python
pycromanager/zmq.py
ilyasdc/pycro-manager
5f0153e8a90104eb8715348c6eb22c4d8fdee477
[ "BSD-3-Clause" ]
null
null
null
pycromanager/zmq.py
ilyasdc/pycro-manager
5f0153e8a90104eb8715348c6eb22c4d8fdee477
[ "BSD-3-Clause" ]
null
null
null
pycromanager/zmq.py
ilyasdc/pycro-manager
5f0153e8a90104eb8715348c6eb22c4d8fdee477
[ "BSD-3-Clause" ]
null
null
null
import json import re import time import typing import warnings import inspect import numpy as np import zmq from weakref import WeakSet import threading import copy import sys from threading import Lock class DataSocket: """ Wrapper for ZMQ socket that sends and recieves dictionaries Includes ZMQ client, push, and pull sockets """ def __init__(self, context, port, type, debug=False, ip_address="127.0.0.1"): # request reply socket self._socket = context.socket(type) self._debug = debug # store these as wekrefs so that circular refs dont prevent garbage collection self._java_objects = set() self._port = port self._close_lock = Lock() self._closed = False if type == zmq.PUSH: if debug: print("binding {}".format(port)) self._socket.bind("tcp://{}:{}".format(ip_address, port)) else: if debug: print("connecting {}".format(port)) self._socket.connect("tcp://{}:{}".format(ip_address, port)) def _register_java_object(self, object): self._java_objects.add(object) def _convert_np_to_python(self, d): """ recursively search dictionary and convert any values from numpy floats/ints to python floats/ints so they can be json serialized :return: """ if type(d) != dict: return for k, v in d.items(): if isinstance(v, dict): self._convert_np_to_python(v) elif type(v) == list: for e in v: self._convert_np_to_python(e) elif np.issubdtype(type(v), np.floating): d[k] = float(v) elif np.issubdtype(type(v), np.integer): d[k] = int(v) def _make_array_identifier(self, entry): """ make a string to replace bytes data or numpy array in message, which encode data type if numpy """ # make up a random 32 bit int as the identifier # TODO: change to simple counting identifier = np.random.randint(-(2 ** 31), 2 ** 31 - 1, 1, dtype=np.int32)[0] # '@{some_number}_{bytes_per_pixel}' # if its a numpy array, include bytes per pixel, otherwise just interpret it as raw byts # TODO : I thinkg its always raw binary and the argument deserialization types handles conversion to java arrays # This definitely could use some cleanup and simplification. Probably best to encode the data type here and remove # argument deserialization types return identifier, "@" + str(int(identifier)) + "_" + str( 0 if isinstance(entry, bytes) else entry.dtype.itemsize ) def _remove_bytes(self, bytes_data, structure): if isinstance(structure, list): for i, entry in enumerate(structure): if isinstance(entry, bytes) or isinstance(entry, np.ndarray): int_id, str_id = self._make_array_identifier(entry) structure[i] = str_id bytes_data.append((int_id, entry)) elif isinstance(entry, list) or isinstance(entry, dict): self._remove_bytes(bytes_data, entry) elif isinstance(structure, dict): for key in structure.keys(): entry = structure[key] if isinstance(entry, bytes) or isinstance(entry, np.ndarray): int_id, str_id = self._make_array_identifier(entry) structure[key] = str_id bytes_data.append((int_id, entry)) elif isinstance(entry, list) or isinstance(entry, dict): self._remove_bytes(bytes_data, structure[key]) def send(self, message, timeout=0): if message is None: message = {} # make sure any np types convert to python types so they can be json serialized self._convert_np_to_python(message) # Send binary data in seperate messages so it doesnt need to be json serialized bytes_data = [] self._remove_bytes(bytes_data, message) message_string = json.dumps(message) if self._debug: print("DEBUG, sending: {}".format(message)) # convert keys to byte array key_vals = [(identifier.tobytes(), value) for identifier, value in bytes_data] message_parts = [bytes(message_string, "iso-8859-1")] + [ item for keyval in key_vals for item in keyval ] if timeout == 0: self._socket.send_multipart(message_parts) else: start = time.time() while 1000 * (time.time() - start) < timeout: try: self._socket.send_multipart(message_parts, flags=zmq.NOBLOCK) return True except zmq.ZMQError: pass # ignore, keep trying return False def _replace_bytes(self, dict_or_list, hash, value): """ Replace placeholders for byte arrays in JSON message with their actual values """ if isinstance(dict_or_list, dict): for key in dict_or_list: if isinstance(dict_or_list[key], str) and "@" in dict_or_list[key]: hash_in_message = int( dict_or_list[key].split("@")[1], 16 ) # interpret hex hash string if hash == hash_in_message: dict_or_list[key] = value return elif isinstance(dict_or_list[key], list) or isinstance(dict_or_list[key], dict): self._replace_bytes(dict_or_list[key], hash, value) elif isinstance(dict_or_list, list): for i, entry in enumerate(dict_or_list): if isinstance(entry, str) and "@" in dict_or_list[entry]: hash_in_message = int(entry.split("@")[1], 16) # interpret hex hash string if hash == hash_in_message: dict_or_list[i] = value return elif isinstance(entry, list) or isinstance(entry, dict): self._replace_bytes(entry, hash, value) def receive(self, timeout=0): if timeout == 0: reply = self._socket.recv_multipart() else: start = time.time() reply = None while 1000 * (time.time() - start) < timeout: try: reply = self._socket.recv_multipart(flags=zmq.NOBLOCK) if reply is not None: break except zmq.ZMQError: pass # ignore, keep trying if reply is None: return reply message = json.loads(reply[0].decode("iso-8859-1")) # replace any byte data placeholders with the byte data itself for i in np.arange(1, len(reply), 2): # messages come in pairs: first is hash, second it byte data identity_hash = int.from_bytes(reply[i], byteorder=sys.byteorder) value = reply[i + 1] self._replace_bytes(message, identity_hash, value) if self._debug: print("DEBUG, recieved: {}".format(message)) self._check_exception(message) return message def _check_exception(self, response): if "type" in response and response["type"] == "exception": raise Exception(response["value"]) def __del__(self): self.close() # make sure it closes properly def close(self): with self._close_lock: if not self._closed: for java_object in self._java_objects: java_object._close() del java_object #potentially redundant, trying to fix closing race condition self._java_objects = None self._socket.close() while not self._socket.closed: time.sleep(0.01) self._socket = None if self._debug: print('closed socket {}'.format(self._port)) self._closed = True class Bridge: """ Create an object which acts as a client to a corresponding server (running in a Java process). This enables construction and interaction with arbitrary java objects. Each bridge object should be run using a context manager (i.e. `with Bridge() as b:`) or bridge.close() should be explicitly called when finished """ DEFAULT_PORT = 4827 DEFAULT_TIMEOUT = 500 _EXPECTED_ZMQ_SERVER_VERSION = "4.2.0" thread_local = threading.local() def __new__(cls, *args, **kwargs): """ Only one instance of Bridge per a thread """ port = kwargs.get('port', Bridge.DEFAULT_PORT) if hasattr(Bridge.thread_local, "bridge") and Bridge.thread_local.bridge is not None and port in Bridge.thread_local.bridge: Bridge.thread_local.bridge_count[port] += 1 return Bridge.thread_local.bridge[port] else: if (not hasattr(Bridge.thread_local, "bridge_count")) or Bridge.thread_local.bridge_count is None: Bridge.thread_local.bridge_count = {} Bridge.thread_local.bridge_count[port] = 1 return super(Bridge, cls).__new__(cls) def __init__( self, port: int=DEFAULT_PORT, convert_camel_case: bool=True, debug: bool=False, ip_address: str="127.0.0.1", timeout: int=DEFAULT_TIMEOUT ): """ Parameters ---------- port : int The port on which the bridge operates convert_camel_case : bool If True, methods for Java objects that are passed across the bridge will have their names converted from camel case to underscores. i.e. class.methodName() becomes class.method_name() debug : bool If True print helpful stuff for debugging """ self._ip_address = ip_address self._port = port self._closed = False if not hasattr(self, "_context"): Bridge._context = zmq.Context() # if hasattr(self.thread_local, "bridge") and port in self.thread_local.bridge: # return ### What was this supposed to do? if not hasattr(Bridge.thread_local, "bridge") or Bridge.thread_local.bridge is None: Bridge.thread_local.bridge = {} Bridge.thread_local.bridge[port] = self # cache a thread-local version of the bridge self._convert_camel_case = convert_camel_case self._debug = debug self._timeout = timeout self._master_socket = DataSocket( self._context, port, zmq.REQ, debug=debug, ip_address=self._ip_address ) self._master_socket.send({"command": "connect", "debug": debug}) self._class_factory = _JavaClassFactory() reply_json = self._master_socket.receive(timeout=timeout) if reply_json is None: raise TimeoutError( f"Socket timed out after {timeout} milliseconds. Is Micro-Manager running and is the ZMQ server on {port} option enabled?" ) if reply_json["type"] == "exception": raise Exception(reply_json["message"]) if "version" not in reply_json: reply_json["version"] = "2.0.0" # before version was added if reply_json["version"] != self._EXPECTED_ZMQ_SERVER_VERSION: warnings.warn( "Version mistmatch between Java ZMQ server and Python client. " "\nJava ZMQ server version: {}\nPython client expected version: {}" "\n To fix, update to BOTH latest pycromanager and latest micro-manager nightly build".format( reply_json["version"], self._EXPECTED_ZMQ_SERVER_VERSION ) ) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def close(self): Bridge.thread_local.bridge_count[self._port] -= 1 if Bridge.thread_local.bridge_count[self._port] == 0: del Bridge.thread_local.bridge_count[self._port] del Bridge.thread_local.bridge[self._port] self._master_socket.close() self._master_socket = None self._closed = True if len(Bridge.thread_local.bridge) == 0: Bridge.thread_local.bridge = None Bridge.thread_local.bridge_count = None def get_class(self, serialized_object) -> typing.Type["JavaObjectShadow"]: return self._class_factory.create( serialized_object, convert_camel_case=self._convert_camel_case ) def construct_java_object(self, classpath: str, new_socket: bool=False, args: list=None): """ Create a new instance of a an object on the Java side. Returns a Python "Shadow" of the object, which behaves just like the object on the Java side (i.e. same methods, fields). Methods of the object can be inferred at runtime using iPython autocomplete Parameters ---------- classpath : str Full classpath of the java object new_socket : bool If True, will create new java object on a new port so that blocking calls will not interfere with the bridges master port args : list list of arguments to the constructor, if applicable Returns ------- Python "Shadow" to the Java object """ if args is None: args = [] # classpath_minus_class = '.'.join(classpath.split('.')[:-1]) # query the server for constructors matching this classpath message = {"command": "get-constructors", "classpath": classpath} self._master_socket.send(message) constructors = self._master_socket.receive()["api"] methods_with_name = [m for m in constructors if m["name"] == classpath] if len(methods_with_name) == 0: raise Exception("No valid java constructor found with classpath {}".format(classpath)) valid_method_spec, deserialize_types = _check_method_args(methods_with_name, args) # Calling a constructor, rather than getting return from method message = { "command": "constructor", "classpath": classpath, "argument-types": valid_method_spec["arguments"], "argument-deserialization-types": deserialize_types, "arguments": _package_arguments(valid_method_spec, args), } if new_socket: message["new-port"] = True self._master_socket.send(message) serialized_object = self._master_socket.receive() if new_socket: socket = DataSocket( self._context, serialized_object["port"], zmq.REQ, ip_address=self._ip_address ) else: socket = self._master_socket return self._class_factory.create( serialized_object, convert_camel_case=self._convert_camel_case )(socket=socket, serialized_object=serialized_object, bridge=self) def get_java_class(self, classpath: str, new_socket: bool=False): """ Get an an object corresponding to a java class, for example to be used when calling static methods on the class directly Parameters ---------- classpath : str Full classpath of the java object new_socket : bool If True, will create new java object on a new port so that blocking calls will not interfere with the bridges master port Returns ------- Python "Shadow" to the Java class """ message = {"command": "get-class", "classpath": classpath} if new_socket: message["new-port"] = True self._master_socket.send(message) serialized_object = self._master_socket.receive() if new_socket: socket = DataSocket( self._context, serialized_object["port"], zmq.REQ, ip_address=self._ip_address ) else: socket = self._master_socket return self._class_factory.create( serialized_object, convert_camel_case=self._convert_camel_case )(socket=socket, serialized_object=serialized_object, bridge=self) def _connect_push(self, port): """ Connect a push socket on the given port :param port: :return: """ return DataSocket( self._context, port, zmq.PUSH, debug=self._debug, ip_address=self._ip_address ) def _connect_pull(self, port): """ Connect to a pull socket on the given port :param port: :return: """ return DataSocket( self._context, port, zmq.PULL, debug=self._debug, ip_address=self._ip_address ) def get_magellan(self): """ return an instance of the Micro-Magellan API """ return self.construct_java_object("org.micromanager.magellan.api.MagellanAPI") def get_core(self): """ Connect to CMMCore and return object that has its methods :return: Python "shadow" object for micromanager core """ if hasattr(self, "core"): return getattr(self, "core") self.core = self.construct_java_object("mmcorej.CMMCore") return self.core def get_studio(self): """ return an instance of the Studio object that provides access to micro-manager Java APIs """ return self.construct_java_object("org.micromanager.Studio") class _JavaClassFactory: """ This class is responsible for generating subclasses of JavaObjectShadow. Each generated class is kept in a `dict`. If a given class has already been generate once it will be returns from the cache rather than re-generating it. """ def __init__(self): self.classes = {} def create( self, serialized_obj: dict, convert_camel_case: bool = True ) -> typing.Type["JavaObjectShadow"]: """Create a class (or return a class from the cache) based on the contents of `serialized_object` message.""" if serialized_obj["class"] in self.classes.keys(): # Return a cached class return self.classes[serialized_obj["class"]] else: # Generate a new class since it wasn't found in the cache. _java_class: str = serialized_obj["class"] python_class_name_translation = _java_class.replace( ".", "_" ) # Having periods in the name would be problematic. _interfaces = serialized_obj["interfaces"] static_attributes = {"_java_class": _java_class, "_interfaces": _interfaces} fields = {} # Create a dict of field names with getter and setter funcs. for field in serialized_obj["fields"]: fields[field] = property( fget=lambda instance, Field=field: instance._access_field(Field), fset=lambda instance, val, Field=field: instance._set_field(Field, val), ) methods = {} # Create a dict of methods for the class by name. methodSpecs = serialized_obj["api"] method_names = set([m["name"] for m in methodSpecs]) # parse method descriptions to make python stand ins for method_name in method_names: params, methods_with_name, method_name_modified = _parse_arg_names( methodSpecs, method_name, convert_camel_case ) return_type = methods_with_name[0]["return-type"] fn = lambda instance, *args, signatures_list=tuple( methods_with_name ): instance._translate_call(signatures_list, args, static = _java_class == 'java.lang.Class') fn.__name__ = method_name_modified fn.__doc__ = "{}.{}: A dynamically generated Java method.".format( _java_class, method_name_modified ) sig = inspect.signature(fn) params = [ inspect.Parameter("self", inspect.Parameter.POSITIONAL_ONLY) ] + params # Add `self` as the first argument. return_type = ( _JAVA_TYPE_NAME_TO_PYTHON_TYPE[return_type] if return_type in _JAVA_TYPE_NAME_TO_PYTHON_TYPE else return_type ) fn.__signature__ = sig.replace(parameters=params, return_annotation=return_type) methods[method_name_modified] = fn newclass = type( # Dynamically create a class to shadow a java class. python_class_name_translation, # Name, based on the original java name (JavaObjectShadow,), # Inheritance { "__init__": lambda instance, socket, serialized_object, bridge: JavaObjectShadow.__init__( instance, socket, serialized_object, bridge ), **static_attributes, **fields, **methods, }, ) self.classes[_java_class] = newclass return newclass class JavaObjectShadow: """ Generic class for serving as a python interface for a java class using a zmq server backend """ _interfaces = ( None # Subclasses should fill these out. This class should never be directly instantiated. ) _java_class = None def __init__(self, socket, serialized_object, bridge: Bridge): self._socket = socket self._hash_code = serialized_object["hash-code"] self._bridge = bridge # register objects with bridge so it can tell Java side to release them before socket shuts down socket._register_java_object(self) self._closed = False # atexit.register(self._close) self._close_lock = Lock() def _close(self): with self._close_lock: if self._closed: return if not hasattr(self, "_hash_code"): return # constructor didnt properly finish, nothing to clean up on java side message = {"command": "destructor", "hash-code": self._hash_code} if self._bridge._debug: "closing: {}".format(self) self._socket.send(message) reply_json = self._socket.receive() if reply_json["type"] == "exception": raise Exception(reply_json["value"]) self._closed = True def __del__(self): """ Tell java side this object is garbage collected so it can do the same if needed """ self._close() def _access_field(self, name): """ Return a python version of the field with a given name :return: """ message = {"command": "get-field", "hash-code": self._hash_code, "name": name} self._socket.send(message) return self._deserialize(self._socket.receive()) def _set_field(self, name, value): """ Return a python version of the field with a given name :return: """ message = { "command": "set-field", "hash-code": self._hash_code, "name": name, "value": _serialize_arg(value), } self._socket.send(message) reply = self._deserialize(self._socket.receive()) def _translate_call(self, method_specs, fn_args: tuple, static: bool): """ Translate to appropriate Java method, call it, and return converted python version of its result Parameters ---------- args : args[0] is list of dictionaries of possible method specifications kwargs : hold possible polymorphic args, or none """ # args that are none are placeholders to allow for polymorphism and not considered part of the spec # fn_args = [a for a in fn_args if a is not None] valid_method_spec, deserialize_types = _check_method_args(method_specs, fn_args) # args are good, make call through socket, casting the correct type if needed (e.g. int to float) message = { "command": "run-method", "static": static, "hash-code": self._hash_code, "name": valid_method_spec["name"], "argument-types": valid_method_spec["arguments"], "argument-deserialization-types": deserialize_types, } message["arguments"] = _package_arguments(valid_method_spec, fn_args) if self._bridge._closed: raise Exception('The Bridge used to create this has been closed. Are you trying to call it outside of a "with" block?') self._socket.send(message) recieved = self._socket.receive() return self._deserialize(recieved) def _deserialize(self, json_return): """ method_spec : info about the method that called it reply : bytes that represents return Returns ------- An appropriate python type of the converted value """ if json_return["type"] == "exception": raise Exception(json_return["value"]) elif json_return["type"] == "null": return None elif json_return["type"] == "primitive": return json_return["value"] elif json_return["type"] == "string": return json_return["value"] elif json_return["type"] == "list": return [self._deserialize(obj) for obj in json_return["value"]] elif json_return["type"] == "object": if json_return["class"] == "JSONObject": return json.loads(json_return["value"]) else: raise Exception("Unrecognized return class") elif json_return["type"] == "unserialized-object": # inherit socket from parent object return self._bridge.get_class(json_return)( socket=self._socket, serialized_object=json_return, bridge=self._bridge ) else: return deserialize_array(json_return) def deserialize_array(json_return): """ Convert a serialized java array to the appropriate numpy type Parameters ---------- json_return """ if json_return["type"] in ["byte-array", "int-array", "short-array", "float-array"]: decoded = json_return["value"] if json_return["type"] == "byte-array": return np.frombuffer(decoded, dtype="=u1").copy() elif json_return["type"] == "double-array": return np.frombuffer(decoded, dtype="=f8").copy() elif json_return["type"] == "int-array": return np.frombuffer(decoded, dtype="=u4").copy() elif json_return["type"] == "short-array": return np.frombuffer(decoded, dtype="=u2").copy() elif json_return["type"] == "float-array": return np.frombuffer(decoded, dtype="=f4").copy() def _package_arguments(valid_method_spec, fn_args): """ Serialize function arguments and also include description of their Java types Parameters ---------- valid_method_spec: fn_args : """ arguments = [] for arg_type, arg_val in zip(valid_method_spec["arguments"], fn_args): if isinstance(arg_val, JavaObjectShadow): arguments.append(_serialize_arg(arg_val)) elif _JAVA_TYPE_NAME_TO_PYTHON_TYPE[arg_type] is object: arguments.append(_serialize_arg(arg_val)) elif arg_val is None: arguments.append(_serialize_arg(arg_val)) elif isinstance(arg_val, np.ndarray): arguments.append(_serialize_arg(arg_val)) else: arguments.append(_serialize_arg(_JAVA_TYPE_NAME_TO_PYTHON_TYPE[arg_type](arg_val))) return arguments def _serialize_arg(arg): if arg is None: return None if type(arg) in [bool, str, int, float]: return arg # json handles serialization elif type(arg) == np.ndarray: return arg.tobytes() elif isinstance(arg, JavaObjectShadow): return {"hash-code": arg._hash_code} else: raise Exception("Unknown argumetn type") def _check_single_method_spec(method_spec, fn_args): """ Check if a single method specificiation is compatible with the arguments the function recieved Parameters ---------- method_spec : fn_args : """ if len(method_spec["arguments"]) != len(fn_args): return False for arg_java_type, arg_val in zip(method_spec["arguments"], fn_args): if isinstance(arg_val, JavaObjectShadow): if arg_java_type not in arg_val._interfaces: # check that it shadows object of the correct type return False elif type(arg_val) == np.ndarray: # For ND Arrays, need to make sure data types match if ( arg_java_type != "java.lang.Object" and arg_val.dtype.type != _JAVA_ARRAY_TYPE_NUMPY_DTYPE[arg_java_type] ): return False elif not any( [ isinstance(arg_val, acceptable_type) for acceptable_type in _JAVA_TYPE_NAME_TO_CASTABLE_PYTHON_TYPE[arg_java_type] ] ) and not ( arg_val is None and arg_java_type in _JAVA_NON_PRIMITIVES ): # could be null if its an object # if a type that gets converted return False return True def _check_method_args(method_specs, fn_args): """ Compare python arguments to java arguments to find correct function to call Parameters ---------- method_specs : fn_args : Returns ------- one of the method_specs that is valid """ valid_method_spec = None for method_spec in method_specs: if _check_single_method_spec(method_spec, fn_args): valid_method_spec = method_spec break if valid_method_spec is None: raise Exception( "Incorrect arguments. \nExpected {} \nGot {}".format( " or ".join([", ".join(method_spec["arguments"]) for method_spec in method_specs]), ", ".join([str(type(a)) for a in fn_args]), ) ) # subclass NDArrays to the appropriate data type so they dont get incorrectly reconstructed as objects valid_method_spec = copy.deepcopy(valid_method_spec) deserialize_types = [] for java_arg_class, python_arg_val in zip(valid_method_spec["arguments"], fn_args): if isinstance(python_arg_val, np.ndarray): deserialize_types.append( [ ja for ja, npdt in zip( _JAVA_ARRAY_TYPE_NUMPY_DTYPE.keys(), _JAVA_ARRAY_TYPE_NUMPY_DTYPE.values() ) if python_arg_val.dtype.type == npdt ][0] ) else: deserialize_types.append(java_arg_class) return valid_method_spec, deserialize_types def _parse_arg_names(methods, method_name, convert_camel_case): method_name_modified = ( _camel_case_2_snake_case(method_name) if convert_camel_case else method_name ) # all methods with this name and different argument lists methods_with_name = [m for m in methods if m["name"] == method_name] min_required_args = ( 0 if len(methods_with_name) == 1 and len(methods_with_name[0]["arguments"]) == 0 else min([len(m["arguments"]) for m in methods_with_name]) ) # sort with largest number of args last so lambda at end gets max num args methods_with_name.sort(key=lambda val: len(val["arguments"])) method = methods_with_name[-1] # We only need to evaluate the overload with the most arguments. params = [] unique_argument_names = [] for arg_index, typ in enumerate(method["arguments"]): hint = _CLASS_NAME_MAPPING[typ] if typ in _CLASS_NAME_MAPPING else "object" python_type = ( _JAVA_TYPE_NAME_TO_PYTHON_TYPE[typ] if typ in _JAVA_TYPE_NAME_TO_PYTHON_TYPE else typ ) if hint in unique_argument_names: # append numbers to end so arg hints have unique names i = 1 while hint + str(i) in unique_argument_names: i += 1 arg_name = hint + str(i) else: arg_name = hint unique_argument_names.append(arg_name) # this is how overloading is handled for now, by making default arguments as none, but # it might be better to explicitly compare argument types if arg_index >= min_required_args: default_arg_value = None else: default_arg_value = inspect.Parameter.empty params.append( inspect.Parameter( name=arg_name, kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, default=default_arg_value, annotation=python_type, ) ) return params, methods_with_name, method_name_modified def _camel_case_2_snake_case(name): s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() # Used for generating type hints in arguments _CLASS_NAME_MAPPING = { "byte[]": "uint8array", "double[]": "float64_array", "int[]": "uint32_array", "short[]": "int16_array", "char[]": "int16_array", "float[]": "int16_array", "long[]": "int16_array", "java.lang.String": "string", "boolean": "boolean", "double": "float", "float": "float", "int": "int", "long": "int", "short": "int", "void": "void", } #Used for deserializing java arrarys into numpy arrays _JAVA_ARRAY_TYPE_NUMPY_DTYPE = { "boolean[]": np.bool, "byte[]": np.uint8, "short[]": np.int16, "char[]": np.uint16, "float[]": np.float32, "double[]": np.float64, "int[]": np.int32, "long[]": np.int64, } #used for figuring our which java methods to call and if python args match _JAVA_TYPE_NAME_TO_PYTHON_TYPE = { "boolean": bool, "double": float, "float": float, #maybe could make these more specific to array type? "byte[]": np.ndarray, "short[]": np.ndarray, "double[]": np.ndarray, "int[]": np.ndarray, "char[]": np.ndarray, "float[]": np.ndarray, "long[]": np.ndarray, "int": int, "java.lang.String": str, "long": int, "short": int, "char": int, "byte": int, "void": None, "java.lang.Object": object, } # type conversions that allow for autocasting _JAVA_TYPE_NAME_TO_CASTABLE_PYTHON_TYPE = { "boolean": {bool}, "byte[]": {np.ndarray}, "double": {float, int}, "double[]": {np.ndarray}, "float": {float}, "int": {int}, "int[]": {np.ndarray}, "java.lang.String": {str}, "long": {int}, "short": {int}, "char": {int}, "byte": {int}, "void": {None}, "java.lang.Object": {object}, } _JAVA_NON_PRIMITIVES = {"byte[]", "double[]", "int[]", "short[]", "char[]", "long[]", "boolean[]", "java.lang.String", "java.lang.Object"} if __name__ == "__main__": # Test basic bridge operations import traceback b = Bridge() try: s = b.get_studio() except: traceback.print_exc() try: c = b.get_core() except: traceback.print_exc() a = 1
39.026115
138
0.597992
import json import re import time import typing import warnings import inspect import numpy as np import zmq from weakref import WeakSet import threading import copy import sys from threading import Lock class DataSocket: def __init__(self, context, port, type, debug=False, ip_address="127.0.0.1"): self._socket = context.socket(type) self._debug = debug self._java_objects = set() self._port = port self._close_lock = Lock() self._closed = False if type == zmq.PUSH: if debug: print("binding {}".format(port)) self._socket.bind("tcp://{}:{}".format(ip_address, port)) else: if debug: print("connecting {}".format(port)) self._socket.connect("tcp://{}:{}".format(ip_address, port)) def _register_java_object(self, object): self._java_objects.add(object) def _convert_np_to_python(self, d): if type(d) != dict: return for k, v in d.items(): if isinstance(v, dict): self._convert_np_to_python(v) elif type(v) == list: for e in v: self._convert_np_to_python(e) elif np.issubdtype(type(v), np.floating): d[k] = float(v) elif np.issubdtype(type(v), np.integer): d[k] = int(v) def _make_array_identifier(self, entry): identifier = np.random.randint(-(2 ** 31), 2 ** 31 - 1, 1, dtype=np.int32)[0] return identifier, "@" + str(int(identifier)) + "_" + str( 0 if isinstance(entry, bytes) else entry.dtype.itemsize ) def _remove_bytes(self, bytes_data, structure): if isinstance(structure, list): for i, entry in enumerate(structure): if isinstance(entry, bytes) or isinstance(entry, np.ndarray): int_id, str_id = self._make_array_identifier(entry) structure[i] = str_id bytes_data.append((int_id, entry)) elif isinstance(entry, list) or isinstance(entry, dict): self._remove_bytes(bytes_data, entry) elif isinstance(structure, dict): for key in structure.keys(): entry = structure[key] if isinstance(entry, bytes) or isinstance(entry, np.ndarray): int_id, str_id = self._make_array_identifier(entry) structure[key] = str_id bytes_data.append((int_id, entry)) elif isinstance(entry, list) or isinstance(entry, dict): self._remove_bytes(bytes_data, structure[key]) def send(self, message, timeout=0): if message is None: message = {} self._convert_np_to_python(message) bytes_data = [] self._remove_bytes(bytes_data, message) message_string = json.dumps(message) if self._debug: print("DEBUG, sending: {}".format(message)) key_vals = [(identifier.tobytes(), value) for identifier, value in bytes_data] message_parts = [bytes(message_string, "iso-8859-1")] + [ item for keyval in key_vals for item in keyval ] if timeout == 0: self._socket.send_multipart(message_parts) else: start = time.time() while 1000 * (time.time() - start) < timeout: try: self._socket.send_multipart(message_parts, flags=zmq.NOBLOCK) return True except zmq.ZMQError: pass return False def _replace_bytes(self, dict_or_list, hash, value): if isinstance(dict_or_list, dict): for key in dict_or_list: if isinstance(dict_or_list[key], str) and "@" in dict_or_list[key]: hash_in_message = int( dict_or_list[key].split("@")[1], 16 ) if hash == hash_in_message: dict_or_list[key] = value return elif isinstance(dict_or_list[key], list) or isinstance(dict_or_list[key], dict): self._replace_bytes(dict_or_list[key], hash, value) elif isinstance(dict_or_list, list): for i, entry in enumerate(dict_or_list): if isinstance(entry, str) and "@" in dict_or_list[entry]: hash_in_message = int(entry.split("@")[1], 16) if hash == hash_in_message: dict_or_list[i] = value return elif isinstance(entry, list) or isinstance(entry, dict): self._replace_bytes(entry, hash, value) def receive(self, timeout=0): if timeout == 0: reply = self._socket.recv_multipart() else: start = time.time() reply = None while 1000 * (time.time() - start) < timeout: try: reply = self._socket.recv_multipart(flags=zmq.NOBLOCK) if reply is not None: break except zmq.ZMQError: pass if reply is None: return reply message = json.loads(reply[0].decode("iso-8859-1")) for i in np.arange(1, len(reply), 2): identity_hash = int.from_bytes(reply[i], byteorder=sys.byteorder) value = reply[i + 1] self._replace_bytes(message, identity_hash, value) if self._debug: print("DEBUG, recieved: {}".format(message)) self._check_exception(message) return message def _check_exception(self, response): if "type" in response and response["type"] == "exception": raise Exception(response["value"]) def __del__(self): self.close() def close(self): with self._close_lock: if not self._closed: for java_object in self._java_objects: java_object._close() del java_object self._java_objects = None self._socket.close() while not self._socket.closed: time.sleep(0.01) self._socket = None if self._debug: print('closed socket {}'.format(self._port)) self._closed = True class Bridge: DEFAULT_PORT = 4827 DEFAULT_TIMEOUT = 500 _EXPECTED_ZMQ_SERVER_VERSION = "4.2.0" thread_local = threading.local() def __new__(cls, *args, **kwargs): port = kwargs.get('port', Bridge.DEFAULT_PORT) if hasattr(Bridge.thread_local, "bridge") and Bridge.thread_local.bridge is not None and port in Bridge.thread_local.bridge: Bridge.thread_local.bridge_count[port] += 1 return Bridge.thread_local.bridge[port] else: if (not hasattr(Bridge.thread_local, "bridge_count")) or Bridge.thread_local.bridge_count is None: Bridge.thread_local.bridge_count = {} Bridge.thread_local.bridge_count[port] = 1 return super(Bridge, cls).__new__(cls) def __init__( self, port: int=DEFAULT_PORT, convert_camel_case: bool=True, debug: bool=False, ip_address: str="127.0.0.1", timeout: int=DEFAULT_TIMEOUT ): self._ip_address = ip_address self._port = port self._closed = False if not hasattr(self, "_context"): Bridge._context = zmq.Context() Bridge.thread_local.bridge = {} Bridge.thread_local.bridge[port] = self self._convert_camel_case = convert_camel_case self._debug = debug self._timeout = timeout self._master_socket = DataSocket( self._context, port, zmq.REQ, debug=debug, ip_address=self._ip_address ) self._master_socket.send({"command": "connect", "debug": debug}) self._class_factory = _JavaClassFactory() reply_json = self._master_socket.receive(timeout=timeout) if reply_json is None: raise TimeoutError( f"Socket timed out after {timeout} milliseconds. Is Micro-Manager running and is the ZMQ server on {port} option enabled?" ) if reply_json["type"] == "exception": raise Exception(reply_json["message"]) if "version" not in reply_json: reply_json["version"] = "2.0.0" if reply_json["version"] != self._EXPECTED_ZMQ_SERVER_VERSION: warnings.warn( "Version mistmatch between Java ZMQ server and Python client. " "\nJava ZMQ server version: {}\nPython client expected version: {}" "\n To fix, update to BOTH latest pycromanager and latest micro-manager nightly build".format( reply_json["version"], self._EXPECTED_ZMQ_SERVER_VERSION ) ) def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.close() def close(self): Bridge.thread_local.bridge_count[self._port] -= 1 if Bridge.thread_local.bridge_count[self._port] == 0: del Bridge.thread_local.bridge_count[self._port] del Bridge.thread_local.bridge[self._port] self._master_socket.close() self._master_socket = None self._closed = True if len(Bridge.thread_local.bridge) == 0: Bridge.thread_local.bridge = None Bridge.thread_local.bridge_count = None def get_class(self, serialized_object) -> typing.Type["JavaObjectShadow"]: return self._class_factory.create( serialized_object, convert_camel_case=self._convert_camel_case ) def construct_java_object(self, classpath: str, new_socket: bool=False, args: list=None): if args is None: args = [] message = {"command": "get-constructors", "classpath": classpath} self._master_socket.send(message) constructors = self._master_socket.receive()["api"] methods_with_name = [m for m in constructors if m["name"] == classpath] if len(methods_with_name) == 0: raise Exception("No valid java constructor found with classpath {}".format(classpath)) valid_method_spec, deserialize_types = _check_method_args(methods_with_name, args) message = { "command": "constructor", "classpath": classpath, "argument-types": valid_method_spec["arguments"], "argument-deserialization-types": deserialize_types, "arguments": _package_arguments(valid_method_spec, args), } if new_socket: message["new-port"] = True self._master_socket.send(message) serialized_object = self._master_socket.receive() if new_socket: socket = DataSocket( self._context, serialized_object["port"], zmq.REQ, ip_address=self._ip_address ) else: socket = self._master_socket return self._class_factory.create( serialized_object, convert_camel_case=self._convert_camel_case )(socket=socket, serialized_object=serialized_object, bridge=self) def get_java_class(self, classpath: str, new_socket: bool=False): message = {"command": "get-class", "classpath": classpath} if new_socket: message["new-port"] = True self._master_socket.send(message) serialized_object = self._master_socket.receive() if new_socket: socket = DataSocket( self._context, serialized_object["port"], zmq.REQ, ip_address=self._ip_address ) else: socket = self._master_socket return self._class_factory.create( serialized_object, convert_camel_case=self._convert_camel_case )(socket=socket, serialized_object=serialized_object, bridge=self) def _connect_push(self, port): return DataSocket( self._context, port, zmq.PUSH, debug=self._debug, ip_address=self._ip_address ) def _connect_pull(self, port): return DataSocket( self._context, port, zmq.PULL, debug=self._debug, ip_address=self._ip_address ) def get_magellan(self): return self.construct_java_object("org.micromanager.magellan.api.MagellanAPI") def get_core(self): if hasattr(self, "core"): return getattr(self, "core") self.core = self.construct_java_object("mmcorej.CMMCore") return self.core def get_studio(self): return self.construct_java_object("org.micromanager.Studio") class _JavaClassFactory: def __init__(self): self.classes = {} def create( self, serialized_obj: dict, convert_camel_case: bool = True ) -> typing.Type["JavaObjectShadow"]: if serialized_obj["class"] in self.classes.keys(): return self.classes[serialized_obj["class"]] else: _java_class: str = serialized_obj["class"] python_class_name_translation = _java_class.replace( ".", "_" ) # Having periods in the name would be problematic. _interfaces = serialized_obj["interfaces"] static_attributes = {"_java_class": _java_class, "_interfaces": _interfaces} fields = {} # Create a dict of field names with getter and setter funcs. for field in serialized_obj["fields"]: fields[field] = property( fget=lambda instance, Field=field: instance._access_field(Field), fset=lambda instance, val, Field=field: instance._set_field(Field, val), ) methods = {} # Create a dict of methods for the class by name. methodSpecs = serialized_obj["api"] method_names = set([m["name"] for m in methodSpecs]) # parse method descriptions to make python stand ins for method_name in method_names: params, methods_with_name, method_name_modified = _parse_arg_names( methodSpecs, method_name, convert_camel_case ) return_type = methods_with_name[0]["return-type"] fn = lambda instance, *args, signatures_list=tuple( methods_with_name ): instance._translate_call(signatures_list, args, static = _java_class == 'java.lang.Class') fn.__name__ = method_name_modified fn.__doc__ = "{}.{}: A dynamically generated Java method.".format( _java_class, method_name_modified ) sig = inspect.signature(fn) params = [ inspect.Parameter("self", inspect.Parameter.POSITIONAL_ONLY) ] + params # Add `self` as the first argument. return_type = ( _JAVA_TYPE_NAME_TO_PYTHON_TYPE[return_type] if return_type in _JAVA_TYPE_NAME_TO_PYTHON_TYPE else return_type ) fn.__signature__ = sig.replace(parameters=params, return_annotation=return_type) methods[method_name_modified] = fn newclass = type( # Dynamically create a class to shadow a java class. python_class_name_translation, # Name, based on the original java name (JavaObjectShadow,), # Inheritance { "__init__": lambda instance, socket, serialized_object, bridge: JavaObjectShadow.__init__( instance, socket, serialized_object, bridge ), **static_attributes, **fields, **methods, }, ) self.classes[_java_class] = newclass return newclass class JavaObjectShadow: _interfaces = ( None # Subclasses should fill these out. This class should never be directly instantiated. ) _java_class = None def __init__(self, socket, serialized_object, bridge: Bridge): self._socket = socket self._hash_code = serialized_object["hash-code"] self._bridge = bridge # register objects with bridge so it can tell Java side to release them before socket shuts down socket._register_java_object(self) self._closed = False # atexit.register(self._close) self._close_lock = Lock() def _close(self): with self._close_lock: if self._closed: return if not hasattr(self, "_hash_code"): return # constructor didnt properly finish, nothing to clean up on java side message = {"command": "destructor", "hash-code": self._hash_code} if self._bridge._debug: "closing: {}".format(self) self._socket.send(message) reply_json = self._socket.receive() if reply_json["type"] == "exception": raise Exception(reply_json["value"]) self._closed = True def __del__(self): self._close() def _access_field(self, name): message = {"command": "get-field", "hash-code": self._hash_code, "name": name} self._socket.send(message) return self._deserialize(self._socket.receive()) def _set_field(self, name, value): message = { "command": "set-field", "hash-code": self._hash_code, "name": name, "value": _serialize_arg(value), } self._socket.send(message) reply = self._deserialize(self._socket.receive()) def _translate_call(self, method_specs, fn_args: tuple, static: bool): # args that are none are placeholders to allow for polymorphism and not considered part of the spec # fn_args = [a for a in fn_args if a is not None] valid_method_spec, deserialize_types = _check_method_args(method_specs, fn_args) # args are good, make call through socket, casting the correct type if needed (e.g. int to float) message = { "command": "run-method", "static": static, "hash-code": self._hash_code, "name": valid_method_spec["name"], "argument-types": valid_method_spec["arguments"], "argument-deserialization-types": deserialize_types, } message["arguments"] = _package_arguments(valid_method_spec, fn_args) if self._bridge._closed: raise Exception('The Bridge used to create this has been closed. Are you trying to call it outside of a "with" block?') self._socket.send(message) recieved = self._socket.receive() return self._deserialize(recieved) def _deserialize(self, json_return): if json_return["type"] == "exception": raise Exception(json_return["value"]) elif json_return["type"] == "null": return None elif json_return["type"] == "primitive": return json_return["value"] elif json_return["type"] == "string": return json_return["value"] elif json_return["type"] == "list": return [self._deserialize(obj) for obj in json_return["value"]] elif json_return["type"] == "object": if json_return["class"] == "JSONObject": return json.loads(json_return["value"]) else: raise Exception("Unrecognized return class") elif json_return["type"] == "unserialized-object": # inherit socket from parent object return self._bridge.get_class(json_return)( socket=self._socket, serialized_object=json_return, bridge=self._bridge ) else: return deserialize_array(json_return) def deserialize_array(json_return): if json_return["type"] in ["byte-array", "int-array", "short-array", "float-array"]: decoded = json_return["value"] if json_return["type"] == "byte-array": return np.frombuffer(decoded, dtype="=u1").copy() elif json_return["type"] == "double-array": return np.frombuffer(decoded, dtype="=f8").copy() elif json_return["type"] == "int-array": return np.frombuffer(decoded, dtype="=u4").copy() elif json_return["type"] == "short-array": return np.frombuffer(decoded, dtype="=u2").copy() elif json_return["type"] == "float-array": return np.frombuffer(decoded, dtype="=f4").copy() def _package_arguments(valid_method_spec, fn_args): arguments = [] for arg_type, arg_val in zip(valid_method_spec["arguments"], fn_args): if isinstance(arg_val, JavaObjectShadow): arguments.append(_serialize_arg(arg_val)) elif _JAVA_TYPE_NAME_TO_PYTHON_TYPE[arg_type] is object: arguments.append(_serialize_arg(arg_val)) elif arg_val is None: arguments.append(_serialize_arg(arg_val)) elif isinstance(arg_val, np.ndarray): arguments.append(_serialize_arg(arg_val)) else: arguments.append(_serialize_arg(_JAVA_TYPE_NAME_TO_PYTHON_TYPE[arg_type](arg_val))) return arguments def _serialize_arg(arg): if arg is None: return None if type(arg) in [bool, str, int, float]: return arg # json handles serialization elif type(arg) == np.ndarray: return arg.tobytes() elif isinstance(arg, JavaObjectShadow): return {"hash-code": arg._hash_code} else: raise Exception("Unknown argumetn type") def _check_single_method_spec(method_spec, fn_args): if len(method_spec["arguments"]) != len(fn_args): return False for arg_java_type, arg_val in zip(method_spec["arguments"], fn_args): if isinstance(arg_val, JavaObjectShadow): if arg_java_type not in arg_val._interfaces: # check that it shadows object of the correct type return False elif type(arg_val) == np.ndarray: # For ND Arrays, need to make sure data types match if ( arg_java_type != "java.lang.Object" and arg_val.dtype.type != _JAVA_ARRAY_TYPE_NUMPY_DTYPE[arg_java_type] ): return False elif not any( [ isinstance(arg_val, acceptable_type) for acceptable_type in _JAVA_TYPE_NAME_TO_CASTABLE_PYTHON_TYPE[arg_java_type] ] ) and not ( arg_val is None and arg_java_type in _JAVA_NON_PRIMITIVES ): # could be null if its an object # if a type that gets converted return False return True def _check_method_args(method_specs, fn_args): valid_method_spec = None for method_spec in method_specs: if _check_single_method_spec(method_spec, fn_args): valid_method_spec = method_spec break if valid_method_spec is None: raise Exception( "Incorrect arguments. \nExpected {} \nGot {}".format( " or ".join([", ".join(method_spec["arguments"]) for method_spec in method_specs]), ", ".join([str(type(a)) for a in fn_args]), ) ) # subclass NDArrays to the appropriate data type so they dont get incorrectly reconstructed as objects valid_method_spec = copy.deepcopy(valid_method_spec) deserialize_types = [] for java_arg_class, python_arg_val in zip(valid_method_spec["arguments"], fn_args): if isinstance(python_arg_val, np.ndarray): deserialize_types.append( [ ja for ja, npdt in zip( _JAVA_ARRAY_TYPE_NUMPY_DTYPE.keys(), _JAVA_ARRAY_TYPE_NUMPY_DTYPE.values() ) if python_arg_val.dtype.type == npdt ][0] ) else: deserialize_types.append(java_arg_class) return valid_method_spec, deserialize_types def _parse_arg_names(methods, method_name, convert_camel_case): method_name_modified = ( _camel_case_2_snake_case(method_name) if convert_camel_case else method_name ) # all methods with this name and different argument lists methods_with_name = [m for m in methods if m["name"] == method_name] min_required_args = ( 0 if len(methods_with_name) == 1 and len(methods_with_name[0]["arguments"]) == 0 else min([len(m["arguments"]) for m in methods_with_name]) ) # sort with largest number of args last so lambda at end gets max num args methods_with_name.sort(key=lambda val: len(val["arguments"])) method = methods_with_name[-1] # We only need to evaluate the overload with the most arguments. params = [] unique_argument_names = [] for arg_index, typ in enumerate(method["arguments"]): hint = _CLASS_NAME_MAPPING[typ] if typ in _CLASS_NAME_MAPPING else "object" python_type = ( _JAVA_TYPE_NAME_TO_PYTHON_TYPE[typ] if typ in _JAVA_TYPE_NAME_TO_PYTHON_TYPE else typ ) if hint in unique_argument_names: # append numbers to end so arg hints have unique names i = 1 while hint + str(i) in unique_argument_names: i += 1 arg_name = hint + str(i) else: arg_name = hint unique_argument_names.append(arg_name) # this is how overloading is handled for now, by making default arguments as none, but # it might be better to explicitly compare argument types if arg_index >= min_required_args: default_arg_value = None else: default_arg_value = inspect.Parameter.empty params.append( inspect.Parameter( name=arg_name, kind=inspect.Parameter.POSITIONAL_OR_KEYWORD, default=default_arg_value, annotation=python_type, ) ) return params, methods_with_name, method_name_modified def _camel_case_2_snake_case(name): s1 = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", s1).lower() # Used for generating type hints in arguments _CLASS_NAME_MAPPING = { "byte[]": "uint8array", "double[]": "float64_array", "int[]": "uint32_array", "short[]": "int16_array", "char[]": "int16_array", "float[]": "int16_array", "long[]": "int16_array", "java.lang.String": "string", "boolean": "boolean", "double": "float", "float": "float", "int": "int", "long": "int", "short": "int", "void": "void", } #Used for deserializing java arrarys into numpy arrays _JAVA_ARRAY_TYPE_NUMPY_DTYPE = { "boolean[]": np.bool, "byte[]": np.uint8, "short[]": np.int16, "char[]": np.uint16, "float[]": np.float32, "double[]": np.float64, "int[]": np.int32, "long[]": np.int64, } #used for figuring our which java methods to call and if python args match _JAVA_TYPE_NAME_TO_PYTHON_TYPE = { "boolean": bool, "double": float, "float": float, #maybe could make these more specific to array type? "byte[]": np.ndarray, "short[]": np.ndarray, "double[]": np.ndarray, "int[]": np.ndarray, "char[]": np.ndarray, "float[]": np.ndarray, "long[]": np.ndarray, "int": int, "java.lang.String": str, "long": int, "short": int, "char": int, "byte": int, "void": None, "java.lang.Object": object, } # type conversions that allow for autocasting _JAVA_TYPE_NAME_TO_CASTABLE_PYTHON_TYPE = { "boolean": {bool}, "byte[]": {np.ndarray}, "double": {float, int}, "double[]": {np.ndarray}, "float": {float}, "int": {int}, "int[]": {np.ndarray}, "java.lang.String": {str}, "long": {int}, "short": {int}, "char": {int}, "byte": {int}, "void": {None}, "java.lang.Object": {object}, } _JAVA_NON_PRIMITIVES = {"byte[]", "double[]", "int[]", "short[]", "char[]", "long[]", "boolean[]", "java.lang.String", "java.lang.Object"} if __name__ == "__main__": # Test basic bridge operations import traceback b = Bridge() try: s = b.get_studio() except: traceback.print_exc() try: c = b.get_core() except: traceback.print_exc() a = 1
true
true
f717e197e7a1baf6c61fc8fc8503678d23f39768
2,360
py
Python
app2.py
GFDRR/mobility_app
27285a0691fabcc2cede6772a04bb98d29e636da
[ "MIT" ]
null
null
null
app2.py
GFDRR/mobility_app
27285a0691fabcc2cede6772a04bb98d29e636da
[ "MIT" ]
null
null
null
app2.py
GFDRR/mobility_app
27285a0691fabcc2cede6772a04bb98d29e636da
[ "MIT" ]
null
null
null
import streamlit as st import pandas as pd import seaborn as sns import pylab as plt import datetime as dt #import geopandas as gpd df = pd.read_csv('/Users/nicholasjones/Desktop/code/wbg-location-data/notebooks/nick/df_india_may9.csv') df.ds = pd.to_datetime(df.ds) df = df.set_index('ds') df['datetime'] = df.index.copy() ## Header st.title('Mobility trends of states in India') st.write('This app visualizes mobility trends for states in India, based on the Facebook movement range maps data.') default_states = ['Gujarat','NCT of Delhi','West Bengal','Rajasthan','Tamil Nadu','Maharashtra','Bihar'] states = st.multiselect('Select a state',df.polygon_name.unique()) # Line plot colors = 'rgbycmkrgbycmkrgbycmkrgbycmk' f, ax = plt.subplots(figsize = [9,9]) for background_state in df.polygon_name.unique(): sns.lineplot(x=df.index[df.polygon_name == background_state], y=df["all_day_bing_tiles_visited_relative_change"][df.polygon_name == background_state], color = 'grey', alpha = 0.3, linewidth = 1) for n, state in enumerate(list(states)): col = colors[n] ax = sns.lineplot(x=df.index[df.polygon_name == state], y="all_day_bing_tiles_visited_relative_change", color = col,data=df[df.polygon_name == state], linewidth = 4) plt.axvline(dt.datetime(2020, 3, 22),linestyle='--', alpha = 0.5) plt.axvline(dt.datetime(2020, 3, 24),linestyle='--', alpha = 0.5) plt.title('Percent users remaining in home grid cell all day', fontsize = 16); st.write(f) df ## Map gdf = gpd.read_file('/Users/nicholasjones/Desktop/code/data/FB/India/gadm36_IND_shp/gadm36_IND_1.shp') gdf = gdf[['NAME_1','geometry']] income_data = pd.read_csv('/Users/nicholasjones/Desktop/code/data/FB/India/NSDP_per_capita.csv',names=['state','nsdp_USD']) income_data = income_data.dropna() income_data.nsdp_USD = [x[4:] for x in income_data.nsdp_USD] income_data.nsdp_USD = income_data.nsdp_USD.str.replace(',','') income_data.nsdp_USD = income_data.nsdp_USD.astype(int) gdf = gpd.GeoDataFrame(df.merge(gdf, left_on='polygon_name', right_on = 'NAME_1')) gdf = gdf[['NAME_1','all_day_bing_tiles_visited_relative_change','all_day_ratio_single_tile_users','geometry','datetime']] gdf.head(1) mydate = st.selectbox('Select a date',['2020-03-05','2020-03-22','2020-04-29']) f = gdf[gdf.datetime == mydate].plot(column = 'all_day_bing_tiles_visited_relative_change') st.pyplot()
41.403509
198
0.747034
import streamlit as st import pandas as pd import seaborn as sns import pylab as plt import datetime as dt df = pd.read_csv('/Users/nicholasjones/Desktop/code/wbg-location-data/notebooks/nick/df_india_may9.csv') df.ds = pd.to_datetime(df.ds) df = df.set_index('ds') df['datetime'] = df.index.copy() le('Mobility trends of states in India') st.write('This app visualizes mobility trends for states in India, based on the Facebook movement range maps data.') default_states = ['Gujarat','NCT of Delhi','West Bengal','Rajasthan','Tamil Nadu','Maharashtra','Bihar'] states = st.multiselect('Select a state',df.polygon_name.unique()) colors = 'rgbycmkrgbycmkrgbycmkrgbycmk' f, ax = plt.subplots(figsize = [9,9]) for background_state in df.polygon_name.unique(): sns.lineplot(x=df.index[df.polygon_name == background_state], y=df["all_day_bing_tiles_visited_relative_change"][df.polygon_name == background_state], color = 'grey', alpha = 0.3, linewidth = 1) for n, state in enumerate(list(states)): col = colors[n] ax = sns.lineplot(x=df.index[df.polygon_name == state], y="all_day_bing_tiles_visited_relative_change", color = col,data=df[df.polygon_name == state], linewidth = 4) plt.axvline(dt.datetime(2020, 3, 22),linestyle='--', alpha = 0.5) plt.axvline(dt.datetime(2020, 3, 24),linestyle='--', alpha = 0.5) plt.title('Percent users remaining in home grid cell all day', fontsize = 16); st.write(f) df = gpd.read_file('/Users/nicholasjones/Desktop/code/data/FB/India/gadm36_IND_shp/gadm36_IND_1.shp') gdf = gdf[['NAME_1','geometry']] income_data = pd.read_csv('/Users/nicholasjones/Desktop/code/data/FB/India/NSDP_per_capita.csv',names=['state','nsdp_USD']) income_data = income_data.dropna() income_data.nsdp_USD = [x[4:] for x in income_data.nsdp_USD] income_data.nsdp_USD = income_data.nsdp_USD.str.replace(',','') income_data.nsdp_USD = income_data.nsdp_USD.astype(int) gdf = gpd.GeoDataFrame(df.merge(gdf, left_on='polygon_name', right_on = 'NAME_1')) gdf = gdf[['NAME_1','all_day_bing_tiles_visited_relative_change','all_day_ratio_single_tile_users','geometry','datetime']] gdf.head(1) mydate = st.selectbox('Select a date',['2020-03-05','2020-03-22','2020-04-29']) f = gdf[gdf.datetime == mydate].plot(column = 'all_day_bing_tiles_visited_relative_change') st.pyplot()
true
true
f717e1a9e531045800c5e7a2a00ed7b1dc29c82c
2,569
py
Python
sdk/python/pulumi_azure_nextgen/media/v20180601preview/get_asset_encryption_key.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_nextgen/media/v20180601preview/get_asset_encryption_key.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_nextgen/media/v20180601preview/get_asset_encryption_key.py
test-wiz-sec/pulumi-azure-nextgen
20a695af0d020b34b0f1c336e1b69702755174cc
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'GetAssetEncryptionKeyResult', 'AwaitableGetAssetEncryptionKeyResult', 'get_asset_encryption_key', ] @pulumi.output_type class GetAssetEncryptionKeyResult: """ The Asset Storage encryption key. """ def __init__(__self__, storage_encryption_key=None): if storage_encryption_key and not isinstance(storage_encryption_key, str): raise TypeError("Expected argument 'storage_encryption_key' to be a str") pulumi.set(__self__, "storage_encryption_key", storage_encryption_key) @property @pulumi.getter(name="storageEncryptionKey") def storage_encryption_key(self) -> Optional[str]: """ The Asset storage encryption key. """ return pulumi.get(self, "storage_encryption_key") class AwaitableGetAssetEncryptionKeyResult(GetAssetEncryptionKeyResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAssetEncryptionKeyResult( storage_encryption_key=self.storage_encryption_key) def get_asset_encryption_key(account_name: Optional[str] = None, asset_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAssetEncryptionKeyResult: """ Use this data source to access information about an existing resource. :param str account_name: The Media Services account name. :param str asset_name: The Asset name. :param str resource_group_name: The name of the resource group within the Azure subscription. """ __args__ = dict() __args__['accountName'] = account_name __args__['assetName'] = asset_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:media/v20180601preview:getAssetEncryptionKey', __args__, opts=opts, typ=GetAssetEncryptionKeyResult).value return AwaitableGetAssetEncryptionKeyResult( storage_encryption_key=__ret__.storage_encryption_key)
37.779412
157
0.709225
import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'GetAssetEncryptionKeyResult', 'AwaitableGetAssetEncryptionKeyResult', 'get_asset_encryption_key', ] @pulumi.output_type class GetAssetEncryptionKeyResult: def __init__(__self__, storage_encryption_key=None): if storage_encryption_key and not isinstance(storage_encryption_key, str): raise TypeError("Expected argument 'storage_encryption_key' to be a str") pulumi.set(__self__, "storage_encryption_key", storage_encryption_key) @property @pulumi.getter(name="storageEncryptionKey") def storage_encryption_key(self) -> Optional[str]: return pulumi.get(self, "storage_encryption_key") class AwaitableGetAssetEncryptionKeyResult(GetAssetEncryptionKeyResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetAssetEncryptionKeyResult( storage_encryption_key=self.storage_encryption_key) def get_asset_encryption_key(account_name: Optional[str] = None, asset_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetAssetEncryptionKeyResult: __args__ = dict() __args__['accountName'] = account_name __args__['assetName'] = asset_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:media/v20180601preview:getAssetEncryptionKey', __args__, opts=opts, typ=GetAssetEncryptionKeyResult).value return AwaitableGetAssetEncryptionKeyResult( storage_encryption_key=__ret__.storage_encryption_key)
true
true
f717e1e1dd47ba1807b3c7b1e5175c4d151b536b
447
py
Python
students/k3340/practical_works/Voronov Alexey/jango1/project_first_app/migrations/0002_person_vehicles.py
voronoff2803/ITMO_ICT_WebProgramming_2020
c59d8b2cdefe8b821049a2716733070983d08ad2
[ "MIT" ]
null
null
null
students/k3340/practical_works/Voronov Alexey/jango1/project_first_app/migrations/0002_person_vehicles.py
voronoff2803/ITMO_ICT_WebProgramming_2020
c59d8b2cdefe8b821049a2716733070983d08ad2
[ "MIT" ]
null
null
null
students/k3340/practical_works/Voronov Alexey/jango1/project_first_app/migrations/0002_person_vehicles.py
voronoff2803/ITMO_ICT_WebProgramming_2020
c59d8b2cdefe8b821049a2716733070983d08ad2
[ "MIT" ]
null
null
null
# Generated by Django 3.0.5 on 2020-04-03 20:19 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('project_first_app', '0001_initial'), ] operations = [ migrations.AddField( model_name='person', name='vehicles', field=models.ManyToManyField(through='project_first_app.Ownership', to='project_first_app.Vehicle'), ), ]
23.526316
112
0.63311
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('project_first_app', '0001_initial'), ] operations = [ migrations.AddField( model_name='person', name='vehicles', field=models.ManyToManyField(through='project_first_app.Ownership', to='project_first_app.Vehicle'), ), ]
true
true
f717e28a218983e53bb05193c90627d19da33fc9
110
py
Python
CodeWars/7 Kyu/Average Array.py
anubhab-code/Competitive-Programming
de28cb7d44044b9e7d8bdb475da61e37c018ac35
[ "MIT" ]
null
null
null
CodeWars/7 Kyu/Average Array.py
anubhab-code/Competitive-Programming
de28cb7d44044b9e7d8bdb475da61e37c018ac35
[ "MIT" ]
null
null
null
CodeWars/7 Kyu/Average Array.py
anubhab-code/Competitive-Programming
de28cb7d44044b9e7d8bdb475da61e37c018ac35
[ "MIT" ]
null
null
null
def avg_array(arrs): x=[] for i in zip(*arrs): x.append(sum(i)/len(arrs)) return x
18.333333
34
0.5
def avg_array(arrs): x=[] for i in zip(*arrs): x.append(sum(i)/len(arrs)) return x
true
true
f717e456d5d1b3e37be07a8321b8d5d0fadafa26
10,526
py
Python
kubernetes/client/models/v1_persistent_volume_claim_spec.py
philipp-sontag-by/python
51c481692ab0d9c71b9dd96342bfa93b721b029d
[ "Apache-2.0" ]
1
2022-02-22T23:10:55.000Z
2022-02-22T23:10:55.000Z
kubernetes/client/models/v1_persistent_volume_claim_spec.py
philipp-sontag-by/python
51c481692ab0d9c71b9dd96342bfa93b721b029d
[ "Apache-2.0" ]
6
2021-09-13T19:03:02.000Z
2022-03-16T18:56:42.000Z
kubernetes/client/models/v1_persistent_volume_claim_spec.py
philipp-sontag-by/python
51c481692ab0d9c71b9dd96342bfa93b721b029d
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 """ Kubernetes No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: release-1.23 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from kubernetes.client.configuration import Configuration class V1PersistentVolumeClaimSpec(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'access_modes': 'list[str]', 'data_source': 'V1TypedLocalObjectReference', 'data_source_ref': 'V1TypedLocalObjectReference', 'resources': 'V1ResourceRequirements', 'selector': 'V1LabelSelector', 'storage_class_name': 'str', 'volume_mode': 'str', 'volume_name': 'str' } attribute_map = { 'access_modes': 'accessModes', 'data_source': 'dataSource', 'data_source_ref': 'dataSourceRef', 'resources': 'resources', 'selector': 'selector', 'storage_class_name': 'storageClassName', 'volume_mode': 'volumeMode', 'volume_name': 'volumeName' } def __init__(self, access_modes=None, data_source=None, data_source_ref=None, resources=None, selector=None, storage_class_name=None, volume_mode=None, volume_name=None, local_vars_configuration=None): # noqa: E501 """V1PersistentVolumeClaimSpec - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._access_modes = None self._data_source = None self._data_source_ref = None self._resources = None self._selector = None self._storage_class_name = None self._volume_mode = None self._volume_name = None self.discriminator = None if access_modes is not None: self.access_modes = access_modes if data_source is not None: self.data_source = data_source if data_source_ref is not None: self.data_source_ref = data_source_ref if resources is not None: self.resources = resources if selector is not None: self.selector = selector if storage_class_name is not None: self.storage_class_name = storage_class_name if volume_mode is not None: self.volume_mode = volume_mode if volume_name is not None: self.volume_name = volume_name @property def access_modes(self): """Gets the access_modes of this V1PersistentVolumeClaimSpec. # noqa: E501 AccessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1 # noqa: E501 :return: The access_modes of this V1PersistentVolumeClaimSpec. # noqa: E501 :rtype: list[str] """ return self._access_modes @access_modes.setter def access_modes(self, access_modes): """Sets the access_modes of this V1PersistentVolumeClaimSpec. AccessModes contains the desired access modes the volume should have. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#access-modes-1 # noqa: E501 :param access_modes: The access_modes of this V1PersistentVolumeClaimSpec. # noqa: E501 :type: list[str] """ self._access_modes = access_modes @property def data_source(self): """Gets the data_source of this V1PersistentVolumeClaimSpec. # noqa: E501 :return: The data_source of this V1PersistentVolumeClaimSpec. # noqa: E501 :rtype: V1TypedLocalObjectReference """ return self._data_source @data_source.setter def data_source(self, data_source): """Sets the data_source of this V1PersistentVolumeClaimSpec. :param data_source: The data_source of this V1PersistentVolumeClaimSpec. # noqa: E501 :type: V1TypedLocalObjectReference """ self._data_source = data_source @property def data_source_ref(self): """Gets the data_source_ref of this V1PersistentVolumeClaimSpec. # noqa: E501 :return: The data_source_ref of this V1PersistentVolumeClaimSpec. # noqa: E501 :rtype: V1TypedLocalObjectReference """ return self._data_source_ref @data_source_ref.setter def data_source_ref(self, data_source_ref): """Sets the data_source_ref of this V1PersistentVolumeClaimSpec. :param data_source_ref: The data_source_ref of this V1PersistentVolumeClaimSpec. # noqa: E501 :type: V1TypedLocalObjectReference """ self._data_source_ref = data_source_ref @property def resources(self): """Gets the resources of this V1PersistentVolumeClaimSpec. # noqa: E501 :return: The resources of this V1PersistentVolumeClaimSpec. # noqa: E501 :rtype: V1ResourceRequirements """ return self._resources @resources.setter def resources(self, resources): """Sets the resources of this V1PersistentVolumeClaimSpec. :param resources: The resources of this V1PersistentVolumeClaimSpec. # noqa: E501 :type: V1ResourceRequirements """ self._resources = resources @property def selector(self): """Gets the selector of this V1PersistentVolumeClaimSpec. # noqa: E501 :return: The selector of this V1PersistentVolumeClaimSpec. # noqa: E501 :rtype: V1LabelSelector """ return self._selector @selector.setter def selector(self, selector): """Sets the selector of this V1PersistentVolumeClaimSpec. :param selector: The selector of this V1PersistentVolumeClaimSpec. # noqa: E501 :type: V1LabelSelector """ self._selector = selector @property def storage_class_name(self): """Gets the storage_class_name of this V1PersistentVolumeClaimSpec. # noqa: E501 Name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1 # noqa: E501 :return: The storage_class_name of this V1PersistentVolumeClaimSpec. # noqa: E501 :rtype: str """ return self._storage_class_name @storage_class_name.setter def storage_class_name(self, storage_class_name): """Sets the storage_class_name of this V1PersistentVolumeClaimSpec. Name of the StorageClass required by the claim. More info: https://kubernetes.io/docs/concepts/storage/persistent-volumes#class-1 # noqa: E501 :param storage_class_name: The storage_class_name of this V1PersistentVolumeClaimSpec. # noqa: E501 :type: str """ self._storage_class_name = storage_class_name @property def volume_mode(self): """Gets the volume_mode of this V1PersistentVolumeClaimSpec. # noqa: E501 volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec. # noqa: E501 :return: The volume_mode of this V1PersistentVolumeClaimSpec. # noqa: E501 :rtype: str """ return self._volume_mode @volume_mode.setter def volume_mode(self, volume_mode): """Sets the volume_mode of this V1PersistentVolumeClaimSpec. volumeMode defines what type of volume is required by the claim. Value of Filesystem is implied when not included in claim spec. # noqa: E501 :param volume_mode: The volume_mode of this V1PersistentVolumeClaimSpec. # noqa: E501 :type: str """ self._volume_mode = volume_mode @property def volume_name(self): """Gets the volume_name of this V1PersistentVolumeClaimSpec. # noqa: E501 VolumeName is the binding reference to the PersistentVolume backing this claim. # noqa: E501 :return: The volume_name of this V1PersistentVolumeClaimSpec. # noqa: E501 :rtype: str """ return self._volume_name @volume_name.setter def volume_name(self, volume_name): """Sets the volume_name of this V1PersistentVolumeClaimSpec. VolumeName is the binding reference to the PersistentVolume backing this claim. # noqa: E501 :param volume_name: The volume_name of this V1PersistentVolumeClaimSpec. # noqa: E501 :type: str """ self._volume_name = volume_name def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, V1PersistentVolumeClaimSpec): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, V1PersistentVolumeClaimSpec): return True return self.to_dict() != other.to_dict()
33.845659
219
0.652005
import pprint import re import six from kubernetes.client.configuration import Configuration class V1PersistentVolumeClaimSpec(object): openapi_types = { 'access_modes': 'list[str]', 'data_source': 'V1TypedLocalObjectReference', 'data_source_ref': 'V1TypedLocalObjectReference', 'resources': 'V1ResourceRequirements', 'selector': 'V1LabelSelector', 'storage_class_name': 'str', 'volume_mode': 'str', 'volume_name': 'str' } attribute_map = { 'access_modes': 'accessModes', 'data_source': 'dataSource', 'data_source_ref': 'dataSourceRef', 'resources': 'resources', 'selector': 'selector', 'storage_class_name': 'storageClassName', 'volume_mode': 'volumeMode', 'volume_name': 'volumeName' } def __init__(self, access_modes=None, data_source=None, data_source_ref=None, resources=None, selector=None, storage_class_name=None, volume_mode=None, volume_name=None, local_vars_configuration=None): if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._access_modes = None self._data_source = None self._data_source_ref = None self._resources = None self._selector = None self._storage_class_name = None self._volume_mode = None self._volume_name = None self.discriminator = None if access_modes is not None: self.access_modes = access_modes if data_source is not None: self.data_source = data_source if data_source_ref is not None: self.data_source_ref = data_source_ref if resources is not None: self.resources = resources if selector is not None: self.selector = selector if storage_class_name is not None: self.storage_class_name = storage_class_name if volume_mode is not None: self.volume_mode = volume_mode if volume_name is not None: self.volume_name = volume_name @property def access_modes(self): return self._access_modes @access_modes.setter def access_modes(self, access_modes): self._access_modes = access_modes @property def data_source(self): return self._data_source @data_source.setter def data_source(self, data_source): self._data_source = data_source @property def data_source_ref(self): return self._data_source_ref @data_source_ref.setter def data_source_ref(self, data_source_ref): self._data_source_ref = data_source_ref @property def resources(self): return self._resources @resources.setter def resources(self, resources): self._resources = resources @property def selector(self): return self._selector @selector.setter def selector(self, selector): self._selector = selector @property def storage_class_name(self): return self._storage_class_name @storage_class_name.setter def storage_class_name(self, storage_class_name): self._storage_class_name = storage_class_name @property def volume_mode(self): return self._volume_mode @volume_mode.setter def volume_mode(self, volume_mode): self._volume_mode = volume_mode @property def volume_name(self): return self._volume_name @volume_name.setter def volume_name(self, volume_name): self._volume_name = volume_name def to_dict(self): result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): return pprint.pformat(self.to_dict()) def __repr__(self): return self.to_str() def __eq__(self, other): if not isinstance(other, V1PersistentVolumeClaimSpec): return False return self.to_dict() == other.to_dict() def __ne__(self, other): if not isinstance(other, V1PersistentVolumeClaimSpec): return True return self.to_dict() != other.to_dict()
true
true
f717e46b95455cc849096cc7da73943ce2b7377f
2,104
py
Python
tests/test_searchalgo.py
Intelecy/chocolate
0ba4f6f0130eab851d32d5534241c8cac3f6666e
[ "BSD-3-Clause" ]
105
2017-10-27T02:14:22.000Z
2022-01-13T12:57:05.000Z
tests/test_searchalgo.py
Intelecy/chocolate
0ba4f6f0130eab851d32d5534241c8cac3f6666e
[ "BSD-3-Clause" ]
31
2017-10-03T13:41:35.000Z
2021-08-20T21:01:29.000Z
tests/test_searchalgo.py
areeh/chocolate
5f946cb9daf42c3ab44508648917d46bc105c2fc
[ "BSD-3-Clause" ]
38
2017-10-05T20:19:42.000Z
2022-03-28T11:34:04.000Z
import unittest from unittest.mock import MagicMock from chocolate.space import * from chocolate.base import SearchAlgorithm class TestSearchAlgorithm(unittest.TestCase): def setUp(self): self.mock_conn = MagicMock(name="connection") def test_space_none_none(self): self.mock_conn.get_space.return_value = None self.assertRaises(RuntimeError, SearchAlgorithm, self.mock_conn, None) def test_space_not_equal_nowrite(self): s1 = Space({"a": uniform(1, 2)}) s2 = Space({"a": uniform(1, 3)}) self.mock_conn.get_space.return_value = s1 self.assertRaises(RuntimeError, SearchAlgorithm, self.mock_conn, s2) def test_space_not_equal_write(self): s1 = Space({"a": uniform(1, 2)}) s2 = Space({"a": uniform(1, 3)}) self.mock_conn.get_space.return_value = s1 algo = SearchAlgorithm(self.mock_conn, s2, clear_db=True) self.mock_conn.clear.assert_called_with() self.mock_conn.insert_space.assert_called_with(s2) self.assertEqual(algo.space, s2) def test_space_none_not_none(self): s1 = Space({"a": uniform(1, 2)}) self.mock_conn.get_space.return_value = None algo = SearchAlgorithm(self.mock_conn, s1) self.mock_conn.insert_space.assert_called_with(s1) self.assertEqual(algo.space, s1) def test_space_not_none_none(self): s1 = Space({"a": uniform(1, 2)}) self.mock_conn.get_space.return_value = s1 algo = SearchAlgorithm(self.mock_conn, None) self.assertEqual(algo.space, s1) def test_update_value(self): token = {"a": 0} algo = SearchAlgorithm(self.mock_conn, None) algo.update(token, 9.0) expected = {"_loss": 9.0} self.mock_conn.update_result.assert_called_with(token, expected) def test_update_mapping(self): token = {"a": 0} algo = SearchAlgorithm(self.mock_conn, None) algo.update(token, {"f1": 9.0}) expected = {"_loss_f1": 9.0} self.mock_conn.update_result.assert_called_with(token, expected)
30.941176
78
0.663023
import unittest from unittest.mock import MagicMock from chocolate.space import * from chocolate.base import SearchAlgorithm class TestSearchAlgorithm(unittest.TestCase): def setUp(self): self.mock_conn = MagicMock(name="connection") def test_space_none_none(self): self.mock_conn.get_space.return_value = None self.assertRaises(RuntimeError, SearchAlgorithm, self.mock_conn, None) def test_space_not_equal_nowrite(self): s1 = Space({"a": uniform(1, 2)}) s2 = Space({"a": uniform(1, 3)}) self.mock_conn.get_space.return_value = s1 self.assertRaises(RuntimeError, SearchAlgorithm, self.mock_conn, s2) def test_space_not_equal_write(self): s1 = Space({"a": uniform(1, 2)}) s2 = Space({"a": uniform(1, 3)}) self.mock_conn.get_space.return_value = s1 algo = SearchAlgorithm(self.mock_conn, s2, clear_db=True) self.mock_conn.clear.assert_called_with() self.mock_conn.insert_space.assert_called_with(s2) self.assertEqual(algo.space, s2) def test_space_none_not_none(self): s1 = Space({"a": uniform(1, 2)}) self.mock_conn.get_space.return_value = None algo = SearchAlgorithm(self.mock_conn, s1) self.mock_conn.insert_space.assert_called_with(s1) self.assertEqual(algo.space, s1) def test_space_not_none_none(self): s1 = Space({"a": uniform(1, 2)}) self.mock_conn.get_space.return_value = s1 algo = SearchAlgorithm(self.mock_conn, None) self.assertEqual(algo.space, s1) def test_update_value(self): token = {"a": 0} algo = SearchAlgorithm(self.mock_conn, None) algo.update(token, 9.0) expected = {"_loss": 9.0} self.mock_conn.update_result.assert_called_with(token, expected) def test_update_mapping(self): token = {"a": 0} algo = SearchAlgorithm(self.mock_conn, None) algo.update(token, {"f1": 9.0}) expected = {"_loss_f1": 9.0} self.mock_conn.update_result.assert_called_with(token, expected)
true
true
f717e481bf8d3b27429577d92a41047f92b8a9d4
185
py
Python
exam_retake/grocery_shop/project/deliveries/food.py
PetkoAndreev/Python-OOP
2cc3094940cdf078f0ee60be938e883f843766e4
[ "MIT" ]
1
2021-05-27T07:59:17.000Z
2021-05-27T07:59:17.000Z
exam_retake/grocery_shop/project/deliveries/food.py
PetkoAndreev/Python-OOP
2cc3094940cdf078f0ee60be938e883f843766e4
[ "MIT" ]
null
null
null
exam_retake/grocery_shop/project/deliveries/food.py
PetkoAndreev/Python-OOP
2cc3094940cdf078f0ee60be938e883f843766e4
[ "MIT" ]
null
null
null
from project.deliveries.product import Product class Food(Product): food_quantity: int = 15 def __init__(self, name: str): super().__init__(name, self.food_quantity)
20.555556
50
0.708108
from project.deliveries.product import Product class Food(Product): food_quantity: int = 15 def __init__(self, name: str): super().__init__(name, self.food_quantity)
true
true
f717e56f1c9229960dfeaed5d108ebdcab4bd8a6
3,760
py
Python
contrib/macdeploy/custom_dsstore.py
sqoin/xdisk
7f93d461b0168f11512a9dcfd9cf133122157544
[ "MIT" ]
null
null
null
contrib/macdeploy/custom_dsstore.py
sqoin/xdisk
7f93d461b0168f11512a9dcfd9cf133122157544
[ "MIT" ]
null
null
null
contrib/macdeploy/custom_dsstore.py
sqoin/xdisk
7f93d461b0168f11512a9dcfd9cf133122157544
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Copyright (c) 2013-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from __future__ import division,print_function,unicode_literals import biplist from ds_store import DSStore from mac_alias import Alias import sys output_file = sys.argv[1] package_name_ns = sys.argv[2] ds = DSStore.open(output_file, 'w+') ds['.']['bwsp'] = { 'ShowStatusBar': False, 'WindowBounds': b'{{300, 280}, {500, 343}}', 'ContainerShowSidebar': False, 'SidebarWidth': 0, 'ShowTabView': False, 'PreviewPaneVisibility': False, 'ShowToolbar': False, 'ShowSidebar': False, 'ShowPathbar': True } icvp = { 'gridOffsetX': 0.0, 'textSize': 12.0, 'viewOptionsVersion': 1, 'backgroundImageAlias': b'\x00\x00\x00\x00\x02\x1e\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x94\\\xb0H+\x00\x05\x00\x00\x00\x98\x0fbackground.tiff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\xd19\xb0\xf8\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\r\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b.background\x00\x00\x10\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x11\x00\x08\x00\x00\xd19\xb0\xf8\x00\x00\x00\x01\x00\x04\x00\x00\x00\x98\x00\x0e\x00 \x00\x0f\x00b\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00.\x00t\x00i\x00f\x00f\x00\x0f\x00\x02\x00\x00\x00\x12\x00\x1c/.background/background.tiff\x00\x14\x01\x06\x00\x00\x00\x00\x01\x06\x00\x02\x00\x00\x0cMacintosh HD\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x97\xab\xc3H+\x00\x00\x01\x88[\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02u\xab\x8d\xd1\x94\\\xb0devrddsk\xff\xff\xff\xff\x00\x00\t \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07bitcoin\x00\x00\x10\x00\x08\x00\x00\xce\x97\xab\xc3\x00\x00\x00\x11\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x01\x00\x14\x01\x88[\x88\x00\x16\xa9\t\x00\x08\xfaR\x00\x08\xfaQ\x00\x02d\x8e\x00\x0e\x00\x02\x00\x00\x00\x0f\x00\x1a\x00\x0c\x00M\x00a\x00c\x00i\x00n\x00t\x00o\x00s\x00h\x00 \x00H\x00D\x00\x13\x00\x01/\x00\x00\x15\x00\x02\x00\x14\xff\xff\x00\x00\xff\xff\x00\x00', 'backgroundColorBlue': 1.0, 'iconSize': 96.0, 'backgroundColorGreen': 1.0, 'arrangeBy': 'none', 'showIconPreview': True, 'gridSpacing': 100.0, 'gridOffsetY': 0.0, 'showItemInfo': False, 'labelOnBottom': True, 'backgroundType': 2, 'backgroundColorRed': 1.0 } alias = Alias.from_bytes(icvp['backgroundImageAlias']) alias.volume.name = package_name_ns alias.volume.posix_path = '/Volumes/' + package_name_ns alias.volume.disk_image_alias.target.filename = package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.carbon_path = 'Macintosh HD:Users:\x00xdiskuser:\x00Documents:\x00xdisk:\x00xdisk:\x00' + package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.posix_path = 'Users/xdiskuser/Documents/xdisk/xdisk/' + package_name_ns + '.temp.dmg' alias.target.carbon_path = package_name_ns + ':.background:\x00background.tiff' icvp['backgroundImageAlias'] = biplist.Data(alias.to_bytes()) ds['.']['icvp'] = icvp ds['.']['vSrn'] = ('long', 1) ds['Applications']['Iloc'] = (370, 156) ds['xdisk-Qt.app']['Iloc'] = (128, 156) ds.flush() ds.close()
61.639344
1,817
0.72633
from __future__ import division,print_function,unicode_literals import biplist from ds_store import DSStore from mac_alias import Alias import sys output_file = sys.argv[1] package_name_ns = sys.argv[2] ds = DSStore.open(output_file, 'w+') ds['.']['bwsp'] = { 'ShowStatusBar': False, 'WindowBounds': b'{{300, 280}, {500, 343}}', 'ContainerShowSidebar': False, 'SidebarWidth': 0, 'ShowTabView': False, 'PreviewPaneVisibility': False, 'ShowToolbar': False, 'ShowSidebar': False, 'ShowPathbar': True } icvp = { 'gridOffsetX': 0.0, 'textSize': 12.0, 'viewOptionsVersion': 1, 'backgroundImageAlias': b'\x00\x00\x00\x00\x02\x1e\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x94\\\xb0H+\x00\x05\x00\x00\x00\x98\x0fbackground.tiff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\xd19\xb0\xf8\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\r\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b.background\x00\x00\x10\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x11\x00\x08\x00\x00\xd19\xb0\xf8\x00\x00\x00\x01\x00\x04\x00\x00\x00\x98\x00\x0e\x00 \x00\x0f\x00b\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00.\x00t\x00i\x00f\x00f\x00\x0f\x00\x02\x00\x00\x00\x12\x00\x1c/.background/background.tiff\x00\x14\x01\x06\x00\x00\x00\x00\x01\x06\x00\x02\x00\x00\x0cMacintosh HD\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x97\xab\xc3H+\x00\x00\x01\x88[\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02u\xab\x8d\xd1\x94\\\xb0devrddsk\xff\xff\xff\xff\x00\x00\t \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07bitcoin\x00\x00\x10\x00\x08\x00\x00\xce\x97\xab\xc3\x00\x00\x00\x11\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x01\x00\x14\x01\x88[\x88\x00\x16\xa9\t\x00\x08\xfaR\x00\x08\xfaQ\x00\x02d\x8e\x00\x0e\x00\x02\x00\x00\x00\x0f\x00\x1a\x00\x0c\x00M\x00a\x00c\x00i\x00n\x00t\x00o\x00s\x00h\x00 \x00H\x00D\x00\x13\x00\x01/\x00\x00\x15\x00\x02\x00\x14\xff\xff\x00\x00\xff\xff\x00\x00', 'backgroundColorBlue': 1.0, 'iconSize': 96.0, 'backgroundColorGreen': 1.0, 'arrangeBy': 'none', 'showIconPreview': True, 'gridSpacing': 100.0, 'gridOffsetY': 0.0, 'showItemInfo': False, 'labelOnBottom': True, 'backgroundType': 2, 'backgroundColorRed': 1.0 } alias = Alias.from_bytes(icvp['backgroundImageAlias']) alias.volume.name = package_name_ns alias.volume.posix_path = '/Volumes/' + package_name_ns alias.volume.disk_image_alias.target.filename = package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.carbon_path = 'Macintosh HD:Users:\x00xdiskuser:\x00Documents:\x00xdisk:\x00xdisk:\x00' + package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.posix_path = 'Users/xdiskuser/Documents/xdisk/xdisk/' + package_name_ns + '.temp.dmg' alias.target.carbon_path = package_name_ns + ':.background:\x00background.tiff' icvp['backgroundImageAlias'] = biplist.Data(alias.to_bytes()) ds['.']['icvp'] = icvp ds['.']['vSrn'] = ('long', 1) ds['Applications']['Iloc'] = (370, 156) ds['xdisk-Qt.app']['Iloc'] = (128, 156) ds.flush() ds.close()
true
true
f717e5abe192eeacd489fb3abdcfc529c914593b
8,031
py
Python
src/tests/test_markdown2man.py
dante-signal31/markdown2man
ce57b905b01a6fb8fe6d3d0989af3a15f42c78cf
[ "BSD-3-Clause" ]
null
null
null
src/tests/test_markdown2man.py
dante-signal31/markdown2man
ce57b905b01a6fb8fe6d3d0989af3a15f42c78cf
[ "BSD-3-Clause" ]
null
null
null
src/tests/test_markdown2man.py
dante-signal31/markdown2man
ce57b905b01a6fb8fe6d3d0989af3a15f42c78cf
[ "BSD-3-Clause" ]
null
null
null
""" Test for markdown2man launcher.""" import gzip import os import sys import tempfile import test_common.fs.ops as test_ops from test_common.fs.temp import temp_dir # TODO: Refactor project layout to leave tests folder out of src. sys.path.append("src") import src.markdown2man as markdown2man def test_launcher_all_options_given(temp_dir): # Setup test. temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-s", "1", "-t", "cifra usage documentation"] expected_output_file = os.path.join(temp_dir, "cifra.1.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() # Perform test. assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content def test_launcher_all_long_options_given(temp_dir): # Setup test. temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "--manpage_section", "1", "--manpage_title", "cifra usage documentation"] expected_output_file = os.path.join(temp_dir, "cifra.1.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() # Perform test. assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content def test_launcher_section_changed(temp_dir): # Setup test. temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-s", "2", "-t", "cifra usage documentation"] expected_output_file = os.path.join(temp_dir, "cifra.2.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() expected_content = expected_content.replace(".TH \"cifra\" \"1\"", ".TH \"cifra\" \"2\"") # Perform test. assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content def test_launcher_section_omitted(temp_dir): # Setup test. temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-t", "cifra usage documentation"] expected_output_file = os.path.join(temp_dir, "cifra.1.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() # Perform test. assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content def test_launcher_title_omitted(temp_dir): # Setup test. temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra"] expected_output_file = os.path.join(temp_dir, "cifra.1.gz") recovered_content = "" expected_line = ".TH \"cifra\" \"1\" \"\" \"\" \"cifra\"\n" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() # Perform test. assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = [line.decode() for line in output_file.readlines()] assert expected_line in recovered_content def test_launcher_uncompressed(temp_dir): # Setup test. temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-s", "1", "-t", "cifra usage documentation", "-u"] expected_output_file = os.path.join(temp_dir, "cifra.1") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() # Perform test. assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with open(expected_output_file) as output_file: recovered_content = output_file.read() assert recovered_content == expected_content def test_launcher_different_output_folder(temp_dir): with tempfile.TemporaryDirectory() as temp_output_folder: # Setup test. temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-s", "1", "-t", "cifra usage documentation", "-f", f"{temp_output_folder}"] expected_output_file = os.path.join(temp_output_folder, "cifra.1.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() # Perform test. assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content def test_launcher_different_non_existing_output_folder(temp_dir): with tempfile.TemporaryDirectory() as temp_output_folder: # Setup test. temporal_markdown_file = os.path.join(temp_dir, "README.md") temp_output_subfolder = os.path.join(temp_output_folder, "man/") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-s", "1", "-t", "cifra usage documentation", "-f", f"{temp_output_subfolder}"] expected_output_file = os.path.join(temp_output_subfolder, "cifra.1.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() # Perform test. assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content
43.410811
102
0.696551
import gzip import os import sys import tempfile import test_common.fs.ops as test_ops from test_common.fs.temp import temp_dir sys.path.append("src") import src.markdown2man as markdown2man def test_launcher_all_options_given(temp_dir): temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-s", "1", "-t", "cifra usage documentation"] expected_output_file = os.path.join(temp_dir, "cifra.1.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content def test_launcher_all_long_options_given(temp_dir): temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "--manpage_section", "1", "--manpage_title", "cifra usage documentation"] expected_output_file = os.path.join(temp_dir, "cifra.1.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content def test_launcher_section_changed(temp_dir): temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-s", "2", "-t", "cifra usage documentation"] expected_output_file = os.path.join(temp_dir, "cifra.2.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() expected_content = expected_content.replace(".TH \"cifra\" \"1\"", ".TH \"cifra\" \"2\"") assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content def test_launcher_section_omitted(temp_dir): temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-t", "cifra usage documentation"] expected_output_file = os.path.join(temp_dir, "cifra.1.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content def test_launcher_title_omitted(temp_dir): temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra"] expected_output_file = os.path.join(temp_dir, "cifra.1.gz") recovered_content = "" expected_line = ".TH \"cifra\" \"1\" \"\" \"\" \"cifra\"\n" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = [line.decode() for line in output_file.readlines()] assert expected_line in recovered_content def test_launcher_uncompressed(temp_dir): temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-s", "1", "-t", "cifra usage documentation", "-u"] expected_output_file = os.path.join(temp_dir, "cifra.1") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with open(expected_output_file) as output_file: recovered_content = output_file.read() assert recovered_content == expected_content def test_launcher_different_output_folder(temp_dir): with tempfile.TemporaryDirectory() as temp_output_folder: temporal_markdown_file = os.path.join(temp_dir, "README.md") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-s", "1", "-t", "cifra usage documentation", "-f", f"{temp_output_folder}"] expected_output_file = os.path.join(temp_output_folder, "cifra.1.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content def test_launcher_different_non_existing_output_folder(temp_dir): with tempfile.TemporaryDirectory() as temp_output_folder: temporal_markdown_file = os.path.join(temp_dir, "README.md") temp_output_subfolder = os.path.join(temp_output_folder, "man/") test_ops.copy_file("src/tests/resources/README.md", temporal_markdown_file) command_args = [f"{temporal_markdown_file}", "cifra", "-s", "1", "-t", "cifra usage documentation", "-f", f"{temp_output_subfolder}"] expected_output_file = os.path.join(temp_output_subfolder, "cifra.1.gz") recovered_content = "" expected_content = "" with open("src/tests/resources/cifra.1") as manpage: expected_content = manpage.read() assert not os.path.exists(expected_output_file) markdown2man.main(command_args) assert os.path.exists(expected_output_file) with gzip.open(expected_output_file) as output_file: recovered_content = "".join(line.decode() for line in output_file.readlines()) assert recovered_content == expected_content
true
true
f717e6e123e9b4e6acce7b7cd6d35c7024149784
104
py
Python
rules/tabs_spaces.py
Ahuge/Pepper
2afe398629d0505dfa1b5ad7d13eb68a3df695bf
[ "MIT" ]
null
null
null
rules/tabs_spaces.py
Ahuge/Pepper
2afe398629d0505dfa1b5ad7d13eb68a3df695bf
[ "MIT" ]
3
2015-10-16T00:58:27.000Z
2019-06-20T16:57:03.000Z
rules/tabs_spaces.py
Ahuge/Pepper
2afe398629d0505dfa1b5ad7d13eb68a3df695bf
[ "MIT" ]
null
null
null
__author__ = 'Alex' import re def main(line): sub = re.sub(r"(\t)", r" ", line) return sub
13
40
0.548077
__author__ = 'Alex' import re def main(line): sub = re.sub(r"(\t)", r" ", line) return sub
true
true
f717e99028c5d14443a9263ee3de86569fca8475
377
py
Python
ppr-api/src/endpoints/api.py
gh2os/ppr
9f67321baa5bbb450ac5e06755e2838497a2cf96
[ "Apache-2.0" ]
null
null
null
ppr-api/src/endpoints/api.py
gh2os/ppr
9f67321baa5bbb450ac5e06755e2838497a2cf96
[ "Apache-2.0" ]
2
2020-03-18T23:26:53.000Z
2020-03-18T23:40:19.000Z
ppr-api/src/endpoints/api.py
gh2os/ppr
9f67321baa5bbb450ac5e06755e2838497a2cf96
[ "Apache-2.0" ]
null
null
null
""" Set up all the endpoints for the web service. """ import fastapi from . import financing_statement, healthcheck, search router = fastapi.APIRouter() router.include_router(healthcheck.router, prefix='/operations', tags=['Operations']) router.include_router(financing_statement.router, tags=['Financing Statement']) router.include_router(search.router, tags=['Search'])
29
84
0.777188
import fastapi from . import financing_statement, healthcheck, search router = fastapi.APIRouter() router.include_router(healthcheck.router, prefix='/operations', tags=['Operations']) router.include_router(financing_statement.router, tags=['Financing Statement']) router.include_router(search.router, tags=['Search'])
true
true
f717e9994215a9e2f730997e5778606b01734396
2,349
py
Python
openspeech_cli/hydra_train.py
tqslj2/openspeech
10307587f08615224df5a868fb5249c68c70b12d
[ "Apache-2.0", "MIT" ]
1
2022-03-04T02:52:44.000Z
2022-03-04T02:52:44.000Z
openspeech_cli/hydra_train.py
tqslj2/openspeech
10307587f08615224df5a868fb5249c68c70b12d
[ "Apache-2.0", "MIT" ]
null
null
null
openspeech_cli/hydra_train.py
tqslj2/openspeech
10307587f08615224df5a868fb5249c68c70b12d
[ "Apache-2.0", "MIT" ]
null
null
null
# MIT License # # Copyright (c) 2021 Soohwan Kim and Sangchun Ha and Soyoung Cho # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import hydra import wandb import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from pytorch_lightning.utilities import rank_zero_info from openspeech.tokenizers import TOKENIZER_REGISTRY from openspeech.datasets import DATA_MODULE_REGISTRY from openspeech.dataclass.initialize import hydra_train_init from openspeech.models import MODEL_REGISTRY from openspeech.utils import parse_configs, get_pl_trainer @hydra.main(config_path=os.path.join("..", "openspeech", "configs"), config_name="train") def hydra_main(configs: DictConfig) -> None: rank_zero_info(OmegaConf.to_yaml(configs)) pl.seed_everything(configs.trainer.seed) logger, num_devices = parse_configs(configs) data_module = DATA_MODULE_REGISTRY[configs.dataset.dataset](configs) data_module.prepare_data() tokenizer = TOKENIZER_REGISTRY[configs.tokenizer.unit](configs) data_module.setup(tokenizer=tokenizer) model = MODEL_REGISTRY[configs.model.model_name](configs=configs, tokenizer=tokenizer) trainer = get_pl_trainer(configs, num_devices, logger) trainer.fit(model, data_module) trainer.test() if __name__ == '__main__': hydra_train_init() hydra_main()
39.15
90
0.787143
import os import hydra import wandb import pytorch_lightning as pl from omegaconf import DictConfig, OmegaConf from pytorch_lightning.utilities import rank_zero_info from openspeech.tokenizers import TOKENIZER_REGISTRY from openspeech.datasets import DATA_MODULE_REGISTRY from openspeech.dataclass.initialize import hydra_train_init from openspeech.models import MODEL_REGISTRY from openspeech.utils import parse_configs, get_pl_trainer @hydra.main(config_path=os.path.join("..", "openspeech", "configs"), config_name="train") def hydra_main(configs: DictConfig) -> None: rank_zero_info(OmegaConf.to_yaml(configs)) pl.seed_everything(configs.trainer.seed) logger, num_devices = parse_configs(configs) data_module = DATA_MODULE_REGISTRY[configs.dataset.dataset](configs) data_module.prepare_data() tokenizer = TOKENIZER_REGISTRY[configs.tokenizer.unit](configs) data_module.setup(tokenizer=tokenizer) model = MODEL_REGISTRY[configs.model.model_name](configs=configs, tokenizer=tokenizer) trainer = get_pl_trainer(configs, num_devices, logger) trainer.fit(model, data_module) trainer.test() if __name__ == '__main__': hydra_train_init() hydra_main()
true
true
f717eab9315eef9eda1defc31f9c5122f0ff1655
1,026
py
Python
Math/x^2 = y^3.py
vsriv90/mechanical_engineering
c922cdce1a595e9acb6a87cf415fb3685caf51a3
[ "MIT" ]
1
2021-11-03T06:37:44.000Z
2021-11-03T06:37:44.000Z
Math/x^2 = y^3.py
vsriv90/mechanical_engineering
c922cdce1a595e9acb6a87cf415fb3685caf51a3
[ "MIT" ]
null
null
null
Math/x^2 = y^3.py
vsriv90/mechanical_engineering
c922cdce1a595e9acb6a87cf415fb3685caf51a3
[ "MIT" ]
null
null
null
#!/usr/bin/env python # coding: utf-8 # #### Show the common numbers for $x^2=y^3$ # # [Link](https://www.quora.com/Is-64-the-first-perfect-square-and-a-perfect-cube-Is-it-the-only-one/answer/Alon-Amit?ch=3&share=e27e1c03&srid=iBLa) to Quora (Alon Amit's answer) # # # # In[1]: import numpy import sympy import pandas import csv import matplotlib.pyplot as plt import seaborn as sn # to draw plots import plotly.express as px # In[2]: import keyword print(keyword.kwlist) # A list of all 33 keywords in python # In[68]: list1 = [] # for all sqaured values list2 = [] # for all cubed values n = 100 # till what values of n to check for i in range(0,n): # if i is in the above given range j=i**2 k=i**3 list1.append(j) # add the squared values to list1 list2.append(k) # add the cubed values to list2 elem = sorted(set(list1) & set(list2)) # check if an element is on both "list1" and "list2" print(elem) # print the list # print(set(list1)) # if you want to see the list as a set
20.117647
177
0.674464
ess as px # In[2]: import keyword print(keyword.kwlist) # A list of all 33 keywords in python # In[68]: list1 = [] # for all sqaured values list2 = [] # for all cubed values n = 100 # till what values of n to check for i in range(0,n): # if i is in the above given range j=i**2 k=i**3 list1.append(j) # add the squared values to list1 list2.append(k) # add the cubed values to list2 elem = sorted(set(list1) & set(list2)) # check if an element is on both "list1" and "list2" print(elem) # print the list # print(set(list1)) # if you want to see the list as a set
true
true
f717eb7deff235aa9cb2449ef700d1d63d624333
155
py
Python
utilities/printing.py
tarsqi/ttk
085007047ab591426d5c08b123906c070deb6627
[ "Apache-2.0" ]
25
2016-02-28T16:42:57.000Z
2022-01-03T13:29:48.000Z
utilities/printing.py
tarsqi/ttk
085007047ab591426d5c08b123906c070deb6627
[ "Apache-2.0" ]
84
2016-02-13T01:07:55.000Z
2021-04-06T18:57:36.000Z
utilities/printing.py
tarsqi/ttk
085007047ab591426d5c08b123906c070deb6627
[ "Apache-2.0" ]
10
2016-05-30T14:35:59.000Z
2022-03-16T12:24:09.000Z
from __future__ import absolute_import import pprint def pp(stuff): pretty_printer = pprint.PrettyPrinter(indent=3) pretty_printer.pprint(stuff)
19.375
51
0.787097
from __future__ import absolute_import import pprint def pp(stuff): pretty_printer = pprint.PrettyPrinter(indent=3) pretty_printer.pprint(stuff)
true
true
f717ed1a92cd4103d8f8d7eecb5ad29aa817477f
8,388
py
Python
src/ingest_financials.py
ozacas/asxtrade
a3645ae526bfc7a546fdf2a39520feda99e3390a
[ "Apache-2.0" ]
8
2021-03-20T13:12:25.000Z
2022-02-07T11:17:40.000Z
src/ingest_financials.py
ozacas/asxtrade
a3645ae526bfc7a546fdf2a39520feda99e3390a
[ "Apache-2.0" ]
8
2021-03-07T03:23:46.000Z
2021-06-01T10:49:56.000Z
src/ingest_financials.py
ozacas/asxtrade
a3645ae526bfc7a546fdf2a39520feda99e3390a
[ "Apache-2.0" ]
3
2020-12-08T10:22:23.000Z
2021-08-04T01:59:24.000Z
#!/usr/bin/python3 """ Responsible for ingesting data related to the business performance over time. Data is placed into the asx_company_financial_metric collection, ready for the core viewer app to use. Stocks whose financial details have been retrieved in the past month are skipped. """ import pymongo import argparse import yfinance as yf import time from utils import read_config import numpy as np import pandas as pd from datetime import datetime, timedelta from bson.objectid import ObjectId def melt_dataframes(dfs: tuple) -> pd.DataFrame: result = None for df in filter(lambda df: df is not None and len(df) > 0, dfs): df["metric"] = df.index melted = pd.melt(df, id_vars=("metric"), var_name="date") melted = melted.dropna(axis=0, how="any") if len(melted) == 0: continue # print(melted) # print(melted.shape) if result is None: result = melted else: result = result.append(melted) if result is not None and "date" in result.columns: # print(result) result["date"] = pd.to_datetime( result["date"], infer_datetime_format=True ) # format="%Y-%m-%d") # print(result) return result def desired_stocks(): available_stocks = set(db.asx_company_details.distinct("asx_code")) print(f"Found {len(available_stocks)} available stocks.") gen_time = datetime.today() - timedelta(days=30) month_ago = ObjectId.from_datetime(gen_time) recently_updated_stocks = set( [ rec["asx_code"] for rec in db.asx_company_financial_metrics.find( {"_id": {"$gte": month_ago}} ) ] ) ret = available_stocks.difference(recently_updated_stocks) print(f"Found {len(ret)} desired stocks to process.") return ret def update_all_metrics(df: pd.DataFrame, asx_code: str) -> int: """ Add (or update) all financial metrics (ie. rows) for the specified asx_code in the specified dataframe :rtype: the number of records updated/created is returned """ print(f"Updating {len(df)} financial metrics for {asx_code}") n = 0 for t in df.itertuples(): d = { "metric": t.metric, "date": t.date, "value": t.value, "asx_code": t.asx_code, } assert t.asx_code == asx_code result = db.asx_company_financial_metrics.update_one( {"asx_code": asx_code, "date": t.date, "metric": t.metric}, {"$set": d}, upsert=True, ) assert result is not None assert isinstance(result, pymongo.results.UpdateResult) assert result.matched_count == 1 or result.upserted_id is not None n += 1 return n def fetch_metrics(asx_code: str) -> pd.DataFrame: """ Using the excellent yfinance, we fetch all possible metrics of business performance for the specified stock code. Returns a dataframe (possibly empty or none) representing each metric and its datapoints as separate rows """ assert len(asx_code) >= 3 ticker = yf.Ticker(asx_code + ".AX") cashflow_df = ticker.cashflow financial_df = ticker.financials earnings_df = ticker.earnings if set(earnings_df.columns) == set(["Earnings", "Revenue"]): earnings_df.index = earnings_df.index.map( str ) # convert years to str (maybe int) earnings_df = earnings_df.transpose() # print(earnings_df) balance_sheet_df = ticker.balance_sheet melted_df = melt_dataframes( (cashflow_df, financial_df, earnings_df, balance_sheet_df) ) return melted_df def make_asx_prices_dict(new_quote: tuple, asx_code: str) -> dict: #print(new_quote) d = { "asx_code": asx_code, "fetch_date": new_quote.Index, "volume": new_quote.Volume, "last_price": new_quote.Close, "day_low_price": new_quote.Low, "day_high_price": new_quote.High, "open_price": new_quote.Open, "error_code": "", "error_descr": "", # we dont set nan fields so that existing values (if any) are used ie. merge with existing data # "annual_dividend_yield": np.nan, # no available data from yf.Ticker.history() although may be available elsewhere, but for now set to missing # "annual_daily_volume": np.nan, # "bid_price": np.nan, "change_price": new_quote.change_price, "change_in_percent": new_quote.change_in_percent, } return d def fill_stock_quote_gaps(db, stock_to_fetch: str, force=False) -> int: assert db is not None assert len(stock_to_fetch) >= 3 ticker = yf.Ticker(stock_to_fetch + ".AX") df = ticker.history(period="max") df.index = [d.strftime("%Y-%m-%d") for d in df.index] # print(df) available_dates = set(df.index) available_quotes = list(db.asx_prices.find({"asx_code": stock_to_fetch})) quoted_dates = set( [q["fetch_date"] for q in available_quotes if not np.isnan(q["last_price"])] ) assert set(df.columns) == set( ["Open", "High", "Low", "Close", "Volume", "Dividends", "Stock Splits"] ) dates_to_fill = ( available_dates.difference(quoted_dates) if not force else available_dates ) print( "Got {} existing daily quotes for {}, found {} yfinance daily quotes, gap filling for {} dates (force={})".format( len(available_quotes), stock_to_fetch, len(df), len(dates_to_fill), force ) ) if len(dates_to_fill) < 1: return 0 df["change_price"] = df["Close"].diff() df["change_in_percent"] = df["Close"].pct_change() * 100.0 gap_quotes_df = df.filter(dates_to_fill, axis=0) # print(df) n = 0 for new_quote in gap_quotes_df.itertuples(): d = make_asx_prices_dict(new_quote, stock_to_fetch) result = db.asx_prices.update_one( {"fetch_date": d["fetch_date"], "asx_code": d["asx_code"]}, {"$set": d}, upsert=True, ) assert result is not None # assert result.modified_count == 1 or result.upserted_id is not None n += 1 assert n == len(gap_quotes_df) return n if __name__ == "__main__": args = argparse.ArgumentParser( description="Update financial performance metrics for ASX stocks using yfinance" ) args.add_argument( "--config", help="Configuration file to use [config.json]", type=str, default="config.json", ) args.add_argument( "--fill-gaps", help="Fill dates with no existing quotes for each stock (use --debug for a particular stock)", action="store_true", ) args.add_argument("--fail-fast", help="Stop on first error", action="store_true") args.add_argument( "--delay", help="Delay between stocks in seconds [30]", type=int, default=30 ) args.add_argument("--force", help="Overwrite existing data (if any)", action="store_true") args.add_argument( "--debug", help="Try to fetch specified stock (for debugging)", type=str, required=False, default=None, ) a = args.parse_args() config, password = read_config(a.config) m = config.get("mongo") mongo = pymongo.MongoClient( m.get("host"), m.get("port"), username=m.get("user"), password=password ) db = mongo[m.get("db")] stock_codes = desired_stocks() if not a.debug else set([a.debug]) print(f"Updating financial metrics for {len(stock_codes)} stocks") for asx_code in sorted(stock_codes): print(f"Processing stock {asx_code}") try: melted_df = fetch_metrics(asx_code) if melted_df is None or len(melted_df) < 1: raise ValueError(f"No data available for {asx_code}... skipping") melted_df["asx_code"] = asx_code ret = update_all_metrics(melted_df, asx_code) assert ret == len(melted_df) if a.fill_gaps: fill_stock_quote_gaps(db, asx_code, force=a.force) # FALLTHRU... time.sleep(a.delay) except Exception as e: print(f"WARNING: unable to download financials for {asx_code}") print(str(e)) if a.fail_fast: raise e exit(0)
35.542373
152
0.625298
import pymongo import argparse import yfinance as yf import time from utils import read_config import numpy as np import pandas as pd from datetime import datetime, timedelta from bson.objectid import ObjectId def melt_dataframes(dfs: tuple) -> pd.DataFrame: result = None for df in filter(lambda df: df is not None and len(df) > 0, dfs): df["metric"] = df.index melted = pd.melt(df, id_vars=("metric"), var_name="date") melted = melted.dropna(axis=0, how="any") if len(melted) == 0: continue if result is None: result = melted else: result = result.append(melted) if result is not None and "date" in result.columns: result["date"] = pd.to_datetime( result["date"], infer_datetime_format=True ) return result def desired_stocks(): available_stocks = set(db.asx_company_details.distinct("asx_code")) print(f"Found {len(available_stocks)} available stocks.") gen_time = datetime.today() - timedelta(days=30) month_ago = ObjectId.from_datetime(gen_time) recently_updated_stocks = set( [ rec["asx_code"] for rec in db.asx_company_financial_metrics.find( {"_id": {"$gte": month_ago}} ) ] ) ret = available_stocks.difference(recently_updated_stocks) print(f"Found {len(ret)} desired stocks to process.") return ret def update_all_metrics(df: pd.DataFrame, asx_code: str) -> int: print(f"Updating {len(df)} financial metrics for {asx_code}") n = 0 for t in df.itertuples(): d = { "metric": t.metric, "date": t.date, "value": t.value, "asx_code": t.asx_code, } assert t.asx_code == asx_code result = db.asx_company_financial_metrics.update_one( {"asx_code": asx_code, "date": t.date, "metric": t.metric}, {"$set": d}, upsert=True, ) assert result is not None assert isinstance(result, pymongo.results.UpdateResult) assert result.matched_count == 1 or result.upserted_id is not None n += 1 return n def fetch_metrics(asx_code: str) -> pd.DataFrame: assert len(asx_code) >= 3 ticker = yf.Ticker(asx_code + ".AX") cashflow_df = ticker.cashflow financial_df = ticker.financials earnings_df = ticker.earnings if set(earnings_df.columns) == set(["Earnings", "Revenue"]): earnings_df.index = earnings_df.index.map( str ) earnings_df = earnings_df.transpose() balance_sheet_df = ticker.balance_sheet melted_df = melt_dataframes( (cashflow_df, financial_df, earnings_df, balance_sheet_df) ) return melted_df def make_asx_prices_dict(new_quote: tuple, asx_code: str) -> dict: d = { "asx_code": asx_code, "fetch_date": new_quote.Index, "volume": new_quote.Volume, "last_price": new_quote.Close, "day_low_price": new_quote.Low, "day_high_price": new_quote.High, "open_price": new_quote.Open, "error_code": "", "error_descr": "", ange_in_percent, } return d def fill_stock_quote_gaps(db, stock_to_fetch: str, force=False) -> int: assert db is not None assert len(stock_to_fetch) >= 3 ticker = yf.Ticker(stock_to_fetch + ".AX") df = ticker.history(period="max") df.index = [d.strftime("%Y-%m-%d") for d in df.index] available_dates = set(df.index) available_quotes = list(db.asx_prices.find({"asx_code": stock_to_fetch})) quoted_dates = set( [q["fetch_date"] for q in available_quotes if not np.isnan(q["last_price"])] ) assert set(df.columns) == set( ["Open", "High", "Low", "Close", "Volume", "Dividends", "Stock Splits"] ) dates_to_fill = ( available_dates.difference(quoted_dates) if not force else available_dates ) print( "Got {} existing daily quotes for {}, found {} yfinance daily quotes, gap filling for {} dates (force={})".format( len(available_quotes), stock_to_fetch, len(df), len(dates_to_fill), force ) ) if len(dates_to_fill) < 1: return 0 df["change_price"] = df["Close"].diff() df["change_in_percent"] = df["Close"].pct_change() * 100.0 gap_quotes_df = df.filter(dates_to_fill, axis=0) n = 0 for new_quote in gap_quotes_df.itertuples(): d = make_asx_prices_dict(new_quote, stock_to_fetch) result = db.asx_prices.update_one( {"fetch_date": d["fetch_date"], "asx_code": d["asx_code"]}, {"$set": d}, upsert=True, ) assert result is not None n += 1 assert n == len(gap_quotes_df) return n if __name__ == "__main__": args = argparse.ArgumentParser( description="Update financial performance metrics for ASX stocks using yfinance" ) args.add_argument( "--config", help="Configuration file to use [config.json]", type=str, default="config.json", ) args.add_argument( "--fill-gaps", help="Fill dates with no existing quotes for each stock (use --debug for a particular stock)", action="store_true", ) args.add_argument("--fail-fast", help="Stop on first error", action="store_true") args.add_argument( "--delay", help="Delay between stocks in seconds [30]", type=int, default=30 ) args.add_argument("--force", help="Overwrite existing data (if any)", action="store_true") args.add_argument( "--debug", help="Try to fetch specified stock (for debugging)", type=str, required=False, default=None, ) a = args.parse_args() config, password = read_config(a.config) m = config.get("mongo") mongo = pymongo.MongoClient( m.get("host"), m.get("port"), username=m.get("user"), password=password ) db = mongo[m.get("db")] stock_codes = desired_stocks() if not a.debug else set([a.debug]) print(f"Updating financial metrics for {len(stock_codes)} stocks") for asx_code in sorted(stock_codes): print(f"Processing stock {asx_code}") try: melted_df = fetch_metrics(asx_code) if melted_df is None or len(melted_df) < 1: raise ValueError(f"No data available for {asx_code}... skipping") melted_df["asx_code"] = asx_code ret = update_all_metrics(melted_df, asx_code) assert ret == len(melted_df) if a.fill_gaps: fill_stock_quote_gaps(db, asx_code, force=a.force) time.sleep(a.delay) except Exception as e: print(f"WARNING: unable to download financials for {asx_code}") print(str(e)) if a.fail_fast: raise e exit(0)
true
true
f717eda1c497c2f501c58a071e0a58d22211d3f9
6,442
py
Python
src/waldur_slurm/serializers.py
opennode/nodeconductor-assembly-waldur
cad9966389dc9b52b13d2301940c99cf4b243900
[ "MIT" ]
2
2017-01-20T15:26:25.000Z
2017-08-03T04:38:08.000Z
src/waldur_slurm/serializers.py
opennode/nodeconductor-assembly-waldur
cad9966389dc9b52b13d2301940c99cf4b243900
[ "MIT" ]
null
null
null
src/waldur_slurm/serializers.py
opennode/nodeconductor-assembly-waldur
cad9966389dc9b52b13d2301940c99cf4b243900
[ "MIT" ]
null
null
null
import re from django.core.validators import MinValueValidator from django.utils.translation import gettext_lazy as _ from rest_framework import exceptions as rf_exceptions from rest_framework import serializers as rf_serializers from waldur_core.core import serializers as core_serializers from waldur_core.structure import serializers as structure_serializers from waldur_core.structure.permissions import _has_admin_access from waldur_freeipa import models as freeipa_models from . import models class SlurmServiceSerializer(structure_serializers.ServiceOptionsSerializer): class Meta: secret_fields = ('hostname', 'username', 'port', 'gateway') username = rf_serializers.CharField( max_length=100, help_text=_('Administrative user'), default='root' ) hostname = rf_serializers.CharField( source='options.hostname', label=_('Hostname or IP address of master node') ) default_account = rf_serializers.CharField( source='options.default_account', label=_('Default SLURM account for user') ) port = rf_serializers.IntegerField(source='options.port', required=False) use_sudo = rf_serializers.BooleanField( source='options.use_sudo', default=False, help_text=_('Set to true to activate privilege escalation'), required=False, ) gateway = rf_serializers.CharField( source='options.gateway', label=_('Hostname or IP address of gateway node'), required=False, ) firecrest_api_url = rf_serializers.CharField( source='options.firecrest_api_url', label=_('FirecREST API base URL'), required=False, ) class AllocationSerializer( structure_serializers.BaseResourceSerializer, core_serializers.AugmentedSerializerMixin, ): username = rf_serializers.SerializerMethodField() gateway = rf_serializers.SerializerMethodField() homepage = rf_serializers.ReadOnlyField(source='service_settings.homepage') def get_username(self, allocation): request = self.context['request'] try: profile = freeipa_models.Profile.objects.get(user=request.user) return profile.username except freeipa_models.Profile.DoesNotExist: return None def get_gateway(self, allocation): options = allocation.service_settings.options return options.get('gateway') or options.get('hostname') class Meta(structure_serializers.BaseResourceSerializer.Meta): model = models.Allocation fields = structure_serializers.BaseResourceSerializer.Meta.fields + ( 'cpu_limit', 'cpu_usage', 'gpu_limit', 'gpu_usage', 'ram_limit', 'ram_usage', 'username', 'gateway', 'is_active', 'homepage', ) read_only_fields = ( structure_serializers.BaseResourceSerializer.Meta.read_only_fields + ( 'cpu_usage', 'gpu_usage', 'ram_usage', 'cpu_limit', 'gpu_limit', 'ram_limit', 'is_active', ) ) extra_kwargs = dict( url={'lookup_field': 'uuid', 'view_name': 'slurm-allocation-detail'}, cpu_limit={'validators': [MinValueValidator(0)]}, gpu_limit={'validators': [MinValueValidator(0)]}, ram_limit={'validators': [MinValueValidator(0)]}, ) def validate(self, attrs): attrs = super(AllocationSerializer, self).validate(attrs) # Skip validation on update if self.instance: return attrs correct_name_regex = '^([%s]{1,63})$' % models.SLURM_ALLOCATION_REGEX name = attrs.get('name') if not re.match(correct_name_regex, name): raise rf_serializers.ValidationError( _( "Name '%s' must be 1-63 characters long, each of " "which can only be alphanumeric or a hyphen" ) % name ) project = attrs['project'] user = self.context['request'].user if not _has_admin_access(user, project): raise rf_exceptions.PermissionDenied( _('You do not have permissions to create allocation for given project.') ) return attrs class AllocationSetLimitsSerializer(rf_serializers.ModelSerializer): cpu_limit = rf_serializers.IntegerField(min_value=-1) gpu_limit = rf_serializers.IntegerField(min_value=-1) ram_limit = rf_serializers.IntegerField(min_value=-1) class Meta: model = models.Allocation fields = ('cpu_limit', 'gpu_limit', 'ram_limit') class AllocationUserUsageCreateSerializer(rf_serializers.HyperlinkedModelSerializer): class Meta: model = models.AllocationUserUsage fields = ( 'cpu_usage', 'ram_usage', 'gpu_usage', 'month', 'year', 'user', 'username', ) extra_kwargs = { 'user': { 'lookup_field': 'uuid', 'view_name': 'user-detail', }, } class AllocationUserUsageSerializer(rf_serializers.HyperlinkedModelSerializer): full_name = rf_serializers.ReadOnlyField(source='user.full_name') class Meta: model = models.AllocationUserUsage fields = ( 'cpu_usage', 'ram_usage', 'gpu_usage', 'month', 'year', 'allocation', 'user', 'username', 'full_name', ) extra_kwargs = { 'allocation': { 'lookup_field': 'uuid', 'view_name': 'slurm-allocation-detail', }, 'user': { 'lookup_field': 'uuid', 'view_name': 'user-detail', }, } class AssociationSerializer(rf_serializers.HyperlinkedModelSerializer): allocation = rf_serializers.HyperlinkedRelatedField( queryset=models.Allocation.objects.all(), view_name='slurm-allocation-detail', lookup_field='uuid', ) class Meta: model = models.Association fields = ( 'uuid', 'username', 'allocation', )
31.42439
88
0.606023
import re from django.core.validators import MinValueValidator from django.utils.translation import gettext_lazy as _ from rest_framework import exceptions as rf_exceptions from rest_framework import serializers as rf_serializers from waldur_core.core import serializers as core_serializers from waldur_core.structure import serializers as structure_serializers from waldur_core.structure.permissions import _has_admin_access from waldur_freeipa import models as freeipa_models from . import models class SlurmServiceSerializer(structure_serializers.ServiceOptionsSerializer): class Meta: secret_fields = ('hostname', 'username', 'port', 'gateway') username = rf_serializers.CharField( max_length=100, help_text=_('Administrative user'), default='root' ) hostname = rf_serializers.CharField( source='options.hostname', label=_('Hostname or IP address of master node') ) default_account = rf_serializers.CharField( source='options.default_account', label=_('Default SLURM account for user') ) port = rf_serializers.IntegerField(source='options.port', required=False) use_sudo = rf_serializers.BooleanField( source='options.use_sudo', default=False, help_text=_('Set to true to activate privilege escalation'), required=False, ) gateway = rf_serializers.CharField( source='options.gateway', label=_('Hostname or IP address of gateway node'), required=False, ) firecrest_api_url = rf_serializers.CharField( source='options.firecrest_api_url', label=_('FirecREST API base URL'), required=False, ) class AllocationSerializer( structure_serializers.BaseResourceSerializer, core_serializers.AugmentedSerializerMixin, ): username = rf_serializers.SerializerMethodField() gateway = rf_serializers.SerializerMethodField() homepage = rf_serializers.ReadOnlyField(source='service_settings.homepage') def get_username(self, allocation): request = self.context['request'] try: profile = freeipa_models.Profile.objects.get(user=request.user) return profile.username except freeipa_models.Profile.DoesNotExist: return None def get_gateway(self, allocation): options = allocation.service_settings.options return options.get('gateway') or options.get('hostname') class Meta(structure_serializers.BaseResourceSerializer.Meta): model = models.Allocation fields = structure_serializers.BaseResourceSerializer.Meta.fields + ( 'cpu_limit', 'cpu_usage', 'gpu_limit', 'gpu_usage', 'ram_limit', 'ram_usage', 'username', 'gateway', 'is_active', 'homepage', ) read_only_fields = ( structure_serializers.BaseResourceSerializer.Meta.read_only_fields + ( 'cpu_usage', 'gpu_usage', 'ram_usage', 'cpu_limit', 'gpu_limit', 'ram_limit', 'is_active', ) ) extra_kwargs = dict( url={'lookup_field': 'uuid', 'view_name': 'slurm-allocation-detail'}, cpu_limit={'validators': [MinValueValidator(0)]}, gpu_limit={'validators': [MinValueValidator(0)]}, ram_limit={'validators': [MinValueValidator(0)]}, ) def validate(self, attrs): attrs = super(AllocationSerializer, self).validate(attrs) if self.instance: return attrs correct_name_regex = '^([%s]{1,63})$' % models.SLURM_ALLOCATION_REGEX name = attrs.get('name') if not re.match(correct_name_regex, name): raise rf_serializers.ValidationError( _( "Name '%s' must be 1-63 characters long, each of " "which can only be alphanumeric or a hyphen" ) % name ) project = attrs['project'] user = self.context['request'].user if not _has_admin_access(user, project): raise rf_exceptions.PermissionDenied( _('You do not have permissions to create allocation for given project.') ) return attrs class AllocationSetLimitsSerializer(rf_serializers.ModelSerializer): cpu_limit = rf_serializers.IntegerField(min_value=-1) gpu_limit = rf_serializers.IntegerField(min_value=-1) ram_limit = rf_serializers.IntegerField(min_value=-1) class Meta: model = models.Allocation fields = ('cpu_limit', 'gpu_limit', 'ram_limit') class AllocationUserUsageCreateSerializer(rf_serializers.HyperlinkedModelSerializer): class Meta: model = models.AllocationUserUsage fields = ( 'cpu_usage', 'ram_usage', 'gpu_usage', 'month', 'year', 'user', 'username', ) extra_kwargs = { 'user': { 'lookup_field': 'uuid', 'view_name': 'user-detail', }, } class AllocationUserUsageSerializer(rf_serializers.HyperlinkedModelSerializer): full_name = rf_serializers.ReadOnlyField(source='user.full_name') class Meta: model = models.AllocationUserUsage fields = ( 'cpu_usage', 'ram_usage', 'gpu_usage', 'month', 'year', 'allocation', 'user', 'username', 'full_name', ) extra_kwargs = { 'allocation': { 'lookup_field': 'uuid', 'view_name': 'slurm-allocation-detail', }, 'user': { 'lookup_field': 'uuid', 'view_name': 'user-detail', }, } class AssociationSerializer(rf_serializers.HyperlinkedModelSerializer): allocation = rf_serializers.HyperlinkedRelatedField( queryset=models.Allocation.objects.all(), view_name='slurm-allocation-detail', lookup_field='uuid', ) class Meta: model = models.Association fields = ( 'uuid', 'username', 'allocation', )
true
true
f717efcb5290a464a7824eb3e23e80853f7e2668
1,230
py
Python
ddns_clienter_core/runtimes/address_providers/host_name.py
rexzhang/ddns-clienter
f170cb579d49df2aa4aa1f607bbcf088af9cd4a5
[ "MIT" ]
null
null
null
ddns_clienter_core/runtimes/address_providers/host_name.py
rexzhang/ddns-clienter
f170cb579d49df2aa4aa1f607bbcf088af9cd4a5
[ "MIT" ]
null
null
null
ddns_clienter_core/runtimes/address_providers/host_name.py
rexzhang/ddns-clienter
f170cb579d49df2aa4aa1f607bbcf088af9cd4a5
[ "MIT" ]
null
null
null
import socket from logging import getLogger from .abs import AddressProviderAbs, AddressProviderException logger = getLogger(__name__) class AddressProviderHostName(AddressProviderAbs): @property def name(self): return "hostname" def _detect_ip_address(self) -> None: try: data = socket.getaddrinfo(self._address_c.parameter, 80) except socket.gaierror as e: message = "Detect IP Address failed, hostname:'{}', message:{}".format( self._address_c.parameter, e ) logger.error(message) raise AddressProviderException(message) for item in data: if ( item[0] == socket.AF_INET and item[1] == socket.SOCK_STREAM and self._address_c.ipv4 ): ip_address = item[4][0] self.set_ipv4_address(ip_address) continue if ( item[0] == socket.AF_INET6 and item[1] == socket.SOCK_STREAM and self._address_c.ipv6 ): ip_address = item[4][0] self.set_ipv6_address(ip_address) continue
29.285714
83
0.550407
import socket from logging import getLogger from .abs import AddressProviderAbs, AddressProviderException logger = getLogger(__name__) class AddressProviderHostName(AddressProviderAbs): @property def name(self): return "hostname" def _detect_ip_address(self) -> None: try: data = socket.getaddrinfo(self._address_c.parameter, 80) except socket.gaierror as e: message = "Detect IP Address failed, hostname:'{}', message:{}".format( self._address_c.parameter, e ) logger.error(message) raise AddressProviderException(message) for item in data: if ( item[0] == socket.AF_INET and item[1] == socket.SOCK_STREAM and self._address_c.ipv4 ): ip_address = item[4][0] self.set_ipv4_address(ip_address) continue if ( item[0] == socket.AF_INET6 and item[1] == socket.SOCK_STREAM and self._address_c.ipv6 ): ip_address = item[4][0] self.set_ipv6_address(ip_address) continue
true
true
f717f02ea026ba8bb72ef7721a359f8e060f9f1e
1,289
py
Python
homeassistant/components/homekit/diagnostics.py
mtarjoianu/core
44e9146463ac505eb3d1c0651ad126cb25c28a54
[ "Apache-2.0" ]
30,023
2016-04-13T10:17:53.000Z
2020-03-02T12:56:31.000Z
homeassistant/components/homekit/diagnostics.py
mtarjoianu/core
44e9146463ac505eb3d1c0651ad126cb25c28a54
[ "Apache-2.0" ]
24,710
2016-04-13T08:27:26.000Z
2020-03-02T12:59:13.000Z
homeassistant/components/homekit/diagnostics.py
mtarjoianu/core
44e9146463ac505eb3d1c0651ad126cb25c28a54
[ "Apache-2.0" ]
11,956
2016-04-13T18:42:31.000Z
2020-03-02T09:32:12.000Z
"""Diagnostics support for HomeKit.""" from __future__ import annotations from typing import Any from pyhap.accessory_driver import AccessoryDriver from pyhap.state import State from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from . import HomeKit from .const import DOMAIN, HOMEKIT async def async_get_config_entry_diagnostics( hass: HomeAssistant, entry: ConfigEntry ) -> dict[str, Any]: """Return diagnostics for a config entry.""" homekit: HomeKit = hass.data[DOMAIN][entry.entry_id][HOMEKIT] data: dict[str, Any] = { "status": homekit.status, "config-entry": { "title": entry.title, "version": entry.version, "data": dict(entry.data), "options": dict(entry.options), }, } if not hasattr(homekit, "driver"): return data driver: AccessoryDriver = homekit.driver data.update(driver.get_accessories()) state: State = driver.state data.update( { "client_properties": { str(client): props for client, props in state.client_properties.items() }, "config_version": state.config_version, "pairing_id": state.mac, } ) return data
28.644444
87
0.644686
from __future__ import annotations from typing import Any from pyhap.accessory_driver import AccessoryDriver from pyhap.state import State from homeassistant.config_entries import ConfigEntry from homeassistant.core import HomeAssistant from . import HomeKit from .const import DOMAIN, HOMEKIT async def async_get_config_entry_diagnostics( hass: HomeAssistant, entry: ConfigEntry ) -> dict[str, Any]: homekit: HomeKit = hass.data[DOMAIN][entry.entry_id][HOMEKIT] data: dict[str, Any] = { "status": homekit.status, "config-entry": { "title": entry.title, "version": entry.version, "data": dict(entry.data), "options": dict(entry.options), }, } if not hasattr(homekit, "driver"): return data driver: AccessoryDriver = homekit.driver data.update(driver.get_accessories()) state: State = driver.state data.update( { "client_properties": { str(client): props for client, props in state.client_properties.items() }, "config_version": state.config_version, "pairing_id": state.mac, } ) return data
true
true
f717f0755133f546a112ab7edad203a839137d37
3,107
py
Python
tests/test_rmsa.py
ReleaseTheSpice/optical-rl-gym
1913e19ba59dfd1e426d5783b68c045d2daf354a
[ "MIT" ]
null
null
null
tests/test_rmsa.py
ReleaseTheSpice/optical-rl-gym
1913e19ba59dfd1e426d5783b68c045d2daf354a
[ "MIT" ]
null
null
null
tests/test_rmsa.py
ReleaseTheSpice/optical-rl-gym
1913e19ba59dfd1e426d5783b68c045d2daf354a
[ "MIT" ]
null
null
null
import os import gym from optical_rl_gym.envs.rmsa_env import shortest_path_first_fit, shortest_available_path_first_fit, \ least_loaded_path_first_fit, SimpleMatrixObservation from optical_rl_gym.utils import evaluate_heuristic, random_policy import pickle import logging import numpy as np import matplotlib.pyplot as plt load = 50 logging.getLogger('rmsaenv').setLevel(logging.INFO) seed = 20 episodes = 10 episode_length = 100 monitor_files = [] policies = [] # topology_name = 'gbn' # topology_name = 'nobel-us' # topology_name = 'germany50' with open(os.path.join('..', 'examples', 'topologies', 'nsfnet_chen_eon_5-paths.h5'), 'rb') as f: topology = pickle.load(f) env_args = dict(topology=topology, seed=10, allow_rejection=True, load=load, mean_service_holding_time=25, episode_length=episode_length, num_spectrum_resources=64, bit_rate_selection='discrete') print('STR'.ljust(5), 'REW'.rjust(7), 'STD'.rjust(7)) init_env = gym.make('RMSA-v0', **env_args) env_rnd = SimpleMatrixObservation(init_env) mean_reward_rnd, std_reward_rnd = evaluate_heuristic(env_rnd, random_policy, n_eval_episodes=episodes) print('Rnd:'.ljust(8), f'{mean_reward_rnd:.4f} {std_reward_rnd:>7.4f}') print('\tBit rate blocking:', (init_env.episode_bit_rate_requested - init_env.episode_bit_rate_provisioned) / init_env.episode_bit_rate_requested) print('\tRequest blocking:', (init_env.episode_services_processed - init_env.episode_services_accepted) / init_env.episode_services_processed) print(init_env.topology.graph['throughput']) # exit(0) env_sp = gym.make('RMSA-v0', **env_args) mean_reward_sp, std_reward_sp = evaluate_heuristic(env_sp, shortest_path_first_fit, n_eval_episodes=episodes) print('SP-FF:'.ljust(8), f'{mean_reward_sp:.4f} {std_reward_sp:<7.4f}') print('\tBit rate blocking:', (env_sp.episode_bit_rate_requested - env_sp.episode_bit_rate_provisioned) / env_sp.episode_bit_rate_requested) print('\tRequest blocking:', (env_sp.episode_services_processed - env_sp.episode_services_accepted) / env_sp.episode_services_processed) env_sap = gym.make('RMSA-v0', **env_args) mean_reward_sap, std_reward_sap = evaluate_heuristic(env_sap, shortest_available_path_first_fit, n_eval_episodes=episodes) print('SAP-FF:'.ljust(8), f'{mean_reward_sap:.4f} {std_reward_sap:.4f}') print('\tBit rate blocking:', (env_sap.episode_bit_rate_requested - env_sap.episode_bit_rate_provisioned) / env_sap.episode_bit_rate_requested) print('\tRequest blocking:', (env_sap.episode_services_processed - env_sap.episode_services_accepted) / env_sap.episode_services_processed) env_llp = gym.make('RMSA-v0', **env_args) mean_reward_llp, std_reward_llp = evaluate_heuristic(env_llp, least_loaded_path_first_fit, n_eval_episodes=episodes) print('LLP-FF:'.ljust(8), f'{mean_reward_llp:.4f} {std_reward_llp:.4f}') print('\tBit rate blocking:', (env_llp.episode_bit_rate_requested - env_llp.episode_bit_rate_provisioned) / env_llp.episode_bit_rate_requested) print('\tRequest blocking:', (env_llp.episode_services_processed - env_llp.episode_services_accepted) / env_llp.episode_services_processed)
51.783333
146
0.798519
import os import gym from optical_rl_gym.envs.rmsa_env import shortest_path_first_fit, shortest_available_path_first_fit, \ least_loaded_path_first_fit, SimpleMatrixObservation from optical_rl_gym.utils import evaluate_heuristic, random_policy import pickle import logging import numpy as np import matplotlib.pyplot as plt load = 50 logging.getLogger('rmsaenv').setLevel(logging.INFO) seed = 20 episodes = 10 episode_length = 100 monitor_files = [] policies = [] with open(os.path.join('..', 'examples', 'topologies', 'nsfnet_chen_eon_5-paths.h5'), 'rb') as f: topology = pickle.load(f) env_args = dict(topology=topology, seed=10, allow_rejection=True, load=load, mean_service_holding_time=25, episode_length=episode_length, num_spectrum_resources=64, bit_rate_selection='discrete') print('STR'.ljust(5), 'REW'.rjust(7), 'STD'.rjust(7)) init_env = gym.make('RMSA-v0', **env_args) env_rnd = SimpleMatrixObservation(init_env) mean_reward_rnd, std_reward_rnd = evaluate_heuristic(env_rnd, random_policy, n_eval_episodes=episodes) print('Rnd:'.ljust(8), f'{mean_reward_rnd:.4f} {std_reward_rnd:>7.4f}') print('\tBit rate blocking:', (init_env.episode_bit_rate_requested - init_env.episode_bit_rate_provisioned) / init_env.episode_bit_rate_requested) print('\tRequest blocking:', (init_env.episode_services_processed - init_env.episode_services_accepted) / init_env.episode_services_processed) print(init_env.topology.graph['throughput']) env_sp = gym.make('RMSA-v0', **env_args) mean_reward_sp, std_reward_sp = evaluate_heuristic(env_sp, shortest_path_first_fit, n_eval_episodes=episodes) print('SP-FF:'.ljust(8), f'{mean_reward_sp:.4f} {std_reward_sp:<7.4f}') print('\tBit rate blocking:', (env_sp.episode_bit_rate_requested - env_sp.episode_bit_rate_provisioned) / env_sp.episode_bit_rate_requested) print('\tRequest blocking:', (env_sp.episode_services_processed - env_sp.episode_services_accepted) / env_sp.episode_services_processed) env_sap = gym.make('RMSA-v0', **env_args) mean_reward_sap, std_reward_sap = evaluate_heuristic(env_sap, shortest_available_path_first_fit, n_eval_episodes=episodes) print('SAP-FF:'.ljust(8), f'{mean_reward_sap:.4f} {std_reward_sap:.4f}') print('\tBit rate blocking:', (env_sap.episode_bit_rate_requested - env_sap.episode_bit_rate_provisioned) / env_sap.episode_bit_rate_requested) print('\tRequest blocking:', (env_sap.episode_services_processed - env_sap.episode_services_accepted) / env_sap.episode_services_processed) env_llp = gym.make('RMSA-v0', **env_args) mean_reward_llp, std_reward_llp = evaluate_heuristic(env_llp, least_loaded_path_first_fit, n_eval_episodes=episodes) print('LLP-FF:'.ljust(8), f'{mean_reward_llp:.4f} {std_reward_llp:.4f}') print('\tBit rate blocking:', (env_llp.episode_bit_rate_requested - env_llp.episode_bit_rate_provisioned) / env_llp.episode_bit_rate_requested) print('\tRequest blocking:', (env_llp.episode_services_processed - env_llp.episode_services_accepted) / env_llp.episode_services_processed)
true
true
f717f2946a256963590e7fa9639348755efec876
244
py
Python
pay_using_try_catch.py
maainul/Paython
c72d7fff3b00bc4f379ca6f9dbef0678f01b55f9
[ "DOC" ]
null
null
null
pay_using_try_catch.py
maainul/Paython
c72d7fff3b00bc4f379ca6f9dbef0678f01b55f9
[ "DOC" ]
null
null
null
pay_using_try_catch.py
maainul/Paython
c72d7fff3b00bc4f379ca6f9dbef0678f01b55f9
[ "DOC" ]
null
null
null
try: Hours=input('Enter Hours:') Rates=input('Enter Rates:') if int(Hours)>40: pay=40*int(Rates)+(int(Hours)-40)*(int(Rates)*1.5) print(pay) else: pay=int(Hours)*int(Rates) print(pay) except: print('Error,Please enter numeric input.')
20.333333
52
0.680328
try: Hours=input('Enter Hours:') Rates=input('Enter Rates:') if int(Hours)>40: pay=40*int(Rates)+(int(Hours)-40)*(int(Rates)*1.5) print(pay) else: pay=int(Hours)*int(Rates) print(pay) except: print('Error,Please enter numeric input.')
false
true
f717f359062fe9bbd5d9893e4b7b8942420830f7
1,037
py
Python
auctionbot/users/migrations/0002_auto_20171231_1027.py
netvigator/auctions
f88bcce800b60083a5d1a6f272c51bb540b8342a
[ "MIT" ]
null
null
null
auctionbot/users/migrations/0002_auto_20171231_1027.py
netvigator/auctions
f88bcce800b60083a5d1a6f272c51bb540b8342a
[ "MIT" ]
13
2019-12-12T03:07:55.000Z
2022-03-07T12:59:27.000Z
auctionbot/users/migrations/0002_auto_20171231_1027.py
netvigator/auctions
f88bcce800b60083a5d1a6f272c51bb540b8342a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2017-12-31 03:27 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] # ('markets', '0012_auto_20171220_1319'), operations = [ migrations.AddField( model_name='user', name='cBio', field=models.TextField(blank=True, max_length=500), ), migrations.AddField( model_name='user', name='cLocation', field=models.CharField(blank=True, max_length=30), ), migrations.AddField( model_name='user', name='iMarket', #field=models.ForeignKey(default=1, on_delete=django.db.models.deletion.CASCADE, to='markets.Market', verbose_name='ebay market (default)'), field=models.PositiveIntegerField(default=1, verbose_name='ebay market (default)'), ), ]
30.5
152
0.611379
from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AddField( model_name='user', name='cBio', field=models.TextField(blank=True, max_length=500), ), migrations.AddField( model_name='user', name='cLocation', field=models.CharField(blank=True, max_length=30), ), migrations.AddField( model_name='user', name='iMarket', field=models.PositiveIntegerField(default=1, verbose_name='ebay market (default)'), ), ]
true
true
f717f4028211e6a9f3c853dde20a6d21323b607a
362
py
Python
examples/list_all_adb_devices.py
riquedev/WhatsAppManifest
bcbbd48f6f9152024a54172886876d3a725a3a62
[ "MIT" ]
15
2020-03-11T17:31:12.000Z
2021-11-19T03:26:09.000Z
examples/list_all_adb_devices.py
riquedev/WhatsAppManifest
bcbbd48f6f9152024a54172886876d3a725a3a62
[ "MIT" ]
5
2021-03-31T19:43:15.000Z
2022-03-12T00:18:38.000Z
examples/list_all_adb_devices.py
riquedev/WhatsAppManifest
bcbbd48f6f9152024a54172886876d3a725a3a62
[ "MIT" ]
4
2020-03-11T01:52:57.000Z
2021-03-16T04:14:33.000Z
from WhatsAppManifest import ADB, Automator # Note: We need the AdbServer class (even without using SSH) so that Automator can open the internal connection. with ADB(use_ssh=False) as AdbServer: automator = Automator(adb_server=AdbServer, adb_host="127.0.0.1", adb_port=5037) for device in automator.list_devices(state=None): help(device)
36.2
112
0.748619
from WhatsAppManifest import ADB, Automator with ADB(use_ssh=False) as AdbServer: automator = Automator(adb_server=AdbServer, adb_host="127.0.0.1", adb_port=5037) for device in automator.list_devices(state=None): help(device)
true
true
f717f4717d60ec922e24c1a81798c104320021d4
33,686
py
Python
scipy/interpolate/polyint.py
f0k/scipy
3145a226339b14bbc22f2e984848e05def7659c5
[ "BSD-3-Clause" ]
null
null
null
scipy/interpolate/polyint.py
f0k/scipy
3145a226339b14bbc22f2e984848e05def7659c5
[ "BSD-3-Clause" ]
null
null
null
scipy/interpolate/polyint.py
f0k/scipy
3145a226339b14bbc22f2e984848e05def7659c5
[ "BSD-3-Clause" ]
null
null
null
from __future__ import division, print_function, absolute_import import numpy as np from scipy.misc import factorial from scipy.lib.six.moves import xrange __all__ = ["KroghInterpolator", "krogh_interpolate", "BarycentricInterpolator", "barycentric_interpolate", "PiecewisePolynomial", "piecewise_polynomial_interpolate","approximate_taylor_polynomial", "pchip"] class KroghInterpolator(object): """ The interpolating polynomial for a set of points Constructs a polynomial that passes through a given set of points, optionally with specified derivatives at those points. Allows evaluation of the polynomial and all its derivatives. For reasons of numerical stability, this function does not compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives. Be aware that the algorithms implemented here are not necessarily the most numerically stable known. Moreover, even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon. In general, even with well-chosen x values, degrees higher than about thirty cause problems with numerical instability in this code. Based on [1]_. Parameters ---------- xi : array_like, length N Known x-coordinates yi : array_like, N by R Known y-coordinates, interpreted as vectors of length R, or scalars if R=1. When an xi occurs two or more times in a row, the corresponding yi's represent derivative values. References ---------- .. [1] Krogh, "Efficient Algorithms for Polynomial Interpolation and Numerical Differentiation", 1970. """ def __init__(self, xi, yi): """Construct an interpolator passing through the specified points The polynomial passes through all the pairs (xi,yi). One may additionally specify a number of derivatives at each point xi; this is done by repeating the value xi and specifying the derivatives as successive yi values. Parameters ---------- xi : array-like, length N known x-coordinates yi : array-like, N by R known y-coordinates, interpreted as vectors of length R, or scalars if R=1. When an xi occurs two or more times in a row, the corresponding yi's represent derivative values. Examples -------- To produce a polynomial that is zero at 0 and 1 and has derivative 2 at 0, call >>> KroghInterpolator([0,0,1],[0,2,0]) This constructs the quadratic 2*X**2-2*X. The derivative condition is indicated by the repeated zero in the xi array; the corresponding yi values are 0, the function value, and 2, the derivative value. For another example, given xi, yi, and a derivative ypi for each point, appropriate arrays can be constructed as: >>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi))) >>> KroghInterpolator(xi_k, yi_k) To produce a vector-valued polynomial, supply a higher-dimensional array for yi: >>> KroghInterpolator([0,1],[[2,3],[4,5]]) This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1. """ self.xi = np.asarray(xi) self.yi = np.asarray(yi) if len(self.yi.shape)==1: self.vector_valued = False self.yi = self.yi[:,np.newaxis] elif len(self.yi.shape)>2: raise ValueError("y coordinates must be either scalars or vectors") else: self.vector_valued = True n = len(xi) self.n = n nn, r = self.yi.shape if nn!=n: raise ValueError("%d x values provided and %d y values; must be equal" % (n, nn)) self.r = r c = np.zeros((n+1,r)) c[0] = yi[0] Vk = np.zeros((n,r)) for k in xrange(1,n): s = 0 while s<=k and xi[k-s]==xi[k]: s += 1 s -= 1 Vk[0] = yi[k]/float(factorial(s)) for i in xrange(k-s): if xi[i] == xi[k]: raise ValueError("Elements if `xi` can't be equal.") if s==0: Vk[i+1] = (c[i]-Vk[i])/(xi[i]-xi[k]) else: Vk[i+1] = (Vk[i+1]-Vk[i])/(xi[i]-xi[k]) c[k] = Vk[k-s] self.c = c def __call__(self,x): """Evaluate the polynomial at the point x Parameters ---------- x : scalar or array-like of length N Returns ------- y : scalar, array of length R, array of length N, or array of length N by R If x is a scalar, returns either a vector or a scalar depending on whether the interpolator is vector-valued or scalar-valued. If x is a vector, returns a vector of values. """ if _isscalar(x): scalar = True m = 1 else: scalar = False m = len(x) x = np.asarray(x) n = self.n pi = 1 p = np.zeros((m,self.r)) p += self.c[0,np.newaxis,:] for k in xrange(1,n): w = x - self.xi[k-1] pi = w*pi p = p + np.multiply.outer(pi,self.c[k]) if not self.vector_valued: if scalar: return p[0,0] else: return p[:,0] else: if scalar: return p[0] else: return p def derivatives(self,x,der=None): """ Evaluate many derivatives of the polynomial at the point x Produce an array of all derivative values at the point x. Parameters ---------- x : scalar or array_like of length N Point or points at which to evaluate the derivatives der : None or integer How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points). This number includes the function value as 0th derivative. Returns ------- d : ndarray If the interpolator's values are R-dimensional then the returned array will be der by N by R. If x is a scalar, the middle dimension will be dropped; if R is 1 then the last dimension will be dropped. Examples -------- >>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0) array([1.0,2.0,3.0]) >>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0]) array([[1.0,1.0], [2.0,2.0], [3.0,3.0]]) """ if _isscalar(x): scalar = True m = 1 else: scalar = False m = len(x) x = np.asarray(x) n = self.n r = self.r if der is None: der = self.n dern = min(self.n,der) pi = np.zeros((n,m)) w = np.zeros((n,m)) pi[0] = 1 p = np.zeros((m,self.r)) p += self.c[0,np.newaxis,:] for k in xrange(1,n): w[k-1] = x - self.xi[k-1] pi[k] = w[k-1]*pi[k-1] p += np.multiply.outer(pi[k],self.c[k]) cn = np.zeros((max(der,n+1),m,r)) cn[:n+1,...] += self.c[:n+1,np.newaxis,:] cn[0] = p for k in xrange(1,n): for i in xrange(1,n-k+1): pi[i] = w[k+i-1]*pi[i-1]+pi[i] cn[k] = cn[k]+pi[i,:,np.newaxis]*cn[k+i] cn[k]*=factorial(k) cn[n,...] = 0 if not self.vector_valued: if scalar: return cn[:der,0,0] else: return cn[:der,:,0] else: if scalar: return cn[:der,0] else: return cn[:der] def derivative(self,x,der): """ Evaluate one derivative of the polynomial at the point x Parameters ---------- x : scalar or array_like of length N Point or points at which to evaluate the derivatives der : None or integer Which derivative to extract. This number includes the function value as 0th derivative. Returns ------- d : ndarray If the interpolator's values are R-dimensional then the returned array will be N by R. If x is a scalar, the middle dimension will be dropped; if R is 1 then the last dimension will be dropped. Notes ----- This is computed by evaluating all derivatives up to the desired one (using self.derivatives()) and then discarding the rest. """ return self.derivatives(x,der=der+1)[der] def krogh_interpolate(xi,yi,x,der=0): """ Convenience function for polynomial interpolation. Constructs a polynomial that passes through a given set of points, optionally with specified derivatives at those points. Evaluates the polynomial or some of its derivatives. For reasons of numerical stability, this function does not compute the coefficients of the polynomial, although they can be obtained by evaluating all the derivatives. Be aware that the algorithms implemented here are not necessarily the most numerically stable known. Moreover, even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon. In general, even with well-chosen x values, degrees higher than about thirty cause problems with numerical instability in this code. Based on Krogh 1970, "Efficient Algorithms for Polynomial Interpolation and Numerical Differentiation" The polynomial passes through all the pairs (xi,yi). One may additionally specify a number of derivatives at each point xi; this is done by repeating the value xi and specifying the derivatives as successive yi values. Parameters ---------- xi : array_like, length N known x-coordinates yi : array_like, N by R known y-coordinates, interpreted as vectors of length R, or scalars if R=1 x : scalar or array_like of length N Point or points at which to evaluate the derivatives der : integer or list How many derivatives to extract; None for all potentially nonzero derivatives (that is a number equal to the number of points), or a list of derivatives to extract. This number includes the function value as 0th derivative. Returns ------- d : ndarray If the interpolator's values are R-dimensional then the returned array will be the number of derivatives by N by R. If x is a scalar, the middle dimension will be dropped; if the yi are scalars then the last dimension will be dropped. Notes ----- Construction of the interpolating polynomial is a relatively expensive process. If you want to evaluate it repeatedly consider using the class KroghInterpolator (which is what this function uses). """ P = KroghInterpolator(xi, yi) if der==0: return P(x) elif _isscalar(der): return P.derivative(x,der=der) else: return P.derivatives(x,der=np.amax(der)+1)[der] def approximate_taylor_polynomial(f,x,degree,scale,order=None): """ Estimate the Taylor polynomial of f at x by polynomial fitting. Parameters ---------- f : callable The function whose Taylor polynomial is sought. Should accept a vector of x values. x : scalar The point at which the polynomial is to be evaluated. degree : int The degree of the Taylor polynomial scale : scalar The width of the interval to use to evaluate the Taylor polynomial. Function values spread over a range this wide are used to fit the polynomial. Must be chosen carefully. order : int or None The order of the polynomial to be used in the fitting; f will be evaluated ``order+1`` times. If None, use `degree`. Returns ------- p : poly1d instance The Taylor polynomial (translated to the origin, so that for example p(0)=f(x)). Notes ----- The appropriate choice of "scale" is a trade-off; too large and the function differs from its Taylor polynomial too much to get a good answer, too small and round-off errors overwhelm the higher-order terms. The algorithm used becomes numerically unstable around order 30 even under ideal circumstances. Choosing order somewhat larger than degree may improve the higher-order terms. """ if order is None: order=degree n = order+1 # Choose n points that cluster near the endpoints of the interval in # a way that avoids the Runge phenomenon. Ensure, by including the # endpoint or not as appropriate, that one point always falls at x # exactly. xs = scale*np.cos(np.linspace(0,np.pi,n,endpoint=n%1)) + x P = KroghInterpolator(xs, f(xs)) d = P.derivatives(x,der=degree+1) return np.poly1d((d/factorial(np.arange(degree+1)))[::-1]) class BarycentricInterpolator(object): """The interpolating polynomial for a set of points Constructs a polynomial that passes through a given set of points. Allows evaluation of the polynomial, efficient changing of the y values to be interpolated, and updating by adding more x values. For reasons of numerical stability, this function does not compute the coefficients of the polynomial. This class uses a "barycentric interpolation" method that treats the problem as a special case of rational function interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon. Based on Berrut and Trefethen 2004, "Barycentric Lagrange Interpolation". """ def __init__(self, xi, yi=None): """Construct an object capable of interpolating functions sampled at xi The values yi need to be provided before the function is evaluated, but none of the preprocessing depends on them, so rapid updates are possible. Parameters ---------- xi : array-like of length N The x coordinates of the points the polynomial should pass through yi : array-like N by R or None The y coordinates of the points the polynomial should pass through; if R>1 the polynomial is vector-valued. If None the y values will be supplied later. """ self.n = len(xi) self.xi = np.asarray(xi) if yi is not None and len(yi)!=len(self.xi): raise ValueError("yi dimensions do not match xi dimensions") self.set_yi(yi) self.wi = np.zeros(self.n) self.wi[0] = 1 for j in xrange(1,self.n): self.wi[:j]*=(self.xi[j]-self.xi[:j]) self.wi[j] = np.multiply.reduce(self.xi[:j]-self.xi[j]) self.wi**=-1 def set_yi(self, yi): """ Update the y values to be interpolated The barycentric interpolation algorithm requires the calculation of weights, but these depend only on the xi. The yi can be changed at any time. Parameters ---------- yi : array_like N by R The y coordinates of the points the polynomial should pass through; if R>1 the polynomial is vector-valued. If None the y values will be supplied later. """ if yi is None: self.yi = None return yi = np.asarray(yi) if len(yi.shape)==1: self.vector_valued = False yi = yi[:,np.newaxis] elif len(yi.shape)>2: raise ValueError("y coordinates must be either scalars or vectors") else: self.vector_valued = True n, r = yi.shape if n!=len(self.xi): raise ValueError("yi dimensions do not match xi dimensions") self.yi = yi self.r = r def add_xi(self, xi, yi=None): """ Add more x values to the set to be interpolated The barycentric interpolation algorithm allows easy updating by adding more points for the polynomial to pass through. Parameters ---------- xi : array_like of length N1 The x coordinates of the points the polynomial should pass through yi : array_like N1 by R or None The y coordinates of the points the polynomial should pass through; if R>1 the polynomial is vector-valued. If None the y values will be supplied later. The yi should be specified if and only if the interpolator has y values specified. """ if yi is not None: if self.yi is None: raise ValueError("No previous yi value to update!") yi = np.asarray(yi) if len(yi.shape)==1: if self.vector_valued: raise ValueError("Cannot extend dimension %d y vectors with scalars" % self.r) yi = yi[:,np.newaxis] elif len(yi.shape)>2: raise ValueError("y coordinates must be either scalars or vectors") else: n, r = yi.shape if r!=self.r: raise ValueError("Cannot extend dimension %d y vectors with dimension %d y vectors" % (self.r, r)) self.yi = np.vstack((self.yi,yi)) else: if self.yi is not None: raise ValueError("No update to yi provided!") old_n = self.n self.xi = np.concatenate((self.xi,xi)) self.n = len(self.xi) self.wi**=-1 old_wi = self.wi self.wi = np.zeros(self.n) self.wi[:old_n] = old_wi for j in xrange(old_n,self.n): self.wi[:j]*=(self.xi[j]-self.xi[:j]) self.wi[j] = np.multiply.reduce(self.xi[:j]-self.xi[j]) self.wi**=-1 def __call__(self, x): """Evaluate the interpolating polynomial at the points x Parameters ---------- x : scalar or array-like of length M Returns ------- y : scalar or array-like of length R or length M or M by R The shape of y depends on the shape of x and whether the interpolator is vector-valued or scalar-valued. Notes ----- Currently the code computes an outer product between x and the weights, that is, it constructs an intermediate array of size N by M, where N is the degree of the polynomial. """ scalar = _isscalar(x) x = np.atleast_1d(x) c = np.subtract.outer(x,self.xi) z = c==0 c[z] = 1 c = self.wi/c p = np.dot(c,self.yi)/np.sum(c,axis=-1)[:,np.newaxis] i, j = np.nonzero(z) p[i] = self.yi[j] if not self.vector_valued: if scalar: return p[0,0] else: return p[:,0] else: if scalar: return p[0] else: return p def barycentric_interpolate(xi, yi, x): """ Convenience function for polynomial interpolation Constructs a polynomial that passes through a given set of points, then evaluates the polynomial. For reasons of numerical stability, this function does not compute the coefficients of the polynomial. This function uses a "barycentric interpolation" method that treats the problem as a special case of rational function interpolation. This algorithm is quite stable, numerically, but even in a world of exact computation, unless the x coordinates are chosen very carefully - Chebyshev zeros (e.g. cos(i*pi/n)) are a good choice - polynomial interpolation itself is a very ill-conditioned process due to the Runge phenomenon. Based on Berrut and Trefethen 2004, "Barycentric Lagrange Interpolation". Parameters ---------- xi : array_like of length N The x coordinates of the points the polynomial should pass through yi : array_like N by R The y coordinates of the points the polynomial should pass through; if R>1 the polynomial is vector-valued. x : scalar or array_like of length M Returns ------- y : scalar or array_like of length R or length M or M by R The shape of y depends on the shape of x and whether the interpolator is vector-valued or scalar-valued. Notes ----- Construction of the interpolation weights is a relatively slow process. If you want to call this many times with the same xi (but possibly varying yi or x) you should use the class BarycentricInterpolator. This is what this function uses internally. """ return BarycentricInterpolator(xi, yi)(x) class PiecewisePolynomial(object): """Piecewise polynomial curve specified by points and derivatives This class represents a curve that is a piecewise polynomial. It passes through a list of points and has specified derivatives at each point. The degree of the polynomial may very from segment to segment, as may the number of derivatives available. The degree should not exceed about thirty. Appending points to the end of the curve is efficient. """ def __init__(self, xi, yi, orders=None, direction=None): """Construct a piecewise polynomial Parameters ---------- xi : array-like of length N a sorted list of x-coordinates yi : list of lists of length N yi[i] is the list of derivatives known at xi[i] orders : list of integers, or integer a list of polynomial orders, or a single universal order direction : {None, 1, -1} indicates whether the xi are increasing or decreasing +1 indicates increasing -1 indicates decreasing None indicates that it should be deduced from the first two xi Notes ----- If orders is None, or orders[i] is None, then the degree of the polynomial segment is exactly the degree required to match all i available derivatives at both endpoints. If orders[i] is not None, then some derivatives will be ignored. The code will try to use an equal number of derivatives from each end; if the total number of derivatives needed is odd, it will prefer the rightmost endpoint. If not enough derivatives are available, an exception is raised. """ yi0 = np.asarray(yi[0]) if len(yi0.shape)==2: self.vector_valued = True self.r = yi0.shape[1] elif len(yi0.shape)==1: self.vector_valued = False self.r = 1 else: raise ValueError("Each derivative must be a vector, not a higher-rank array") self.xi = [xi[0]] self.yi = [yi0] self.n = 1 self.direction = direction self.orders = [] self.polynomials = [] self.extend(xi[1:],yi[1:],orders) def _make_polynomial(self,x1,y1,x2,y2,order,direction): """Construct the interpolating polynomial object Deduces the number of derivatives to match at each end from order and the number of derivatives available. If possible it uses the same number of derivatives from each end; if the number is odd it tries to take the extra one from y2. In any case if not enough derivatives are available at one end or another it draws enough to make up the total from the other end. """ n = order+1 n1 = min(n//2,len(y1)) n2 = min(n-n1,len(y2)) n1 = min(n-n2,len(y1)) if n1+n2!=n: raise ValueError("Point %g has %d derivatives, point %g has %d derivatives, but order %d requested" % (x1, len(y1), x2, len(y2), order)) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with length y1 or y2.") xi = np.zeros(n) if self.vector_valued: yi = np.zeros((n,self.r)) else: yi = np.zeros((n,)) xi[:n1] = x1 yi[:n1] = y1[:n1] xi[n1:] = x2 yi[n1:] = y2[:n2] return KroghInterpolator(xi,yi) def append(self, xi, yi, order=None): """ Append a single point with derivatives to the PiecewisePolynomial Parameters ---------- xi : float yi : array_like yi is the list of derivatives known at xi order : integer or None a polynomial order, or instructions to use the highest possible order """ yi = np.asarray(yi) if self.vector_valued: if (len(yi.shape)!=2 or yi.shape[1]!=self.r): raise ValueError("Each derivative must be a vector of length %d" % self.r) else: if len(yi.shape)!=1: raise ValueError("Each derivative must be a scalar") if self.direction is None: self.direction = np.sign(xi-self.xi[-1]) elif (xi-self.xi[-1])*self.direction < 0: raise ValueError("x coordinates must be in the %d direction: %s" % (self.direction, self.xi)) self.xi.append(xi) self.yi.append(yi) if order is None: n1 = len(self.yi[-2]) n2 = len(self.yi[-1]) n = n1+n2 order = n-1 self.orders.append(order) self.polynomials.append(self._make_polynomial( self.xi[-2], self.yi[-2], self.xi[-1], self.yi[-1], order, self.direction)) self.n += 1 def extend(self, xi, yi, orders=None): """ Extend the PiecewisePolynomial by a list of points Parameters ---------- xi : array_like of length N1 a sorted list of x-coordinates yi : list of lists of length N1 yi[i] is the list of derivatives known at xi[i] orders : list of integers, or integer a list of polynomial orders, or a single universal order direction : {None, 1, -1} indicates whether the xi are increasing or decreasing +1 indicates increasing -1 indicates decreasing None indicates that it should be deduced from the first two xi """ for i in xrange(len(xi)): if orders is None or _isscalar(orders): self.append(xi[i],yi[i],orders) else: self.append(xi[i],yi[i],orders[i]) def __call__(self, x): """Evaluate the piecewise polynomial Parameters ---------- x : scalar or array-like of length N Returns ------- y : scalar or array-like of length R or length N or N by R """ if _isscalar(x): pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2) y = self.polynomials[pos](x) else: x = np.asarray(x) m = len(x) pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2) if self.vector_valued: y = np.zeros((m,self.r)) else: y = np.zeros(m) for i in xrange(self.n-1): c = pos==i y[c] = self.polynomials[i](x[c]) return y def derivative(self, x, der): """ Evaluate a derivative of the piecewise polynomial Parameters ---------- x : scalar or array_like of length N der : integer which single derivative to extract Returns ------- y : scalar or array_like of length R or length N or N by R Notes ----- This currently computes (using self.derivatives()) all derivatives of the curve segment containing each x but returns only one. """ return self.derivatives(x,der=der+1)[der] def derivatives(self, x, der): """ Evaluate a derivative of the piecewise polynomial Parameters ---------- x : scalar or array_like of length N der : integer how many derivatives (including the function value as 0th derivative) to extract Returns ------- y : array_like of shape der by R or der by N or der by N by R """ if _isscalar(x): pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2) y = self.polynomials[pos].derivatives(x,der=der) else: x = np.asarray(x) m = len(x) pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2) if self.vector_valued: y = np.zeros((der,m,self.r)) else: y = np.zeros((der,m)) for i in xrange(self.n-1): c = pos==i y[:,c] = self.polynomials[i].derivatives(x[c],der=der) return y def piecewise_polynomial_interpolate(xi,yi,x,orders=None,der=0): """ Convenience function for piecewise polynomial interpolation Parameters ---------- xi : array_like A sorted list of x-coordinates, of length N. yi : list of lists yi[i] is the list of derivatives known at xi[i]. Of length N. x : scalar or array_like Of length M. orders : int or list of ints a list of polynomial orders, or a single universal order der : int Which single derivative to extract. Returns ------- y : scalar or array_like The result, of length R or length M or M by R, Notes ----- If orders is None, or orders[i] is None, then the degree of the polynomial segment is exactly the degree required to match all i available derivatives at both endpoints. If orders[i] is not None, then some derivatives will be ignored. The code will try to use an equal number of derivatives from each end; if the total number of derivatives needed is odd, it will prefer the rightmost endpoint. If not enough derivatives are available, an exception is raised. Construction of these piecewise polynomials can be an expensive process; if you repeatedly evaluate the same polynomial, consider using the class PiecewisePolynomial (which is what this function does). """ P = PiecewisePolynomial(xi, yi, orders) if der==0: return P(x) elif _isscalar(der): return P.derivative(x,der=der) else: return P.derivatives(x,der=np.amax(der)+1)[der] def _isscalar(x): """Check whether x is if a scalar type, or 0-dim""" return np.isscalar(x) or hasattr(x, 'shape') and x.shape == () def _edge_case(m0, d1): return np.where((d1==0) | (m0==0), 0.0, 1.0/(1.0/m0+1.0/d1)) def _find_derivatives(x, y): # Determine the derivatives at the points y_k, d_k, by using # PCHIP algorithm is: # We choose the derivatives at the point x_k by # Let m_k be the slope of the kth segment (between k and k+1) # If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0 # else use weighted harmonic mean: # w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1} # 1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1}) # where h_k is the spacing between x_k and x_{k+1} hk = x[1:] - x[:-1] mk = (y[1:] - y[:-1]) / hk smk = np.sign(mk) condition = ((smk[1:] != smk[:-1]) | (mk[1:]==0) | (mk[:-1]==0)) w1 = 2*hk[1:] + hk[:-1] w2 = hk[1:] + 2*hk[:-1] whmean = 1.0/(w1+w2)*(w1/mk[1:] + w2/mk[:-1]) dk = np.zeros_like(y) dk[1:-1][condition] = 0.0 dk[1:-1][~condition] = 1.0/whmean[~condition] # For end-points choose d_0 so that 1/d_0 = 1/m_0 + 1/d_1 unless # one of d_1 or m_0 is 0, then choose d_0 = 0 dk[0] = _edge_case(mk[0],dk[1]) dk[-1] = _edge_case(mk[-1],dk[-2]) return dk def pchip(x, y): """PCHIP 1-d monotonic cubic interpolation x and y are arrays of values used to approximate some function f, with ``y = f(x)``. This class factory function returns a callable class whose ``__call__`` method uses monotonic cubic, interpolation to find the value of new points. Parameters ---------- x : array A 1D array of monotonically increasing real values. x cannot include duplicate values (otherwise f is overspecified) y : array A 1-D array of real values. y's length along the interpolation axis must be equal to the length of x. Assumes x is sorted in monotonic order (e.g. ``x[1] > x[0]``). Returns ------- pchip : PiecewisePolynomial instance The result of the interpolation. """ derivs = _find_derivatives(x,y) return PiecewisePolynomial(x, list(zip(y, derivs)), orders=3, direction=None)
34.514344
206
0.591759
from __future__ import division, print_function, absolute_import import numpy as np from scipy.misc import factorial from scipy.lib.six.moves import xrange __all__ = ["KroghInterpolator", "krogh_interpolate", "BarycentricInterpolator", "barycentric_interpolate", "PiecewisePolynomial", "piecewise_polynomial_interpolate","approximate_taylor_polynomial", "pchip"] class KroghInterpolator(object): def __init__(self, xi, yi): self.xi = np.asarray(xi) self.yi = np.asarray(yi) if len(self.yi.shape)==1: self.vector_valued = False self.yi = self.yi[:,np.newaxis] elif len(self.yi.shape)>2: raise ValueError("y coordinates must be either scalars or vectors") else: self.vector_valued = True n = len(xi) self.n = n nn, r = self.yi.shape if nn!=n: raise ValueError("%d x values provided and %d y values; must be equal" % (n, nn)) self.r = r c = np.zeros((n+1,r)) c[0] = yi[0] Vk = np.zeros((n,r)) for k in xrange(1,n): s = 0 while s<=k and xi[k-s]==xi[k]: s += 1 s -= 1 Vk[0] = yi[k]/float(factorial(s)) for i in xrange(k-s): if xi[i] == xi[k]: raise ValueError("Elements if `xi` can't be equal.") if s==0: Vk[i+1] = (c[i]-Vk[i])/(xi[i]-xi[k]) else: Vk[i+1] = (Vk[i+1]-Vk[i])/(xi[i]-xi[k]) c[k] = Vk[k-s] self.c = c def __call__(self,x): if _isscalar(x): scalar = True m = 1 else: scalar = False m = len(x) x = np.asarray(x) n = self.n pi = 1 p = np.zeros((m,self.r)) p += self.c[0,np.newaxis,:] for k in xrange(1,n): w = x - self.xi[k-1] pi = w*pi p = p + np.multiply.outer(pi,self.c[k]) if not self.vector_valued: if scalar: return p[0,0] else: return p[:,0] else: if scalar: return p[0] else: return p def derivatives(self,x,der=None): if _isscalar(x): scalar = True m = 1 else: scalar = False m = len(x) x = np.asarray(x) n = self.n r = self.r if der is None: der = self.n dern = min(self.n,der) pi = np.zeros((n,m)) w = np.zeros((n,m)) pi[0] = 1 p = np.zeros((m,self.r)) p += self.c[0,np.newaxis,:] for k in xrange(1,n): w[k-1] = x - self.xi[k-1] pi[k] = w[k-1]*pi[k-1] p += np.multiply.outer(pi[k],self.c[k]) cn = np.zeros((max(der,n+1),m,r)) cn[:n+1,...] += self.c[:n+1,np.newaxis,:] cn[0] = p for k in xrange(1,n): for i in xrange(1,n-k+1): pi[i] = w[k+i-1]*pi[i-1]+pi[i] cn[k] = cn[k]+pi[i,:,np.newaxis]*cn[k+i] cn[k]*=factorial(k) cn[n,...] = 0 if not self.vector_valued: if scalar: return cn[:der,0,0] else: return cn[:der,:,0] else: if scalar: return cn[:der,0] else: return cn[:der] def derivative(self,x,der): return self.derivatives(x,der=der+1)[der] def krogh_interpolate(xi,yi,x,der=0): P = KroghInterpolator(xi, yi) if der==0: return P(x) elif _isscalar(der): return P.derivative(x,der=der) else: return P.derivatives(x,der=np.amax(der)+1)[der] def approximate_taylor_polynomial(f,x,degree,scale,order=None): if order is None: order=degree n = order+1 # Choose n points that cluster near the endpoints of the interval in # a way that avoids the Runge phenomenon. Ensure, by including the # endpoint or not as appropriate, that one point always falls at x # exactly. xs = scale*np.cos(np.linspace(0,np.pi,n,endpoint=n%1)) + x P = KroghInterpolator(xs, f(xs)) d = P.derivatives(x,der=degree+1) return np.poly1d((d/factorial(np.arange(degree+1)))[::-1]) class BarycentricInterpolator(object): def __init__(self, xi, yi=None): self.n = len(xi) self.xi = np.asarray(xi) if yi is not None and len(yi)!=len(self.xi): raise ValueError("yi dimensions do not match xi dimensions") self.set_yi(yi) self.wi = np.zeros(self.n) self.wi[0] = 1 for j in xrange(1,self.n): self.wi[:j]*=(self.xi[j]-self.xi[:j]) self.wi[j] = np.multiply.reduce(self.xi[:j]-self.xi[j]) self.wi**=-1 def set_yi(self, yi): if yi is None: self.yi = None return yi = np.asarray(yi) if len(yi.shape)==1: self.vector_valued = False yi = yi[:,np.newaxis] elif len(yi.shape)>2: raise ValueError("y coordinates must be either scalars or vectors") else: self.vector_valued = True n, r = yi.shape if n!=len(self.xi): raise ValueError("yi dimensions do not match xi dimensions") self.yi = yi self.r = r def add_xi(self, xi, yi=None): if yi is not None: if self.yi is None: raise ValueError("No previous yi value to update!") yi = np.asarray(yi) if len(yi.shape)==1: if self.vector_valued: raise ValueError("Cannot extend dimension %d y vectors with scalars" % self.r) yi = yi[:,np.newaxis] elif len(yi.shape)>2: raise ValueError("y coordinates must be either scalars or vectors") else: n, r = yi.shape if r!=self.r: raise ValueError("Cannot extend dimension %d y vectors with dimension %d y vectors" % (self.r, r)) self.yi = np.vstack((self.yi,yi)) else: if self.yi is not None: raise ValueError("No update to yi provided!") old_n = self.n self.xi = np.concatenate((self.xi,xi)) self.n = len(self.xi) self.wi**=-1 old_wi = self.wi self.wi = np.zeros(self.n) self.wi[:old_n] = old_wi for j in xrange(old_n,self.n): self.wi[:j]*=(self.xi[j]-self.xi[:j]) self.wi[j] = np.multiply.reduce(self.xi[:j]-self.xi[j]) self.wi**=-1 def __call__(self, x): scalar = _isscalar(x) x = np.atleast_1d(x) c = np.subtract.outer(x,self.xi) z = c==0 c[z] = 1 c = self.wi/c p = np.dot(c,self.yi)/np.sum(c,axis=-1)[:,np.newaxis] i, j = np.nonzero(z) p[i] = self.yi[j] if not self.vector_valued: if scalar: return p[0,0] else: return p[:,0] else: if scalar: return p[0] else: return p def barycentric_interpolate(xi, yi, x): return BarycentricInterpolator(xi, yi)(x) class PiecewisePolynomial(object): def __init__(self, xi, yi, orders=None, direction=None): yi0 = np.asarray(yi[0]) if len(yi0.shape)==2: self.vector_valued = True self.r = yi0.shape[1] elif len(yi0.shape)==1: self.vector_valued = False self.r = 1 else: raise ValueError("Each derivative must be a vector, not a higher-rank array") self.xi = [xi[0]] self.yi = [yi0] self.n = 1 self.direction = direction self.orders = [] self.polynomials = [] self.extend(xi[1:],yi[1:],orders) def _make_polynomial(self,x1,y1,x2,y2,order,direction): n = order+1 n1 = min(n//2,len(y1)) n2 = min(n-n1,len(y2)) n1 = min(n-n2,len(y1)) if n1+n2!=n: raise ValueError("Point %g has %d derivatives, point %g has %d derivatives, but order %d requested" % (x1, len(y1), x2, len(y2), order)) if not (n1 <= len(y1) and n2 <= len(y2)): raise ValueError("`order` input incompatible with length y1 or y2.") xi = np.zeros(n) if self.vector_valued: yi = np.zeros((n,self.r)) else: yi = np.zeros((n,)) xi[:n1] = x1 yi[:n1] = y1[:n1] xi[n1:] = x2 yi[n1:] = y2[:n2] return KroghInterpolator(xi,yi) def append(self, xi, yi, order=None): yi = np.asarray(yi) if self.vector_valued: if (len(yi.shape)!=2 or yi.shape[1]!=self.r): raise ValueError("Each derivative must be a vector of length %d" % self.r) else: if len(yi.shape)!=1: raise ValueError("Each derivative must be a scalar") if self.direction is None: self.direction = np.sign(xi-self.xi[-1]) elif (xi-self.xi[-1])*self.direction < 0: raise ValueError("x coordinates must be in the %d direction: %s" % (self.direction, self.xi)) self.xi.append(xi) self.yi.append(yi) if order is None: n1 = len(self.yi[-2]) n2 = len(self.yi[-1]) n = n1+n2 order = n-1 self.orders.append(order) self.polynomials.append(self._make_polynomial( self.xi[-2], self.yi[-2], self.xi[-1], self.yi[-1], order, self.direction)) self.n += 1 def extend(self, xi, yi, orders=None): for i in xrange(len(xi)): if orders is None or _isscalar(orders): self.append(xi[i],yi[i],orders) else: self.append(xi[i],yi[i],orders[i]) def __call__(self, x): if _isscalar(x): pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2) y = self.polynomials[pos](x) else: x = np.asarray(x) m = len(x) pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2) if self.vector_valued: y = np.zeros((m,self.r)) else: y = np.zeros(m) for i in xrange(self.n-1): c = pos==i y[c] = self.polynomials[i](x[c]) return y def derivative(self, x, der): return self.derivatives(x,der=der+1)[der] def derivatives(self, x, der): if _isscalar(x): pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2) y = self.polynomials[pos].derivatives(x,der=der) else: x = np.asarray(x) m = len(x) pos = np.clip(np.searchsorted(self.xi, x) - 1, 0, self.n-2) if self.vector_valued: y = np.zeros((der,m,self.r)) else: y = np.zeros((der,m)) for i in xrange(self.n-1): c = pos==i y[:,c] = self.polynomials[i].derivatives(x[c],der=der) return y def piecewise_polynomial_interpolate(xi,yi,x,orders=None,der=0): P = PiecewisePolynomial(xi, yi, orders) if der==0: return P(x) elif _isscalar(der): return P.derivative(x,der=der) else: return P.derivatives(x,der=np.amax(der)+1)[der] def _isscalar(x): return np.isscalar(x) or hasattr(x, 'shape') and x.shape == () def _edge_case(m0, d1): return np.where((d1==0) | (m0==0), 0.0, 1.0/(1.0/m0+1.0/d1)) def _find_derivatives(x, y): # Determine the derivatives at the points y_k, d_k, by using # PCHIP algorithm is: # We choose the derivatives at the point x_k by # Let m_k be the slope of the kth segment (between k and k+1) # If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0 # else use weighted harmonic mean: # w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1} # 1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1}) # where h_k is the spacing between x_k and x_{k+1} hk = x[1:] - x[:-1] mk = (y[1:] - y[:-1]) / hk smk = np.sign(mk) condition = ((smk[1:] != smk[:-1]) | (mk[1:]==0) | (mk[:-1]==0)) w1 = 2*hk[1:] + hk[:-1] w2 = hk[1:] + 2*hk[:-1] whmean = 1.0/(w1+w2)*(w1/mk[1:] + w2/mk[:-1]) dk = np.zeros_like(y) dk[1:-1][condition] = 0.0 dk[1:-1][~condition] = 1.0/whmean[~condition] # For end-points choose d_0 so that 1/d_0 = 1/m_0 + 1/d_1 unless # one of d_1 or m_0 is 0, then choose d_0 = 0 dk[0] = _edge_case(mk[0],dk[1]) dk[-1] = _edge_case(mk[-1],dk[-2]) return dk def pchip(x, y): derivs = _find_derivatives(x,y) return PiecewisePolynomial(x, list(zip(y, derivs)), orders=3, direction=None)
true
true
f717f5329e9080881c559dfd976b9a5f38d7606a
670
py
Python
680_Valid_Palindrome_II.py
yuqingchen/Leetcode
6cbcb36e66a10a226ddb0966701e61ce4c2434d4
[ "MIT" ]
1
2019-12-12T20:16:08.000Z
2019-12-12T20:16:08.000Z
680_Valid_Palindrome_II.py
yuqingchen/Leetcode
6cbcb36e66a10a226ddb0966701e61ce4c2434d4
[ "MIT" ]
null
null
null
680_Valid_Palindrome_II.py
yuqingchen/Leetcode
6cbcb36e66a10a226ddb0966701e61ce4c2434d4
[ "MIT" ]
null
null
null
class Solution: def validPalindrome(self, s: str) -> bool: left, right = self.twopointer(0, len(s) - 1, s) if left >= right : return True return self.valid(left + 1, right, s) or self.valid(left, right - 1, s) def valid(self, left, right, s) : l, r = self.twopointer(left, right, s) if l >= r : return True else: return False def twopointer(self, left, right, s) : while left < right : if s[left] == s[right] : left += 1 right -= 1 else : return left, right return left, right
30.454545
79
0.474627
class Solution: def validPalindrome(self, s: str) -> bool: left, right = self.twopointer(0, len(s) - 1, s) if left >= right : return True return self.valid(left + 1, right, s) or self.valid(left, right - 1, s) def valid(self, left, right, s) : l, r = self.twopointer(left, right, s) if l >= r : return True else: return False def twopointer(self, left, right, s) : while left < right : if s[left] == s[right] : left += 1 right -= 1 else : return left, right return left, right
true
true
f717f561ebd073978d59e58a6e54a7189383291d
24,623
py
Python
tensorflow_probability/python/distributions/student_t_process.py
hendriksanta/probability
6eedc0f01a539b3bee7be28ccd2a9cce15d92f7f
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/student_t_process.py
hendriksanta/probability
6eedc0f01a539b3bee7be28ccd2a9cce15d92f7f
[ "Apache-2.0" ]
null
null
null
tensorflow_probability/python/distributions/student_t_process.py
hendriksanta/probability
6eedc0f01a539b3bee7be28ccd2a9cce15d92f7f
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The StudentTProcess distribution class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import warnings # Dependency imports import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import identity as identity_bijector from tensorflow_probability.python.distributions import distribution from tensorflow_probability.python.distributions import multivariate_student_t from tensorflow_probability.python.distributions import student_t from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import distribution_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import tensor_util from tensorflow_probability.python.internal import tensorshape_util from tensorflow.python.util import deprecation # pylint: disable=g-direct-tensorflow-import __all__ = [ 'StudentTProcess', ] def _add_diagonal_shift(matrix, shift): return tf.linalg.set_diag( matrix, tf.linalg.diag_part(matrix) + shift, name='add_diagonal_shift') def make_cholesky_factored_marginal_fn(jitter): """Construct a `marginal_fn` for use with `tfd.StudentTProcess`. The returned function computes the Cholesky factorization of the input covariance plus a diagonal jitter, and uses that for the `scale` of a `tfd.MultivariateNormalLinearOperator`. Args: jitter: `float` scalar `Tensor` added to the diagonal of the covariance matrix to ensure positive definiteness of the covariance matrix. Returns: marginal_fn: A Python function that takes a location, covariance matrix, optional `validate_args`, `allow_nan_stats` and `name` arguments, and returns a `tfd.MultivariateNormalLinearOperator`. """ def marginal_fn( df, loc, covariance, validate_args=False, allow_nan_stats=False, name='marginal_distribution'): squared_scale = ((df - 2.) / df)[ ..., tf.newaxis, tf.newaxis] * covariance scale = tf.linalg.LinearOperatorLowerTriangular( tf.linalg.cholesky(_add_diagonal_shift(squared_scale, jitter)), is_non_singular=True, name='StudentTProcessScaleLinearOperator') return multivariate_student_t.MultivariateStudentTLinearOperator( df=df, loc=loc, scale=scale, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) return marginal_fn class StudentTProcess(distribution.Distribution): """Marginal distribution of a Student's T process at finitely many points. A Student's T process (TP) is an indexed collection of random variables, any finite collection of which are jointly Multivariate Student's T. While this definition applies to finite index sets, it is typically implicit that the index set is infinite; in applications, it is often some finite dimensional real or complex vector space. In such cases, the TP may be thought of as a distribution over (real- or complex-valued) functions defined over the index set. Just as Student's T distributions are fully specified by their degrees of freedom, location and scale, a Student's T process can be completely specified by a degrees of freedom parameter, mean function and covariance function. Let `S` denote the index set and `K` the space in which each indexed random variable takes its values (again, often R or C). The mean function is then a map `m: S -> K`, and the covariance function, or kernel, is a positive-definite function `k: (S x S) -> K`. The properties of functions drawn from a TP are entirely dictated (up to translation) by the form of the kernel function. This `Distribution` represents the marginal joint distribution over function values at a given finite collection of points `[x[1], ..., x[N]]` from the index set `S`. By definition, this marginal distribution is just a multivariate Student's T distribution, whose mean is given by the vector `[ m(x[1]), ..., m(x[N]) ]` and whose covariance matrix is constructed from pairwise applications of the kernel function to the given inputs: ```none | k(x[1], x[1]) k(x[1], x[2]) ... k(x[1], x[N]) | | k(x[2], x[1]) k(x[2], x[2]) ... k(x[2], x[N]) | | ... ... ... | | k(x[N], x[1]) k(x[N], x[2]) ... k(x[N], x[N]) | ``` For this to be a valid covariance matrix, it must be symmetric and positive definite; hence the requirement that `k` be a positive definite function (which, by definition, says that the above procedure will yield PD matrices). Note also we use a parameterization as suggested in [1], which requires `df` to be greater than 2. This allows for the covariance for any finite dimensional marginal of the TP (a multivariate Student's T distribution) to just be the PD matrix generated by the kernel. #### Mathematical Details The probability density function (pdf) is a multivariate Student's T whose parameters are derived from the TP's properties: ```none pdf(x; df, index_points, mean_fn, kernel) = MultivariateStudentT(df, loc, K) K = (df - 2) / df * (kernel.matrix(index_points, index_points) + observation_noise_variance * eye(N)) loc = (x - mean_fn(index_points))^T @ K @ (x - mean_fn(index_points)) ``` where: * `df` is the degrees of freedom parameter for the TP. * `index_points` are points in the index set over which the TP is defined, * `mean_fn` is a callable mapping the index set to the TP's mean values, * `kernel` is `PositiveSemidefiniteKernel`-like and represents the covariance function of the TP, * `observation_noise_variance` is a term added to the diagonal of the kernel matrix. In the limit of `df` to `inf`, this represents the observation noise of a gaussian likelihood. * `eye(N)` is an N-by-N identity matrix. #### Examples ##### Draw joint samples from a TP prior ```python import numpy as np import tensorflow.compat.v2 as tf import tensorflow_probability as tfp tf.enable_v2_behavior() tfd = tfp.distributions psd_kernels = tfp.math.psd_kernels num_points = 100 # Index points should be a collection (100, here) of feature vectors. In this # example, we're using 1-d vectors, so we just need to reshape the output from # np.linspace, to give a shape of (100, 1). index_points = np.expand_dims(np.linspace(-1., 1., num_points), -1) # Define a kernel with default parameters. kernel = psd_kernels.ExponentiatedQuadratic() tp = tfd.StudentTProcess(3., kernel, index_points) samples = tp.sample(10) # ==> 10 independently drawn, joint samples at `index_points` noisy_tp = tfd.StudentTProcess( df=3., kernel=kernel, index_points=index_points) noisy_samples = noisy_tp.sample(10) # ==> 10 independently drawn, noisy joint samples at `index_points` ``` ##### Optimize kernel parameters via maximum marginal likelihood. ```python # Suppose we have some data from a known function. Note the index points in # general have shape `[b1, ..., bB, f1, ..., fF]` (here we assume `F == 1`), # so we need to explicitly consume the feature dimensions (just the last one # here). f = lambda x: np.sin(10*x[..., 0]) * np.exp(-x[..., 0]**2) observed_index_points = np.expand_dims(np.random.uniform(-1., 1., 50), -1) # Squeeze to take the shape from [50, 1] to [50]. observed_values = f(observed_index_points) amplitude = tfp.util.TransformedVariable( 1., tfp.bijectors.Softplus(), dtype=np.float64, name='amplitude') length_scale = tfp.util.TransformedVariable( 1., tfp.bijectors.Softplus(), dtype=np.float64, name='length_scale') # Define a kernel with trainable parameters. kernel = psd_kernels.ExponentiatedQuadratic( amplitude=amplitude, length_scale=length_scale) tp = tfd.StudentTProcess(3., kernel, observed_index_points) optimizer = tf.optimizers.Adam() @tf.function def optimize(): with tf.GradientTape() as tape: loss = -tp.log_prob(observed_values) grads = tape.gradient(loss, tp.trainable_variables) optimizer.apply_gradients(zip(grads, tp.trainable_variables)) return loss for i in range(1000): nll = optimize() if i % 100 == 0: print("Step {}: NLL = {}".format(i, nll)) print("Final NLL = {}".format(nll)) ``` #### References [1]: Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani. Student-t Processes as Alternatives to Gaussian Processes. In _Artificial Intelligence and Statistics_, 2014. https://www.cs.cmu.edu/~andrewgw/tprocess.pdf """ @deprecation.deprecated_args( '2021-06-26', '`jitter` is deprecated; please use `marginal_fn` directly.', 'jitter') def __init__(self, df, kernel, index_points=None, mean_fn=None, observation_noise_variance=0., marginal_fn=None, jitter=1e-6, validate_args=False, allow_nan_stats=False, name='StudentTProcess'): """Instantiate a StudentTProcess Distribution. Args: df: Positive Floating-point `Tensor` representing the degrees of freedom. Must be greater than 2. kernel: `PositiveSemidefiniteKernel`-like instance representing the TP's covariance function. index_points: `float` `Tensor` representing finite (batch of) vector(s) of points in the index set over which the TP is defined. Shape has the form `[b1, ..., bB, e, f1, ..., fF]` where `F` is the number of feature dimensions and must equal `kernel.feature_ndims` and `e` is the number (size) of index points in each batch. Ultimately this distribution corresponds to a `e`-dimensional multivariate Student's T. The batch shape must be broadcastable with `kernel.batch_shape` and any batch dims yielded by `mean_fn`. mean_fn: Python `callable` that acts on `index_points` to produce a (batch of) vector(s) of mean values at `index_points`. Takes a `Tensor` of shape `[b1, ..., bB, f1, ..., fF]` and returns a `Tensor` whose shape is broadcastable with `[b1, ..., bB]`. Default value: `None` implies constant zero function. observation_noise_variance: `float` `Tensor` representing (batch of) scalar variance(s) of the noise in the Normal likelihood distribution of the model. If batched, the batch shape must be broadcastable with the shapes of all other batched parameters (`kernel.batch_shape`, `index_points`, etc.). Default value: `0.` marginal_fn: A Python callable that takes a location, covariance matrix, optional `validate_args`, `allow_nan_stats` and `name` arguments, and returns a multivariate normal subclass of `tfd.Distribution`. Default value: `None`, in which case a Cholesky-factorizing function is is created using `make_cholesky_factorizing_marginal_fn` and the `jitter` argument. jitter: `float` scalar `Tensor` added to the diagonal of the covariance matrix to ensure positive definiteness of the covariance matrix. Default value: `1e-6`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. Default value: `False`. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. Default value: `False`. name: Python `str` name prefixed to Ops created by this class. Default value: "StudentTProcess". Raises: ValueError: if `mean_fn` is not `None` and is not callable. """ parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype( [df, index_points, observation_noise_variance, jitter], tf.float32) df = tensor_util.convert_nonref_to_tensor(df, dtype=dtype, name='df') observation_noise_variance = tensor_util.convert_nonref_to_tensor( observation_noise_variance, dtype=dtype, name='observation_noise_variance') index_points = tensor_util.convert_nonref_to_tensor( index_points, dtype=dtype, name='index_points') jitter = tensor_util.convert_nonref_to_tensor( jitter, dtype=dtype, name='jitter') self._kernel = kernel self._index_points = index_points # Default to a constant zero function, borrowing the dtype from # index_points to ensure consistency. if mean_fn is None: mean_fn = lambda x: tf.zeros([1], dtype=dtype) else: if not callable(mean_fn): raise ValueError('`mean_fn` must be a Python callable') self._df = df self._observation_noise_variance = observation_noise_variance self._mean_fn = mean_fn self._jitter = jitter if marginal_fn is None: self._marginal_fn = make_cholesky_factored_marginal_fn(jitter) else: self._marginal_fn = marginal_fn with tf.name_scope('init'): super(StudentTProcess, self).__init__( dtype=dtype, reparameterization_type=reparameterization.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, name=name) def _is_univariate_marginal(self, index_points): """True if the given index_points would yield a univariate marginal. Args: index_points: the set of index set locations at which to compute the marginal Student T distribution. If this set is of size 1, the marginal is univariate. Returns: is_univariate: Boolean indicating whether the marginal is univariate or multivariate. In the case of dynamic shape in the number of index points, defaults to "multivariate" since that's the best we can do. """ num_index_points = tf.compat.dimension_value( index_points.shape[-(self.kernel.feature_ndims + 1)]) if num_index_points is None: warnings.warn( 'Unable to detect statically whether the number of index_points is ' '1. As a result, defaulting to treating the marginal Student T ' 'Process at `index_points` as a multivariate Student T. This makes ' 'some methods, like `cdf` unavailable.') return num_index_points == 1 def _compute_covariance(self, index_points): kernel_matrix = self.kernel.matrix(index_points, index_points) if self._is_univariate_marginal(index_points): # kernel_matrix thus has shape [..., 1, 1]; squeeze off the last dims and # tack on the observation noise variance. return (tf.squeeze(kernel_matrix, axis=[-2, -1]) + self.observation_noise_variance) else: observation_noise_variance = tf.convert_to_tensor( self.observation_noise_variance) # We are compute K + obs_noise_variance * I. The shape of this matrix # is going to be a broadcast of the shapes of K and obs_noise_variance * # I. broadcast_shape = distribution_util.get_broadcast_shape( kernel_matrix, # We pad with two single dimension since this represents a batch of # scaled identity matrices. observation_noise_variance[..., tf.newaxis, tf.newaxis]) kernel_matrix = tf.broadcast_to(kernel_matrix, broadcast_shape) return _add_diagonal_shift( kernel_matrix, observation_noise_variance[..., tf.newaxis]) def get_marginal_distribution(self, index_points=None): """Compute the marginal over function values at `index_points`. Args: index_points: `float` `Tensor` representing finite (batch of) vector(s) of points in the index set over which the TP is defined. Shape has the form `[b1, ..., bB, e, f1, ..., fF]` where `F` is the number of feature dimensions and must equal `kernel.feature_ndims` and `e` is the number (size) of index points in each batch. Ultimately this distribution corresponds to a `e`-dimensional multivariate student t. The batch shape must be broadcastable with `kernel.batch_shape` and any batch dims yielded by `mean_fn`. Returns: marginal: a `StudentT` or `MultivariateStudentT` distribution, according to whether `index_points` consists of one or many index points, respectively. """ with self._name_and_control_scope('get_marginal_distribution'): df = tf.convert_to_tensor(self.df) index_points = self._get_index_points(index_points) covariance = self._compute_covariance(index_points) loc = self._mean_fn(index_points) # If we're sure the number of index points is 1, we can just construct a # scalar Normal. This has computational benefits and supports things like # CDF that aren't otherwise straightforward to provide. if self._is_univariate_marginal(index_points): squared_scale = (df - 2.) / df * covariance scale = tf.sqrt(squared_scale) # `loc` has a trailing 1 in the shape; squeeze it. loc = tf.squeeze(loc, axis=-1) return student_t.StudentT( df=df, loc=loc, scale=scale, validate_args=self.validate_args, allow_nan_stats=self.allow_nan_stats, name='marginal_distribution') else: return self._marginal_fn( df=df, loc=loc, covariance=covariance, validate_args=self.validate_args, allow_nan_stats=self.allow_nan_stats, name='marginal_distribution') @property def df(self): return self._df @property def observation_noise_variance(self): return self._observation_noise_variance @property def mean_fn(self): return self._mean_fn @property def kernel(self): return self._kernel @property def index_points(self): return self._index_points @property def marginal_fn(self): return self._marginal_fn @property def jitter(self): return self._jitter def _get_index_points(self, index_points=None): """Return `index_points` if not None, else `self._index_points`. Args: index_points: if given, this is what is returned; else, `self._index_points` Returns: index_points: the given arg, if not None, else the class member `self._index_points`. Rases: ValueError: if `index_points` and `self._index_points` are both `None`. """ if self._index_points is None and index_points is None: raise ValueError( 'This StudentTProcess instance was not instantiated with a value for ' 'index_points. One must therefore be provided when calling sample, ' 'log_prob, and other such methods.') return (index_points if index_points is not None else tf.convert_to_tensor(self._index_points)) def _log_prob(self, value, index_points=None): return self.get_marginal_distribution(index_points).log_prob(value) def _batch_shape_tensor(self, index_points=None): index_points = self._get_index_points(index_points) return functools.reduce(tf.broadcast_dynamic_shape, [ tf.shape(index_points)[:-(self.kernel.feature_ndims + 1)], self.kernel.batch_shape_tensor(), tf.shape(self.observation_noise_variance), tf.shape(self.df) ]) def _batch_shape(self, index_points=None): index_points = ( index_points if index_points is not None else self._index_points) return functools.reduce( tf.broadcast_static_shape, [index_points.shape[:-(self.kernel.feature_ndims + 1)], self.kernel.batch_shape, self.observation_noise_variance.shape, self.df.shape]) def _event_shape_tensor(self, index_points=None): index_points = self._get_index_points(index_points) if self._is_univariate_marginal(index_points): return tf.constant([], dtype=tf.int32) else: # The examples index is one position to the left of the feature dims. examples_index = -(self.kernel.feature_ndims + 1) return tf.shape(index_points)[examples_index:examples_index + 1] def _event_shape(self, index_points=None): index_points = ( index_points if index_points is not None else self._index_points) if self._is_univariate_marginal(index_points): return tf.TensorShape([]) else: # The examples index is one position to the left of the feature dims. examples_index = -(self.kernel.feature_ndims + 1) shape = index_points.shape[examples_index:examples_index + 1] if tensorshape_util.rank(shape) is None: return tf.TensorShape([None]) return shape def _sample_n(self, n, seed=None, index_points=None): return self.get_marginal_distribution(index_points).sample(n, seed=seed) def _log_survival_function(self, value, index_points=None): return self.get_marginal_distribution( index_points).log_survival_function(value) def _survival_function(self, value, index_points=None): return self.get_marginal_distribution(index_points).survival_function(value) def _log_cdf(self, value, index_points=None): return self.get_marginal_distribution(index_points).log_cdf(value) def _entropy(self, index_points=None): return self.get_marginal_distribution(index_points).entropy() def _mean(self, index_points=None): return self.get_marginal_distribution(index_points).mean() def _quantile(self, value, index_points=None): return self.get_marginal_distribution(index_points).quantile(value) def _stddev(self, index_points=None): return tf.sqrt(self._variance(index_points=index_points)) def _variance(self, index_points=None): index_points = self._get_index_points(index_points) kernel_diag = self.kernel.apply(index_points, index_points, example_ndims=1) if self._is_univariate_marginal(index_points): return (tf.squeeze(kernel_diag, axis=[-1]) + self.observation_noise_variance) else: # We are computing diag(K + obs_noise_variance * I) = diag(K) + # obs_noise_variance. We pad obs_noise_variance with a dimension in order # to broadcast batch shapes of kernel_diag and obs_noise_variance (since # kernel_diag has an extra dimension corresponding to the number of index # points). return kernel_diag + self.observation_noise_variance[..., tf.newaxis] def _covariance(self, index_points=None): # Using the result of get_marginal_distribution would involve an extra # matmul, and possibly even an unnecessary cholesky first. We can avoid that # by going straight through the kernel function. return self._compute_covariance(self._get_index_points(index_points)) def _mode(self, index_points=None): return self.get_marginal_distribution(index_points).mode() def _default_event_space_bijector(self): return identity_bijector.Identity(validate_args=self.validate_args) def _parameter_control_dependencies(self, is_init): if not self.validate_args: return [] assertions = [] if is_init != tensor_util.is_ref(self.df): assertions.append( assert_util.assert_greater( self.df, dtype_util.as_numpy_dtype(self.df.dtype)(2.), message='`df` must be greater than 2.')) return assertions
41.038333
92
0.699671
from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import warnings import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import identity as identity_bijector from tensorflow_probability.python.distributions import distribution from tensorflow_probability.python.distributions import multivariate_student_t from tensorflow_probability.python.distributions import student_t from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import distribution_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import tensor_util from tensorflow_probability.python.internal import tensorshape_util from tensorflow.python.util import deprecation __all__ = [ 'StudentTProcess', ] def _add_diagonal_shift(matrix, shift): return tf.linalg.set_diag( matrix, tf.linalg.diag_part(matrix) + shift, name='add_diagonal_shift') def make_cholesky_factored_marginal_fn(jitter): def marginal_fn( df, loc, covariance, validate_args=False, allow_nan_stats=False, name='marginal_distribution'): squared_scale = ((df - 2.) / df)[ ..., tf.newaxis, tf.newaxis] * covariance scale = tf.linalg.LinearOperatorLowerTriangular( tf.linalg.cholesky(_add_diagonal_shift(squared_scale, jitter)), is_non_singular=True, name='StudentTProcessScaleLinearOperator') return multivariate_student_t.MultivariateStudentTLinearOperator( df=df, loc=loc, scale=scale, validate_args=validate_args, allow_nan_stats=allow_nan_stats, name=name) return marginal_fn class StudentTProcess(distribution.Distribution): @deprecation.deprecated_args( '2021-06-26', '`jitter` is deprecated; please use `marginal_fn` directly.', 'jitter') def __init__(self, df, kernel, index_points=None, mean_fn=None, observation_noise_variance=0., marginal_fn=None, jitter=1e-6, validate_args=False, allow_nan_stats=False, name='StudentTProcess'): parameters = dict(locals()) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype( [df, index_points, observation_noise_variance, jitter], tf.float32) df = tensor_util.convert_nonref_to_tensor(df, dtype=dtype, name='df') observation_noise_variance = tensor_util.convert_nonref_to_tensor( observation_noise_variance, dtype=dtype, name='observation_noise_variance') index_points = tensor_util.convert_nonref_to_tensor( index_points, dtype=dtype, name='index_points') jitter = tensor_util.convert_nonref_to_tensor( jitter, dtype=dtype, name='jitter') self._kernel = kernel self._index_points = index_points if mean_fn is None: mean_fn = lambda x: tf.zeros([1], dtype=dtype) else: if not callable(mean_fn): raise ValueError('`mean_fn` must be a Python callable') self._df = df self._observation_noise_variance = observation_noise_variance self._mean_fn = mean_fn self._jitter = jitter if marginal_fn is None: self._marginal_fn = make_cholesky_factored_marginal_fn(jitter) else: self._marginal_fn = marginal_fn with tf.name_scope('init'): super(StudentTProcess, self).__init__( dtype=dtype, reparameterization_type=reparameterization.FULLY_REPARAMETERIZED, validate_args=validate_args, allow_nan_stats=allow_nan_stats, parameters=parameters, name=name) def _is_univariate_marginal(self, index_points): num_index_points = tf.compat.dimension_value( index_points.shape[-(self.kernel.feature_ndims + 1)]) if num_index_points is None: warnings.warn( 'Unable to detect statically whether the number of index_points is ' '1. As a result, defaulting to treating the marginal Student T ' 'Process at `index_points` as a multivariate Student T. This makes ' 'some methods, like `cdf` unavailable.') return num_index_points == 1 def _compute_covariance(self, index_points): kernel_matrix = self.kernel.matrix(index_points, index_points) if self._is_univariate_marginal(index_points): return (tf.squeeze(kernel_matrix, axis=[-2, -1]) + self.observation_noise_variance) else: observation_noise_variance = tf.convert_to_tensor( self.observation_noise_variance) broadcast_shape = distribution_util.get_broadcast_shape( kernel_matrix, observation_noise_variance[..., tf.newaxis, tf.newaxis]) kernel_matrix = tf.broadcast_to(kernel_matrix, broadcast_shape) return _add_diagonal_shift( kernel_matrix, observation_noise_variance[..., tf.newaxis]) def get_marginal_distribution(self, index_points=None): with self._name_and_control_scope('get_marginal_distribution'): df = tf.convert_to_tensor(self.df) index_points = self._get_index_points(index_points) covariance = self._compute_covariance(index_points) loc = self._mean_fn(index_points) # scalar Normal. This has computational benefits and supports things like # CDF that aren't otherwise straightforward to provide. if self._is_univariate_marginal(index_points): squared_scale = (df - 2.) / df * covariance scale = tf.sqrt(squared_scale) loc = tf.squeeze(loc, axis=-1) return student_t.StudentT( df=df, loc=loc, scale=scale, validate_args=self.validate_args, allow_nan_stats=self.allow_nan_stats, name='marginal_distribution') else: return self._marginal_fn( df=df, loc=loc, covariance=covariance, validate_args=self.validate_args, allow_nan_stats=self.allow_nan_stats, name='marginal_distribution') @property def df(self): return self._df @property def observation_noise_variance(self): return self._observation_noise_variance @property def mean_fn(self): return self._mean_fn @property def kernel(self): return self._kernel @property def index_points(self): return self._index_points @property def marginal_fn(self): return self._marginal_fn @property def jitter(self): return self._jitter def _get_index_points(self, index_points=None): if self._index_points is None and index_points is None: raise ValueError( 'This StudentTProcess instance was not instantiated with a value for ' 'index_points. One must therefore be provided when calling sample, ' 'log_prob, and other such methods.') return (index_points if index_points is not None else tf.convert_to_tensor(self._index_points)) def _log_prob(self, value, index_points=None): return self.get_marginal_distribution(index_points).log_prob(value) def _batch_shape_tensor(self, index_points=None): index_points = self._get_index_points(index_points) return functools.reduce(tf.broadcast_dynamic_shape, [ tf.shape(index_points)[:-(self.kernel.feature_ndims + 1)], self.kernel.batch_shape_tensor(), tf.shape(self.observation_noise_variance), tf.shape(self.df) ]) def _batch_shape(self, index_points=None): index_points = ( index_points if index_points is not None else self._index_points) return functools.reduce( tf.broadcast_static_shape, [index_points.shape[:-(self.kernel.feature_ndims + 1)], self.kernel.batch_shape, self.observation_noise_variance.shape, self.df.shape]) def _event_shape_tensor(self, index_points=None): index_points = self._get_index_points(index_points) if self._is_univariate_marginal(index_points): return tf.constant([], dtype=tf.int32) else: examples_index = -(self.kernel.feature_ndims + 1) return tf.shape(index_points)[examples_index:examples_index + 1] def _event_shape(self, index_points=None): index_points = ( index_points if index_points is not None else self._index_points) if self._is_univariate_marginal(index_points): return tf.TensorShape([]) else: examples_index = -(self.kernel.feature_ndims + 1) shape = index_points.shape[examples_index:examples_index + 1] if tensorshape_util.rank(shape) is None: return tf.TensorShape([None]) return shape def _sample_n(self, n, seed=None, index_points=None): return self.get_marginal_distribution(index_points).sample(n, seed=seed) def _log_survival_function(self, value, index_points=None): return self.get_marginal_distribution( index_points).log_survival_function(value) def _survival_function(self, value, index_points=None): return self.get_marginal_distribution(index_points).survival_function(value) def _log_cdf(self, value, index_points=None): return self.get_marginal_distribution(index_points).log_cdf(value) def _entropy(self, index_points=None): return self.get_marginal_distribution(index_points).entropy() def _mean(self, index_points=None): return self.get_marginal_distribution(index_points).mean() def _quantile(self, value, index_points=None): return self.get_marginal_distribution(index_points).quantile(value) def _stddev(self, index_points=None): return tf.sqrt(self._variance(index_points=index_points)) def _variance(self, index_points=None): index_points = self._get_index_points(index_points) kernel_diag = self.kernel.apply(index_points, index_points, example_ndims=1) if self._is_univariate_marginal(index_points): return (tf.squeeze(kernel_diag, axis=[-1]) + self.observation_noise_variance) else: return kernel_diag + self.observation_noise_variance[..., tf.newaxis] def _covariance(self, index_points=None): return self._compute_covariance(self._get_index_points(index_points)) def _mode(self, index_points=None): return self.get_marginal_distribution(index_points).mode() def _default_event_space_bijector(self): return identity_bijector.Identity(validate_args=self.validate_args) def _parameter_control_dependencies(self, is_init): if not self.validate_args: return [] assertions = [] if is_init != tensor_util.is_ref(self.df): assertions.append( assert_util.assert_greater( self.df, dtype_util.as_numpy_dtype(self.df.dtype)(2.), message='`df` must be greater than 2.')) return assertions
true
true
f717f5f0396b42207e68544fbe1af909acdf9d1d
520
py
Python
rest/test-credentials/test-calls-example-2/test-calls-example-2.6.x.py
Tshisuaka/api-snippets
52b50037d4af0f3b96adf76197964725a1501e96
[ "MIT" ]
234
2016-01-27T03:04:38.000Z
2022-02-25T20:13:43.000Z
rest/test-credentials/test-calls-example-2/test-calls-example-2.6.x.py
Tshisuaka/api-snippets
52b50037d4af0f3b96adf76197964725a1501e96
[ "MIT" ]
351
2016-04-06T16:55:33.000Z
2022-03-10T18:42:36.000Z
rest/test-credentials/test-calls-example-2/test-calls-example-2.6.x.py
Tshisuaka/api-snippets
52b50037d4af0f3b96adf76197964725a1501e96
[ "MIT" ]
494
2016-03-30T15:28:20.000Z
2022-03-28T19:39:36.000Z
# Download the Python helper library from twilio.com/docs/python/install import os from twilio.rest import Client # Your Account Sid and Auth Token from twilio.com/user/account # To set up environmental variables, see http://twil.io/secure account_sid = os.environ['TWILIO_ACCOUNT_SID'] auth_token = os.environ['TWILIO_AUTH_TOKEN'] client = Client(account_sid, auth_token) call = client.calls.create( url="http://demo.twilio.com/docs/voice.xml", to="+15005550003", from_="+15005550006" ) print(call.sid)
27.368421
72
0.755769
import os from twilio.rest import Client account_sid = os.environ['TWILIO_ACCOUNT_SID'] auth_token = os.environ['TWILIO_AUTH_TOKEN'] client = Client(account_sid, auth_token) call = client.calls.create( url="http://demo.twilio.com/docs/voice.xml", to="+15005550003", from_="+15005550006" ) print(call.sid)
true
true
f717f64d749aac3930348898cd007d5ac9c4b917
1,314
py
Python
example/test_img_similarity.py
Pandinosaurus/img2vec
e80c2f46ee707fb95d7bd6944b5c224acc1ec8c0
[ "MIT" ]
1
2019-05-31T14:02:51.000Z
2019-05-31T14:02:51.000Z
example/test_img_similarity.py
Pandinosaurus/img2vec
e80c2f46ee707fb95d7bd6944b5c224acc1ec8c0
[ "MIT" ]
null
null
null
example/test_img_similarity.py
Pandinosaurus/img2vec
e80c2f46ee707fb95d7bd6944b5c224acc1ec8c0
[ "MIT" ]
null
null
null
import sys import os sys.path.append("../img2vec_pytorch") # Adds higher directory to python modules path. from img_to_vec import Img2Vec from PIL import Image from sklearn.metrics.pairwise import cosine_similarity input_path = './test_images' print("Getting vectors for test images...\n") img2vec = Img2Vec() # For each test image, we store the filename and vector as key, value in a dictionary pics = {} for file in os.listdir(input_path): filename = os.fsdecode(file) img = Image.open(os.path.join(input_path, filename)).convert('RGB') vec = img2vec.get_vec(img) pics[filename] = vec available_filenames = ", ".join(pics.keys()) pic_name = "" while pic_name != "exit": pic_name = str(input("\nWhich filename would you like similarities for?\nAvailable options: " + available_filenames + "\n")) try: sims = {} for key in list(pics.keys()): if key == pic_name: continue sims[key] = cosine_similarity(pics[pic_name].reshape((1, -1)), pics[key].reshape((1, -1)))[0][0] d_view = [(v, k) for k, v in sims.items()] d_view.sort(reverse=True) for v, k in d_view: print(v, k) except KeyError as e: print('Could not find filename %s' % e) except Exception as e: print(e)
29.2
128
0.642314
import sys import os sys.path.append("../img2vec_pytorch") from img_to_vec import Img2Vec from PIL import Image from sklearn.metrics.pairwise import cosine_similarity input_path = './test_images' print("Getting vectors for test images...\n") img2vec = Img2Vec() pics = {} for file in os.listdir(input_path): filename = os.fsdecode(file) img = Image.open(os.path.join(input_path, filename)).convert('RGB') vec = img2vec.get_vec(img) pics[filename] = vec available_filenames = ", ".join(pics.keys()) pic_name = "" while pic_name != "exit": pic_name = str(input("\nWhich filename would you like similarities for?\nAvailable options: " + available_filenames + "\n")) try: sims = {} for key in list(pics.keys()): if key == pic_name: continue sims[key] = cosine_similarity(pics[pic_name].reshape((1, -1)), pics[key].reshape((1, -1)))[0][0] d_view = [(v, k) for k, v in sims.items()] d_view.sort(reverse=True) for v, k in d_view: print(v, k) except KeyError as e: print('Could not find filename %s' % e) except Exception as e: print(e)
true
true
f717f6ee21c9fa11dd8b2998e6722883254a2f34
8,734
py
Python
testing/test_cde_io.py
eberharf/cfl
077b99a05824f1371ac47d76dfed6bb160222668
[ "BSD-3-Clause" ]
6
2021-01-09T04:46:55.000Z
2022-03-19T22:27:13.000Z
testing/test_cde_io.py
eberharf/cfl
077b99a05824f1371ac47d76dfed6bb160222668
[ "BSD-3-Clause" ]
12
2021-01-11T16:32:58.000Z
2022-03-19T13:21:30.000Z
testing/test_cde_io.py
eberharf/cfl
077b99a05824f1371ac47d76dfed6bb160222668
[ "BSD-3-Clause" ]
null
null
null
import os import shutil from shutil import Error import unittest import numpy as np import tensorflow as tf from cdes_for_testing import all_cdes from cfl.dataset import Dataset ''' The following code runs all tests in CondExpInputTests on all implemented CondExpXxxx classes. ''' def make_cde_io_tests(cond_exp_class): # generic test class for any CondExpBase descendant # (passed in as cond_exp_class) class CondExpIOTests(unittest.TestCase): def setUp(self): # overriden unittest.TestCase method that will be # called in initializaiton self.data_info = { 'X_dims' : (10,3), 'Y_dims' : (10,2), 'Y_type' : 'continuous'} self.params = { 'show_plot' : False, 'n_epochs' : 2} self.ceb = cond_exp_class(self.data_info, self.params) ## INIT ############################################################### def test_init_wrong_input_types(self): data_info = 'str is bad' params = 'these are not params' self.assertRaises(AssertionError, cond_exp_class, data_info, params) def test_init_wrong_data_info_keys(self): data_info = {} params = {} self.assertRaises(AssertionError, cond_exp_class, data_info, params) def test_init_wrong_data_info_value_types(self): data_info = {'X_dims' : None, 'Y_dims' : None, 'Y_type' : None} params = {} self.assertRaises(AssertionError, cond_exp_class, data_info, params) def test_init_wrong_data_info_values(self): data_info = { 'X_dims' : (0,0), 'Y_dims' : (0,0), 'Y_type' : 'continuous'} params = {} self.assertRaises(AssertionError, cond_exp_class, data_info, params) data_info = { 'X_dims' : (10,3), 'Y_dims' : (12,2), 'Y_type' : 'continuous'} params = {} self.assertRaises(AssertionError, cond_exp_class, data_info, params) def test_init_correct_inputs(self): data_info = {'X_dims' : (10,3), 'Y_dims' : (10,2), 'Y_type' : 'continuous'} params = {} ceb = cond_exp_class(data_info, params) ## SAVE_BLOCK ######################################################### def test_save_block_wrong_input_type(self): path = 123 self.assertRaises(AssertionError, self.ceb.save_block, path) def test_save_block_correct_input_type(self): path = 'not/a/real/path' self.ceb.save_block(path) shutil.rmtree('not') ## LOAD_BLOCK ######################################################### def test_load_block_wrong_input_type(self): path = 123 self.assertRaises(AssertionError, self.ceb.load_block, path) def test_load_block_correct_input_type(self): # should only be run after test_save_block_correct_input_type so # there is something to load path = 'not/a/real/path' self.ceb.save_block(path) self.ceb.load_block(path) shutil.rmtree('not') # check and reset state assert self.ceb.trained, 'CDE should be trained after loading' self.ceb.trained = False ### TRAIN ############################################################ def test_train_wrong_input_type(self): dataset = 'this is not a Dataset' prev_results = 'this is not a dict' self.assertRaises(AssertionError, self.ceb.train, dataset, prev_results) def test_train_correct_input_type(self): dataset = Dataset(X=np.ones(self.data_info['X_dims']), Y=np.zeros(self.data_info['Y_dims'])) # what we expect from train outputs tkeys = ['train_loss','val_loss','loss_plot','model_weights','pyx'] tshapes = {'train_loss' : (self.params['n_epochs'],), 'val_loss' : (self.params['n_epochs'],), 'pyx' : (self.data_info['Y_dims']) } for prev_results in [None, {}]: # reset self.ceb.trained = False train_results = self.ceb.train(dataset, prev_results) # check state assert self.ceb.trained, 'CDE should be trained after loading' # check outputs assert set(train_results.keys())==set(tkeys), \ f'train should return dict with keys: {tkeys}' for k in tshapes.keys(): assert tshapes[k]==np.array(train_results[k]).shape, \ f'expected {k} to have shape {tshapes[k]} but got \ {train_results[k].shape}' def test_train_twice(self): dataset = Dataset(X=np.ones(self.data_info['X_dims']), Y=np.zeros(self.data_info['Y_dims'])) prev_results = None # reset self.ceb.trained = False # what we expect from train outputs first time tkeys = ['train_loss','val_loss','loss_plot','model_weights','pyx'] train_results = self.ceb.train(dataset, prev_results) # check state and outputs assert self.ceb.trained, 'CDE should be trained after loading' assert set(train_results.keys())==set(tkeys), \ f'train should return dict with keys: {tkeys}' # what we expect from train outputs second time tkeys = ['pyx'] train_results = self.ceb.train(dataset, prev_results) # check state and outputs assert self.ceb.trained, 'CDE should be trained after loading' assert set(train_results.keys())==set(tkeys), \ f'train should return dict with keys: {tkeys}' ### PREDICT ########################################################## def test_predict_wrong_input_type(self): # artifically set CDE trained = True self.ceb.trained = True dataset = 'this is not a Dataset' prev_results = 'this is not a dict' self.assertRaises(AssertionError, self.ceb.predict, dataset, prev_results) def test_predict_correct_input_type(self): dataset = Dataset(X=np.ones(self.data_info['X_dims']), Y=np.zeros(self.data_info['Y_dims'])) prev_results = None for prev_results in [None, {}]: self.ceb.train(dataset, prev_results) pred_results = self.ceb.predict(dataset, prev_results) # check output assert set(pred_results.keys())==set(['pyx']), f'pred_results \ keys should contain pyx, but contains {pred_results.keys()}' assert pred_results['pyx'].shape==self.data_info['Y_dims'], \ f"expected {self.data_info['Y_dims']} but got \ {pred_results['pyx'].shape}" ### EVALUATE ######################################################### def test_evaluate_wrong_input_type(self): # artifically set CDE trained = True self.ceb.trained = True dataset = 'this is not a Dataset' prev_results = 'this is not a dict' self.assertRaises(AssertionError, self.ceb.evaluate, dataset) def test_evaluate_correct_input_type(self): dataset = Dataset(X=np.ones(self.data_info['X_dims']), Y=np.zeros(self.data_info['Y_dims'])) prev_results = None self.ceb.train(dataset, prev_results) score = self.ceb.evaluate(dataset) assert score.shape==() assert score.dtype==np.float32 ### BUILD_MODEL ###################################################### def test_build_model(self): assert isinstance(self.ceb._build_model(), tf.keras.Sequential) return CondExpIOTests for cond_exp_class in all_cdes: class ConcreteIOTests(make_cde_io_tests(cond_exp_class)): pass
39.342342
80
0.517174
import os import shutil from shutil import Error import unittest import numpy as np import tensorflow as tf from cdes_for_testing import all_cdes from cfl.dataset import Dataset def make_cde_io_tests(cond_exp_class): class CondExpIOTests(unittest.TestCase): def setUp(self): self.data_info = { 'X_dims' : (10,3), 'Y_dims' : (10,2), 'Y_type' : 'continuous'} self.params = { 'show_plot' : False, 'n_epochs' : 2} self.ceb = cond_exp_class(self.data_info, self.params)
true
true
f717f76f6731c769b821c9ceaf17edbc8eba9b54
50,551
py
Python
python/ccxt/async_support/bitbay.py
mariuszskon/ccxt
13253de7346e33cd384f79abf7dfb64dcbfdc35f
[ "MIT" ]
4
2021-09-24T09:18:36.000Z
2022-03-15T16:47:09.000Z
python/ccxt/async_support/bitbay.py
mariuszskon/ccxt
13253de7346e33cd384f79abf7dfb64dcbfdc35f
[ "MIT" ]
null
null
null
python/ccxt/async_support/bitbay.py
mariuszskon/ccxt
13253de7346e33cd384f79abf7dfb64dcbfdc35f
[ "MIT" ]
2
2021-10-01T21:51:37.000Z
2021-10-02T16:23:05.000Z
# -*- coding: utf-8 -*- # PLEASE DO NOT EDIT THIS FILE, IT IS GENERATED AND WILL BE OVERWRITTEN: # https://github.com/ccxt/ccxt/blob/master/CONTRIBUTING.md#how-to-contribute-code from ccxt.async_support.base.exchange import Exchange import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import AccountSuspended from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import OrderImmediatelyFillable from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import OnMaintenance from ccxt.base.errors import InvalidNonce from ccxt.base.precise import Precise class bitbay(Exchange): def describe(self): return self.deep_extend(super(bitbay, self).describe(), { 'id': 'bitbay', 'name': 'BitBay', 'countries': ['MT', 'EU'], # Malta 'rateLimit': 1000, 'has': { 'cancelOrder': True, 'CORS': True, 'createOrder': True, 'fetchBalance': True, 'fetchLedger': True, 'fetchMarkets': True, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrderBook': True, 'fetchTicker': True, 'fetchTrades': True, 'withdraw': True, }, 'timeframes': { '1m': '60', '3m': '180', '5m': '300', '15m': '900', '30m': '1800', '1h': '3600', '2h': '7200', '4h': '14400', '6h': '21600', '12h': '43200', '1d': '86400', '3d': '259200', '1w': '604800', }, 'hostname': 'bitbay.net', 'urls': { 'referral': 'https://auth.bitbay.net/ref/jHlbB4mIkdS1', 'logo': 'https://user-images.githubusercontent.com/1294454/27766132-978a7bd8-5ece-11e7-9540-bc96d1e9bbb8.jpg', 'www': 'https://bitbay.net', 'api': { 'public': 'https://{hostname}/API/Public', 'private': 'https://{hostname}/API/Trading/tradingApi.php', 'v1_01Public': 'https://api.{hostname}/rest', 'v1_01Private': 'https://api.{hostname}/rest', }, 'doc': [ 'https://bitbay.net/public-api', 'https://bitbay.net/en/private-api', 'https://bitbay.net/account/tab-api', 'https://github.com/BitBayNet/API', 'https://docs.bitbay.net/v1.0.1-en/reference', ], 'support': 'https://support.bitbay.net', 'fees': 'https://bitbay.net/en/fees', }, 'api': { 'public': { 'get': [ '{id}/all', '{id}/market', '{id}/orderbook', '{id}/ticker', '{id}/trades', ], }, 'private': { 'post': [ 'info', 'trade', 'cancel', 'orderbook', 'orders', 'transfer', 'withdraw', 'history', 'transactions', ], }, 'v1_01Public': { 'get': [ 'trading/ticker', 'trading/ticker/{symbol}', 'trading/stats', 'trading/orderbook/{symbol}', 'trading/transactions/{symbol}', 'trading/candle/history/{symbol}/{resolution}', ], }, 'v1_01Private': { 'get': [ 'payments/withdrawal/{detailId}', 'payments/deposit/{detailId}', 'trading/offer', 'trading/config/{symbol}', 'trading/history/transactions', 'balances/BITBAY/history', 'balances/BITBAY/balance', 'fiat_cantor/rate/{baseId}/{quoteId}', 'fiat_cantor/history', ], 'post': [ 'trading/offer/{symbol}', 'trading/config/{symbol}', 'balances/BITBAY/balance', 'balances/BITBAY/balance/transfer/{source}/{destination}', 'fiat_cantor/exchange', ], 'delete': [ 'trading/offer/{symbol}/{id}/{side}/{price}', ], 'put': [ 'balances/BITBAY/balance/{id}', ], }, }, 'fees': { 'trading': { 'maker': 0.0, 'taker': 0.1 / 100, 'percentage': True, 'tierBased': False, }, 'fiat': { 'maker': 0.30 / 100, 'taker': 0.43 / 100, 'percentage': True, 'tierBased': True, 'tiers': { 'taker': [ [0.0043, 0], [0.0042, 1250], [0.0041, 3750], [0.0040, 7500], [0.0039, 10000], [0.0038, 15000], [0.0037, 20000], [0.0036, 25000], [0.0035, 37500], [0.0034, 50000], [0.0033, 75000], [0.0032, 100000], [0.0031, 150000], [0.0030, 200000], [0.0029, 250000], [0.0028, 375000], [0.0027, 500000], [0.0026, 625000], [0.0025, 875000], ], 'maker': [ [0.0030, 0], [0.0029, 1250], [0.0028, 3750], [0.0028, 7500], [0.0027, 10000], [0.0026, 15000], [0.0025, 20000], [0.0025, 25000], [0.0024, 37500], [0.0023, 50000], [0.0023, 75000], [0.0022, 100000], [0.0021, 150000], [0.0021, 200000], [0.0020, 250000], [0.0019, 375000], [0.0018, 500000], [0.0018, 625000], [0.0017, 875000], ], }, }, 'funding': { 'withdraw': { 'BTC': 0.0009, 'LTC': 0.005, 'ETH': 0.00126, 'LSK': 0.2, 'BCH': 0.0006, 'GAME': 0.005, 'DASH': 0.001, 'BTG': 0.0008, 'PLN': 4, 'EUR': 1.5, }, }, }, 'options': { 'fiatCurrencies': ['EUR', 'USD', 'GBP', 'PLN'], }, 'exceptions': { '400': ExchangeError, # At least one parameter wasn't set '401': InvalidOrder, # Invalid order type '402': InvalidOrder, # No orders with specified currencies '403': InvalidOrder, # Invalid payment currency name '404': InvalidOrder, # Error. Wrong transaction type '405': InvalidOrder, # Order with self id doesn't exist '406': InsufficientFunds, # No enough money or crypto # code 407 not specified are not specified in their docs '408': InvalidOrder, # Invalid currency name '501': AuthenticationError, # Invalid public key '502': AuthenticationError, # Invalid sign '503': InvalidNonce, # Invalid moment parameter. Request time doesn't match current server time '504': ExchangeError, # Invalid method '505': AuthenticationError, # Key has no permission for self action '506': AccountSuspended, # Account locked. Please contact with customer service # codes 507 and 508 are not specified in their docs '509': ExchangeError, # The BIC/SWIFT is required for self currency '510': BadSymbol, # Invalid market name 'FUNDS_NOT_SUFFICIENT': InsufficientFunds, 'OFFER_FUNDS_NOT_EXCEEDING_MINIMUMS': InvalidOrder, 'OFFER_NOT_FOUND': OrderNotFound, 'OFFER_WOULD_HAVE_BEEN_PARTIALLY_FILLED': OrderImmediatelyFillable, 'ACTION_LIMIT_EXCEEDED': RateLimitExceeded, 'UNDER_MAINTENANCE': OnMaintenance, 'REQUEST_TIMESTAMP_TOO_OLD': InvalidNonce, 'PERMISSIONS_NOT_SUFFICIENT': PermissionDenied, }, 'commonCurrencies': { 'GGC': 'Global Game Coin', }, }) async def fetch_markets(self, params={}): response = await self.v1_01PublicGetTradingTicker(params) fiatCurrencies = self.safe_value(self.options, 'fiatCurrencies', []) # # { # status: 'Ok', # items: { # 'BSV-USD': { # market: { # code: 'BSV-USD', # first: {currency: 'BSV', minOffer: '0.00035', scale: 8}, # second: {currency: 'USD', minOffer: '5', scale: 2} # }, # time: '1557569762154', # highestBid: '52.31', # lowestAsk: '62.99', # rate: '63', # previousRate: '51.21', # }, # }, # } # result = [] items = self.safe_value(response, 'items') keys = list(items.keys()) for i in range(0, len(keys)): key = keys[i] item = items[key] market = self.safe_value(item, 'market', {}) first = self.safe_value(market, 'first', {}) second = self.safe_value(market, 'second', {}) baseId = self.safe_string(first, 'currency') quoteId = self.safe_string(second, 'currency') id = baseId + quoteId base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote precision = { 'amount': self.safe_integer(first, 'scale'), 'price': self.safe_integer(second, 'scale'), } fees = self.safe_value(self.fees, 'trading', {}) if self.in_array(base, fiatCurrencies) or self.in_array(quote, fiatCurrencies): fees = self.safe_value(self.fees, 'fiat', {}) maker = self.safe_number(fees, 'maker') taker = self.safe_number(fees, 'taker') # todo: check that the limits have ben interpreted correctly # todo: parse the fees page result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'precision': precision, 'active': None, 'maker': maker, 'taker': taker, 'limits': { 'amount': { 'min': self.safe_number(first, 'minOffer'), 'max': None, }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': self.safe_number(second, 'minOffer'), 'max': None, }, }, 'info': item, }) return result async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() request = {} response = await self.v1_01PrivateGetTradingOffer(self.extend(request, params)) items = self.safe_value(response, 'items', []) return self.parse_orders(items, None, since, limit, {'status': 'open'}) def parse_order(self, order, market=None): # # { # market: 'ETH-EUR', # offerType: 'Sell', # id: '93d3657b-d616-11e9-9248-0242ac110005', # currentAmount: '0.04', # lockedAmount: '0.04', # rate: '280', # startAmount: '0.04', # time: '1568372806924', # postOnly: False, # hidden: False, # mode: 'limit', # receivedAmount: '0.0', # firstBalanceId: '5b816c3e-437c-4e43-9bef-47814ae7ebfc', # secondBalanceId: 'ab43023b-4079-414c-b340-056e3430a3af' # } # marketId = self.safe_string(order, 'market') symbol = self.safe_symbol(marketId, market, '-') timestamp = self.safe_integer(order, 'time') amount = self.safe_number(order, 'startAmount') remaining = self.safe_number(order, 'currentAmount') postOnly = self.safe_value(order, 'postOnly') return self.safe_order({ 'id': self.safe_string(order, 'id'), 'clientOrderId': None, 'info': order, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': None, 'symbol': symbol, 'type': self.safe_string(order, 'mode'), 'timeInForce': None, 'postOnly': postOnly, 'side': self.safe_string_lower(order, 'offerType'), 'price': self.safe_number(order, 'rate'), 'stopPrice': None, 'amount': amount, 'cost': None, 'filled': None, 'remaining': remaining, 'average': None, 'fee': None, 'trades': None, }) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() request = {} if symbol: markets = [self.market_id(symbol)] request['markets'] = markets query = {'query': self.json(self.extend(request, params))} response = await self.v1_01PrivateGetTradingHistoryTransactions(query) # # { # status: 'Ok', # totalRows: '67', # items: [ # { # id: 'b54659a0-51b5-42a0-80eb-2ac5357ccee2', # market: 'BTC-EUR', # time: '1541697096247', # amount: '0.00003', # rate: '4341.44', # initializedBy: 'Sell', # wasTaker: False, # userAction: 'Buy', # offerId: 'bd19804a-6f89-4a69-adb8-eb078900d006', # commissionValue: null # }, # ] # } # items = self.safe_value(response, 'items') result = self.parse_trades(items, None, since, limit) if symbol is None: return result return self.filter_by_symbol(result, symbol) async def fetch_balance(self, params={}): await self.load_markets() response = await self.v1_01PrivateGetBalancesBITBAYBalance(params) balances = self.safe_value(response, 'balances') if balances is None: raise ExchangeError(self.id + ' empty balance response ' + self.json(response)) result = {'info': response} for i in range(0, len(balances)): balance = balances[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) account = self.account() account['used'] = self.safe_string(balance, 'lockedFunds') account['free'] = self.safe_string(balance, 'availableFunds') result[code] = account return self.parse_balance(result, False) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() request = { 'id': self.market_id(symbol), } orderbook = await self.publicGetIdOrderbook(self.extend(request, params)) return self.parse_order_book(orderbook, symbol) async def fetch_ticker(self, symbol, params={}): await self.load_markets() request = { 'id': self.market_id(symbol), } ticker = await self.publicGetIdTicker(self.extend(request, params)) timestamp = self.milliseconds() baseVolume = self.safe_number(ticker, 'volume') vwap = self.safe_number(ticker, 'vwap') quoteVolume = None if baseVolume is not None and vwap is not None: quoteVolume = baseVolume * vwap last = self.safe_number(ticker, 'last') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_number(ticker, 'max'), 'low': self.safe_number(ticker, 'min'), 'bid': self.safe_number(ticker, 'bid'), 'bidVolume': None, 'ask': self.safe_number(ticker, 'ask'), 'askVolume': None, 'vwap': vwap, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': self.safe_number(ticker, 'average'), 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } async def fetch_ledger(self, code=None, since=None, limit=None, params={}): balanceCurrencies = [] if code is not None: currency = self.currency(code) balanceCurrencies.append(currency['id']) request = { 'balanceCurrencies': balanceCurrencies, } if since is not None: request['fromTime'] = since if limit is not None: request['limit'] = limit request = self.extend(request, params) response = await self.v1_01PrivateGetBalancesBITBAYHistory({'query': self.json(request)}) items = response['items'] return self.parse_ledger(items, None, since, limit) def parse_ledger_entry(self, item, currency=None): # # FUNDS_MIGRATION # { # "historyId": "84ea7a29-7da5-4de5-b0c0-871e83cad765", # "balance": { # "id": "821ec166-cb88-4521-916c-f4eb44db98df", # "currency": "LTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "LTC" # }, # "detailId": null, # "time": 1506128252968, # "type": "FUNDS_MIGRATION", # "value": 0.0009957, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 0.0009957, "available": 0.0009957, "locked": 0}, # "change": {"total": 0.0009957, "available": 0.0009957, "locked": 0} # } # # CREATE_BALANCE # { # "historyId": "d0fabd8d-9107-4b5e-b9a6-3cab8af70d49", # "balance": { # "id": "653ffcf2-3037-4ebe-8e13-d5ea1a01d60d", # "currency": "BTG", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTG" # }, # "detailId": null, # "time": 1508895244751, # "type": "CREATE_BALANCE", # "value": 0, # "fundsBefore": {"total": null, "available": null, "locked": null}, # "fundsAfter": {"total": 0, "available": 0, "locked": 0}, # "change": {"total": 0, "available": 0, "locked": 0} # } # # BITCOIN_GOLD_FORK # { # "historyId": "2b4d52d3-611c-473d-b92c-8a8d87a24e41", # "balance": { # "id": "653ffcf2-3037-4ebe-8e13-d5ea1a01d60d", # "currency": "BTG", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTG" # }, # "detailId": null, # "time": 1508895244778, # "type": "BITCOIN_GOLD_FORK", # "value": 0.00453512, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 0.00453512, "available": 0.00453512, "locked": 0}, # "change": {"total": 0.00453512, "available": 0.00453512, "locked": 0} # } # # ADD_FUNDS # { # "historyId": "3158236d-dae5-4a5d-81af-c1fa4af340fb", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "8e83a960-e737-4380-b8bb-259d6e236faa", # "time": 1520631178816, # "type": "ADD_FUNDS", # "value": 0.628405, # "fundsBefore": {"total": 0.00453512, "available": 0.00453512, "locked": 0}, # "fundsAfter": {"total": 0.63294012, "available": 0.63294012, "locked": 0}, # "change": {"total": 0.628405, "available": 0.628405, "locked": 0} # } # # TRANSACTION_PRE_LOCKING # { # "historyId": "e7d19e0f-03b3-46a8-bc72-dde72cc24ead", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": null, # "time": 1520706403868, # "type": "TRANSACTION_PRE_LOCKING", # "value": -0.1, # "fundsBefore": {"total": 0.63294012, "available": 0.63294012, "locked": 0}, # "fundsAfter": {"total": 0.63294012, "available": 0.53294012, "locked": 0.1}, # "change": {"total": 0, "available": -0.1, "locked": 0.1} # } # # TRANSACTION_POST_OUTCOME # { # "historyId": "c4010825-231d-4a9c-8e46-37cde1f7b63c", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "bf2876bc-b545-4503-96c8-ef4de8233876", # "time": 1520706404032, # "type": "TRANSACTION_POST_OUTCOME", # "value": -0.01771415, # "fundsBefore": {"total": 0.63294012, "available": 0.53294012, "locked": 0.1}, # "fundsAfter": {"total": 0.61522597, "available": 0.53294012, "locked": 0.08228585}, # "change": {"total": -0.01771415, "available": 0, "locked": -0.01771415} # } # # TRANSACTION_POST_INCOME # { # "historyId": "7f18b7af-b676-4125-84fd-042e683046f6", # "balance": { # "id": "ab43023b-4079-414c-b340-056e3430a3af", # "currency": "EUR", # "type": "FIAT", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "EUR" # }, # "detailId": "f5fcb274-0cc7-4385-b2d3-bae2756e701f", # "time": 1520706404035, # "type": "TRANSACTION_POST_INCOME", # "value": 628.78, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 628.78, "available": 628.78, "locked": 0}, # "change": {"total": 628.78, "available": 628.78, "locked": 0} # } # # TRANSACTION_COMMISSION_OUTCOME # { # "historyId": "843177fa-61bc-4cbf-8be5-b029d856c93b", # "balance": { # "id": "ab43023b-4079-414c-b340-056e3430a3af", # "currency": "EUR", # "type": "FIAT", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "EUR" # }, # "detailId": "f5fcb274-0cc7-4385-b2d3-bae2756e701f", # "time": 1520706404050, # "type": "TRANSACTION_COMMISSION_OUTCOME", # "value": -2.71, # "fundsBefore": {"total": 766.06, "available": 766.06, "locked": 0}, # "fundsAfter": {"total": 763.35,"available": 763.35, "locked": 0}, # "change": {"total": -2.71, "available": -2.71, "locked": 0} # } # # TRANSACTION_OFFER_COMPLETED_RETURN # { # "historyId": "cac69b04-c518-4dc5-9d86-e76e91f2e1d2", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": null, # "time": 1520714886425, # "type": "TRANSACTION_OFFER_COMPLETED_RETURN", # "value": 0.00000196, # "fundsBefore": {"total": 0.00941208, "available": 0.00941012, "locked": 0.00000196}, # "fundsAfter": {"total": 0.00941208, "available": 0.00941208, "locked": 0}, # "change": {"total": 0, "available": 0.00000196, "locked": -0.00000196} # } # # WITHDRAWAL_LOCK_FUNDS # { # "historyId": "03de2271-66ab-4960-a786-87ab9551fc14", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "6ad3dc72-1d6d-4ec2-8436-ca43f85a38a6", # "time": 1522245654481, # "type": "WITHDRAWAL_LOCK_FUNDS", # "value": -0.8, # "fundsBefore": {"total": 0.8, "available": 0.8, "locked": 0}, # "fundsAfter": {"total": 0.8, "available": 0, "locked": 0.8}, # "change": {"total": 0, "available": -0.8, "locked": 0.8} # } # # WITHDRAWAL_SUBTRACT_FUNDS # { # "historyId": "b0308c89-5288-438d-a306-c6448b1a266d", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "6ad3dc72-1d6d-4ec2-8436-ca43f85a38a6", # "time": 1522246526186, # "type": "WITHDRAWAL_SUBTRACT_FUNDS", # "value": -0.8, # "fundsBefore": {"total": 0.8, "available": 0, "locked": 0.8}, # "fundsAfter": {"total": 0, "available": 0, "locked": 0}, # "change": {"total": -0.8, "available": 0, "locked": -0.8} # } # # TRANSACTION_OFFER_ABORTED_RETURN # { # "historyId": "b1a3c075-d403-4e05-8f32-40512cdd88c0", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": null, # "time": 1522512298662, # "type": "TRANSACTION_OFFER_ABORTED_RETURN", # "value": 0.0564931, # "fundsBefore": {"total": 0.44951311, "available": 0.39302001, "locked": 0.0564931}, # "fundsAfter": {"total": 0.44951311, "available": 0.44951311, "locked": 0}, # "change": {"total": 0, "available": 0.0564931, "locked": -0.0564931} # } # # WITHDRAWAL_UNLOCK_FUNDS # { # "historyId": "0ed569a2-c330-482e-bb89-4cb553fb5b11", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "0c7be256-c336-4111-bee7-4eb22e339700", # "time": 1527866360785, # "type": "WITHDRAWAL_UNLOCK_FUNDS", # "value": 0.05045, # "fundsBefore": {"total": 0.86001578, "available": 0.80956578, "locked": 0.05045}, # "fundsAfter": {"total": 0.86001578, "available": 0.86001578, "locked": 0}, # "change": {"total": 0, "available": 0.05045, "locked": -0.05045} # } # # TRANSACTION_COMMISSION_RETURN # { # "historyId": "07c89c27-46f1-4d7a-8518-b73798bf168a", # "balance": { # "id": "ab43023b-4079-414c-b340-056e3430a3af", # "currency": "EUR", # "type": "FIAT", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "EUR" # }, # "detailId": null, # "time": 1528304043063, # "type": "TRANSACTION_COMMISSION_RETURN", # "value": 0.6, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 0.6, "available": 0.6, "locked": 0}, # "change": {"total": 0.6, "available": 0.6, "locked": 0} # } # timestamp = self.safe_integer(item, 'time') balance = self.safe_value(item, 'balance', {}) currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) change = self.safe_value(item, 'change', {}) amount = self.safe_number(change, 'total') direction = 'in' if amount < 0: direction = 'out' amount = -amount id = self.safe_string(item, 'historyId') # there are 2 undocumented api calls: (v1_01PrivateGetPaymentsDepositDetailId and v1_01PrivateGetPaymentsWithdrawalDetailId) # that can be used to enrich the transfers with txid, address etc(you need to use info.detailId as a parameter) referenceId = self.safe_string(item, 'detailId') type = self.parse_ledger_entry_type(self.safe_string(item, 'type')) fundsBefore = self.safe_value(item, 'fundsBefore', {}) before = self.safe_number(fundsBefore, 'total') fundsAfter = self.safe_value(item, 'fundsAfter', {}) after = self.safe_number(fundsAfter, 'total') return { 'info': item, 'id': id, 'direction': direction, 'account': None, 'referenceId': referenceId, 'referenceAccount': None, 'type': type, 'currency': code, 'amount': amount, 'before': before, 'after': after, 'status': 'ok', 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': None, } def parse_ledger_entry_type(self, type): types = { 'ADD_FUNDS': 'transaction', 'BITCOIN_GOLD_FORK': 'transaction', 'CREATE_BALANCE': 'transaction', 'FUNDS_MIGRATION': 'transaction', 'WITHDRAWAL_LOCK_FUNDS': 'transaction', 'WITHDRAWAL_SUBTRACT_FUNDS': 'transaction', 'WITHDRAWAL_UNLOCK_FUNDS': 'transaction', 'TRANSACTION_COMMISSION_OUTCOME': 'fee', 'TRANSACTION_COMMISSION_RETURN': 'fee', 'TRANSACTION_OFFER_ABORTED_RETURN': 'trade', 'TRANSACTION_OFFER_COMPLETED_RETURN': 'trade', 'TRANSACTION_POST_INCOME': 'trade', 'TRANSACTION_POST_OUTCOME': 'trade', 'TRANSACTION_PRE_LOCKING': 'trade', } return self.safe_string(types, type, type) def parse_ohlcv(self, ohlcv, market=None): # # [ # '1582399800000', # { # o: '0.0001428', # c: '0.0001428', # h: '0.0001428', # l: '0.0001428', # v: '4', # co: '1' # } # ] # first = self.safe_value(ohlcv, 1, {}) return [ self.safe_integer(ohlcv, 0), self.safe_number(first, 'o'), self.safe_number(first, 'h'), self.safe_number(first, 'l'), self.safe_number(first, 'c'), self.safe_number(first, 'v'), ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, 'resolution': self.timeframes[timeframe], # 'from': 1574709092000, # unix timestamp in milliseconds, required # 'to': 1574709092000, # unix timestamp in milliseconds, required } if limit is None: limit = 100 duration = self.parse_timeframe(timeframe) timerange = limit * duration * 1000 if since is None: request['to'] = self.milliseconds() request['from'] = request['to'] - timerange else: request['from'] = int(since) request['to'] = self.sum(request['from'], timerange) response = await self.v1_01PublicGetTradingCandleHistorySymbolResolution(self.extend(request, params)) # # { # "status":"Ok", # "items":[ # ["1591503060000",{"o":"0.02509572","c":"0.02509438","h":"0.02509664","l":"0.02509438","v":"0.02082165","co":"17"}], # ["1591503120000",{"o":"0.02509606","c":"0.02509515","h":"0.02509606","l":"0.02509487","v":"0.04971703","co":"13"}], # ["1591503180000",{"o":"0.02509532","c":"0.02509589","h":"0.02509589","l":"0.02509454","v":"0.01332236","co":"7"}], # ] # } # items = self.safe_value(response, 'items', []) return self.parse_ohlcvs(items, market, timeframe, since, limit) def parse_trade(self, trade, market=None): # # createOrder trades # # { # "rate": "0.02195928", # "amount": "0.00167952" # } # # fetchMyTrades(private) # # { # amount: "0.29285199", # commissionValue: "0.00125927", # id: "11c8203a-a267-11e9-b698-0242ac110007", # initializedBy: "Buy", # market: "ETH-EUR", # offerId: "11c82038-a267-11e9-b698-0242ac110007", # rate: "277", # time: "1562689917517", # userAction: "Buy", # wasTaker: True, # } # # fetchTrades(public) # # { # id: 'df00b0da-e5e0-11e9-8c19-0242ac11000a', # t: '1570108958831', # a: '0.04776653', # r: '0.02145854', # ty: 'Sell' # } # timestamp = self.safe_integer_2(trade, 'time', 't') userAction = self.safe_string(trade, 'userAction') side = 'buy' if (userAction == 'Buy') else 'sell' wasTaker = self.safe_value(trade, 'wasTaker') takerOrMaker = None if wasTaker is not None: takerOrMaker = 'taker' if wasTaker else 'maker' priceString = self.safe_string_2(trade, 'rate', 'r') amountString = self.safe_string_2(trade, 'amount', 'a') price = self.parse_number(priceString) amount = self.parse_number(amountString) cost = self.parse_number(Precise.string_mul(priceString, amountString)) feeCost = self.safe_number(trade, 'commissionValue') marketId = self.safe_string(trade, 'market') market = self.safe_market(marketId, market, '-') symbol = market['symbol'] fee = None if feeCost is not None: feeCcy = market['base'] if (side == 'buy') else market['quote'] fee = { 'currency': feeCcy, 'cost': feeCost, } order = self.safe_string(trade, 'offerId') # todo: check self logic type = None if order is not None: type = 'limit' if order else 'market' return { 'id': self.safe_string(trade, 'id'), 'order': order, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'takerOrMaker': takerOrMaker, 'fee': fee, 'info': trade, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, } if since is not None: request['fromTime'] = since - 1 # result does not include exactly `since` time therefore decrease by 1 if limit is not None: request['limit'] = limit # default - 10, max - 300 response = await self.v1_01PublicGetTradingTransactionsSymbol(self.extend(request, params)) items = self.safe_value(response, 'items') return self.parse_trades(items, market, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, 'offerType': side, 'amount': amount, 'mode': type, } if type == 'limit': request['rate'] = price price = float(price) amount = float(amount) response = await self.v1_01PrivatePostTradingOfferSymbol(self.extend(request, params)) # # unfilled(open order) # # { # status: 'Ok', # completed: False, # can deduce status from here # offerId: 'ce9cc72e-d61c-11e9-9248-0242ac110005', # transactions: [], # can deduce order info from here # } # # filled(closed order) # # { # "status": "Ok", # "offerId": "942a4a3e-e922-11e9-8c19-0242ac11000a", # "completed": True, # "transactions": [ # { # "rate": "0.02195928", # "amount": "0.00167952" # }, # { # "rate": "0.02195928", # "amount": "0.00167952" # }, # { # "rate": "0.02196207", # "amount": "0.27704177" # } # ] # } # # partially-filled(open order) # # { # "status": "Ok", # "offerId": "d0ebefab-f4d7-11e9-8c19-0242ac11000a", # "completed": False, # "transactions": [ # { # "rate": "0.02106404", # "amount": "0.0019625" # }, # { # "rate": "0.02106404", # "amount": "0.0019625" # }, # { # "rate": "0.02105901", # "amount": "0.00975256" # } # ] # } # timestamp = self.milliseconds() # the real timestamp is missing in the response id = self.safe_string(response, 'offerId') completed = self.safe_value(response, 'completed', False) status = 'closed' if completed else 'open' filled = 0 cost = None transactions = self.safe_value(response, 'transactions') trades = None if transactions is not None: trades = self.parse_trades(transactions, market, None, None, { 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'side': side, 'type': type, 'orderId': id, }) cost = 0 for i in range(0, len(trades)): filled = self.sum(filled, trades[i]['amount']) cost = self.sum(cost, trades[i]['cost']) remaining = amount - filled return { 'id': id, 'info': response, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'filled': filled, 'remaining': remaining, 'average': None, 'fee': None, 'trades': trades, 'clientOrderId': None, } async def cancel_order(self, id, symbol=None, params={}): side = self.safe_string(params, 'side') if side is None: raise ExchangeError(self.id + ' cancelOrder() requires a `side` parameter("buy" or "sell")') price = self.safe_value(params, 'price') if price is None: raise ExchangeError(self.id + ' cancelOrder() requires a `price` parameter(float or string)') await self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, 'id': id, 'side': side, 'price': price, } # {status: 'Fail', errors: ['NOT_RECOGNIZED_OFFER_TYPE']} -- if required params are missing # {status: 'Ok', errors: []} return self.v1_01PrivateDeleteTradingOfferSymbolIdSidePrice(self.extend(request, params)) def is_fiat(self, currency): fiatCurrencies = { 'USD': True, 'EUR': True, 'PLN': True, } return self.safe_value(fiatCurrencies, currency, False) async def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) await self.load_markets() method = None currency = self.currency(code) request = { 'currency': currency['id'], 'quantity': amount, } if self.is_fiat(code): method = 'privatePostWithdraw' # request['account'] = params['account'] # they demand an account number # request['express'] = params['express'] # whatever it means, they don't explain # request['bic'] = '' else: method = 'privatePostTransfer' if tag is not None: address += '?dt=' + str(tag) request['address'] = address response = await getattr(self, method)(self.extend(request, params)) return { 'info': response, 'id': None, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.implode_params(self.urls['api'][api], {'hostname': self.hostname}) if api == 'public': query = self.omit(params, self.extract_params(path)) url += '/' + self.implode_params(path, params) + '.json' if query: url += '?' + self.urlencode(query) elif api == 'v1_01Public': query = self.omit(params, self.extract_params(path)) url += '/' + self.implode_params(path, params) if query: url += '?' + self.urlencode(query) elif api == 'v1_01Private': self.check_required_credentials() query = self.omit(params, self.extract_params(path)) url += '/' + self.implode_params(path, params) nonce = str(self.milliseconds()) payload = None if method != 'POST': if query: url += '?' + self.urlencode(query) payload = self.apiKey + nonce elif body is None: body = self.json(query) payload = self.apiKey + nonce + body headers = { 'Request-Timestamp': nonce, 'Operation-Id': self.uuid(), 'API-Key': self.apiKey, 'API-Hash': self.hmac(self.encode(payload), self.encode(self.secret), hashlib.sha512), 'Content-Type': 'application/json', } else: self.check_required_credentials() body = self.urlencode(self.extend({ 'method': path, 'moment': self.nonce(), }, params)) headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'API-Key': self.apiKey, 'API-Hash': self.hmac(self.encode(body), self.encode(self.secret), hashlib.sha512), } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return # fallback to default error handler if 'code' in response: # # bitbay returns the integer 'success': 1 key from their private API # or an integer 'code' value from 0 to 510 and an error message # # {'success': 1, ...} # {'code': 502, 'message': 'Invalid sign'} # {'code': 0, 'message': 'offer funds not exceeding minimums'} # # 400 At least one parameter wasn't set # 401 Invalid order type # 402 No orders with specified currencies # 403 Invalid payment currency name # 404 Error. Wrong transaction type # 405 Order with self id doesn't exist # 406 No enough money or crypto # 408 Invalid currency name # 501 Invalid public key # 502 Invalid sign # 503 Invalid moment parameter. Request time doesn't match current server time # 504 Invalid method # 505 Key has no permission for self action # 506 Account locked. Please contact with customer service # 509 The BIC/SWIFT is required for self currency # 510 Invalid market name # code = self.safe_string(response, 'code') # always an integer feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions, code, feedback) raise ExchangeError(feedback) elif 'status' in response: # # {"status":"Fail","errors":["OFFER_FUNDS_NOT_EXCEEDING_MINIMUMS"]} # status = self.safe_string(response, 'status') if status == 'Fail': errors = self.safe_value(response, 'errors') feedback = self.id + ' ' + body for i in range(0, len(errors)): error = errors[i] self.throw_exactly_matched_exception(self.exceptions, error, feedback) raise ExchangeError(feedback)
41.266122
137
0.46369
rt.base.exchange import Exchange import hashlib from ccxt.base.errors import ExchangeError from ccxt.base.errors import AuthenticationError from ccxt.base.errors import PermissionDenied from ccxt.base.errors import AccountSuspended from ccxt.base.errors import BadSymbol from ccxt.base.errors import InsufficientFunds from ccxt.base.errors import InvalidOrder from ccxt.base.errors import OrderNotFound from ccxt.base.errors import OrderImmediatelyFillable from ccxt.base.errors import RateLimitExceeded from ccxt.base.errors import OnMaintenance from ccxt.base.errors import InvalidNonce from ccxt.base.precise import Precise class bitbay(Exchange): def describe(self): return self.deep_extend(super(bitbay, self).describe(), { 'id': 'bitbay', 'name': 'BitBay', 'countries': ['MT', 'EU'], 'rateLimit': 1000, 'has': { 'cancelOrder': True, 'CORS': True, 'createOrder': True, 'fetchBalance': True, 'fetchLedger': True, 'fetchMarkets': True, 'fetchMyTrades': True, 'fetchOHLCV': True, 'fetchOpenOrders': True, 'fetchOrderBook': True, 'fetchTicker': True, 'fetchTrades': True, 'withdraw': True, }, 'timeframes': { '1m': '60', '3m': '180', '5m': '300', '15m': '900', '30m': '1800', '1h': '3600', '2h': '7200', '4h': '14400', '6h': '21600', '12h': '43200', '1d': '86400', '3d': '259200', '1w': '604800', }, 'hostname': 'bitbay.net', 'urls': { 'referral': 'https://auth.bitbay.net/ref/jHlbB4mIkdS1', 'logo': 'https://user-images.githubusercontent.com/1294454/27766132-978a7bd8-5ece-11e7-9540-bc96d1e9bbb8.jpg', 'www': 'https://bitbay.net', 'api': { 'public': 'https://{hostname}/API/Public', 'private': 'https://{hostname}/API/Trading/tradingApi.php', 'v1_01Public': 'https://api.{hostname}/rest', 'v1_01Private': 'https://api.{hostname}/rest', }, 'doc': [ 'https://bitbay.net/public-api', 'https://bitbay.net/en/private-api', 'https://bitbay.net/account/tab-api', 'https://github.com/BitBayNet/API', 'https://docs.bitbay.net/v1.0.1-en/reference', ], 'support': 'https://support.bitbay.net', 'fees': 'https://bitbay.net/en/fees', }, 'api': { 'public': { 'get': [ '{id}/all', '{id}/market', '{id}/orderbook', '{id}/ticker', '{id}/trades', ], }, 'private': { 'post': [ 'info', 'trade', 'cancel', 'orderbook', 'orders', 'transfer', 'withdraw', 'history', 'transactions', ], }, 'v1_01Public': { 'get': [ 'trading/ticker', 'trading/ticker/{symbol}', 'trading/stats', 'trading/orderbook/{symbol}', 'trading/transactions/{symbol}', 'trading/candle/history/{symbol}/{resolution}', ], }, 'v1_01Private': { 'get': [ 'payments/withdrawal/{detailId}', 'payments/deposit/{detailId}', 'trading/offer', 'trading/config/{symbol}', 'trading/history/transactions', 'balances/BITBAY/history', 'balances/BITBAY/balance', 'fiat_cantor/rate/{baseId}/{quoteId}', 'fiat_cantor/history', ], 'post': [ 'trading/offer/{symbol}', 'trading/config/{symbol}', 'balances/BITBAY/balance', 'balances/BITBAY/balance/transfer/{source}/{destination}', 'fiat_cantor/exchange', ], 'delete': [ 'trading/offer/{symbol}/{id}/{side}/{price}', ], 'put': [ 'balances/BITBAY/balance/{id}', ], }, }, 'fees': { 'trading': { 'maker': 0.0, 'taker': 0.1 / 100, 'percentage': True, 'tierBased': False, }, 'fiat': { 'maker': 0.30 / 100, 'taker': 0.43 / 100, 'percentage': True, 'tierBased': True, 'tiers': { 'taker': [ [0.0043, 0], [0.0042, 1250], [0.0041, 3750], [0.0040, 7500], [0.0039, 10000], [0.0038, 15000], [0.0037, 20000], [0.0036, 25000], [0.0035, 37500], [0.0034, 50000], [0.0033, 75000], [0.0032, 100000], [0.0031, 150000], [0.0030, 200000], [0.0029, 250000], [0.0028, 375000], [0.0027, 500000], [0.0026, 625000], [0.0025, 875000], ], 'maker': [ [0.0030, 0], [0.0029, 1250], [0.0028, 3750], [0.0028, 7500], [0.0027, 10000], [0.0026, 15000], [0.0025, 20000], [0.0025, 25000], [0.0024, 37500], [0.0023, 50000], [0.0023, 75000], [0.0022, 100000], [0.0021, 150000], [0.0021, 200000], [0.0020, 250000], [0.0019, 375000], [0.0018, 500000], [0.0018, 625000], [0.0017, 875000], ], }, }, 'funding': { 'withdraw': { 'BTC': 0.0009, 'LTC': 0.005, 'ETH': 0.00126, 'LSK': 0.2, 'BCH': 0.0006, 'GAME': 0.005, 'DASH': 0.001, 'BTG': 0.0008, 'PLN': 4, 'EUR': 1.5, }, }, }, 'options': { 'fiatCurrencies': ['EUR', 'USD', 'GBP', 'PLN'], }, 'exceptions': { '400': ExchangeError, '401': InvalidOrder, # Invalid order type '402': InvalidOrder, # No orders with specified currencies '403': InvalidOrder, # Invalid payment currency name '404': InvalidOrder, # Error. Wrong transaction type '405': InvalidOrder, # Order with self id doesn't exist '406': InsufficientFunds, '408': InvalidOrder, '501': AuthenticationError, '502': AuthenticationError, '503': InvalidNonce, '504': ExchangeError, # Invalid method '505': AuthenticationError, # Key has no permission for self action '506': AccountSuspended, # Account locked. Please contact with customer service # codes 507 and 508 are not specified in their docs '509': ExchangeError, # The BIC/SWIFT is required for self currency '510': BadSymbol, # Invalid market name 'FUNDS_NOT_SUFFICIENT': InsufficientFunds, 'OFFER_FUNDS_NOT_EXCEEDING_MINIMUMS': InvalidOrder, 'OFFER_NOT_FOUND': OrderNotFound, 'OFFER_WOULD_HAVE_BEEN_PARTIALLY_FILLED': OrderImmediatelyFillable, 'ACTION_LIMIT_EXCEEDED': RateLimitExceeded, 'UNDER_MAINTENANCE': OnMaintenance, 'REQUEST_TIMESTAMP_TOO_OLD': InvalidNonce, 'PERMISSIONS_NOT_SUFFICIENT': PermissionDenied, }, 'commonCurrencies': { 'GGC': 'Global Game Coin', }, }) async def fetch_markets(self, params={}): response = await self.v1_01PublicGetTradingTicker(params) fiatCurrencies = self.safe_value(self.options, 'fiatCurrencies', []) # # { # status: 'Ok', # items: { # 'BSV-USD': { # market: { # code: 'BSV-USD', # first: {currency: 'BSV', minOffer: '0.00035', scale: 8}, # second: {currency: 'USD', minOffer: '5', scale: 2} # }, # time: '1557569762154', # highestBid: '52.31', # lowestAsk: '62.99', # rate: '63', # previousRate: '51.21', # }, # }, # } # result = [] items = self.safe_value(response, 'items') keys = list(items.keys()) for i in range(0, len(keys)): key = keys[i] item = items[key] market = self.safe_value(item, 'market', {}) first = self.safe_value(market, 'first', {}) second = self.safe_value(market, 'second', {}) baseId = self.safe_string(first, 'currency') quoteId = self.safe_string(second, 'currency') id = baseId + quoteId base = self.safe_currency_code(baseId) quote = self.safe_currency_code(quoteId) symbol = base + '/' + quote precision = { 'amount': self.safe_integer(first, 'scale'), 'price': self.safe_integer(second, 'scale'), } fees = self.safe_value(self.fees, 'trading', {}) if self.in_array(base, fiatCurrencies) or self.in_array(quote, fiatCurrencies): fees = self.safe_value(self.fees, 'fiat', {}) maker = self.safe_number(fees, 'maker') taker = self.safe_number(fees, 'taker') # todo: check that the limits have ben interpreted correctly # todo: parse the fees page result.append({ 'id': id, 'symbol': symbol, 'base': base, 'quote': quote, 'baseId': baseId, 'quoteId': quoteId, 'precision': precision, 'active': None, 'maker': maker, 'taker': taker, 'limits': { 'amount': { 'min': self.safe_number(first, 'minOffer'), 'max': None, }, 'price': { 'min': None, 'max': None, }, 'cost': { 'min': self.safe_number(second, 'minOffer'), 'max': None, }, }, 'info': item, }) return result async def fetch_open_orders(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() request = {} response = await self.v1_01PrivateGetTradingOffer(self.extend(request, params)) items = self.safe_value(response, 'items', []) return self.parse_orders(items, None, since, limit, {'status': 'open'}) def parse_order(self, order, market=None): # # { # market: 'ETH-EUR', # offerType: 'Sell', # id: '93d3657b-d616-11e9-9248-0242ac110005', # currentAmount: '0.04', # lockedAmount: '0.04', # rate: '280', # startAmount: '0.04', # time: '1568372806924', # postOnly: False, # hidden: False, # mode: 'limit', # receivedAmount: '0.0', # firstBalanceId: '5b816c3e-437c-4e43-9bef-47814ae7ebfc', # secondBalanceId: 'ab43023b-4079-414c-b340-056e3430a3af' # } # marketId = self.safe_string(order, 'market') symbol = self.safe_symbol(marketId, market, '-') timestamp = self.safe_integer(order, 'time') amount = self.safe_number(order, 'startAmount') remaining = self.safe_number(order, 'currentAmount') postOnly = self.safe_value(order, 'postOnly') return self.safe_order({ 'id': self.safe_string(order, 'id'), 'clientOrderId': None, 'info': order, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': None, 'symbol': symbol, 'type': self.safe_string(order, 'mode'), 'timeInForce': None, 'postOnly': postOnly, 'side': self.safe_string_lower(order, 'offerType'), 'price': self.safe_number(order, 'rate'), 'stopPrice': None, 'amount': amount, 'cost': None, 'filled': None, 'remaining': remaining, 'average': None, 'fee': None, 'trades': None, }) async def fetch_my_trades(self, symbol=None, since=None, limit=None, params={}): await self.load_markets() request = {} if symbol: markets = [self.market_id(symbol)] request['markets'] = markets query = {'query': self.json(self.extend(request, params))} response = await self.v1_01PrivateGetTradingHistoryTransactions(query) # # { # status: 'Ok', # totalRows: '67', # items: [ # { # id: 'b54659a0-51b5-42a0-80eb-2ac5357ccee2', # market: 'BTC-EUR', # time: '1541697096247', # amount: '0.00003', # rate: '4341.44', # initializedBy: 'Sell', # wasTaker: False, # userAction: 'Buy', # offerId: 'bd19804a-6f89-4a69-adb8-eb078900d006', # commissionValue: null # }, # ] # } # items = self.safe_value(response, 'items') result = self.parse_trades(items, None, since, limit) if symbol is None: return result return self.filter_by_symbol(result, symbol) async def fetch_balance(self, params={}): await self.load_markets() response = await self.v1_01PrivateGetBalancesBITBAYBalance(params) balances = self.safe_value(response, 'balances') if balances is None: raise ExchangeError(self.id + ' empty balance response ' + self.json(response)) result = {'info': response} for i in range(0, len(balances)): balance = balances[i] currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) account = self.account() account['used'] = self.safe_string(balance, 'lockedFunds') account['free'] = self.safe_string(balance, 'availableFunds') result[code] = account return self.parse_balance(result, False) async def fetch_order_book(self, symbol, limit=None, params={}): await self.load_markets() request = { 'id': self.market_id(symbol), } orderbook = await self.publicGetIdOrderbook(self.extend(request, params)) return self.parse_order_book(orderbook, symbol) async def fetch_ticker(self, symbol, params={}): await self.load_markets() request = { 'id': self.market_id(symbol), } ticker = await self.publicGetIdTicker(self.extend(request, params)) timestamp = self.milliseconds() baseVolume = self.safe_number(ticker, 'volume') vwap = self.safe_number(ticker, 'vwap') quoteVolume = None if baseVolume is not None and vwap is not None: quoteVolume = baseVolume * vwap last = self.safe_number(ticker, 'last') return { 'symbol': symbol, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'high': self.safe_number(ticker, 'max'), 'low': self.safe_number(ticker, 'min'), 'bid': self.safe_number(ticker, 'bid'), 'bidVolume': None, 'ask': self.safe_number(ticker, 'ask'), 'askVolume': None, 'vwap': vwap, 'open': None, 'close': last, 'last': last, 'previousClose': None, 'change': None, 'percentage': None, 'average': self.safe_number(ticker, 'average'), 'baseVolume': baseVolume, 'quoteVolume': quoteVolume, 'info': ticker, } async def fetch_ledger(self, code=None, since=None, limit=None, params={}): balanceCurrencies = [] if code is not None: currency = self.currency(code) balanceCurrencies.append(currency['id']) request = { 'balanceCurrencies': balanceCurrencies, } if since is not None: request['fromTime'] = since if limit is not None: request['limit'] = limit request = self.extend(request, params) response = await self.v1_01PrivateGetBalancesBITBAYHistory({'query': self.json(request)}) items = response['items'] return self.parse_ledger(items, None, since, limit) def parse_ledger_entry(self, item, currency=None): # # FUNDS_MIGRATION # { # "historyId": "84ea7a29-7da5-4de5-b0c0-871e83cad765", # "balance": { # "id": "821ec166-cb88-4521-916c-f4eb44db98df", # "currency": "LTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "LTC" # }, # "detailId": null, # "time": 1506128252968, # "type": "FUNDS_MIGRATION", # "value": 0.0009957, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 0.0009957, "available": 0.0009957, "locked": 0}, # "change": {"total": 0.0009957, "available": 0.0009957, "locked": 0} # } # # CREATE_BALANCE # { # "historyId": "d0fabd8d-9107-4b5e-b9a6-3cab8af70d49", # "balance": { # "id": "653ffcf2-3037-4ebe-8e13-d5ea1a01d60d", # "currency": "BTG", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTG" # }, # "detailId": null, # "time": 1508895244751, # "type": "CREATE_BALANCE", # "value": 0, # "fundsBefore": {"total": null, "available": null, "locked": null}, # "fundsAfter": {"total": 0, "available": 0, "locked": 0}, # "change": {"total": 0, "available": 0, "locked": 0} # } # # BITCOIN_GOLD_FORK # { # "historyId": "2b4d52d3-611c-473d-b92c-8a8d87a24e41", # "balance": { # "id": "653ffcf2-3037-4ebe-8e13-d5ea1a01d60d", # "currency": "BTG", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTG" # }, # "detailId": null, # "time": 1508895244778, # "type": "BITCOIN_GOLD_FORK", # "value": 0.00453512, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 0.00453512, "available": 0.00453512, "locked": 0}, # "change": {"total": 0.00453512, "available": 0.00453512, "locked": 0} # } # # ADD_FUNDS # { # "historyId": "3158236d-dae5-4a5d-81af-c1fa4af340fb", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "8e83a960-e737-4380-b8bb-259d6e236faa", # "time": 1520631178816, # "type": "ADD_FUNDS", # "value": 0.628405, # "fundsBefore": {"total": 0.00453512, "available": 0.00453512, "locked": 0}, # "fundsAfter": {"total": 0.63294012, "available": 0.63294012, "locked": 0}, # "change": {"total": 0.628405, "available": 0.628405, "locked": 0} # } # # TRANSACTION_PRE_LOCKING # { # "historyId": "e7d19e0f-03b3-46a8-bc72-dde72cc24ead", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": null, # "time": 1520706403868, # "type": "TRANSACTION_PRE_LOCKING", # "value": -0.1, # "fundsBefore": {"total": 0.63294012, "available": 0.63294012, "locked": 0}, # "fundsAfter": {"total": 0.63294012, "available": 0.53294012, "locked": 0.1}, # "change": {"total": 0, "available": -0.1, "locked": 0.1} # } # # TRANSACTION_POST_OUTCOME # { # "historyId": "c4010825-231d-4a9c-8e46-37cde1f7b63c", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "bf2876bc-b545-4503-96c8-ef4de8233876", # "time": 1520706404032, # "type": "TRANSACTION_POST_OUTCOME", # "value": -0.01771415, # "fundsBefore": {"total": 0.63294012, "available": 0.53294012, "locked": 0.1}, # "fundsAfter": {"total": 0.61522597, "available": 0.53294012, "locked": 0.08228585}, # "change": {"total": -0.01771415, "available": 0, "locked": -0.01771415} # } # # TRANSACTION_POST_INCOME # { # "historyId": "7f18b7af-b676-4125-84fd-042e683046f6", # "balance": { # "id": "ab43023b-4079-414c-b340-056e3430a3af", # "currency": "EUR", # "type": "FIAT", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "EUR" # }, # "detailId": "f5fcb274-0cc7-4385-b2d3-bae2756e701f", # "time": 1520706404035, # "type": "TRANSACTION_POST_INCOME", # "value": 628.78, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 628.78, "available": 628.78, "locked": 0}, # "change": {"total": 628.78, "available": 628.78, "locked": 0} # } # # TRANSACTION_COMMISSION_OUTCOME # { # "historyId": "843177fa-61bc-4cbf-8be5-b029d856c93b", # "balance": { # "id": "ab43023b-4079-414c-b340-056e3430a3af", # "currency": "EUR", # "type": "FIAT", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "EUR" # }, # "detailId": "f5fcb274-0cc7-4385-b2d3-bae2756e701f", # "time": 1520706404050, # "type": "TRANSACTION_COMMISSION_OUTCOME", # "value": -2.71, # "fundsBefore": {"total": 766.06, "available": 766.06, "locked": 0}, # "fundsAfter": {"total": 763.35,"available": 763.35, "locked": 0}, # "change": {"total": -2.71, "available": -2.71, "locked": 0} # } # # TRANSACTION_OFFER_COMPLETED_RETURN # { # "historyId": "cac69b04-c518-4dc5-9d86-e76e91f2e1d2", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": null, # "time": 1520714886425, # "type": "TRANSACTION_OFFER_COMPLETED_RETURN", # "value": 0.00000196, # "fundsBefore": {"total": 0.00941208, "available": 0.00941012, "locked": 0.00000196}, # "fundsAfter": {"total": 0.00941208, "available": 0.00941208, "locked": 0}, # "change": {"total": 0, "available": 0.00000196, "locked": -0.00000196} # } # # WITHDRAWAL_LOCK_FUNDS # { # "historyId": "03de2271-66ab-4960-a786-87ab9551fc14", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "6ad3dc72-1d6d-4ec2-8436-ca43f85a38a6", # "time": 1522245654481, # "type": "WITHDRAWAL_LOCK_FUNDS", # "value": -0.8, # "fundsBefore": {"total": 0.8, "available": 0.8, "locked": 0}, # "fundsAfter": {"total": 0.8, "available": 0, "locked": 0.8}, # "change": {"total": 0, "available": -0.8, "locked": 0.8} # } # # WITHDRAWAL_SUBTRACT_FUNDS # { # "historyId": "b0308c89-5288-438d-a306-c6448b1a266d", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "6ad3dc72-1d6d-4ec2-8436-ca43f85a38a6", # "time": 1522246526186, # "type": "WITHDRAWAL_SUBTRACT_FUNDS", # "value": -0.8, # "fundsBefore": {"total": 0.8, "available": 0, "locked": 0.8}, # "fundsAfter": {"total": 0, "available": 0, "locked": 0}, # "change": {"total": -0.8, "available": 0, "locked": -0.8} # } # # TRANSACTION_OFFER_ABORTED_RETURN # { # "historyId": "b1a3c075-d403-4e05-8f32-40512cdd88c0", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": null, # "time": 1522512298662, # "type": "TRANSACTION_OFFER_ABORTED_RETURN", # "value": 0.0564931, # "fundsBefore": {"total": 0.44951311, "available": 0.39302001, "locked": 0.0564931}, # "fundsAfter": {"total": 0.44951311, "available": 0.44951311, "locked": 0}, # "change": {"total": 0, "available": 0.0564931, "locked": -0.0564931} # } # # WITHDRAWAL_UNLOCK_FUNDS # { # "historyId": "0ed569a2-c330-482e-bb89-4cb553fb5b11", # "balance": { # "id": "3a7e7a1e-0324-49d5-8f59-298505ebd6c7", # "currency": "BTC", # "type": "CRYPTO", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "BTC" # }, # "detailId": "0c7be256-c336-4111-bee7-4eb22e339700", # "time": 1527866360785, # "type": "WITHDRAWAL_UNLOCK_FUNDS", # "value": 0.05045, # "fundsBefore": {"total": 0.86001578, "available": 0.80956578, "locked": 0.05045}, # "fundsAfter": {"total": 0.86001578, "available": 0.86001578, "locked": 0}, # "change": {"total": 0, "available": 0.05045, "locked": -0.05045} # } # # TRANSACTION_COMMISSION_RETURN # { # "historyId": "07c89c27-46f1-4d7a-8518-b73798bf168a", # "balance": { # "id": "ab43023b-4079-414c-b340-056e3430a3af", # "currency": "EUR", # "type": "FIAT", # "userId": "a34d361d-7bad-49c1-888e-62473b75d877", # "name": "EUR" # }, # "detailId": null, # "time": 1528304043063, # "type": "TRANSACTION_COMMISSION_RETURN", # "value": 0.6, # "fundsBefore": {"total": 0, "available": 0, "locked": 0}, # "fundsAfter": {"total": 0.6, "available": 0.6, "locked": 0}, # "change": {"total": 0.6, "available": 0.6, "locked": 0} # } # timestamp = self.safe_integer(item, 'time') balance = self.safe_value(item, 'balance', {}) currencyId = self.safe_string(balance, 'currency') code = self.safe_currency_code(currencyId) change = self.safe_value(item, 'change', {}) amount = self.safe_number(change, 'total') direction = 'in' if amount < 0: direction = 'out' amount = -amount id = self.safe_string(item, 'historyId') # there are 2 undocumented api calls: (v1_01PrivateGetPaymentsDepositDetailId and v1_01PrivateGetPaymentsWithdrawalDetailId) # that can be used to enrich the transfers with txid, address etc(you need to use info.detailId as a parameter) referenceId = self.safe_string(item, 'detailId') type = self.parse_ledger_entry_type(self.safe_string(item, 'type')) fundsBefore = self.safe_value(item, 'fundsBefore', {}) before = self.safe_number(fundsBefore, 'total') fundsAfter = self.safe_value(item, 'fundsAfter', {}) after = self.safe_number(fundsAfter, 'total') return { 'info': item, 'id': id, 'direction': direction, 'account': None, 'referenceId': referenceId, 'referenceAccount': None, 'type': type, 'currency': code, 'amount': amount, 'before': before, 'after': after, 'status': 'ok', 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'fee': None, } def parse_ledger_entry_type(self, type): types = { 'ADD_FUNDS': 'transaction', 'BITCOIN_GOLD_FORK': 'transaction', 'CREATE_BALANCE': 'transaction', 'FUNDS_MIGRATION': 'transaction', 'WITHDRAWAL_LOCK_FUNDS': 'transaction', 'WITHDRAWAL_SUBTRACT_FUNDS': 'transaction', 'WITHDRAWAL_UNLOCK_FUNDS': 'transaction', 'TRANSACTION_COMMISSION_OUTCOME': 'fee', 'TRANSACTION_COMMISSION_RETURN': 'fee', 'TRANSACTION_OFFER_ABORTED_RETURN': 'trade', 'TRANSACTION_OFFER_COMPLETED_RETURN': 'trade', 'TRANSACTION_POST_INCOME': 'trade', 'TRANSACTION_POST_OUTCOME': 'trade', 'TRANSACTION_PRE_LOCKING': 'trade', } return self.safe_string(types, type, type) def parse_ohlcv(self, ohlcv, market=None): # # [ # '1582399800000', # { # o: '0.0001428', # c: '0.0001428', # h: '0.0001428', # l: '0.0001428', # v: '4', # co: '1' # } # ] # first = self.safe_value(ohlcv, 1, {}) return [ self.safe_integer(ohlcv, 0), self.safe_number(first, 'o'), self.safe_number(first, 'h'), self.safe_number(first, 'l'), self.safe_number(first, 'c'), self.safe_number(first, 'v'), ] async def fetch_ohlcv(self, symbol, timeframe='1m', since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, 'resolution': self.timeframes[timeframe], # 'from': 1574709092000, # unix timestamp in milliseconds, required # 'to': 1574709092000, # unix timestamp in milliseconds, required } if limit is None: limit = 100 duration = self.parse_timeframe(timeframe) timerange = limit * duration * 1000 if since is None: request['to'] = self.milliseconds() request['from'] = request['to'] - timerange else: request['from'] = int(since) request['to'] = self.sum(request['from'], timerange) response = await self.v1_01PublicGetTradingCandleHistorySymbolResolution(self.extend(request, params)) # # { # "status":"Ok", # "items":[ # ["1591503060000",{"o":"0.02509572","c":"0.02509438","h":"0.02509664","l":"0.02509438","v":"0.02082165","co":"17"}], # ["1591503120000",{"o":"0.02509606","c":"0.02509515","h":"0.02509606","l":"0.02509487","v":"0.04971703","co":"13"}], # ["1591503180000",{"o":"0.02509532","c":"0.02509589","h":"0.02509589","l":"0.02509454","v":"0.01332236","co":"7"}], # ] # } # items = self.safe_value(response, 'items', []) return self.parse_ohlcvs(items, market, timeframe, since, limit) def parse_trade(self, trade, market=None): # # createOrder trades # # { # "rate": "0.02195928", # "amount": "0.00167952" # } # # fetchMyTrades(private) # # { # amount: "0.29285199", # commissionValue: "0.00125927", # id: "11c8203a-a267-11e9-b698-0242ac110007", # initializedBy: "Buy", # market: "ETH-EUR", # offerId: "11c82038-a267-11e9-b698-0242ac110007", # rate: "277", # time: "1562689917517", # userAction: "Buy", # wasTaker: True, # } # # fetchTrades(public) # # { # id: 'df00b0da-e5e0-11e9-8c19-0242ac11000a', # t: '1570108958831', # a: '0.04776653', # r: '0.02145854', # ty: 'Sell' # } # timestamp = self.safe_integer_2(trade, 'time', 't') userAction = self.safe_string(trade, 'userAction') side = 'buy' if (userAction == 'Buy') else 'sell' wasTaker = self.safe_value(trade, 'wasTaker') takerOrMaker = None if wasTaker is not None: takerOrMaker = 'taker' if wasTaker else 'maker' priceString = self.safe_string_2(trade, 'rate', 'r') amountString = self.safe_string_2(trade, 'amount', 'a') price = self.parse_number(priceString) amount = self.parse_number(amountString) cost = self.parse_number(Precise.string_mul(priceString, amountString)) feeCost = self.safe_number(trade, 'commissionValue') marketId = self.safe_string(trade, 'market') market = self.safe_market(marketId, market, '-') symbol = market['symbol'] fee = None if feeCost is not None: feeCcy = market['base'] if (side == 'buy') else market['quote'] fee = { 'currency': feeCcy, 'cost': feeCost, } order = self.safe_string(trade, 'offerId') # todo: check self logic type = None if order is not None: type = 'limit' if order else 'market' return { 'id': self.safe_string(trade, 'id'), 'order': order, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'takerOrMaker': takerOrMaker, 'fee': fee, 'info': trade, } async def fetch_trades(self, symbol, since=None, limit=None, params={}): await self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, } if since is not None: request['fromTime'] = since - 1 # result does not include exactly `since` time therefore decrease by 1 if limit is not None: request['limit'] = limit # default - 10, max - 300 response = await self.v1_01PublicGetTradingTransactionsSymbol(self.extend(request, params)) items = self.safe_value(response, 'items') return self.parse_trades(items, market, since, limit) async def create_order(self, symbol, type, side, amount, price=None, params={}): await self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, 'offerType': side, 'amount': amount, 'mode': type, } if type == 'limit': request['rate'] = price price = float(price) amount = float(amount) response = await self.v1_01PrivatePostTradingOfferSymbol(self.extend(request, params)) # # unfilled(open order) # # { # status: 'Ok', # completed: False, # can deduce status from here # offerId: 'ce9cc72e-d61c-11e9-9248-0242ac110005', # transactions: [], # can deduce order info from here # } # # filled(closed order) # # { # "status": "Ok", # "offerId": "942a4a3e-e922-11e9-8c19-0242ac11000a", # "completed": True, # "transactions": [ # { # "rate": "0.02195928", # "amount": "0.00167952" # }, # { # "rate": "0.02195928", # "amount": "0.00167952" # }, # { # "rate": "0.02196207", # "amount": "0.27704177" # } # ] # } # # partially-filled(open order) # # { # "status": "Ok", # "offerId": "d0ebefab-f4d7-11e9-8c19-0242ac11000a", # "completed": False, # "transactions": [ # { # "rate": "0.02106404", # "amount": "0.0019625" # }, # { # "rate": "0.02106404", # "amount": "0.0019625" # }, # { # "rate": "0.02105901", # "amount": "0.00975256" # } # ] # } # timestamp = self.milliseconds() # the real timestamp is missing in the response id = self.safe_string(response, 'offerId') completed = self.safe_value(response, 'completed', False) status = 'closed' if completed else 'open' filled = 0 cost = None transactions = self.safe_value(response, 'transactions') trades = None if transactions is not None: trades = self.parse_trades(transactions, market, None, None, { 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'symbol': symbol, 'side': side, 'type': type, 'orderId': id, }) cost = 0 for i in range(0, len(trades)): filled = self.sum(filled, trades[i]['amount']) cost = self.sum(cost, trades[i]['cost']) remaining = amount - filled return { 'id': id, 'info': response, 'timestamp': timestamp, 'datetime': self.iso8601(timestamp), 'lastTradeTimestamp': None, 'status': status, 'symbol': symbol, 'type': type, 'side': side, 'price': price, 'amount': amount, 'cost': cost, 'filled': filled, 'remaining': remaining, 'average': None, 'fee': None, 'trades': trades, 'clientOrderId': None, } async def cancel_order(self, id, symbol=None, params={}): side = self.safe_string(params, 'side') if side is None: raise ExchangeError(self.id + ' cancelOrder() requires a `side` parameter("buy" or "sell")') price = self.safe_value(params, 'price') if price is None: raise ExchangeError(self.id + ' cancelOrder() requires a `price` parameter(float or string)') await self.load_markets() market = self.market(symbol) tradingSymbol = market['baseId'] + '-' + market['quoteId'] request = { 'symbol': tradingSymbol, 'id': id, 'side': side, 'price': price, } # {status: 'Fail', errors: ['NOT_RECOGNIZED_OFFER_TYPE']} -- if required params are missing # {status: 'Ok', errors: []} return self.v1_01PrivateDeleteTradingOfferSymbolIdSidePrice(self.extend(request, params)) def is_fiat(self, currency): fiatCurrencies = { 'USD': True, 'EUR': True, 'PLN': True, } return self.safe_value(fiatCurrencies, currency, False) async def withdraw(self, code, amount, address, tag=None, params={}): self.check_address(address) await self.load_markets() method = None currency = self.currency(code) request = { 'currency': currency['id'], 'quantity': amount, } if self.is_fiat(code): method = 'privatePostWithdraw' # request['account'] = params['account'] # they demand an account number # request['express'] = params['express'] # whatever it means, they don't explain else: method = 'privatePostTransfer' if tag is not None: address += '?dt=' + str(tag) request['address'] = address response = await getattr(self, method)(self.extend(request, params)) return { 'info': response, 'id': None, } def sign(self, path, api='public', method='GET', params={}, headers=None, body=None): url = self.implode_params(self.urls['api'][api], {'hostname': self.hostname}) if api == 'public': query = self.omit(params, self.extract_params(path)) url += '/' + self.implode_params(path, params) + '.json' if query: url += '?' + self.urlencode(query) elif api == 'v1_01Public': query = self.omit(params, self.extract_params(path)) url += '/' + self.implode_params(path, params) if query: url += '?' + self.urlencode(query) elif api == 'v1_01Private': self.check_required_credentials() query = self.omit(params, self.extract_params(path)) url += '/' + self.implode_params(path, params) nonce = str(self.milliseconds()) payload = None if method != 'POST': if query: url += '?' + self.urlencode(query) payload = self.apiKey + nonce elif body is None: body = self.json(query) payload = self.apiKey + nonce + body headers = { 'Request-Timestamp': nonce, 'Operation-Id': self.uuid(), 'API-Key': self.apiKey, 'API-Hash': self.hmac(self.encode(payload), self.encode(self.secret), hashlib.sha512), 'Content-Type': 'application/json', } else: self.check_required_credentials() body = self.urlencode(self.extend({ 'method': path, 'moment': self.nonce(), }, params)) headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'API-Key': self.apiKey, 'API-Hash': self.hmac(self.encode(body), self.encode(self.secret), hashlib.sha512), } return {'url': url, 'method': method, 'body': body, 'headers': headers} def handle_errors(self, httpCode, reason, url, method, headers, body, response, requestHeaders, requestBody): if response is None: return if 'code' in response: # 401 Invalid order type # 402 No orders with specified currencies # 403 Invalid payment currency name # 404 Error. Wrong transaction type # 405 Order with self id doesn't exist # 504 Invalid method # 505 Key has no permission for self action # 506 Account locked. Please contact with customer service # 509 The BIC/SWIFT is required for self currency # 510 Invalid market name # code = self.safe_string(response, 'code') # always an integer feedback = self.id + ' ' + body self.throw_exactly_matched_exception(self.exceptions, code, feedback) raise ExchangeError(feedback) elif 'status' in response: # # {"status":"Fail","errors":["OFFER_FUNDS_NOT_EXCEEDING_MINIMUMS"]} # status = self.safe_string(response, 'status') if status == 'Fail': errors = self.safe_value(response, 'errors') feedback = self.id + ' ' + body for i in range(0, len(errors)): error = errors[i] self.throw_exactly_matched_exception(self.exceptions, error, feedback) raise ExchangeError(feedback)
true
true
f717f7d7f8f771201fee15a195eb1be65208493e
207
py
Python
CodeHS/Unit 1/1.5/pancakes.py
nitrospam/APCSP2020
275f576036805d244c3244f3f3646951940c9575
[ "MIT" ]
null
null
null
CodeHS/Unit 1/1.5/pancakes.py
nitrospam/APCSP2020
275f576036805d244c3244f3f3646951940c9575
[ "MIT" ]
null
null
null
CodeHS/Unit 1/1.5/pancakes.py
nitrospam/APCSP2020
275f576036805d244c3244f3f3646951940c9575
[ "MIT" ]
null
null
null
def place_3_balls(): put_ball() put_ball() put_ball() def move_twice(): move() move() move() place_3_balls() move_twice() place_3_balls() move_twice() place_3_balls() move()
10.35
20
0.618357
def place_3_balls(): put_ball() put_ball() put_ball() def move_twice(): move() move() move() place_3_balls() move_twice() place_3_balls() move_twice() place_3_balls() move()
true
true
f717f82fd0f391aa09b205b652a744cfaac5ba2d
188
py
Python
testData/search/childrenKeywordArgument.py
seandstewart/typical-pycharm-plugin
4f6ec99766239421201faae9d75c32fa0ee3565a
[ "MIT" ]
null
null
null
testData/search/childrenKeywordArgument.py
seandstewart/typical-pycharm-plugin
4f6ec99766239421201faae9d75c32fa0ee3565a
[ "MIT" ]
null
null
null
testData/search/childrenKeywordArgument.py
seandstewart/typical-pycharm-plugin
4f6ec99766239421201faae9d75c32fa0ee3565a
[ "MIT" ]
null
null
null
from pydantic import BaseModel class A(BaseModel): abc: str class B(A): abc: str class C(A): abc: str # expected A(abc='cde') B(abc='cde') C(ab<caret>c='cde') ## count: 1
11.75
30
0.606383
from pydantic import BaseModel class A(BaseModel): abc: str class B(A): abc: str class C(A): abc: str A(abc='cde') B(abc='cde') C(ab<caret>c='cde')
false
true
f717f87eae6eff378694a1f1173d6bf41dba6abe
505
py
Python
66-plus-one/66-plus-one.py
yuzhengcuhk/MyLeetcodeRecord
bd516c6f2946b922da53e587fc186935c6a8819c
[ "MIT" ]
3
2022-02-07T12:47:43.000Z
2022-03-13T16:40:12.000Z
66-plus-one/66-plus-one.py
yuzhengcuhk/MyLeetcodeRecord
bd516c6f2946b922da53e587fc186935c6a8819c
[ "MIT" ]
null
null
null
66-plus-one/66-plus-one.py
yuzhengcuhk/MyLeetcodeRecord
bd516c6f2946b922da53e587fc186935c6a8819c
[ "MIT" ]
null
null
null
class Solution: def plusOne(self, digits: List[int]) -> List[int]: cnt = len(digits) if digits[cnt-1] != 9: digits[cnt-1] = digits[cnt-1] + 1 return digits else: for i in range(0, len(digits)): digits[i] = str(digits[i]) intdig = ''.join(digits) intdig = int(intdig) + 1 result = [] for item in str(intdig): result.append(int(item)) return result
33.666667
54
0.463366
class Solution: def plusOne(self, digits: List[int]) -> List[int]: cnt = len(digits) if digits[cnt-1] != 9: digits[cnt-1] = digits[cnt-1] + 1 return digits else: for i in range(0, len(digits)): digits[i] = str(digits[i]) intdig = ''.join(digits) intdig = int(intdig) + 1 result = [] for item in str(intdig): result.append(int(item)) return result
true
true
f717f8f11f852a6ff486c6c6a1bdbf3db226a42b
849
py
Python
Chapter_7_code/build/hector_quadrotor_controller_gazebo/catkin_generated/pkg.develspace.context.pc.py
crepuscularlight/ROSbyExample
fa7b1a60cacca9b1034e318a2ac16ce4c8530d7c
[ "MIT" ]
1
2021-04-23T10:01:22.000Z
2021-04-23T10:01:22.000Z
Chapter_7_code/build/hector_quadrotor_controller_gazebo/catkin_generated/pkg.develspace.context.pc.py
crepuscularlight/ROSbyExample
fa7b1a60cacca9b1034e318a2ac16ce4c8530d7c
[ "MIT" ]
null
null
null
Chapter_7_code/build/hector_quadrotor_controller_gazebo/catkin_generated/pkg.develspace.context.pc.py
crepuscularlight/ROSbyExample
fa7b1a60cacca9b1034e318a2ac16ce4c8530d7c
[ "MIT" ]
null
null
null
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/liudiyang1998/Git/ROS-Robotics-By-Example/Chapter_7_code/src/hector_quadrotor/hector_quadrotor_controller_gazebo/include".split(';') if "/home/liudiyang1998/Git/ROS-Robotics-By-Example/Chapter_7_code/src/hector_quadrotor/hector_quadrotor_controller_gazebo/include" != "" else [] PROJECT_CATKIN_DEPENDS = "gazebo_ros_control;hector_quadrotor_interface".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lhector_quadrotor_controller_gazebo".split(';') if "-lhector_quadrotor_controller_gazebo" != "" else [] PROJECT_NAME = "hector_quadrotor_controller_gazebo" PROJECT_SPACE_DIR = "/home/liudiyang1998/Git/ROS-Robotics-By-Example/Chapter_7_code/devel/.private/hector_quadrotor_controller_gazebo" PROJECT_VERSION = "0.3.5"
94.333333
319
0.829211
CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/liudiyang1998/Git/ROS-Robotics-By-Example/Chapter_7_code/src/hector_quadrotor/hector_quadrotor_controller_gazebo/include".split(';') if "/home/liudiyang1998/Git/ROS-Robotics-By-Example/Chapter_7_code/src/hector_quadrotor/hector_quadrotor_controller_gazebo/include" != "" else [] PROJECT_CATKIN_DEPENDS = "gazebo_ros_control;hector_quadrotor_interface".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-lhector_quadrotor_controller_gazebo".split(';') if "-lhector_quadrotor_controller_gazebo" != "" else [] PROJECT_NAME = "hector_quadrotor_controller_gazebo" PROJECT_SPACE_DIR = "/home/liudiyang1998/Git/ROS-Robotics-By-Example/Chapter_7_code/devel/.private/hector_quadrotor_controller_gazebo" PROJECT_VERSION = "0.3.5"
true
true
f717f935bd346a3daf5e4df75d97e3d4a4dd5155
1,221
py
Python
tests/test_persistentkv.py
fakedrake/WikipediaBase
ab5aa92786bddcd7942ad3e3f1f4e433575ba3fb
[ "Apache-2.0" ]
1
2017-11-26T17:57:59.000Z
2017-11-26T17:57:59.000Z
tests/test_persistentkv.py
fakedrake/WikipediaBase
ab5aa92786bddcd7942ad3e3f1f4e433575ba3fb
[ "Apache-2.0" ]
34
2015-03-23T10:28:59.000Z
2021-12-13T20:16:48.000Z
tests/test_persistentkv.py
fakedrake/WikipediaBase
ab5aa92786bddcd7942ad3e3f1f4e433575ba3fb
[ "Apache-2.0" ]
2
2015-05-17T00:56:45.000Z
2015-06-27T22:10:59.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_persistentkv ---------------------------------- Tests for `persistentkv` module. """ try: import unittest2 as unittest except ImportError: import unittest import os import common from wikipediabase import persistentkv as pkv DATABASE = "/tmp/remove-me.db" class TestPersistentkv(unittest.TestCase): def setUp(self): pass def test_non_persist(self): ps = pkv.PersistentDict(DATABASE) ps['hello'] = "yes" ps["bye"] = "no" ps['\xe2\x98\x83snowman'.decode('utf8')] = "well" self.assertEqual(ps['hello'], "yes") self.assertEqual(ps['bye'], "no") del ps # Test persistence ps = pkv.PersistentDict(DATABASE) self.assertEqual(ps['hello'], "yes") self.assertEqual(ps['bye'], "no") self.assertEqual(ps['\xe2\x98\x83snowman'.decode('utf8')], "well") del ps # Test file dependency os.remove(DATABASE) ps = pkv.PersistentDict(DATABASE) with self.assertRaises(KeyError): bo = ps['hello'] == "yes" def tearDown(self): os.remove(DATABASE) if __name__ == '__main__': unittest.main()
22.611111
74
0.585586
try: import unittest2 as unittest except ImportError: import unittest import os import common from wikipediabase import persistentkv as pkv DATABASE = "/tmp/remove-me.db" class TestPersistentkv(unittest.TestCase): def setUp(self): pass def test_non_persist(self): ps = pkv.PersistentDict(DATABASE) ps['hello'] = "yes" ps["bye"] = "no" ps['\xe2\x98\x83snowman'.decode('utf8')] = "well" self.assertEqual(ps['hello'], "yes") self.assertEqual(ps['bye'], "no") del ps ps = pkv.PersistentDict(DATABASE) self.assertEqual(ps['hello'], "yes") self.assertEqual(ps['bye'], "no") self.assertEqual(ps['\xe2\x98\x83snowman'.decode('utf8')], "well") del ps os.remove(DATABASE) ps = pkv.PersistentDict(DATABASE) with self.assertRaises(KeyError): bo = ps['hello'] == "yes" def tearDown(self): os.remove(DATABASE) if __name__ == '__main__': unittest.main()
true
true
f717f96bb0c2423c47e922ab54cdfb5493b76d10
2,593
py
Python
seinfeld_laugh_corpus/humor_recogniser/data_generation_scripts/word_prevalence_calc.py
ranyadshalom/seinfeld_laugh_corpus
b1e1a5208d2d3499144743028205336f8ca34552
[ "MIT" ]
null
null
null
seinfeld_laugh_corpus/humor_recogniser/data_generation_scripts/word_prevalence_calc.py
ranyadshalom/seinfeld_laugh_corpus
b1e1a5208d2d3499144743028205336f8ca34552
[ "MIT" ]
2
2018-09-04T05:32:22.000Z
2018-09-17T10:58:11.000Z
seinfeld_laugh_corpus/humor_recogniser/data_generation_scripts/word_prevalence_calc.py
ranyadshalom/seinfeld_laugh_corpus
b1e1a5208d2d3499144743028205336f8ca34552
[ "MIT" ]
null
null
null
import argparse import re import sys from collections import Counter sys.path.append("..") from ml_humor_recogniser import read_data from screenplay import Line def run(data, output): screenplays = read_data(data) txt = screenplays_to_txt(screenplays) word_counts = get_word_counts(txt) word_probabilities = get_probabilities(word_counts) write_to_file(word_probabilities, output) # TODO take care of UNKs def screenplays_to_txt(screenplays): result = '' for screenplay in screenplays: for line in screenplay: if isinstance(line, Line): result += ('\n' + line.txt) return result def get_word_counts(txt): """ Counts word occurrences in "txt". The methodology of dealing with unknown words is to calculate a count of "UNK" by splitting the set of words, and after counting words in the bigger set, every unknown word that appears in the smaller set will be counted as "UNK". :param txt: :return: a {'word':integer} dictionary that represents the number of times a word appears in the txt. """ counts = Counter() all_words = re.split(r'[\s\,\.\?\!\;\:"]', txt.lower()) all_words = [w for w in all_words if w] size = len(all_words) most_words, rest = all_words[:int(size*0.9)], all_words[int(size*0.9):] for word in most_words: counts[word] += 1 for word in rest: if word in counts: counts[word] += 1 else: counts['UNK'] += 1 return counts def get_probabilities(word_counts): probabilities = {} total_num_of_words = sum((count for _, count in word_counts.items())) for word in word_counts.keys(): probabilities[word] = word_counts[word] / total_num_of_words return probabilities def write_to_file(word_probabilities, output): with open(output, 'w') as f: for word, prob in word_probabilities.items(): f.write("%s %.9f\n" % (word, prob)) if __name__ == '__main__': parser = argparse.ArgumentParser(description="A script to calculate the probabilities of words occurring in a " "screenplay.") parser.add_argument('data', help='The folder where the training data is located. Training data is .merged ' 'files, created by the data_merger.py module and contain screenplays, ' 'laugh times & dialog times.') parser.add_argument('output', help='Output file.') args = parser.parse_args() run(args.data, args.output)
32.822785
120
0.644042
import argparse import re import sys from collections import Counter sys.path.append("..") from ml_humor_recogniser import read_data from screenplay import Line def run(data, output): screenplays = read_data(data) txt = screenplays_to_txt(screenplays) word_counts = get_word_counts(txt) word_probabilities = get_probabilities(word_counts) write_to_file(word_probabilities, output) def screenplays_to_txt(screenplays): result = '' for screenplay in screenplays: for line in screenplay: if isinstance(line, Line): result += ('\n' + line.txt) return result def get_word_counts(txt): counts = Counter() all_words = re.split(r'[\s\,\.\?\!\;\:"]', txt.lower()) all_words = [w for w in all_words if w] size = len(all_words) most_words, rest = all_words[:int(size*0.9)], all_words[int(size*0.9):] for word in most_words: counts[word] += 1 for word in rest: if word in counts: counts[word] += 1 else: counts['UNK'] += 1 return counts def get_probabilities(word_counts): probabilities = {} total_num_of_words = sum((count for _, count in word_counts.items())) for word in word_counts.keys(): probabilities[word] = word_counts[word] / total_num_of_words return probabilities def write_to_file(word_probabilities, output): with open(output, 'w') as f: for word, prob in word_probabilities.items(): f.write("%s %.9f\n" % (word, prob)) if __name__ == '__main__': parser = argparse.ArgumentParser(description="A script to calculate the probabilities of words occurring in a " "screenplay.") parser.add_argument('data', help='The folder where the training data is located. Training data is .merged ' 'files, created by the data_merger.py module and contain screenplays, ' 'laugh times & dialog times.') parser.add_argument('output', help='Output file.') args = parser.parse_args() run(args.data, args.output)
true
true
f717f9a709ac6da00ce8729b7850f20a3de65921
59
py
Python
uiSimple.py
smithgoo/python3Learn
d0c066c10887db3942ca285b86ce464463998aad
[ "MIT" ]
1
2019-05-30T08:08:34.000Z
2019-05-30T08:08:34.000Z
uiSimple.py
smithgoo/python3Learn
d0c066c10887db3942ca285b86ce464463998aad
[ "MIT" ]
null
null
null
uiSimple.py
smithgoo/python3Learn
d0c066c10887db3942ca285b86ce464463998aad
[ "MIT" ]
null
null
null
from _tkinter import * root = tkinter.Tk() root.mainloop()
19.666667
23
0.728814
from _tkinter import * root = tkinter.Tk() root.mainloop()
true
true
f717f9e8df46378c8a416ad5be38e9da22664eeb
798
py
Python
deal/_cli/_main.py
toonarmycaptain/deal
9dff86e1dc5c8607f02ded34b6d64e770f1959fa
[ "MIT" ]
null
null
null
deal/_cli/_main.py
toonarmycaptain/deal
9dff86e1dc5c8607f02ded34b6d64e770f1959fa
[ "MIT" ]
null
null
null
deal/_cli/_main.py
toonarmycaptain/deal
9dff86e1dc5c8607f02ded34b6d64e770f1959fa
[ "MIT" ]
null
null
null
# built-in from argparse import ArgumentParser from types import MappingProxyType from typing import Callable, Mapping, Sequence # app from ._lint import lint_command from ._memtest import memtest_command from ._stub import stub_command from ._test import test_command CommandsType = Mapping[str, Callable[[Sequence[str]], int]] COMMANDS: CommandsType = MappingProxyType(dict( lint=lint_command, memtest=memtest_command, stub=stub_command, test=test_command, )) def main(argv: Sequence[str], *, commands: CommandsType = COMMANDS) -> int: parser = ArgumentParser(prog='python3 -m deal') parser.add_argument('command', choices=sorted(commands)) args, unknown_argv = parser.parse_known_args(argv) command = commands[args.command] return command(unknown_argv)
27.517241
75
0.761905
from argparse import ArgumentParser from types import MappingProxyType from typing import Callable, Mapping, Sequence from ._lint import lint_command from ._memtest import memtest_command from ._stub import stub_command from ._test import test_command CommandsType = Mapping[str, Callable[[Sequence[str]], int]] COMMANDS: CommandsType = MappingProxyType(dict( lint=lint_command, memtest=memtest_command, stub=stub_command, test=test_command, )) def main(argv: Sequence[str], *, commands: CommandsType = COMMANDS) -> int: parser = ArgumentParser(prog='python3 -m deal') parser.add_argument('command', choices=sorted(commands)) args, unknown_argv = parser.parse_known_args(argv) command = commands[args.command] return command(unknown_argv)
true
true
f717fa3b3ac3c83afb7de4e2d210b524c7409f46
2,049
py
Python
examples/extract_table_names.py
hugovk/sqlparse
3598bf4670b0f4d80b7ca0557f156aa8bf87add4
[ "BSD-3-Clause" ]
null
null
null
examples/extract_table_names.py
hugovk/sqlparse
3598bf4670b0f4d80b7ca0557f156aa8bf87add4
[ "BSD-3-Clause" ]
null
null
null
examples/extract_table_names.py
hugovk/sqlparse
3598bf4670b0f4d80b7ca0557f156aa8bf87add4
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # Copyright (C) 2009-2020 the sqlparse authors and contributors # <see AUTHORS file> # # This example is part of python-sqlparse and is released under # the BSD License: https://opensource.org/licenses/BSD-3-Clause # # This example illustrates how to extract table names from nested # SELECT statements. # # See: # https://groups.google.com/forum/#!forum/sqlparse/browse_thread/thread/b0bd9a022e9d4895 import sqlparse from sqlparse.sql import IdentifierList, Identifier from sqlparse.tokens import Keyword, DML def is_subselect(parsed): if not parsed.is_group: return False for item in parsed.tokens: if item.ttype is DML and item.value.upper() == 'SELECT': return True return False def extract_from_part(parsed): from_seen = False for item in parsed.tokens: if from_seen: if is_subselect(item): yield from extract_from_part(item) elif item.ttype is Keyword: return else: yield item elif item.ttype is Keyword and item.value.upper() == 'FROM': from_seen = True def extract_table_identifiers(token_stream): for item in token_stream: if isinstance(item, IdentifierList): for identifier in item.get_identifiers(): yield identifier.get_name() elif isinstance(item, Identifier): yield item.get_name() # It's a bug to check for Keyword here, but in the example # above some tables names are identified as keywords... elif item.ttype is Keyword: yield item.value def extract_tables(sql): stream = extract_from_part(sqlparse.parse(sql)[0]) return list(extract_table_identifiers(stream)) if __name__ == '__main__': sql = """ select K.a,K.b from (select H.b from (select G.c from (select F.d from (select E.e from A, B, C, D, E), F), G), H), I, J, K order by 1,2; """ tables = ', '.join(extract_tables(sql)) print(f'Tables: {tables}')
29.695652
88
0.650073
ist, Identifier from sqlparse.tokens import Keyword, DML def is_subselect(parsed): if not parsed.is_group: return False for item in parsed.tokens: if item.ttype is DML and item.value.upper() == 'SELECT': return True return False def extract_from_part(parsed): from_seen = False for item in parsed.tokens: if from_seen: if is_subselect(item): yield from extract_from_part(item) elif item.ttype is Keyword: return else: yield item elif item.ttype is Keyword and item.value.upper() == 'FROM': from_seen = True def extract_table_identifiers(token_stream): for item in token_stream: if isinstance(item, IdentifierList): for identifier in item.get_identifiers(): yield identifier.get_name() elif isinstance(item, Identifier): yield item.get_name() # above some tables names are identified as keywords... elif item.ttype is Keyword: yield item.value def extract_tables(sql): stream = extract_from_part(sqlparse.parse(sql)[0]) return list(extract_table_identifiers(stream)) if __name__ == '__main__': sql = """ select K.a,K.b from (select H.b from (select G.c from (select F.d from (select E.e from A, B, C, D, E), F), G), H), I, J, K order by 1,2; """ tables = ', '.join(extract_tables(sql)) print(f'Tables: {tables}')
true
true
f717faec2a4bce7642e1b452032a060d7e5853ec
3,970
py
Python
01-datamodeling/project02-data-modeling-with-cassandra/cassandra_mgr.py
ultranet1/DATA-ENGINEERING-NANODEGREE-UDACITY
d04e39e7312f04307f12257157c19ea40da2f11a
[ "Apache-2.0" ]
33
2020-09-01T20:10:28.000Z
2022-02-11T06:15:55.000Z
01-datamodeling/project02-data-modeling-with-cassandra/cassandra_mgr.py
ultranet1/DATA-ENGINEERING-NANODEGREE-UDACITY
d04e39e7312f04307f12257157c19ea40da2f11a
[ "Apache-2.0" ]
null
null
null
01-datamodeling/project02-data-modeling-with-cassandra/cassandra_mgr.py
ultranet1/DATA-ENGINEERING-NANODEGREE-UDACITY
d04e39e7312f04307f12257157c19ea40da2f11a
[ "Apache-2.0" ]
64
2021-01-21T11:55:34.000Z
2022-03-10T08:14:11.000Z
from cassandra.cluster import Cluster class CassandraMgr: """ Manage orerations with Apache Cassandra. """ def __init__(self, config): """ Constructor. :param config: configuration of the cluster of Apache Cassandra -> ip, replicator factor, replication class and key space. """ self.ip = config['ip'] self.replication_factor = config["replication_factor"] self.replication_class = config["replication_class"] self.key_space = config["key_space"] self.cluster = Cluster(self.ip) def connect(self): """ Create a connection from the configuration passed in class constructor. Creates a Keyspace an returns a session. :return: session. """ session = self.cluster.connect() cql_create_keyspace = """ CREATE KEYSPACE IF NOT EXISTS %s WITH REPLICATION = { 'class' : '%s', 'replication_factor' : %s } """ % (self.key_space, self.replication_class, self.replication_factor) try: session.execute(cql_create_keyspace) except Exception as e: print(e) try: session.set_keyspace(self.key_space ) except Exception as e: print(e) return session def disconnect(self, session): """ Finalise the session and cluster shutdown. :param session: session """ session.shutdown() self.cluster.shutdown() @staticmethod def create_table(session, table, fields, primary_key): """ Create an Apache Cassandra table. :param session: session. :param table: table to create. :param fields: fields of the table. :param primary_key: primary key of the table. """ fields_string = ", ".join(fields) query = "CREATE TABLE IF NOT EXISTS %s (%s , PRIMARY KEY %s)" % (table, fields_string, primary_key) try: session.execute(query) except Exception as e: print(e) @staticmethod def insert_cassandra_from_df(session, table, columns_table, df): """ Insert a pandas dataframe into a Cassandra table. :param session: session. :param table: table where insert rows. :param columns_table: columns of the table. :param df: pandas dataframe to insert into the table. """ query = CassandraMgr.get_insert_query(table, columns_table) for index, row in df.iterrows(): session.execute(query, (row[x] for x in df.columns)) @staticmethod def select(session, fields, table, filters): """ Make a select to an apache Cassandra table. :param session: session. :param fields: projection of the select statement :param table: table :param filters: filters of the WHERE clause. :return: list of rows of the request. """ fields_string = ", ".join(fields) query = "select %s from %s WHERE %s" % (fields_string, table, filters) try: rows = session.execute(query) except Exception as e: print(e) return rows @staticmethod def get_insert_query(table: str, columns): """ Builds an INSERT statement string. :param table: table :param columns: columns to insert. :return: string with INSERT query. """ query = "INSERT INTO %s (%s) " % (table, ", ".join(columns)) query = query + " VALUES (" + ", ".join(["%s"] * len(columns)) + ") " return query @staticmethod def drop_table(session, table): """ Drop an Apache Cassandra table. :param session: session. :param table: table to drop. """ query = "drop table %s" % table try: session.execute(query) except Exception as e: print(e)
29.626866
119
0.58262
from cassandra.cluster import Cluster class CassandraMgr: def __init__(self, config): self.ip = config['ip'] self.replication_factor = config["replication_factor"] self.replication_class = config["replication_class"] self.key_space = config["key_space"] self.cluster = Cluster(self.ip) def connect(self): session = self.cluster.connect() cql_create_keyspace = """ CREATE KEYSPACE IF NOT EXISTS %s WITH REPLICATION = { 'class' : '%s', 'replication_factor' : %s } """ % (self.key_space, self.replication_class, self.replication_factor) try: session.execute(cql_create_keyspace) except Exception as e: print(e) try: session.set_keyspace(self.key_space ) except Exception as e: print(e) return session def disconnect(self, session): session.shutdown() self.cluster.shutdown() @staticmethod def create_table(session, table, fields, primary_key): fields_string = ", ".join(fields) query = "CREATE TABLE IF NOT EXISTS %s (%s , PRIMARY KEY %s)" % (table, fields_string, primary_key) try: session.execute(query) except Exception as e: print(e) @staticmethod def insert_cassandra_from_df(session, table, columns_table, df): query = CassandraMgr.get_insert_query(table, columns_table) for index, row in df.iterrows(): session.execute(query, (row[x] for x in df.columns)) @staticmethod def select(session, fields, table, filters): fields_string = ", ".join(fields) query = "select %s from %s WHERE %s" % (fields_string, table, filters) try: rows = session.execute(query) except Exception as e: print(e) return rows @staticmethod def get_insert_query(table: str, columns): query = "INSERT INTO %s (%s) " % (table, ", ".join(columns)) query = query + " VALUES (" + ", ".join(["%s"] * len(columns)) + ") " return query @staticmethod def drop_table(session, table): query = "drop table %s" % table try: session.execute(query) except Exception as e: print(e)
true
true
f717fc05188de674e02f5c99af90516ab0930a2f
814
py
Python
backend/server/apps/notes/migrations/0001_initial.py
Bonifase/django-react
ea18c3192ee28ce2291d6cabb08addd8cf8eb27e
[ "MIT" ]
508
2020-10-05T14:03:16.000Z
2022-03-30T09:04:42.000Z
backend/server/apps/notes/migrations/0001_initial.py
Bonifase/django-react
ea18c3192ee28ce2291d6cabb08addd8cf8eb27e
[ "MIT" ]
17
2020-12-10T08:23:55.000Z
2022-03-20T17:10:37.000Z
backend/server/apps/notes/migrations/0001_initial.py
Bonifase/django-react
ea18c3192ee28ce2291d6cabb08addd8cf8eb27e
[ "MIT" ]
80
2020-12-23T13:59:14.000Z
2022-03-12T03:52:21.000Z
# Generated by Django 3.1.3 on 2020-11-09 10:42 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Note', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('content', models.TextField(blank=True)), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
30.148148
124
0.637592
from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Note', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('content', models.TextField(blank=True)), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
true
true
f717fceec4380b1677eb124c6b56d04232940628
8,716
py
Python
tests/api_connexion/endpoints/test_task_endpoint.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
79
2021-10-15T07:32:27.000Z
2022-03-28T04:10:19.000Z
tests/api_connexion/endpoints/test_task_endpoint.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
153
2021-10-15T05:23:46.000Z
2022-02-23T06:07:10.000Z
tests/api_connexion/endpoints/test_task_endpoint.py
emilioego/airflow
3457c7847cd24413ff5b622e65c27d8370f94502
[ "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
23
2021-10-15T02:36:37.000Z
2022-03-17T02:59:27.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import unittest from datetime import datetime from airflow import DAG from airflow.models import DagBag from airflow.models.serialized_dag import SerializedDagModel from airflow.operators.dummy import DummyOperator from airflow.security import permissions from airflow.www import app from tests.test_utils.api_connexion_utils import assert_401, create_user, delete_user from tests.test_utils.config import conf_vars from tests.test_utils.db import clear_db_dags, clear_db_runs, clear_db_serialized_dags class TestTaskEndpoint(unittest.TestCase): dag_id = "test_dag" task_id = "op1" @staticmethod def clean_db(): clear_db_runs() clear_db_dags() clear_db_serialized_dags() @classmethod def setUpClass(cls) -> None: super().setUpClass() with conf_vars({("api", "auth_backend"): "tests.test_utils.remote_user_api_auth_backend"}): cls.app = app.create_app(testing=True) # type:ignore create_user( cls.app, # type: ignore username="test", role_name="Test", permissions=[ (permissions.ACTION_CAN_READ, permissions.RESOURCE_DAG), (permissions.ACTION_CAN_READ, permissions.RESOURCE_DAG_RUN), (permissions.ACTION_CAN_READ, permissions.RESOURCE_TASK_INSTANCE), ], ) create_user(cls.app, username="test_no_permissions", role_name="TestNoPermissions") # type: ignore with DAG(cls.dag_id, start_date=datetime(2020, 6, 15), doc_md="details") as dag: DummyOperator(task_id=cls.task_id) cls.dag = dag # type:ignore dag_bag = DagBag(os.devnull, include_examples=False) dag_bag.dags = {dag.dag_id: dag} cls.app.dag_bag = dag_bag # type:ignore @classmethod def tearDownClass(cls) -> None: delete_user(cls.app, username="test") # type: ignore delete_user(cls.app, username="test_no_permissions") # type: ignore def setUp(self) -> None: self.clean_db() self.client = self.app.test_client() # type:ignore def tearDown(self) -> None: self.clean_db() class TestGetTask(TestTaskEndpoint): def test_should_respond_200(self): expected = { "class_ref": { "class_name": "DummyOperator", "module_path": "airflow.operators.dummy", }, "depends_on_past": False, "downstream_task_ids": [], "end_date": None, "execution_timeout": None, "extra_links": [], "owner": "airflow", "pool": "default_pool", "pool_slots": 1.0, "priority_weight": 1.0, "queue": "default", "retries": 0.0, "retry_delay": {"__type": "TimeDelta", "days": 0, "seconds": 300, "microseconds": 0}, "retry_exponential_backoff": False, "start_date": "2020-06-15T00:00:00+00:00", "task_id": "op1", "template_fields": [], "trigger_rule": "all_success", "ui_color": "#e8f7e4", "ui_fgcolor": "#000", "wait_for_downstream": False, "weight_rule": "downstream", } response = self.client.get( f"/api/v1/dags/{self.dag_id}/tasks/{self.task_id}", environ_overrides={'REMOTE_USER': "test"} ) assert response.status_code == 200 assert response.json == expected def test_should_respond_200_serialized(self): # Create empty app with empty dagbag to check if DAG is read from db with conf_vars({("api", "auth_backend"): "tests.test_utils.remote_user_api_auth_backend"}): app_serialized = app.create_app(testing=True) dag_bag = DagBag(os.devnull, include_examples=False, read_dags_from_db=True) app_serialized.dag_bag = dag_bag client = app_serialized.test_client() SerializedDagModel.write_dag(self.dag) expected = { "class_ref": { "class_name": "DummyOperator", "module_path": "airflow.operators.dummy", }, "depends_on_past": False, "downstream_task_ids": [], "end_date": None, "execution_timeout": None, "extra_links": [], "owner": "airflow", "pool": "default_pool", "pool_slots": 1.0, "priority_weight": 1.0, "queue": "default", "retries": 0.0, "retry_delay": {"__type": "TimeDelta", "days": 0, "seconds": 300, "microseconds": 0}, "retry_exponential_backoff": False, "start_date": "2020-06-15T00:00:00+00:00", "task_id": "op1", "template_fields": [], "trigger_rule": "all_success", "ui_color": "#e8f7e4", "ui_fgcolor": "#000", "wait_for_downstream": False, "weight_rule": "downstream", } response = client.get( f"/api/v1/dags/{self.dag_id}/tasks/{self.task_id}", environ_overrides={'REMOTE_USER': "test"} ) assert response.status_code == 200 assert response.json == expected def test_should_respond_404(self): task_id = "xxxx_not_existing" response = self.client.get( f"/api/v1/dags/{self.dag_id}/tasks/{task_id}", environ_overrides={'REMOTE_USER': "test"} ) assert response.status_code == 404 def test_should_raises_401_unauthenticated(self): response = self.client.get(f"/api/v1/dags/{self.dag_id}/tasks/{self.task_id}") assert_401(response) def test_should_raise_403_forbidden(self): response = self.client.get( f"/api/v1/dags/{self.dag_id}/tasks", environ_overrides={'REMOTE_USER': "test_no_permissions"} ) assert response.status_code == 403 class TestGetTasks(TestTaskEndpoint): def test_should_respond_200(self): expected = { "tasks": [ { "class_ref": { "class_name": "DummyOperator", "module_path": "airflow.operators.dummy", }, "depends_on_past": False, "downstream_task_ids": [], "end_date": None, "execution_timeout": None, "extra_links": [], "owner": "airflow", "pool": "default_pool", "pool_slots": 1.0, "priority_weight": 1.0, "queue": "default", "retries": 0.0, "retry_delay": {"__type": "TimeDelta", "days": 0, "seconds": 300, "microseconds": 0}, "retry_exponential_backoff": False, "start_date": "2020-06-15T00:00:00+00:00", "task_id": "op1", "template_fields": [], "trigger_rule": "all_success", "ui_color": "#e8f7e4", "ui_fgcolor": "#000", "wait_for_downstream": False, "weight_rule": "downstream", } ], "total_entries": 1, } response = self.client.get( f"/api/v1/dags/{self.dag_id}/tasks", environ_overrides={'REMOTE_USER': "test"} ) assert response.status_code == 200 assert response.json == expected def test_should_respond_404(self): dag_id = "xxxx_not_existing" response = self.client.get(f"/api/v1/dags/{dag_id}/tasks", environ_overrides={'REMOTE_USER': "test"}) assert response.status_code == 404 def test_should_raises_401_unauthenticated(self): response = self.client.get(f"/api/v1/dags/{self.dag_id}/tasks") assert_401(response)
38.566372
109
0.58559
import os import unittest from datetime import datetime from airflow import DAG from airflow.models import DagBag from airflow.models.serialized_dag import SerializedDagModel from airflow.operators.dummy import DummyOperator from airflow.security import permissions from airflow.www import app from tests.test_utils.api_connexion_utils import assert_401, create_user, delete_user from tests.test_utils.config import conf_vars from tests.test_utils.db import clear_db_dags, clear_db_runs, clear_db_serialized_dags class TestTaskEndpoint(unittest.TestCase): dag_id = "test_dag" task_id = "op1" @staticmethod def clean_db(): clear_db_runs() clear_db_dags() clear_db_serialized_dags() @classmethod def setUpClass(cls) -> None: super().setUpClass() with conf_vars({("api", "auth_backend"): "tests.test_utils.remote_user_api_auth_backend"}): cls.app = app.create_app(testing=True) create_user( cls.app, username="test", role_name="Test", permissions=[ (permissions.ACTION_CAN_READ, permissions.RESOURCE_DAG), (permissions.ACTION_CAN_READ, permissions.RESOURCE_DAG_RUN), (permissions.ACTION_CAN_READ, permissions.RESOURCE_TASK_INSTANCE), ], ) create_user(cls.app, username="test_no_permissions", role_name="TestNoPermissions") with DAG(cls.dag_id, start_date=datetime(2020, 6, 15), doc_md="details") as dag: DummyOperator(task_id=cls.task_id) cls.dag = dag dag_bag = DagBag(os.devnull, include_examples=False) dag_bag.dags = {dag.dag_id: dag} cls.app.dag_bag = dag_bag @classmethod def tearDownClass(cls) -> None: delete_user(cls.app, username="test") delete_user(cls.app, username="test_no_permissions") def setUp(self) -> None: self.clean_db() self.client = self.app.test_client() def tearDown(self) -> None: self.clean_db() class TestGetTask(TestTaskEndpoint): def test_should_respond_200(self): expected = { "class_ref": { "class_name": "DummyOperator", "module_path": "airflow.operators.dummy", }, "depends_on_past": False, "downstream_task_ids": [], "end_date": None, "execution_timeout": None, "extra_links": [], "owner": "airflow", "pool": "default_pool", "pool_slots": 1.0, "priority_weight": 1.0, "queue": "default", "retries": 0.0, "retry_delay": {"__type": "TimeDelta", "days": 0, "seconds": 300, "microseconds": 0}, "retry_exponential_backoff": False, "start_date": "2020-06-15T00:00:00+00:00", "task_id": "op1", "template_fields": [], "trigger_rule": "all_success", "ui_color": "#e8f7e4", "ui_fgcolor": "#000", "wait_for_downstream": False, "weight_rule": "downstream", } response = self.client.get( f"/api/v1/dags/{self.dag_id}/tasks/{self.task_id}", environ_overrides={'REMOTE_USER': "test"} ) assert response.status_code == 200 assert response.json == expected def test_should_respond_200_serialized(self): with conf_vars({("api", "auth_backend"): "tests.test_utils.remote_user_api_auth_backend"}): app_serialized = app.create_app(testing=True) dag_bag = DagBag(os.devnull, include_examples=False, read_dags_from_db=True) app_serialized.dag_bag = dag_bag client = app_serialized.test_client() SerializedDagModel.write_dag(self.dag) expected = { "class_ref": { "class_name": "DummyOperator", "module_path": "airflow.operators.dummy", }, "depends_on_past": False, "downstream_task_ids": [], "end_date": None, "execution_timeout": None, "extra_links": [], "owner": "airflow", "pool": "default_pool", "pool_slots": 1.0, "priority_weight": 1.0, "queue": "default", "retries": 0.0, "retry_delay": {"__type": "TimeDelta", "days": 0, "seconds": 300, "microseconds": 0}, "retry_exponential_backoff": False, "start_date": "2020-06-15T00:00:00+00:00", "task_id": "op1", "template_fields": [], "trigger_rule": "all_success", "ui_color": "#e8f7e4", "ui_fgcolor": "#000", "wait_for_downstream": False, "weight_rule": "downstream", } response = client.get( f"/api/v1/dags/{self.dag_id}/tasks/{self.task_id}", environ_overrides={'REMOTE_USER': "test"} ) assert response.status_code == 200 assert response.json == expected def test_should_respond_404(self): task_id = "xxxx_not_existing" response = self.client.get( f"/api/v1/dags/{self.dag_id}/tasks/{task_id}", environ_overrides={'REMOTE_USER': "test"} ) assert response.status_code == 404 def test_should_raises_401_unauthenticated(self): response = self.client.get(f"/api/v1/dags/{self.dag_id}/tasks/{self.task_id}") assert_401(response) def test_should_raise_403_forbidden(self): response = self.client.get( f"/api/v1/dags/{self.dag_id}/tasks", environ_overrides={'REMOTE_USER': "test_no_permissions"} ) assert response.status_code == 403 class TestGetTasks(TestTaskEndpoint): def test_should_respond_200(self): expected = { "tasks": [ { "class_ref": { "class_name": "DummyOperator", "module_path": "airflow.operators.dummy", }, "depends_on_past": False, "downstream_task_ids": [], "end_date": None, "execution_timeout": None, "extra_links": [], "owner": "airflow", "pool": "default_pool", "pool_slots": 1.0, "priority_weight": 1.0, "queue": "default", "retries": 0.0, "retry_delay": {"__type": "TimeDelta", "days": 0, "seconds": 300, "microseconds": 0}, "retry_exponential_backoff": False, "start_date": "2020-06-15T00:00:00+00:00", "task_id": "op1", "template_fields": [], "trigger_rule": "all_success", "ui_color": "#e8f7e4", "ui_fgcolor": "#000", "wait_for_downstream": False, "weight_rule": "downstream", } ], "total_entries": 1, } response = self.client.get( f"/api/v1/dags/{self.dag_id}/tasks", environ_overrides={'REMOTE_USER': "test"} ) assert response.status_code == 200 assert response.json == expected def test_should_respond_404(self): dag_id = "xxxx_not_existing" response = self.client.get(f"/api/v1/dags/{dag_id}/tasks", environ_overrides={'REMOTE_USER': "test"}) assert response.status_code == 404 def test_should_raises_401_unauthenticated(self): response = self.client.get(f"/api/v1/dags/{self.dag_id}/tasks") assert_401(response)
true
true
f717fd45456b4946ca8ef640da5053f02d8f3da7
96
py
Python
venv/lib/python3.8/site-packages/numpy/core/tests/test_simd.py
GiulianaPola/select_repeats
17a0d053d4f874e42cf654dd142168c2ec8fbd11
[ "MIT" ]
2
2022-03-13T01:58:52.000Z
2022-03-31T06:07:54.000Z
venv/lib/python3.8/site-packages/numpy/core/tests/test_simd.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
19
2021-11-20T04:09:18.000Z
2022-03-23T15:05:55.000Z
venv/lib/python3.8/site-packages/numpy/core/tests/test_simd.py
DesmoSearch/Desmobot
b70b45df3485351f471080deb5c785c4bc5c4beb
[ "MIT" ]
null
null
null
/home/runner/.cache/pip/pool/70/91/d2/f5d75cdb5bed21a1004b1a4f5dbe1978b2a45ab6bedfa5d6b5bbb225e8
96
96
0.895833
/home/runner/.cache/pip/pool/70/91/d2/f5d75cdb5bed21a1004b1a4f5dbe1978b2a45ab6bedfa5d6b5bbb225e8
false
true
f717fe26b70d466a7b574b0a4659b534cb647013
961
py
Python
testapp/app.py
movermeyer/Flask-Dropbox
bfc59c64a6a55b50cacb9b362ed520c50705778a
[ "BSD-3-Clause" ]
22
2015-02-07T21:37:36.000Z
2021-12-06T07:12:49.000Z
testapp/app.py
movermeyer/Flask-Dropbox
bfc59c64a6a55b50cacb9b362ed520c50705778a
[ "BSD-3-Clause" ]
33
2020-03-16T03:48:37.000Z
2021-08-02T03:40:08.000Z
testapp/app.py
movermeyer/Flask-Dropbox
bfc59c64a6a55b50cacb9b362ed520c50705778a
[ "BSD-3-Clause" ]
6
2017-02-04T04:29:15.000Z
2021-12-06T07:12:51.000Z
import os import sys from flask import Flask from flask.ext.dropbox import Dropbox from flask.ext.lazyviews import LazyViews from flask.ext.script import Manager import settings # Initialize and configure Flask app app = Flask(__name__) app.config.from_object(settings) # Setup Dropbox and script extensions dropbox = Dropbox(app) dropbox.register_blueprint(url_prefix='/dropbox') manager = Manager(app) # Add test project views views = LazyViews(app, 'testapp.views') views.add('/', 'home') views.add('/delete/<path:filename>', 'delete') views.add('/download/<path:filename>', 'download', endpoint='download') views.add('/files', 'files') views.add('/media/<path:filename>', 'download', defaults={'media': True}, endpoint='media') views.add('/session/clear', 'session_clear') views.add('/session/dump', 'session_dump') views.add('/success/<path:filename>', 'success') views.add('/upload', 'upload', methods=('GET', 'POST'))
27.457143
71
0.715921
import os import sys from flask import Flask from flask.ext.dropbox import Dropbox from flask.ext.lazyviews import LazyViews from flask.ext.script import Manager import settings app = Flask(__name__) app.config.from_object(settings) dropbox = Dropbox(app) dropbox.register_blueprint(url_prefix='/dropbox') manager = Manager(app) views = LazyViews(app, 'testapp.views') views.add('/', 'home') views.add('/delete/<path:filename>', 'delete') views.add('/download/<path:filename>', 'download', endpoint='download') views.add('/files', 'files') views.add('/media/<path:filename>', 'download', defaults={'media': True}, endpoint='media') views.add('/session/clear', 'session_clear') views.add('/session/dump', 'session_dump') views.add('/success/<path:filename>', 'success') views.add('/upload', 'upload', methods=('GET', 'POST'))
true
true
f7180103c1420b4319a7785c69d208a63ea1cce0
3,462
py
Python
Code/all-starter-code/bases.py
stasi815/CS-1.3-Core-Data-Structures
8586d92a841a80bbfbb0f4acfabda8552f04ff92
[ "MIT" ]
null
null
null
Code/all-starter-code/bases.py
stasi815/CS-1.3-Core-Data-Structures
8586d92a841a80bbfbb0f4acfabda8552f04ff92
[ "MIT" ]
null
null
null
Code/all-starter-code/bases.py
stasi815/CS-1.3-Core-Data-Structures
8586d92a841a80bbfbb0f4acfabda8552f04ff92
[ "MIT" ]
null
null
null
#!python import string # Hint: Use these string constants to encode/decode hexadecimal digits and more # string.digits is '0123456789' # string.hexdigits is '0123456789abcdefABCDEF' # string.ascii_lowercase is 'abcdefghijklmnopqrstuvwxyz' # string.ascii_uppercase is 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # string.ascii_letters is ascii_lowercase + ascii_uppercase # string.printable is digits + ascii_letters + punctuation + whitespace def decode(digits, base): """Decode given digits in given base to number in base 10. digits: str -- string representation of number (in given base) base: int -- base of given number return: int -- integer representation of number (in base 10)""" # Handle up to base 36 [0-9a-z] assert 2 <= base <= 36, f'base is out of range: {base}' # Decode digits from any base (2 up to 36) # for each digit, use the position or the index an the base to digit * base ** index decimal_num = 0 digits = digits[::-1] for i in range(len(digits)): digit = int(digits[i], base=base) decimal_num += digit * base ** i return decimal_num def encode(number, base): """Encode given number in base 10 to digits in given base. number: int -- integer representation of number (in base 10) base: int -- base to convert to return: str -- string representation of number (in given base)""" # Handle up to base 36 [0-9a-z] assert 2 <= base <= 36, f'base is out of range: {base}' # Handle unsigned numbers only for now assert number >= 0, f'number is negative: {number}' # binary (base 2) # 10 -> 2: # 10/2 = 5: 0 # 5/2 = 2: 1 # 2/2 = 1: 0 # 1/2 = 0: 1 - then read the remainders bottom up: 1010 = 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0 # Encode number in any base (2 up to 36) result = "" while number > 0: remainder = number % base number -= remainder number = number // base if remainder > 9: remainder = string.ascii_lowercase[remainder-10] result = str(remainder) + result return result def convert(digits, base1, base2): """Convert given digits in base1 to digits in base2. digits: str -- string representation of number (in base1) base1: int -- base of given number base2: int -- base to convert to return: str -- string representation of number (in base2)""" # Handle up to base 36 [0-9a-z] assert 2 <= base1 <= 36, f'base1 is out of range: {base1}' assert 2 <= base2 <= 36, f'base2 is out of range: {base2}' # start by using decode to decoded digits in base 10 form # use encode to turn base 10 digits into desired base form # Convert digits from any base to any base (2 up to 36) decoded_base10 = decode(digits, base1) result = encode(decoded_base10, base2) return result def main(): """Read command-line arguments and convert given digits between bases.""" import sys args = sys.argv[1:] # Ignore script file name if len(args) == 3: digits = args[0] base1 = int(args[1]) base2 = int(args[2]) # Convert given digits between bases result = convert(digits, base1, base2) print(f'{digits} in base {base1} is {result} in base {base2}') else: print(f'Usage: {sys.argv[0]} digits base1 base2') print('Converts digits from base1 to base2') if __name__ == '__main__': main()
34.62
115
0.634027
import string def decode(digits, base): assert 2 <= base <= 36, f'base is out of range: {base}' decimal_num = 0 digits = digits[::-1] for i in range(len(digits)): digit = int(digits[i], base=base) decimal_num += digit * base ** i return decimal_num def encode(number, base): assert 2 <= base <= 36, f'base is out of range: {base}' assert number >= 0, f'number is negative: {number}' result = "" while number > 0: remainder = number % base number -= remainder number = number // base if remainder > 9: remainder = string.ascii_lowercase[remainder-10] result = str(remainder) + result return result def convert(digits, base1, base2): assert 2 <= base1 <= 36, f'base1 is out of range: {base1}' assert 2 <= base2 <= 36, f'base2 is out of range: {base2}' decoded_base10 = decode(digits, base1) result = encode(decoded_base10, base2) return result def main(): import sys args = sys.argv[1:] if len(args) == 3: digits = args[0] base1 = int(args[1]) base2 = int(args[2]) result = convert(digits, base1, base2) print(f'{digits} in base {base1} is {result} in base {base2}') else: print(f'Usage: {sys.argv[0]} digits base1 base2') print('Converts digits from base1 to base2') if __name__ == '__main__': main()
true
true
f71801af019ea004db2031fbf73a7074a38968cc
6,665
py
Python
eval_ke.py
naviocean/imgclsmob
f2993d3ce73a2f7ddba05da3891defb08547d504
[ "MIT" ]
2,649
2018-08-03T14:18:00.000Z
2022-03-31T08:08:17.000Z
eval_ke.py
naviocean/imgclsmob
f2993d3ce73a2f7ddba05da3891defb08547d504
[ "MIT" ]
95
2018-08-13T01:46:03.000Z
2022-03-13T08:38:14.000Z
eval_ke.py
naviocean/imgclsmob
f2993d3ce73a2f7ddba05da3891defb08547d504
[ "MIT" ]
549
2018-08-06T08:09:22.000Z
2022-03-31T08:08:21.000Z
""" Script for evaluating trained model on Keras (validate/test). """ import argparse import time import logging import keras from common.logger_utils import initialize_logging from keras_.utils import prepare_ke_context, prepare_model, get_data_rec, get_data_generator, backend_agnostic_compile def parse_args(): """ Parse python script parameters. Returns: ------- ArgumentParser Resulted args. """ parser = argparse.ArgumentParser( description="Evaluate a model for image classification (Keras)", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "--rec-train", type=str, default="../imgclsmob_data/imagenet_rec/train.rec", help="the training data") parser.add_argument( "--rec-train-idx", type=str, default="../imgclsmob_data/imagenet_rec/train.idx", help="the index of training data") parser.add_argument( "--rec-val", type=str, default="../imgclsmob_data/imagenet_rec/val.rec", help="the validation data") parser.add_argument( "--rec-val-idx", type=str, default="../imgclsmob_data/imagenet_rec/val.idx", help="the index of validation data") parser.add_argument( "--model", type=str, required=True, help="type of model to use. see model_provider for options") parser.add_argument( "--use-pretrained", action="store_true", help="enable using pretrained model from github repo") parser.add_argument( "--dtype", type=str, default="float32", help="data type for training") parser.add_argument( "--resume", type=str, default="", help="resume from previously saved parameters if not None") parser.add_argument( "--input-size", type=int, default=224, help="size of the input for model") parser.add_argument( "--resize-inv-factor", type=float, default=0.875, help="inverted ratio for input image crop") parser.add_argument( "--num-gpus", type=int, default=0, help="number of gpus to use") parser.add_argument( "-j", "--num-data-workers", dest="num_workers", default=4, type=int, help="number of preprocessing workers") parser.add_argument( "--batch-size", type=int, default=512, help="training batch size per device (CPU/GPU)") parser.add_argument( "--save-dir", type=str, default="", help="directory of saved models and log-files") parser.add_argument( "--logging-file-name", type=str, default="train.log", help="filename of training log") parser.add_argument( "--log-packages", type=str, default="keras, mxnet, tensorflow, tensorflow-gpu", help="list of python packages for logging") parser.add_argument( "--log-pip-packages", type=str, default="keras, keras-mxnet, mxnet, mxnet-cu110", help="list of pip packages for logging") args = parser.parse_args() return args def test(net, val_gen, val_size, batch_size, num_gpus, calc_weight_count=False, extended_log=False): """ Main test routine. Parameters: ---------- net : Model Model. val_gen : generator Data loader. val_size : int Size of validation subset. batch_size : int Batch size. num_gpus : int Number of used GPUs. calc_weight_count : bool, default False Whether to calculate count of weights. extended_log : bool, default False Whether to log more precise accuracy values. """ keras.backend.set_learning_phase(0) backend_agnostic_compile( model=net, loss="categorical_crossentropy", optimizer=keras.optimizers.SGD( lr=0.01, momentum=0.0, decay=0.0, nesterov=False), metrics=[keras.metrics.categorical_accuracy, keras.metrics.top_k_categorical_accuracy], num_gpus=num_gpus) # net.summary() tic = time.time() score = net.evaluate_generator( generator=val_gen, steps=(val_size // batch_size), verbose=True) err_top1_val = 1.0 - score[1] err_top5_val = 1.0 - score[2] if calc_weight_count: weight_count = keras.utils.layer_utils.count_params(net.trainable_weights) logging.info("Model: {} trainable parameters".format(weight_count)) if extended_log: logging.info("Test: err-top1={top1:.4f} ({top1})\terr-top5={top5:.4f} ({top5})".format( top1=err_top1_val, top5=err_top5_val)) else: logging.info("Test: err-top1={top1:.4f}\terr-top5={top5:.4f}".format( top1=err_top1_val, top5=err_top5_val)) logging.info("Time cost: {:.4f} sec".format( time.time() - tic)) def main(): """ Main body of script. """ args = parse_args() _, log_file_exist = initialize_logging( logging_dir_path=args.save_dir, logging_file_name=args.logging_file_name, script_args=args, log_packages=args.log_packages, log_pip_packages=args.log_pip_packages) batch_size = prepare_ke_context( num_gpus=args.num_gpus, batch_size=args.batch_size) net = prepare_model( model_name=args.model, use_pretrained=args.use_pretrained, pretrained_model_file_path=args.resume.strip()) num_classes = net.classes if hasattr(net, "classes") else 1000 input_image_size = net.in_size if hasattr(net, "in_size") else (args.input_size, args.input_size) train_data, val_data = get_data_rec( rec_train=args.rec_train, rec_train_idx=args.rec_train_idx, rec_val=args.rec_val, rec_val_idx=args.rec_val_idx, batch_size=batch_size, num_workers=args.num_workers, input_image_size=input_image_size, resize_inv_factor=args.resize_inv_factor, only_val=True) val_gen = get_data_generator( data_iterator=val_data, num_classes=num_classes) val_size = 50000 assert (args.use_pretrained or args.resume.strip()) test( net=net, val_gen=val_gen, val_size=val_size, batch_size=batch_size, num_gpus=args.num_gpus, calc_weight_count=True, extended_log=True) if __name__ == "__main__": main()
28.361702
118
0.616954
import argparse import time import logging import keras from common.logger_utils import initialize_logging from keras_.utils import prepare_ke_context, prepare_model, get_data_rec, get_data_generator, backend_agnostic_compile def parse_args(): parser = argparse.ArgumentParser( description="Evaluate a model for image classification (Keras)", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument( "--rec-train", type=str, default="../imgclsmob_data/imagenet_rec/train.rec", help="the training data") parser.add_argument( "--rec-train-idx", type=str, default="../imgclsmob_data/imagenet_rec/train.idx", help="the index of training data") parser.add_argument( "--rec-val", type=str, default="../imgclsmob_data/imagenet_rec/val.rec", help="the validation data") parser.add_argument( "--rec-val-idx", type=str, default="../imgclsmob_data/imagenet_rec/val.idx", help="the index of validation data") parser.add_argument( "--model", type=str, required=True, help="type of model to use. see model_provider for options") parser.add_argument( "--use-pretrained", action="store_true", help="enable using pretrained model from github repo") parser.add_argument( "--dtype", type=str, default="float32", help="data type for training") parser.add_argument( "--resume", type=str, default="", help="resume from previously saved parameters if not None") parser.add_argument( "--input-size", type=int, default=224, help="size of the input for model") parser.add_argument( "--resize-inv-factor", type=float, default=0.875, help="inverted ratio for input image crop") parser.add_argument( "--num-gpus", type=int, default=0, help="number of gpus to use") parser.add_argument( "-j", "--num-data-workers", dest="num_workers", default=4, type=int, help="number of preprocessing workers") parser.add_argument( "--batch-size", type=int, default=512, help="training batch size per device (CPU/GPU)") parser.add_argument( "--save-dir", type=str, default="", help="directory of saved models and log-files") parser.add_argument( "--logging-file-name", type=str, default="train.log", help="filename of training log") parser.add_argument( "--log-packages", type=str, default="keras, mxnet, tensorflow, tensorflow-gpu", help="list of python packages for logging") parser.add_argument( "--log-pip-packages", type=str, default="keras, keras-mxnet, mxnet, mxnet-cu110", help="list of pip packages for logging") args = parser.parse_args() return args def test(net, val_gen, val_size, batch_size, num_gpus, calc_weight_count=False, extended_log=False): keras.backend.set_learning_phase(0) backend_agnostic_compile( model=net, loss="categorical_crossentropy", optimizer=keras.optimizers.SGD( lr=0.01, momentum=0.0, decay=0.0, nesterov=False), metrics=[keras.metrics.categorical_accuracy, keras.metrics.top_k_categorical_accuracy], num_gpus=num_gpus) tic = time.time() score = net.evaluate_generator( generator=val_gen, steps=(val_size // batch_size), verbose=True) err_top1_val = 1.0 - score[1] err_top5_val = 1.0 - score[2] if calc_weight_count: weight_count = keras.utils.layer_utils.count_params(net.trainable_weights) logging.info("Model: {} trainable parameters".format(weight_count)) if extended_log: logging.info("Test: err-top1={top1:.4f} ({top1})\terr-top5={top5:.4f} ({top5})".format( top1=err_top1_val, top5=err_top5_val)) else: logging.info("Test: err-top1={top1:.4f}\terr-top5={top5:.4f}".format( top1=err_top1_val, top5=err_top5_val)) logging.info("Time cost: {:.4f} sec".format( time.time() - tic)) def main(): args = parse_args() _, log_file_exist = initialize_logging( logging_dir_path=args.save_dir, logging_file_name=args.logging_file_name, script_args=args, log_packages=args.log_packages, log_pip_packages=args.log_pip_packages) batch_size = prepare_ke_context( num_gpus=args.num_gpus, batch_size=args.batch_size) net = prepare_model( model_name=args.model, use_pretrained=args.use_pretrained, pretrained_model_file_path=args.resume.strip()) num_classes = net.classes if hasattr(net, "classes") else 1000 input_image_size = net.in_size if hasattr(net, "in_size") else (args.input_size, args.input_size) train_data, val_data = get_data_rec( rec_train=args.rec_train, rec_train_idx=args.rec_train_idx, rec_val=args.rec_val, rec_val_idx=args.rec_val_idx, batch_size=batch_size, num_workers=args.num_workers, input_image_size=input_image_size, resize_inv_factor=args.resize_inv_factor, only_val=True) val_gen = get_data_generator( data_iterator=val_data, num_classes=num_classes) val_size = 50000 assert (args.use_pretrained or args.resume.strip()) test( net=net, val_gen=val_gen, val_size=val_size, batch_size=batch_size, num_gpus=args.num_gpus, calc_weight_count=True, extended_log=True) if __name__ == "__main__": main()
true
true
f71802a5127f7c7fb60315e16f2f50fa2f4a7235
1,504
py
Python
app/auth/views.py
Bchizi/Pitch-app
f52398d270e812eab70b66df9f7f80d579bab7d4
[ "CNRI-Python", "Info-ZIP" ]
null
null
null
app/auth/views.py
Bchizi/Pitch-app
f52398d270e812eab70b66df9f7f80d579bab7d4
[ "CNRI-Python", "Info-ZIP" ]
null
null
null
app/auth/views.py
Bchizi/Pitch-app
f52398d270e812eab70b66df9f7f80d579bab7d4
[ "CNRI-Python", "Info-ZIP" ]
null
null
null
from flask import render_template,redirect,url_for,flash,request from . import auth from flask_login import login_user,logout_user,login_required from ..models import User from .forms import LoginForm,RegistrationForm from .. import db from ..email import mail_message @auth.route('/login',methods=['GET','POST']) def login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email = form.email.data).first() if user is not None and user.verify_password(form.password.data): login_user(user,form.remember.data) return redirect(request.args.get('next') or url_for('main.index')) flash('Invalid username or Password') title = "Login" return render_template('auth/login.html',form =form,title=title) @auth.route('/register',methods = ["GET","POST"]) def register(): form = RegistrationForm() if form.validate_on_submit(): user = User(email = form.email.data, username = form.username.data,firstname= form.firstname.data,lastname= form.lastname.data,password = form.password.data) db.session.add(user) db.session.commit() mail_message("Welcome to one minute pitch","email/welcome_user",user.email,user=user) return redirect(url_for('auth.login')) title = "New Account" return render_template('auth/register.html',form =form) @auth.route('/logout') @login_required def logout(): logout_user() return redirect(url_for("main.index"))
31.333333
165
0.696809
from flask import render_template,redirect,url_for,flash,request from . import auth from flask_login import login_user,logout_user,login_required from ..models import User from .forms import LoginForm,RegistrationForm from .. import db from ..email import mail_message @auth.route('/login',methods=['GET','POST']) def login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email = form.email.data).first() if user is not None and user.verify_password(form.password.data): login_user(user,form.remember.data) return redirect(request.args.get('next') or url_for('main.index')) flash('Invalid username or Password') title = "Login" return render_template('auth/login.html',form =form,title=title) @auth.route('/register',methods = ["GET","POST"]) def register(): form = RegistrationForm() if form.validate_on_submit(): user = User(email = form.email.data, username = form.username.data,firstname= form.firstname.data,lastname= form.lastname.data,password = form.password.data) db.session.add(user) db.session.commit() mail_message("Welcome to one minute pitch","email/welcome_user",user.email,user=user) return redirect(url_for('auth.login')) title = "New Account" return render_template('auth/register.html',form =form) @auth.route('/logout') @login_required def logout(): logout_user() return redirect(url_for("main.index"))
true
true
f71802e152bdc5a880b16e7aa88ec372a25c5854
193
py
Python
mani_sales/mani_sales/doctype/linked_suppliers/linked_suppliers.py
Momscode-Technologies/mani_sales
e3c8de6b50367bfd15adadf38c658e89559e71ab
[ "MIT" ]
null
null
null
mani_sales/mani_sales/doctype/linked_suppliers/linked_suppliers.py
Momscode-Technologies/mani_sales
e3c8de6b50367bfd15adadf38c658e89559e71ab
[ "MIT" ]
null
null
null
mani_sales/mani_sales/doctype/linked_suppliers/linked_suppliers.py
Momscode-Technologies/mani_sales
e3c8de6b50367bfd15adadf38c658e89559e71ab
[ "MIT" ]
null
null
null
# Copyright (c) 2021, jan and contributors # For license information, please see license.txt # import frappe from frappe.model.document import Document class LinkedSuppliers(Document): pass
21.444444
49
0.792746
from frappe.model.document import Document class LinkedSuppliers(Document): pass
true
true
f718043592242ea890cc97835b3f6db1a9ca2b43
322
py
Python
firmware/adafruit-circuitpython-bundle-5.x-mpy-20200915/examples/bd3491fs_simpletest.py
freeglow/microcontroller-cpy
5adfda49da6eefaece81be2a2f26122d68736355
[ "MIT" ]
null
null
null
firmware/adafruit-circuitpython-bundle-5.x-mpy-20200915/examples/bd3491fs_simpletest.py
freeglow/microcontroller-cpy
5adfda49da6eefaece81be2a2f26122d68736355
[ "MIT" ]
null
null
null
firmware/adafruit-circuitpython-bundle-5.x-mpy-20200915/examples/bd3491fs_simpletest.py
freeglow/microcontroller-cpy
5adfda49da6eefaece81be2a2f26122d68736355
[ "MIT" ]
null
null
null
import board import busio import adafruit_bd3491fs i2c = busio.I2C(board.SCL, board.SDA) bd3491fs = adafruit_bd3491fs.BD3491FS(i2c) bd3491fs.active_input = adafruit_bd3491fs.Input.A bd3491fs.input_gain = adafruit_bd3491fs.Level.LEVEL_20DB bd3491fs.channel_1_attenuation = 0 bd3491fs.channel_2_attenuation = 0
26.833333
57
0.810559
import board import busio import adafruit_bd3491fs i2c = busio.I2C(board.SCL, board.SDA) bd3491fs = adafruit_bd3491fs.BD3491FS(i2c) bd3491fs.active_input = adafruit_bd3491fs.Input.A bd3491fs.input_gain = adafruit_bd3491fs.Level.LEVEL_20DB bd3491fs.channel_1_attenuation = 0 bd3491fs.channel_2_attenuation = 0
true
true
f71806245033ff31b7f8e029e27f81e487b11834
20,468
py
Python
cadnano/views/pathview/tools/pathselection.py
sherwoodyao/cadnano2.5
ce6ff019b88ee7728de947bd86b35861cf57848d
[ "BSD-3-Clause" ]
69
2015-01-13T02:54:40.000Z
2022-03-27T14:25:51.000Z
cadnano/views/pathview/tools/pathselection.py
scholer/cadnano2.5
ce6ff019b88ee7728de947bd86b35861cf57848d
[ "BSD-3-Clause" ]
127
2015-01-01T06:26:34.000Z
2022-03-02T12:48:05.000Z
cadnano/views/pathview/tools/pathselection.py
scholer/cadnano2.5
ce6ff019b88ee7728de947bd86b35861cf57848d
[ "BSD-3-Clause" ]
48
2015-01-22T19:57:49.000Z
2022-03-27T14:27:53.000Z
# -*- coding: utf-8 -*- import logging from math import floor from PyQt5.QtCore import ( QPointF, QRectF, Qt ) from PyQt5.QtGui import ( QPainterPath, QKeyEvent, QMouseEvent ) from PyQt5.QtWidgets import ( QGraphicsItem, QGraphicsItemGroup, QGraphicsPathItem, QGraphicsSceneMouseEvent, ) from cadnano.gui.palette import getPenObj from cadnano.views.pathview import pathstyles as styles from cadnano.views.pathview import ( PathRootItemT, ) from cadnano.cntypes import ( Vec2T, DocT ) logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG) logger = logging.getLogger(__name__) class SelectionItemGroup(QGraphicsItemGroup): """SelectionItemGroup Attributes: getR (TYPE): Description selectionbox (TYPE): SelectionBox translateR (TYPE): Description viewroot: Description """ def __init__(self, boxtype: QGraphicsItem, constraint: str, viewroot: PathRootItemT): """ Args: boxtype: :class:`EndpointHandleSelectionBox` or :class:`VirtualHelixHandleSelectionBox` instance constraint: ``x`` or ``y``. Default to ``y`` (up and down) viewroot: view root item and object parent """ super(SelectionItemGroup, self).__init__(viewroot) self.viewroot: PathRootItemT = viewroot self.setFiltersChildEvents(True) # LOOK at Qt Source for deprecated code to replace this behavior # self.setHandlesChildEvents(True) # commented out NC self.setFlag(QGraphicsItem.ItemIsSelectable) self.setFlag(QGraphicsItem.ItemIsFocusable) # for keyPressEvents self.setFlag(QGraphicsItem.ItemHasNoContents) self._rect = QRectF() self._PEN = getPenObj(styles.BLUE_STROKE, styles.PATH_SELECTBOX_STROKE_WIDTH) self.selectionbox = boxtype(self) self._drag_enable = False self._dragged = False self._r0 = 0 # save original mousedown self._r = 0 # latest position for moving # self._lastKid = 0 # this keeps track of mousePressEvents within the class # to aid in intellignetly removing items from the group self._added_to_press_list = False self._pending_to_add_dict = {} if constraint == 'y': self.getR = self.selectionbox.getY self.translateR = self.selectionbox.translateY else: self.getR = self.selectionbox.getX self.translateR = self.selectionbox.translateX self._normal_select = True self.setZValue(styles.ZPATHSELECTION) # end def # def paint(self, painter, option, widget): # painter.drawRect(self.boundingRect()) # # end def def pendToAdd(self, item): """ Args: item (TYPE): Description """ self._pending_to_add_dict[item] = True # end def def isPending(self, item): """ Args: item (TYPE): Description Returns: TYPE: Description """ return item in self._pending_to_add_dict # end def def document(self) -> DocT: """ Returns: :class:`Document` """ return self.viewroot.document() # end def def pendToRemove(self, item): """ Args: item (TYPE): Description """ if item in self._pending_to_add_dict: del self._pending_to_add_dict[item] # end def def setNormalSelect(self, bool_val: bool): """ Args: bool_val: Description """ self._normal_select = bool_val # end def def isNormalSelect(self) -> bool: """ Returns: is it normal select? """ return self._normal_select # end def def processPendingToAddList(self): """ Adds to the local selection and the document if required """ doc = self.document() p2add = self._pending_to_add_dict # logger.debug("processPendingToAddList") if len(p2add) > 0: plist = list(self._pending_to_add_dict.keys()) for item in plist: if p2add[item]: p2add[item] = False # logger.debug("just checking1", item, item.group(), item.parentItem()) self.addToGroup(item) item.modelSelect(doc) # end for # logger.debug('finished') self._pending_to_add_dict = {} doc.updateStrandSelection() # end def def selectionLock(self): """ Returns: TYPE: Description """ return self.viewroot.selectionLock() # end def def setSelectionLock(self, selection_group): """ Args: selection_group (TYPE): Description """ self.viewroot.setSelectionLock(selection_group) # end def def keyPressEvent(self, event: QKeyEvent): """ Must intercept invalid input events. Make changes here Args: event (TYPE): Description """ key = event.key() if key in [Qt.Key_Backspace, Qt.Key_Delete]: self.selectionbox.deleteSelection() self.clearSelection(False) return QGraphicsItemGroup.keyPressEvent(self, event) else: return QGraphicsItemGroup.keyPressEvent(self, event) # end def def mousePressEvent(self, event: QGraphicsSceneMouseEvent): """Handler for user mouse press. Args: event: Contains item, scene, and screen coordinates of the the event, and previous event. """ # self.show() if event.button() != Qt.LeftButton: return QGraphicsItemGroup.mousePressEvent(self, event) else: self._drag_enable = True # required to get the itemChanged event to work # correctly for this self.setSelected(True) # self.selectionbox.resetTransform() self.selectionbox.resetPosition() self.selectionbox.refreshPath() # self.selectionbox.resetTransform() self.selectionbox.resetPosition() self.selectionbox.show() # for some reason we need to skip the first mouseMoveEvent self._dragged = False if self._added_to_press_list is False: self._added_to_press_list = True self.scene().views()[0].addToPressList(self) return QGraphicsItemGroup.mousePressEvent(self, event) # end def def mouseMoveEvent(self, event: QGraphicsSceneMouseEvent): """ Args: event: Description """ if self._drag_enable is True: # map the item to the scene coordinates # to help keep coordinates uniform rf = self.getR(self.mapFromScene(QPointF(event.scenePos()))) # for some reason we need to skip the first mouseMoveEvent if self._dragged is False: self._dragged = True self._r0 = rf # end if else: delta = self.selectionbox.delta(rf, self._r0) self.translateR(delta) # logger.debug('mouse move path selectionbox', delta, rf, self._r0) # end else self._r = rf # end if else: QGraphicsItemGroup.mouseMoveEvent(self, event) # end else # end def def customMouseRelease(self, event: QMouseEvent): """ Args: event: Description """ self.selectionbox.setParentItem(self.viewroot) self.selectionbox.hide() self.selectionbox.resetTransform() self._drag_enable = False # now do stuff if not (self._r0 == 0 and self._r == 0): modifiers = event.modifiers() self.selectionbox.processSelectedItems(self._r0, self._r, modifiers) # end if self._r0 = 0 # reset self._r = 0 # reset self.setFocus() # needed to get keyPresses post a move self._added_to_press_list = False # end def def resetSelection(self): """Summary Returns: TYPE: Description """ self._pending_to_add_dict = {} self._added_to_press_list = False self.clearSelection(False) self.setSelectionLock(None) self.selectionbox.setParentItem(self.viewroot) self.setParentItem(self.viewroot) # end def def clearSelection(self, value): """value is for keyPressEvents Arguments: value (QVariant): resolves in Python as an integer """ if value == False: # noqa self.selectionbox.hide() self.selectionbox.resetPosition() self.removeSelectedItems() self.viewroot.setSelectionLock(None) self.clearFocus() # this is to disable delete keyPressEvents self.prepareGeometryChange() self._rect.setWidth(0) # self._rect = QRectF() # end if else: self.setFocus() # this is to get delete keyPressEvents self.update(self.boundingRect()) # end def def itemChange(self, change, value): """docstring for itemChange Arguments: change (GraphicsItemChange): see http://doc.qt.io/qt-5/qgraphicsitem.html#GraphicsItemChange-enum value (QVariant): resolves in Python as an integer """ # logger.debug("ps itemChange") if change == QGraphicsItem.ItemSelectedChange: # logger.debug("isc", value) if value == False: # noqa self.clearSelection(False) return False else: return True elif change == QGraphicsItem.ItemChildAddedChange: # logger.debug("icac") if self._added_to_press_list is False: # logger.debug("kid added") self.setFocus() # this is to get delete keyPressEvents self.selectionbox.boxParent() # self.setParentItem(self.selectionbox.boxParent()) self._added_to_press_list = True self.scene().views()[0].addToPressList(self) return return QGraphicsItemGroup.itemChange(self, change, value) # end def def removeChild(self, child): """ remove only the child and ask it to restore it's original parent Args: child (TYPE): Description """ doc = self.document() self.removeFromGroup(child) child.modelDeselect(doc) # end def def removeSelectedItems(self): """docstring for removeSelectedItems """ doc = self.document() for item in self.childItems(): self.removeFromGroup(item) item.modelDeselect(doc) # end for doc.updateStrandSelection() # end def def setBoundingRect(self, rect): """Summary Args: rect (TYPE): Description Returns: TYPE: Description """ self.prepareGeometryChange() self._rect = rect # end def def boundingRect(self): """Summary Returns: TYPE: Description """ return self._rect # end class class VirtualHelixHandleSelectionBox(QGraphicsPathItem): """ docstring for VirtualHelixHandleSelectionBox """ _HELIX_HEIGHT = styles.PATH_HELIX_HEIGHT + styles.PATH_HELIX_PADDING _RADIUS = styles.VIRTUALHELIXHANDLEITEM_RADIUS _PEN_WIDTH = styles.SELECTIONBOX_PEN_WIDTH _BOX_PEN = getPenObj(styles.BLUE_STROKE, _PEN_WIDTH) def __init__(self, item_group: SelectionItemGroup): """ The item_group.parentItem() is expected to be a partItem Args: item_group (TYPE): Description """ super(VirtualHelixHandleSelectionBox, self).__init__(item_group.parentItem()) self._item_group = item_group self._rect = item_group.boundingRect() self.hide() self.setPen(self._BOX_PEN) self.setZValue(styles.ZPATHSELECTION) self._bounds = None self._pos0 = QPointF() # end def def getY(self, pos): """Summary Args: pos (TYPE): Description Returns: TYPE: Description """ pos = self._item_group.mapToScene(QPointF(pos)) return pos.y() # end def def translateY(self, delta): """Summary Args: delta (TYPE): Description Returns: TYPE: Description """ self.setY(delta) # end def def refreshPath(self): """Summary Returns: TYPE: Description """ self.prepareGeometryChange() self.setPath(self.painterPath()) self._pos0 = self.pos() # end def def painterPath(self): """Summary Returns: TYPE: Description """ i_g = self._item_group # the childrenBoundingRect is necessary to get this to work rect = self.mapRectFromItem(i_g, i_g.childrenBoundingRect()) radius = self._RADIUS path = QPainterPath() path.addRoundedRect(rect, radius, radius) path.moveTo(rect.right(), rect.center().y()) path.lineTo(rect.right() + radius / 2, rect.center().y()) return path # end def def processSelectedItems(self, r_start, r_end, modifiers): """docstring for processSelectedItems Args: r_start (TYPE): Description r_end (TYPE): Description modifiers (TYPE): Description """ margin = styles.VIRTUALHELIXHANDLEITEM_RADIUS delta = (r_end - r_start) # r delta mid_height = (self.boundingRect().height()) / 2 - margin helix_height = self._HELIX_HEIGHT if abs(delta) < mid_height: # move is too short for reordering return if delta > 0: # moved down, delta is positive indexDelta = int((delta - mid_height) / helix_height) else: # moved up, delta is negative indexDelta = int((delta + mid_height) / helix_height) # sort on y to determine the extremes of the selection group items = sorted(self._item_group.childItems(), key=lambda vhhi: vhhi.y()) part_item = items[0].partItem() part_item.reorderHelices([item.idNum() for item in items], indexDelta) # part_item.reorderHelices(items[0].idNum(), # items[-1].idNum(), # indexDelta) part_item.updateStatusBar("") # end def def boxParent(self): """Summary Returns: TYPE: Description """ temp = self._item_group.childItems()[0].partItem() self.setParentItem(temp) return temp # end def def deleteSelection(self): """ Delete selection operates outside of the documents a virtual helices are not actually selected in the model """ vh_handle_items = self._item_group.childItems() u_s = self._item_group.document().undoStack() u_s.beginMacro("delete Virtual Helices") for vhhi in vh_handle_items: part = vhhi.part() part.removeVirtualHelix(vhhi.idNum()) u_s.endMacro() # end def def bounds(self): """Summary Returns: TYPE: Description """ return self._bounds # end def def delta(self, yf, y0): """Summary Args: yf (TYPE): Description y0 (TYPE): Description Returns: TYPE: Description """ return yf - y0 # end def def resetPosition(self): """Summary Returns: TYPE: Description """ self.setPos(self._pos0) # end def # end class class EndpointHandleSelectionBox(QGraphicsPathItem): """Summary """ _PEN_WIDTH = styles.SELECTIONBOX_PEN_WIDTH _BOX_PEN = getPenObj(styles.SELECTED_COLOR, _PEN_WIDTH) _BASE_WIDTH = styles.PATH_BASE_WIDTH def __init__(self, item_group: SelectionItemGroup): """The item_group.parentItem() is expected to be a partItem Args: item_group: Description """ super(EndpointHandleSelectionBox, self).__init__(item_group.parentItem()) self._item_group = item_group self._rect = item_group.boundingRect() self.hide() self.setPen(self._BOX_PEN) self.setZValue(styles.ZPATHSELECTION) self._bounds = (0, 0) self._pos0 = QPointF() # end def def getX(self, pos: QPointF) -> float: """ Args: pos: Description Returns: ``x`` position """ return pos.x() # end def def translateX(self, delta: float): """ Args: delta: Description """ children = self._item_group.childItems() if children: p_i = children[0].partItem() str = "+%d" % delta if delta >= 0 else "%d" % delta p_i.updateStatusBar(str) self.setX(self._BASE_WIDTH * delta) # end def def resetPosition(self): """ """ self.setPos(self._pos0) def delta(self, xf: float, x0: float) -> float: """ Args: xf: Description x0: Description Returns: change distance """ bound_l, bound_h = self._bounds delta = int(floor((xf - x0) / self._BASE_WIDTH)) if delta > 0 and delta > bound_h: delta = bound_h elif delta < 0 and abs(delta) > bound_l: delta = -bound_l return delta def refreshPath(self): """ """ temp_low, temp_high = self._item_group.viewroot.document().getSelectionBounds() self._bounds = (temp_low, temp_high) # logger.debug("rp:", self._bounds) self.prepareGeometryChange() self.setPath(self.painterPath()) self._pos0 = self.pos() # end def def painterPath(self) -> QPainterPath: """ Returns: :class:`QPainterPath` """ bw = self._BASE_WIDTH i_g = self._item_group # the childrenBoundingRect is necessary to get this to work rect_IG = i_g.childrenBoundingRect() rect = self.mapRectFromItem(i_g, rect_IG) if rect.width() < bw: rect.adjust(-bw / 4, 0, bw / 2, 0) path = QPainterPath() path.addRect(rect) self._item_group.setBoundingRect(rect_IG) # path.addRoundedRect(rect, radius, radius) # path.moveTo(rect.right(),\ # rect.center().y()) # path.lineTo(rect.right() + radius / 2,\ # rect.center().y()) return path # end def def processSelectedItems(self, r_start: float, r_end: float, modifiers): """ Args: r_start: Description r_end: Description modifiers (TYPE): Description """ delta = self.delta(r_end, r_start) # TODO reenable do_maximize????? # if modifiers & Qt.AltModifier: # do_maximize = True # else: # do_maximize = False self._item_group.viewroot.document().resizeSelection(delta) # end def def deleteSelection(self): """Summary Returns: TYPE: Description """ self._item_group.document().deleteStrandSelection() def boxParent(self) -> QGraphicsItem: """Get the parent :class:`ProxyParentItem` Returns: :class:`ProxyParentItem` """ temp = self._item_group.childItems()[0].partItem().proxy() self.setParentItem(temp) return temp # end def def bounds(self) -> Vec2T: """ Returns: the bounds """ return self._bounds # end def # end class
28.467316
109
0.569572
import logging from math import floor from PyQt5.QtCore import ( QPointF, QRectF, Qt ) from PyQt5.QtGui import ( QPainterPath, QKeyEvent, QMouseEvent ) from PyQt5.QtWidgets import ( QGraphicsItem, QGraphicsItemGroup, QGraphicsPathItem, QGraphicsSceneMouseEvent, ) from cadnano.gui.palette import getPenObj from cadnano.views.pathview import pathstyles as styles from cadnano.views.pathview import ( PathRootItemT, ) from cadnano.cntypes import ( Vec2T, DocT ) logging.basicConfig(format='%(asctime)s %(message)s', level=logging.DEBUG) logger = logging.getLogger(__name__) class SelectionItemGroup(QGraphicsItemGroup): def __init__(self, boxtype: QGraphicsItem, constraint: str, viewroot: PathRootItemT): super(SelectionItemGroup, self).__init__(viewroot) self.viewroot: PathRootItemT = viewroot self.setFiltersChildEvents(True) Flag(QGraphicsItem.ItemIsSelectable) self.setFlag(QGraphicsItem.ItemIsFocusable) self.setFlag(QGraphicsItem.ItemHasNoContents) self._rect = QRectF() self._PEN = getPenObj(styles.BLUE_STROKE, styles.PATH_SELECTBOX_STROKE_WIDTH) self.selectionbox = boxtype(self) self._drag_enable = False self._dragged = False self._r0 = 0 self._r = 0 self._added_to_press_list = False self._pending_to_add_dict = {} if constraint == 'y': self.getR = self.selectionbox.getY self.translateR = self.selectionbox.translateY else: self.getR = self.selectionbox.getX self.translateR = self.selectionbox.translateX self._normal_select = True self.setZValue(styles.ZPATHSELECTION) pendToAdd(self, item): self._pending_to_add_dict[item] = True def isPending(self, item): return item in self._pending_to_add_dict def document(self) -> DocT: return self.viewroot.document() def pendToRemove(self, item): if item in self._pending_to_add_dict: del self._pending_to_add_dict[item] def setNormalSelect(self, bool_val: bool): self._normal_select = bool_val def isNormalSelect(self) -> bool: return self._normal_select def processPendingToAddList(self): doc = self.document() p2add = self._pending_to_add_dict if len(p2add) > 0: plist = list(self._pending_to_add_dict.keys()) for item in plist: if p2add[item]: p2add[item] = False self.addToGroup(item) item.modelSelect(doc) self._pending_to_add_dict = {} doc.updateStrandSelection() def selectionLock(self): return self.viewroot.selectionLock() def setSelectionLock(self, selection_group): self.viewroot.setSelectionLock(selection_group) def keyPressEvent(self, event: QKeyEvent): key = event.key() if key in [Qt.Key_Backspace, Qt.Key_Delete]: self.selectionbox.deleteSelection() self.clearSelection(False) return QGraphicsItemGroup.keyPressEvent(self, event) else: return QGraphicsItemGroup.keyPressEvent(self, event) def mousePressEvent(self, event: QGraphicsSceneMouseEvent): if event.button() != Qt.LeftButton: return QGraphicsItemGroup.mousePressEvent(self, event) else: self._drag_enable = True self.setSelected(True) self.selectionbox.resetPosition() self.selectionbox.refreshPath() self.selectionbox.resetPosition() self.selectionbox.show() self._dragged = False if self._added_to_press_list is False: self._added_to_press_list = True self.scene().views()[0].addToPressList(self) return QGraphicsItemGroup.mousePressEvent(self, event) def mouseMoveEvent(self, event: QGraphicsSceneMouseEvent): if self._drag_enable is True: rf = self.getR(self.mapFromScene(QPointF(event.scenePos()))) if self._dragged is False: self._dragged = True self._r0 = rf else: delta = self.selectionbox.delta(rf, self._r0) self.translateR(delta) self._r = rf else: QGraphicsItemGroup.mouseMoveEvent(self, event) def customMouseRelease(self, event: QMouseEvent): self.selectionbox.setParentItem(self.viewroot) self.selectionbox.hide() self.selectionbox.resetTransform() self._drag_enable = False if not (self._r0 == 0 and self._r == 0): modifiers = event.modifiers() self.selectionbox.processSelectedItems(self._r0, self._r, modifiers) self._r0 = 0 self._r = 0 self.setFocus() self._added_to_press_list = False def resetSelection(self): self._pending_to_add_dict = {} self._added_to_press_list = False self.clearSelection(False) self.setSelectionLock(None) self.selectionbox.setParentItem(self.viewroot) self.setParentItem(self.viewroot) def clearSelection(self, value): if value == False: self.selectionbox.hide() self.selectionbox.resetPosition() self.removeSelectedItems() self.viewroot.setSelectionLock(None) self.clearFocus() self.prepareGeometryChange() self._rect.setWidth(0) else: self.setFocus() self.update(self.boundingRect()) def itemChange(self, change, value): if change == QGraphicsItem.ItemSelectedChange: if value == False: self.clearSelection(False) return False else: return True elif change == QGraphicsItem.ItemChildAddedChange: if self._added_to_press_list is False: self.setFocus() self.selectionbox.boxParent() self._added_to_press_list = True self.scene().views()[0].addToPressList(self) return return QGraphicsItemGroup.itemChange(self, change, value) def removeChild(self, child): doc = self.document() self.removeFromGroup(child) child.modelDeselect(doc) def removeSelectedItems(self): doc = self.document() for item in self.childItems(): self.removeFromGroup(item) item.modelDeselect(doc) doc.updateStrandSelection() def setBoundingRect(self, rect): self.prepareGeometryChange() self._rect = rect def boundingRect(self): return self._rect class VirtualHelixHandleSelectionBox(QGraphicsPathItem): _HELIX_HEIGHT = styles.PATH_HELIX_HEIGHT + styles.PATH_HELIX_PADDING _RADIUS = styles.VIRTUALHELIXHANDLEITEM_RADIUS _PEN_WIDTH = styles.SELECTIONBOX_PEN_WIDTH _BOX_PEN = getPenObj(styles.BLUE_STROKE, _PEN_WIDTH) def __init__(self, item_group: SelectionItemGroup): super(VirtualHelixHandleSelectionBox, self).__init__(item_group.parentItem()) self._item_group = item_group self._rect = item_group.boundingRect() self.hide() self.setPen(self._BOX_PEN) self.setZValue(styles.ZPATHSELECTION) self._bounds = None self._pos0 = QPointF() def getY(self, pos): pos = self._item_group.mapToScene(QPointF(pos)) return pos.y() def translateY(self, delta): self.setY(delta) def refreshPath(self): self.prepareGeometryChange() self.setPath(self.painterPath()) self._pos0 = self.pos() def painterPath(self): i_g = self._item_group rect = self.mapRectFromItem(i_g, i_g.childrenBoundingRect()) radius = self._RADIUS path = QPainterPath() path.addRoundedRect(rect, radius, radius) path.moveTo(rect.right(), rect.center().y()) path.lineTo(rect.right() + radius / 2, rect.center().y()) return path def processSelectedItems(self, r_start, r_end, modifiers): margin = styles.VIRTUALHELIXHANDLEITEM_RADIUS delta = (r_end - r_start) mid_height = (self.boundingRect().height()) / 2 - margin helix_height = self._HELIX_HEIGHT if abs(delta) < mid_height: return if delta > 0: indexDelta = int((delta - mid_height) / helix_height) else: indexDelta = int((delta + mid_height) / helix_height) items = sorted(self._item_group.childItems(), key=lambda vhhi: vhhi.y()) part_item = items[0].partItem() part_item.reorderHelices([item.idNum() for item in items], indexDelta) part_item.updateStatusBar("") def boxParent(self): temp = self._item_group.childItems()[0].partItem() self.setParentItem(temp) return temp def deleteSelection(self): vh_handle_items = self._item_group.childItems() u_s = self._item_group.document().undoStack() u_s.beginMacro("delete Virtual Helices") for vhhi in vh_handle_items: part = vhhi.part() part.removeVirtualHelix(vhhi.idNum()) u_s.endMacro() def bounds(self): return self._bounds def delta(self, yf, y0): return yf - y0 def resetPosition(self): self.setPos(self._pos0) class EndpointHandleSelectionBox(QGraphicsPathItem): _PEN_WIDTH = styles.SELECTIONBOX_PEN_WIDTH _BOX_PEN = getPenObj(styles.SELECTED_COLOR, _PEN_WIDTH) _BASE_WIDTH = styles.PATH_BASE_WIDTH def __init__(self, item_group: SelectionItemGroup): super(EndpointHandleSelectionBox, self).__init__(item_group.parentItem()) self._item_group = item_group self._rect = item_group.boundingRect() self.hide() self.setPen(self._BOX_PEN) self.setZValue(styles.ZPATHSELECTION) self._bounds = (0, 0) self._pos0 = QPointF() def getX(self, pos: QPointF) -> float: return pos.x() def translateX(self, delta: float): children = self._item_group.childItems() if children: p_i = children[0].partItem() str = "+%d" % delta if delta >= 0 else "%d" % delta p_i.updateStatusBar(str) self.setX(self._BASE_WIDTH * delta) def resetPosition(self): self.setPos(self._pos0) def delta(self, xf: float, x0: float) -> float: bound_l, bound_h = self._bounds delta = int(floor((xf - x0) / self._BASE_WIDTH)) if delta > 0 and delta > bound_h: delta = bound_h elif delta < 0 and abs(delta) > bound_l: delta = -bound_l return delta def refreshPath(self): temp_low, temp_high = self._item_group.viewroot.document().getSelectionBounds() self._bounds = (temp_low, temp_high) self.prepareGeometryChange() self.setPath(self.painterPath()) self._pos0 = self.pos() def painterPath(self) -> QPainterPath: bw = self._BASE_WIDTH i_g = self._item_group rect_IG = i_g.childrenBoundingRect() rect = self.mapRectFromItem(i_g, rect_IG) if rect.width() < bw: rect.adjust(-bw / 4, 0, bw / 2, 0) path = QPainterPath() path.addRect(rect) self._item_group.setBoundingRect(rect_IG) return path def processSelectedItems(self, r_start: float, r_end: float, modifiers): delta = self.delta(r_end, r_start) self._item_group.viewroot.document().resizeSelection(delta) def deleteSelection(self): self._item_group.document().deleteStrandSelection() def boxParent(self) -> QGraphicsItem: temp = self._item_group.childItems()[0].partItem().proxy() self.setParentItem(temp) return temp def bounds(self) -> Vec2T: return self._bounds
true
true
f7180731325d42a74cf0349d5377f43a897a9155
12,937
py
Python
lama/elastix/invert_transforms.py
MiaRatkovic/LAMA
3ccfed0864001c8c270861e23cc81bc43d7d25c9
[ "Apache-2.0" ]
6
2016-08-15T22:07:02.000Z
2022-02-17T04:22:58.000Z
lama/elastix/invert_transforms.py
MiaRatkovic/LAMA
3ccfed0864001c8c270861e23cc81bc43d7d25c9
[ "Apache-2.0" ]
25
2019-12-05T02:02:20.000Z
2021-09-08T01:39:17.000Z
lama/elastix/invert_transforms.py
MiaRatkovic/LAMA
3ccfed0864001c8c270861e23cc81bc43d7d25c9
[ "Apache-2.0" ]
5
2019-12-05T00:15:29.000Z
2021-07-06T05:24:54.000Z
from pathlib import Path import tempfile import os import subprocess from collections import defaultdict from multiprocessing import Pool from os.path import join, abspath, isfile from typing import Union, List, Dict from logzero import logger as logging import yaml from lama import common from lama.common import cfg_load from lama.registration_pipeline.validate_config import LamaConfig from lama.elastix import (ELX_TRANSFORM_NAME, ELX_PARAM_PREFIX, PROPAGATE_LABEL_TRANFORM, PROPAGATE_IMAGE_TRANSFORM, PROPAGATE_CONFIG, RESOLUTION_IMGS_DIR, IMG_PYRAMID_DIR) LABEL_REPLACEMENTS = { 'FinalBSplineInterpolationOrder': '0', 'FixedInternalImagePixelType': 'short', 'MovingInternalImagePixelType': 'short', 'ResultImagePixelType': 'unsigned char', 'WriteTransformParametersEachResolution': 'false', 'WriteResultImageAfterEachResolution': 'false' } IMAGE_REPLACEMENTS = { 'FinalBSplineInterpolationOrder': '3', 'FixedInternalImagePixelType': 'float', 'MovingInternalImagePixelType': 'float', 'ResultImagePixelType': 'float', 'WriteTransformParametersEachResolution': 'false', 'WriteResultImageAfterEachResolution': 'false' } def batch_invert_transform_parameters(config: Union[Path, LamaConfig], clobber=True, new_log:bool=False): """ Create new elastix TransformParameter files that can then be used by transformix to invert labelmaps, stats etc Parameters ---------- config path to original reg pipeline config file clobber if True overwrite inverted parameters present new_log: Whether to create a new log file. If called from another module, logging may happen there """ common.test_installation('elastix') if isinstance(config, (Path, str)): config = LamaConfig(config) threads = str(config['threads']) if new_log: common.init_logging(config / 'invert_transforms.log') reg_dirs = get_reg_dirs(config) # Get the image basenames from the first stage registration folder (usually rigid) # ignore images in non-relevent folder that may be present volume_names = [x.stem for x in common.get_file_paths(reg_dirs[0], ignore_folders=[RESOLUTION_IMGS_DIR, IMG_PYRAMID_DIR])] inv_outdir = config.mkdir('inverted_transforms') stages_to_invert = defaultdict(list) jobs: List[Dict] = [] reg_stage_dir: Path for i, vol_id in enumerate(volume_names): for reg_stage_dir in reg_dirs: if not reg_stage_dir.is_dir(): logging.error('cannot find {}'.format(reg_stage_dir)) raise FileNotFoundError(f'Cannot find registration dir {reg_stage_dir}') inv_stage_dir = inv_outdir / reg_stage_dir.name specimen_stage_reg_dir = reg_stage_dir / vol_id specimen_stage_inversion_dir = inv_stage_dir / vol_id transform_file = common.getfile_startswith(specimen_stage_reg_dir, ELX_TRANSFORM_NAME) parameter_file = common.getfile_startswith(reg_stage_dir, ELX_PARAM_PREFIX) # Create the folder to put the specimen inversion parameter files in. inv_stage_dir.mkdir(exist_ok=True) # Add the stage to the inversion order config (in reverse order), if not already. if reg_stage_dir.name not in stages_to_invert['label_propagation_order']: stages_to_invert['label_propagation_order'].insert(0, reg_stage_dir.name) if clobber: common.mkdir_force(specimen_stage_inversion_dir) # Overwrite any inversion file that exist for a single specimen # Each registration directory contains a metadata file, which contains the relative path to the fixed volume reg_metadata = cfg_load(specimen_stage_reg_dir / common.INDV_REG_METADATA) fixed_volume = (specimen_stage_reg_dir / reg_metadata['fixed_vol']).resolve() # Invert the Transform parameters with options for normal image inversion job = { 'specimen_stage_inversion_dir': specimen_stage_inversion_dir, 'parameter_file': abspath(parameter_file), 'transform_file': transform_file, 'fixed_volume': fixed_volume, 'param_file_output_name': 'inversion_parameters.txt', 'image_replacements': IMAGE_REPLACEMENTS, 'label_replacements': LABEL_REPLACEMENTS, 'image_transform_file': PROPAGATE_IMAGE_TRANSFORM, 'label_transform_file': PROPAGATE_LABEL_TRANFORM, 'clobber': clobber, 'threads': threads } jobs.append(job) # By putting each inverison job (a single job per registration stage) we can speed things up a bit # If we can get multithreded inversion in elastix we can remove this python multithreading pool = Pool(8) try: pool.map(_invert_transform_parameters, jobs) except KeyboardInterrupt: print('terminating inversion') pool.terminate() pool.join() # TODO: Should we replace the need for this invert.yaml? reg_dir = Path(os.path.relpath(reg_stage_dir, inv_outdir)) stages_to_invert['registration_directory'] = str(reg_dir) # Doc why we need this # Create a yaml config file so that inversions can be run seperatley invert_config = config['inverted_transforms'] / PROPAGATE_CONFIG with open(invert_config, 'w') as yf: yf.write(yaml.dump(dict(stages_to_invert), default_flow_style=False)) def _invert_transform_parameters(args: Dict): """ Generate a single inverted elastix transform parameter file. This can then be used to invert labels, masks etc. If any of the step fail, return as subsequent steps will also fail. The logging of failures is handled within each function """ # If we have both the image and label inverted transforms, don't do anything if noclobber is True clobber = args['clobber'] threads = args['threads'] image_transform_param_path = abspath(join(args['specimen_stage_inversion_dir'], args['image_transform_file'])) label_transform_param_path = abspath(join(args['specimen_stage_inversion_dir'], args['label_transform_file'])) if not clobber and isfile(label_transform_param_path) and isfile(image_transform_param_path): logging.info('skipping {} as noclobber is True and inverted parameter files exist') return # Modify the elastix registration input parameter file to enable inversion (Change metric and don't write image results) inversion_params = abspath(join(args['specimen_stage_inversion_dir'], args['param_file_output_name'])) # The elastix registration parameters used for inversion make_elastix_inversion_parameter_file(abspath(args['parameter_file']), inversion_params, args['image_replacements']) # I don't think we need the replacements here!!!!!!!! # Do the inversion, making the inverted TransformParameters file fixed_vol = args['fixed_volume'] forward_tform_file = abspath(args['transform_file']) invert_param_dir = args['specimen_stage_inversion_dir'] if not invert_elastix_transform_parameters(fixed_vol, forward_tform_file, inversion_params, invert_param_dir, threads): return # Get the resulting TransformParameters file, and create a transform file suitable for inverting normal volumes image_inverted_tform = abspath(join(args['specimen_stage_inversion_dir'], 'TransformParameters.0.txt')) if not _modify_inverted_tform_file(image_inverted_tform, image_transform_param_path): return # Get the resulting TransformParameters file, and create a transform file suitable for inverting label volumes # replace the parameter in the image file with label-specific parameters and save in new file. No need to # generate one from scratch if not make_elastix_inversion_parameter_file(image_transform_param_path, label_transform_param_path, args['label_replacements']): return _modify_inverted_tform_file(label_transform_param_path) def get_reg_dirs(config: LamaConfig) -> List[Path]: """ Get the registration output directories paths in the order they were made """ reg_stages = [] for i, reg_stage in enumerate(config['registration_stage_params']): stage_id = reg_stage['stage_id'] stage_dir = config['root_reg_dir'] / stage_id reg_stages.append(stage_dir) return reg_stages def make_elastix_inversion_parameter_file(elx_param_file: Path, newfile_name: str, replacements: Dict): """ Modifies the elastix input parameter file that was used in the original transformation. Adds DisplacementMagnitudePenalty (which is needed for inverting) Turns off writing the image results at the end as we only need an inverted output file. Also changes interpolation order in the case of inverting labels Parameters ---------- elx_param_file: str path to elastix input parameter file newfile_name: str path to save modified parameter file to """ try: with open(elx_param_file) as old, open(newfile_name, "w") as new: for line in old: if line.startswith("(Metric "): line = '(Metric "DisplacementMagnitudePenalty")\n' if line.startswith('(WriteResultImage '): line = '(WriteResultImage "false")\n' if line.startswith('WriteResultImageAfterEachResolution '): continue try: param_name = line.split()[0][1:] except IndexError: continue # comment? if param_name in replacements: value = replacements[param_name] try: int(value) except ValueError: # Not an int, neeed quotes line = '({} "{}")\n'.format(param_name, value) else: # An int, no quotes line = '({} {})\n'.format(param_name, value) new.write(line) except IOError as e: logging.error("Error modifying the elastix parameter file: {}".format(e)) return False return True def invert_elastix_transform_parameters(fixed: Path, tform_file: Path, param: Path, outdir: Path, threads: str): """ Invert the transform and get a new transform file """ if not common.test_installation('elastix'): raise OSError('elastix not installed') cmd = ['elastix', '-t0', tform_file, '-p', param, '-f', fixed, '-m', fixed, '-out', outdir, '-threads', threads # 11/09/18. This was set to 1. Can iversions take advantage of multithreading? ] try: subprocess.check_output(cmd) except (Exception, subprocess.CalledProcessError) as e: msg = f'Inverting transform file failed. cmd: {cmd}\n{str(e)}:' logging.error(msg) logging.exception(msg) return False return True def _modify_inverted_tform_file(elx_tform_file: Path, newfile_name: str=None): """ Remove "NoInitialTransform" from the output transform parameter file Set output image format to unsigned char. Writes out a modified elastix transform parameter file that can be used for inverting volumes Parameters ---------- elx_tform_file: str path to elastix transform file newfile_mame: str path to save modified transform file """ if not newfile_name: # Write to temporary file before overwriting new_file = tempfile.NamedTemporaryFile().name else: new_file = newfile_name try: with open(new_file, "w+") as new_tform_param_fh, open(elx_tform_file, "r") as tform_param_fh: for line in tform_param_fh: if line.startswith('(InitialTransformParametersFileName'): line = '(InitialTransformParametersFileName "NoInitialTransform")\n' new_tform_param_fh.write(line) new_tform_param_fh.close() tform_param_fh.close() except IOError: logging.warning("Error reading or writing transform files {}".format(elx_tform_file)) return False return True # def is_euler_stage(tform_param): # """ # Return True if the registration used to create this param file was a Euler transform. Can't currently invert # Euler transforms with this method, and is usually not required # :param tform_param: # :return: # """ # with open(tform_param, 'r') as fh: # line = fh.readline() # if 'EulerTransform' in line: # return True # else: # return False
38.84985
175
0.678287
from pathlib import Path import tempfile import os import subprocess from collections import defaultdict from multiprocessing import Pool from os.path import join, abspath, isfile from typing import Union, List, Dict from logzero import logger as logging import yaml from lama import common from lama.common import cfg_load from lama.registration_pipeline.validate_config import LamaConfig from lama.elastix import (ELX_TRANSFORM_NAME, ELX_PARAM_PREFIX, PROPAGATE_LABEL_TRANFORM, PROPAGATE_IMAGE_TRANSFORM, PROPAGATE_CONFIG, RESOLUTION_IMGS_DIR, IMG_PYRAMID_DIR) LABEL_REPLACEMENTS = { 'FinalBSplineInterpolationOrder': '0', 'FixedInternalImagePixelType': 'short', 'MovingInternalImagePixelType': 'short', 'ResultImagePixelType': 'unsigned char', 'WriteTransformParametersEachResolution': 'false', 'WriteResultImageAfterEachResolution': 'false' } IMAGE_REPLACEMENTS = { 'FinalBSplineInterpolationOrder': '3', 'FixedInternalImagePixelType': 'float', 'MovingInternalImagePixelType': 'float', 'ResultImagePixelType': 'float', 'WriteTransformParametersEachResolution': 'false', 'WriteResultImageAfterEachResolution': 'false' } def batch_invert_transform_parameters(config: Union[Path, LamaConfig], clobber=True, new_log:bool=False): common.test_installation('elastix') if isinstance(config, (Path, str)): config = LamaConfig(config) threads = str(config['threads']) if new_log: common.init_logging(config / 'invert_transforms.log') reg_dirs = get_reg_dirs(config) volume_names = [x.stem for x in common.get_file_paths(reg_dirs[0], ignore_folders=[RESOLUTION_IMGS_DIR, IMG_PYRAMID_DIR])] inv_outdir = config.mkdir('inverted_transforms') stages_to_invert = defaultdict(list) jobs: List[Dict] = [] reg_stage_dir: Path for i, vol_id in enumerate(volume_names): for reg_stage_dir in reg_dirs: if not reg_stage_dir.is_dir(): logging.error('cannot find {}'.format(reg_stage_dir)) raise FileNotFoundError(f'Cannot find registration dir {reg_stage_dir}') inv_stage_dir = inv_outdir / reg_stage_dir.name specimen_stage_reg_dir = reg_stage_dir / vol_id specimen_stage_inversion_dir = inv_stage_dir / vol_id transform_file = common.getfile_startswith(specimen_stage_reg_dir, ELX_TRANSFORM_NAME) parameter_file = common.getfile_startswith(reg_stage_dir, ELX_PARAM_PREFIX) inv_stage_dir.mkdir(exist_ok=True) if reg_stage_dir.name not in stages_to_invert['label_propagation_order']: stages_to_invert['label_propagation_order'].insert(0, reg_stage_dir.name) if clobber: common.mkdir_force(specimen_stage_inversion_dir) reg_metadata = cfg_load(specimen_stage_reg_dir / common.INDV_REG_METADATA) fixed_volume = (specimen_stage_reg_dir / reg_metadata['fixed_vol']).resolve() job = { 'specimen_stage_inversion_dir': specimen_stage_inversion_dir, 'parameter_file': abspath(parameter_file), 'transform_file': transform_file, 'fixed_volume': fixed_volume, 'param_file_output_name': 'inversion_parameters.txt', 'image_replacements': IMAGE_REPLACEMENTS, 'label_replacements': LABEL_REPLACEMENTS, 'image_transform_file': PROPAGATE_IMAGE_TRANSFORM, 'label_transform_file': PROPAGATE_LABEL_TRANFORM, 'clobber': clobber, 'threads': threads } jobs.append(job) pool = Pool(8) try: pool.map(_invert_transform_parameters, jobs) except KeyboardInterrupt: print('terminating inversion') pool.terminate() pool.join() reg_dir = Path(os.path.relpath(reg_stage_dir, inv_outdir)) stages_to_invert['registration_directory'] = str(reg_dir) invert_config = config['inverted_transforms'] / PROPAGATE_CONFIG with open(invert_config, 'w') as yf: yf.write(yaml.dump(dict(stages_to_invert), default_flow_style=False)) def _invert_transform_parameters(args: Dict): clobber = args['clobber'] threads = args['threads'] image_transform_param_path = abspath(join(args['specimen_stage_inversion_dir'], args['image_transform_file'])) label_transform_param_path = abspath(join(args['specimen_stage_inversion_dir'], args['label_transform_file'])) if not clobber and isfile(label_transform_param_path) and isfile(image_transform_param_path): logging.info('skipping {} as noclobber is True and inverted parameter files exist') return # Modify the elastix registration input parameter file to enable inversion (Change metric and don't write image results) inversion_params = abspath(join(args['specimen_stage_inversion_dir'], args['param_file_output_name'])) make_elastix_inversion_parameter_file(abspath(args['parameter_file']), inversion_params, args['image_replacements']) # Do the inversion, making the inverted TransformParameters file fixed_vol = args['fixed_volume'] forward_tform_file = abspath(args['transform_file']) invert_param_dir = args['specimen_stage_inversion_dir'] if not invert_elastix_transform_parameters(fixed_vol, forward_tform_file, inversion_params, invert_param_dir, threads): return # Get the resulting TransformParameters file, and create a transform file suitable for inverting normal volumes image_inverted_tform = abspath(join(args['specimen_stage_inversion_dir'], 'TransformParameters.0.txt')) if not _modify_inverted_tform_file(image_inverted_tform, image_transform_param_path): return # Get the resulting TransformParameters file, and create a transform file suitable for inverting label volumes # replace the parameter in the image file with label-specific parameters and save in new file. No need to # generate one from scratch if not make_elastix_inversion_parameter_file(image_transform_param_path, label_transform_param_path, args['label_replacements']): return _modify_inverted_tform_file(label_transform_param_path) def get_reg_dirs(config: LamaConfig) -> List[Path]: reg_stages = [] for i, reg_stage in enumerate(config['registration_stage_params']): stage_id = reg_stage['stage_id'] stage_dir = config['root_reg_dir'] / stage_id reg_stages.append(stage_dir) return reg_stages def make_elastix_inversion_parameter_file(elx_param_file: Path, newfile_name: str, replacements: Dict): try: with open(elx_param_file) as old, open(newfile_name, "w") as new: for line in old: if line.startswith("(Metric "): line = '(Metric "DisplacementMagnitudePenalty")\n' if line.startswith('(WriteResultImage '): line = '(WriteResultImage "false")\n' if line.startswith('WriteResultImageAfterEachResolution '): continue try: param_name = line.split()[0][1:] except IndexError: continue # comment? if param_name in replacements: value = replacements[param_name] try: int(value) except ValueError: # Not an int, neeed quotes line = '({} "{}")\n'.format(param_name, value) else: # An int, no quotes line = '({} {})\n'.format(param_name, value) new.write(line) except IOError as e: logging.error("Error modifying the elastix parameter file: {}".format(e)) return False return True def invert_elastix_transform_parameters(fixed: Path, tform_file: Path, param: Path, outdir: Path, threads: str): if not common.test_installation('elastix'): raise OSError('elastix not installed') cmd = ['elastix', '-t0', tform_file, '-p', param, '-f', fixed, '-m', fixed, '-out', outdir, '-threads', threads # 11/09/18. This was set to 1. Can iversions take advantage of multithreading? ] try: subprocess.check_output(cmd) except (Exception, subprocess.CalledProcessError) as e: msg = f'Inverting transform file failed. cmd: {cmd}\n{str(e)}:' logging.error(msg) logging.exception(msg) return False return True def _modify_inverted_tform_file(elx_tform_file: Path, newfile_name: str=None): if not newfile_name: # Write to temporary file before overwriting new_file = tempfile.NamedTemporaryFile().name else: new_file = newfile_name try: with open(new_file, "w+") as new_tform_param_fh, open(elx_tform_file, "r") as tform_param_fh: for line in tform_param_fh: if line.startswith('(InitialTransformParametersFileName'): line = '(InitialTransformParametersFileName "NoInitialTransform")\n' new_tform_param_fh.write(line) new_tform_param_fh.close() tform_param_fh.close() except IOError: logging.warning("Error reading or writing transform files {}".format(elx_tform_file)) return False return True # def is_euler_stage(tform_param): # """ # Return True if the registration used to create this param file was a Euler transform. Can't currently invert # Euler transforms with this method, and is usually not required # :param tform_param: # :return: # """
true
true
f718082ff8a1b480495d2fe2964e1b8479a5f70b
3,677
py
Python
tests/python/unittest/test_tir_ptx_ldmatrix.py
shengxinhu/tvm
06c443e9959452c6da3a911fe0c11e08c5554477
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
4,640
2017-08-17T19:22:15.000Z
2019-11-04T15:29:46.000Z
tests/python/unittest/test_tir_ptx_ldmatrix.py
shengxinhu/tvm
06c443e9959452c6da3a911fe0c11e08c5554477
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
2,863
2017-08-17T19:55:50.000Z
2019-11-04T17:18:41.000Z
tests/python/unittest/test_tir_ptx_ldmatrix.py
shengxinhu/tvm
06c443e9959452c6da3a911fe0c11e08c5554477
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1,352
2017-08-17T19:30:38.000Z
2019-11-04T16:09:29.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import tvm from tvm.script import tir as T import numpy as np import tvm.testing @T.prim_func def ptx_ldmatrix( A: T.Buffer[(16, 16), "float16"], B: T.Buffer[(16, 16), "float16"], num: T.int32, trans: T.uint8 ) -> None: T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) bx = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(bx, 1) T.launch_thread(tx, 32) with T.block(): A_shared = T.alloc_buffer([16, 16], "float16", scope="shared") A_local = T.alloc_buffer([8], "float16", scope="local") for i in range(8): A_shared[i * 2 + tx // 16, tx % 16] = A[i * 2 + tx // 16, tx % 16] T.evaluate( T.ptx_ldmatrix( trans, num, ".b16", A_local.data, 0, A_shared.data, 16 * (tx % 16) + 8 * (tx // 16), dtype="float16", ) ) for k in range(2): for j in range(2): for i in range(2): B[8 * j + tx // 4, 8 * k + (tx % 4) * 2 + i] = A_local[4 * k + 2 * j + i] @tvm.testing.requires_cuda def test_ptx_ldmatrix(): f = ptx_ldmatrix _, _, param_num, param_trans = f.params arch = tvm.contrib.nvcc.get_target_compute_version() major, minor = tvm.contrib.nvcc.parse_compute_version(arch) if major * 10 + minor < 75: # Require at least SM75 return for num in [1, 2, 4]: for trans in [False, True]: mod = tvm.build(f.specialize({param_num: num, param_trans: trans}), target="cuda") A_np = np.random.rand(16, 16).astype("float16") A_mask_np = np.zeros_like(A_np) if num == 1: if trans: A_mask_np[:8, :8] = A_np[:8, :8].T else: A_mask_np[:8, :8] = A_np[:8, :8] elif num == 2: if trans: A_mask_np[:8, :8] = A_np[:8, :8].T A_mask_np[8:16, :8] = A_np[8:16, :8].T else: A_mask_np[:16, :8] = A_np[:16, :8] else: # num == 4 if trans: A_mask_np[:8, :8] = A_np[:8, :8].T A_mask_np[8:16, :8] = A_np[8:16, :8].T A_mask_np[:8, 8:16] = A_np[:8, 8:16].T A_mask_np[8:16, 8:16] = A_np[8:16, 8:16].T else: A_mask_np[:16, :16] = A_np[:16, :16] B_np = np.zeros((16, 16)).astype("float16") dev = tvm.cuda(0) A_nd = tvm.nd.array(A_np, device=dev) B_nd = tvm.nd.array(B_np, device=dev) mod(A_nd, B_nd) tvm.testing.assert_allclose(B_nd.numpy(), A_mask_np) if __name__ == "__main__": test_ptx_ldmatrix()
36.04902
100
0.536035
import tvm from tvm.script import tir as T import numpy as np import tvm.testing @T.prim_func def ptx_ldmatrix( A: T.Buffer[(16, 16), "float16"], B: T.Buffer[(16, 16), "float16"], num: T.int32, trans: T.uint8 ) -> None: T.func_attr({"global_symbol": "default_function", "tir.noalias": True}) bx = T.env_thread("blockIdx.x") tx = T.env_thread("threadIdx.x") T.launch_thread(bx, 1) T.launch_thread(tx, 32) with T.block(): A_shared = T.alloc_buffer([16, 16], "float16", scope="shared") A_local = T.alloc_buffer([8], "float16", scope="local") for i in range(8): A_shared[i * 2 + tx // 16, tx % 16] = A[i * 2 + tx // 16, tx % 16] T.evaluate( T.ptx_ldmatrix( trans, num, ".b16", A_local.data, 0, A_shared.data, 16 * (tx % 16) + 8 * (tx // 16), dtype="float16", ) ) for k in range(2): for j in range(2): for i in range(2): B[8 * j + tx // 4, 8 * k + (tx % 4) * 2 + i] = A_local[4 * k + 2 * j + i] @tvm.testing.requires_cuda def test_ptx_ldmatrix(): f = ptx_ldmatrix _, _, param_num, param_trans = f.params arch = tvm.contrib.nvcc.get_target_compute_version() major, minor = tvm.contrib.nvcc.parse_compute_version(arch) if major * 10 + minor < 75: return for num in [1, 2, 4]: for trans in [False, True]: mod = tvm.build(f.specialize({param_num: num, param_trans: trans}), target="cuda") A_np = np.random.rand(16, 16).astype("float16") A_mask_np = np.zeros_like(A_np) if num == 1: if trans: A_mask_np[:8, :8] = A_np[:8, :8].T else: A_mask_np[:8, :8] = A_np[:8, :8] elif num == 2: if trans: A_mask_np[:8, :8] = A_np[:8, :8].T A_mask_np[8:16, :8] = A_np[8:16, :8].T else: A_mask_np[:16, :8] = A_np[:16, :8] else: if trans: A_mask_np[:8, :8] = A_np[:8, :8].T A_mask_np[8:16, :8] = A_np[8:16, :8].T A_mask_np[:8, 8:16] = A_np[:8, 8:16].T A_mask_np[8:16, 8:16] = A_np[8:16, 8:16].T else: A_mask_np[:16, :16] = A_np[:16, :16] B_np = np.zeros((16, 16)).astype("float16") dev = tvm.cuda(0) A_nd = tvm.nd.array(A_np, device=dev) B_nd = tvm.nd.array(B_np, device=dev) mod(A_nd, B_nd) tvm.testing.assert_allclose(B_nd.numpy(), A_mask_np) if __name__ == "__main__": test_ptx_ldmatrix()
true
true
f71808b9f205aac0b404b9509ad046d9f41b7eab
12,174
py
Python
google/ads/googleads/v10/services/services/conversion_value_rule_set_service/transports/grpc.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v10/services/services/conversion_value_rule_set_service/transports/grpc.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
google/ads/googleads/v10/services/services/conversion_value_rule_set_service/transports/grpc.py
JakobSteixner/google-ads-python
df2b802cc7e78295a4ece21cc7ef3787cd35dab0
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple from google.api_core import grpc_helpers from google.api_core import gapic_v1 import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.ads.googleads.v10.services.types import ( conversion_value_rule_set_service, ) from .base import ConversionValueRuleSetServiceTransport, DEFAULT_CLIENT_INFO class ConversionValueRuleSetServiceGrpcTransport( ConversionValueRuleSetServiceTransport ): """gRPC backend transport for ConversionValueRuleSetService. Service to manage conversion value rule sets. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _stubs: Dict[str, Callable] def __init__( self, *, host: str = "googleads.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn( "client_cert_source is deprecated", DeprecationWarning ) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = ( SslCredentials().ssl_credentials ) else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, # use the credentials which are saved credentials=self._credentials, # Set ``credentials_file`` to ``None`` here as # the credentials that we saved earlier should be used. credentials_file=None, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @classmethod def create_channel( cls, host: str = "googleads.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> grpc.Channel: """Create and return a gRPC channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. Raises: google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def mutate_conversion_value_rule_sets( self, ) -> Callable[ [ conversion_value_rule_set_service.MutateConversionValueRuleSetsRequest ], conversion_value_rule_set_service.MutateConversionValueRuleSetsResponse, ]: r"""Return a callable for the mutate conversion value rule sets method over gRPC. Creates, updates or removes conversion value rule sets. Operation statuses are returned. Returns: Callable[[~.MutateConversionValueRuleSetsRequest], ~.MutateConversionValueRuleSetsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "mutate_conversion_value_rule_sets" not in self._stubs: self._stubs[ "mutate_conversion_value_rule_sets" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v10.services.ConversionValueRuleSetService/MutateConversionValueRuleSets", request_serializer=conversion_value_rule_set_service.MutateConversionValueRuleSetsRequest.serialize, response_deserializer=conversion_value_rule_set_service.MutateConversionValueRuleSetsResponse.deserialize, ) return self._stubs["mutate_conversion_value_rule_sets"] def close(self): self.grpc_channel.close() __all__ = ("ConversionValueRuleSetServiceGrpcTransport",)
43.634409
122
0.637013
import warnings from typing import Callable, Dict, Optional, Sequence, Tuple from google.api_core import grpc_helpers from google.api_core import gapic_v1 import google.auth from google.auth import credentials as ga_credentials from google.auth.transport.grpc import SslCredentials import grpc from google.ads.googleads.v10.services.types import ( conversion_value_rule_set_service, ) from .base import ConversionValueRuleSetServiceTransport, DEFAULT_CLIENT_INFO class ConversionValueRuleSetServiceGrpcTransport( ConversionValueRuleSetServiceTransport ): _stubs: Dict[str, Callable] def __init__( self, *, host: str = "googleads.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn( "client_cert_source is deprecated", DeprecationWarning ) if channel: credentials = False self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = ( SslCredentials().ssl_credentials ) else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=None, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._prep_wrapped_messages(client_info) @classmethod def create_channel( cls, host: str = "googleads.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> grpc.Channel: return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: return self._grpc_channel @property def mutate_conversion_value_rule_sets( self, ) -> Callable[ [ conversion_value_rule_set_service.MutateConversionValueRuleSetsRequest ], conversion_value_rule_set_service.MutateConversionValueRuleSetsResponse, ]: if "mutate_conversion_value_rule_sets" not in self._stubs: self._stubs[ "mutate_conversion_value_rule_sets" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v10.services.ConversionValueRuleSetService/MutateConversionValueRuleSets", request_serializer=conversion_value_rule_set_service.MutateConversionValueRuleSetsRequest.serialize, response_deserializer=conversion_value_rule_set_service.MutateConversionValueRuleSetsResponse.deserialize, ) return self._stubs["mutate_conversion_value_rule_sets"] def close(self): self.grpc_channel.close() __all__ = ("ConversionValueRuleSetServiceGrpcTransport",)
true
true
f7180a3e45377a91711d6c8fa67895d8d860641f
1,780
py
Python
mlprocessors/consolecapture.py
flatironinstitute/mountaintools
d5680599381e0810c4aa5b309b9ef9ec7f2d1b25
[ "Apache-2.0" ]
2
2019-11-07T14:09:02.000Z
2021-09-23T01:09:04.000Z
mountaintools/mlprocessors/consolecapture.py
flatironinstitute/spikeforest_old
d9470194dc906b949178b9c44d14aea57a1f6c27
[ "Apache-2.0" ]
13
2019-05-04T09:34:53.000Z
2019-06-23T07:05:58.000Z
mountaintools/mlprocessors/consolecapture.py
flatironinstitute/spikeforest_old
d9470194dc906b949178b9c44d14aea57a1f6c27
[ "Apache-2.0" ]
1
2021-09-23T01:07:21.000Z
2021-09-23T01:07:21.000Z
from typing import Any import sys import time import os import tempfile class Logger2(): def __init__(self, file1: Any, file2: Any): self.file1 = file1 self.file2 = file2 def write(self, data: str) -> None: self.file1.write(data) self.file2.write(data) def flush(self) -> None: self.file1.flush() self.file2.flush() class ConsoleCapture(): def __init__(self): self._console_out = '' self._tmp_fname = None self._file_handle = None self._time_start = None self._time_stop = None self._original_stdout = sys.stdout self._original_stderr = sys.stderr def start_capturing(self) -> None: self._tmp_fname = tempfile.mktemp(suffix='.txt') self._file_handle = open(self._tmp_fname, 'w') sys.stdout = Logger2(self._file_handle, self._original_stdout) sys.stderr = Logger2(self._file_handle, self._original_stderr) self._time_start = time.time() def stop_capturing(self) -> None: assert self._tmp_fname is not None self._time_stop = time.time() sys.stdout = self._original_stdout sys.stderr = self._original_stderr self._file_handle.close() with open(self._tmp_fname, 'r') as f: self._console_out = f.read() os.unlink(self._tmp_fname) def addToConsoleOut(self, txt: str) -> None: self._file_handle.write(txt) def runtimeInfo(self) -> dict: assert self._time_start is not None return dict( start_time=self._time_start - 0, end_time=self._time_stop - 0, elapsed_sec=self._time_stop - self._time_start ) def consoleOut(self) -> str: return self._console_out
28.709677
70
0.626404
from typing import Any import sys import time import os import tempfile class Logger2(): def __init__(self, file1: Any, file2: Any): self.file1 = file1 self.file2 = file2 def write(self, data: str) -> None: self.file1.write(data) self.file2.write(data) def flush(self) -> None: self.file1.flush() self.file2.flush() class ConsoleCapture(): def __init__(self): self._console_out = '' self._tmp_fname = None self._file_handle = None self._time_start = None self._time_stop = None self._original_stdout = sys.stdout self._original_stderr = sys.stderr def start_capturing(self) -> None: self._tmp_fname = tempfile.mktemp(suffix='.txt') self._file_handle = open(self._tmp_fname, 'w') sys.stdout = Logger2(self._file_handle, self._original_stdout) sys.stderr = Logger2(self._file_handle, self._original_stderr) self._time_start = time.time() def stop_capturing(self) -> None: assert self._tmp_fname is not None self._time_stop = time.time() sys.stdout = self._original_stdout sys.stderr = self._original_stderr self._file_handle.close() with open(self._tmp_fname, 'r') as f: self._console_out = f.read() os.unlink(self._tmp_fname) def addToConsoleOut(self, txt: str) -> None: self._file_handle.write(txt) def runtimeInfo(self) -> dict: assert self._time_start is not None return dict( start_time=self._time_start - 0, end_time=self._time_stop - 0, elapsed_sec=self._time_stop - self._time_start ) def consoleOut(self) -> str: return self._console_out
true
true
f7180a3fe9d499c15ed0c134b63d4d7772dbd786
3,357
py
Python
profiles_project/settings.py
LaiZiSen/profiles_REST_API_course
83662a33b3a318dc7e52c5d56b577e4863ed7c5d
[ "MIT" ]
null
null
null
profiles_project/settings.py
LaiZiSen/profiles_REST_API_course
83662a33b3a318dc7e52c5d56b577e4863ed7c5d
[ "MIT" ]
null
null
null
profiles_project/settings.py
LaiZiSen/profiles_REST_API_course
83662a33b3a318dc7e52c5d56b577e4863ed7c5d
[ "MIT" ]
null
null
null
""" Django settings for profiles_project project. Generated by 'django-admin startproject' using Django 2.2. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '9%&3aa&mz9nkbfr0!b(^9a^((@_wbd&m3f$3wbyseq9ai9m!^v' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = bool(int(os.environ.get('DEBUG',1))) ALLOWED_HOSTS = ['ec2-18-117-223-244.us-east-2.compute.amazonaws.com','127.0.0.1'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'profiles_api', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'profiles_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'profiles_project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'profiles_api.UserProfile' STATIC_ROOT = 'static/'
26.226563
91
0.699136
import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY = '9%&3aa&mz9nkbfr0!b(^9a^((@_wbd&m3f$3wbyseq9ai9m!^v' DEBUG = bool(int(os.environ.get('DEBUG',1))) ALLOWED_HOSTS = ['ec2-18-117-223-244.us-east-2.compute.amazonaws.com','127.0.0.1'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'rest_framework.authtoken', 'profiles_api', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'profiles_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'profiles_project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/' AUTH_USER_MODEL = 'profiles_api.UserProfile' STATIC_ROOT = 'static/'
true
true
f7180b932ca3d3eac6846747dbbfa23652d97e6d
1,458
py
Python
sa/profiles/AlliedTelesis/AT8100/get_version.py
xUndero/noc
9fb34627721149fcf7064860bd63887e38849131
[ "BSD-3-Clause" ]
1
2019-09-20T09:36:48.000Z
2019-09-20T09:36:48.000Z
sa/profiles/AlliedTelesis/AT8100/get_version.py
ewwwcha/noc
aba08dc328296bb0e8e181c2ac9a766e1ec2a0bb
[ "BSD-3-Clause" ]
null
null
null
sa/profiles/AlliedTelesis/AT8100/get_version.py
ewwwcha/noc
aba08dc328296bb0e8e181c2ac9a766e1ec2a0bb
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # --------------------------------------------------------------------- # AlliedTelesis.AT8100.get_version # --------------------------------------------------------------------- # Copyright (C) 2007-2018 The NOC Project # See LICENSE for details # --------------------------------------------------------------------- """ """ from noc.core.script.base import BaseScript from noc.sa.interfaces.igetversion import IGetVersion import re class Script(BaseScript): name = "AlliedTelesis.AT8100.get_version" cache = True interface = IGetVersion rx_plat = re.compile( r"^Base\s+(?P<platform>AT-81\S+)\s+(?P<hardware>\S+)\s+(?P<serial>\S+)\s*\n", re.MULTILINE ) rx_boot = re.compile(r"^Bootloader version\s+:\s+(?P<bootprom>\S+)\s*\n", re.MULTILINE) rx_version = re.compile(r"^Software version\s+:\s+(?P<version>\S+)\s*\n", re.MULTILINE) def execute_cli(self): v = self.cli("show system") match1 = self.rx_plat.search(v) match2 = self.rx_boot.search(v) match3 = self.rx_version.search(v) return { "vendor": "Allied Telesis", "platform": match1.group("platform"), "version": match3.group("version"), "attributes": { "Boot PROM": match2.group("bootprom"), "HW version": match1.group("hardware"), "Serial Number": match1.group("serial"), }, }
34.714286
98
0.504801
from noc.core.script.base import BaseScript from noc.sa.interfaces.igetversion import IGetVersion import re class Script(BaseScript): name = "AlliedTelesis.AT8100.get_version" cache = True interface = IGetVersion rx_plat = re.compile( r"^Base\s+(?P<platform>AT-81\S+)\s+(?P<hardware>\S+)\s+(?P<serial>\S+)\s*\n", re.MULTILINE ) rx_boot = re.compile(r"^Bootloader version\s+:\s+(?P<bootprom>\S+)\s*\n", re.MULTILINE) rx_version = re.compile(r"^Software version\s+:\s+(?P<version>\S+)\s*\n", re.MULTILINE) def execute_cli(self): v = self.cli("show system") match1 = self.rx_plat.search(v) match2 = self.rx_boot.search(v) match3 = self.rx_version.search(v) return { "vendor": "Allied Telesis", "platform": match1.group("platform"), "version": match3.group("version"), "attributes": { "Boot PROM": match2.group("bootprom"), "HW version": match1.group("hardware"), "Serial Number": match1.group("serial"), }, }
true
true
f7180d0a373f4396eb239868bbafcb05362fb150
18,059
py
Python
CodeIA/venv/Lib/site-packages/imblearn/pipeline.py
Finasty-lab/IA-Python
286113504906fec11a5aa5fd1d12e38536b1c859
[ "Apache-2.0" ]
2
2017-06-15T04:49:43.000Z
2020-06-20T02:29:29.000Z
CodeIA/venv/Lib/site-packages/imblearn/pipeline.py
Finasty-lab/IA-Python
286113504906fec11a5aa5fd1d12e38536b1c859
[ "Apache-2.0" ]
3
2016-07-26T09:39:44.000Z
2020-06-20T02:29:30.000Z
CodeIA/venv/Lib/site-packages/imblearn/pipeline.py
Finasty-lab/IA-Python
286113504906fec11a5aa5fd1d12e38536b1c859
[ "Apache-2.0" ]
null
null
null
""" The :mod:`imblearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms, samples and estimators. """ # Adapted from scikit-learn # Author: Edouard Duchesnay # Gael Varoquaux # Virgile Fritsch # Alexandre Gramfort # Lars Buitinck # Christos Aridas # Guillaume Lemaitre <g.lemaitre58@gmail.com> # License: BSD from sklearn import pipeline from sklearn.base import clone from sklearn.utils import _print_elapsed_time from sklearn.utils.metaestimators import if_delegate_has_method from sklearn.utils.validation import check_memory __all__ = ["Pipeline", "make_pipeline"] class Pipeline(pipeline.Pipeline): """Pipeline of transforms and resamples with a final estimator. Sequentially apply a list of transforms, sampling, and a final estimator. Intermediate steps of the pipeline must be transformers or resamplers, that is, they must implement fit, transform and sample methods. The samplers are only applied during fit. The final estimator only needs to implement fit. The transformers and samplers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. Parameters ---------- steps : list List of (name, transform) tuples (implementing fit/transform/fit_resample) that are chained, in the order in which they are chained, with the last object an estimator. memory : Instance of joblib.Memory or str, default=None Used to cache the fitted transformers of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute ``named_steps`` or ``steps`` to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming. verbose : bool, default=False If True, the time elapsed while fitting each step will be printed as it is completed. Attributes ---------- named_steps : bunch object, a dictionary with attribute access Read-only attribute to access any step parameter by user given name. Keys are step names and values are steps parameters. See Also -------- make_pipeline : Helper function to make pipeline. Notes ----- See :ref:`sphx_glr_auto_examples_pipeline_plot_pipeline_classification.py` Examples -------- >>> from collections import Counter >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split as tts >>> from sklearn.decomposition import PCA >>> from sklearn.neighbors import KNeighborsClassifier as KNN >>> from sklearn.metrics import classification_report >>> from imblearn.over_sampling import SMOTE >>> from imblearn.pipeline import Pipeline # doctest: +NORMALIZE_WHITESPACE >>> X, y = make_classification(n_classes=2, class_sep=2, ... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, ... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) >>> print('Original dataset shape {}'.format(Counter(y))) Original dataset shape Counter({1: 900, 0: 100}) >>> pca = PCA() >>> smt = SMOTE(random_state=42) >>> knn = KNN() >>> pipeline = Pipeline([('smt', smt), ('pca', pca), ('knn', knn)]) >>> X_train, X_test, y_train, y_test = tts(X, y, random_state=42) >>> pipeline.fit(X_train, y_train) # doctest: +ELLIPSIS Pipeline(...) >>> y_hat = pipeline.predict(X_test) >>> print(classification_report(y_test, y_hat)) precision recall f1-score support <BLANKLINE> 0 0.87 1.00 0.93 26 1 1.00 0.98 0.99 224 <BLANKLINE> accuracy 0.98 250 macro avg 0.93 0.99 0.96 250 weighted avg 0.99 0.98 0.98 250 <BLANKLINE> """ # BaseEstimator interface def _validate_steps(self): names, estimators = zip(*self.steps) # validate names self._validate_names(names) # validate estimators transformers = estimators[:-1] estimator = estimators[-1] for t in transformers: if t is None or t == "passthrough": continue if not ( hasattr(t, "fit") or hasattr(t, "fit_transform") or hasattr(t, "fit_resample") ) or not (hasattr(t, "transform") or hasattr(t, "fit_resample")): raise TypeError( "All intermediate steps of the chain should " "be estimators that implement fit and transform or " "fit_resample (but not both) or be a string 'passthrough' " "'%s' (type %s) doesn't)" % (t, type(t)) ) if hasattr(t, "fit_resample") and ( hasattr(t, "fit_transform") or hasattr(t, "transform") ): raise TypeError( "All intermediate steps of the chain should " "be estimators that implement fit and transform or " "fit_resample." " '%s' implements both)" % (t) ) if isinstance(t, pipeline.Pipeline): raise TypeError( "All intermediate steps of the chain should not be" " Pipelines" ) # We allow last estimator to be None as an identity transformation if ( estimator is not None and estimator != "passthrough" and not hasattr(estimator, "fit") ): raise TypeError( "Last step of Pipeline should implement fit or be " "the string 'passthrough'. '%s' (type %s) doesn't" % (estimator, type(estimator)) ) def _iter( self, with_final=True, filter_passthrough=True, filter_resample=True ): """Generate (idx, (name, trans)) tuples from self.steps. When `filter_passthrough` is `True`, 'passthrough' and None transformers are filtered out. When `filter_resample` is `True`, estimator with a method `fit_resample` are filtered out. """ it = super()._iter(with_final, filter_passthrough) if filter_resample: return filter(lambda x: not hasattr(x[-1], "fit_resample"), it) else: return it # Estimator interface def _fit(self, X, y=None, **fit_params): self.steps = list(self.steps) self._validate_steps() # Setup the memory memory = check_memory(self.memory) fit_transform_one_cached = memory.cache(pipeline._fit_transform_one) fit_resample_one_cached = memory.cache(_fit_resample_one) fit_params_steps = { name: {} for name, step in self.steps if step is not None } for pname, pval in fit_params.items(): if '__' not in pname: raise ValueError( "Pipeline.fit does not accept the {} parameter. " "You can pass parameters to specific steps of your " "pipeline using the stepname__parameter format, e.g. " "`Pipeline.fit(X, y, logisticregression__sample_weight" "=sample_weight)`.".format(pname)) step, param = pname.split("__", 1) fit_params_steps[step][param] = pval for (step_idx, name, transformer) in self._iter(with_final=False, filter_passthrough=False, filter_resample=False): if (transformer is None or transformer == 'passthrough'): with _print_elapsed_time('Pipeline', self._log_message(step_idx)): continue try: # joblib >= 0.12 mem = memory.location except AttributeError: mem = memory.cachedir finally: cloned_transformer = clone(transformer) if mem else transformer # Fit or load from cache the current transfomer if hasattr(cloned_transformer, "transform") or hasattr( cloned_transformer, "fit_transform" ): X, fitted_transformer = fit_transform_one_cached( cloned_transformer, X, y, None, message_clsname='Pipeline', message=self._log_message(step_idx), **fit_params_steps[name] ) elif hasattr(cloned_transformer, "fit_resample"): X, y, fitted_transformer = fit_resample_one_cached( cloned_transformer, X, y, message_clsname='Pipeline', message=self._log_message(step_idx), **fit_params_steps[name] ) # Replace the transformer of the step with the fitted # transformer. This is necessary when loading the transformer # from the cache. self.steps[step_idx] = (name, fitted_transformer) if self._final_estimator == "passthrough": return X, y, {} return X, y, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit the model. Fit all the transforms/samplers one after the other and transform/sample the data, then fit the transformed/sampled data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of str -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- self : Pipeline This estimator. """ Xt, yt, fit_params = self._fit(X, y, **fit_params) with _print_elapsed_time('Pipeline', self._log_message(len(self.steps) - 1)): if self._final_estimator != "passthrough": self._final_estimator.fit(Xt, yt, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit the model and transform with the final estimator. Fits all the transformers/samplers one after the other and transform/sample the data, then uses fit_transform on transformed data with the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- Xt : array-like of shape (n_samples, n_transformed_features) Transformed samples. """ last_step = self._final_estimator Xt, yt, fit_params = self._fit(X, y, **fit_params) with _print_elapsed_time('Pipeline', self._log_message(len(self.steps) - 1)): if last_step == "passthrough": return Xt elif hasattr(last_step, "fit_transform"): return last_step.fit_transform(Xt, yt, **fit_params) else: return last_step.fit(Xt, yt, **fit_params).transform(Xt) def fit_resample(self, X, y=None, **fit_params): """Fit the model and sample with the final estimator. Fits all the transformers/samplers one after the other and transform/sample the data, then uses fit_resample on transformed data with the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- Xt : array-like of shape (n_samples, n_transformed_features) Transformed samples. yt : array-like of shape (n_samples, n_transformed_features) Transformed target. """ last_step = self._final_estimator Xt, yt, fit_params = self._fit(X, y, **fit_params) with _print_elapsed_time('Pipeline', self._log_message(len(self.steps) - 1)): if last_step == "passthrough": return Xt elif hasattr(last_step, "fit_resample"): return last_step.fit_resample(Xt, yt, **fit_params) @if_delegate_has_method(delegate="_final_estimator") def fit_predict(self, X, y=None, **fit_params): """Apply `fit_predict` of last step in pipeline after transforms. Applies fit_transforms of a pipeline to the data, followed by the fit_predict method of the final estimator in the pipeline. Valid only if the final estimator implements fit_predict. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- y_pred : ndarray of shape (n_samples,) The predicted target. """ Xt, yt, fit_params = self._fit(X, y, **fit_params) with _print_elapsed_time('Pipeline', self._log_message(len(self.steps) - 1)): y_pred = self.steps[-1][-1].fit_predict(Xt, yt, **fit_params) return y_pred def _fit_resample_one(sampler, X, y, message_clsname='', message=None, **fit_params): with _print_elapsed_time(message_clsname, message): X_res, y_res = sampler.fit_resample(X, y, **fit_params) return X_res, y_res, sampler def make_pipeline(*steps, **kwargs): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, their names will be set to the lowercase of their types automatically. Parameters ---------- *steps : list of estimators A list of estimators. memory : None, str or object with the joblib.Memory interface, default=None Used to cache the fitted transformers of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute ``named_steps`` or ``steps`` to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming. verbose : bool, default=False If True, the time elapsed while fitting each step will be printed as it is completed. Returns ------- p : Pipeline See Also -------- imblearn.pipeline.Pipeline : Class for creating a pipeline of transforms with a final estimator. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB(priors=None)) ... # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler()), ('gaussiannb', GaussianNB())]) """ memory = kwargs.pop("memory", None) verbose = kwargs.pop('verbose', False) if kwargs: raise TypeError( 'Unknown keyword arguments: "{}"'.format(list(kwargs.keys())[0]) ) return Pipeline( pipeline._name_estimators(steps), memory=memory, verbose=verbose )
39.173536
79
0.5966
""" The :mod:`imblearn.pipeline` module implements utilities to build a composite estimator, as a chain of transforms, samples and estimators. """ from sklearn import pipeline from sklearn.base import clone from sklearn.utils import _print_elapsed_time from sklearn.utils.metaestimators import if_delegate_has_method from sklearn.utils.validation import check_memory __all__ = ["Pipeline", "make_pipeline"] class Pipeline(pipeline.Pipeline): """Pipeline of transforms and resamples with a final estimator. Sequentially apply a list of transforms, sampling, and a final estimator. Intermediate steps of the pipeline must be transformers or resamplers, that is, they must implement fit, transform and sample methods. The samplers are only applied during fit. The final estimator only needs to implement fit. The transformers and samplers in the pipeline can be cached using ``memory`` argument. The purpose of the pipeline is to assemble several steps that can be cross-validated together while setting different parameters. For this, it enables setting parameters of the various steps using their names and the parameter name separated by a '__', as in the example below. A step's estimator may be replaced entirely by setting the parameter with its name to another estimator, or a transformer removed by setting it to 'passthrough' or ``None``. Parameters ---------- steps : list List of (name, transform) tuples (implementing fit/transform/fit_resample) that are chained, in the order in which they are chained, with the last object an estimator. memory : Instance of joblib.Memory or str, default=None Used to cache the fitted transformers of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute ``named_steps`` or ``steps`` to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming. verbose : bool, default=False If True, the time elapsed while fitting each step will be printed as it is completed. Attributes ---------- named_steps : bunch object, a dictionary with attribute access Read-only attribute to access any step parameter by user given name. Keys are step names and values are steps parameters. See Also -------- make_pipeline : Helper function to make pipeline. Notes ----- See :ref:`sphx_glr_auto_examples_pipeline_plot_pipeline_classification.py` Examples -------- >>> from collections import Counter >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split as tts >>> from sklearn.decomposition import PCA >>> from sklearn.neighbors import KNeighborsClassifier as KNN >>> from sklearn.metrics import classification_report >>> from imblearn.over_sampling import SMOTE >>> from imblearn.pipeline import Pipeline # doctest: +NORMALIZE_WHITESPACE >>> X, y = make_classification(n_classes=2, class_sep=2, ... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, ... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10) >>> print('Original dataset shape {}'.format(Counter(y))) Original dataset shape Counter({1: 900, 0: 100}) >>> pca = PCA() >>> smt = SMOTE(random_state=42) >>> knn = KNN() >>> pipeline = Pipeline([('smt', smt), ('pca', pca), ('knn', knn)]) >>> X_train, X_test, y_train, y_test = tts(X, y, random_state=42) >>> pipeline.fit(X_train, y_train) # doctest: +ELLIPSIS Pipeline(...) >>> y_hat = pipeline.predict(X_test) >>> print(classification_report(y_test, y_hat)) precision recall f1-score support <BLANKLINE> 0 0.87 1.00 0.93 26 1 1.00 0.98 0.99 224 <BLANKLINE> accuracy 0.98 250 macro avg 0.93 0.99 0.96 250 weighted avg 0.99 0.98 0.98 250 <BLANKLINE> """ # BaseEstimator interface def _validate_steps(self): names, estimators = zip(*self.steps) # validate names self._validate_names(names) # validate estimators transformers = estimators[:-1] estimator = estimators[-1] for t in transformers: if t is None or t == "passthrough": continue if not ( hasattr(t, "fit") or hasattr(t, "fit_transform") or hasattr(t, "fit_resample") ) or not (hasattr(t, "transform") or hasattr(t, "fit_resample")): raise TypeError( "All intermediate steps of the chain should " "be estimators that implement fit and transform or " "fit_resample (but not both) or be a string 'passthrough' " "'%s' (type %s) doesn't)" % (t, type(t)) ) if hasattr(t, "fit_resample") and ( hasattr(t, "fit_transform") or hasattr(t, "transform") ): raise TypeError( "All intermediate steps of the chain should " "be estimators that implement fit and transform or " "fit_resample." " '%s' implements both)" % (t) ) if isinstance(t, pipeline.Pipeline): raise TypeError( "All intermediate steps of the chain should not be" " Pipelines" ) if ( estimator is not None and estimator != "passthrough" and not hasattr(estimator, "fit") ): raise TypeError( "Last step of Pipeline should implement fit or be " "the string 'passthrough'. '%s' (type %s) doesn't" % (estimator, type(estimator)) ) def _iter( self, with_final=True, filter_passthrough=True, filter_resample=True ): """Generate (idx, (name, trans)) tuples from self.steps. When `filter_passthrough` is `True`, 'passthrough' and None transformers are filtered out. When `filter_resample` is `True`, estimator with a method `fit_resample` are filtered out. """ it = super()._iter(with_final, filter_passthrough) if filter_resample: return filter(lambda x: not hasattr(x[-1], "fit_resample"), it) else: return it # Estimator interface def _fit(self, X, y=None, **fit_params): self.steps = list(self.steps) self._validate_steps() # Setup the memory memory = check_memory(self.memory) fit_transform_one_cached = memory.cache(pipeline._fit_transform_one) fit_resample_one_cached = memory.cache(_fit_resample_one) fit_params_steps = { name: {} for name, step in self.steps if step is not None } for pname, pval in fit_params.items(): if '__' not in pname: raise ValueError( "Pipeline.fit does not accept the {} parameter. " "You can pass parameters to specific steps of your " "pipeline using the stepname__parameter format, e.g. " "`Pipeline.fit(X, y, logisticregression__sample_weight" "=sample_weight)`.".format(pname)) step, param = pname.split("__", 1) fit_params_steps[step][param] = pval for (step_idx, name, transformer) in self._iter(with_final=False, filter_passthrough=False, filter_resample=False): if (transformer is None or transformer == 'passthrough'): with _print_elapsed_time('Pipeline', self._log_message(step_idx)): continue try: # joblib >= 0.12 mem = memory.location except AttributeError: mem = memory.cachedir finally: cloned_transformer = clone(transformer) if mem else transformer # Fit or load from cache the current transfomer if hasattr(cloned_transformer, "transform") or hasattr( cloned_transformer, "fit_transform" ): X, fitted_transformer = fit_transform_one_cached( cloned_transformer, X, y, None, message_clsname='Pipeline', message=self._log_message(step_idx), **fit_params_steps[name] ) elif hasattr(cloned_transformer, "fit_resample"): X, y, fitted_transformer = fit_resample_one_cached( cloned_transformer, X, y, message_clsname='Pipeline', message=self._log_message(step_idx), **fit_params_steps[name] ) # Replace the transformer of the step with the fitted # transformer. This is necessary when loading the transformer # from the cache. self.steps[step_idx] = (name, fitted_transformer) if self._final_estimator == "passthrough": return X, y, {} return X, y, fit_params_steps[self.steps[-1][0]] def fit(self, X, y=None, **fit_params): """Fit the model. Fit all the transforms/samplers one after the other and transform/sample the data, then fit the transformed/sampled data using the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of str -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- self : Pipeline This estimator. """ Xt, yt, fit_params = self._fit(X, y, **fit_params) with _print_elapsed_time('Pipeline', self._log_message(len(self.steps) - 1)): if self._final_estimator != "passthrough": self._final_estimator.fit(Xt, yt, **fit_params) return self def fit_transform(self, X, y=None, **fit_params): """Fit the model and transform with the final estimator. Fits all the transformers/samplers one after the other and transform/sample the data, then uses fit_transform on transformed data with the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- Xt : array-like of shape (n_samples, n_transformed_features) Transformed samples. """ last_step = self._final_estimator Xt, yt, fit_params = self._fit(X, y, **fit_params) with _print_elapsed_time('Pipeline', self._log_message(len(self.steps) - 1)): if last_step == "passthrough": return Xt elif hasattr(last_step, "fit_transform"): return last_step.fit_transform(Xt, yt, **fit_params) else: return last_step.fit(Xt, yt, **fit_params).transform(Xt) def fit_resample(self, X, y=None, **fit_params): """Fit the model and sample with the final estimator. Fits all the transformers/samplers one after the other and transform/sample the data, then uses fit_resample on transformed data with the final estimator. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- Xt : array-like of shape (n_samples, n_transformed_features) Transformed samples. yt : array-like of shape (n_samples, n_transformed_features) Transformed target. """ last_step = self._final_estimator Xt, yt, fit_params = self._fit(X, y, **fit_params) with _print_elapsed_time('Pipeline', self._log_message(len(self.steps) - 1)): if last_step == "passthrough": return Xt elif hasattr(last_step, "fit_resample"): return last_step.fit_resample(Xt, yt, **fit_params) @if_delegate_has_method(delegate="_final_estimator") def fit_predict(self, X, y=None, **fit_params): """Apply `fit_predict` of last step in pipeline after transforms. Applies fit_transforms of a pipeline to the data, followed by the fit_predict method of the final estimator in the pipeline. Valid only if the final estimator implements fit_predict. Parameters ---------- X : iterable Training data. Must fulfill input requirements of first step of the pipeline. y : iterable, default=None Training targets. Must fulfill label requirements for all steps of the pipeline. **fit_params : dict of string -> object Parameters passed to the ``fit`` method of each step, where each parameter name is prefixed such that parameter ``p`` for step ``s`` has key ``s__p``. Returns ------- y_pred : ndarray of shape (n_samples,) The predicted target. """ Xt, yt, fit_params = self._fit(X, y, **fit_params) with _print_elapsed_time('Pipeline', self._log_message(len(self.steps) - 1)): y_pred = self.steps[-1][-1].fit_predict(Xt, yt, **fit_params) return y_pred def _fit_resample_one(sampler, X, y, message_clsname='', message=None, **fit_params): with _print_elapsed_time(message_clsname, message): X_res, y_res = sampler.fit_resample(X, y, **fit_params) return X_res, y_res, sampler def make_pipeline(*steps, **kwargs): """Construct a Pipeline from the given estimators. This is a shorthand for the Pipeline constructor; it does not require, and does not permit, naming the estimators. Instead, their names will be set to the lowercase of their types automatically. Parameters ---------- *steps : list of estimators A list of estimators. memory : None, str or object with the joblib.Memory interface, default=None Used to cache the fitted transformers of the pipeline. By default, no caching is performed. If a string is given, it is the path to the caching directory. Enabling caching triggers a clone of the transformers before fitting. Therefore, the transformer instance given to the pipeline cannot be inspected directly. Use the attribute ``named_steps`` or ``steps`` to inspect estimators within the pipeline. Caching the transformers is advantageous when fitting is time consuming. verbose : bool, default=False If True, the time elapsed while fitting each step will be printed as it is completed. Returns ------- p : Pipeline See Also -------- imblearn.pipeline.Pipeline : Class for creating a pipeline of transforms with a final estimator. Examples -------- >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.preprocessing import StandardScaler >>> make_pipeline(StandardScaler(), GaussianNB(priors=None)) ... # doctest: +NORMALIZE_WHITESPACE Pipeline(steps=[('standardscaler', StandardScaler()), ('gaussiannb', GaussianNB())]) """ memory = kwargs.pop("memory", None) verbose = kwargs.pop('verbose', False) if kwargs: raise TypeError( 'Unknown keyword arguments: "{}"'.format(list(kwargs.keys())[0]) ) return Pipeline( pipeline._name_estimators(steps), memory=memory, verbose=verbose )
false
true
f7180d77b8c3f9bb8f6b2d45b2d1f43aa01a1d41
673
py
Python
net/wyun/tests/basic/test_basicfunction.py
michaelyin/im2markup-prep
0613e4f77f1b50084a85e5c0b1511c9ae007211d
[ "Apache-2.0" ]
3
2018-04-19T13:51:33.000Z
2020-10-04T12:35:50.000Z
net/wyun/tests/basic/test_basicfunction.py
michaelyin/im2markup-prep
0613e4f77f1b50084a85e5c0b1511c9ae007211d
[ "Apache-2.0" ]
null
null
null
net/wyun/tests/basic/test_basicfunction.py
michaelyin/im2markup-prep
0613e4f77f1b50084a85e5c0b1511c9ae007211d
[ "Apache-2.0" ]
1
2018-11-22T08:44:11.000Z
2018-11-22T08:44:11.000Z
import unittest from net.wyun.mer.basicfunction import BasicFunction class TestBasicFunction(unittest.TestCase): def setUp(self): self.func = BasicFunction() def test_1(self): self.assertTrue(True) def test_2(self): self.assertTrue(True) def test_3(self): self.assertEqual(self.func.state, 0) def test_4(self): self.func.increment_state() self.assertEqual(self.func.state, 1) def test_5(self): self.func.increment_state() self.func.increment_state() self.func.clear_state() self.assertEqual(self.func.state, 0) if __name__ == '__main__': unittest.main()
20.393939
52
0.649331
import unittest from net.wyun.mer.basicfunction import BasicFunction class TestBasicFunction(unittest.TestCase): def setUp(self): self.func = BasicFunction() def test_1(self): self.assertTrue(True) def test_2(self): self.assertTrue(True) def test_3(self): self.assertEqual(self.func.state, 0) def test_4(self): self.func.increment_state() self.assertEqual(self.func.state, 1) def test_5(self): self.func.increment_state() self.func.increment_state() self.func.clear_state() self.assertEqual(self.func.state, 0) if __name__ == '__main__': unittest.main()
true
true
f7180f9594e73d237384205187769766c8cda637
13,033
py
Python
google-cloud-sdk/lib/surface/compute/ssh.py
bopopescu/Social-Lite
ee05d6a7431c36ff582c8d6b58bb20a8c5f550bf
[ "Apache-2.0" ]
null
null
null
google-cloud-sdk/lib/surface/compute/ssh.py
bopopescu/Social-Lite
ee05d6a7431c36ff582c8d6b58bb20a8c5f550bf
[ "Apache-2.0" ]
4
2020-07-21T12:51:46.000Z
2022-01-22T10:29:25.000Z
google-cloud-sdk/lib/surface/compute/ssh.py
bopopescu/Social-Lite
ee05d6a7431c36ff582c8d6b58bb20a8c5f550bf
[ "Apache-2.0" ]
1
2020-07-25T18:17:57.000Z
2020-07-25T18:17:57.000Z
# -*- coding: utf-8 -*- # # Copyright 2014 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implements the command for SSHing into an instance.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import argparse import sys from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.compute import completers from googlecloudsdk.command_lib.compute import flags from googlecloudsdk.command_lib.compute import iap_tunnel from googlecloudsdk.command_lib.compute import scope as compute_scope from googlecloudsdk.command_lib.compute import ssh_utils from googlecloudsdk.command_lib.compute.instances import flags as instance_flags from googlecloudsdk.command_lib.util.ssh import containers from googlecloudsdk.command_lib.util.ssh import ssh from googlecloudsdk.core import log from googlecloudsdk.core.util import retry def AddCommandArg(parser): parser.add_argument( '--command', help="""\ A command to run on the virtual machine. Runs the command on the target instance and then exits. """) def AddSSHArgs(parser): """Additional flags and positional args to be passed to *ssh(1)*.""" parser.add_argument( '--ssh-flag', action='append', help="""\ Additional flags to be passed to *ssh(1)*. It is recommended that flags be passed using an assignment operator and quotes. This flag will replace occurences of ``%USER%'' and ``%INSTANCE%'' with their dereferenced values. Example: $ {command} example-instance --zone=us-central1-a --ssh-flag="-vvv" --ssh-flag="-L 80:%INSTANCE%:80" is equivalent to passing the flags ``--vvv'' and ``-L 80:162.222.181.197:80'' to *ssh(1)* if the external IP address of 'example-instance' is 162.222.181.197. If connecting to the instance's external IP, then %INSTANCE% is replaced with that, otherwise it is replaced with the internal IP. """) parser.add_argument( 'user_host', completer=completers.InstancesCompleter, metavar='[USER@]INSTANCE', help="""\ Specifies the instance to SSH into. ``USER'' specifies the username with which to SSH. If omitted, the user login name is used. If using OS Login, USER will be replaced by the OS Login user. ``INSTANCE'' specifies the name of the virtual machine instance to SSH into. """) parser.add_argument( 'ssh_args', nargs=argparse.REMAINDER, help="""\ Flags and positionals passed to the underlying ssh implementation. """, example="""\ $ {command} example-instance --zone=us-central1-a -- -vvv -L 80:%INSTANCE%:80 """) def AddContainerArg(parser): parser.add_argument( '--container', help="""\ The name or ID of a container inside of the virtual machine instance to connect to. This only applies to virtual machines that are using a Google Container-Optimized virtual machine image. For more information, see [](https://cloud.google.com/compute/docs/containers). """) def AddInternalIPArg(group): group.add_argument( '--internal-ip', default=False, action='store_true', help="""\ Connect to instances using their internal IP addresses rather than their external IP addresses. Use this to connect from one instance to another on the same VPC network, over a VPN connection, or between two peered VPC networks. For this connection to work, you must configure your networks and firewall to allow SSH connections to the internal IP address of the instance to which you want to connect. To learn how to use this flag, see [](https://cloud.google.com/compute/docs/instances/connecting-advanced#sshbetweeninstances). """) @base.ReleaseTracks(base.ReleaseTrack.GA) class Ssh(base.Command): """SSH into a virtual machine instance.""" category = base.TOOLS_CATEGORY @staticmethod def Args(parser): """Set up arguments for this command. Args: parser: An argparse.ArgumentParser. """ ssh_utils.BaseSSHCLIHelper.Args(parser) AddCommandArg(parser) AddSSHArgs(parser) AddContainerArg(parser) flags.AddZoneFlag( parser, resource_type='instance', operation_type='connect to') routing_group = parser.add_mutually_exclusive_group() AddInternalIPArg(routing_group) iap_tunnel.AddSshTunnelArgs(parser, routing_group) def Run(self, args): """See ssh_utils.BaseSSHCLICommand.Run.""" holder = base_classes.ComputeApiHolder(self.ReleaseTrack()) client = holder.client ssh_helper = ssh_utils.BaseSSHCLIHelper() ssh_helper.Run(args) user, instance_name = ssh_utils.GetUserAndInstance(args.user_host) instance_ref = instance_flags.SSH_INSTANCE_RESOLVER.ResolveResources( [instance_name], compute_scope.ScopeEnum.ZONE, args.zone, holder.resources, scope_lister=instance_flags.GetInstanceZoneScopeLister(client))[0] instance = ssh_helper.GetInstance(client, instance_ref) project = ssh_helper.GetProject(client, instance_ref.project) host_keys = ssh_helper.GetHostKeysFromGuestAttributes(client, instance_ref, instance, project) if not host_keys and host_keys is not None: # Only display this message if there was an attempt to retrieve # host keys but it was unsuccessful. If Guest Attributes is disabled, # there is no attempt to retrieve host keys. log.status.Print('Unable to retrieve host keys from instance metadata. ' 'Continuing.') expiration, expiration_micros = ssh_utils.GetSSHKeyExpirationFromArgs(args) if args.plain: use_oslogin = False else: public_key = ssh_helper.keys.GetPublicKey().ToEntry(include_comment=True) # If there is an '@' symbol in the user_host arg, the user is requesting # to connect as a specific user. This may get overridden by OS Login. username_requested = '@' in args.user_host user, use_oslogin = ssh.CheckForOsloginAndGetUser( instance, project, user, public_key, expiration_micros, self.ReleaseTrack(), username_requested=username_requested) iap_tunnel_args = iap_tunnel.SshTunnelArgs.FromArgs( args, self.ReleaseTrack(), instance_ref, ssh_utils.GetExternalInterface(instance, no_raise=True)) internal_address = ssh_utils.GetInternalIPAddress(instance) if iap_tunnel_args: # IAP Tunnel only uses instance_address for the purpose of --ssh-flag # substitution. In this case, dest_addr doesn't do much, it just matches # against entries in the user's ssh_config file. It's best to use # something unique to avoid false positive matches, thus we use # HostKeyAlias. instance_address = internal_address dest_addr = ssh_utils.HostKeyAlias(instance) elif args.internal_ip: instance_address = internal_address dest_addr = instance_address else: instance_address = ssh_utils.GetExternalIPAddress(instance) dest_addr = instance_address remote = ssh.Remote(dest_addr, user) identity_file = None options = None if not args.plain: identity_file = ssh_helper.keys.key_file options = ssh_helper.GetConfig(ssh_utils.HostKeyAlias(instance), args.strict_host_key_checking, host_keys_to_add=host_keys) extra_flags = ssh.ParseAndSubstituteSSHFlags(args, remote, instance_address, internal_address) remainder = [] if args.ssh_args: remainder.extend(args.ssh_args) # Transform args.command into arg list or None if no command command_list = args.command.split(' ') if args.command else None tty = containers.GetTty(args.container, command_list) remote_command = containers.GetRemoteCommand(args.container, command_list) # Do not include default port since that will prevent users from # specifying a custom port (b/121998342). ssh_cmd_args = {'remote': remote, 'identity_file': identity_file, 'options': options, 'extra_flags': extra_flags, 'remote_command': remote_command, 'tty': tty, 'iap_tunnel_args': iap_tunnel_args, 'remainder': remainder} cmd = ssh.SSHCommand(**ssh_cmd_args) if args.dry_run: log.out.Print(' '.join(cmd.Build(ssh_helper.env))) return if args.plain or use_oslogin: keys_newly_added = False else: keys_newly_added = ssh_helper.EnsureSSHKeyExists( client, remote.user, instance, project, expiration=expiration) if keys_newly_added: poller = ssh_utils.CreateSSHPoller(remote, identity_file, options, iap_tunnel_args, extra_flags=extra_flags) log.status.Print('Waiting for SSH key to propagate.') # TODO(b/35355795): Don't force_connect try: poller.Poll(ssh_helper.env, force_connect=True) except retry.WaitException: raise ssh_utils.NetworkError() if args.internal_ip: ssh_helper.PreliminarilyVerifyInstance(instance.id, remote, identity_file, options) # Errors from SSH itself result in an ssh.CommandError being raised return_code = cmd.Run(ssh_helper.env, force_connect=True) if return_code: # This is the return code of the remote command. Problems with SSH itself # will result in ssh.CommandError being raised above. sys.exit(return_code) @base.ReleaseTracks(base.ReleaseTrack.BETA) class SshBeta(Ssh): """SSH into a virtual machine instance (Beta).""" @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class SshAlpha(SshBeta): """SSH into a virtual machine instance (Alpha).""" def DetailedHelp(): """Construct help text based on the command release track.""" detailed_help = { 'brief': 'SSH into a virtual machine instance', 'DESCRIPTION': """\ *{command}* is a thin wrapper around the *ssh(1)* command that takes care of authentication and the translation of the instance name into an IP address. Note, this command does not work when connecting to Windows VMs. To connect to a Windows instance using a command-line method, refer to this guide: https://cloud.google.com/compute/docs/instances/connecting-to-instance#windows_cli The default network comes preconfigured to allow ssh access to all VMs. If the default network was edited, or if not using the default network, you may need to explicitly enable ssh access by adding a firewall-rule: $ gcloud compute firewall-rules create --network=NETWORK \ default-allow-ssh --allow=tcp:22 {command} ensures that the user's public SSH key is present in the project's metadata. If the user does not have a public SSH key, one is generated using *ssh-keygen(1)* (if the `--quiet` flag is given, the generated key will have an empty passphrase). """, 'EXAMPLES': """\ To SSH into 'example-instance' in zone ``us-central1-a'', run: $ {command} example-instance --zone=us-central1-a You can also run a command on the virtual machine. For example, to get a snapshot of the guest's process tree, run: $ {command} example-instance --zone=us-central1-a --command="ps -ejH" If you are using the Google Container-Optimized virtual machine image, you can SSH into one of your containers with: $ {command} example-instance --zone=us-central1-a --container=CONTAINER You can limit the allowed time to ssh. For example, to allow a key to be used through 2019: $ {command} example-instance --zone=us-central1-a --ssh-key-expiration="2020-01-01T00:00:00:00Z" Or alternatively, allow access for the next two minutes: $ {command} example-instance --zone=us-central1-a --ssh-key-expire-after=2m """, } return detailed_help Ssh.detailed_help = DetailedHelp()
38.559172
108
0.682115
from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import argparse import sys from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.compute import completers from googlecloudsdk.command_lib.compute import flags from googlecloudsdk.command_lib.compute import iap_tunnel from googlecloudsdk.command_lib.compute import scope as compute_scope from googlecloudsdk.command_lib.compute import ssh_utils from googlecloudsdk.command_lib.compute.instances import flags as instance_flags from googlecloudsdk.command_lib.util.ssh import containers from googlecloudsdk.command_lib.util.ssh import ssh from googlecloudsdk.core import log from googlecloudsdk.core.util import retry def AddCommandArg(parser): parser.add_argument( '--command', help="""\ A command to run on the virtual machine. Runs the command on the target instance and then exits. """) def AddSSHArgs(parser): parser.add_argument( '--ssh-flag', action='append', help="""\ Additional flags to be passed to *ssh(1)*. It is recommended that flags be passed using an assignment operator and quotes. This flag will replace occurences of ``%USER%'' and ``%INSTANCE%'' with their dereferenced values. Example: $ {command} example-instance --zone=us-central1-a --ssh-flag="-vvv" --ssh-flag="-L 80:%INSTANCE%:80" is equivalent to passing the flags ``--vvv'' and ``-L 80:162.222.181.197:80'' to *ssh(1)* if the external IP address of 'example-instance' is 162.222.181.197. If connecting to the instance's external IP, then %INSTANCE% is replaced with that, otherwise it is replaced with the internal IP. """) parser.add_argument( 'user_host', completer=completers.InstancesCompleter, metavar='[USER@]INSTANCE', help="""\ Specifies the instance to SSH into. ``USER'' specifies the username with which to SSH. If omitted, the user login name is used. If using OS Login, USER will be replaced by the OS Login user. ``INSTANCE'' specifies the name of the virtual machine instance to SSH into. """) parser.add_argument( 'ssh_args', nargs=argparse.REMAINDER, help="""\ Flags and positionals passed to the underlying ssh implementation. """, example="""\ $ {command} example-instance --zone=us-central1-a -- -vvv -L 80:%INSTANCE%:80 """) def AddContainerArg(parser): parser.add_argument( '--container', help="""\ The name or ID of a container inside of the virtual machine instance to connect to. This only applies to virtual machines that are using a Google Container-Optimized virtual machine image. For more information, see [](https://cloud.google.com/compute/docs/containers). """) def AddInternalIPArg(group): group.add_argument( '--internal-ip', default=False, action='store_true', help="""\ Connect to instances using their internal IP addresses rather than their external IP addresses. Use this to connect from one instance to another on the same VPC network, over a VPN connection, or between two peered VPC networks. For this connection to work, you must configure your networks and firewall to allow SSH connections to the internal IP address of the instance to which you want to connect. To learn how to use this flag, see [](https://cloud.google.com/compute/docs/instances/connecting-advanced#sshbetweeninstances). """) @base.ReleaseTracks(base.ReleaseTrack.GA) class Ssh(base.Command): category = base.TOOLS_CATEGORY @staticmethod def Args(parser): ssh_utils.BaseSSHCLIHelper.Args(parser) AddCommandArg(parser) AddSSHArgs(parser) AddContainerArg(parser) flags.AddZoneFlag( parser, resource_type='instance', operation_type='connect to') routing_group = parser.add_mutually_exclusive_group() AddInternalIPArg(routing_group) iap_tunnel.AddSshTunnelArgs(parser, routing_group) def Run(self, args): holder = base_classes.ComputeApiHolder(self.ReleaseTrack()) client = holder.client ssh_helper = ssh_utils.BaseSSHCLIHelper() ssh_helper.Run(args) user, instance_name = ssh_utils.GetUserAndInstance(args.user_host) instance_ref = instance_flags.SSH_INSTANCE_RESOLVER.ResolveResources( [instance_name], compute_scope.ScopeEnum.ZONE, args.zone, holder.resources, scope_lister=instance_flags.GetInstanceZoneScopeLister(client))[0] instance = ssh_helper.GetInstance(client, instance_ref) project = ssh_helper.GetProject(client, instance_ref.project) host_keys = ssh_helper.GetHostKeysFromGuestAttributes(client, instance_ref, instance, project) if not host_keys and host_keys is not None: # Only display this message if there was an attempt to retrieve # host keys but it was unsuccessful. If Guest Attributes is disabled, # there is no attempt to retrieve host keys. log.status.Print('Unable to retrieve host keys from instance metadata. ' 'Continuing.') expiration, expiration_micros = ssh_utils.GetSSHKeyExpirationFromArgs(args) if args.plain: use_oslogin = False else: public_key = ssh_helper.keys.GetPublicKey().ToEntry(include_comment=True) # If there is an '@' symbol in the user_host arg, the user is requesting # to connect as a specific user. This may get overridden by OS Login. username_requested = '@' in args.user_host user, use_oslogin = ssh.CheckForOsloginAndGetUser( instance, project, user, public_key, expiration_micros, self.ReleaseTrack(), username_requested=username_requested) iap_tunnel_args = iap_tunnel.SshTunnelArgs.FromArgs( args, self.ReleaseTrack(), instance_ref, ssh_utils.GetExternalInterface(instance, no_raise=True)) internal_address = ssh_utils.GetInternalIPAddress(instance) if iap_tunnel_args: # IAP Tunnel only uses instance_address for the purpose of --ssh-flag # substitution. In this case, dest_addr doesn't do much, it just matches instance_address = internal_address dest_addr = ssh_utils.HostKeyAlias(instance) elif args.internal_ip: instance_address = internal_address dest_addr = instance_address else: instance_address = ssh_utils.GetExternalIPAddress(instance) dest_addr = instance_address remote = ssh.Remote(dest_addr, user) identity_file = None options = None if not args.plain: identity_file = ssh_helper.keys.key_file options = ssh_helper.GetConfig(ssh_utils.HostKeyAlias(instance), args.strict_host_key_checking, host_keys_to_add=host_keys) extra_flags = ssh.ParseAndSubstituteSSHFlags(args, remote, instance_address, internal_address) remainder = [] if args.ssh_args: remainder.extend(args.ssh_args) command_list = args.command.split(' ') if args.command else None tty = containers.GetTty(args.container, command_list) remote_command = containers.GetRemoteCommand(args.container, command_list) ssh_cmd_args = {'remote': remote, 'identity_file': identity_file, 'options': options, 'extra_flags': extra_flags, 'remote_command': remote_command, 'tty': tty, 'iap_tunnel_args': iap_tunnel_args, 'remainder': remainder} cmd = ssh.SSHCommand(**ssh_cmd_args) if args.dry_run: log.out.Print(' '.join(cmd.Build(ssh_helper.env))) return if args.plain or use_oslogin: keys_newly_added = False else: keys_newly_added = ssh_helper.EnsureSSHKeyExists( client, remote.user, instance, project, expiration=expiration) if keys_newly_added: poller = ssh_utils.CreateSSHPoller(remote, identity_file, options, iap_tunnel_args, extra_flags=extra_flags) log.status.Print('Waiting for SSH key to propagate.') try: poller.Poll(ssh_helper.env, force_connect=True) except retry.WaitException: raise ssh_utils.NetworkError() if args.internal_ip: ssh_helper.PreliminarilyVerifyInstance(instance.id, remote, identity_file, options) # Errors from SSH itself result in an ssh.CommandError being raised return_code = cmd.Run(ssh_helper.env, force_connect=True) if return_code: # This is the return code of the remote command. Problems with SSH itself # will result in ssh.CommandError being raised above. sys.exit(return_code) @base.ReleaseTracks(base.ReleaseTrack.BETA) class SshBeta(Ssh): @base.ReleaseTracks(base.ReleaseTrack.ALPHA) class SshAlpha(SshBeta): def DetailedHelp(): detailed_help = { 'brief': 'SSH into a virtual machine instance', 'DESCRIPTION': """\ *{command}* is a thin wrapper around the *ssh(1)* command that takes care of authentication and the translation of the instance name into an IP address. Note, this command does not work when connecting to Windows VMs. To connect to a Windows instance using a command-line method, refer to this guide: https://cloud.google.com/compute/docs/instances/connecting-to-instance#windows_cli The default network comes preconfigured to allow ssh access to all VMs. If the default network was edited, or if not using the default network, you may need to explicitly enable ssh access by adding a firewall-rule: $ gcloud compute firewall-rules create --network=NETWORK \ default-allow-ssh --allow=tcp:22 {command} ensures that the user's public SSH key is present in the project's metadata. If the user does not have a public SSH key, one is generated using *ssh-keygen(1)* (if the `--quiet` flag is given, the generated key will have an empty passphrase). """, 'EXAMPLES': """\ To SSH into 'example-instance' in zone ``us-central1-a'', run: $ {command} example-instance --zone=us-central1-a You can also run a command on the virtual machine. For example, to get a snapshot of the guest's process tree, run: $ {command} example-instance --zone=us-central1-a --command="ps -ejH" If you are using the Google Container-Optimized virtual machine image, you can SSH into one of your containers with: $ {command} example-instance --zone=us-central1-a --container=CONTAINER You can limit the allowed time to ssh. For example, to allow a key to be used through 2019: $ {command} example-instance --zone=us-central1-a --ssh-key-expiration="2020-01-01T00:00:00:00Z" Or alternatively, allow access for the next two minutes: $ {command} example-instance --zone=us-central1-a --ssh-key-expire-after=2m """, } return detailed_help Ssh.detailed_help = DetailedHelp()
true
true
f7180fdca7de8d265e0d9027890060eff6ecc433
3,563
py
Python
playground/algorithms/ddpg.py
brandontrabucco/playground
069be961aaecb45d75f12f4a71cfa65d7152ea8a
[ "MIT" ]
3
2019-12-06T19:22:22.000Z
2020-01-20T01:57:26.000Z
playground/algorithms/ddpg.py
brandontrabucco/playground
069be961aaecb45d75f12f4a71cfa65d7152ea8a
[ "MIT" ]
null
null
null
playground/algorithms/ddpg.py
brandontrabucco/playground
069be961aaecb45d75f12f4a71cfa65d7152ea8a
[ "MIT" ]
null
null
null
"""Author: Brandon Trabucco, Copyright 2019, MIT License""" from playground.algorithms.algorithm import Algorithm import tensorflow as tf class DDPG(Algorithm): def __init__( self, policy, target_policy, qf, target_qf, replay_buffer, reward_scale=1.0, discount=0.99, observation_key="observation", batch_size=32, update_every=1, update_after=0, logger=None, logging_prefix="ddpg/" ): # train a policy using the deep deterministic policy gradient Algorithm.__init__( self, replay_buffer, batch_size=batch_size, update_every=update_every, update_after=update_after, logger=logger, logging_prefix=logging_prefix) # each neural network is probabilistic self.policy = policy self.target_policy = target_policy self.qf = qf self.target_qf = target_qf # select into the observation dictionary self.observation_key = observation_key # control some parameters that are important for ddpg self.reward_scale = reward_scale self.discount = discount def update_algorithm( self, observations, actions, rewards, next_observations, terminals ): # select from the observation dictionary observations = observations[self.observation_key] next_observations = next_observations[self.observation_key] # build a tape to collect gradients from the policy and critics with tf.GradientTape(persistent=True) as tape: mean_actions, log_pi = self.policy.expected_value(observations) next_mean_actions, next_log_pi = self.target_policy.expected_value( next_observations) # build the q function target value inputs = tf.concat([next_observations, next_mean_actions], -1) target_qf_value = self.target_qf(inputs)[..., 0] self.record("target_qf_value", tf.reduce_mean(target_qf_value).numpy()) qf_targets = tf.stop_gradient( self.reward_scale * rewards + terminals * self.discount * ( target_qf_value)) self.record("qf_targets", tf.reduce_mean(qf_targets).numpy()) # build the q function loss inputs = tf.concat([observations, actions], -1) qf_value = self.qf(inputs)[..., 0] self.record("qf_value", tf.reduce_mean(qf_value).numpy()) qf_loss = tf.reduce_mean(tf.keras.losses.logcosh(qf_targets, qf_value)) self.record("qf_loss", qf_loss.numpy()) # build the policy loss inputs = tf.concat([observations, mean_actions], -1) policy_qf_value = self.qf(inputs)[..., 0] self.record("policy_qf_value", tf.reduce_mean(policy_qf_value).numpy()) policy_loss = -tf.reduce_mean(policy_qf_value) self.record("policy_loss", policy_loss.numpy()) # back prop gradients self.policy.apply_gradients( self.policy.compute_gradients(policy_loss, tape)) self.qf.apply_gradients( self.qf.compute_gradients(qf_loss, tape)) # soft update target parameters self.target_policy.soft_update(self.policy.get_weights()) self.target_qf.soft_update(self.qf.get_weights())
35.989899
83
0.609879
from playground.algorithms.algorithm import Algorithm import tensorflow as tf class DDPG(Algorithm): def __init__( self, policy, target_policy, qf, target_qf, replay_buffer, reward_scale=1.0, discount=0.99, observation_key="observation", batch_size=32, update_every=1, update_after=0, logger=None, logging_prefix="ddpg/" ): Algorithm.__init__( self, replay_buffer, batch_size=batch_size, update_every=update_every, update_after=update_after, logger=logger, logging_prefix=logging_prefix) self.policy = policy self.target_policy = target_policy self.qf = qf self.target_qf = target_qf self.observation_key = observation_key self.reward_scale = reward_scale self.discount = discount def update_algorithm( self, observations, actions, rewards, next_observations, terminals ): observations = observations[self.observation_key] next_observations = next_observations[self.observation_key] with tf.GradientTape(persistent=True) as tape: mean_actions, log_pi = self.policy.expected_value(observations) next_mean_actions, next_log_pi = self.target_policy.expected_value( next_observations) inputs = tf.concat([next_observations, next_mean_actions], -1) target_qf_value = self.target_qf(inputs)[..., 0] self.record("target_qf_value", tf.reduce_mean(target_qf_value).numpy()) qf_targets = tf.stop_gradient( self.reward_scale * rewards + terminals * self.discount * ( target_qf_value)) self.record("qf_targets", tf.reduce_mean(qf_targets).numpy()) inputs = tf.concat([observations, actions], -1) qf_value = self.qf(inputs)[..., 0] self.record("qf_value", tf.reduce_mean(qf_value).numpy()) qf_loss = tf.reduce_mean(tf.keras.losses.logcosh(qf_targets, qf_value)) self.record("qf_loss", qf_loss.numpy()) inputs = tf.concat([observations, mean_actions], -1) policy_qf_value = self.qf(inputs)[..., 0] self.record("policy_qf_value", tf.reduce_mean(policy_qf_value).numpy()) policy_loss = -tf.reduce_mean(policy_qf_value) self.record("policy_loss", policy_loss.numpy()) self.policy.apply_gradients( self.policy.compute_gradients(policy_loss, tape)) self.qf.apply_gradients( self.qf.compute_gradients(qf_loss, tape)) self.target_policy.soft_update(self.policy.get_weights()) self.target_qf.soft_update(self.qf.get_weights())
true
true
f71810217649e9ce7c57c78566cb40789c548173
3,089
py
Python
google/ads/google_ads/v0/proto/resources/gender_view_pb2.py
jwygoda/google-ads-python
863892b533240cb45269d9c2cceec47e2c5a8b68
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v0/proto/resources/gender_view_pb2.py
jwygoda/google-ads-python
863892b533240cb45269d9c2cceec47e2c5a8b68
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v0/proto/resources/gender_view_pb2.py
jwygoda/google-ads-python
863892b533240cb45269d9c2cceec47e2c5a8b68
[ "Apache-2.0" ]
null
null
null
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v0/proto/resources/gender_view.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v0/proto/resources/gender_view.proto', package='google.ads.googleads.v0.resources', syntax='proto3', serialized_options=_b('\n%com.google.ads.googleads.v0.resourcesB\017GenderViewProtoP\001ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v0/resources;resources\242\002\003GAA\252\002!Google.Ads.GoogleAds.V0.Resources\312\002!Google\\Ads\\GoogleAds\\V0\\Resources\352\002%Google::Ads::GoogleAds::V0::Resources'), serialized_pb=_b('\n9google/ads/googleads_v0/proto/resources/gender_view.proto\x12!google.ads.googleads.v0.resources\"#\n\nGenderView\x12\x15\n\rresource_name\x18\x01 \x01(\tB\xfc\x01\n%com.google.ads.googleads.v0.resourcesB\x0fGenderViewProtoP\x01ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v0/resources;resources\xa2\x02\x03GAA\xaa\x02!Google.Ads.GoogleAds.V0.Resources\xca\x02!Google\\Ads\\GoogleAds\\V0\\Resources\xea\x02%Google::Ads::GoogleAds::V0::Resourcesb\x06proto3') ) _GENDERVIEW = _descriptor.Descriptor( name='GenderView', full_name='google.ads.googleads.v0.resources.GenderView', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v0.resources.GenderView.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=96, serialized_end=131, ) DESCRIPTOR.message_types_by_name['GenderView'] = _GENDERVIEW _sym_db.RegisterFileDescriptor(DESCRIPTOR) GenderView = _reflection.GeneratedProtocolMessageType('GenderView', (_message.Message,), dict( DESCRIPTOR = _GENDERVIEW, __module__ = 'google.ads.googleads_v0.proto.resources.gender_view_pb2' , __doc__ = """A gender view. Attributes: resource_name: The resource name of the gender view. Gender view resource names have the form: ``customers/{customer_id}/genderViews/{a d_group_id}_{criterion_id}`` """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v0.resources.GenderView) )) _sym_db.RegisterMessage(GenderView) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
38.135802
488
0.767886
import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v0/proto/resources/gender_view.proto', package='google.ads.googleads.v0.resources', syntax='proto3', serialized_options=_b('\n%com.google.ads.googleads.v0.resourcesB\017GenderViewProtoP\001ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v0/resources;resources\242\002\003GAA\252\002!Google.Ads.GoogleAds.V0.Resources\312\002!Google\\Ads\\GoogleAds\\V0\\Resources\352\002%Google::Ads::GoogleAds::V0::Resources'), serialized_pb=_b('\n9google/ads/googleads_v0/proto/resources/gender_view.proto\x12!google.ads.googleads.v0.resources\"#\n\nGenderView\x12\x15\n\rresource_name\x18\x01 \x01(\tB\xfc\x01\n%com.google.ads.googleads.v0.resourcesB\x0fGenderViewProtoP\x01ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v0/resources;resources\xa2\x02\x03GAA\xaa\x02!Google.Ads.GoogleAds.V0.Resources\xca\x02!Google\\Ads\\GoogleAds\\V0\\Resources\xea\x02%Google::Ads::GoogleAds::V0::Resourcesb\x06proto3') ) _GENDERVIEW = _descriptor.Descriptor( name='GenderView', full_name='google.ads.googleads.v0.resources.GenderView', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v0.resources.GenderView.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=96, serialized_end=131, ) DESCRIPTOR.message_types_by_name['GenderView'] = _GENDERVIEW _sym_db.RegisterFileDescriptor(DESCRIPTOR) GenderView = _reflection.GeneratedProtocolMessageType('GenderView', (_message.Message,), dict( DESCRIPTOR = _GENDERVIEW, __module__ = 'google.ads.googleads_v0.proto.resources.gender_view_pb2' , __doc__ = """A gender view. Attributes: resource_name: The resource name of the gender view. Gender view resource names have the form: ``customers/{customer_id}/genderViews/{a d_group_id}_{criterion_id}`` """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v0.resources.GenderView) )) _sym_db.RegisterMessage(GenderView) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
true
true
f71810c4ecead08a935a56fcd5fb6be0cdf8d125
130
py
Python
pythreshold/global_th/entropy/__init__.py
pedrogalher/pythreshold
135e42fb4be1ff4d4c52ea05daca84be1acaa0fc
[ "MIT" ]
null
null
null
pythreshold/global_th/entropy/__init__.py
pedrogalher/pythreshold
135e42fb4be1ff4d4c52ea05daca84be1acaa0fc
[ "MIT" ]
null
null
null
pythreshold/global_th/entropy/__init__.py
pedrogalher/pythreshold
135e42fb4be1ff4d4c52ea05daca84be1acaa0fc
[ "MIT" ]
null
null
null
from .pun import pun_threshold from .kapur import kapur_threshold, kapur_multithreshold from .johannsen import johannsen_threshold
43.333333
56
0.876923
from .pun import pun_threshold from .kapur import kapur_threshold, kapur_multithreshold from .johannsen import johannsen_threshold
true
true
f71811f3f0271780fcc16a9db631d5dee72d81ba
1,078
py
Python
src/python/pants/backend/codegen/jaxb/targets.py
stuhood/pants
107b8335a03482516f64aefa98aadf9f5278b2ee
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/codegen/jaxb/targets.py
stuhood/pants
107b8335a03482516f64aefa98aadf9f5278b2ee
[ "Apache-2.0" ]
null
null
null
src/python/pants/backend/codegen/jaxb/targets.py
stuhood/pants
107b8335a03482516f64aefa98aadf9f5278b2ee
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from pants.backend.jvm.rules.targets import COMMON_JVM_FIELDS from pants.engine.target import Sources, StringField, Target class JaxbJavaPackage(StringField): """Java package (com.company.package) in which to generate the output Java files. If unspecified, Pants guesses it from the file path leading to the schema (xsd) file. This guess is accurate only if the .xsd file is in a path like `.../com/company/package/schema.xsd`. Pants looks for packages that start with 'com', 'org', or 'net'. """ alias = "package" class JaxbLanguage(StringField): """The language to use, which currently can only be `java`.""" alias = "language" valid_choices = ("java",) default = "java" value: str class JaxbLibrary(Target): """A Java library generated from JAXB xsd files.""" alias = "jaxb_library" core_fields = (*COMMON_JVM_FIELDS, Sources, JaxbJavaPackage, JaxbLanguage) v1_only = True
31.705882
100
0.71243
from pants.backend.jvm.rules.targets import COMMON_JVM_FIELDS from pants.engine.target import Sources, StringField, Target class JaxbJavaPackage(StringField): alias = "package" class JaxbLanguage(StringField): alias = "language" valid_choices = ("java",) default = "java" value: str class JaxbLibrary(Target): alias = "jaxb_library" core_fields = (*COMMON_JVM_FIELDS, Sources, JaxbJavaPackage, JaxbLanguage) v1_only = True
true
true
f718134ad71e50e6db3ca760f1916747c1d91ee2
4,100
py
Python
tests/plot_time_space.py
folk85/gen_turb
4390938c4cefae334e95414f83b9c484991bff67
[ "MIT" ]
1
2020-09-10T07:42:29.000Z
2020-09-10T07:42:29.000Z
tests/plot_time_space.py
folk85/gen_turb
4390938c4cefae334e95414f83b9c484991bff67
[ "MIT" ]
null
null
null
tests/plot_time_space.py
folk85/gen_turb
4390938c4cefae334e95414f83b9c484991bff67
[ "MIT" ]
1
2019-08-08T20:08:49.000Z
2019-08-08T20:08:49.000Z
# -*- coding: utf-8 -*- import os import numpy as np import matplotlib as m import matplotlib.pyplot as plt from scipy.fftpack import * from plot_spectr import * def main_routine(): print(os.getcwd()) nfile = './store.dat' #Read the file by blocks to reduce required memory with open(nfile,'r') as f: nel = sum(1 for _ in f) f.close() #repeat for each timesteps nk = 64*64 *64 ntimes = nel / nk def get_nel(nfile): with open(nfile,'r') as f: nel = sum(1 for _ in f) f.close() return nel def plot_spectr(uin,vin,win): alpha = 1.339e0 L = 1.0e-1 sigma = 1.0e+1 # x,y,z = np.genfromtxt('tests/spectr.dat',unpack=True) # x,y,z = np.genfromtxt('../hita/spectrum.dat',unpack=True) # x1,y1,z1 = np.genfromtxt('../hita/spectrum_32.dat',unpack=True) uvel,vvel,wvel = np.genfromtxt('./store.dat',unpack=True) nk = int(round(np.size(uvel)**(1./3.))) nel = nk ufft = fftn(uvel.reshape(nk,nk,nk)) vfft = fftn(vvel.reshape(nk,nk,nk)) wfft = fftn(wvel.reshape(nk,nk,nk)) muu = ufft*np.conj(ufft) / nel**6 mvv = vfft*np.conj(vfft) / nel**6 mww = wfft*np.conj(wfft) / nel**6 # calc std umean = np.array([np.mean(uvel),np.mean(vvel),np.mean(wvel)]) std_i = np.array([np.std(uvel),np.std(vvel),np.std(wvel)]) sigma = np.sqrt(np.sum(std_i[:]**2)) print(std_i[0],np.sqrt(np.mean((uvel[:]-umean[0])**2)), sigma) dx = 10. k = np.arange(-nk//2,nk//2)*dx k = np.roll(k,nk//2) spectrum = np.zeros(nk) count = np.zeros(nk) # ?np.meshgrid(k,k,k) X,Y,Z = np.meshgrid(k,k,k) r = np.sqrt(X**2+Y**2+Z**2) #*dx # print(np.shape(r),r.min(),r.max(),k.max(),r[:,0,0]) for i,ki in enumerate(k[:nk//2]): t = np.where((r<=ki+dx/2)&(r>ki-dx/2)) spectrum[i] = np.sum(muu[t].real) + np.sum(mvv[t].real) + np.sum(mww[t].real) count[i] = np.size(t[0]) spectrum[i] *= 2.*np.pi*k[i]**2/dx**3/(count[i]+1.0e-30) font = {'family': 'Droid Sans', 'weight': 'normal', 'size': 12} m.rc('axes',linewidth=2) m.rc('font',**font) m.rc('lines',markeredgewidth=1.0) f,ax = plt.subplots() xf = np.linspace(np.log(k[1]/2),np.log(k[nk//2-1]*2.),100) xf = np.exp(xf) ax.loglog(xf,Ek(xf,alpha,L,sigma),c='g',lw=2) ax.loglog(k[:nk//2],spectrum[:nk//2],'bx-',lw=0.5,ms=8) # ax.loglog(x,y,'bx') # ax.loglog(x1,y1,'ro') ax.set_xlabel(u'$k, 1/м$',size='large') ax.set_ylabel(u'$E(k), м^3/с^2$',size='large') plt.grid() plt.tight_layout() plt.show() del(f) del(ax) plt.clf() Rij_x=(ufft*np.conj(ufft)) # compute velo. correlation tensor Rij_y=(vfft*np.conj(vfft)) Rij_z=(wfft*np.conj(wfft)) R1=ifftn(Rij_x)/np.std((uvel))**2/nel**3; R2=ifftn(Rij_y)/np.std((vvel))**2/nel**3; R3=ifftn(Rij_z)/np.std((wvel))**2/nel**3; NFFT=np.size(ufft,1) R11 = (R3[0,0,:]+R2[0,:,0]+R1[:,0,0])/3. # R11 = R11[:np.size(ufft)//2+1] R1_22 = (R1[0,:,0]+R3[0,:,0])/2.0e0 R2_22 = (R2[:,0,0]+R3[:,0,0])/2.0e0 R3_22 = (R1[0,0,:]+R2[0,0,:])/2.0e0 R22 = (R1_22+R2_22+R3_22)/3.0e0 # R22 = R22(1:size(u_fft)/2+1); Lx = 2.0*np.pi*1.0e-1 r = np.linspace(0,Lx,NFFT)/(Lx/2); l11 = np.trapz(np.real(R11[:NFFT//2+1]),dx=r[1]-r[0]) l22 = np.trapz(np.real(R22[:NFFT//2+1]),dx=r[1]-r[0]) print("Integral Length Scale Longitudal: %g"%(l11)) print("Integral Length Scale Tangent: %g"%(l22)) f,ax = plt.subplots(1) ax.plot(r[:NFFT//2+1],R11[:NFFT//2+1],marker='>',mfc='w',lw=2,label=u'$R_{11}$') ax.plot(r[:NFFT//2+1],R22[:NFFT//2+1],marker='s',markerfacecolor='w',lw=2,label=u'$R_{22}$') ax.plot(r[:NFFT//2],np.exp(-r[:NFFT//2]/l11)) ax.plot(r[:NFFT//2],1.e0+(1.0e0-R22[NFFT//2])*(np.exp(-r[:NFFT//2]/(l22-R22[NFFT//2]))-1.0e0)) plt.legend() plt.tight_layout() ax.set_xlabel(u'$r$') ax.set_ylabel(u'$R_{11}, R_{22}$') plt.grid() plt.show() return [k[:nk//2],spectrum[:nk//2],r[:NFFT//2+1],R11[:NFFT//2+1],R22[:NFFT//2+1]] def Ek(k,alpha=1.339,L=0.01,sigma=10.): tmp = (alpha * L * k) **2 tmp = sigma*sigma*L * tmp * tmp * 5.5e+1/ (27.0 * np.pi * (1.0 + tmp)**(1.7e+1/6.0e0)) return tmp if __name__ == '__main__': main_routine()
30.37037
96
0.580488
import os import numpy as np import matplotlib as m import matplotlib.pyplot as plt from scipy.fftpack import * from plot_spectr import * def main_routine(): print(os.getcwd()) nfile = './store.dat' with open(nfile,'r') as f: nel = sum(1 for _ in f) f.close() nk = 64*64 *64 ntimes = nel / nk def get_nel(nfile): with open(nfile,'r') as f: nel = sum(1 for _ in f) f.close() return nel def plot_spectr(uin,vin,win): alpha = 1.339e0 L = 1.0e-1 sigma = 1.0e+1 uvel,vvel,wvel = np.genfromtxt('./store.dat',unpack=True) nk = int(round(np.size(uvel)**(1./3.))) nel = nk ufft = fftn(uvel.reshape(nk,nk,nk)) vfft = fftn(vvel.reshape(nk,nk,nk)) wfft = fftn(wvel.reshape(nk,nk,nk)) muu = ufft*np.conj(ufft) / nel**6 mvv = vfft*np.conj(vfft) / nel**6 mww = wfft*np.conj(wfft) / nel**6 umean = np.array([np.mean(uvel),np.mean(vvel),np.mean(wvel)]) std_i = np.array([np.std(uvel),np.std(vvel),np.std(wvel)]) sigma = np.sqrt(np.sum(std_i[:]**2)) print(std_i[0],np.sqrt(np.mean((uvel[:]-umean[0])**2)), sigma) dx = 10. k = np.arange(-nk//2,nk//2)*dx k = np.roll(k,nk//2) spectrum = np.zeros(nk) count = np.zeros(nk) X,Y,Z = np.meshgrid(k,k,k) r = np.sqrt(X**2+Y**2+Z**2) for i,ki in enumerate(k[:nk//2]): t = np.where((r<=ki+dx/2)&(r>ki-dx/2)) spectrum[i] = np.sum(muu[t].real) + np.sum(mvv[t].real) + np.sum(mww[t].real) count[i] = np.size(t[0]) spectrum[i] *= 2.*np.pi*k[i]**2/dx**3/(count[i]+1.0e-30) font = {'family': 'Droid Sans', 'weight': 'normal', 'size': 12} m.rc('axes',linewidth=2) m.rc('font',**font) m.rc('lines',markeredgewidth=1.0) f,ax = plt.subplots() xf = np.linspace(np.log(k[1]/2),np.log(k[nk//2-1]*2.),100) xf = np.exp(xf) ax.loglog(xf,Ek(xf,alpha,L,sigma),c='g',lw=2) ax.loglog(k[:nk//2],spectrum[:nk//2],'bx-',lw=0.5,ms=8) ax.set_xlabel(u'$k, 1/м$',size='large') ax.set_ylabel(u'$E(k), м^3/с^2$',size='large') plt.grid() plt.tight_layout() plt.show() del(f) del(ax) plt.clf() Rij_x=(ufft*np.conj(ufft)) Rij_y=(vfft*np.conj(vfft)) Rij_z=(wfft*np.conj(wfft)) R1=ifftn(Rij_x)/np.std((uvel))**2/nel**3; R2=ifftn(Rij_y)/np.std((vvel))**2/nel**3; R3=ifftn(Rij_z)/np.std((wvel))**2/nel**3; NFFT=np.size(ufft,1) R11 = (R3[0,0,:]+R2[0,:,0]+R1[:,0,0])/3. R1_22 = (R1[0,:,0]+R3[0,:,0])/2.0e0 R2_22 = (R2[:,0,0]+R3[:,0,0])/2.0e0 R3_22 = (R1[0,0,:]+R2[0,0,:])/2.0e0 R22 = (R1_22+R2_22+R3_22)/3.0e0 Lx = 2.0*np.pi*1.0e-1 r = np.linspace(0,Lx,NFFT)/(Lx/2); l11 = np.trapz(np.real(R11[:NFFT//2+1]),dx=r[1]-r[0]) l22 = np.trapz(np.real(R22[:NFFT//2+1]),dx=r[1]-r[0]) print("Integral Length Scale Longitudal: %g"%(l11)) print("Integral Length Scale Tangent: %g"%(l22)) f,ax = plt.subplots(1) ax.plot(r[:NFFT//2+1],R11[:NFFT//2+1],marker='>',mfc='w',lw=2,label=u'$R_{11}$') ax.plot(r[:NFFT//2+1],R22[:NFFT//2+1],marker='s',markerfacecolor='w',lw=2,label=u'$R_{22}$') ax.plot(r[:NFFT//2],np.exp(-r[:NFFT//2]/l11)) ax.plot(r[:NFFT//2],1.e0+(1.0e0-R22[NFFT//2])*(np.exp(-r[:NFFT//2]/(l22-R22[NFFT//2]))-1.0e0)) plt.legend() plt.tight_layout() ax.set_xlabel(u'$r$') ax.set_ylabel(u'$R_{11}, R_{22}$') plt.grid() plt.show() return [k[:nk//2],spectrum[:nk//2],r[:NFFT//2+1],R11[:NFFT//2+1],R22[:NFFT//2+1]] def Ek(k,alpha=1.339,L=0.01,sigma=10.): tmp = (alpha * L * k) **2 tmp = sigma*sigma*L * tmp * tmp * 5.5e+1/ (27.0 * np.pi * (1.0 + tmp)**(1.7e+1/6.0e0)) return tmp if __name__ == '__main__': main_routine()
true
true
f71813e7fa972b662bb12978d9498a527f879572
60
py
Python
tacotron2/__init__.py
samia-mmx/T2_PT
25ed08791f72492440e9a796d37c5e67a51aaf05
[ "BSD-3-Clause" ]
null
null
null
tacotron2/__init__.py
samia-mmx/T2_PT
25ed08791f72492440e9a796d37c5e67a51aaf05
[ "BSD-3-Clause" ]
null
null
null
tacotron2/__init__.py
samia-mmx/T2_PT
25ed08791f72492440e9a796d37c5e67a51aaf05
[ "BSD-3-Clause" ]
null
null
null
from .entrypoints import nvidia_tacotron2, nvidia_tts_utils
30
59
0.883333
from .entrypoints import nvidia_tacotron2, nvidia_tts_utils
true
true
f718170478283f6fd995f6b98c28ab10f3a084fa
5,620
py
Python
google/ads/google_ads/v4/proto/enums/change_status_resource_type_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
1
2021-04-09T04:28:47.000Z
2021-04-09T04:28:47.000Z
google/ads/google_ads/v4/proto/enums/change_status_resource_type_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v4/proto/enums/change_status_resource_type_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads_v4/proto/enums/change_status_resource_type.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v4/proto/enums/change_status_resource_type.proto', package='google.ads.googleads.v4.enums', syntax='proto3', serialized_options=_b('\n!com.google.ads.googleads.v4.enumsB\035ChangeStatusResourceTypeProtoP\001ZBgoogle.golang.org/genproto/googleapis/ads/googleads/v4/enums;enums\242\002\003GAA\252\002\035Google.Ads.GoogleAds.V4.Enums\312\002\035Google\\Ads\\GoogleAds\\V4\\Enums\352\002!Google::Ads::GoogleAds::V4::Enums'), serialized_pb=_b('\nEgoogle/ads/googleads_v4/proto/enums/change_status_resource_type.proto\x12\x1dgoogle.ads.googleads.v4.enums\x1a\x1cgoogle/api/annotations.proto\"\x90\x02\n\x1c\x43hangeStatusResourceTypeEnum\"\xef\x01\n\x18\x43hangeStatusResourceType\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0b\n\x07UNKNOWN\x10\x01\x12\x0c\n\x08\x41\x44_GROUP\x10\x03\x12\x0f\n\x0b\x41\x44_GROUP_AD\x10\x04\x12\x16\n\x12\x41\x44_GROUP_CRITERION\x10\x05\x12\x0c\n\x08\x43\x41MPAIGN\x10\x06\x12\x16\n\x12\x43\x41MPAIGN_CRITERION\x10\x07\x12\x08\n\x04\x46\x45\x45\x44\x10\t\x12\r\n\tFEED_ITEM\x10\n\x12\x11\n\rAD_GROUP_FEED\x10\x0b\x12\x11\n\rCAMPAIGN_FEED\x10\x0c\x12\x19\n\x15\x41\x44_GROUP_BID_MODIFIER\x10\rB\xf2\x01\n!com.google.ads.googleads.v4.enumsB\x1d\x43hangeStatusResourceTypeProtoP\x01ZBgoogle.golang.org/genproto/googleapis/ads/googleads/v4/enums;enums\xa2\x02\x03GAA\xaa\x02\x1dGoogle.Ads.GoogleAds.V4.Enums\xca\x02\x1dGoogle\\Ads\\GoogleAds\\V4\\Enums\xea\x02!Google::Ads::GoogleAds::V4::Enumsb\x06proto3') , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _CHANGESTATUSRESOURCETYPEENUM_CHANGESTATUSRESOURCETYPE = _descriptor.EnumDescriptor( name='ChangeStatusResourceType', full_name='google.ads.googleads.v4.enums.ChangeStatusResourceTypeEnum.ChangeStatusResourceType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='UNKNOWN', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AD_GROUP', index=2, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AD_GROUP_AD', index=3, number=4, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AD_GROUP_CRITERION', index=4, number=5, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAMPAIGN', index=5, number=6, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAMPAIGN_CRITERION', index=6, number=7, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FEED', index=7, number=9, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FEED_ITEM', index=8, number=10, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AD_GROUP_FEED', index=9, number=11, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAMPAIGN_FEED', index=10, number=12, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AD_GROUP_BID_MODIFIER', index=11, number=13, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=168, serialized_end=407, ) _sym_db.RegisterEnumDescriptor(_CHANGESTATUSRESOURCETYPEENUM_CHANGESTATUSRESOURCETYPE) _CHANGESTATUSRESOURCETYPEENUM = _descriptor.Descriptor( name='ChangeStatusResourceTypeEnum', full_name='google.ads.googleads.v4.enums.ChangeStatusResourceTypeEnum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _CHANGESTATUSRESOURCETYPEENUM_CHANGESTATUSRESOURCETYPE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=135, serialized_end=407, ) _CHANGESTATUSRESOURCETYPEENUM_CHANGESTATUSRESOURCETYPE.containing_type = _CHANGESTATUSRESOURCETYPEENUM DESCRIPTOR.message_types_by_name['ChangeStatusResourceTypeEnum'] = _CHANGESTATUSRESOURCETYPEENUM _sym_db.RegisterFileDescriptor(DESCRIPTOR) ChangeStatusResourceTypeEnum = _reflection.GeneratedProtocolMessageType('ChangeStatusResourceTypeEnum', (_message.Message,), dict( DESCRIPTOR = _CHANGESTATUSRESOURCETYPEENUM, __module__ = 'google.ads.googleads_v4.proto.enums.change_status_resource_type_pb2' , __doc__ = """Container for enum describing supported resource types for the ChangeStatus resource. """, # @@protoc_insertion_point(class_scope:google.ads.googleads.v4.enums.ChangeStatusResourceTypeEnum) )) _sym_db.RegisterMessage(ChangeStatusResourceTypeEnum) DESCRIPTOR._options = None # @@protoc_insertion_point(module_scope)
41.62963
1,005
0.775801
import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads_v4/proto/enums/change_status_resource_type.proto', package='google.ads.googleads.v4.enums', syntax='proto3', serialized_options=_b('\n!com.google.ads.googleads.v4.enumsB\035ChangeStatusResourceTypeProtoP\001ZBgoogle.golang.org/genproto/googleapis/ads/googleads/v4/enums;enums\242\002\003GAA\252\002\035Google.Ads.GoogleAds.V4.Enums\312\002\035Google\\Ads\\GoogleAds\\V4\\Enums\352\002!Google::Ads::GoogleAds::V4::Enums'), serialized_pb=_b('\nEgoogle/ads/googleads_v4/proto/enums/change_status_resource_type.proto\x12\x1dgoogle.ads.googleads.v4.enums\x1a\x1cgoogle/api/annotations.proto\"\x90\x02\n\x1c\x43hangeStatusResourceTypeEnum\"\xef\x01\n\x18\x43hangeStatusResourceType\x12\x0f\n\x0bUNSPECIFIED\x10\x00\x12\x0b\n\x07UNKNOWN\x10\x01\x12\x0c\n\x08\x41\x44_GROUP\x10\x03\x12\x0f\n\x0b\x41\x44_GROUP_AD\x10\x04\x12\x16\n\x12\x41\x44_GROUP_CRITERION\x10\x05\x12\x0c\n\x08\x43\x41MPAIGN\x10\x06\x12\x16\n\x12\x43\x41MPAIGN_CRITERION\x10\x07\x12\x08\n\x04\x46\x45\x45\x44\x10\t\x12\r\n\tFEED_ITEM\x10\n\x12\x11\n\rAD_GROUP_FEED\x10\x0b\x12\x11\n\rCAMPAIGN_FEED\x10\x0c\x12\x19\n\x15\x41\x44_GROUP_BID_MODIFIER\x10\rB\xf2\x01\n!com.google.ads.googleads.v4.enumsB\x1d\x43hangeStatusResourceTypeProtoP\x01ZBgoogle.golang.org/genproto/googleapis/ads/googleads/v4/enums;enums\xa2\x02\x03GAA\xaa\x02\x1dGoogle.Ads.GoogleAds.V4.Enums\xca\x02\x1dGoogle\\Ads\\GoogleAds\\V4\\Enums\xea\x02!Google::Ads::GoogleAds::V4::Enumsb\x06proto3') , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _CHANGESTATUSRESOURCETYPEENUM_CHANGESTATUSRESOURCETYPE = _descriptor.EnumDescriptor( name='ChangeStatusResourceType', full_name='google.ads.googleads.v4.enums.ChangeStatusResourceTypeEnum.ChangeStatusResourceType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='UNSPECIFIED', index=0, number=0, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='UNKNOWN', index=1, number=1, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AD_GROUP', index=2, number=3, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AD_GROUP_AD', index=3, number=4, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AD_GROUP_CRITERION', index=4, number=5, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAMPAIGN', index=5, number=6, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAMPAIGN_CRITERION', index=6, number=7, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FEED', index=7, number=9, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='FEED_ITEM', index=8, number=10, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AD_GROUP_FEED', index=9, number=11, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='CAMPAIGN_FEED', index=10, number=12, serialized_options=None, type=None), _descriptor.EnumValueDescriptor( name='AD_GROUP_BID_MODIFIER', index=11, number=13, serialized_options=None, type=None), ], containing_type=None, serialized_options=None, serialized_start=168, serialized_end=407, ) _sym_db.RegisterEnumDescriptor(_CHANGESTATUSRESOURCETYPEENUM_CHANGESTATUSRESOURCETYPE) _CHANGESTATUSRESOURCETYPEENUM = _descriptor.Descriptor( name='ChangeStatusResourceTypeEnum', full_name='google.ads.googleads.v4.enums.ChangeStatusResourceTypeEnum', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ _CHANGESTATUSRESOURCETYPEENUM_CHANGESTATUSRESOURCETYPE, ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=135, serialized_end=407, ) _CHANGESTATUSRESOURCETYPEENUM_CHANGESTATUSRESOURCETYPE.containing_type = _CHANGESTATUSRESOURCETYPEENUM DESCRIPTOR.message_types_by_name['ChangeStatusResourceTypeEnum'] = _CHANGESTATUSRESOURCETYPEENUM _sym_db.RegisterFileDescriptor(DESCRIPTOR) ChangeStatusResourceTypeEnum = _reflection.GeneratedProtocolMessageType('ChangeStatusResourceTypeEnum', (_message.Message,), dict( DESCRIPTOR = _CHANGESTATUSRESOURCETYPEENUM, __module__ = 'google.ads.googleads_v4.proto.enums.change_status_resource_type_pb2' , __doc__ = """Container for enum describing supported resource types for the ChangeStatus resource. """, )) _sym_db.RegisterMessage(ChangeStatusResourceTypeEnum) DESCRIPTOR._options = None
true
true
f718190eca4cc66afac5d11490eec0b6d1f694cf
10,310
py
Python
tests/unit/Stories.py
rashmi43/platform-engine
dd9a22742bc8dc43a530ea5edef39b3c35db57c1
[ "Apache-2.0" ]
null
null
null
tests/unit/Stories.py
rashmi43/platform-engine
dd9a22742bc8dc43a530ea5edef39b3c35db57c1
[ "Apache-2.0" ]
null
null
null
tests/unit/Stories.py
rashmi43/platform-engine
dd9a22742bc8dc43a530ea5edef39b3c35db57c1
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- import pathlib import time from asyncy.Stories import MAX_BYTES_LOGGING, Stories from asyncy.utils import Dict, Resolver from pytest import mark def test_stories_init(app, logger, story): assert story.entrypoint == app.stories['hello.story']['entrypoint'] assert story.app == app assert story.name == 'hello.story' assert story.logger == logger assert story.execution_id is not None assert story.results == {} def test_stories_get_tmp_dir(story): story.execution_id = 'ex' assert story.get_tmp_dir() == '/tmp/story.ex' def test_stories_create_tmp_dir(patch, story): patch.object(pathlib, 'Path') patch.object(story, 'get_tmp_dir') # Yes, called twice to ensure the dir is created just once. story.create_tmp_dir() story.create_tmp_dir() story.get_tmp_dir.assert_called_once() pathlib.Path.assert_called_with(story.get_tmp_dir()) pathlib.Path().mkdir.assert_called_with( parents=True, mode=0o700, exist_ok=True) @mark.parametrize('long', [True, False]) def test_get_str_for_logging(long): def make_string(length): out = '' for i in range(0, length): out += 'a' return out test_str = 'hello world' if long: test_str = make_string(1024) actual_val = Stories.get_str_for_logging(test_str) if long: assert actual_val == f'{test_str[:MAX_BYTES_LOGGING]} ... ' \ f'({1024-MAX_BYTES_LOGGING} bytes truncated)' else: assert actual_val == 'hello world' def test_stories_line(magic, story): story.tree = magic() line = story.line('1') assert line == story.tree['1'] def test_stories_line_none(magic, story): story.tree = magic() line = story.line(None) assert line is None def test_stories_first_line(patch, story): story.entrypoint = '16' story.tree = {'23': {'ln': '23'}, '16': {'ln': '16'}} result = story.first_line() assert result == '16' def test_stories_function_line_by_name(patch, story): patch.object(story, 'line') ret = story.function_line_by_name('execute') story.line.assert_called_with( story.app.stories[story.name]['functions']['execute']) assert ret == story.line() def test_stories_resolve(patch, logger, story): patch.object(Resolver, 'resolve') story.context = 'context' result = story.resolve('args') assert result == 'args' def test_command_arguments_list(patch, story): patch.object(Stories, 'resolve', return_value='something') obj = {'$OBJECT': 'string', 'string': 'string'} result = story.command_arguments_list([obj]) Stories.resolve.assert_called_with(obj, encode=True) assert result == ['something'] def test_command_arguments_list_none(patch, story): """ Ensures that when an argument resolves to None it is used literally """ patch.object(Stories, 'resolve', return_value=None) obj = {'$OBJECT': 'path', 'paths': ['literal']} result = story.command_arguments_list([obj]) Stories.resolve.assert_called_with(obj) assert result == ['literal'] def test_stories_start_line(patch, story): patch.object(time, 'time') story.start_line('1') assert story.results['1'] == {'start': time.time()} def test_stories_end_line(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1') assert story.results['1']['output'] is None assert story.results['1']['end'] == time.time() assert story.results['1']['start'] == 'start' def test_stories_end_line_output(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1', output='output') assert story.results['1']['output'] == 'output' def test_stories_end_line_output_assign(patch, story): patch.object(Dict, 'set') story.results = {'1': {'start': 'start'}} assign = {'paths': ['x']} story.end_line('1', output='output', assign=assign) assert story.results['1']['output'] == 'output' Dict.set.assert_called_with(story.context, assign['paths'], 'output') def test_stories_end_line_output_as_list(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1', output=['a', 'b']) assert story.results['1']['output'] == ['a', 'b'] def test_stories_end_line_output_as_json_no_auto_convert(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1', output='{"key":"value"}') assert story.results['1']['output'] == '{"key":"value"}' def test_stories_end_line_output_as_sting(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1', output=' foobar\n\t') assert story.results['1']['output'] == ' foobar\n\t' def test_stories_end_line_output_as_bytes(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1', output=b'output') assert story.results['1']['output'] == b'output' @mark.parametrize('input,output', [ (None, 'null'), (False, 'false'), (True, 'true'), ('string', "'string'"), ("st'ring", "'st\'ring'"), (1, "'1'"), ({'foo': 'bar'}, "'{\"foo\": \"bar\"}'"), (['foobar'], "'[\"foobar\"]'"), ]) def test_stories_encode(story, input, output): assert story.encode(input) == output def test_stories_argument_by_name_empty(story): assert story.argument_by_name({}, 'foo') is None def test_stories_argument_by_name_lookup(patch, story): line = { 'args': [ { '$OBJECT': 'argument', 'name': 'foo', 'argument': {'$OBJECT': 'string', 'string': 'bar'} } ] } patch.object(story, 'resolve') story.argument_by_name(line, 'foo') story.resolve.assert_called_with(line['args'][0]['argument'], encode=False) def test_stories_argument_by_name_missing(patch, story): line = {'args': []} assert story.argument_by_name(line, 'foo') is None def test_stories_prepare(story): story.prepare(None) def test_stories_prepare_context(story, app): story.app = app context = {'app': app.app_context} story.prepare(context=context) assert story.environment == app.environment assert story.context == context def test_stories_next_block_simple(patch, story): story.tree = { '2': {'ln': '2', 'enter': '3', 'next': '3'}, '3': {'ln': '3', 'parent': '2', 'next': '4'}, '4': {'ln': '4'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) == story.tree['4'] def test_stories_next_block_as_lines(patch, story): story.tree = { '2': {'ln': '2', 'next': '3'}, '3': {'ln': '3', 'next': '4'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) == story.tree['3'] def test_stories_next_block_where_next_block_is_block(patch, story): story.tree = { '2': {'ln': '2', 'next': '3'}, '3': {'ln': '3', 'next': '4', 'enter': '4'}, '4': {'ln': '4', 'parent': '3'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) == story.tree['3'] def test_stories_next_block_only_block(patch, story): story.tree = { '2': {'ln': '2'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) is None def test_stories_context_for_function_call(story): assert story.context_for_function_call({}, {}) == {} def test_stories_context_for_function_call_with_args(story): line = { 'args': [ { '$OBJECT': 'argument', 'name': 'foo', 'argument': { '$OBJECT': 'string', 'string': 'bar' } }, { '$OBJECT': 'argument', 'name': 'foo1', 'argument': { '$OBJECT': 'string', 'string': 'bar1' } } ] } function_line = { 'args': [ { '$OBJECT': 'argument', 'name': 'foo', 'argument': { '$OBJECT': 'type', 'type': 'string' } }, { '$OBJECT': 'argument', 'name': 'foo1', 'argument': { '$OBJECT': 'type', 'type': 'string' } } ] } assert story.context_for_function_call(line, function_line) == { 'foo': 'bar', 'foo1': 'bar1' } def test_stories_next_block_nested(patch, story): story.tree = { '2': {'ln': '2', 'enter': '3', 'next': '3'}, '3': {'ln': '3', 'parent': '2', 'next': '4'}, '4': {'ln': '4', 'enter': '5', 'parent': '2', 'next': '5'}, '5': {'ln': '5', 'parent': '4', 'next': '6'}, '6': {'ln': '6', 'parent': '4', 'next': '7'}, '7': {'ln': '7'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) == story.tree['7'] def test_stories_next_block_last_line(patch, story): story.tree = { '2': {'ln': '2', 'enter': '3', 'next': '3'}, '3': {'ln': '3', 'parent': '2', 'next': '4'}, '4': {'ln': '4', 'enter': '5', 'parent': '2', 'next': '5'}, '5': {'ln': '5', 'parent': '4', 'next': '6'}, '6': {'ln': '6', 'parent': '4'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) is None def test_stories_next_block_nested_inner(patch, story): story.tree = { '2': {'ln': '2', 'enter': '3', 'next': '3'}, '3': {'ln': '3', 'parent': '2', 'next': '4'}, '4': {'ln': '4', 'enter': '5', 'parent': '2', 'next': '5'}, '5': {'ln': '5', 'parent': '4', 'next': '6'}, '6': {'ln': '6', 'parent': '4', 'next': '7'}, '7': {'ln': '7', 'parent': '2', 'next': '8'}, '8': {'ln': '8', 'parent': '2'} } assert isinstance(story, Stories) assert story.tree['7'] == story.next_block(story.line('4'))
28.169399
79
0.562949
import pathlib import time from asyncy.Stories import MAX_BYTES_LOGGING, Stories from asyncy.utils import Dict, Resolver from pytest import mark def test_stories_init(app, logger, story): assert story.entrypoint == app.stories['hello.story']['entrypoint'] assert story.app == app assert story.name == 'hello.story' assert story.logger == logger assert story.execution_id is not None assert story.results == {} def test_stories_get_tmp_dir(story): story.execution_id = 'ex' assert story.get_tmp_dir() == '/tmp/story.ex' def test_stories_create_tmp_dir(patch, story): patch.object(pathlib, 'Path') patch.object(story, 'get_tmp_dir') story.create_tmp_dir() story.create_tmp_dir() story.get_tmp_dir.assert_called_once() pathlib.Path.assert_called_with(story.get_tmp_dir()) pathlib.Path().mkdir.assert_called_with( parents=True, mode=0o700, exist_ok=True) @mark.parametrize('long', [True, False]) def test_get_str_for_logging(long): def make_string(length): out = '' for i in range(0, length): out += 'a' return out test_str = 'hello world' if long: test_str = make_string(1024) actual_val = Stories.get_str_for_logging(test_str) if long: assert actual_val == f'{test_str[:MAX_BYTES_LOGGING]} ... ' \ f'({1024-MAX_BYTES_LOGGING} bytes truncated)' else: assert actual_val == 'hello world' def test_stories_line(magic, story): story.tree = magic() line = story.line('1') assert line == story.tree['1'] def test_stories_line_none(magic, story): story.tree = magic() line = story.line(None) assert line is None def test_stories_first_line(patch, story): story.entrypoint = '16' story.tree = {'23': {'ln': '23'}, '16': {'ln': '16'}} result = story.first_line() assert result == '16' def test_stories_function_line_by_name(patch, story): patch.object(story, 'line') ret = story.function_line_by_name('execute') story.line.assert_called_with( story.app.stories[story.name]['functions']['execute']) assert ret == story.line() def test_stories_resolve(patch, logger, story): patch.object(Resolver, 'resolve') story.context = 'context' result = story.resolve('args') assert result == 'args' def test_command_arguments_list(patch, story): patch.object(Stories, 'resolve', return_value='something') obj = {'$OBJECT': 'string', 'string': 'string'} result = story.command_arguments_list([obj]) Stories.resolve.assert_called_with(obj, encode=True) assert result == ['something'] def test_command_arguments_list_none(patch, story): patch.object(Stories, 'resolve', return_value=None) obj = {'$OBJECT': 'path', 'paths': ['literal']} result = story.command_arguments_list([obj]) Stories.resolve.assert_called_with(obj) assert result == ['literal'] def test_stories_start_line(patch, story): patch.object(time, 'time') story.start_line('1') assert story.results['1'] == {'start': time.time()} def test_stories_end_line(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1') assert story.results['1']['output'] is None assert story.results['1']['end'] == time.time() assert story.results['1']['start'] == 'start' def test_stories_end_line_output(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1', output='output') assert story.results['1']['output'] == 'output' def test_stories_end_line_output_assign(patch, story): patch.object(Dict, 'set') story.results = {'1': {'start': 'start'}} assign = {'paths': ['x']} story.end_line('1', output='output', assign=assign) assert story.results['1']['output'] == 'output' Dict.set.assert_called_with(story.context, assign['paths'], 'output') def test_stories_end_line_output_as_list(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1', output=['a', 'b']) assert story.results['1']['output'] == ['a', 'b'] def test_stories_end_line_output_as_json_no_auto_convert(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1', output='{"key":"value"}') assert story.results['1']['output'] == '{"key":"value"}' def test_stories_end_line_output_as_sting(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1', output=' foobar\n\t') assert story.results['1']['output'] == ' foobar\n\t' def test_stories_end_line_output_as_bytes(patch, story): patch.object(time, 'time') story.results = {'1': {'start': 'start'}} story.end_line('1', output=b'output') assert story.results['1']['output'] == b'output' @mark.parametrize('input,output', [ (None, 'null'), (False, 'false'), (True, 'true'), ('string', "'string'"), ("st'ring", "'st\'ring'"), (1, "'1'"), ({'foo': 'bar'}, "'{\"foo\": \"bar\"}'"), (['foobar'], "'[\"foobar\"]'"), ]) def test_stories_encode(story, input, output): assert story.encode(input) == output def test_stories_argument_by_name_empty(story): assert story.argument_by_name({}, 'foo') is None def test_stories_argument_by_name_lookup(patch, story): line = { 'args': [ { '$OBJECT': 'argument', 'name': 'foo', 'argument': {'$OBJECT': 'string', 'string': 'bar'} } ] } patch.object(story, 'resolve') story.argument_by_name(line, 'foo') story.resolve.assert_called_with(line['args'][0]['argument'], encode=False) def test_stories_argument_by_name_missing(patch, story): line = {'args': []} assert story.argument_by_name(line, 'foo') is None def test_stories_prepare(story): story.prepare(None) def test_stories_prepare_context(story, app): story.app = app context = {'app': app.app_context} story.prepare(context=context) assert story.environment == app.environment assert story.context == context def test_stories_next_block_simple(patch, story): story.tree = { '2': {'ln': '2', 'enter': '3', 'next': '3'}, '3': {'ln': '3', 'parent': '2', 'next': '4'}, '4': {'ln': '4'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) == story.tree['4'] def test_stories_next_block_as_lines(patch, story): story.tree = { '2': {'ln': '2', 'next': '3'}, '3': {'ln': '3', 'next': '4'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) == story.tree['3'] def test_stories_next_block_where_next_block_is_block(patch, story): story.tree = { '2': {'ln': '2', 'next': '3'}, '3': {'ln': '3', 'next': '4', 'enter': '4'}, '4': {'ln': '4', 'parent': '3'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) == story.tree['3'] def test_stories_next_block_only_block(patch, story): story.tree = { '2': {'ln': '2'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) is None def test_stories_context_for_function_call(story): assert story.context_for_function_call({}, {}) == {} def test_stories_context_for_function_call_with_args(story): line = { 'args': [ { '$OBJECT': 'argument', 'name': 'foo', 'argument': { '$OBJECT': 'string', 'string': 'bar' } }, { '$OBJECT': 'argument', 'name': 'foo1', 'argument': { '$OBJECT': 'string', 'string': 'bar1' } } ] } function_line = { 'args': [ { '$OBJECT': 'argument', 'name': 'foo', 'argument': { '$OBJECT': 'type', 'type': 'string' } }, { '$OBJECT': 'argument', 'name': 'foo1', 'argument': { '$OBJECT': 'type', 'type': 'string' } } ] } assert story.context_for_function_call(line, function_line) == { 'foo': 'bar', 'foo1': 'bar1' } def test_stories_next_block_nested(patch, story): story.tree = { '2': {'ln': '2', 'enter': '3', 'next': '3'}, '3': {'ln': '3', 'parent': '2', 'next': '4'}, '4': {'ln': '4', 'enter': '5', 'parent': '2', 'next': '5'}, '5': {'ln': '5', 'parent': '4', 'next': '6'}, '6': {'ln': '6', 'parent': '4', 'next': '7'}, '7': {'ln': '7'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) == story.tree['7'] def test_stories_next_block_last_line(patch, story): story.tree = { '2': {'ln': '2', 'enter': '3', 'next': '3'}, '3': {'ln': '3', 'parent': '2', 'next': '4'}, '4': {'ln': '4', 'enter': '5', 'parent': '2', 'next': '5'}, '5': {'ln': '5', 'parent': '4', 'next': '6'}, '6': {'ln': '6', 'parent': '4'} } assert isinstance(story, Stories) assert story.next_block(story.line('2')) is None def test_stories_next_block_nested_inner(patch, story): story.tree = { '2': {'ln': '2', 'enter': '3', 'next': '3'}, '3': {'ln': '3', 'parent': '2', 'next': '4'}, '4': {'ln': '4', 'enter': '5', 'parent': '2', 'next': '5'}, '5': {'ln': '5', 'parent': '4', 'next': '6'}, '6': {'ln': '6', 'parent': '4', 'next': '7'}, '7': {'ln': '7', 'parent': '2', 'next': '8'}, '8': {'ln': '8', 'parent': '2'} } assert isinstance(story, Stories) assert story.tree['7'] == story.next_block(story.line('4'))
true
true
f7181a51ac70864c0872ec1652625be1aa4f459a
3,736
py
Python
code/UNET_lowered.py
sagnik1511/U-Net-Lowered-with-keras
364336b244ece288a52cf76df451501a665e745a
[ "MIT" ]
6
2021-06-14T14:42:48.000Z
2021-06-14T15:16:22.000Z
code/UNET_lowered.py
sagnik1511/U-Net-Reduced-with-TF-keras
364336b244ece288a52cf76df451501a665e745a
[ "MIT" ]
null
null
null
code/UNET_lowered.py
sagnik1511/U-Net-Reduced-with-TF-keras
364336b244ece288a52cf76df451501a665e745a
[ "MIT" ]
2
2021-12-16T12:40:36.000Z
2022-02-04T23:10:09.000Z
# -*- coding: utf-8 -*- """ UNET LOwered Model : This customized UNet Model has been generated lowering the filters to their 25% . """ import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers import Input , Conv2D , MaxPooling2D , Dropout , concatenate , UpSampling2D from tensorflow.keras import models from tensorflow.keras import losses from tensorflow.keras import optimizers import numpy as np def UNet(input_shape): keras.backend.clear_session() inputs = Input(input_shape) conv1 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs) conv1 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1) conv2 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2) conv3 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3) conv4 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) conv5 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4) conv5 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5) drop5 = Dropout(0.5)(conv5) up6 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) merge6 = concatenate([drop4,up6], axis = 3) conv6 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6) conv6 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6) up7 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) merge7 = concatenate([conv3,up7], axis = 3) conv7 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7) conv7 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7) up8 = Conv2D(32, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7)) merge8 = concatenate([conv2,up8], axis = 3) conv8 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8) conv8 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8) up9 = Conv2D(16, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) merge9 = concatenate([conv1,up9], axis = 3) conv9 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9) conv9 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) outputs = layers.Conv2D(1, 1, activation = 'sigmoid')(conv9) model = keras.Model(inputs = inputs , outputs = outputs,name = 'UNet') return model
54.941176
131
0.677195
import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers import Input , Conv2D , MaxPooling2D , Dropout , concatenate , UpSampling2D from tensorflow.keras import models from tensorflow.keras import losses from tensorflow.keras import optimizers import numpy as np def UNet(input_shape): keras.backend.clear_session() inputs = Input(input_shape) conv1 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs) conv1 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1) conv2 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2) conv3 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3) conv4 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4) drop4 = Dropout(0.5)(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(drop4) conv5 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4) conv5 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5) drop5 = Dropout(0.5)(conv5) up6 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5)) merge6 = concatenate([drop4,up6], axis = 3) conv6 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6) conv6 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6) up7 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6)) merge7 = concatenate([conv3,up7], axis = 3) conv7 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7) conv7 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7) up8 = Conv2D(32, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7)) merge8 = concatenate([conv2,up8], axis = 3) conv8 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8) conv8 = Conv2D(32, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8) up9 = Conv2D(16, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8)) merge9 = concatenate([conv1,up9], axis = 3) conv9 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9) conv9 = Conv2D(16, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9) outputs = layers.Conv2D(1, 1, activation = 'sigmoid')(conv9) model = keras.Model(inputs = inputs , outputs = outputs,name = 'UNet') return model
true
true
f7181b13ca73f4b482d5f775d442f82f8780cd58
20,330
py
Python
modin/experimental/engines/omnisci_on_ray/frame/calcite_builder.py
Rippling/modin
b2cf1d5fc704803a1ce6699e9a373dc7abeb409e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
modin/experimental/engines/omnisci_on_ray/frame/calcite_builder.py
Rippling/modin
b2cf1d5fc704803a1ce6699e9a373dc7abeb409e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
modin/experimental/engines/omnisci_on_ray/frame/calcite_builder.py
Rippling/modin
b2cf1d5fc704803a1ce6699e9a373dc7abeb409e
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. from .expr import ( InputRefExpr, LiteralExpr, OpExpr, AggregateExpr, build_if_then_else, build_row_idx_filter_expr, ) from .calcite_algebra import ( CalciteBaseNode, CalciteInputRefExpr, CalciteInputIdxExpr, CalciteScanNode, CalciteProjectionNode, CalciteFilterNode, CalciteAggregateNode, CalciteCollation, CalciteSortNode, CalciteJoinNode, CalciteUnionNode, ) from .df_algebra import ( FrameNode, MaskNode, GroupbyAggNode, TransformNode, JoinNode, UnionNode, SortNode, FilterNode, ) from collections import abc from pandas.core.dtypes.common import _get_dtype class CalciteBuilder: class CompoundAggregate: def __init__(self, builder, arg): self._builder = builder self._arg = arg def gen_proj_exprs(self): return [] def gen_agg_exprs(self): pass def gen_reduce_expr(self): pass class StdAggregate(CompoundAggregate): def __init__(self, builder, arg): assert isinstance(arg, InputRefExpr) super().__init__(builder, arg) self._quad_name = self._arg.column + "__quad__" self._sum_name = self._arg.column + "__sum__" self._quad_sum_name = self._arg.column + "__quad_sum__" self._count_name = self._arg.column + "__count__" def gen_proj_exprs(self): expr = self._builder._translate(self._arg.mul(self._arg)) return {self._quad_name: expr} def gen_agg_exprs(self): count_expr = self._builder._translate(AggregateExpr("count", self._arg)) sum_expr = self._builder._translate(AggregateExpr("sum", self._arg)) self._sum_dtype = sum_expr._dtype qsum_expr = AggregateExpr( "SUM", self._builder._ref_idx(self._arg.modin_frame, self._quad_name), dtype=sum_expr._dtype, ) return { self._sum_name: sum_expr, self._quad_sum_name: qsum_expr, self._count_name: count_expr, } def gen_reduce_expr(self): count_expr = self._builder._ref(self._arg.modin_frame, self._count_name) count_expr._dtype = _get_dtype(int) sum_expr = self._builder._ref(self._arg.modin_frame, self._sum_name) sum_expr._dtype = self._sum_dtype qsum_expr = self._builder._ref(self._arg.modin_frame, self._quad_sum_name) qsum_expr._dtype = self._sum_dtype null_expr = LiteralExpr(None) count_or_null = build_if_then_else( count_expr.eq(LiteralExpr(0)), null_expr, count_expr, count_expr._dtype ) count_m_1_or_null = build_if_then_else( count_expr.eq(LiteralExpr(1)), null_expr, count_expr.sub(LiteralExpr(1)), count_expr._dtype, ) # sqrt((sum(x * x) - sum(x) * sum(x) / n) / (n - 1)) return ( qsum_expr.sub(sum_expr.mul(sum_expr).truediv(count_or_null)) .truediv(count_m_1_or_null) .pow(LiteralExpr(0.5)) ) class SkewAggregate(CompoundAggregate): def __init__(self, builder, arg): assert isinstance(arg, InputRefExpr) super().__init__(builder, arg) self._quad_name = self._arg.column + "__quad__" self._cube_name = self._arg.column + "__cube__" self._sum_name = self._arg.column + "__sum__" self._quad_sum_name = self._arg.column + "__quad_sum__" self._cube_sum_name = self._arg.column + "__cube_sum__" self._count_name = self._arg.column + "__count__" def gen_proj_exprs(self): quad_expr = self._builder._translate(self._arg.mul(self._arg)) cube_expr = self._builder._translate( self._arg.mul(self._arg).mul(self._arg) ) return {self._quad_name: quad_expr, self._cube_name: cube_expr} def gen_agg_exprs(self): count_expr = self._builder._translate(AggregateExpr("count", self._arg)) sum_expr = self._builder._translate(AggregateExpr("sum", self._arg)) self._sum_dtype = sum_expr._dtype qsum_expr = AggregateExpr( "SUM", self._builder._ref_idx(self._arg.modin_frame, self._quad_name), dtype=sum_expr._dtype, ) csum_expr = AggregateExpr( "SUM", self._builder._ref_idx(self._arg.modin_frame, self._cube_name), dtype=sum_expr._dtype, ) return { self._sum_name: sum_expr, self._quad_sum_name: qsum_expr, self._cube_sum_name: csum_expr, self._count_name: count_expr, } def gen_reduce_expr(self): count_expr = self._builder._ref(self._arg.modin_frame, self._count_name) count_expr._dtype = _get_dtype(int) sum_expr = self._builder._ref(self._arg.modin_frame, self._sum_name) sum_expr._dtype = self._sum_dtype qsum_expr = self._builder._ref(self._arg.modin_frame, self._quad_sum_name) qsum_expr._dtype = self._sum_dtype csum_expr = self._builder._ref(self._arg.modin_frame, self._cube_sum_name) csum_expr._dtype = self._sum_dtype mean_expr = sum_expr.truediv(count_expr) # n * sqrt(n - 1) / (n - 2) # * (sum(x ** 3) - 3 * mean * sum(x * x) + 2 * mean * mean * sum(x)) # / (sum(x * x) - mean * sum(x)) ** 1.5 part1 = count_expr.mul( count_expr.sub(LiteralExpr(1)).pow(LiteralExpr(0.5)) ).truediv(count_expr.sub(LiteralExpr(2))) part2 = csum_expr.sub(mean_expr.mul(qsum_expr).mul(LiteralExpr(3.0))).add( mean_expr.mul(mean_expr).mul(sum_expr).mul(LiteralExpr(2.0)) ) part3 = qsum_expr.sub(mean_expr.mul(sum_expr)).pow(LiteralExpr(1.5)) skew_expr = part1.mul(part2).truediv(part3) # The result is NULL if n <= 2 return build_if_then_else( count_expr.le(LiteralExpr(2)), LiteralExpr(None), skew_expr, skew_expr._dtype, ) _compound_aggregates = {"std": StdAggregate, "skew": SkewAggregate} class InputContext: _simple_aggregates = { "sum": "SUM", "mean": "AVG", "max": "MAX", "min": "MIN", "size": "COUNT", "count": "COUNT", } _no_arg_aggregates = {"size"} def __init__(self, input_frames, input_nodes): self.input_nodes = input_nodes self.frame_to_node = {x: y for x, y in zip(input_frames, input_nodes)} self.input_offsets = {} self.replacements = {} offs = 0 for frame in input_frames: self.input_offsets[frame] = offs offs += len(frame._table_cols) # Materialized frames have additional 'rowid' column if isinstance(frame._op, FrameNode): offs += 1 def replace_input_node(self, frame, node, new_cols): self.replacements[frame] = new_cols def _idx(self, frame, col): assert ( frame in self.input_offsets ), f"unexpected reference to {frame.id_str()}" offs = self.input_offsets[frame] if frame in self.replacements: return self.replacements[frame].index(col) + offs if col == "__rowid__": if not isinstance(self.frame_to_node[frame], CalciteScanNode): raise NotImplementedError( "rowid can be accessed in materialized frames only" ) return len(frame._table_cols) + offs assert ( col in frame._table_cols ), f"unexpected reference to '{col}' in {frame.id_str()}" return frame._table_cols.index(col) + offs def ref(self, frame, col): return CalciteInputRefExpr(self._idx(frame, col)) def ref_idx(self, frame, col): return CalciteInputIdxExpr(self._idx(frame, col)) def input_ids(self): return [x.id for x in self.input_nodes] def translate(self, expr): """Copy those parts of expr tree that have input references and translate all references into CalciteInputRefExr""" return self._maybe_copy_and_translate_expr(expr) def _maybe_copy_and_translate_expr(self, expr, ref_idx=False): if isinstance(expr, InputRefExpr): if ref_idx: return self.ref_idx(expr.modin_frame, expr.column) else: return self.ref(expr.modin_frame, expr.column) if isinstance(expr, AggregateExpr): expr = expr.copy() if expr.agg in self._no_arg_aggregates: expr.operands = [] else: expr.operands[0] = self._maybe_copy_and_translate_expr( expr.operands[0], True ) expr.agg = self._simple_aggregates[expr.agg] return expr copied = False for i, op in enumerate(getattr(expr, "operands", [])): new_op = self._maybe_copy_and_translate_expr(op) if new_op != op: if not copied: expr = expr.copy() expr.operands[i] = new_op return expr class InputContextMgr: def __init__(self, builder, input_frames, input_nodes): self.builder = builder self.input_frames = input_frames self.input_nodes = input_nodes def __enter__(self): self.builder._input_ctx_stack.append( self.builder.InputContext(self.input_frames, self.input_nodes) ) return self.builder._input_ctx_stack[-1] def __exit__(self, type, value, traceback): self.builder._input_ctx_stack.pop() type_strings = { int: "INTEGER", bool: "BOOLEAN", } def __init__(self): self._input_ctx_stack = [] def build(self, op): CalciteBaseNode.reset_id() self.res = [] self._to_calcite(op) return self.res def _input_ctx(self): return self._input_ctx_stack[-1] def _set_input_ctx(self, op): input_frames = getattr(op, "input", []) input_nodes = [self._to_calcite(x._op) for x in input_frames] return self.InputContextMgr(self, input_frames, input_nodes) def _set_tmp_ctx(self, input_frames, input_nodes): return self.InputContextMgr(self, input_frames, input_nodes) def _ref(self, frame, col): return self._input_ctx().ref(frame, col) def _ref_idx(self, frame, col): return self._input_ctx().ref_idx(frame, col) def _translate(self, exprs): if isinstance(exprs, abc.Iterable): return [self._input_ctx().translate(x) for x in exprs] return self._input_ctx().translate(exprs) def _push(self, node): self.res.append(node) def _last(self): return self.res[-1] def _input_nodes(self): return self._input_ctx().input_nodes def _input_node(self, idx): return self._input_nodes()[idx] def _input_ids(self): return self._input_ctx().input_ids() def _to_calcite(self, op): # This context translates input operands and setup current # input context to translate input references (recursion # over tree happens here). with self._set_input_ctx(op): if isinstance(op, FrameNode): self._process_frame(op) elif isinstance(op, MaskNode): self._process_mask(op) elif isinstance(op, GroupbyAggNode): self._process_groupby(op) elif isinstance(op, TransformNode): self._process_transform(op) elif isinstance(op, JoinNode): self._process_join(op) elif isinstance(op, UnionNode): self._process_union(op) elif isinstance(op, SortNode): self._process_sort(op) elif isinstance(op, FilterNode): self._process_filter(op) else: raise NotImplementedError( f"CalciteBuilder doesn't support {type(op).__name__}" ) return self.res[-1] def _process_frame(self, op): self._push(CalciteScanNode(op.modin_frame)) def _process_mask(self, op): if op.row_indices is not None: raise NotImplementedError("row indices masking is not yet supported") frame = op.input[0] # select rows by rowid rowid_col = self._ref(frame, "__rowid__") condition = build_row_idx_filter_expr(op.row_numeric_idx, rowid_col) self._push(CalciteFilterNode(condition)) # mask is currently always applied over scan, it means # we need additional projection to remove rowid column fields = frame._table_cols exprs = [self._ref(frame, col) for col in frame._table_cols] self._push(CalciteProjectionNode(fields, exprs)) def _process_groupby(self, op): frame = op.input[0] # Aggregation's input should always be a projection and # group key columns should always go first proj_cols = op.by.copy() for col in frame._table_cols: if col not in op.by: proj_cols.append(col) proj_exprs = [self._ref(frame, col) for col in proj_cols] # Add expressions required for compound aggregates compound_aggs = {} for agg, expr in op.agg_exprs.items(): if expr.agg in self._compound_aggregates: compound_aggs[agg] = self._compound_aggregates[expr.agg]( self, expr.operands[0] ) extra_exprs = compound_aggs[agg].gen_proj_exprs() proj_cols.extend(extra_exprs.keys()) proj_exprs.extend(extra_exprs.values()) proj = CalciteProjectionNode(proj_cols, proj_exprs) self._push(proj) self._input_ctx().replace_input_node(frame, proj, proj_cols) group = [self._ref_idx(frame, col) for col in op.by] fields = op.by.copy() aggs = [] for agg, expr in op.agg_exprs.items(): if agg in compound_aggs: extra_aggs = compound_aggs[agg].gen_agg_exprs() fields.extend(extra_aggs.keys()) aggs.extend(extra_aggs.values()) else: fields.append(agg) aggs.append(self._translate(expr)) node = CalciteAggregateNode(fields, group, aggs) self._push(node) if compound_aggs: self._input_ctx().replace_input_node(frame, node, fields) proj_cols = op.by.copy() proj_exprs = [self._ref(frame, col) for col in proj_cols] proj_cols.extend(op.agg_exprs.keys()) for agg in op.agg_exprs: if agg in compound_aggs: proj_exprs.append(compound_aggs[agg].gen_reduce_expr()) else: proj_exprs.append(self._ref(frame, agg)) proj = CalciteProjectionNode(proj_cols, proj_exprs) self._push(proj) if op.groupby_opts["sort"]: collation = [CalciteCollation(col) for col in group] self._push(CalciteSortNode(collation)) def _process_transform(self, op): fields = list(op.exprs.keys()) exprs = self._translate(op.exprs.values()) self._push(CalciteProjectionNode(fields, exprs)) def _process_join(self, op): left = op.input[0] right = op.input[1] assert ( op.on is not None ), "Merge with unspecified 'on' parameter is not supported in the engine" for col in op.on: assert ( col in left._table_cols and col in right._table_cols ), f"Column '{col}'' is missing in one of merge operands" """ Join, only equal-join supported """ cmps = [self._ref(left, c).eq(self._ref(right, c)) for c in op.on] if len(cmps) > 1: condition = OpExpr("AND", cmps, _get_dtype(bool)) else: condition = cmps[0] node = CalciteJoinNode( left_id=self._input_node(0).id, right_id=self._input_node(1).id, how=op.how, condition=condition, ) self._push(node) """Projection for both frames""" fields = [] exprs = [] conflicting_cols = set(left.columns) & set(right.columns) - set(op.on) """First goes 'on' column then all left columns(+suffix for conflicting names) but 'on' then all right columns(+suffix for conflicting names) but 'on'""" on_idx = [-1] * len(op.on) for c in left.columns: if c in op.on: on_idx[op.on.index(c)] = len(fields) suffix = op.suffixes[0] if c in conflicting_cols else "" fields.append(c + suffix) exprs.append(self._ref(left, c)) for c in right.columns: if c not in op.on: suffix = op.suffixes[1] if c in conflicting_cols else "" fields.append(c + suffix) exprs.append(self._ref(right, c)) self._push(CalciteProjectionNode(fields, exprs)) # TODO: current input translation system doesn't work here # because there is no frame to reference for index computation. # We should build calcite tree to keep references to input # nodes and keep scheme in calcite nodes. For now just use # known index on_idx. if op.sort is True: """Sort by key column""" collation = [CalciteCollation(CalciteInputIdxExpr(x)) for x in on_idx] self._push(CalciteSortNode(collation)) def _process_union(self, op): self._push(CalciteUnionNode(self._input_ids(), True)) def _process_sort(self, op): frame = op.input[0] # Sort should be applied to projections. if not isinstance(self._input_node(0), CalciteProjectionNode): proj = CalciteProjectionNode( frame._table_cols, [self._ref(frame, col) for col in frame._table_cols] ) self._push(proj) self._input_ctx().replace_input_node(frame, proj, frame._table_cols) nulls = op.na_position.upper() collations = [] for col, asc in zip(op.columns, op.ascending): ascending = "ASCENDING" if asc else "DESCENDING" collations.append( CalciteCollation(self._ref_idx(frame, col), ascending, nulls) ) self._push(CalciteSortNode(collations)) def _process_filter(self, op): condition = self._translate(op.condition) self._push(CalciteFilterNode(condition))
37.302752
87
0.588096
from .expr import ( InputRefExpr, LiteralExpr, OpExpr, AggregateExpr, build_if_then_else, build_row_idx_filter_expr, ) from .calcite_algebra import ( CalciteBaseNode, CalciteInputRefExpr, CalciteInputIdxExpr, CalciteScanNode, CalciteProjectionNode, CalciteFilterNode, CalciteAggregateNode, CalciteCollation, CalciteSortNode, CalciteJoinNode, CalciteUnionNode, ) from .df_algebra import ( FrameNode, MaskNode, GroupbyAggNode, TransformNode, JoinNode, UnionNode, SortNode, FilterNode, ) from collections import abc from pandas.core.dtypes.common import _get_dtype class CalciteBuilder: class CompoundAggregate: def __init__(self, builder, arg): self._builder = builder self._arg = arg def gen_proj_exprs(self): return [] def gen_agg_exprs(self): pass def gen_reduce_expr(self): pass class StdAggregate(CompoundAggregate): def __init__(self, builder, arg): assert isinstance(arg, InputRefExpr) super().__init__(builder, arg) self._quad_name = self._arg.column + "__quad__" self._sum_name = self._arg.column + "__sum__" self._quad_sum_name = self._arg.column + "__quad_sum__" self._count_name = self._arg.column + "__count__" def gen_proj_exprs(self): expr = self._builder._translate(self._arg.mul(self._arg)) return {self._quad_name: expr} def gen_agg_exprs(self): count_expr = self._builder._translate(AggregateExpr("count", self._arg)) sum_expr = self._builder._translate(AggregateExpr("sum", self._arg)) self._sum_dtype = sum_expr._dtype qsum_expr = AggregateExpr( "SUM", self._builder._ref_idx(self._arg.modin_frame, self._quad_name), dtype=sum_expr._dtype, ) return { self._sum_name: sum_expr, self._quad_sum_name: qsum_expr, self._count_name: count_expr, } def gen_reduce_expr(self): count_expr = self._builder._ref(self._arg.modin_frame, self._count_name) count_expr._dtype = _get_dtype(int) sum_expr = self._builder._ref(self._arg.modin_frame, self._sum_name) sum_expr._dtype = self._sum_dtype qsum_expr = self._builder._ref(self._arg.modin_frame, self._quad_sum_name) qsum_expr._dtype = self._sum_dtype null_expr = LiteralExpr(None) count_or_null = build_if_then_else( count_expr.eq(LiteralExpr(0)), null_expr, count_expr, count_expr._dtype ) count_m_1_or_null = build_if_then_else( count_expr.eq(LiteralExpr(1)), null_expr, count_expr.sub(LiteralExpr(1)), count_expr._dtype, ) return ( qsum_expr.sub(sum_expr.mul(sum_expr).truediv(count_or_null)) .truediv(count_m_1_or_null) .pow(LiteralExpr(0.5)) ) class SkewAggregate(CompoundAggregate): def __init__(self, builder, arg): assert isinstance(arg, InputRefExpr) super().__init__(builder, arg) self._quad_name = self._arg.column + "__quad__" self._cube_name = self._arg.column + "__cube__" self._sum_name = self._arg.column + "__sum__" self._quad_sum_name = self._arg.column + "__quad_sum__" self._cube_sum_name = self._arg.column + "__cube_sum__" self._count_name = self._arg.column + "__count__" def gen_proj_exprs(self): quad_expr = self._builder._translate(self._arg.mul(self._arg)) cube_expr = self._builder._translate( self._arg.mul(self._arg).mul(self._arg) ) return {self._quad_name: quad_expr, self._cube_name: cube_expr} def gen_agg_exprs(self): count_expr = self._builder._translate(AggregateExpr("count", self._arg)) sum_expr = self._builder._translate(AggregateExpr("sum", self._arg)) self._sum_dtype = sum_expr._dtype qsum_expr = AggregateExpr( "SUM", self._builder._ref_idx(self._arg.modin_frame, self._quad_name), dtype=sum_expr._dtype, ) csum_expr = AggregateExpr( "SUM", self._builder._ref_idx(self._arg.modin_frame, self._cube_name), dtype=sum_expr._dtype, ) return { self._sum_name: sum_expr, self._quad_sum_name: qsum_expr, self._cube_sum_name: csum_expr, self._count_name: count_expr, } def gen_reduce_expr(self): count_expr = self._builder._ref(self._arg.modin_frame, self._count_name) count_expr._dtype = _get_dtype(int) sum_expr = self._builder._ref(self._arg.modin_frame, self._sum_name) sum_expr._dtype = self._sum_dtype qsum_expr = self._builder._ref(self._arg.modin_frame, self._quad_sum_name) qsum_expr._dtype = self._sum_dtype csum_expr = self._builder._ref(self._arg.modin_frame, self._cube_sum_name) csum_expr._dtype = self._sum_dtype mean_expr = sum_expr.truediv(count_expr) part1 = count_expr.mul( count_expr.sub(LiteralExpr(1)).pow(LiteralExpr(0.5)) ).truediv(count_expr.sub(LiteralExpr(2))) part2 = csum_expr.sub(mean_expr.mul(qsum_expr).mul(LiteralExpr(3.0))).add( mean_expr.mul(mean_expr).mul(sum_expr).mul(LiteralExpr(2.0)) ) part3 = qsum_expr.sub(mean_expr.mul(sum_expr)).pow(LiteralExpr(1.5)) skew_expr = part1.mul(part2).truediv(part3) return build_if_then_else( count_expr.le(LiteralExpr(2)), LiteralExpr(None), skew_expr, skew_expr._dtype, ) _compound_aggregates = {"std": StdAggregate, "skew": SkewAggregate} class InputContext: _simple_aggregates = { "sum": "SUM", "mean": "AVG", "max": "MAX", "min": "MIN", "size": "COUNT", "count": "COUNT", } _no_arg_aggregates = {"size"} def __init__(self, input_frames, input_nodes): self.input_nodes = input_nodes self.frame_to_node = {x: y for x, y in zip(input_frames, input_nodes)} self.input_offsets = {} self.replacements = {} offs = 0 for frame in input_frames: self.input_offsets[frame] = offs offs += len(frame._table_cols) if isinstance(frame._op, FrameNode): offs += 1 def replace_input_node(self, frame, node, new_cols): self.replacements[frame] = new_cols def _idx(self, frame, col): assert ( frame in self.input_offsets ), f"unexpected reference to {frame.id_str()}" offs = self.input_offsets[frame] if frame in self.replacements: return self.replacements[frame].index(col) + offs if col == "__rowid__": if not isinstance(self.frame_to_node[frame], CalciteScanNode): raise NotImplementedError( "rowid can be accessed in materialized frames only" ) return len(frame._table_cols) + offs assert ( col in frame._table_cols ), f"unexpected reference to '{col}' in {frame.id_str()}" return frame._table_cols.index(col) + offs def ref(self, frame, col): return CalciteInputRefExpr(self._idx(frame, col)) def ref_idx(self, frame, col): return CalciteInputIdxExpr(self._idx(frame, col)) def input_ids(self): return [x.id for x in self.input_nodes] def translate(self, expr): return self._maybe_copy_and_translate_expr(expr) def _maybe_copy_and_translate_expr(self, expr, ref_idx=False): if isinstance(expr, InputRefExpr): if ref_idx: return self.ref_idx(expr.modin_frame, expr.column) else: return self.ref(expr.modin_frame, expr.column) if isinstance(expr, AggregateExpr): expr = expr.copy() if expr.agg in self._no_arg_aggregates: expr.operands = [] else: expr.operands[0] = self._maybe_copy_and_translate_expr( expr.operands[0], True ) expr.agg = self._simple_aggregates[expr.agg] return expr copied = False for i, op in enumerate(getattr(expr, "operands", [])): new_op = self._maybe_copy_and_translate_expr(op) if new_op != op: if not copied: expr = expr.copy() expr.operands[i] = new_op return expr class InputContextMgr: def __init__(self, builder, input_frames, input_nodes): self.builder = builder self.input_frames = input_frames self.input_nodes = input_nodes def __enter__(self): self.builder._input_ctx_stack.append( self.builder.InputContext(self.input_frames, self.input_nodes) ) return self.builder._input_ctx_stack[-1] def __exit__(self, type, value, traceback): self.builder._input_ctx_stack.pop() type_strings = { int: "INTEGER", bool: "BOOLEAN", } def __init__(self): self._input_ctx_stack = [] def build(self, op): CalciteBaseNode.reset_id() self.res = [] self._to_calcite(op) return self.res def _input_ctx(self): return self._input_ctx_stack[-1] def _set_input_ctx(self, op): input_frames = getattr(op, "input", []) input_nodes = [self._to_calcite(x._op) for x in input_frames] return self.InputContextMgr(self, input_frames, input_nodes) def _set_tmp_ctx(self, input_frames, input_nodes): return self.InputContextMgr(self, input_frames, input_nodes) def _ref(self, frame, col): return self._input_ctx().ref(frame, col) def _ref_idx(self, frame, col): return self._input_ctx().ref_idx(frame, col) def _translate(self, exprs): if isinstance(exprs, abc.Iterable): return [self._input_ctx().translate(x) for x in exprs] return self._input_ctx().translate(exprs) def _push(self, node): self.res.append(node) def _last(self): return self.res[-1] def _input_nodes(self): return self._input_ctx().input_nodes def _input_node(self, idx): return self._input_nodes()[idx] def _input_ids(self): return self._input_ctx().input_ids() def _to_calcite(self, op): with self._set_input_ctx(op): if isinstance(op, FrameNode): self._process_frame(op) elif isinstance(op, MaskNode): self._process_mask(op) elif isinstance(op, GroupbyAggNode): self._process_groupby(op) elif isinstance(op, TransformNode): self._process_transform(op) elif isinstance(op, JoinNode): self._process_join(op) elif isinstance(op, UnionNode): self._process_union(op) elif isinstance(op, SortNode): self._process_sort(op) elif isinstance(op, FilterNode): self._process_filter(op) else: raise NotImplementedError( f"CalciteBuilder doesn't support {type(op).__name__}" ) return self.res[-1] def _process_frame(self, op): self._push(CalciteScanNode(op.modin_frame)) def _process_mask(self, op): if op.row_indices is not None: raise NotImplementedError("row indices masking is not yet supported") frame = op.input[0] # select rows by rowid rowid_col = self._ref(frame, "__rowid__") condition = build_row_idx_filter_expr(op.row_numeric_idx, rowid_col) self._push(CalciteFilterNode(condition)) # mask is currently always applied over scan, it means # we need additional projection to remove rowid column fields = frame._table_cols exprs = [self._ref(frame, col) for col in frame._table_cols] self._push(CalciteProjectionNode(fields, exprs)) def _process_groupby(self, op): frame = op.input[0] # Aggregation's input should always be a projection and proj_cols = op.by.copy() for col in frame._table_cols: if col not in op.by: proj_cols.append(col) proj_exprs = [self._ref(frame, col) for col in proj_cols] compound_aggs = {} for agg, expr in op.agg_exprs.items(): if expr.agg in self._compound_aggregates: compound_aggs[agg] = self._compound_aggregates[expr.agg]( self, expr.operands[0] ) extra_exprs = compound_aggs[agg].gen_proj_exprs() proj_cols.extend(extra_exprs.keys()) proj_exprs.extend(extra_exprs.values()) proj = CalciteProjectionNode(proj_cols, proj_exprs) self._push(proj) self._input_ctx().replace_input_node(frame, proj, proj_cols) group = [self._ref_idx(frame, col) for col in op.by] fields = op.by.copy() aggs = [] for agg, expr in op.agg_exprs.items(): if agg in compound_aggs: extra_aggs = compound_aggs[agg].gen_agg_exprs() fields.extend(extra_aggs.keys()) aggs.extend(extra_aggs.values()) else: fields.append(agg) aggs.append(self._translate(expr)) node = CalciteAggregateNode(fields, group, aggs) self._push(node) if compound_aggs: self._input_ctx().replace_input_node(frame, node, fields) proj_cols = op.by.copy() proj_exprs = [self._ref(frame, col) for col in proj_cols] proj_cols.extend(op.agg_exprs.keys()) for agg in op.agg_exprs: if agg in compound_aggs: proj_exprs.append(compound_aggs[agg].gen_reduce_expr()) else: proj_exprs.append(self._ref(frame, agg)) proj = CalciteProjectionNode(proj_cols, proj_exprs) self._push(proj) if op.groupby_opts["sort"]: collation = [CalciteCollation(col) for col in group] self._push(CalciteSortNode(collation)) def _process_transform(self, op): fields = list(op.exprs.keys()) exprs = self._translate(op.exprs.values()) self._push(CalciteProjectionNode(fields, exprs)) def _process_join(self, op): left = op.input[0] right = op.input[1] assert ( op.on is not None ), "Merge with unspecified 'on' parameter is not supported in the engine" for col in op.on: assert ( col in left._table_cols and col in right._table_cols ), f"Column '{col}'' is missing in one of merge operands" cmps = [self._ref(left, c).eq(self._ref(right, c)) for c in op.on] if len(cmps) > 1: condition = OpExpr("AND", cmps, _get_dtype(bool)) else: condition = cmps[0] node = CalciteJoinNode( left_id=self._input_node(0).id, right_id=self._input_node(1).id, how=op.how, condition=condition, ) self._push(node) fields = [] exprs = [] conflicting_cols = set(left.columns) & set(right.columns) - set(op.on) on_idx = [-1] * len(op.on) for c in left.columns: if c in op.on: on_idx[op.on.index(c)] = len(fields) suffix = op.suffixes[0] if c in conflicting_cols else "" fields.append(c + suffix) exprs.append(self._ref(left, c)) for c in right.columns: if c not in op.on: suffix = op.suffixes[1] if c in conflicting_cols else "" fields.append(c + suffix) exprs.append(self._ref(right, c)) self._push(CalciteProjectionNode(fields, exprs)) # TODO: current input translation system doesn't work here if op.sort is True: collation = [CalciteCollation(CalciteInputIdxExpr(x)) for x in on_idx] self._push(CalciteSortNode(collation)) def _process_union(self, op): self._push(CalciteUnionNode(self._input_ids(), True)) def _process_sort(self, op): frame = op.input[0] if not isinstance(self._input_node(0), CalciteProjectionNode): proj = CalciteProjectionNode( frame._table_cols, [self._ref(frame, col) for col in frame._table_cols] ) self._push(proj) self._input_ctx().replace_input_node(frame, proj, frame._table_cols) nulls = op.na_position.upper() collations = [] for col, asc in zip(op.columns, op.ascending): ascending = "ASCENDING" if asc else "DESCENDING" collations.append( CalciteCollation(self._ref_idx(frame, col), ascending, nulls) ) self._push(CalciteSortNode(collations)) def _process_filter(self, op): condition = self._translate(op.condition) self._push(CalciteFilterNode(condition))
true
true
f7181b87434e6a3a078b7f233f6a61d24e5fe9cc
3,374
py
Python
data/test/python/f7181b87434e6a3a078b7f233f6a61d24e5fe9ccbase.py
harshp8l/deep-learning-lang-detection
2a54293181c1c2b1a2b840ddee4d4d80177efb33
[ "MIT" ]
84
2017-10-25T15:49:21.000Z
2021-11-28T21:25:54.000Z
data/test/python/f7181b87434e6a3a078b7f233f6a61d24e5fe9ccbase.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
5
2018-03-29T11:50:46.000Z
2021-04-26T13:33:18.000Z
data/test/python/f7181b87434e6a3a078b7f233f6a61d24e5fe9ccbase.py
vassalos/deep-learning-lang-detection
cbb00b3e81bed3a64553f9c6aa6138b2511e544e
[ "MIT" ]
24
2017-11-22T08:31:00.000Z
2022-03-27T01:22:31.000Z
from __future__ import absolute_import import os import sys from django.core.management.base import BaseCommand import celery import djcelery DB_SHARED_THREAD = """\ DatabaseWrapper objects created in a thread can only \ be used in that same thread. The object with alias '%s' \ was created in thread id %s and this is thread id %s.\ """ def patch_thread_ident(): # monkey patch django. # This patch make sure that we use real threads to get the ident which # is going to happen if we are using gevent or eventlet. # -- patch taken from gunicorn if getattr(patch_thread_ident, 'called', False): return try: from django.db.backends import BaseDatabaseWrapper, DatabaseError if 'validate_thread_sharing' in BaseDatabaseWrapper.__dict__: import thread _get_ident = thread.get_ident __old__init__ = BaseDatabaseWrapper.__init__ def _init(self, *args, **kwargs): __old__init__(self, *args, **kwargs) self._thread_ident = _get_ident() def _validate_thread_sharing(self): if (not self.allow_thread_sharing and self._thread_ident != _get_ident()): raise DatabaseError( DB_SHARED_THREAD % ( self.alias, self._thread_ident, _get_ident()), ) BaseDatabaseWrapper.__init__ = _init BaseDatabaseWrapper.validate_thread_sharing = \ _validate_thread_sharing patch_thread_ident.called = True except ImportError: pass patch_thread_ident() class CeleryCommand(BaseCommand): options = BaseCommand.option_list skip_opts = ['--app', '--loader', '--config'] keep_base_opts = False def get_version(self): return 'celery %s\ndjango-celery %s' % (celery.__version__, djcelery.__version__) def execute(self, *args, **options): broker = options.get('broker') if broker: self.set_broker(broker) super(CeleryCommand, self).execute(*args, **options) def set_broker(self, broker): os.environ['CELERY_BROKER_URL'] = broker def run_from_argv(self, argv): self.handle_default_options(argv[2:]) return super(CeleryCommand, self).run_from_argv(argv) def handle_default_options(self, argv): acc = [] broker = None for i, arg in enumerate(argv): if '--settings=' in arg: _, settings_module = arg.split('=') os.environ['DJANGO_SETTINGS_MODULE'] = settings_module elif '--pythonpath=' in arg: _, pythonpath = arg.split('=') sys.path.insert(0, pythonpath) elif '--broker=' in arg: _, broker = arg.split('=') elif arg == '-b': broker = argv[i + 1] else: acc.append(arg) if broker: self.set_broker(broker) return argv if self.keep_base_opts else acc def die(self, msg): sys.stderr.write(msg) sys.stderr.write('\n') sys.exit() @property def option_list(self): return [x for x in self.options if x._long_opts[0] not in self.skip_opts]
31.53271
74
0.590101
from __future__ import absolute_import import os import sys from django.core.management.base import BaseCommand import celery import djcelery DB_SHARED_THREAD = """\ DatabaseWrapper objects created in a thread can only \ be used in that same thread. The object with alias '%s' \ was created in thread id %s and this is thread id %s.\ """ def patch_thread_ident(): if getattr(patch_thread_ident, 'called', False): return try: from django.db.backends import BaseDatabaseWrapper, DatabaseError if 'validate_thread_sharing' in BaseDatabaseWrapper.__dict__: import thread _get_ident = thread.get_ident __old__init__ = BaseDatabaseWrapper.__init__ def _init(self, *args, **kwargs): __old__init__(self, *args, **kwargs) self._thread_ident = _get_ident() def _validate_thread_sharing(self): if (not self.allow_thread_sharing and self._thread_ident != _get_ident()): raise DatabaseError( DB_SHARED_THREAD % ( self.alias, self._thread_ident, _get_ident()), ) BaseDatabaseWrapper.__init__ = _init BaseDatabaseWrapper.validate_thread_sharing = \ _validate_thread_sharing patch_thread_ident.called = True except ImportError: pass patch_thread_ident() class CeleryCommand(BaseCommand): options = BaseCommand.option_list skip_opts = ['--app', '--loader', '--config'] keep_base_opts = False def get_version(self): return 'celery %s\ndjango-celery %s' % (celery.__version__, djcelery.__version__) def execute(self, *args, **options): broker = options.get('broker') if broker: self.set_broker(broker) super(CeleryCommand, self).execute(*args, **options) def set_broker(self, broker): os.environ['CELERY_BROKER_URL'] = broker def run_from_argv(self, argv): self.handle_default_options(argv[2:]) return super(CeleryCommand, self).run_from_argv(argv) def handle_default_options(self, argv): acc = [] broker = None for i, arg in enumerate(argv): if '--settings=' in arg: _, settings_module = arg.split('=') os.environ['DJANGO_SETTINGS_MODULE'] = settings_module elif '--pythonpath=' in arg: _, pythonpath = arg.split('=') sys.path.insert(0, pythonpath) elif '--broker=' in arg: _, broker = arg.split('=') elif arg == '-b': broker = argv[i + 1] else: acc.append(arg) if broker: self.set_broker(broker) return argv if self.keep_base_opts else acc def die(self, msg): sys.stderr.write(msg) sys.stderr.write('\n') sys.exit() @property def option_list(self): return [x for x in self.options if x._long_opts[0] not in self.skip_opts]
true
true
f7181bc2790949201ed0b3f57763455f00d8b77a
28,933
py
Python
Simulador.py
edrhat/simulator
d243443c84ccb3e4efa880990d11b395125d16d3
[ "MIT" ]
null
null
null
Simulador.py
edrhat/simulator
d243443c84ccb3e4efa880990d11b395125d16d3
[ "MIT" ]
null
null
null
Simulador.py
edrhat/simulator
d243443c84ccb3e4efa880990d11b395125d16d3
[ "MIT" ]
null
null
null
from tkinter import * from tkinter import messagebox import tkinter as tk from tkinter import ttk #IMAGENS DEFEITO: 240X240 class Tela: def fechar(self, event): janela.destroy() exit() def fecharPc(self, event): self.lb_simulador.place_forget() self.imgFundo.place_forget() self.imgg2.place_forget() self.lbGabinete.config(bg="white") lbMonitor.place(x=100, y=30) self.imggg.place_forget() self.imgg3.place_forget() self.imgg4.place_forget() self.imgg5.place_forget() self.imgg6.place_forget() self.imgg7.place_forget() self.imgg8.place_forget() self.imgg9.place_forget() def __init__(self, master): global lbMonitor monitor = PhotoImage(file="monitor.png") lbMonitor = Label(image=monitor) lbMonitor.monitor = monitor lbMonitor.place(x=100, y=30) gabinete = PhotoImage(file="gabinete.png") self.lbGabinete = Label(janela, image=gabinete) self.lbGabinete.gabinete = gabinete self.lbGabinete.place(x=970, y=285) self.lbGabinete.bind("<Enter>", self.abrirPc) self.lbGabinete.bind("<Leave>", self.fecharPc) self.lbGabinete.bind("<Button-1>", self.defeitos) teclado = PhotoImage(file="teclado.png") lbTeclado = Label(janela, image=teclado) lbTeclado.teclado = teclado lbTeclado.place(x=50, y=530) delete = PhotoImage(file="delete.png") lbDelete = Label(janela, image=delete) lbDelete.delete = delete lbDelete.config(bg="red") lbDelete.bind("<Button-1>", self.bios) lbDelete.place(x=842, y=722) self.sair = Button(janela, text="[X]") self.sair["font"] = ("Arial", "15") self.sair.config(bg="red", foreground="white") self.sair.place(x=1200, y=30) self.sair.bind("<Button-1>", self.fechar) def defeitos(self, event): janela2 = Tk() self.p = Label(janela2, text="O computador liga normalmente mas não aparece nada\n no monitor. Quais peças devem ser testadas ?") self.p["font"] = ("Lucida console", "30") self.p.config(bg="black", foreground="limegreen") self.p.place(x=140, y=30) img_monitor = PhotoImage(master=janela2, file="monitor2.png") self.monitor2 = Label(janela2, image=img_monitor) self.monitor2.img_monitor = img_monitor self.monitor2.place(x=120,y=200) img_placa = PhotoImage(master=janela2, file="placa2.png") self.placa = Label(janela2, image=img_placa) self.placa.img_placa = img_placa self.placa.place(x=420,y=200) img_hd = PhotoImage(master=janela2, file="hd2.png") self.hd = Label(janela2, image=img_hd) self.hd.img_hd = img_hd self.hd.place(x=720,y=200) img_gpu = PhotoImage(master=janela2, file="gpu2.png") self.gpu = Label(janela2, image=img_gpu) self.gpu.img_gpu = img_gpu self.gpu.place(x=1020,y=200) janela.title("Simulador de defeitos") janela2.geometry("1400x830+50+5") def abrirPc(self, event): global lbMonitor self.lb_simulador = Label(janela, text="Clique para iniciar\n simulador de defeitos") self.lb_simulador["font"] = ("Arial", "20") self.lb_simulador.config(bg="black", foreground="white") self.lb_simulador.place(x=970, y=210) lbMonitor.place(x=1800, y=10) fundobranco = PhotoImage(file="fundobranco.png") self.imgFundo = Label(janela, image=fundobranco) self.imgFundo.fundobranco = fundobranco self.imgFundo.config(bg="white") self.imgFundo.place(x=80,y=30) gabineteAberto = PhotoImage(file="gabineteAberto.png") self.imggg = Label(janela, image=gabineteAberto) self.imggg.gabineteAberto = gabineteAberto self.lbGabinete.config(bg="green") self.imggg.place(x=60,y=100) hd = PhotoImage(file="hd.png") self.imgg2 = Label(janela, image=hd) self.imgg2.hd = hd self.imgg2.config(bg="green") self.lbGabinete.config(bg="green") self.imgg2.place(x=500,y=30) fonte = PhotoImage(file="fonte.png") self.imgg3 = Label(janela, image=fonte) self.imgg3.fonte = fonte self.imgg3.config(bg="green") self.lbGabinete.config(bg="green") self.imgg3.place(x=650,y=30) cpu = PhotoImage(file="cpu.png") self.imgg4 = Label(janela, image=cpu) self.imgg4.cpu = cpu self.imgg4.config(bg="green") self.lbGabinete.config(bg="green") self.imgg4.place(x=800,y=30) placa = PhotoImage(file="placa.png") self.imgg5 = Label(janela, image=placa) self.imgg5.placa = placa self.imgg5.config(bg="green") self.lbGabinete.config(bg="green") self.imgg5.place(x=500,y=200) memoria = PhotoImage(file="memoria.png") self.imgg6 = Label(janela, image=memoria) self.imgg6.memoria = memoria self.imgg6.config(bg="green") self.lbGabinete.config(bg="green") self.imgg6.place(x=650,y=200) sata = PhotoImage(file="sata.png") self.imgg7 = Label(janela, image=sata) self.imgg7.sata = sata self.imgg7.config(bg="green") self.lbGabinete.config(bg="green") self.imgg7.place(x=800,y=200) cooler = PhotoImage(file="cooler.png") self.imgg8 = Label(janela, image=cooler) self.imgg8.cooler = cooler self.imgg8.config(bg="green") self.lbGabinete.config(bg="green") self.imgg8.place(x=500,y=370) gpu = PhotoImage(file="gpu.png") self.imgg9 = Label(janela, image=gpu) self.imgg9.gpu = gpu self.imgg9.config(bg="green") self.lbGabinete.config(bg="green") self.imgg9.place(x=650,y=370) def bios(self, event): janela2 = tk.Tk() #Label inicial p1 = tk.Label(janela2,foreground="white",background="#00008B",text="CMOS Setup Utility - Copyright (C) 1984-1999 Award Software") p1["font"] = ("Lucida Console","18") p1.pack(pady=7,padx=7,ipady=20,ipadx=7) linhaH = tk.Label(janela2,foreground="white",background="#00008B",text="____________________________________________________________________") linhaH["font"] = ("Lucida Console","18") linhaH.place(x=0,y=60) linhaV = tk.Label(janela2,foreground="white",background="#00008B",text="|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n") linhaV["font"] = ("Lucida Console","12") linhaV.place(x=470,y=90) #Label 1 self.p2 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Standard CMOS Features") self.p2["font"] = ("Lucida Console","15") self.p2.place(x=80, y=100) #Label 2 self.p3 = tk.Label(janela2,foreground="yellow",background="red",text="> Advanced BIOS Features") self.p3["font"] = ("Lucida Console","15") self.p3.place(x=80, y=140) self.p3.bind("<Button-1>", self.bios2) #Label 3 p4 = tk.Label(janela2, foreground="#FFD700",background="#00008B",text="> Advanced Chipset Features") p4["font"] = ("Lucida Console","15") p4.place(x=80, y=180) #Label 4 p5 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Integrated Peripherials") p5["font"] = ("Lucida Console","15") p5.place(x=80, y=220) #Label 5 p6 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Power Management Setup") p6["font"] = ("Lucida Console","15") p6.place(x=80, y=260) #Label 6 p7 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> PnP/PCI Configurations") p7["font"] = ("Lucida Console","15") p7.place(x=80, y=300) #Label 7 p8 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> PC Health Status") p8["font"] = ("Lucida Console","15") p8.place(x=80, y=340) #/////////////////////////////////////////////////////////////////////////////////// #Label 8 p9 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Frequency/Voltage Control") p9["font"] = ("Lucida Console","15") p9.place(x=520, y=100) #Label 9 p10 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Load Fail-Safe Defaults") p10["font"] = ("Lucida Console","15") p10.place(x=520, y=140) #Label 10 p11 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Load Optimized Defaults") p11["font"] = ("Lucida Console","15") p11.place(x=520, y=180) #Label 11 p12 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Set Supervisor Password") p12["font"] = ("Lucida Console","15") p12.place(x=520, y=220) #Label 12 p13 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Set User Password") p13["font"] = ("Lucida Console","15") p13.place(x=520, y=260) #Label 13 p14 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="Save & Exit Setup") p14["font"] = ("Lucida Console","15") p14.place(x=520, y=300) #Label 14 p15 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="Exit Without Saving") p15["font"] = ("Lucida Console","15") p15.place(x=520, y=300) #Esc esc = tk.Label(janela2,foreground="white",background="#00008B",text="Esc : Quit") esc["font"] = ("Lucida Console","15") esc.place(x=23, y=470) #F10 f10 = tk.Label(janela2,foreground="white",background="#00008B",text="F10 : Save & Exit Setup") f10["font"] = ("Lucida Console","15") f10.place(x=23, y=498) #Rodapé rodape = tk.Label(janela2, text="Time, Date, Hard Disk Type. . .") rodape["font"] = ("Helvetica","16") rodape.configure(background="#00008B", foreground="#FFD700") rodape.place(x=280,y=580) janela2.title("BIOS") janela2.geometry("880x640+200+30") janela2.config(bg="#00008B") janela2.config(cursor="hand2") janela2.resizable(width=False, height=False) janela2.mainloop() def fecharBios(self, event): janela2.destroy() def bios2(self, event): jan2= tk.Tk() jan2.configure(bg="#00008B") jan2.geometry('880x700+200+20') jan2.config(cursor="hand2") jan2.resizable(width=False, height=False) jan2.title("Ordem de Boot") #Label inicial self.lb1 = tk.Label(jan2,foreground="white",background="#00008B",text="Phoenix - Award BIOS CMOS Setup Utility\nAdvanced BIOS Features") self.lb1["font"] = ("Lucida Console","18") self.lb1.pack(pady=7,padx=7,ipady=15,ipadx=7) #Linha horizontal self.l1 = tk.Label(jan2,foreground="white",background="#00008B",text="____________________________________________________________________________") self.l1["font"] = ("Lucida Console","18") self.l1.place(x=0,y=70) #Linha vertical self.l2 = tk.Label(jan2,foreground="white",background="#00008B",text="|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|") self.l2["font"] = ("Lucida Console","15") self.l2.place(x=630, y=95) #Label 1 self.lb3 = tk.Label(jan2,foreground="white",background="#00008B",text="Virus Warning") self.lb3["font"] = ("Lucida Console","15") self.lb3.place(x=30, y=100) self.lb4 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.lb4["font"] = ("Lucida Console","15") self.lb4.place(x=400, y=100) self.lb5 = tk.Label(jan2,foreground="white",background="#00008B",text="CPU L1 Cache") self.lb5["font"] = ("Lucida Console","15") self.lb5.place(x=30, y=130) self.lb6 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Enabled") self.lb6["font"] = ("Lucida Console","15") self.lb6.place(x=400, y=130) self.lb7 = tk.Label(jan2,foreground="white",background="#00008B",text="CPU L2 Cache") self.lb7["font"] = ("Lucida Console","15") self.lb7.place(x=30, y=160) self.lb8 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Enabled") self.lb8["font"] = ("Lucida Console","15") self.lb8.place(x=400, y=160) self.lb9 = tk.Label(jan2,foreground="white",background="#00008B",text="Quick Power On Self Test") self.lb9["font"] = ("Lucida Console","15") self.lb9.place(x=30, y=190) self.lb10 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Enabled") self.lb10["font"] = ("Lucida Console","15") self.lb10.place(x=400, y=190) self.l11 = tk.Label(jan2,foreground="white",background="#00008B",text="HDD Boot Sprite") self.l11["font"] = ("Lucida Console","15") self.l11.place(x=30, y=220) self.l12 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.l12["font"] = ("Lucida Console","15") self.l12.place(x=400, y=220) self.l13 = tk.Label(jan2,foreground="white",background="#00008B",text="First Boot Device") self.l13["font"] = ("Lucida Console","15") self.l13.place(x=30, y=250) self.l14 = tk.Label(jan2,foreground="#FFD700",background="red",text="CD-ROM") self.l14["font"] = ("Lucida Console","15") self.l14.place(x=400, y=250) self.l14.bind("<Button-1>", self.boot) self.l15 = tk.Label(jan2,foreground="white",background="#00008B",text="Second Boot Device") self.l15["font"] = ("Lucida Console","15") self.l15.place(x=30, y=280) self.l16 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="HDD-0") self.l16["font"] = ("Lucida Console","15") self.l16.place(x=400, y=280) self.l17 = tk.Label(jan2,foreground="white",background="#00008B",text="Third Boot Device") self.l17["font"] = ("Lucida Console","15") self.l17.place(x=30, y=310) self.l18 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.l18["font"] = ("Lucida Console","15") self.l18.place(x=400, y=310) self.l19 = tk.Label(jan2,foreground="white",background="#00008B",text="Boot Other Device") self.l19["font"] = ("Lucida Console","15") self.l19.place(x=30, y=340) self.l20 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.l20["font"] = ("Lucida Console","15") self.l20.place(x=400, y=340) self.l21 = tk.Label(jan2,foreground="white",background="#00008B",text="Swap Floppy Seek") self.l21["font"] = ("Lucida Console","15") self.l21.place(x=30, y=370) self.l22 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.l22["font"] = ("Lucida Console","15") self.l22.place(x=400, y=370) self.l23 = tk.Label(jan2,foreground="white",background="#00008B",text="Boot Up Floppy Seek") self.l23["font"] = ("Lucida Console","15") self.l23.place(x=30, y=400) self.l24 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Enabled") self.l24["font"] = ("Lucida Console","15") self.l24.place(x=400, y=400) self.l25 = tk.Label(jan2,foreground="white",background="#00008B",text="Boot Up NumLock Status") self.l25["font"] = ("Lucida Console","15") self.l25.place(x=30, y=430) self.l26 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="On") self.l26["font"] = ("Lucida Console","15") self.l26.place(x=400, y=430) self.l27 = tk.Label(jan2,foreground="white",background="#00008B",text="Gate A20 Option") self.l27["font"] = ("Lucida Console","15") self.l27.place(x=30, y=460) self.l28 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Normal") self.l28["font"] = ("Lucida Console","15") self.l28.place(x=400, y=460) self.l29 = tk.Label(jan2,foreground="white",background="#00008B",text="Typematic Rate Setting") self.l29["font"] = ("Lucida Console","15") self.l29.place(x=30, y=490) self.l30 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.l30["font"] = ("Lucida Console","15") self.l30.place(x=400, y=490) self.l31 = tk.Label(jan2,foreground="#1E90FF",background="#00008B",text="x Typematic Rate (Chars/Sec)") self.l31["font"] = ("Lucida Console","15") self.l31.place(x=9, y=520) self.l32 = tk.Label(jan2,foreground="#1E90FF",background="#00008B",text="6") self.l32["font"] = ("Lucida Console","15") self.l32.place(x=400, y=520) self.l33 = tk.Label(jan2,foreground="#1E90FF",background="#00008B",text="x Typematic Delay (Msec)") self.l33["font"] = ("Lucida Console","15") self.l33.place(x=9, y=550) self.l34 = tk.Label(jan2,foreground="#1E90FF",background="#00008B",text="250") self.l34["font"] = ("Lucida Console","15") self.l34.place(x=400, y=550) self.l33 = tk.Label(jan2,foreground="white",background="#00008B",text="Security Option") self.l33["font"] = ("Lucida Console","15") self.l33.place(x=30, y=580) self.l34 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Setup") self.l34["font"] = ("Lucida Console","15") self.l34.place(x=400, y=580) self.l35 = tk.Label(jan2,foreground="white",background="#00008B",text="OS Select For DRAM > 64MB") self.l35["font"] = ("Lucida Console","15") self.l35.place(x=30, y=580) self.l36 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Non-OS2") self.l36["font"] = ("Lucida Console","15") self.l36.place(x=400, y=580) self.l35 = tk.Label(jan2,foreground="white",background="#00008B",text="HDD S.M.A.R.T. Capability") self.l35["font"] = ("Lucida Console","15") self.l35.place(x=30, y=610) self.l36 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Enabled") self.l36["font"] = ("Lucida Console","15") self.l36.place(x=400, y=610) self.l37 = tk.Label(jan2,foreground="white",background="#00008B",text="_____________________________________________________________________________________") self.l37["font"] = ("Lucida Console","15") self.l37.place(x=0, y=630) self.f10 = tk.Label(jan2,foreground="white",background="#00008B",text="F10: Save & Exit") self.f10["font"] = ("Lucida Console","15") self.f10.place(x=25, y=665) self.l38 = tk.Label(jan2,foreground="white",background="#00008B",text="Item Help") self.l38["font"] = ("Lucida Console","15") self.l38.place(x=705, y=120) self.l1 = tk.Label(jan2,foreground="white",background="#00008B",text="---------------------------------") self.l1["font"] = ("Lucida Console","15") self.l1.place(x=640, y=152) self.p17 = tk.Label(jan2,foreground="white",background="#00008B",text="-Menu Level >") self.p17["font"] = ("Lucida Console","15") self.p17.place(x=650, y=180) jan2.mainloop() def boot(self,event): messagebox.showinfo("WINDOWS 10", "Iniciando instalação...") #tux = PhotoImage(file="tux.png") #self.img0 = Label(janela, image=tux) #self.img0.tux = tux #self.img0.place(x=20, y=800) w1 = PhotoImage(file="w1.png") self.img1 = Label(janela, image=w1) self.img1.w1 = w1 self.img1.place(x=123, y=50) abnts = ["(Português Brasil ABNT-2)", "(Português Brasil ABNT)"] abnt = ttk.Combobox(values=abnts) abnt.set("(Português Brasil ABNT)") abnt.place(x=412, y=262, width=337, height=22) btAvancar = PhotoImage(file="btAvancar.png") self.img2 = Label(janela, image=btAvancar) self.img2.btAvancar = btAvancar self.img2.place(x=740, y=324) self.img2.bind("<Button-1>", self.avancar) def avancar(self, event): w2 = PhotoImage(file="w2.png") self.img3 = Label(janela, image=w2) self.img3.w2 = w2 self.img3.place(x=123, y=50) btInstalar = PhotoImage(file="btInstalar.png") self.img4 = Label(janela, image=btInstalar) self.img4.btInstalar = btInstalar self.img4.place(x=400, y=205) self.img4.bind("<Button-1>", self.instalar) def instalar(self, event): w3 = PhotoImage(file="w3.png") self.img5 = Label(janela, image=w3) self.img5.w3 = w3 self.img5.place(x=113, y=52) chave = PhotoImage(file="chave.png") self.img6 = Label(janela, image=chave) self.img6.chave = chave self.img6.place(x=485, y=290) self.img6.bind("<Button-1>", self.chaveW) btAvancar2 = PhotoImage(file="btAvancar2.png") self.img7 = Label(janela, image=btAvancar2) self.img7.btAvancar2 = btAvancar2 self.img7.place(x=726, y=300) self.img7.bind("<Button-1>", self.avancar2) def chaveW(self, event): self.img6.config(bg="lightblue") def avancar2(self, event): w4 = PhotoImage(file="w4.png") self.img8 = Label(janela, image=w4) self.img8.w4 = w4 self.img8.place(x=112, y=49) btAvancar3 = PhotoImage(file="btAvancar3.png") self.img9 = Label(janela, image=btAvancar3) self.img9.btAvancar3 = btAvancar3 self.img9.place(x=726, y=300) self.img9.bind("<Button-1>", self.avancar3) def avancar3(self, event): w5 = PhotoImage(file="w5.png") self.img10 = Label(janela, image=w5) self.img10.w5 = w5 self.img10.place(x=112, y=49) btAvancar4 = PhotoImage(file="btAvancar4.png") self.img11 = Label(janela, image=btAvancar4) self.img11.btAvancar4 = btAvancar4 self.img11.place(x=726, y=305) self.img11.bind("<Button-1>", self.avancar4) def avancar4(self, event): w6 = PhotoImage(file="w6.png") self.img12 = Label(janela, image=w6) self.img12.w6 = w6 self.img12.place(x=112, y=49) personalizada = PhotoImage(file="personalizada.png") self.img13 = Label(janela, image=personalizada) self.img13.personalizada = personalizada self.img13.place(x=206, y=205) self.img13.bind("<Button-1>", self.avancar5) def avancar5(self, event): w7 = PhotoImage(file="w7.png") self.img14 = Label(janela, image=w7) self.img14.w7 = w7 self.img14.place(x=112, y=49) formatar = PhotoImage(file="formatar.png") self.img15 = Label(janela, image=formatar) self.img15.formatar = formatar self.img15.place(x=460, y=238) self.img15.bind("<Button-1>", self.formatarW) btAvancar6 = PhotoImage(file="btAvancar6.png") self.img16 = Label(janela, image=btAvancar6) self.img16.btAvancar6 = btAvancar6 self.img16.place(x=726, y=310) self.img16.bind("<Button-1>", self.avancar6) def formatarW(self, event): messagebox.showwarning("Formatação Windows 10", "TODOS OS DADOS DESSA PARTIÇÃO SERÃO EXCLUÍDOS !!") def avancar6(self, event): w8 = PhotoImage(file="w8.png") self.img18 = Label(janela, image=w8) self.img18.w8 = w8 self.img18.place(x=112, y=49) self.img18.bind("<Button-1>", self.win) def win(self, event): w9 = PhotoImage(file="w9.png") self.img19 = Label(janela, image=w9) self.img19.w9 = w9 self.img19.place(x=112, y=49) self.img19.bind("<Button-1>", self.win10) def win10(self, event): w10 = PhotoImage(file="w10.png") self.img20 = Label(janela, image=w10) self.img20.w10 = w10 self.img20.place(x=112, y=49) iniciar = PhotoImage(file="iniciar.png") self.img21 = Label(janela, image=iniciar) self.img21.iniciar = iniciar self.img21.place(x=112, y=354) self.img21.bind("<Enter>", self.gerenciador) self.img21.bind("<Leave>", self.fecharGerenciador) chrome = PhotoImage(file="chrome.png") self.img23 = Label(janela, image=chrome) self.img23.chrome = chrome self.img23.place(x=600, y=100) self.img23.bind("<Enter>", self.chrome) self.img23.bind("<Leave>", self.chromeSair) winrar = PhotoImage(file="winrar.png") self.img26 = Label(janela, image=winrar) self.img26.winrar = winrar self.img26.place(x=700, y=100) self.img26.bind("<Enter>", self.winrar) self.img26.bind("<Leave>", self.winrarSair) reader = PhotoImage(file="reader.png") self.img27 = Label(janela, image=reader) self.img27.reader = reader self.img27.place(x=600, y=200) self.img27.bind("<Enter>", self.reader) self.img27.bind("<Leave>", self.readerSair) driver = PhotoImage(file="driver.png") self.img28 = Label(janela, image=driver) self.img28.driver = driver self.img28.place(x=700, y=200) self.img28.bind("<Enter>", self.driver) self.img28.bind("<Leave>", self.driverSair) def reader(self, event): telaReader = PhotoImage(file="telaReader.png") self.img27 = Label(janela, image=telaReader) self.img27.telaReader = telaReader self.img27.place(x=150, y=80) def driver(self, event): telaDriver = PhotoImage(file="telaDriver.png") self.img28 = Label(janela, image=telaDriver) self.img28.telaDriver = telaDriver self.img28.place(x=150, y=80) def chrome(self, event): telaChrome = PhotoImage(file="telaChrome.png") self.img24 = Label(janela, image=telaChrome) self.img24.telaChrome = telaChrome self.img24.place(x=150, y=80) def winrar(self, event): telaWinrar = PhotoImage(file="telaWinrar.png") self.img26 = Label(janela, image=telaWinrar) self.img26.telaWinrar = telaWinrar self.img26.place(x=150, y=80) def chromeSair(self, event): self.img24.place(x=1900, y=80) def driverSair(self, event): self.img28.place(x=1900, y=80) def readerSair(self, event): self.img27.place(x=1900, y=80) def winrarSair(self, event): self.img26.place(x=1900, y=80) def gerenciador(self, event): gerenciador = PhotoImage(file="gerenciador.png") self.img22 = Label(janela, image=gerenciador) self.img22.gerenciador = gerenciador self.img22.place(x=112, y=54) def fecharGerenciador(self, event): self.img22.place(x=1900, y=0) janela = Tk() Tela(janela) janela.title("Simulador Formatação") janela.geometry("1400x830+50+5") janela.resizable(width=False, height=False) janela.config(bg="white") janela.config(cursor="hand2") janela.iconbitmap("placa2.ico") janela.mainloop()
35.544226
169
0.571631
from tkinter import * from tkinter import messagebox import tkinter as tk from tkinter import ttk class Tela: def fechar(self, event): janela.destroy() exit() def fecharPc(self, event): self.lb_simulador.place_forget() self.imgFundo.place_forget() self.imgg2.place_forget() self.lbGabinete.config(bg="white") lbMonitor.place(x=100, y=30) self.imggg.place_forget() self.imgg3.place_forget() self.imgg4.place_forget() self.imgg5.place_forget() self.imgg6.place_forget() self.imgg7.place_forget() self.imgg8.place_forget() self.imgg9.place_forget() def __init__(self, master): global lbMonitor monitor = PhotoImage(file="monitor.png") lbMonitor = Label(image=monitor) lbMonitor.monitor = monitor lbMonitor.place(x=100, y=30) gabinete = PhotoImage(file="gabinete.png") self.lbGabinete = Label(janela, image=gabinete) self.lbGabinete.gabinete = gabinete self.lbGabinete.place(x=970, y=285) self.lbGabinete.bind("<Enter>", self.abrirPc) self.lbGabinete.bind("<Leave>", self.fecharPc) self.lbGabinete.bind("<Button-1>", self.defeitos) teclado = PhotoImage(file="teclado.png") lbTeclado = Label(janela, image=teclado) lbTeclado.teclado = teclado lbTeclado.place(x=50, y=530) delete = PhotoImage(file="delete.png") lbDelete = Label(janela, image=delete) lbDelete.delete = delete lbDelete.config(bg="red") lbDelete.bind("<Button-1>", self.bios) lbDelete.place(x=842, y=722) self.sair = Button(janela, text="[X]") self.sair["font"] = ("Arial", "15") self.sair.config(bg="red", foreground="white") self.sair.place(x=1200, y=30) self.sair.bind("<Button-1>", self.fechar) def defeitos(self, event): janela2 = Tk() self.p = Label(janela2, text="O computador liga normalmente mas não aparece nada\n no monitor. Quais peças devem ser testadas ?") self.p["font"] = ("Lucida console", "30") self.p.config(bg="black", foreground="limegreen") self.p.place(x=140, y=30) img_monitor = PhotoImage(master=janela2, file="monitor2.png") self.monitor2 = Label(janela2, image=img_monitor) self.monitor2.img_monitor = img_monitor self.monitor2.place(x=120,y=200) img_placa = PhotoImage(master=janela2, file="placa2.png") self.placa = Label(janela2, image=img_placa) self.placa.img_placa = img_placa self.placa.place(x=420,y=200) img_hd = PhotoImage(master=janela2, file="hd2.png") self.hd = Label(janela2, image=img_hd) self.hd.img_hd = img_hd self.hd.place(x=720,y=200) img_gpu = PhotoImage(master=janela2, file="gpu2.png") self.gpu = Label(janela2, image=img_gpu) self.gpu.img_gpu = img_gpu self.gpu.place(x=1020,y=200) janela.title("Simulador de defeitos") janela2.geometry("1400x830+50+5") def abrirPc(self, event): global lbMonitor self.lb_simulador = Label(janela, text="Clique para iniciar\n simulador de defeitos") self.lb_simulador["font"] = ("Arial", "20") self.lb_simulador.config(bg="black", foreground="white") self.lb_simulador.place(x=970, y=210) lbMonitor.place(x=1800, y=10) fundobranco = PhotoImage(file="fundobranco.png") self.imgFundo = Label(janela, image=fundobranco) self.imgFundo.fundobranco = fundobranco self.imgFundo.config(bg="white") self.imgFundo.place(x=80,y=30) gabineteAberto = PhotoImage(file="gabineteAberto.png") self.imggg = Label(janela, image=gabineteAberto) self.imggg.gabineteAberto = gabineteAberto self.lbGabinete.config(bg="green") self.imggg.place(x=60,y=100) hd = PhotoImage(file="hd.png") self.imgg2 = Label(janela, image=hd) self.imgg2.hd = hd self.imgg2.config(bg="green") self.lbGabinete.config(bg="green") self.imgg2.place(x=500,y=30) fonte = PhotoImage(file="fonte.png") self.imgg3 = Label(janela, image=fonte) self.imgg3.fonte = fonte self.imgg3.config(bg="green") self.lbGabinete.config(bg="green") self.imgg3.place(x=650,y=30) cpu = PhotoImage(file="cpu.png") self.imgg4 = Label(janela, image=cpu) self.imgg4.cpu = cpu self.imgg4.config(bg="green") self.lbGabinete.config(bg="green") self.imgg4.place(x=800,y=30) placa = PhotoImage(file="placa.png") self.imgg5 = Label(janela, image=placa) self.imgg5.placa = placa self.imgg5.config(bg="green") self.lbGabinete.config(bg="green") self.imgg5.place(x=500,y=200) memoria = PhotoImage(file="memoria.png") self.imgg6 = Label(janela, image=memoria) self.imgg6.memoria = memoria self.imgg6.config(bg="green") self.lbGabinete.config(bg="green") self.imgg6.place(x=650,y=200) sata = PhotoImage(file="sata.png") self.imgg7 = Label(janela, image=sata) self.imgg7.sata = sata self.imgg7.config(bg="green") self.lbGabinete.config(bg="green") self.imgg7.place(x=800,y=200) cooler = PhotoImage(file="cooler.png") self.imgg8 = Label(janela, image=cooler) self.imgg8.cooler = cooler self.imgg8.config(bg="green") self.lbGabinete.config(bg="green") self.imgg8.place(x=500,y=370) gpu = PhotoImage(file="gpu.png") self.imgg9 = Label(janela, image=gpu) self.imgg9.gpu = gpu self.imgg9.config(bg="green") self.lbGabinete.config(bg="green") self.imgg9.place(x=650,y=370) def bios(self, event): janela2 = tk.Tk() p1 = tk.Label(janela2,foreground="white",background="#00008B",text="CMOS Setup Utility - Copyright (C) 1984-1999 Award Software") p1["font"] = ("Lucida Console","18") p1.pack(pady=7,padx=7,ipady=20,ipadx=7) linhaH = tk.Label(janela2,foreground="white",background="#00008B",text="____________________________________________________________________") linhaH["font"] = ("Lucida Console","18") linhaH.place(x=0,y=60) linhaV = tk.Label(janela2,foreground="white",background="#00008B",text="|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n") linhaV["font"] = ("Lucida Console","12") linhaV.place(x=470,y=90) self.p2 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Standard CMOS Features") self.p2["font"] = ("Lucida Console","15") self.p2.place(x=80, y=100) self.p3 = tk.Label(janela2,foreground="yellow",background="red",text="> Advanced BIOS Features") self.p3["font"] = ("Lucida Console","15") self.p3.place(x=80, y=140) self.p3.bind("<Button-1>", self.bios2) p4 = tk.Label(janela2, foreground="#FFD700",background="#00008B",text="> Advanced Chipset Features") p4["font"] = ("Lucida Console","15") p4.place(x=80, y=180) p5 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Integrated Peripherials") p5["font"] = ("Lucida Console","15") p5.place(x=80, y=220) p6 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Power Management Setup") p6["font"] = ("Lucida Console","15") p6.place(x=80, y=260) p7 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> PnP/PCI Configurations") p7["font"] = ("Lucida Console","15") p7.place(x=80, y=300) p8 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> PC Health Status") p8["font"] = ("Lucida Console","15") p8.place(x=80, y=340) p9 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Frequency/Voltage Control") p9["font"] = ("Lucida Console","15") p9.place(x=520, y=100) p10 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Load Fail-Safe Defaults") p10["font"] = ("Lucida Console","15") p10.place(x=520, y=140) p11 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Load Optimized Defaults") p11["font"] = ("Lucida Console","15") p11.place(x=520, y=180) p12 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Set Supervisor Password") p12["font"] = ("Lucida Console","15") p12.place(x=520, y=220) p13 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="> Set User Password") p13["font"] = ("Lucida Console","15") p13.place(x=520, y=260) p14 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="Save & Exit Setup") p14["font"] = ("Lucida Console","15") p14.place(x=520, y=300) p15 = tk.Label(janela2,foreground="#FFD700",background="#00008B",text="Exit Without Saving") p15["font"] = ("Lucida Console","15") p15.place(x=520, y=300) esc = tk.Label(janela2,foreground="white",background="#00008B",text="Esc : Quit") esc["font"] = ("Lucida Console","15") esc.place(x=23, y=470) f10 = tk.Label(janela2,foreground="white",background="#00008B",text="F10 : Save & Exit Setup") f10["font"] = ("Lucida Console","15") f10.place(x=23, y=498) rodape = tk.Label(janela2, text="Time, Date, Hard Disk Type. . .") rodape["font"] = ("Helvetica","16") rodape.configure(background="#00008B", foreground="#FFD700") rodape.place(x=280,y=580) janela2.title("BIOS") janela2.geometry("880x640+200+30") janela2.config(bg="#00008B") janela2.config(cursor="hand2") janela2.resizable(width=False, height=False) janela2.mainloop() def fecharBios(self, event): janela2.destroy() def bios2(self, event): jan2= tk.Tk() jan2.configure(bg="#00008B") jan2.geometry('880x700+200+20') jan2.config(cursor="hand2") jan2.resizable(width=False, height=False) jan2.title("Ordem de Boot") self.lb1 = tk.Label(jan2,foreground="white",background="#00008B",text="Phoenix - Award BIOS CMOS Setup Utility\nAdvanced BIOS Features") self.lb1["font"] = ("Lucida Console","18") self.lb1.pack(pady=7,padx=7,ipady=15,ipadx=7) self.l1 = tk.Label(jan2,foreground="white",background="#00008B",text="____________________________________________________________________________") self.l1["font"] = ("Lucida Console","18") self.l1.place(x=0,y=70) self.l2 = tk.Label(jan2,foreground="white",background="#00008B",text="|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|\n|") self.l2["font"] = ("Lucida Console","15") self.l2.place(x=630, y=95) self.lb3 = tk.Label(jan2,foreground="white",background="#00008B",text="Virus Warning") self.lb3["font"] = ("Lucida Console","15") self.lb3.place(x=30, y=100) self.lb4 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.lb4["font"] = ("Lucida Console","15") self.lb4.place(x=400, y=100) self.lb5 = tk.Label(jan2,foreground="white",background="#00008B",text="CPU L1 Cache") self.lb5["font"] = ("Lucida Console","15") self.lb5.place(x=30, y=130) self.lb6 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Enabled") self.lb6["font"] = ("Lucida Console","15") self.lb6.place(x=400, y=130) self.lb7 = tk.Label(jan2,foreground="white",background="#00008B",text="CPU L2 Cache") self.lb7["font"] = ("Lucida Console","15") self.lb7.place(x=30, y=160) self.lb8 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Enabled") self.lb8["font"] = ("Lucida Console","15") self.lb8.place(x=400, y=160) self.lb9 = tk.Label(jan2,foreground="white",background="#00008B",text="Quick Power On Self Test") self.lb9["font"] = ("Lucida Console","15") self.lb9.place(x=30, y=190) self.lb10 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Enabled") self.lb10["font"] = ("Lucida Console","15") self.lb10.place(x=400, y=190) self.l11 = tk.Label(jan2,foreground="white",background="#00008B",text="HDD Boot Sprite") self.l11["font"] = ("Lucida Console","15") self.l11.place(x=30, y=220) self.l12 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.l12["font"] = ("Lucida Console","15") self.l12.place(x=400, y=220) self.l13 = tk.Label(jan2,foreground="white",background="#00008B",text="First Boot Device") self.l13["font"] = ("Lucida Console","15") self.l13.place(x=30, y=250) self.l14 = tk.Label(jan2,foreground="#FFD700",background="red",text="CD-ROM") self.l14["font"] = ("Lucida Console","15") self.l14.place(x=400, y=250) self.l14.bind("<Button-1>", self.boot) self.l15 = tk.Label(jan2,foreground="white",background="#00008B",text="Second Boot Device") self.l15["font"] = ("Lucida Console","15") self.l15.place(x=30, y=280) self.l16 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="HDD-0") self.l16["font"] = ("Lucida Console","15") self.l16.place(x=400, y=280) self.l17 = tk.Label(jan2,foreground="white",background="#00008B",text="Third Boot Device") self.l17["font"] = ("Lucida Console","15") self.l17.place(x=30, y=310) self.l18 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.l18["font"] = ("Lucida Console","15") self.l18.place(x=400, y=310) self.l19 = tk.Label(jan2,foreground="white",background="#00008B",text="Boot Other Device") self.l19["font"] = ("Lucida Console","15") self.l19.place(x=30, y=340) self.l20 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.l20["font"] = ("Lucida Console","15") self.l20.place(x=400, y=340) self.l21 = tk.Label(jan2,foreground="white",background="#00008B",text="Swap Floppy Seek") self.l21["font"] = ("Lucida Console","15") self.l21.place(x=30, y=370) self.l22 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.l22["font"] = ("Lucida Console","15") self.l22.place(x=400, y=370) self.l23 = tk.Label(jan2,foreground="white",background="#00008B",text="Boot Up Floppy Seek") self.l23["font"] = ("Lucida Console","15") self.l23.place(x=30, y=400) self.l24 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Enabled") self.l24["font"] = ("Lucida Console","15") self.l24.place(x=400, y=400) self.l25 = tk.Label(jan2,foreground="white",background="#00008B",text="Boot Up NumLock Status") self.l25["font"] = ("Lucida Console","15") self.l25.place(x=30, y=430) self.l26 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="On") self.l26["font"] = ("Lucida Console","15") self.l26.place(x=400, y=430) self.l27 = tk.Label(jan2,foreground="white",background="#00008B",text="Gate A20 Option") self.l27["font"] = ("Lucida Console","15") self.l27.place(x=30, y=460) self.l28 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Normal") self.l28["font"] = ("Lucida Console","15") self.l28.place(x=400, y=460) self.l29 = tk.Label(jan2,foreground="white",background="#00008B",text="Typematic Rate Setting") self.l29["font"] = ("Lucida Console","15") self.l29.place(x=30, y=490) self.l30 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Disabled") self.l30["font"] = ("Lucida Console","15") self.l30.place(x=400, y=490) self.l31 = tk.Label(jan2,foreground="#1E90FF",background="#00008B",text="x Typematic Rate (Chars/Sec)") self.l31["font"] = ("Lucida Console","15") self.l31.place(x=9, y=520) self.l32 = tk.Label(jan2,foreground="#1E90FF",background="#00008B",text="6") self.l32["font"] = ("Lucida Console","15") self.l32.place(x=400, y=520) self.l33 = tk.Label(jan2,foreground="#1E90FF",background="#00008B",text="x Typematic Delay (Msec)") self.l33["font"] = ("Lucida Console","15") self.l33.place(x=9, y=550) self.l34 = tk.Label(jan2,foreground="#1E90FF",background="#00008B",text="250") self.l34["font"] = ("Lucida Console","15") self.l34.place(x=400, y=550) self.l33 = tk.Label(jan2,foreground="white",background="#00008B",text="Security Option") self.l33["font"] = ("Lucida Console","15") self.l33.place(x=30, y=580) self.l34 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Setup") self.l34["font"] = ("Lucida Console","15") self.l34.place(x=400, y=580) self.l35 = tk.Label(jan2,foreground="white",background="#00008B",text="OS Select For DRAM > 64MB") self.l35["font"] = ("Lucida Console","15") self.l35.place(x=30, y=580) self.l36 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Non-OS2") self.l36["font"] = ("Lucida Console","15") self.l36.place(x=400, y=580) self.l35 = tk.Label(jan2,foreground="white",background="#00008B",text="HDD S.M.A.R.T. Capability") self.l35["font"] = ("Lucida Console","15") self.l35.place(x=30, y=610) self.l36 = tk.Label(jan2,foreground="#FFD700",background="#00008B",text="Enabled") self.l36["font"] = ("Lucida Console","15") self.l36.place(x=400, y=610) self.l37 = tk.Label(jan2,foreground="white",background="#00008B",text="_____________________________________________________________________________________") self.l37["font"] = ("Lucida Console","15") self.l37.place(x=0, y=630) self.f10 = tk.Label(jan2,foreground="white",background="#00008B",text="F10: Save & Exit") self.f10["font"] = ("Lucida Console","15") self.f10.place(x=25, y=665) self.l38 = tk.Label(jan2,foreground="white",background="#00008B",text="Item Help") self.l38["font"] = ("Lucida Console","15") self.l38.place(x=705, y=120) self.l1 = tk.Label(jan2,foreground="white",background="#00008B",text="---------------------------------") self.l1["font"] = ("Lucida Console","15") self.l1.place(x=640, y=152) self.p17 = tk.Label(jan2,foreground="white",background="#00008B",text="-Menu Level >") self.p17["font"] = ("Lucida Console","15") self.p17.place(x=650, y=180) jan2.mainloop() def boot(self,event): messagebox.showinfo("WINDOWS 10", "Iniciando instalação...") w1 = PhotoImage(file="w1.png") self.img1 = Label(janela, image=w1) self.img1.w1 = w1 self.img1.place(x=123, y=50) abnts = ["(Português Brasil ABNT-2)", "(Português Brasil ABNT)"] abnt = ttk.Combobox(values=abnts) abnt.set("(Português Brasil ABNT)") abnt.place(x=412, y=262, width=337, height=22) btAvancar = PhotoImage(file="btAvancar.png") self.img2 = Label(janela, image=btAvancar) self.img2.btAvancar = btAvancar self.img2.place(x=740, y=324) self.img2.bind("<Button-1>", self.avancar) def avancar(self, event): w2 = PhotoImage(file="w2.png") self.img3 = Label(janela, image=w2) self.img3.w2 = w2 self.img3.place(x=123, y=50) btInstalar = PhotoImage(file="btInstalar.png") self.img4 = Label(janela, image=btInstalar) self.img4.btInstalar = btInstalar self.img4.place(x=400, y=205) self.img4.bind("<Button-1>", self.instalar) def instalar(self, event): w3 = PhotoImage(file="w3.png") self.img5 = Label(janela, image=w3) self.img5.w3 = w3 self.img5.place(x=113, y=52) chave = PhotoImage(file="chave.png") self.img6 = Label(janela, image=chave) self.img6.chave = chave self.img6.place(x=485, y=290) self.img6.bind("<Button-1>", self.chaveW) btAvancar2 = PhotoImage(file="btAvancar2.png") self.img7 = Label(janela, image=btAvancar2) self.img7.btAvancar2 = btAvancar2 self.img7.place(x=726, y=300) self.img7.bind("<Button-1>", self.avancar2) def chaveW(self, event): self.img6.config(bg="lightblue") def avancar2(self, event): w4 = PhotoImage(file="w4.png") self.img8 = Label(janela, image=w4) self.img8.w4 = w4 self.img8.place(x=112, y=49) btAvancar3 = PhotoImage(file="btAvancar3.png") self.img9 = Label(janela, image=btAvancar3) self.img9.btAvancar3 = btAvancar3 self.img9.place(x=726, y=300) self.img9.bind("<Button-1>", self.avancar3) def avancar3(self, event): w5 = PhotoImage(file="w5.png") self.img10 = Label(janela, image=w5) self.img10.w5 = w5 self.img10.place(x=112, y=49) btAvancar4 = PhotoImage(file="btAvancar4.png") self.img11 = Label(janela, image=btAvancar4) self.img11.btAvancar4 = btAvancar4 self.img11.place(x=726, y=305) self.img11.bind("<Button-1>", self.avancar4) def avancar4(self, event): w6 = PhotoImage(file="w6.png") self.img12 = Label(janela, image=w6) self.img12.w6 = w6 self.img12.place(x=112, y=49) personalizada = PhotoImage(file="personalizada.png") self.img13 = Label(janela, image=personalizada) self.img13.personalizada = personalizada self.img13.place(x=206, y=205) self.img13.bind("<Button-1>", self.avancar5) def avancar5(self, event): w7 = PhotoImage(file="w7.png") self.img14 = Label(janela, image=w7) self.img14.w7 = w7 self.img14.place(x=112, y=49) formatar = PhotoImage(file="formatar.png") self.img15 = Label(janela, image=formatar) self.img15.formatar = formatar self.img15.place(x=460, y=238) self.img15.bind("<Button-1>", self.formatarW) btAvancar6 = PhotoImage(file="btAvancar6.png") self.img16 = Label(janela, image=btAvancar6) self.img16.btAvancar6 = btAvancar6 self.img16.place(x=726, y=310) self.img16.bind("<Button-1>", self.avancar6) def formatarW(self, event): messagebox.showwarning("Formatação Windows 10", "TODOS OS DADOS DESSA PARTIÇÃO SERÃO EXCLUÍDOS !!") def avancar6(self, event): w8 = PhotoImage(file="w8.png") self.img18 = Label(janela, image=w8) self.img18.w8 = w8 self.img18.place(x=112, y=49) self.img18.bind("<Button-1>", self.win) def win(self, event): w9 = PhotoImage(file="w9.png") self.img19 = Label(janela, image=w9) self.img19.w9 = w9 self.img19.place(x=112, y=49) self.img19.bind("<Button-1>", self.win10) def win10(self, event): w10 = PhotoImage(file="w10.png") self.img20 = Label(janela, image=w10) self.img20.w10 = w10 self.img20.place(x=112, y=49) iniciar = PhotoImage(file="iniciar.png") self.img21 = Label(janela, image=iniciar) self.img21.iniciar = iniciar self.img21.place(x=112, y=354) self.img21.bind("<Enter>", self.gerenciador) self.img21.bind("<Leave>", self.fecharGerenciador) chrome = PhotoImage(file="chrome.png") self.img23 = Label(janela, image=chrome) self.img23.chrome = chrome self.img23.place(x=600, y=100) self.img23.bind("<Enter>", self.chrome) self.img23.bind("<Leave>", self.chromeSair) winrar = PhotoImage(file="winrar.png") self.img26 = Label(janela, image=winrar) self.img26.winrar = winrar self.img26.place(x=700, y=100) self.img26.bind("<Enter>", self.winrar) self.img26.bind("<Leave>", self.winrarSair) reader = PhotoImage(file="reader.png") self.img27 = Label(janela, image=reader) self.img27.reader = reader self.img27.place(x=600, y=200) self.img27.bind("<Enter>", self.reader) self.img27.bind("<Leave>", self.readerSair) driver = PhotoImage(file="driver.png") self.img28 = Label(janela, image=driver) self.img28.driver = driver self.img28.place(x=700, y=200) self.img28.bind("<Enter>", self.driver) self.img28.bind("<Leave>", self.driverSair) def reader(self, event): telaReader = PhotoImage(file="telaReader.png") self.img27 = Label(janela, image=telaReader) self.img27.telaReader = telaReader self.img27.place(x=150, y=80) def driver(self, event): telaDriver = PhotoImage(file="telaDriver.png") self.img28 = Label(janela, image=telaDriver) self.img28.telaDriver = telaDriver self.img28.place(x=150, y=80) def chrome(self, event): telaChrome = PhotoImage(file="telaChrome.png") self.img24 = Label(janela, image=telaChrome) self.img24.telaChrome = telaChrome self.img24.place(x=150, y=80) def winrar(self, event): telaWinrar = PhotoImage(file="telaWinrar.png") self.img26 = Label(janela, image=telaWinrar) self.img26.telaWinrar = telaWinrar self.img26.place(x=150, y=80) def chromeSair(self, event): self.img24.place(x=1900, y=80) def driverSair(self, event): self.img28.place(x=1900, y=80) def readerSair(self, event): self.img27.place(x=1900, y=80) def winrarSair(self, event): self.img26.place(x=1900, y=80) def gerenciador(self, event): gerenciador = PhotoImage(file="gerenciador.png") self.img22 = Label(janela, image=gerenciador) self.img22.gerenciador = gerenciador self.img22.place(x=112, y=54) def fecharGerenciador(self, event): self.img22.place(x=1900, y=0) janela = Tk() Tela(janela) janela.title("Simulador Formatação") janela.geometry("1400x830+50+5") janela.resizable(width=False, height=False) janela.config(bg="white") janela.config(cursor="hand2") janela.iconbitmap("placa2.ico") janela.mainloop()
true
true
f7181c55922ded847f3c093a97e05cf3a83a7542
502
py
Python
descarteslabs/vectors/exceptions.py
carderne/descarteslabs-python
757b480efb8d58474a3bf07f1dbd90652b46ed64
[ "Apache-2.0" ]
167
2017-03-23T22:16:58.000Z
2022-03-08T09:19:30.000Z
descarteslabs/vectors/exceptions.py
carderne/descarteslabs-python
757b480efb8d58474a3bf07f1dbd90652b46ed64
[ "Apache-2.0" ]
93
2017-03-23T22:11:40.000Z
2021-12-13T18:38:53.000Z
descarteslabs/vectors/exceptions.py
carderne/descarteslabs-python
757b480efb8d58474a3bf07f1dbd90652b46ed64
[ "Apache-2.0" ]
46
2017-03-25T19:12:14.000Z
2021-08-15T18:04:29.000Z
class VectorException(Exception): """Base exception for Vector operations""" pass class WaitTimeoutError(VectorException): """The timeout period for a wait operation has been exceeded""" pass class FailedJobError(VectorException): """Used to indicate that an asynchronous job has failed""" pass class InvalidQueryException(VectorException): """The submitted query is invalid""" pass # FailedCopyError, use the FailedJobError FailedCopyError = FailedJobError
18.592593
67
0.737052
class VectorException(Exception): pass class WaitTimeoutError(VectorException): pass class FailedJobError(VectorException): pass class InvalidQueryException(VectorException): pass FailedCopyError = FailedJobError
true
true
f7181d74255d1aac4659dd861c34a79c119960a0
2,097
py
Python
permutation.py
kaixindelele/self_demo
cdde94de6d7fa2beb4d0cc9d14eedcb6228cf0af
[ "Apache-2.0" ]
null
null
null
permutation.py
kaixindelele/self_demo
cdde94de6d7fa2beb4d0cc9d14eedcb6228cf0af
[ "Apache-2.0" ]
null
null
null
permutation.py
kaixindelele/self_demo
cdde94de6d7fa2beb4d0cc9d14eedcb6228cf0af
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Mon Jul 9 14:56:07 2018 f(n) = n * f(n-1) and if a is a string variable a = "hello" b = a b = b+" world" print(b): hello world print(a): hello so "=" equal "copy" and creat a new date @author: lele """ a = "1234" #def permutation(a,size,n): # if n == 1: # print(new_array) # return # for i in range(size): # pass # #def main(a): # a = input("please input a string of integer:") # permutation(a,sizeof(a)/sizeof(int),n) print("size:",size) ls = range(1,size+1) minimum = 0 for figure in ls: minimum += figure * (10 ** (size-1-ls.index(figure))) maximum = list(str(minimum)) maximum.reverse() maximum = "".join(maximum) def swap(temp,a,b): temp = list(temp) temp[a],temp[b] = temp[b],temp[a] return temp #temp_ls = list(str(minimum)) temp_ls = list("123") size = len(temp_ls) print("a:",a) print("original temp_ls:",temp_ls) count = 0 while(1): if("".join(temp_ls) == maximum): break for i in range(size): if(temp_ls[size-i-1]>temp_ls[size-i-2]): roi = temp_ls[size-i-2:] a = size-i-2 a_value = temp_ls[a] second = [] for j in roi: if(j>a_value): second.append(j) print("second",second) b_value = min(second) b = temp_ls.index(b_value) print("a",a) print("b",b) temp_ls = swap(temp_ls,a,b) print("swap:",temp_ls) rest = temp_ls[size-i-1:] print("rest",rest) rest.reverse() temp_ls[size-i-1:] = rest print("finally temp_ls",temp_ls) count += 1 print("count:",count) print("--------------") break
19.063636
58
0.44206
a = "1234" print("size:",size) ls = range(1,size+1) minimum = 0 for figure in ls: minimum += figure * (10 ** (size-1-ls.index(figure))) maximum = list(str(minimum)) maximum.reverse() maximum = "".join(maximum) def swap(temp,a,b): temp = list(temp) temp[a],temp[b] = temp[b],temp[a] return temp temp_ls = list("123") size = len(temp_ls) print("a:",a) print("original temp_ls:",temp_ls) count = 0 while(1): if("".join(temp_ls) == maximum): break for i in range(size): if(temp_ls[size-i-1]>temp_ls[size-i-2]): roi = temp_ls[size-i-2:] a = size-i-2 a_value = temp_ls[a] second = [] for j in roi: if(j>a_value): second.append(j) print("second",second) b_value = min(second) b = temp_ls.index(b_value) print("a",a) print("b",b) temp_ls = swap(temp_ls,a,b) print("swap:",temp_ls) rest = temp_ls[size-i-1:] print("rest",rest) rest.reverse() temp_ls[size-i-1:] = rest print("finally temp_ls",temp_ls) count += 1 print("count:",count) print("--------------") break
true
true
f7181e6bab2403dd9cc3515a9e46f280c4a1f683
4,961
py
Python
airbyte-integrations/connectors/source-smartsheets/source_smartsheets/source.py
OTRI-Unipd/OTRI-airbyte
50eeeb773f75246e86c6e167b0cd7d2dda6efe0d
[ "MIT" ]
2
2022-03-02T13:46:05.000Z
2022-03-05T12:31:28.000Z
airbyte-integrations/connectors/source-smartsheets/source_smartsheets/source.py
OTRI-Unipd/OTRI-airbyte
50eeeb773f75246e86c6e167b0cd7d2dda6efe0d
[ "MIT" ]
5
2022-02-22T14:49:48.000Z
2022-03-19T10:43:08.000Z
airbyte-integrations/connectors/source-smartsheets/source_smartsheets/source.py
OTRI-Unipd/OTRI-airbyte
50eeeb773f75246e86c6e167b0cd7d2dda6efe0d
[ "MIT" ]
1
2022-03-11T06:21:24.000Z
2022-03-11T06:21:24.000Z
# # Copyright (c) 2021 Airbyte, Inc., all rights reserved. # import json from datetime import datetime from typing import Dict, Generator import smartsheet from airbyte_cdk import AirbyteLogger from airbyte_cdk.models import ( AirbyteCatalog, AirbyteConnectionStatus, AirbyteMessage, AirbyteRecordMessage, AirbyteStream, ConfiguredAirbyteCatalog, Status, Type, ) # helpers from airbyte_cdk.sources import Source def get_prop(col_type: str) -> Dict[str, any]: props = { "TEXT_NUMBER": {"type": "string"}, "DATE": {"type": "string", "format": "date"}, "DATETIME": {"type": "string", "format": "date-time"}, } return props.get(col_type, {"type": "string"}) def get_json_schema(sheet: Dict) -> Dict: column_info = {i["title"]: get_prop(i["type"]) for i in sheet["columns"]} json_schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": column_info, } return json_schema # main class definition class SourceSmartsheets(Source): def check(self, logger: AirbyteLogger, config: json) -> AirbyteConnectionStatus: try: access_token = config["access_token"] spreadsheet_id = config["spreadsheet_id"] smartsheet_client = smartsheet.Smartsheet(access_token) smartsheet_client.errors_as_exceptions(True) smartsheet_client.Sheets.get_sheet(spreadsheet_id) return AirbyteConnectionStatus(status=Status.SUCCEEDED) except Exception as e: if isinstance(e, smartsheet.exceptions.ApiError): err = e.error.result code = 404 if err.code == 1006 else err.code reason = f"{err.name}: {code} - {err.message} | Check your spreadsheet ID." else: reason = str(e) logger.error(reason) return AirbyteConnectionStatus(status=Status.FAILED) def discover(self, logger: AirbyteLogger, config: json) -> AirbyteCatalog: access_token = config["access_token"] spreadsheet_id = config["spreadsheet_id"] streams = [] smartsheet_client = smartsheet.Smartsheet(access_token) try: sheet = smartsheet_client.Sheets.get_sheet(spreadsheet_id) sheet = json.loads(str(sheet)) # make it subscriptable sheet_json_schema = get_json_schema(sheet) logger.info(f"Running discovery on sheet: {sheet['name']} with {spreadsheet_id}") stream = AirbyteStream(name=sheet["name"], json_schema=sheet_json_schema) stream.supported_sync_modes = ["full_refresh"] streams.append(stream) except Exception as e: raise Exception(f"Could not run discovery: {str(e)}") return AirbyteCatalog(streams=streams) def read( self, logger: AirbyteLogger, config: json, catalog: ConfiguredAirbyteCatalog, state: Dict[str, any] ) -> Generator[AirbyteMessage, None, None]: access_token = config["access_token"] spreadsheet_id = config["spreadsheet_id"] smartsheet_client = smartsheet.Smartsheet(access_token) for configured_stream in catalog.streams: stream = configured_stream.stream properties = stream.json_schema["properties"] if isinstance(properties, list): columns = tuple(key for dct in properties for key in dct.keys()) elif isinstance(properties, dict): columns = tuple(i for i in properties.keys()) else: logger.error("Could not read properties from the JSONschema in this stream") name = stream.name try: sheet = smartsheet_client.Sheets.get_sheet(spreadsheet_id) sheet = json.loads(str(sheet)) # make it subscriptable logger.info(f"Starting syncing spreadsheet {sheet['name']}") logger.info(f"Row count: {sheet['totalRowCount']}") for row in sheet["rows"]: # convert all data to string as it is only expected format in schema values = tuple(str(i["value"]) if "value" in i else "" for i in row["cells"]) try: data = dict(zip(columns, values)) yield AirbyteMessage( type=Type.RECORD, record=AirbyteRecordMessage(stream=name, data=data, emitted_at=int(datetime.now().timestamp()) * 1000), ) except Exception as e: logger.error(f"Unable to encode row into an AirbyteMessage with the following error: {e}") except Exception as e: logger.error(f"Could not read smartsheet: {name}") raise e logger.info(f"Finished syncing spreadsheet with ID: {spreadsheet_id}")
37.583333
131
0.610966
import json from datetime import datetime from typing import Dict, Generator import smartsheet from airbyte_cdk import AirbyteLogger from airbyte_cdk.models import ( AirbyteCatalog, AirbyteConnectionStatus, AirbyteMessage, AirbyteRecordMessage, AirbyteStream, ConfiguredAirbyteCatalog, Status, Type, ) from airbyte_cdk.sources import Source def get_prop(col_type: str) -> Dict[str, any]: props = { "TEXT_NUMBER": {"type": "string"}, "DATE": {"type": "string", "format": "date"}, "DATETIME": {"type": "string", "format": "date-time"}, } return props.get(col_type, {"type": "string"}) def get_json_schema(sheet: Dict) -> Dict: column_info = {i["title"]: get_prop(i["type"]) for i in sheet["columns"]} json_schema = { "$schema": "http://json-schema.org/draft-07/schema#", "type": "object", "properties": column_info, } return json_schema class SourceSmartsheets(Source): def check(self, logger: AirbyteLogger, config: json) -> AirbyteConnectionStatus: try: access_token = config["access_token"] spreadsheet_id = config["spreadsheet_id"] smartsheet_client = smartsheet.Smartsheet(access_token) smartsheet_client.errors_as_exceptions(True) smartsheet_client.Sheets.get_sheet(spreadsheet_id) return AirbyteConnectionStatus(status=Status.SUCCEEDED) except Exception as e: if isinstance(e, smartsheet.exceptions.ApiError): err = e.error.result code = 404 if err.code == 1006 else err.code reason = f"{err.name}: {code} - {err.message} | Check your spreadsheet ID." else: reason = str(e) logger.error(reason) return AirbyteConnectionStatus(status=Status.FAILED) def discover(self, logger: AirbyteLogger, config: json) -> AirbyteCatalog: access_token = config["access_token"] spreadsheet_id = config["spreadsheet_id"] streams = [] smartsheet_client = smartsheet.Smartsheet(access_token) try: sheet = smartsheet_client.Sheets.get_sheet(spreadsheet_id) sheet = json.loads(str(sheet)) sheet_json_schema = get_json_schema(sheet) logger.info(f"Running discovery on sheet: {sheet['name']} with {spreadsheet_id}") stream = AirbyteStream(name=sheet["name"], json_schema=sheet_json_schema) stream.supported_sync_modes = ["full_refresh"] streams.append(stream) except Exception as e: raise Exception(f"Could not run discovery: {str(e)}") return AirbyteCatalog(streams=streams) def read( self, logger: AirbyteLogger, config: json, catalog: ConfiguredAirbyteCatalog, state: Dict[str, any] ) -> Generator[AirbyteMessage, None, None]: access_token = config["access_token"] spreadsheet_id = config["spreadsheet_id"] smartsheet_client = smartsheet.Smartsheet(access_token) for configured_stream in catalog.streams: stream = configured_stream.stream properties = stream.json_schema["properties"] if isinstance(properties, list): columns = tuple(key for dct in properties for key in dct.keys()) elif isinstance(properties, dict): columns = tuple(i for i in properties.keys()) else: logger.error("Could not read properties from the JSONschema in this stream") name = stream.name try: sheet = smartsheet_client.Sheets.get_sheet(spreadsheet_id) sheet = json.loads(str(sheet)) logger.info(f"Starting syncing spreadsheet {sheet['name']}") logger.info(f"Row count: {sheet['totalRowCount']}") for row in sheet["rows"]: values = tuple(str(i["value"]) if "value" in i else "" for i in row["cells"]) try: data = dict(zip(columns, values)) yield AirbyteMessage( type=Type.RECORD, record=AirbyteRecordMessage(stream=name, data=data, emitted_at=int(datetime.now().timestamp()) * 1000), ) except Exception as e: logger.error(f"Unable to encode row into an AirbyteMessage with the following error: {e}") except Exception as e: logger.error(f"Could not read smartsheet: {name}") raise e logger.info(f"Finished syncing spreadsheet with ID: {spreadsheet_id}")
true
true
f7181ee86ad8cc7e5af71dcdfa13dd1e97cf1945
4,658
py
Python
python/download-all-data.py
wizzardz/vehicle-statistics-india
a54f84460ce3129d170510ce2c33799008b1a7a6
[ "Apache-2.0" ]
null
null
null
python/download-all-data.py
wizzardz/vehicle-statistics-india
a54f84460ce3129d170510ce2c33799008b1a7a6
[ "Apache-2.0" ]
null
null
null
python/download-all-data.py
wizzardz/vehicle-statistics-india
a54f84460ce3129d170510ce2c33799008b1a7a6
[ "Apache-2.0" ]
null
null
null
import urllib.request import json import sys import os # specify the url format for downloading the json data url_format = 'https://data.gov.in/node/{0}/datastore/export/json' years = [2011, 2009, 2006, 2004, 2002] # default data for constructing the urls for each States and union teritories json_string = json.dumps({ "Data": [{ "Andaman and Nicobar Islands": [89524, 100624, 100681, 100729, 100794] }, { "Chandigarh": [89529, 100629, 100682, 100730, 100795] }, { "Dadra And Nagar Haveli": [ 89531, 100626, 100683, 100731, 100796 ] }, { "Daman and Diu": [89532, 100627, 100684, 100732, 100797] }, { "Delhi": [89533, 100628, 100685, 100733, 100798 ] }, { "Lakshadweep": [89539, 100629, 100686, 100734, 100799] }, { "Puducherry": [89546, 100630, 100687, 100735, 100800] }, { "Bihar": [89528, 100599, 100656, 100704, 100769] }, { "Chhattisgarh": [ 89530, 100600, 100657, 100705, 100770 ] }, { "Goa": [89534, 100601, 100658, 100706, 100771] }, { "Gujarat": [89535, 100602, 100659, 100706, 100772] }, { "Haryana": [89536, 100603, 100660, 100708, 100773] }, { "Himachal Pradesh": [ 89537, 100604, 100661, 100709, 100774 ] }, { "Jammu and Kashmir": [ 89555, 100605, 100662, 100710, 100775 ] }, { "Jharkhand": [89556, 100606, 100663, 100711, 100776 ] }, { "Karnataka": [89557, 100607, 100664, 100712, 100777 ] }, { "Kerala": [89538, 100608, 100665, 100713, 100778] }, { "Madhya Pradesh": [ 89558, 100609, 100666, 100714, 100779 ] }, { "Maharashtra": [89540, 100610, 100667, 100715, 100780 ] }, { "Manipur": [89541, 100611, 100668, 100716, 100781] }, { "Meghalaya": [89542, 100612, 100669, 100717, 100782 ] }, { "Mizoram": [89543, 100613, 100670, 100718, 100783] }, { "Nagaland": [89544, 100614, 100671, 100719, 100784] }, { "Odisha": [89545, 100615, 100672, 100720, 100785] }, { "Punjab": [89547, 100616, 100673, 100721, 100786] }, { "Rajasthan": [89548, 100617, 100674, 100722, 100787 ] }, { "Sikkim": [89549, 100618, 100675, 100723, 100788] }, { "Tamil Nadu": [89550, 100619, 100676, 100724, 100789 ] }, { "Tripura": [89551, 100620, 100677, 100725, 100790] }, { "Uttarakhand": [89553, 100621, 100678, 100726, 100791 ] }, { "Uttar Pradesh": [89552, 100622, 100679, 100727, 100792 ] }, { "West Bengal": [89554, 100623, 100680, 100728, 100793] }] }) # loads the default data in josn format state_data = json.loads(json_string) # check whether an url data is specified through an input file, if thats # the case then overwrite the default data by the input file if len(sys.argv) > 1: with open(sys.argv[1], 'r') as json_file: state_data = json.loads(json_file.read()) failed_urls = '' # iterates through each data for downloading the json content for state in state_data["Data"]: # get the name of the state, ideally the key is same as that of # state/union teritory state_name = '' for key in state.keys(): state_name = key # initialises the index for downloading the data index = 0 # for a state, download the json data for each year for identifer in state[state_name]: url = url_format.format(identifer) try: downloaded_data = '' with urllib.request.urlopen(url) as response: downloaded_data = response.read().decode('utf-8') fille_name = '{0}/{1}.json'.format(state_name, years[index]) os.makedirs(os.path.dirname(fille_name), exist_ok=True) with open(fille_name, "w") as output_file: output_file.write(downloaded_data) print( 'Downloading completed for {0}-{1}'.format(state_name, str(years[index]))) index += 1 except Exception as e: failed_urls += "{0} - {1}\n".format(state_name, url) if len(failed_urls) > 0: with open("failedurl.txt", 'w') as f: f.write(failed_urls) print('Failed url details has been written to failedurl.txt')
30.246753
84
0.542078
import urllib.request import json import sys import os url_format = 'https://data.gov.in/node/{0}/datastore/export/json' years = [2011, 2009, 2006, 2004, 2002] json_string = json.dumps({ "Data": [{ "Andaman and Nicobar Islands": [89524, 100624, 100681, 100729, 100794] }, { "Chandigarh": [89529, 100629, 100682, 100730, 100795] }, { "Dadra And Nagar Haveli": [ 89531, 100626, 100683, 100731, 100796 ] }, { "Daman and Diu": [89532, 100627, 100684, 100732, 100797] }, { "Delhi": [89533, 100628, 100685, 100733, 100798 ] }, { "Lakshadweep": [89539, 100629, 100686, 100734, 100799] }, { "Puducherry": [89546, 100630, 100687, 100735, 100800] }, { "Bihar": [89528, 100599, 100656, 100704, 100769] }, { "Chhattisgarh": [ 89530, 100600, 100657, 100705, 100770 ] }, { "Goa": [89534, 100601, 100658, 100706, 100771] }, { "Gujarat": [89535, 100602, 100659, 100706, 100772] }, { "Haryana": [89536, 100603, 100660, 100708, 100773] }, { "Himachal Pradesh": [ 89537, 100604, 100661, 100709, 100774 ] }, { "Jammu and Kashmir": [ 89555, 100605, 100662, 100710, 100775 ] }, { "Jharkhand": [89556, 100606, 100663, 100711, 100776 ] }, { "Karnataka": [89557, 100607, 100664, 100712, 100777 ] }, { "Kerala": [89538, 100608, 100665, 100713, 100778] }, { "Madhya Pradesh": [ 89558, 100609, 100666, 100714, 100779 ] }, { "Maharashtra": [89540, 100610, 100667, 100715, 100780 ] }, { "Manipur": [89541, 100611, 100668, 100716, 100781] }, { "Meghalaya": [89542, 100612, 100669, 100717, 100782 ] }, { "Mizoram": [89543, 100613, 100670, 100718, 100783] }, { "Nagaland": [89544, 100614, 100671, 100719, 100784] }, { "Odisha": [89545, 100615, 100672, 100720, 100785] }, { "Punjab": [89547, 100616, 100673, 100721, 100786] }, { "Rajasthan": [89548, 100617, 100674, 100722, 100787 ] }, { "Sikkim": [89549, 100618, 100675, 100723, 100788] }, { "Tamil Nadu": [89550, 100619, 100676, 100724, 100789 ] }, { "Tripura": [89551, 100620, 100677, 100725, 100790] }, { "Uttarakhand": [89553, 100621, 100678, 100726, 100791 ] }, { "Uttar Pradesh": [89552, 100622, 100679, 100727, 100792 ] }, { "West Bengal": [89554, 100623, 100680, 100728, 100793] }] }) state_data = json.loads(json_string) if len(sys.argv) > 1: with open(sys.argv[1], 'r') as json_file: state_data = json.loads(json_file.read()) failed_urls = '' for state in state_data["Data"]: state_name = '' for key in state.keys(): state_name = key index = 0 for identifer in state[state_name]: url = url_format.format(identifer) try: downloaded_data = '' with urllib.request.urlopen(url) as response: downloaded_data = response.read().decode('utf-8') fille_name = '{0}/{1}.json'.format(state_name, years[index]) os.makedirs(os.path.dirname(fille_name), exist_ok=True) with open(fille_name, "w") as output_file: output_file.write(downloaded_data) print( 'Downloading completed for {0}-{1}'.format(state_name, str(years[index]))) index += 1 except Exception as e: failed_urls += "{0} - {1}\n".format(state_name, url) if len(failed_urls) > 0: with open("failedurl.txt", 'w') as f: f.write(failed_urls) print('Failed url details has been written to failedurl.txt')
true
true
f71820aea4c4ecfde9e0adb936a156185abd7e94
10,068
py
Python
constph/gromos_factory.py
bbraunsfeld/const_pH_gromos
6ef02da6fc0f451aa0082b726926c6fccabf324b
[ "MIT" ]
null
null
null
constph/gromos_factory.py
bbraunsfeld/const_pH_gromos
6ef02da6fc0f451aa0082b726926c6fccabf324b
[ "MIT" ]
1
2021-09-17T18:17:39.000Z
2021-09-17T18:17:39.000Z
constph/gromos_factory.py
bbraunsfeld/const_pH_gromos
6ef02da6fc0f451aa0082b726926c6fccabf324b
[ "MIT" ]
null
null
null
import datetime from os import stat class GromosFactory: """Class to build the string needed to create a Gromos input file (*.imd), a make_script fiel (*.arg) and a job file (*.job)""" def __init__(self, configuration: dict, structure: str) -> None: self.configuration = configuration self.structure = structure def _get_search_run_parameters(self): prms = {} for key in self.configuration["search_run"]["search_parameters"]: prms[key] = self.configuration["search_run"]["search_parameters"][key] return prms def _get_production_run_parameters(self): prms = {} for key in self.configuration["production_run"]["production_parameters"]: prms[key] = self.configuration["production_run"]["production_parameters"][key] return prms def generate_Gromos_search_input(self, env: str) -> str: gromos_search_script = self._get_Gromos_input_header(env) if env == "search": gromos_search_script += ( self._get_Gromos_search_body() ) else: raise NotImplementedError(f"Something went wrong with {env} input.") return gromos_search_script def generate_Gromos_production_input(self, env: str) -> str: gromos_search_script = self._get_Gromos_input_header(env) if env == "production": gromos_search_script += ( self._get_Gromos_production_body() ) else: raise NotImplementedError(f"Something went wrong with {env} input.") return gromos_search_script def _get_Gromos_input_header(self, env: str) -> str: date = datetime.date.today() header = f"""TITLE Automatically generated input file for {env} run with constph Version {date} END """ return header def _get_Gromos_search_body(self) -> str: NSM = self.configuration["search_run"]["search_parameters"]["NSM"] NSTLIM = self.configuration["search_run"]["search_parameters"]["NSTLIM"] DT = self.configuration["search_run"]["search_parameters"]["dt"] ATMNR1 = self.configuration["search_run"]["search_parameters"]["ATMNR1"] ATMNR2 = self.configuration["search_run"]["search_parameters"]["ATMNR2"] NTWX = self.configuration["search_run"]["search_parameters"]["NTWX"] NTWE = self.configuration["search_run"]["search_parameters"]["NTWE"] FORM = "4" NSTATES = self.configuration["search_run"]["search_parameters"]["NSTATES"] OFFSETS = "0 " * int(NSTATES) SIGMA = self.configuration["search_run"]["search_parameters"]["sigma"] ASTEPS = self.configuration["search_run"]["search_parameters"]["asteps"] BSTEPS = self.configuration["search_run"]["search_parameters"]["bsteps"] body = f"""SYSTEM # NPM NSM 1 {NSM} END STEP # NSTLIM T DT {NSTLIM} 0 {DT} END BOUNDCOND # NTB NDFMIN 1 3 END MULTIBATH # NTBTYP: # weak-coupling: use weak-coupling scheme # nose-hoover: use Nose Hoover scheme # nose-hoover-chains: use Nose Hoover chains scheme # NUM: number of chains in Nose Hoover chains scheme # !! only specify NUM when needed !! # NBATHS: number of temperature baths to couple to # NTBTYP 0 # NBATHS 2 # TEMP0(1 ... NBATHS) TAU(1 ... NBATHS) 300 0.1 300 0.1 # DOFSET: number of distinguishable sets of d.o.f. 2 # LAST(1 ... DOFSET) COMBATH(1 ... DOFSET) IRBATH(1 ... DOFSET) {ATMNR1} 1 1 {ATMNR2} 2 2 END PRESSURESCALE # COUPLE SCALE COMP TAUP VIRIAL 2 1 0.0007624 0.5 2 # SEMIANISOTROPIC COUPLINGS(X, Y, Z) 1 1 2 # PRES0(1...3,1...3) 0.06102 0 0 0 0.06102 0 0 0 0.06102 END FORCE # NTF array # bonds angles imp. dihe charge nonbonded 0 1 1 1 1 1 # NEGR NRE(1) NRE(2) ... NRE(NEGR) 2 {ATMNR1} {ATMNR2} END COVALENTFORM # NTBBH NTBAH NTBDN 0 0 0 END CONSTRAINT # NTC 3 # NTCP NTCP0(1) 1 0.0001 # NTCS NTCS0(1) 1 0.0001 END PAIRLIST # algorithm NSNB RCUTP RCUTL SIZE TYPE 1 5 0.8 1.4 0.4 0 END NONBONDED # NLRELE 1 # APPAK RCRF EPSRF NSLFEXCL 0 1.4 78.5 1 # NSHAPE ASHAPE NA2CLC TOLA2 EPSLS 3 1.4 2 1e-10 0 # NKX NKY NKZ KCUT 10 10 10 100 # NGX NGY NGZ NASORD NFDORD NALIAS NSPORD 32 32 32 3 2 3 4 # NQEVAL FACCUR NRDGRD NWRGRD 100000 1.6 0 0 # NLRLJ SLVDNS 0 33.3 END INITIALISE # Default values for NTI values: 0 # NTIVEL NTISHK NTINHT NTINHB 0 0 0 0 # NTISHI NTIRTC NTICOM 0 0 0 # NTISTI 0 # IG TEMPI 210185 0 END COMTRANSROT # NSCM 1000 END PRINTOUT #NTPR: print out energies, etc. every NTPR steps #NTPP: =1 perform dihedral angle transition monitoring # NTPR NTPP 500 0 END WRITETRAJ # NTWX NTWSE NTWV NTWF NTWE NTWG NTWB {NTWX} 0 0 0 {NTWE} 0 0 END AEDS # AEDS 1 # ALPHLJ ALPHCRF FORM NUMSTATES 0 0 {FORM} {NSTATES} # EMAX EMIN 0 0 # EIR [1..NUMSTATES] {OFFSETS} # NTIAEDSS RESTREMIN BMAXTYPE BMAX ASTEPS BSTEPS 1 1 {SIGMA} 2 {ASTEPS} {BSTEPS} END""" return body def _get_Gromos_production_body(self) -> str: NSM = self.configuration["production_run"]["_parameters"]["NSM"] NSTLIM = self.configuration["production_run"]["production_parameters"]["NSTLIM"] DT = self.configuration["production_run"]["production_parameters"]["dt"] ATMNR1 = self.configuration["production_run"]["production_parameters"]["ATMNR1"] ATMNR2 = self.configuration["production_run"]["production_parameters"]["ATMNR2"] NTWX = self.configuration["production_run"]["production_parameters"]["NTWX"] NTWE = self.configuration["production_run"]["production_parameters"]["NTWE"] FORM = "4" NSTATES = self.configuration["production_run"]["production_parameters"]["NSTATES"] OFFSETS = "0 {new_offset}" SIGMA = self.configuration["production_run"]["production_parameters"]["sigma"] EMIN = "found in search" EMAX = "found in search" body = f"""SYSTEM # NPM NSM 1 {NSM} END STEP # NSTLIM T DT {NSTLIM} 0 {DT} END BOUNDCOND # NTB NDFMIN 1 3 END MULTIBATH # NTBTYP: # weak-coupling: use weak-coupling scheme # nose-hoover: use Nose Hoover scheme # nose-hoover-chains: use Nose Hoover chains scheme # NUM: number of chains in Nose Hoover chains scheme # !! only specify NUM when needed !! # NBATHS: number of temperature baths to couple to # NTBTYP 0 # NBATHS 2 # TEMP0(1 ... NBATHS) TAU(1 ... NBATHS) 300 0.1 300 0.1 # DOFSET: number of distinguishable sets of d.o.f. 2 # LAST(1 ... DOFSET) COMBATH(1 ... DOFSET) IRBATH(1 ... DOFSET) {ATMNR1} 1 1 {ATMNR2} 2 2 END PRESSURESCALE # COUPLE SCALE COMP TAUP VIRIAL 2 1 0.0007624 0.5 2 # SEMIANISOTROPIC COUPLINGS(X, Y, Z) 1 1 2 # PRES0(1...3,1...3) 0.06102 0 0 0 0.06102 0 0 0 0.06102 END FORCE # NTF array # bonds angles imp. dihe charge nonbonded 0 1 1 1 1 1 # NEGR NRE(1) NRE(2) ... NRE(NEGR) 2 {ATMNR1} {ATMNR2} END COVALENTFORM # NTBBH NTBAH NTBDN 0 0 0 END CONSTRAINT # NTC 3 # NTCP NTCP0(1) 1 0.0001 # NTCS NTCS0(1) 1 0.0001 END PAIRLIST # algorithm NSNB RCUTP RCUTL SIZE TYPE 1 5 0.8 1.4 0.4 0 END NONBONDED # NLRELE 1 # APPAK RCRF EPSRF NSLFEXCL 0 1.4 78.5 1 # NSHAPE ASHAPE NA2CLC TOLA2 EPSLS 3 1.4 2 1e-10 0 # NKX NKY NKZ KCUT 10 10 10 100 # NGX NGY NGZ NASORD NFDORD NALIAS NSPORD 32 32 32 3 2 3 4 # NQEVAL FACCUR NRDGRD NWRGRD 100000 1.6 0 0 # NLRLJ SLVDNS 0 33.3 END INITIALISE # Default values for NTI values: 0 # NTIVEL NTISHK NTINHT NTINHB 0 0 0 0 # NTISHI NTIRTC NTICOM 0 0 0 # NTISTI 0 # IG TEMPI 210185 0 END COMTRANSROT # NSCM 1000 END PRINTOUT #NTPR: print out energies, etc. every NTPR steps #NTPP: =1 perform dihedral angle transition monitoring # NTPR NTPP 500 0 END WRITETRAJ # NTWX NTWSE NTWV NTWF NTWE NTWG NTWB {NTWX} 0 0 0 {NTWE} 0 0 END AEDS # AEDS 1 # ALPHLJ ALPHCRF FORM NUMSTATES 0 0 {FORM} {NSTATES} # EMAX EMIN {EMAX} {EMIN} # EIR [1..NUMSTATES] {OFFSETS} # NTIAEDSS RESTREMIN BMAXTYPE BMAX ASTEPS BSTEPS 1 1 {SIGMA} 2 0 0 END""" return body
29.786982
131
0.527712
import datetime from os import stat class GromosFactory: def __init__(self, configuration: dict, structure: str) -> None: self.configuration = configuration self.structure = structure def _get_search_run_parameters(self): prms = {} for key in self.configuration["search_run"]["search_parameters"]: prms[key] = self.configuration["search_run"]["search_parameters"][key] return prms def _get_production_run_parameters(self): prms = {} for key in self.configuration["production_run"]["production_parameters"]: prms[key] = self.configuration["production_run"]["production_parameters"][key] return prms def generate_Gromos_search_input(self, env: str) -> str: gromos_search_script = self._get_Gromos_input_header(env) if env == "search": gromos_search_script += ( self._get_Gromos_search_body() ) else: raise NotImplementedError(f"Something went wrong with {env} input.") return gromos_search_script def generate_Gromos_production_input(self, env: str) -> str: gromos_search_script = self._get_Gromos_input_header(env) if env == "production": gromos_search_script += ( self._get_Gromos_production_body() ) else: raise NotImplementedError(f"Something went wrong with {env} input.") return gromos_search_script def _get_Gromos_input_header(self, env: str) -> str: date = datetime.date.today() header = f"""TITLE Automatically generated input file for {env} run with constph Version {date} END """ return header def _get_Gromos_search_body(self) -> str: NSM = self.configuration["search_run"]["search_parameters"]["NSM"] NSTLIM = self.configuration["search_run"]["search_parameters"]["NSTLIM"] DT = self.configuration["search_run"]["search_parameters"]["dt"] ATMNR1 = self.configuration["search_run"]["search_parameters"]["ATMNR1"] ATMNR2 = self.configuration["search_run"]["search_parameters"]["ATMNR2"] NTWX = self.configuration["search_run"]["search_parameters"]["NTWX"] NTWE = self.configuration["search_run"]["search_parameters"]["NTWE"] FORM = "4" NSTATES = self.configuration["search_run"]["search_parameters"]["NSTATES"] OFFSETS = "0 " * int(NSTATES) SIGMA = self.configuration["search_run"]["search_parameters"]["sigma"] ASTEPS = self.configuration["search_run"]["search_parameters"]["asteps"] BSTEPS = self.configuration["search_run"]["search_parameters"]["bsteps"] body = f"""SYSTEM # NPM NSM 1 {NSM} END STEP # NSTLIM T DT {NSTLIM} 0 {DT} END BOUNDCOND # NTB NDFMIN 1 3 END MULTIBATH # NTBTYP: # weak-coupling: use weak-coupling scheme # nose-hoover: use Nose Hoover scheme # nose-hoover-chains: use Nose Hoover chains scheme # NUM: number of chains in Nose Hoover chains scheme # !! only specify NUM when needed !! # NBATHS: number of temperature baths to couple to # NTBTYP 0 # NBATHS 2 # TEMP0(1 ... NBATHS) TAU(1 ... NBATHS) 300 0.1 300 0.1 # DOFSET: number of distinguishable sets of d.o.f. 2 # LAST(1 ... DOFSET) COMBATH(1 ... DOFSET) IRBATH(1 ... DOFSET) {ATMNR1} 1 1 {ATMNR2} 2 2 END PRESSURESCALE # COUPLE SCALE COMP TAUP VIRIAL 2 1 0.0007624 0.5 2 # SEMIANISOTROPIC COUPLINGS(X, Y, Z) 1 1 2 # PRES0(1...3,1...3) 0.06102 0 0 0 0.06102 0 0 0 0.06102 END FORCE # NTF array # bonds angles imp. dihe charge nonbonded 0 1 1 1 1 1 # NEGR NRE(1) NRE(2) ... NRE(NEGR) 2 {ATMNR1} {ATMNR2} END COVALENTFORM # NTBBH NTBAH NTBDN 0 0 0 END CONSTRAINT # NTC 3 # NTCP NTCP0(1) 1 0.0001 # NTCS NTCS0(1) 1 0.0001 END PAIRLIST # algorithm NSNB RCUTP RCUTL SIZE TYPE 1 5 0.8 1.4 0.4 0 END NONBONDED # NLRELE 1 # APPAK RCRF EPSRF NSLFEXCL 0 1.4 78.5 1 # NSHAPE ASHAPE NA2CLC TOLA2 EPSLS 3 1.4 2 1e-10 0 # NKX NKY NKZ KCUT 10 10 10 100 # NGX NGY NGZ NASORD NFDORD NALIAS NSPORD 32 32 32 3 2 3 4 # NQEVAL FACCUR NRDGRD NWRGRD 100000 1.6 0 0 # NLRLJ SLVDNS 0 33.3 END INITIALISE # Default values for NTI values: 0 # NTIVEL NTISHK NTINHT NTINHB 0 0 0 0 # NTISHI NTIRTC NTICOM 0 0 0 # NTISTI 0 # IG TEMPI 210185 0 END COMTRANSROT # NSCM 1000 END PRINTOUT #NTPR: print out energies, etc. every NTPR steps #NTPP: =1 perform dihedral angle transition monitoring # NTPR NTPP 500 0 END WRITETRAJ # NTWX NTWSE NTWV NTWF NTWE NTWG NTWB {NTWX} 0 0 0 {NTWE} 0 0 END AEDS # AEDS 1 # ALPHLJ ALPHCRF FORM NUMSTATES 0 0 {FORM} {NSTATES} # EMAX EMIN 0 0 # EIR [1..NUMSTATES] {OFFSETS} # NTIAEDSS RESTREMIN BMAXTYPE BMAX ASTEPS BSTEPS 1 1 {SIGMA} 2 {ASTEPS} {BSTEPS} END""" return body def _get_Gromos_production_body(self) -> str: NSM = self.configuration["production_run"]["_parameters"]["NSM"] NSTLIM = self.configuration["production_run"]["production_parameters"]["NSTLIM"] DT = self.configuration["production_run"]["production_parameters"]["dt"] ATMNR1 = self.configuration["production_run"]["production_parameters"]["ATMNR1"] ATMNR2 = self.configuration["production_run"]["production_parameters"]["ATMNR2"] NTWX = self.configuration["production_run"]["production_parameters"]["NTWX"] NTWE = self.configuration["production_run"]["production_parameters"]["NTWE"] FORM = "4" NSTATES = self.configuration["production_run"]["production_parameters"]["NSTATES"] OFFSETS = "0 {new_offset}" SIGMA = self.configuration["production_run"]["production_parameters"]["sigma"] EMIN = "found in search" EMAX = "found in search" body = f"""SYSTEM # NPM NSM 1 {NSM} END STEP # NSTLIM T DT {NSTLIM} 0 {DT} END BOUNDCOND # NTB NDFMIN 1 3 END MULTIBATH # NTBTYP: # weak-coupling: use weak-coupling scheme # nose-hoover: use Nose Hoover scheme # nose-hoover-chains: use Nose Hoover chains scheme # NUM: number of chains in Nose Hoover chains scheme # !! only specify NUM when needed !! # NBATHS: number of temperature baths to couple to # NTBTYP 0 # NBATHS 2 # TEMP0(1 ... NBATHS) TAU(1 ... NBATHS) 300 0.1 300 0.1 # DOFSET: number of distinguishable sets of d.o.f. 2 # LAST(1 ... DOFSET) COMBATH(1 ... DOFSET) IRBATH(1 ... DOFSET) {ATMNR1} 1 1 {ATMNR2} 2 2 END PRESSURESCALE # COUPLE SCALE COMP TAUP VIRIAL 2 1 0.0007624 0.5 2 # SEMIANISOTROPIC COUPLINGS(X, Y, Z) 1 1 2 # PRES0(1...3,1...3) 0.06102 0 0 0 0.06102 0 0 0 0.06102 END FORCE # NTF array # bonds angles imp. dihe charge nonbonded 0 1 1 1 1 1 # NEGR NRE(1) NRE(2) ... NRE(NEGR) 2 {ATMNR1} {ATMNR2} END COVALENTFORM # NTBBH NTBAH NTBDN 0 0 0 END CONSTRAINT # NTC 3 # NTCP NTCP0(1) 1 0.0001 # NTCS NTCS0(1) 1 0.0001 END PAIRLIST # algorithm NSNB RCUTP RCUTL SIZE TYPE 1 5 0.8 1.4 0.4 0 END NONBONDED # NLRELE 1 # APPAK RCRF EPSRF NSLFEXCL 0 1.4 78.5 1 # NSHAPE ASHAPE NA2CLC TOLA2 EPSLS 3 1.4 2 1e-10 0 # NKX NKY NKZ KCUT 10 10 10 100 # NGX NGY NGZ NASORD NFDORD NALIAS NSPORD 32 32 32 3 2 3 4 # NQEVAL FACCUR NRDGRD NWRGRD 100000 1.6 0 0 # NLRLJ SLVDNS 0 33.3 END INITIALISE # Default values for NTI values: 0 # NTIVEL NTISHK NTINHT NTINHB 0 0 0 0 # NTISHI NTIRTC NTICOM 0 0 0 # NTISTI 0 # IG TEMPI 210185 0 END COMTRANSROT # NSCM 1000 END PRINTOUT #NTPR: print out energies, etc. every NTPR steps #NTPP: =1 perform dihedral angle transition monitoring # NTPR NTPP 500 0 END WRITETRAJ # NTWX NTWSE NTWV NTWF NTWE NTWG NTWB {NTWX} 0 0 0 {NTWE} 0 0 END AEDS # AEDS 1 # ALPHLJ ALPHCRF FORM NUMSTATES 0 0 {FORM} {NSTATES} # EMAX EMIN {EMAX} {EMIN} # EIR [1..NUMSTATES] {OFFSETS} # NTIAEDSS RESTREMIN BMAXTYPE BMAX ASTEPS BSTEPS 1 1 {SIGMA} 2 0 0 END""" return body
true
true
f718217d51a3402d72204f81cd749070c51ae9c6
387
py
Python
borsa/asgi.py
bozcani/borsa-scraper-app
56c767a9b6d6c9be40046aa03763f13465860f6f
[ "MIT" ]
3
2020-02-06T10:05:29.000Z
2020-04-18T10:11:37.000Z
borsa/asgi.py
bozcani/borsa
56c767a9b6d6c9be40046aa03763f13465860f6f
[ "MIT" ]
10
2020-02-06T08:50:13.000Z
2020-04-25T12:17:17.000Z
borsa/asgi.py
bozcani/borsa-scraper-app
56c767a9b6d6c9be40046aa03763f13465860f6f
[ "MIT" ]
1
2020-02-06T07:40:06.000Z
2020-02-06T07:40:06.000Z
""" ASGI config for borsa project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'borsa.settings') application = get_asgi_application()
22.764706
78
0.782946
import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'borsa.settings') application = get_asgi_application()
true
true
f71821ed4d2b1e66e27c2cefdf134e9907e7d2b1
8,869
py
Python
src/python/main/segeval/ml/PercentageTest.py
anna-ka/segmentation.evaluation
b7eddc9067fc773f3d040dd5eef33dabac07abc0
[ "BSD-3-Clause" ]
1
2017-05-09T06:16:58.000Z
2017-05-09T06:16:58.000Z
src/python/main/segeval/ml/PercentageTest.py
anna-ka/segmentation.evaluation
b7eddc9067fc773f3d040dd5eef33dabac07abc0
[ "BSD-3-Clause" ]
null
null
null
src/python/main/segeval/ml/PercentageTest.py
anna-ka/segmentation.evaluation
b7eddc9067fc773f3d040dd5eef33dabac07abc0
[ "BSD-3-Clause" ]
null
null
null
''' Tests the WindowDiff evaluation metric. .. moduleauthor:: Chris Fournier <chris.m.fournier@gmail.com> ''' #=============================================================================== # Copyright (c) 2011-2012, Chris Fournier # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the author nor the names of its contributors may # be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #=============================================================================== import unittest from decimal import Decimal from .Percentage import percentage, pairwise_percentage, \ find_boundary_position_freqs from ..data.Samples import KAZANTSEVA2012_G5, KAZANTSEVA2012_G2, \ COMPLETE_AGREEMENT, LARGE_DISAGREEMENT from .. import convert_positions_to_masses class TestPercentage(unittest.TestCase): ''' Test segmentation percentage. ''' # pylint: disable=R0904 def test_identical(self): ''' Test whether identical segmentations produce 1.0. ''' # pylint: disable=C0324 segs_a = convert_positions_to_masses( [1,1,1,1,1,2,2,2,3,3,3,3,3]) segs_b = convert_positions_to_masses( [1,1,1,1,1,2,2,2,3,3,3,3,3]) self.assertEqual(percentage(segs_a, segs_b),1.0) def test_no_boundaries(self): ''' Test whether no segments versus some segments produce 0.0. ''' # pylint: disable=C0324 segs_a = convert_positions_to_masses( [1,1,1,1,1,1,1,1,1,1,1,1,1]) segs_b = convert_positions_to_masses( [1,1,1,1,2,2,2,2,3,3,3,3,3]) self.assertEqual(percentage(segs_a, segs_b),0) self.assertEqual(percentage(segs_b, segs_a),0) def test_all_boundaries(self): ''' Test whether all segments versus some segments produces 2/12, or 0.167. ''' # pylint: disable=C0324 segs_a = convert_positions_to_masses( [1,2,3,4,5,6,7,8,9,10,11,12,13]) segs_b = convert_positions_to_masses( [1,1,1,1,2,2,2,2,3,3,3,3,3]) self.assertEqual(percentage(segs_a, segs_b), Decimal('0.1666666666666666666666666667')) self.assertEqual(percentage(segs_b, segs_a), Decimal('0.1666666666666666666666666667')) def test_all_and_no_boundaries(self): ''' Test whether all segments versus no segments produces 0.0. ''' # pylint: disable=C0324 segs_a = convert_positions_to_masses( [1,2,3,4,5,6,7,8,9,10,11,12,13]) segs_b = convert_positions_to_masses( [1,1,1,1,1,1,1,1,1,1,1,1,1]) self.assertEqual(percentage(segs_a, segs_b),0) self.assertEqual(percentage(segs_b, segs_a),0) def test_translated_boundary(self): ''' Test whether 2/3 total segments participate in mis-alignment produces 0.33. ''' # pylint: disable=C0324 segs_a = convert_positions_to_masses( [1,1,1,1,1,2,2,2,3,3,3,3,3]) segs_b = convert_positions_to_masses( [1,1,1,1,2,2,2,2,3,3,3,3,3]) self.assertEqual(percentage(segs_a, segs_b), Decimal('0.3333333333333333333333333333')) self.assertEqual(percentage(segs_b, segs_a), Decimal('0.3333333333333333333333333333')) def test_extra_boundary(self): ''' Test whether 1/3 segments that are non-existent produces 0.66. ''' # pylint: disable=C0324 segs_a = convert_positions_to_masses( [1,1,1,1,1,2,2,2,3,3,3,3,3]) segs_b = convert_positions_to_masses( [1,1,1,1,1,2,3,3,4,4,4,4,4]) self.assertEqual(percentage(segs_a, segs_b), Decimal('0.6666666666666666666666666667')) self.assertEqual(percentage(segs_b, segs_a), Decimal('0.6666666666666666666666666667')) def test_full_miss_and_misaligned(self): ''' Test whether a full miss and a translated boundary out of 4 produces 0.25. ''' # pylint: disable=C0324 segs_a = convert_positions_to_masses( [1,1,1,1,2,2,2,2,3,3,3,3,3]) segs_b = convert_positions_to_masses( [1,1,1,1,1,2,3,3,4,4,4,4,4]) self.assertEqual(percentage(segs_a, segs_b), Decimal('0.25')) self.assertEqual(percentage(segs_b, segs_a), Decimal('0.25')) class TestPairwisePercentage(unittest.TestCase): # pylint: disable=R0904 ''' Test permuted pairwise percentage. ''' def test_kazantseva2012_g5(self): ''' Calculate permuted pairwise percentage on Group 5 from the dataset collected in Kazantseva (2012). ''' self.assertEqual(pairwise_percentage(KAZANTSEVA2012_G5), (Decimal('0.1621263635243898401793138635'), Decimal('0.1788409781886208812486660585'), Decimal('0.03198409547946276978304443503'), Decimal('0.03650576180519474391025947712'))) def test_kazantseva2012_g2(self): ''' Calculate mean permuted pairwise percentage on Group 2 from the dataset collected in Kazantseva (2012). ''' self.assertEqual(pairwise_percentage(KAZANTSEVA2012_G2), (Decimal('0.3398087832646656176067940768'), Decimal('0.1948481072924021072633034332'), Decimal('0.03796578491543144325163024138'), Decimal('0.02515478248611697670879150623'))) def test_large_disagreement(self): ''' Calculate mean permuted pairwise percentage on a theoretical dataset containing large disagreement. ''' self.assertEqual(pairwise_percentage(LARGE_DISAGREEMENT), (0.0, 0.0, 0.0, 0.0)) def test_complete_agreement(self): ''' Calculate mean permuted pairwise percentage on a theoretical dataset containing complete agreement. ''' self.assertEqual(pairwise_percentage(COMPLETE_AGREEMENT), (1.0, 0.0, 0.0, 0.0)) class TestPercentageUtils(unittest.TestCase): # pylint: disable=R0904 ''' Test utility functions used to calculate percentage. ''' def test_find_seg_positions(self): ''' Test segmentation position frequency counting. ''' # pylint: disable=C0324 seg_positions = find_boundary_position_freqs([[1,2,3,3,2,1], [1,2,2,4,2,1]]) self.assertEqual(seg_positions, { 1: 2, 3: 2, 5: 1, 6: 1, 9: 2, 11: 2})
42.033175
80
0.56658
import unittest from decimal import Decimal from .Percentage import percentage, pairwise_percentage, \ find_boundary_position_freqs from ..data.Samples import KAZANTSEVA2012_G5, KAZANTSEVA2012_G2, \ COMPLETE_AGREEMENT, LARGE_DISAGREEMENT from .. import convert_positions_to_masses class TestPercentage(unittest.TestCase): def test_identical(self): segs_a = convert_positions_to_masses( [1,1,1,1,1,2,2,2,3,3,3,3,3]) segs_b = convert_positions_to_masses( [1,1,1,1,1,2,2,2,3,3,3,3,3]) self.assertEqual(percentage(segs_a, segs_b),1.0) def test_no_boundaries(self): segs_a = convert_positions_to_masses( [1,1,1,1,1,1,1,1,1,1,1,1,1]) segs_b = convert_positions_to_masses( [1,1,1,1,2,2,2,2,3,3,3,3,3]) self.assertEqual(percentage(segs_a, segs_b),0) self.assertEqual(percentage(segs_b, segs_a),0) def test_all_boundaries(self): segs_a = convert_positions_to_masses( [1,2,3,4,5,6,7,8,9,10,11,12,13]) segs_b = convert_positions_to_masses( [1,1,1,1,2,2,2,2,3,3,3,3,3]) self.assertEqual(percentage(segs_a, segs_b), Decimal('0.1666666666666666666666666667')) self.assertEqual(percentage(segs_b, segs_a), Decimal('0.1666666666666666666666666667')) def test_all_and_no_boundaries(self): segs_a = convert_positions_to_masses( [1,2,3,4,5,6,7,8,9,10,11,12,13]) segs_b = convert_positions_to_masses( [1,1,1,1,1,1,1,1,1,1,1,1,1]) self.assertEqual(percentage(segs_a, segs_b),0) self.assertEqual(percentage(segs_b, segs_a),0) def test_translated_boundary(self): segs_a = convert_positions_to_masses( [1,1,1,1,1,2,2,2,3,3,3,3,3]) segs_b = convert_positions_to_masses( [1,1,1,1,2,2,2,2,3,3,3,3,3]) self.assertEqual(percentage(segs_a, segs_b), Decimal('0.3333333333333333333333333333')) self.assertEqual(percentage(segs_b, segs_a), Decimal('0.3333333333333333333333333333')) def test_extra_boundary(self): segs_a = convert_positions_to_masses( [1,1,1,1,1,2,2,2,3,3,3,3,3]) segs_b = convert_positions_to_masses( [1,1,1,1,1,2,3,3,4,4,4,4,4]) self.assertEqual(percentage(segs_a, segs_b), Decimal('0.6666666666666666666666666667')) self.assertEqual(percentage(segs_b, segs_a), Decimal('0.6666666666666666666666666667')) def test_full_miss_and_misaligned(self): segs_a = convert_positions_to_masses( [1,1,1,1,2,2,2,2,3,3,3,3,3]) segs_b = convert_positions_to_masses( [1,1,1,1,1,2,3,3,4,4,4,4,4]) self.assertEqual(percentage(segs_a, segs_b), Decimal('0.25')) self.assertEqual(percentage(segs_b, segs_a), Decimal('0.25')) class TestPairwisePercentage(unittest.TestCase): def test_kazantseva2012_g5(self): self.assertEqual(pairwise_percentage(KAZANTSEVA2012_G5), (Decimal('0.1621263635243898401793138635'), Decimal('0.1788409781886208812486660585'), Decimal('0.03198409547946276978304443503'), Decimal('0.03650576180519474391025947712'))) def test_kazantseva2012_g2(self): self.assertEqual(pairwise_percentage(KAZANTSEVA2012_G2), (Decimal('0.3398087832646656176067940768'), Decimal('0.1948481072924021072633034332'), Decimal('0.03796578491543144325163024138'), Decimal('0.02515478248611697670879150623'))) def test_large_disagreement(self): self.assertEqual(pairwise_percentage(LARGE_DISAGREEMENT), (0.0, 0.0, 0.0, 0.0)) def test_complete_agreement(self): self.assertEqual(pairwise_percentage(COMPLETE_AGREEMENT), (1.0, 0.0, 0.0, 0.0)) class TestPercentageUtils(unittest.TestCase): def test_find_seg_positions(self): seg_positions = find_boundary_position_freqs([[1,2,3,3,2,1], [1,2,2,4,2,1]]) self.assertEqual(seg_positions, { 1: 2, 3: 2, 5: 1, 6: 1, 9: 2, 11: 2})
true
true
f7182279ccd3d16543495752c131fb1fcf6fbcc0
5,356
py
Python
torchmetrics/regression/pearson.py
lucadiliello/metrics
e98fbafd2af5d217596958f9cfe6152543a00b7f
[ "Apache-2.0" ]
null
null
null
torchmetrics/regression/pearson.py
lucadiliello/metrics
e98fbafd2af5d217596958f9cfe6152543a00b7f
[ "Apache-2.0" ]
null
null
null
torchmetrics/regression/pearson.py
lucadiliello/metrics
e98fbafd2af5d217596958f9cfe6152543a00b7f
[ "Apache-2.0" ]
null
null
null
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List, Optional, Tuple import torch from torch import Tensor from torchmetrics.functional.regression.pearson import _pearson_corrcoef_compute, _pearson_corrcoef_update from torchmetrics.metric import Metric def _final_aggregation( means_x: Tensor, means_y: Tensor, vars_x: Tensor, vars_y: Tensor, corrs_xy: Tensor, nbs: Tensor, ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: """Aggregate the statistics from multiple devices. Formula taken from here: `Aggregate the statistics from multiple devices`_ """ # assert len(means_x) > 1 and len(means_y) > 1 and len(vars_x) > 1 and len(vars_y) > 1 and len(corrs_xy) > 1 mx1, my1, vx1, vy1, cxy1, n1 = means_x[0], means_y[0], vars_x[0], vars_y[0], corrs_xy[0], nbs[0] for i in range(1, len(means_x)): mx2, my2, vx2, vy2, cxy2, n2 = means_x[i], means_y[i], vars_x[i], vars_y[i], corrs_xy[i], nbs[i] nb = n1 + n2 mean_x = (n1 * mx1 + n2 * mx2) / nb mean_y = (n1 * my1 + n2 * my2) / nb var_x = 1 / (n1 + n2 - 1) * ((n1 - 1) * vx1 + (n2 - 1) * vx2 + ((n1 * n2) / (n1 + n2)) * (mx1 - mx2) ** 2) var_y = 1 / (n1 + n2 - 1) * ((n1 - 1) * vy1 + (n2 - 1) * vy2 + ((n1 * n2) / (n1 + n2)) * (my1 - my2) ** 2) corr1 = n1 * cxy1 + n1 * (mx1 - mean_x) * (my1 - mean_y) corr2 = n2 * cxy2 + n2 * (mx2 - mean_x) * (my2 - mean_y) corr_xy = (corr1 + corr2) / (n1 + n2) mx1, my1, vx1, vy1, cxy1, n1 = mean_x, mean_y, var_x, var_y, corr_xy, nb return var_x, var_y, corr_xy, nb class PearsonCorrcoef(Metric): r""" Computes `Pearson Correlation Coefficient`_: .. math:: P_{corr}(x,y) = \frac{cov(x,y)}{\sigma_x \sigma_y} Where :math:`y` is a tensor of target values, and :math:`x` is a tensor of predictions. Forward accepts - ``preds`` (float tensor): ``(N,)`` - ``target``(float tensor): ``(N,)`` Args: compute_on_step: Forward only calls ``update()`` and return None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. default: False process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) Example: >>> from torchmetrics import PearsonCorrcoef >>> target = torch.tensor([3, -0.5, 2, 7]) >>> preds = torch.tensor([2.5, 0.0, 2, 8]) >>> pearson = PearsonCorrcoef() >>> pearson(preds, target) tensor(0.9849) """ is_differentiable = True higher_is_better = None # both -1 and 1 are optimal preds: List[Tensor] target: List[Tensor] mean_x: Tensor mean_y: Tensor var_x: Tensor var_y: Tensor corr_xy: Tensor n_total: Tensor def __init__( self, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ) -> None: super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, ) self.add_state("mean_x", default=torch.tensor(0.0), dist_reduce_fx=None) self.add_state("mean_y", default=torch.tensor(0.0), dist_reduce_fx=None) self.add_state("var_x", default=torch.tensor(0.0), dist_reduce_fx=None) self.add_state("var_y", default=torch.tensor(0.0), dist_reduce_fx=None) self.add_state("corr_xy", default=torch.tensor(0.0), dist_reduce_fx=None) self.add_state("n_total", default=torch.tensor(0.0), dist_reduce_fx=None) def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore """Update state with predictions and targets. Args: preds: Predictions from model target: Ground truth values """ self.mean_x, self.mean_y, self.var_x, self.var_y, self.corr_xy, self.n_total = _pearson_corrcoef_update( preds, target, self.mean_x, self.mean_y, self.var_x, self.var_y, self.corr_xy, self.n_total ) def compute(self) -> Tensor: """Computes pearson correlation coefficient over state.""" if self.mean_x.numel() > 1: # multiple devices, need further reduction var_x, var_y, corr_xy, n_total = _final_aggregation( self.mean_x, self.mean_y, self.var_x, self.var_y, self.corr_xy, self.n_total ) else: var_x = self.var_x var_y = self.var_y corr_xy = self.corr_xy n_total = self.n_total return _pearson_corrcoef_compute(var_x, var_y, corr_xy, n_total)
37.71831
120
0.626027
from typing import Any, List, Optional, Tuple import torch from torch import Tensor from torchmetrics.functional.regression.pearson import _pearson_corrcoef_compute, _pearson_corrcoef_update from torchmetrics.metric import Metric def _final_aggregation( means_x: Tensor, means_y: Tensor, vars_x: Tensor, vars_y: Tensor, corrs_xy: Tensor, nbs: Tensor, ) -> Tuple[Tensor, Tensor, Tensor, Tensor]: mx1, my1, vx1, vy1, cxy1, n1 = means_x[0], means_y[0], vars_x[0], vars_y[0], corrs_xy[0], nbs[0] for i in range(1, len(means_x)): mx2, my2, vx2, vy2, cxy2, n2 = means_x[i], means_y[i], vars_x[i], vars_y[i], corrs_xy[i], nbs[i] nb = n1 + n2 mean_x = (n1 * mx1 + n2 * mx2) / nb mean_y = (n1 * my1 + n2 * my2) / nb var_x = 1 / (n1 + n2 - 1) * ((n1 - 1) * vx1 + (n2 - 1) * vx2 + ((n1 * n2) / (n1 + n2)) * (mx1 - mx2) ** 2) var_y = 1 / (n1 + n2 - 1) * ((n1 - 1) * vy1 + (n2 - 1) * vy2 + ((n1 * n2) / (n1 + n2)) * (my1 - my2) ** 2) corr1 = n1 * cxy1 + n1 * (mx1 - mean_x) * (my1 - mean_y) corr2 = n2 * cxy2 + n2 * (mx2 - mean_x) * (my2 - mean_y) corr_xy = (corr1 + corr2) / (n1 + n2) mx1, my1, vx1, vy1, cxy1, n1 = mean_x, mean_y, var_x, var_y, corr_xy, nb return var_x, var_y, corr_xy, nb class PearsonCorrcoef(Metric): is_differentiable = True higher_is_better = None preds: List[Tensor] target: List[Tensor] mean_x: Tensor mean_y: Tensor var_x: Tensor var_y: Tensor corr_xy: Tensor n_total: Tensor def __init__( self, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ) -> None: super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, ) self.add_state("mean_x", default=torch.tensor(0.0), dist_reduce_fx=None) self.add_state("mean_y", default=torch.tensor(0.0), dist_reduce_fx=None) self.add_state("var_x", default=torch.tensor(0.0), dist_reduce_fx=None) self.add_state("var_y", default=torch.tensor(0.0), dist_reduce_fx=None) self.add_state("corr_xy", default=torch.tensor(0.0), dist_reduce_fx=None) self.add_state("n_total", default=torch.tensor(0.0), dist_reduce_fx=None) def update(self, preds: Tensor, target: Tensor) -> None: self.mean_x, self.mean_y, self.var_x, self.var_y, self.corr_xy, self.n_total = _pearson_corrcoef_update( preds, target, self.mean_x, self.mean_y, self.var_x, self.var_y, self.corr_xy, self.n_total ) def compute(self) -> Tensor: if self.mean_x.numel() > 1: var_x, var_y, corr_xy, n_total = _final_aggregation( self.mean_x, self.mean_y, self.var_x, self.var_y, self.corr_xy, self.n_total ) else: var_x = self.var_x var_y = self.var_y corr_xy = self.corr_xy n_total = self.n_total return _pearson_corrcoef_compute(var_x, var_y, corr_xy, n_total)
true
true
f718227f7c7f9f79e60bd34c13ee360426d8cedb
12,071
py
Python
8.SAC/SAC-continuous.py
Lizhi-sjtu/DRL-code-pytorch
2ca05f4ed64d2d032e161fc3a2d2a68c818c4337
[ "MIT" ]
2
2022-03-27T01:56:48.000Z
2022-03-31T05:02:39.000Z
8.SAC/SAC-continuous.py
Lizhi-sjtu/DRL-code-pytorch
2ca05f4ed64d2d032e161fc3a2d2a68c818c4337
[ "MIT" ]
null
null
null
8.SAC/SAC-continuous.py
Lizhi-sjtu/DRL-code-pytorch
2ca05f4ed64d2d032e161fc3a2d2a68c818c4337
[ "MIT" ]
null
null
null
import gym import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import copy from torch.utils.tensorboard import SummaryWriter from torch.distributions import Normal class Actor(nn.Module): def __init__(self, state_dim, action_dim, hidden_width, max_action): super(Actor, self).__init__() self.max_action = max_action self.l1 = nn.Linear(state_dim, hidden_width) self.l2 = nn.Linear(hidden_width, hidden_width) self.mean_layer = nn.Linear(hidden_width, action_dim) self.log_std_layer = nn.Linear(hidden_width, action_dim) def forward(self, x, deterministic=False, with_logprob=True): x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) mean = self.mean_layer(x) log_std = self.log_std_layer(x) # We output the log_std to ensure that std=exp(log_std)>0 log_std = torch.clamp(log_std, -20, 2) std = torch.exp(log_std) dist = Normal(mean, std) # Generate a Gaussian distribution if deterministic: # When evaluating,we use the deterministic policy a = mean else: a = dist.rsample() # reparameterization trick: mean+std*N(0,1) if with_logprob: # The method refers to Open AI Spinning up, which is more stable. log_pi = dist.log_prob(a).sum(dim=1, keepdim=True) log_pi -= (2 * (np.log(2) - a - F.softplus(-2 * a))).sum(dim=1, keepdim=True) else: log_pi = None a = self.max_action * torch.tanh(a) # Use tanh to compress the unbounded Gaussian distribution into a bounded action interval. return a, log_pi class Critic(nn.Module): # According to (s,a), directly calculate Q(s,a) def __init__(self, state_dim, action_dim, hidden_width): super(Critic, self).__init__() # Q1 self.l1 = nn.Linear(state_dim + action_dim, hidden_width) self.l2 = nn.Linear(hidden_width, hidden_width) self.l3 = nn.Linear(hidden_width, 1) # Q2 self.l4 = nn.Linear(state_dim + action_dim, hidden_width) self.l5 = nn.Linear(hidden_width, hidden_width) self.l6 = nn.Linear(hidden_width, 1) def forward(self, s, a): s_a = torch.cat([s, a], 1) q1 = F.relu(self.l1(s_a)) q1 = F.relu(self.l2(q1)) q1 = self.l3(q1) q2 = F.relu(self.l4(s_a)) q2 = F.relu(self.l5(q2)) q2 = self.l6(q2) return q1, q2 class ReplayBuffer(object): def __init__(self, state_dim, action_dim): self.max_size = int(1e6) self.count = 0 self.size = 0 self.s = np.zeros((self.max_size, state_dim)) self.a = np.zeros((self.max_size, action_dim)) self.r = np.zeros((self.max_size, 1)) self.s_ = np.zeros((self.max_size, state_dim)) self.dw = np.zeros((self.max_size, 1)) def store(self, s, a, r, s_, dw): self.s[self.count] = s self.a[self.count] = a self.r[self.count] = r self.s_[self.count] = s_ self.dw[self.count] = dw self.count = (self.count + 1) % self.max_size # When the 'count' reaches max_size, it will be reset to 0. self.size = min(self.size + 1, self.max_size) # Record the number of transitions def sample(self, batch_size): index = np.random.choice(self.size, size=batch_size) # Randomly sampling batch_s = torch.tensor(self.s[index], dtype=torch.float) batch_a = torch.tensor(self.a[index], dtype=torch.float) batch_r = torch.tensor(self.r[index], dtype=torch.float) batch_s_ = torch.tensor(self.s_[index], dtype=torch.float) batch_dw = torch.tensor(self.dw[index], dtype=torch.float) return batch_s, batch_a, batch_r, batch_s_, batch_dw class SAC(object): def __init__(self, state_dim, action_dim, max_action): self.max_action = max_action self.hidden_width = 256 # The number of neurons in hidden layers of the neural network self.batch_size = 256 # batch size self.GAMMA = 0.99 # discount factor self.TAU = 0.005 # Softly update the target network self.lr = 3e-4 # learning rate self.adaptive_alpha = True # Whether to automatically learn the temperature alpha if self.adaptive_alpha: # Target Entropy = −dim(A) (e.g. , -6 for HalfCheetah-v2) as given in the paper self.target_entropy = -action_dim # We learn log_alpha instead of alpha to ensure that alpha=exp(log_alpha)>0 self.log_alpha = torch.zeros(1, requires_grad=True) self.alpha = self.log_alpha.exp() self.alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=self.lr) else: self.alpha = 0.2 self.actor = Actor(state_dim, action_dim, self.hidden_width, max_action) self.critic = Critic(state_dim, action_dim, self.hidden_width) self.critic_target = copy.deepcopy(self.critic) self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=self.lr) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=self.lr) def choose_action(self, s, deterministic=False): s = torch.unsqueeze(torch.tensor(s, dtype=torch.float), 0) a, _ = self.actor(s, deterministic, False) # When choosing actions, we do not need to compute log_pi return a.data.numpy().flatten() def learn(self, relay_buffer): batch_s, batch_a, batch_r, batch_s_, batch_dw = relay_buffer.sample(self.batch_size) # Sample a batch with torch.no_grad(): batch_a_, log_pi_ = self.actor(batch_s_) # a' from the current policy # Compute target Q target_Q1, target_Q2 = self.critic_target(batch_s_, batch_a_) target_Q = batch_r + self.GAMMA * (1 - batch_dw) * (torch.min(target_Q1, target_Q2) - self.alpha * log_pi_) # Compute current Q current_Q1, current_Q2 = self.critic(batch_s, batch_a) # Compute critic loss critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q) # Optimize the critic self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # Freeze critic networks so you don't waste computational effort for params in self.critic.parameters(): params.requires_grad = False # Compute actor loss a, log_pi = self.actor(batch_s) Q1, Q2 = self.critic(batch_s, a) Q = torch.min(Q1, Q2) actor_loss = (self.alpha * log_pi - Q).mean() # Optimize the actor self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() # Unfreeze critic networks for params in self.critic.parameters(): params.requires_grad = True # Update alpha if self.adaptive_alpha: # We learn log_alpha instead of alpha to ensure that alpha=exp(log_alpha)>0 alpha_loss = -(self.log_alpha.exp() * (log_pi + self.target_entropy).detach()).mean() self.alpha_optimizer.zero_grad() alpha_loss.backward() self.alpha_optimizer.step() self.alpha = self.log_alpha.exp() # Softly update target networks for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(self.TAU * param.data + (1 - self.TAU) * target_param.data) def evaluate_policy(env, agent): times = 3 # Perform three evaluations and calculate the average evaluate_reward = 0 for _ in range(times): s = env.reset() done = False episode_reward = 0 while not done: a = agent.choose_action(s, deterministic=True) # We use the deterministic policy during the evaluating s_, r, done, _ = env.step(a) episode_reward += r s = s_ evaluate_reward += episode_reward return int(evaluate_reward / times) def reward_adapter(r, env_index): if env_index == 0: # Pendulum-v1 r = (r + 8) / 8 elif env_index == 1: # BipedalWalker-v3 if r <= -100: r = -1 return r if __name__ == '__main__': env_name = ['Pendulum-v1', 'BipedalWalker-v3', 'HalfCheetah-v2', 'Hopper-v2', 'Walker2d-v2'] env_index = 0 env = gym.make(env_name[env_index]) env_evaluate = gym.make(env_name[env_index]) # When evaluating the policy, we need to rebuild an environment number = 1 seed = 0 # Set random seed env.seed(seed) env.action_space.seed(seed) env_evaluate.seed(seed) env_evaluate.action_space.seed(seed) np.random.seed(seed) torch.manual_seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) max_episode_steps = env._max_episode_steps # Maximum number of steps per episode print("env={}".format(env_name[env_index])) print("state_dim={}".format(state_dim)) print("action_dim={}".format(action_dim)) print("max_action={}".format(max_action)) print("max_episode_steps={}".format(max_episode_steps)) agent = SAC(state_dim, action_dim, max_action) replay_buffer = ReplayBuffer(state_dim, action_dim) # Build a tensorboard writer = SummaryWriter(log_dir='runs/SAC/SAC_env_{}_number_{}_seed_{}'.format(env_name[env_index], number, seed)) max_train_steps = 3e6 # Maximum number of training steps random_steps = 25e3 # Take the random actions in the beginning for the better exploration evaluate_freq = 5e3 # Evaluate the policy every 'evaluate_freq' steps evaluate_num = 0 # Record the number of evaluations evaluate_rewards = [] # Record the rewards during the evaluating total_steps = 0 # Record the total steps during the training while total_steps < max_train_steps: s = env.reset() episode_steps = 0 done = False while not done: episode_steps += 1 if total_steps < random_steps: # Take the random actions in the beginning for the better exploration a = env.action_space.sample() else: a = agent.choose_action(s) s_, r, done, _ = env.step(a) r = reward_adapter(r, env_index) # Adjust rewards for better performance # When dead or win or reaching the max_episode_steps, done will be Ture, we need to distinguish them; # dw means dead or win,there is no next state s'; # but when reaching the max_episode_steps,there is a next state s' actually. if done and episode_steps != max_episode_steps: dw = True else: dw = False replay_buffer.store(s, a, r, s_, dw) # Store the transition s = s_ if total_steps >= random_steps: agent.learn(replay_buffer) # Evaluate the policy every 'evaluate_freq' steps if (total_steps + 1) % evaluate_freq == 0: evaluate_num += 1 evaluate_reward = evaluate_policy(env_evaluate, agent) evaluate_rewards.append(evaluate_reward) print("evaluate_num:{} \t evaluate_reward:{}".format(evaluate_num, evaluate_reward)) writer.add_scalar('step_rewards_{}'.format(env_name[env_index]), evaluate_reward, global_step=total_steps) # Save the rewards if evaluate_num % 10 == 0: np.save('./data_train/SAC_env_{}_number_{}_seed_{}.npy'.format(env_name[env_index], number, seed), np.array(evaluate_rewards)) total_steps += 1
42.65371
147
0.618341
import gym import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import copy from torch.utils.tensorboard import SummaryWriter from torch.distributions import Normal class Actor(nn.Module): def __init__(self, state_dim, action_dim, hidden_width, max_action): super(Actor, self).__init__() self.max_action = max_action self.l1 = nn.Linear(state_dim, hidden_width) self.l2 = nn.Linear(hidden_width, hidden_width) self.mean_layer = nn.Linear(hidden_width, action_dim) self.log_std_layer = nn.Linear(hidden_width, action_dim) def forward(self, x, deterministic=False, with_logprob=True): x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) mean = self.mean_layer(x) log_std = self.log_std_layer(x) log_std = torch.clamp(log_std, -20, 2) std = torch.exp(log_std) dist = Normal(mean, std) if deterministic: a = mean else: a = dist.rsample() if with_logprob: log_pi = dist.log_prob(a).sum(dim=1, keepdim=True) log_pi -= (2 * (np.log(2) - a - F.softplus(-2 * a))).sum(dim=1, keepdim=True) else: log_pi = None a = self.max_action * torch.tanh(a) return a, log_pi class Critic(nn.Module): def __init__(self, state_dim, action_dim, hidden_width): super(Critic, self).__init__() self.l1 = nn.Linear(state_dim + action_dim, hidden_width) self.l2 = nn.Linear(hidden_width, hidden_width) self.l3 = nn.Linear(hidden_width, 1) self.l4 = nn.Linear(state_dim + action_dim, hidden_width) self.l5 = nn.Linear(hidden_width, hidden_width) self.l6 = nn.Linear(hidden_width, 1) def forward(self, s, a): s_a = torch.cat([s, a], 1) q1 = F.relu(self.l1(s_a)) q1 = F.relu(self.l2(q1)) q1 = self.l3(q1) q2 = F.relu(self.l4(s_a)) q2 = F.relu(self.l5(q2)) q2 = self.l6(q2) return q1, q2 class ReplayBuffer(object): def __init__(self, state_dim, action_dim): self.max_size = int(1e6) self.count = 0 self.size = 0 self.s = np.zeros((self.max_size, state_dim)) self.a = np.zeros((self.max_size, action_dim)) self.r = np.zeros((self.max_size, 1)) self.s_ = np.zeros((self.max_size, state_dim)) self.dw = np.zeros((self.max_size, 1)) def store(self, s, a, r, s_, dw): self.s[self.count] = s self.a[self.count] = a self.r[self.count] = r self.s_[self.count] = s_ self.dw[self.count] = dw self.count = (self.count + 1) % self.max_size self.size = min(self.size + 1, self.max_size) def sample(self, batch_size): index = np.random.choice(self.size, size=batch_size) batch_s = torch.tensor(self.s[index], dtype=torch.float) batch_a = torch.tensor(self.a[index], dtype=torch.float) batch_r = torch.tensor(self.r[index], dtype=torch.float) batch_s_ = torch.tensor(self.s_[index], dtype=torch.float) batch_dw = torch.tensor(self.dw[index], dtype=torch.float) return batch_s, batch_a, batch_r, batch_s_, batch_dw class SAC(object): def __init__(self, state_dim, action_dim, max_action): self.max_action = max_action self.hidden_width = 256 self.batch_size = 256 self.GAMMA = 0.99 self.TAU = 0.005 self.lr = 3e-4 self.adaptive_alpha = True if self.adaptive_alpha: self.target_entropy = -action_dim self.log_alpha = torch.zeros(1, requires_grad=True) self.alpha = self.log_alpha.exp() self.alpha_optimizer = torch.optim.Adam([self.log_alpha], lr=self.lr) else: self.alpha = 0.2 self.actor = Actor(state_dim, action_dim, self.hidden_width, max_action) self.critic = Critic(state_dim, action_dim, self.hidden_width) self.critic_target = copy.deepcopy(self.critic) self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=self.lr) self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=self.lr) def choose_action(self, s, deterministic=False): s = torch.unsqueeze(torch.tensor(s, dtype=torch.float), 0) a, _ = self.actor(s, deterministic, False) return a.data.numpy().flatten() def learn(self, relay_buffer): batch_s, batch_a, batch_r, batch_s_, batch_dw = relay_buffer.sample(self.batch_size) with torch.no_grad(): batch_a_, log_pi_ = self.actor(batch_s_) # Compute target Q target_Q1, target_Q2 = self.critic_target(batch_s_, batch_a_) target_Q = batch_r + self.GAMMA * (1 - batch_dw) * (torch.min(target_Q1, target_Q2) - self.alpha * log_pi_) # Compute current Q current_Q1, current_Q2 = self.critic(batch_s, batch_a) # Compute critic loss critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q) # Optimize the critic self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() # Freeze critic networks so you don't waste computational effort for params in self.critic.parameters(): params.requires_grad = False a, log_pi = self.actor(batch_s) Q1, Q2 = self.critic(batch_s, a) Q = torch.min(Q1, Q2) actor_loss = (self.alpha * log_pi - Q).mean() self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() for params in self.critic.parameters(): params.requires_grad = True if self.adaptive_alpha: alpha_loss = -(self.log_alpha.exp() * (log_pi + self.target_entropy).detach()).mean() self.alpha_optimizer.zero_grad() alpha_loss.backward() self.alpha_optimizer.step() self.alpha = self.log_alpha.exp() for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()): target_param.data.copy_(self.TAU * param.data + (1 - self.TAU) * target_param.data) def evaluate_policy(env, agent): times = 3 evaluate_reward = 0 for _ in range(times): s = env.reset() done = False episode_reward = 0 while not done: a = agent.choose_action(s, deterministic=True) s_, r, done, _ = env.step(a) episode_reward += r s = s_ evaluate_reward += episode_reward return int(evaluate_reward / times) def reward_adapter(r, env_index): if env_index == 0: r = (r + 8) / 8 elif env_index == 1: if r <= -100: r = -1 return r if __name__ == '__main__': env_name = ['Pendulum-v1', 'BipedalWalker-v3', 'HalfCheetah-v2', 'Hopper-v2', 'Walker2d-v2'] env_index = 0 env = gym.make(env_name[env_index]) env_evaluate = gym.make(env_name[env_index]) number = 1 seed = 0 env.seed(seed) env.action_space.seed(seed) env_evaluate.seed(seed) env_evaluate.action_space.seed(seed) np.random.seed(seed) torch.manual_seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) max_episode_steps = env._max_episode_steps print("env={}".format(env_name[env_index])) print("state_dim={}".format(state_dim)) print("action_dim={}".format(action_dim)) print("max_action={}".format(max_action)) print("max_episode_steps={}".format(max_episode_steps)) agent = SAC(state_dim, action_dim, max_action) replay_buffer = ReplayBuffer(state_dim, action_dim) writer = SummaryWriter(log_dir='runs/SAC/SAC_env_{}_number_{}_seed_{}'.format(env_name[env_index], number, seed)) max_train_steps = 3e6 random_steps = 25e3 evaluate_freq = 5e3 evaluate_num = 0 evaluate_rewards = [] total_steps = 0 while total_steps < max_train_steps: s = env.reset() episode_steps = 0 done = False while not done: episode_steps += 1 if total_steps < random_steps: a = env.action_space.sample() else: a = agent.choose_action(s) s_, r, done, _ = env.step(a) r = reward_adapter(r, env_index) # but when reaching the max_episode_steps,there is a next state s' actually. if done and episode_steps != max_episode_steps: dw = True else: dw = False replay_buffer.store(s, a, r, s_, dw) s = s_ if total_steps >= random_steps: agent.learn(replay_buffer) if (total_steps + 1) % evaluate_freq == 0: evaluate_num += 1 evaluate_reward = evaluate_policy(env_evaluate, agent) evaluate_rewards.append(evaluate_reward) print("evaluate_num:{} \t evaluate_reward:{}".format(evaluate_num, evaluate_reward)) writer.add_scalar('step_rewards_{}'.format(env_name[env_index]), evaluate_reward, global_step=total_steps) if evaluate_num % 10 == 0: np.save('./data_train/SAC_env_{}_number_{}_seed_{}.npy'.format(env_name[env_index], number, seed), np.array(evaluate_rewards)) total_steps += 1
true
true
f71823696e8d384656f678616b79009f7bcd95a6
14,225
py
Python
esrally/client.py
Kua-Fu/rally
7c58ef6f81f618fbc142dfa58b0ed00a5b05fbae
[ "Apache-2.0" ]
1,577
2016-04-19T12:38:58.000Z
2022-03-31T07:18:25.000Z
esrally/client.py
Kua-Fu/rally
7c58ef6f81f618fbc142dfa58b0ed00a5b05fbae
[ "Apache-2.0" ]
1,079
2016-04-19T12:09:16.000Z
2022-03-31T05:38:50.000Z
esrally/client.py
Kua-Fu/rally
7c58ef6f81f618fbc142dfa58b0ed00a5b05fbae
[ "Apache-2.0" ]
300
2016-04-19T18:27:12.000Z
2022-03-23T07:54:16.000Z
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import contextvars import logging import time import certifi import urllib3 from esrally import doc_link, exceptions from esrally.utils import console, convert class RequestContextManager: """ Ensures that request context span the defined scope and allow nesting of request contexts with proper propagation. This means that we can span a top-level request context, open sub-request contexts that can be used to measure individual timings and still measure the proper total time on the top-level request context. """ def __init__(self, request_context_holder): self.ctx_holder = request_context_holder self.ctx = None self.token = None async def __aenter__(self): self.ctx, self.token = self.ctx_holder.init_request_context() return self @property def request_start(self): return self.ctx["request_start"] @property def request_end(self): return self.ctx["request_end"] async def __aexit__(self, exc_type, exc_val, exc_tb): # propagate earliest request start and most recent request end to parent request_start = self.request_start request_end = self.request_end self.ctx_holder.restore_context(self.token) # don't attempt to restore these values on the top-level context as they don't exist if self.token.old_value != contextvars.Token.MISSING: self.ctx_holder.update_request_start(request_start) self.ctx_holder.update_request_end(request_end) self.token = None return False class RequestContextHolder: """ Holds request context variables. This class is only meant to be used together with RequestContextManager. """ request_context = contextvars.ContextVar("rally_request_context") def new_request_context(self): return RequestContextManager(self) @classmethod def init_request_context(cls): ctx = {} token = cls.request_context.set(ctx) return ctx, token @classmethod def restore_context(cls, token): cls.request_context.reset(token) @classmethod def update_request_start(cls, new_request_start): meta = cls.request_context.get() # this can happen if multiple requests are sent on the wire for one logical request (e.g. scrolls) if "request_start" not in meta: meta["request_start"] = new_request_start @classmethod def update_request_end(cls, new_request_end): meta = cls.request_context.get() meta["request_end"] = new_request_end @classmethod def on_request_start(cls): cls.update_request_start(time.perf_counter()) @classmethod def on_request_end(cls): cls.update_request_end(time.perf_counter()) @classmethod def return_raw_response(cls): ctx = cls.request_context.get() ctx["raw_response"] = True class EsClientFactory: """ Abstracts how the Elasticsearch client is created. Intended for testing. """ def __init__(self, hosts, client_options): self.hosts = hosts self.client_options = dict(client_options) self.ssl_context = None self.logger = logging.getLogger(__name__) masked_client_options = dict(client_options) if "basic_auth_password" in masked_client_options: masked_client_options["basic_auth_password"] = "*****" if "http_auth" in masked_client_options: masked_client_options["http_auth"] = (masked_client_options["http_auth"][0], "*****") self.logger.info("Creating ES client connected to %s with options [%s]", hosts, masked_client_options) # we're using an SSL context now and it is not allowed to have use_ssl present in client options anymore if self.client_options.pop("use_ssl", False): # pylint: disable=import-outside-toplevel import ssl self.logger.info("SSL support: on") self.client_options["scheme"] = "https" # ssl.Purpose.CLIENT_AUTH allows presenting client certs and can only be enabled during instantiation # but can be disabled via the verify_mode property later on. self.ssl_context = ssl.create_default_context( ssl.Purpose.CLIENT_AUTH, cafile=self.client_options.pop("ca_certs", certifi.where()) ) if not self.client_options.pop("verify_certs", True): self.logger.info("SSL certificate verification: off") # order matters to avoid ValueError: check_hostname needs a SSL context with either CERT_OPTIONAL or CERT_REQUIRED self.ssl_context.verify_mode = ssl.CERT_NONE self.ssl_context.check_hostname = False self.logger.warning( "User has enabled SSL but disabled certificate verification. This is dangerous but may be ok for a " "benchmark. Disabling urllib warnings now to avoid a logging storm. " "See https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings for details." ) # disable: "InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly \ # advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings" urllib3.disable_warnings() else: self.ssl_context.verify_mode = ssl.CERT_REQUIRED self.ssl_context.check_hostname = True self.logger.info("SSL certificate verification: on") # When using SSL_context, all SSL related kwargs in client options get ignored client_cert = self.client_options.pop("client_cert", False) client_key = self.client_options.pop("client_key", False) if not client_cert and not client_key: self.logger.info("SSL client authentication: off") elif bool(client_cert) != bool(client_key): self.logger.error("Supplied client-options contain only one of client_cert/client_key. ") defined_client_ssl_option = "client_key" if client_key else "client_cert" missing_client_ssl_option = "client_cert" if client_key else "client_key" console.println( "'{}' is missing from client-options but '{}' has been specified.\n" "If your Elasticsearch setup requires client certificate verification both need to be supplied.\n" "Read the documentation at {}\n".format( missing_client_ssl_option, defined_client_ssl_option, console.format.link(doc_link("command_line_reference.html#client-options")), ) ) raise exceptions.SystemSetupError( "Cannot specify '{}' without also specifying '{}' in client-options.".format( defined_client_ssl_option, missing_client_ssl_option ) ) elif client_cert and client_key: self.logger.info("SSL client authentication: on") self.ssl_context.load_cert_chain(certfile=client_cert, keyfile=client_key) else: self.logger.info("SSL support: off") self.client_options["scheme"] = "http" if self._is_set(self.client_options, "basic_auth_user") and self._is_set(self.client_options, "basic_auth_password"): self.logger.info("HTTP basic authentication: on") self.client_options["http_auth"] = (self.client_options.pop("basic_auth_user"), self.client_options.pop("basic_auth_password")) else: self.logger.info("HTTP basic authentication: off") if self._is_set(self.client_options, "compressed"): console.warn("You set the deprecated client option 'compressed‘. Please use 'http_compress' instead.", logger=self.logger) self.client_options["http_compress"] = self.client_options.pop("compressed") if self._is_set(self.client_options, "http_compress"): self.logger.info("HTTP compression: on") else: self.logger.info("HTTP compression: off") if self._is_set(self.client_options, "enable_cleanup_closed"): self.client_options["enable_cleanup_closed"] = convert.to_bool(self.client_options.pop("enable_cleanup_closed")) def _is_set(self, client_opts, k): try: return client_opts[k] except KeyError: return False def create(self): # pylint: disable=import-outside-toplevel import elasticsearch return elasticsearch.Elasticsearch(hosts=self.hosts, ssl_context=self.ssl_context, **self.client_options) def create_async(self): # pylint: disable=import-outside-toplevel import io import aiohttp import elasticsearch from elasticsearch.serializer import JSONSerializer import esrally.async_connection class LazyJSONSerializer(JSONSerializer): def loads(self, s): meta = RallyAsyncElasticsearch.request_context.get() if "raw_response" in meta: return io.BytesIO(s) else: return super().loads(s) async def on_request_start(session, trace_config_ctx, params): RallyAsyncElasticsearch.on_request_start() async def on_request_end(session, trace_config_ctx, params): RallyAsyncElasticsearch.on_request_end() trace_config = aiohttp.TraceConfig() trace_config.on_request_start.append(on_request_start) trace_config.on_request_end.append(on_request_end) # ensure that we also stop the timer when a request "ends" with an exception (e.g. a timeout) trace_config.on_request_exception.append(on_request_end) # override the builtin JSON serializer self.client_options["serializer"] = LazyJSONSerializer() self.client_options["trace_config"] = trace_config class VerifiedAsyncTransport(elasticsearch.AsyncTransport): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # skip verification at this point; we've already verified this earlier with the synchronous client. # The async client is used in the hot code path and we use customized overrides (such as that we don't # parse response bodies in some cases for performance reasons, e.g. when using the bulk API). self._verified_elasticsearch = True class RallyAsyncElasticsearch(elasticsearch.AsyncElasticsearch, RequestContextHolder): pass return RallyAsyncElasticsearch( hosts=self.hosts, transport_class=VerifiedAsyncTransport, connection_class=esrally.async_connection.AIOHttpConnection, ssl_context=self.ssl_context, **self.client_options, ) def wait_for_rest_layer(es, max_attempts=40): """ Waits for ``max_attempts`` until Elasticsearch's REST API is available. :param es: Elasticsearch client to use for connecting. :param max_attempts: The maximum number of attempts to check whether the REST API is available. :return: True iff Elasticsearch's REST API is available. """ # assume that at least the hosts that we expect to contact should be available. Note that this is not 100% # bullet-proof as a cluster could have e.g. dedicated masters which are not contained in our list of target hosts # but this is still better than just checking for any random node's REST API being reachable. expected_node_count = len(es.transport.hosts) logger = logging.getLogger(__name__) for attempt in range(max_attempts): logger.debug("REST API is available after %s attempts", attempt) # pylint: disable=import-outside-toplevel import elasticsearch try: # see also WaitForHttpResource in Elasticsearch tests. Contrary to the ES tests we consider the API also # available when the cluster status is RED (as long as all required nodes are present) es.cluster.health(wait_for_nodes=">={}".format(expected_node_count)) logger.info("REST API is available for >= [%s] nodes after [%s] attempts.", expected_node_count, attempt) return True except elasticsearch.ConnectionError as e: if "SSL: UNKNOWN_PROTOCOL" in str(e): raise exceptions.SystemSetupError("Could not connect to cluster via https. Is this an https endpoint?", e) else: logger.debug("Got connection error on attempt [%s]. Sleeping...", attempt) time.sleep(3) except elasticsearch.TransportError as e: # cluster block, x-pack not initialized yet, our wait condition is not reached if e.status_code in (503, 401, 408): logger.debug("Got status code [%s] on attempt [%s]. Sleeping...", e.status_code, attempt) time.sleep(3) else: logger.warning("Got unexpected status code [%s] on attempt [%s].", e.status_code, attempt) raise e return False
44.873817
139
0.664745
import contextvars import logging import time import certifi import urllib3 from esrally import doc_link, exceptions from esrally.utils import console, convert class RequestContextManager: def __init__(self, request_context_holder): self.ctx_holder = request_context_holder self.ctx = None self.token = None async def __aenter__(self): self.ctx, self.token = self.ctx_holder.init_request_context() return self @property def request_start(self): return self.ctx["request_start"] @property def request_end(self): return self.ctx["request_end"] async def __aexit__(self, exc_type, exc_val, exc_tb): request_start = self.request_start request_end = self.request_end self.ctx_holder.restore_context(self.token) if self.token.old_value != contextvars.Token.MISSING: self.ctx_holder.update_request_start(request_start) self.ctx_holder.update_request_end(request_end) self.token = None return False class RequestContextHolder: request_context = contextvars.ContextVar("rally_request_context") def new_request_context(self): return RequestContextManager(self) @classmethod def init_request_context(cls): ctx = {} token = cls.request_context.set(ctx) return ctx, token @classmethod def restore_context(cls, token): cls.request_context.reset(token) @classmethod def update_request_start(cls, new_request_start): meta = cls.request_context.get() if "request_start" not in meta: meta["request_start"] = new_request_start @classmethod def update_request_end(cls, new_request_end): meta = cls.request_context.get() meta["request_end"] = new_request_end @classmethod def on_request_start(cls): cls.update_request_start(time.perf_counter()) @classmethod def on_request_end(cls): cls.update_request_end(time.perf_counter()) @classmethod def return_raw_response(cls): ctx = cls.request_context.get() ctx["raw_response"] = True class EsClientFactory: def __init__(self, hosts, client_options): self.hosts = hosts self.client_options = dict(client_options) self.ssl_context = None self.logger = logging.getLogger(__name__) masked_client_options = dict(client_options) if "basic_auth_password" in masked_client_options: masked_client_options["basic_auth_password"] = "*****" if "http_auth" in masked_client_options: masked_client_options["http_auth"] = (masked_client_options["http_auth"][0], "*****") self.logger.info("Creating ES client connected to %s with options [%s]", hosts, masked_client_options) if self.client_options.pop("use_ssl", False): # pylint: disable=import-outside-toplevel import ssl self.logger.info("SSL support: on") self.client_options["scheme"] = "https" # ssl.Purpose.CLIENT_AUTH allows presenting client certs and can only be enabled during instantiation # but can be disabled via the verify_mode property later on. self.ssl_context = ssl.create_default_context( ssl.Purpose.CLIENT_AUTH, cafile=self.client_options.pop("ca_certs", certifi.where()) ) if not self.client_options.pop("verify_certs", True): self.logger.info("SSL certificate verification: off") # order matters to avoid ValueError: check_hostname needs a SSL context with either CERT_OPTIONAL or CERT_REQUIRED self.ssl_context.verify_mode = ssl.CERT_NONE self.ssl_context.check_hostname = False self.logger.warning( "User has enabled SSL but disabled certificate verification. This is dangerous but may be ok for a " "benchmark. Disabling urllib warnings now to avoid a logging storm. " "See https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings for details." ) # disable: "InsecureRequestWarning: Unverified HTTPS request is being made. Adding certificate verification is strongly \ # advised. See: https://urllib3.readthedocs.io/en/latest/advanced-usage.html#ssl-warnings" urllib3.disable_warnings() else: self.ssl_context.verify_mode = ssl.CERT_REQUIRED self.ssl_context.check_hostname = True self.logger.info("SSL certificate verification: on") # When using SSL_context, all SSL related kwargs in client options get ignored client_cert = self.client_options.pop("client_cert", False) client_key = self.client_options.pop("client_key", False) if not client_cert and not client_key: self.logger.info("SSL client authentication: off") elif bool(client_cert) != bool(client_key): self.logger.error("Supplied client-options contain only one of client_cert/client_key. ") defined_client_ssl_option = "client_key" if client_key else "client_cert" missing_client_ssl_option = "client_cert" if client_key else "client_key" console.println( "'{}' is missing from client-options but '{}' has been specified.\n" "If your Elasticsearch setup requires client certificate verification both need to be supplied.\n" "Read the documentation at {}\n".format( missing_client_ssl_option, defined_client_ssl_option, console.format.link(doc_link("command_line_reference.html#client-options")), ) ) raise exceptions.SystemSetupError( "Cannot specify '{}' without also specifying '{}' in client-options.".format( defined_client_ssl_option, missing_client_ssl_option ) ) elif client_cert and client_key: self.logger.info("SSL client authentication: on") self.ssl_context.load_cert_chain(certfile=client_cert, keyfile=client_key) else: self.logger.info("SSL support: off") self.client_options["scheme"] = "http" if self._is_set(self.client_options, "basic_auth_user") and self._is_set(self.client_options, "basic_auth_password"): self.logger.info("HTTP basic authentication: on") self.client_options["http_auth"] = (self.client_options.pop("basic_auth_user"), self.client_options.pop("basic_auth_password")) else: self.logger.info("HTTP basic authentication: off") if self._is_set(self.client_options, "compressed"): console.warn("You set the deprecated client option 'compressed‘. Please use 'http_compress' instead.", logger=self.logger) self.client_options["http_compress"] = self.client_options.pop("compressed") if self._is_set(self.client_options, "http_compress"): self.logger.info("HTTP compression: on") else: self.logger.info("HTTP compression: off") if self._is_set(self.client_options, "enable_cleanup_closed"): self.client_options["enable_cleanup_closed"] = convert.to_bool(self.client_options.pop("enable_cleanup_closed")) def _is_set(self, client_opts, k): try: return client_opts[k] except KeyError: return False def create(self): import elasticsearch return elasticsearch.Elasticsearch(hosts=self.hosts, ssl_context=self.ssl_context, **self.client_options) def create_async(self): import io import aiohttp import elasticsearch from elasticsearch.serializer import JSONSerializer import esrally.async_connection class LazyJSONSerializer(JSONSerializer): def loads(self, s): meta = RallyAsyncElasticsearch.request_context.get() if "raw_response" in meta: return io.BytesIO(s) else: return super().loads(s) async def on_request_start(session, trace_config_ctx, params): RallyAsyncElasticsearch.on_request_start() async def on_request_end(session, trace_config_ctx, params): RallyAsyncElasticsearch.on_request_end() trace_config = aiohttp.TraceConfig() trace_config.on_request_start.append(on_request_start) trace_config.on_request_end.append(on_request_end) trace_config.on_request_exception.append(on_request_end) self.client_options["serializer"] = LazyJSONSerializer() self.client_options["trace_config"] = trace_config class VerifiedAsyncTransport(elasticsearch.AsyncTransport): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # The async client is used in the hot code path and we use customized overrides (such as that we don't self._verified_elasticsearch = True class RallyAsyncElasticsearch(elasticsearch.AsyncElasticsearch, RequestContextHolder): pass return RallyAsyncElasticsearch( hosts=self.hosts, transport_class=VerifiedAsyncTransport, connection_class=esrally.async_connection.AIOHttpConnection, ssl_context=self.ssl_context, **self.client_options, ) def wait_for_rest_layer(es, max_attempts=40): expected_node_count = len(es.transport.hosts) logger = logging.getLogger(__name__) for attempt in range(max_attempts): logger.debug("REST API is available after %s attempts", attempt) # pylint: disable=import-outside-toplevel import elasticsearch try: # see also WaitForHttpResource in Elasticsearch tests. Contrary to the ES tests we consider the API also # available when the cluster status is RED (as long as all required nodes are present) es.cluster.health(wait_for_nodes=">={}".format(expected_node_count)) logger.info("REST API is available for >= [%s] nodes after [%s] attempts.", expected_node_count, attempt) return True except elasticsearch.ConnectionError as e: if "SSL: UNKNOWN_PROTOCOL" in str(e): raise exceptions.SystemSetupError("Could not connect to cluster via https. Is this an https endpoint?", e) else: logger.debug("Got connection error on attempt [%s]. Sleeping...", attempt) time.sleep(3) except elasticsearch.TransportError as e: # cluster block, x-pack not initialized yet, our wait condition is not reached if e.status_code in (503, 401, 408): logger.debug("Got status code [%s] on attempt [%s]. Sleeping...", e.status_code, attempt) time.sleep(3) else: logger.warning("Got unexpected status code [%s] on attempt [%s].", e.status_code, attempt) raise e return False
true
true
f71823bb0a9512d2ba7d2b03e46696bf17185a01
2,937
py
Python
cloudfeaster/privacy.py
simonsdave/clf
643ce7e6ba9bd47c35b235cb24264dbc9024367c
[ "MIT" ]
4
2015-12-17T17:32:23.000Z
2022-01-02T20:31:08.000Z
cloudfeaster/privacy.py
simonsdave/clf
643ce7e6ba9bd47c35b235cb24264dbc9024367c
[ "MIT" ]
61
2015-05-25T10:16:55.000Z
2022-01-15T23:49:38.000Z
cloudfeaster/privacy.py
simonsdave/clf
643ce7e6ba9bd47c35b235cb24264dbc9024367c
[ "MIT" ]
2
2015-12-10T18:18:10.000Z
2021-01-30T15:29:13.000Z
"""This module exists as a place to centralize functionality and configuration related to privacy. """ import hashlib import logging class RedactingFormatter(object): """ Credits - this formatter was heavily inspired by https://relaxdiego.com/2014/07/logging-in-python.html """ @classmethod def install_for_all_handlers(self, crawl_args): # :TODO: can this be configured when configuring logging # this is inspired by https://gist.github.com/acdha/9238791 for handler in logging.root.handlers: handler.setFormatter(self(handler.formatter, crawl_args)) def __init__(self, original_formatter, crawl_args): self.original_formatter = original_formatter self._patterns_and_replacements = [] for crawl_arg in crawl_args: replacement = hash_crawl_arg(crawl_arg) self._patterns_and_replacements.append((crawl_arg, replacement)) pattern = '"' + '", "'.join(crawl_arg) + '"' replacement = '"' + '", "'.join(hash_crawl_arg(crawl_arg)) + '"' self._patterns_and_replacements.append((pattern, replacement)) def format(self, record): msg = self.original_formatter.format(record) for (pattern, replacement) in self._patterns_and_replacements: msg = msg.replace(pattern, replacement) return msg def __getattr__(self, attr): return getattr(self.original_formatter, attr) class RedactingFilter(logging.Filter): def __init__(self, crawl_args): super(RedactingFilter, self).__init__() self._patterns_and_replacements = [] for crawl_arg in crawl_args: replacement = hash_crawl_arg(crawl_arg) self._patterns_and_replacements.append((crawl_arg, replacement)) pattern = '"' + '", "'.join(crawl_arg) + '"' replacement = '"' + '", "'.join(hash_crawl_arg(crawl_arg)) + '"' self._patterns_and_replacements.append((pattern, replacement)) def filter(self, record): record.msg = self.redact(record.msg) if isinstance(record.args, dict): for k in record.args.keys(): record.args[k] = self._redact(record.args[k]) else: record.args = tuple(self._redact(arg) for arg in record.args) return True def _redact(self, msg): msg = None # isinstance(msg, basestring) and msg or str(msg) for (pattern, replacement) in self._patterns_and_replacements: msg = msg.replace(pattern, replacement) return msg def hash_crawl_arg(crawl_arg): """Take a crawl argument (ie. an identifying or authenticating factor) and create a hash. Hash will have the form <hash function name>:<hash digest>. """ hash = hashlib.sha256(str(crawl_arg).encode('utf-8')) return '{hash_name}:{hash_digest}'.format(hash_name=hash.name, hash_digest=hash.hexdigest())
36.7125
106
0.657133
import hashlib import logging class RedactingFormatter(object): @classmethod def install_for_all_handlers(self, crawl_args): for handler in logging.root.handlers: handler.setFormatter(self(handler.formatter, crawl_args)) def __init__(self, original_formatter, crawl_args): self.original_formatter = original_formatter self._patterns_and_replacements = [] for crawl_arg in crawl_args: replacement = hash_crawl_arg(crawl_arg) self._patterns_and_replacements.append((crawl_arg, replacement)) pattern = '"' + '", "'.join(crawl_arg) + '"' replacement = '"' + '", "'.join(hash_crawl_arg(crawl_arg)) + '"' self._patterns_and_replacements.append((pattern, replacement)) def format(self, record): msg = self.original_formatter.format(record) for (pattern, replacement) in self._patterns_and_replacements: msg = msg.replace(pattern, replacement) return msg def __getattr__(self, attr): return getattr(self.original_formatter, attr) class RedactingFilter(logging.Filter): def __init__(self, crawl_args): super(RedactingFilter, self).__init__() self._patterns_and_replacements = [] for crawl_arg in crawl_args: replacement = hash_crawl_arg(crawl_arg) self._patterns_and_replacements.append((crawl_arg, replacement)) pattern = '"' + '", "'.join(crawl_arg) + '"' replacement = '"' + '", "'.join(hash_crawl_arg(crawl_arg)) + '"' self._patterns_and_replacements.append((pattern, replacement)) def filter(self, record): record.msg = self.redact(record.msg) if isinstance(record.args, dict): for k in record.args.keys(): record.args[k] = self._redact(record.args[k]) else: record.args = tuple(self._redact(arg) for arg in record.args) return True def _redact(self, msg): msg = None for (pattern, replacement) in self._patterns_and_replacements: msg = msg.replace(pattern, replacement) return msg def hash_crawl_arg(crawl_arg): hash = hashlib.sha256(str(crawl_arg).encode('utf-8')) return '{hash_name}:{hash_digest}'.format(hash_name=hash.name, hash_digest=hash.hexdigest())
true
true
f718246c9b97a010fbc0d6588245bd4852b549f4
1,163
py
Python
www/tests/test_import.py
sejalseth/brython
0b59368eac40a3b1eef7b13f2102b18cb5629687
[ "BSD-3-Clause" ]
5,926
2015-01-01T07:45:08.000Z
2022-03-31T12:34:38.000Z
www/tests/test_import.py
sejalseth/brython
0b59368eac40a3b1eef7b13f2102b18cb5629687
[ "BSD-3-Clause" ]
1,728
2015-01-01T01:09:12.000Z
2022-03-30T23:25:22.000Z
www/tests/test_import.py
sejalseth/brython
0b59368eac40a3b1eef7b13f2102b18cb5629687
[ "BSD-3-Clause" ]
574
2015-01-02T01:36:10.000Z
2022-03-26T10:18:48.000Z
import simple class Simple2: def __init__(self): self.info = "SimpleClass2" class Simple3(simple.Simple): def __init__(self): simple.Simple.__init__(self) text = "text in simple" assert simple.text == text _s = simple.Simple() _s3 = Simple3() assert _s.info == _s3.info import recursive_import _s = recursive_import.myClass() assert str(_s) == "success!" import from_import_test.b assert from_import_test.b.v == 1 import from_import_test.c assert from_import_test.c.v == 1 # test of keyword "global" in functions of an imported module import global_in_imported assert global_in_imported.X == 15 from delegator import Delegator delegate = Delegator([]) # issue 768 import modtest # issue 1261 import colorsys colorsys.ONE_THIRD # no AttributeError from colorsys import * try: ONE_THIRD raise Exception("should have raised NameError") except NameError: pass # use "__getattr__" and "__dir__" at module level (PEP 562) assert simple.strange == "a strange name" assert dir(simple) == ["Simple", "text", "strange", "unknown"] # issue 1483 from foobar import * assert str(Foo()) == "foo" print('passed all tests')
18.758065
62
0.72485
import simple class Simple2: def __init__(self): self.info = "SimpleClass2" class Simple3(simple.Simple): def __init__(self): simple.Simple.__init__(self) text = "text in simple" assert simple.text == text _s = simple.Simple() _s3 = Simple3() assert _s.info == _s3.info import recursive_import _s = recursive_import.myClass() assert str(_s) == "success!" import from_import_test.b assert from_import_test.b.v == 1 import from_import_test.c assert from_import_test.c.v == 1 import global_in_imported assert global_in_imported.X == 15 from delegator import Delegator delegate = Delegator([]) import modtest import colorsys colorsys.ONE_THIRD from colorsys import * try: ONE_THIRD raise Exception("should have raised NameError") except NameError: pass assert simple.strange == "a strange name" assert dir(simple) == ["Simple", "text", "strange", "unknown"] from foobar import * assert str(Foo()) == "foo" print('passed all tests')
true
true
f71824b21dd9aad49d682f6da45462de71c6c6b0
403
py
Python
mozillians/api/urls.py
caktus/mozillians
312eb5d993b60092fa4f8eb94548c1db4b21fa01
[ "BSD-3-Clause" ]
null
null
null
mozillians/api/urls.py
caktus/mozillians
312eb5d993b60092fa4f8eb94548c1db4b21fa01
[ "BSD-3-Clause" ]
null
null
null
mozillians/api/urls.py
caktus/mozillians
312eb5d993b60092fa4f8eb94548c1db4b21fa01
[ "BSD-3-Clause" ]
null
null
null
from django.conf.urls import include, patterns, url from tastypie.api import Api import mozillians.groups.api import mozillians.users.api v1_api = Api(api_name='v1') v1_api.register(mozillians.users.api.UserResource()) v1_api.register(mozillians.groups.api.GroupResource()) v1_api.register(mozillians.groups.api.SkillResource()) urlpatterns = patterns( '', url(r'', include(v1_api.urls)),)
23.705882
54
0.769231
from django.conf.urls import include, patterns, url from tastypie.api import Api import mozillians.groups.api import mozillians.users.api v1_api = Api(api_name='v1') v1_api.register(mozillians.users.api.UserResource()) v1_api.register(mozillians.groups.api.GroupResource()) v1_api.register(mozillians.groups.api.SkillResource()) urlpatterns = patterns( '', url(r'', include(v1_api.urls)),)
true
true
f71826ef8902c67bed889b8698b64504138920f2
10,060
py
Python
graspologic/layouts/render.py
tliu68/graspologic
d1cf7678bc63ab9769828a82a90f66bf1dfa0eff
[ "MIT" ]
1
2021-07-06T15:36:27.000Z
2021-07-06T15:36:27.000Z
graspologic/layouts/render.py
tliu68/graspologic
d1cf7678bc63ab9769828a82a90f66bf1dfa0eff
[ "MIT" ]
null
null
null
graspologic/layouts/render.py
tliu68/graspologic
d1cf7678bc63ab9769828a82a90f66bf1dfa0eff
[ "MIT" ]
null
null
null
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import networkx as nx from typing import Any, Dict, List, Optional, Tuple from graspologic.layouts.classes import NodePosition import matplotlib.pyplot as plt def _calculate_x_y_domain( positions: List[NodePosition], ) -> Tuple[Tuple[float, float], Tuple[float, float]]: """calculate the overall x/y domain, converting to a square so we can have a consistent scale """ min_x = min_y = float("inf") max_x = max_y = float("-inf") for node_position in positions: min_x = min(min_x, node_position.x - node_position.size) max_x = max(max_x, node_position.x + node_position.size) min_y = min(min_y, node_position.y - node_position.size) max_y = max(max_y, node_position.y + node_position.size) x_delta = max_x - min_x y_delta = max_y - min_y max_delta = max(x_delta, y_delta) if max_delta == x_delta: difference = (max_delta - y_delta) / 2 min_y = min_y - difference max_y = max_y + difference elif max_delta == y_delta: difference = (max_delta - x_delta) / 2 min_x = min_x - difference max_x = max_x + difference return (min_x, max_x), (min_y, max_y) def _scale_value( domain: Tuple[float, float], data_range: Tuple[float, float], value: float ) -> float: return data_range[0] + (data_range[1] - data_range[0]) * ( (value - domain[0]) / (domain[1] - domain[0]) ) def _scale_node_sizes_for_rendering( sizes: List[float], spatial_domain: Tuple[float, float], spatial_range: Tuple[float, float], dpi: float, ): """scale the size again to match the rendered pixel range we would expect this to be handled by the underlying viz framework, but it isn't, size is specified as the bounding box in points of the rendered output, so we need to transform our size to match. There are 72 points per inch. Multiplying by 72 / dpi converts from pixels to points. """ spatial_domain = (0, spatial_domain[1] - spatial_domain[0]) return list( map( lambda s: _scale_value(spatial_domain, spatial_range, s * 2 * 72.0 / dpi) ** 2, sizes, ) ) def _draw_graph( graph: nx.Graph, positions: List[NodePosition], node_colors: Dict[Any, str], vertex_alpha: float, edge_line_width: float, edge_alpha: float, figure_width: float, figure_height: float, vertex_line_width: float = 0.01, vertex_shape: str = "o", arrows: bool = False, dpi: int = 100, ): if len(positions) != len(graph.nodes()): raise ValueError( f"The number of positions provided {len(positions)} is not the same as the " f"number of nodes in the graph {len(graph.nodes())}" ) for position in positions: if position.node_id not in graph: raise ValueError( f"The node position provided for {position.node_id} references a node " f"not found in our graph" ) plt.rcParams["figure.dpi"] = dpi # TODO, test at different dpi plt.clf() figure = plt.gcf() ax = plt.gca() ax.set_axis_off() figure.set_size_inches(figure_width, figure_height) window_extent_width = ax.get_window_extent().width x_domain, y_domain = _calculate_x_y_domain(positions) position_map = {position.node_id: position for position in positions} node_positions = { position.node_id: (position.x, position.y) for position in positions } vertices = [] vertex_sizes = [] node_color_list = [] edge_color_list = [] for node in graph.nodes(): vertices.append(node) vertex_sizes.append(position_map[node].size) node_color_list.append(node_colors[node]) vertex_sizes = _scale_node_sizes_for_rendering( vertex_sizes, x_domain, (0, window_extent_width), dpi ) for source, target in graph.edges(): edge_color_list.append(node_colors[source]) ax.set_xbound(x_domain) ax.set_xlim(x_domain) ax.set_ybound(y_domain) ax.set_ylim(y_domain) nx.draw_networkx_edges( graph, pos=node_positions, alpha=edge_alpha, width=edge_line_width, edge_color=edge_color_list, arrows=arrows, ax=ax, ) nx.draw_networkx_nodes( graph, pos=node_positions, nodelist=vertices, node_color=node_color_list, alpha=vertex_alpha, linewidths=vertex_line_width, node_size=vertex_sizes, node_shape=vertex_shape, ax=ax, ) def show_graph( graph: nx.Graph, positions: List[NodePosition], node_colors: Dict[Any, str], vertex_line_width: float = 0.01, vertex_alpha: float = 0.55, edge_line_width: float = 0.5, edge_alpha: float = 0.02, figure_width: float = 15.0, figure_height: float = 15.0, light_background: bool = True, vertex_shape: str = "o", arrows: bool = False, dpi: int = 500, ): """ Renders and displays a graph. Attempts to display it via the platform-specific display library such as TkInter Edges will be displayed with the same color as the source node. Parameters ---------- graph : nx.Graph The graph to be displayed. If the networkx Graph contains only nodes, no edges will be displayed. positions : List[:class:`graspologic.layouts.NodePosition`] The positionsfor every node in the graph. node_colors : Dict[Any, str] A mapping of node id to colors. Must contain an entry for every node in the graph. vertex_line_width : float Line width of vertex outline. Default is``0.01``. vertex_alpha : float Alpha (transparency) of vertices in visualization. Default is``0.55``. edge_line_width : float Line width of edge. Default is``0.5``. edge_alpha : float Alpha (transparency) of edges in visualization. Default is``0.02``. figure_width : float Width of figure. Default is ``15.0``. figure_height : float eight of figure. Default is``15.0``. light_background : bool Light background or dark background. Default is``True``. vertex_shape : str Matplotlib Marker for the vertex shape. See `https://matplotlib.org/api/markers_api.html <https://matplotlib.org/api/markers_api.html>`_ for a list of allowed values . Default is ``o`` (i.e: a circle) arrows : bool For directed graphs, if ``True``, draw arrow heads. Default is ``False`` dpi : float Dots per inch of the figure. Default is ``500``. """ ax = plt.gca() if light_background: facecolor = ax.get_facecolor() else: facecolor = "#030303" _draw_graph( graph=graph, positions=positions, node_colors=node_colors, vertex_line_width=vertex_line_width, vertex_alpha=vertex_alpha, edge_line_width=edge_line_width, edge_alpha=edge_alpha, figure_width=figure_width, figure_height=figure_height, vertex_shape=vertex_shape, arrows=arrows, dpi=dpi, ) plt.gcf().set_facecolor(facecolor) plt.show() plt.close("all") def save_graph( output_path: str, graph: nx.Graph, positions: List[NodePosition], node_colors: Dict[Any, str], vertex_line_width: float = 0.01, vertex_alpha: float = 0.55, edge_line_width: float = 0.5, edge_alpha: float = 0.02, figure_width: float = 15.0, figure_height: float = 15.0, light_background: bool = True, vertex_shape: str = "o", arrows: bool = False, dpi: int = 100, ): """ Renders a graph to file. Edges will be displayed with the same color as the source node. Parameters ---------- output_path : str The output path to write the rendered graph to. Suggested file extension is ``.png``. graph : nx.Graph The graph to be displayed. If the networkx Graph contains only nodes, no edges will be displayed. positions : List[:class:`graspologic.layouts.NodePosition`] The positionsfor every node in the graph. node_colors : Dict[Any, str] A mapping of node id to colors. Must contain an entry for every node in the graph. vertex_line_width : float Line width of vertex outline. Default is``0.01``. vertex_alpha : float Alpha (transparency) of vertices in visualization. Default is``0.55``. edge_line_width : float Line width of edge. Default is``0.5``. edge_alpha : float Alpha (transparency) of edges in visualization. Default is``0.02``. figure_width : float Width of figure. Default is ``15.0``. figure_height : float eight of figure. Default is``15.0``. light_background : bool Light background or dark background. Default is``True``. vertex_shape : str Matplotlib Marker for the vertex shape. See `https://matplotlib.org/api/markers_api.html <https://matplotlib.org/api/markers_api.html>`_ for a list of allowed values . Default is ``o`` (i.e: a circle) arrows : bool For directed graphs, if ``True``, draw arrow heads. Default is ``False`` dpi : float Dots per inch of the figure. Default is ``100``. Returns ------- """ _draw_graph( graph=graph, positions=positions, node_colors=node_colors, vertex_line_width=vertex_line_width, vertex_alpha=vertex_alpha, edge_line_width=edge_line_width, edge_alpha=edge_alpha, figure_width=figure_width, figure_height=figure_height, vertex_shape=vertex_shape, arrows=arrows, dpi=dpi, ) ax = plt.gca() if light_background: facecolor = ax.get_facecolor() else: facecolor = "#030303" plt.savefig(output_path, facecolor=facecolor) plt.close("all")
31.53605
103
0.641451
import networkx as nx from typing import Any, Dict, List, Optional, Tuple from graspologic.layouts.classes import NodePosition import matplotlib.pyplot as plt def _calculate_x_y_domain( positions: List[NodePosition], ) -> Tuple[Tuple[float, float], Tuple[float, float]]: min_x = min_y = float("inf") max_x = max_y = float("-inf") for node_position in positions: min_x = min(min_x, node_position.x - node_position.size) max_x = max(max_x, node_position.x + node_position.size) min_y = min(min_y, node_position.y - node_position.size) max_y = max(max_y, node_position.y + node_position.size) x_delta = max_x - min_x y_delta = max_y - min_y max_delta = max(x_delta, y_delta) if max_delta == x_delta: difference = (max_delta - y_delta) / 2 min_y = min_y - difference max_y = max_y + difference elif max_delta == y_delta: difference = (max_delta - x_delta) / 2 min_x = min_x - difference max_x = max_x + difference return (min_x, max_x), (min_y, max_y) def _scale_value( domain: Tuple[float, float], data_range: Tuple[float, float], value: float ) -> float: return data_range[0] + (data_range[1] - data_range[0]) * ( (value - domain[0]) / (domain[1] - domain[0]) ) def _scale_node_sizes_for_rendering( sizes: List[float], spatial_domain: Tuple[float, float], spatial_range: Tuple[float, float], dpi: float, ): spatial_domain = (0, spatial_domain[1] - spatial_domain[0]) return list( map( lambda s: _scale_value(spatial_domain, spatial_range, s * 2 * 72.0 / dpi) ** 2, sizes, ) ) def _draw_graph( graph: nx.Graph, positions: List[NodePosition], node_colors: Dict[Any, str], vertex_alpha: float, edge_line_width: float, edge_alpha: float, figure_width: float, figure_height: float, vertex_line_width: float = 0.01, vertex_shape: str = "o", arrows: bool = False, dpi: int = 100, ): if len(positions) != len(graph.nodes()): raise ValueError( f"The number of positions provided {len(positions)} is not the same as the " f"number of nodes in the graph {len(graph.nodes())}" ) for position in positions: if position.node_id not in graph: raise ValueError( f"The node position provided for {position.node_id} references a node " f"not found in our graph" ) plt.rcParams["figure.dpi"] = dpi plt.clf() figure = plt.gcf() ax = plt.gca() ax.set_axis_off() figure.set_size_inches(figure_width, figure_height) window_extent_width = ax.get_window_extent().width x_domain, y_domain = _calculate_x_y_domain(positions) position_map = {position.node_id: position for position in positions} node_positions = { position.node_id: (position.x, position.y) for position in positions } vertices = [] vertex_sizes = [] node_color_list = [] edge_color_list = [] for node in graph.nodes(): vertices.append(node) vertex_sizes.append(position_map[node].size) node_color_list.append(node_colors[node]) vertex_sizes = _scale_node_sizes_for_rendering( vertex_sizes, x_domain, (0, window_extent_width), dpi ) for source, target in graph.edges(): edge_color_list.append(node_colors[source]) ax.set_xbound(x_domain) ax.set_xlim(x_domain) ax.set_ybound(y_domain) ax.set_ylim(y_domain) nx.draw_networkx_edges( graph, pos=node_positions, alpha=edge_alpha, width=edge_line_width, edge_color=edge_color_list, arrows=arrows, ax=ax, ) nx.draw_networkx_nodes( graph, pos=node_positions, nodelist=vertices, node_color=node_color_list, alpha=vertex_alpha, linewidths=vertex_line_width, node_size=vertex_sizes, node_shape=vertex_shape, ax=ax, ) def show_graph( graph: nx.Graph, positions: List[NodePosition], node_colors: Dict[Any, str], vertex_line_width: float = 0.01, vertex_alpha: float = 0.55, edge_line_width: float = 0.5, edge_alpha: float = 0.02, figure_width: float = 15.0, figure_height: float = 15.0, light_background: bool = True, vertex_shape: str = "o", arrows: bool = False, dpi: int = 500, ): ax = plt.gca() if light_background: facecolor = ax.get_facecolor() else: facecolor = "#030303" _draw_graph( graph=graph, positions=positions, node_colors=node_colors, vertex_line_width=vertex_line_width, vertex_alpha=vertex_alpha, edge_line_width=edge_line_width, edge_alpha=edge_alpha, figure_width=figure_width, figure_height=figure_height, vertex_shape=vertex_shape, arrows=arrows, dpi=dpi, ) plt.gcf().set_facecolor(facecolor) plt.show() plt.close("all") def save_graph( output_path: str, graph: nx.Graph, positions: List[NodePosition], node_colors: Dict[Any, str], vertex_line_width: float = 0.01, vertex_alpha: float = 0.55, edge_line_width: float = 0.5, edge_alpha: float = 0.02, figure_width: float = 15.0, figure_height: float = 15.0, light_background: bool = True, vertex_shape: str = "o", arrows: bool = False, dpi: int = 100, ): _draw_graph( graph=graph, positions=positions, node_colors=node_colors, vertex_line_width=vertex_line_width, vertex_alpha=vertex_alpha, edge_line_width=edge_line_width, edge_alpha=edge_alpha, figure_width=figure_width, figure_height=figure_height, vertex_shape=vertex_shape, arrows=arrows, dpi=dpi, ) ax = plt.gca() if light_background: facecolor = ax.get_facecolor() else: facecolor = "#030303" plt.savefig(output_path, facecolor=facecolor) plt.close("all")
true
true
f7182817f87774a0db791bb29d67b66f78795e8a
500
py
Python
multimodalDetection/splitAudio.py
Rubik90/TFM_AG
5e836245d0704122f2a0d47413e93bf53d966ca0
[ "MIT" ]
1
2021-02-16T18:32:38.000Z
2021-02-16T18:32:38.000Z
multimodalDetection/splitAudio.py
Rubik90/TFM_AG
5e836245d0704122f2a0d47413e93bf53d966ca0
[ "MIT" ]
null
null
null
multimodalDetection/splitAudio.py
Rubik90/TFM_AG
5e836245d0704122f2a0d47413e93bf53d966ca0
[ "MIT" ]
1
2021-02-16T18:32:39.000Z
2021-02-16T18:32:39.000Z
import subprocess import os import shutil def split(audio,output): command = f"ffmpeg -i '{audio}' -f segment -segment_time 0.0416666666666667 -c copy {output}" subprocess.call(command,shell=True) split('audio.wav','out%03d.wav') elements = os.listdir('./') if(os.path.isdir("./audioChunks/")): shutil.rmtree("./audioChunks/") os.mkdir("./audioChunks/") for element in elements: if element[:3]=="out": shutil.copyfile('./'+element, './audioChunks/'+element) os.remove(element)
26.315789
97
0.688
import subprocess import os import shutil def split(audio,output): command = f"ffmpeg -i '{audio}' -f segment -segment_time 0.0416666666666667 -c copy {output}" subprocess.call(command,shell=True) split('audio.wav','out%03d.wav') elements = os.listdir('./') if(os.path.isdir("./audioChunks/")): shutil.rmtree("./audioChunks/") os.mkdir("./audioChunks/") for element in elements: if element[:3]=="out": shutil.copyfile('./'+element, './audioChunks/'+element) os.remove(element)
true
true
f718289e90dd9a48a67856934c04c619c34d7999
252
py
Python
practice_exam/1070.py
omar115/code_for_Kids
3f50ffb1d492c6ea5aa09688944aa01a0cadf1fd
[ "MIT" ]
null
null
null
practice_exam/1070.py
omar115/code_for_Kids
3f50ffb1d492c6ea5aa09688944aa01a0cadf1fd
[ "MIT" ]
null
null
null
practice_exam/1070.py
omar115/code_for_Kids
3f50ffb1d492c6ea5aa09688944aa01a0cadf1fd
[ "MIT" ]
2
2021-01-08T03:52:46.000Z
2021-04-01T19:16:12.000Z
x = int(input()) if x % 2 == 0: y = x + 1 print(y) y = y + 2 print(y) y = y + 2 print(y) y = y + 2 print(y) else: y = x print(y) y = y + 2 print(y) y = y + 2 print(y) y = y + 2 print(y)
11.454545
16
0.353175
x = int(input()) if x % 2 == 0: y = x + 1 print(y) y = y + 2 print(y) y = y + 2 print(y) y = y + 2 print(y) else: y = x print(y) y = y + 2 print(y) y = y + 2 print(y) y = y + 2 print(y)
true
true
f718293c3ac36f83b257d72add6c9f74092f29f6
2,148
py
Python
src/git_portfolio/use_cases/gh.py
staticdev/github-portfolio
850461eed8160e046ee16664ac3dbc19e3ec0965
[ "MIT" ]
null
null
null
src/git_portfolio/use_cases/gh.py
staticdev/github-portfolio
850461eed8160e046ee16664ac3dbc19e3ec0965
[ "MIT" ]
null
null
null
src/git_portfolio/use_cases/gh.py
staticdev/github-portfolio
850461eed8160e046ee16664ac3dbc19e3ec0965
[ "MIT" ]
null
null
null
"""Base Github use case.""" from __future__ import annotations import traceback from typing import Any import git_portfolio.config_manager as cm import git_portfolio.github_service as gs import git_portfolio.responses as res class GhUseCase: """Github use case.""" def __init__( self, config_manager: cm.ConfigManager, github_service: gs.AbstractGithubService, github_repo: str = "", ) -> None: """Initializer.""" self.config_manager = config_manager self.github_service = github_service self.github_repo = github_repo self.responses: list[res.Response] = [] def call_github_service( self, method: str, *args: Any, **kwargs: Any ) -> res.Response: """Handle error from github_service and return response.""" response: res.Response try: method_to_call = getattr(self.github_service, method) output = method_to_call(*args, **kwargs) response = res.ResponseSuccess(output) except gs.GithubServiceError as gse: response = res.ResponseFailure(res.ResponseTypes.RESOURCE_ERROR, str(gse)) except Exception: error_msg = ( "An unexpected error occured. Please report at " "https://github.com/staticdev/git-portfolio/issues/new " f"with the following info:\n{traceback.format_exc()}" ) response = res.ResponseFailure(res.ResponseTypes.SYSTEM_ERROR, error_msg) self.responses.append(response) return response def action(self, github_repo: str, *args: Any, **kwargs: Any) -> None: """Execute some action in a repo.""" raise NotImplementedError # pragma: no cover def execute(self, *args: Any, **kwargs: Any) -> list[res.Response]: """Execute GitHubUseCase.""" if self.github_repo: self.action(self.github_repo, *args, **kwargs) else: for github_repo in self.config_manager.config.github_selected_repos: self.action(github_repo, *args, **kwargs) return self.responses
35.8
86
0.635475
from __future__ import annotations import traceback from typing import Any import git_portfolio.config_manager as cm import git_portfolio.github_service as gs import git_portfolio.responses as res class GhUseCase: def __init__( self, config_manager: cm.ConfigManager, github_service: gs.AbstractGithubService, github_repo: str = "", ) -> None: self.config_manager = config_manager self.github_service = github_service self.github_repo = github_repo self.responses: list[res.Response] = [] def call_github_service( self, method: str, *args: Any, **kwargs: Any ) -> res.Response: response: res.Response try: method_to_call = getattr(self.github_service, method) output = method_to_call(*args, **kwargs) response = res.ResponseSuccess(output) except gs.GithubServiceError as gse: response = res.ResponseFailure(res.ResponseTypes.RESOURCE_ERROR, str(gse)) except Exception: error_msg = ( "An unexpected error occured. Please report at " "https://github.com/staticdev/git-portfolio/issues/new " f"with the following info:\n{traceback.format_exc()}" ) response = res.ResponseFailure(res.ResponseTypes.SYSTEM_ERROR, error_msg) self.responses.append(response) return response def action(self, github_repo: str, *args: Any, **kwargs: Any) -> None: raise NotImplementedError def execute(self, *args: Any, **kwargs: Any) -> list[res.Response]: if self.github_repo: self.action(self.github_repo, *args, **kwargs) else: for github_repo in self.config_manager.config.github_selected_repos: self.action(github_repo, *args, **kwargs) return self.responses
true
true
f7182afb3ce7fb885646e29465ecd1cff61e5f5f
1,224
py
Python
src/test/python/apache/thermos/common/test_pathspec.py
wickman/incubator-aurora
9906d217093568ed4c9cfe620862818f15ce4150
[ "Apache-2.0" ]
1
2016-05-01T20:17:24.000Z
2016-05-01T20:17:24.000Z
src/test/python/apache/thermos/common/test_pathspec.py
wickman/incubator-aurora
9906d217093568ed4c9cfe620862818f15ce4150
[ "Apache-2.0" ]
null
null
null
src/test/python/apache/thermos/common/test_pathspec.py
wickman/incubator-aurora
9906d217093568ed4c9cfe620862818f15ce4150
[ "Apache-2.0" ]
null
null
null
# # Copyright 2013 Apache Software Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os from apache.thermos.common.path import TaskPath def test_legacy_task_roots(): assert TaskPath().given(task_id='foo').getpath('checkpoint_path').startswith( TaskPath.DEFAULT_CHECKPOINT_ROOT) assert TaskPath(root='/var/lib/mesos').given(task_id='foo').getpath('checkpoint_path').startswith( '/var/lib/mesos') def test_legacy_log_dirs(): assert TaskPath().given(task_id='foo').getpath('process_logbase') == os.path.join( TaskPath.DEFAULT_CHECKPOINT_ROOT, 'logs', 'foo') assert TaskPath(log_dir='sloth_love_chunk').given(task_id='foo').getpath( 'process_logbase') == 'sloth_love_chunk'
36
100
0.75
import os from apache.thermos.common.path import TaskPath def test_legacy_task_roots(): assert TaskPath().given(task_id='foo').getpath('checkpoint_path').startswith( TaskPath.DEFAULT_CHECKPOINT_ROOT) assert TaskPath(root='/var/lib/mesos').given(task_id='foo').getpath('checkpoint_path').startswith( '/var/lib/mesos') def test_legacy_log_dirs(): assert TaskPath().given(task_id='foo').getpath('process_logbase') == os.path.join( TaskPath.DEFAULT_CHECKPOINT_ROOT, 'logs', 'foo') assert TaskPath(log_dir='sloth_love_chunk').given(task_id='foo').getpath( 'process_logbase') == 'sloth_love_chunk'
true
true
f7182bad3db9d7c2c8ceff11acfdcada87264c50
1,951
py
Python
ex35.py
sansanaye12/python_exercises
cfe13b34dba4414f421fd2302a9d620e4d32b987
[ "MIT" ]
null
null
null
ex35.py
sansanaye12/python_exercises
cfe13b34dba4414f421fd2302a9d620e4d32b987
[ "MIT" ]
null
null
null
ex35.py
sansanaye12/python_exercises
cfe13b34dba4414f421fd2302a9d620e4d32b987
[ "MIT" ]
null
null
null
from sys import exit def gold_room(): print("This room is full of gold. How much do you take?") choice=input("> ") if "0" in choice or "1" in choice: how_much=int(choice) else: dead("Man,learn to type a number.") if how_much < 50: print("Nice,you're not greedy,you win!") exit(0) else: dead("You greedy bastard!") def bear_room(): print("There is a bear here.") print("The bear has a bunch of honey.") print("The fat bear is in front of another door.") print("How are you going to move the bear?") bear_moved=False while True: choice=input("> ") if choice == "take honey": dead("The bear looks at you then slaps your face off.") elif choice == "taunt bear" and not bear_moved: print("The bear has moved from the door.") print("You can go through it now.") bear_moved=True elif choice == "taunt bear" and bear_moved: dead("The bear gets pissed off and chews your leg off.") elif choice == "open door" and bear_moved gold_room() else: print("I got no idea what that means.") def cthulhu_room(): print("Here you see the great evil Cthulhu.") print("He,it,whatever stares at you and you go insane.") print("Do you flee for your life or eat your heads?") choice=input("> ") if "flee" in choice: start() elif "head" in choice: dead("Well that was tasty!") else: cthulhu_room() def dead(why): print(why, "Good job!") exit(0) def start(): print("You are in a dark room.") print("There is a door to your right and left.") print("Which one do you take?") choice=input('> ") if choice == "left": bear_room() elif choice == "right": cthulhu_room() else: dead("You stumble around the room until you starve.") start()
31.983607
68
0.579703
from sys import exit def gold_room(): print("This room is full of gold. How much do you take?") choice=input("> ") if "0" in choice or "1" in choice: how_much=int(choice) else: dead("Man,learn to type a number.") if how_much < 50: print("Nice,you're not greedy,you win!") exit(0) else: dead("You greedy bastard!") def bear_room(): print("There is a bear here.") print("The bear has a bunch of honey.") print("The fat bear is in front of another door.") print("How are you going to move the bear?") bear_moved=False while True: choice=input("> ") if choice == "take honey": dead("The bear looks at you then slaps your face off.") elif choice == "taunt bear" and not bear_moved: print("The bear has moved from the door.") print("You can go through it now.") bear_moved=True elif choice == "taunt bear" and bear_moved: dead("The bear gets pissed off and chews your leg off.") elif choice == "open door" and bear_moved gold_room() else: print("I got no idea what that means.") def cthulhu_room(): print("Here you see the great evil Cthulhu.") print("He,it,whatever stares at you and you go insane.") print("Do you flee for your life or eat your heads?") choice=input("> ") if "flee" in choice: start() elif "head" in choice: dead("Well that was tasty!") else: cthulhu_room() def dead(why): print(why, "Good job!") exit(0) def start(): print("You are in a dark room.") print("There is a door to your right and left.") print("Which one do you take?") choice=input('> ") if choice == "left": bear_room() elif choice == "right": cthulhu_room() else: dead("You stumble around the room until you starve.") start()
false
true
f7182bb3084036979b843ba667b570839f34a904
430
py
Python
weather__openweathermap__pyowm.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
117
2015-12-18T07:18:27.000Z
2022-03-28T00:25:54.000Z
weather__openweathermap__pyowm.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
8
2018-10-03T09:38:46.000Z
2021-12-13T19:51:09.000Z
weather__openweathermap__pyowm.py
DazEB2/SimplePyScripts
1dde0a42ba93fe89609855d6db8af1c63b1ab7cc
[ "CC-BY-4.0" ]
28
2016-08-02T17:43:47.000Z
2022-03-21T08:31:12.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' API_KEY = '87c7712a9b72646a269102230858837b' place = 'Магнитогорск' # pip install pyowm import pyowm owm = pyowm.OWM(API_KEY) observation = owm.weather_at_place(place) w = observation.get_weather() temperature = w.get_temperature('celsius')['temp'] status = w.get_status() print('Температура: {} °C'.format(temperature)) print('Небо: {}'.format(status))
21.5
50
0.725581
__author__ = 'ipetrash' API_KEY = '87c7712a9b72646a269102230858837b' place = 'Магнитогорск' import pyowm owm = pyowm.OWM(API_KEY) observation = owm.weather_at_place(place) w = observation.get_weather() temperature = w.get_temperature('celsius')['temp'] status = w.get_status() print('Температура: {} °C'.format(temperature)) print('Небо: {}'.format(status))
true
true
f7182c6753abe0014d9e87b3ad738768a634aa00
10,275
py
Python
redis_simple_cache/test_rediscache.py
tru-software/redis-simple-cache
6480b38aa5efc022d91cfb87b168e75c03be181a
[ "BSD-3-Clause" ]
null
null
null
redis_simple_cache/test_rediscache.py
tru-software/redis-simple-cache
6480b38aa5efc022d91cfb87b168e75c03be181a
[ "BSD-3-Clause" ]
null
null
null
redis_simple_cache/test_rediscache.py
tru-software/redis-simple-cache
6480b38aa5efc022d91cfb87b168e75c03be181a
[ "BSD-3-Clause" ]
null
null
null
# SimpleCache Tests # ~~~~~~~~~~~~~~~~~~~ from datetime import timedelta from rediscache import SimpleCache, RedisConnect, cache_it, cache_it_json, CacheMissException, ExpiredKeyException, \ DoNotCache from unittest import TestCase, main import time class ComplexNumber(object): # used in pickle test def __init__(self, real, imag): self.real = real self.imag = imag def __eq__(self, other): return self.real == other.real and self.imag == other.imag class SimpleCacheTest(TestCase): def setUp(self): self.c = SimpleCache(10) # Cache that has a maximum limit of 10 keys self.assertIsNotNone(self.c.connection) self.redis = RedisConnect().connect() def test_expire(self): quick_c = SimpleCache() quick_c.store("foo", "bar", expire=1) time.sleep(1.1) self.assertRaises(ExpiredKeyException, quick_c.get, "foo") quick_c.flush() quick_c.store("foo", "bar", expire=timedelta(seconds=1)) time.sleep(1.1) self.assertRaises(ExpiredKeyException, quick_c.get, "foo") quick_c.flush() def test_miss(self): self.assertRaises(CacheMissException, self.c.get, "blablabla") def test_kwargs_decorator(self): @cache_it_json(cache=self.c) def add_it(a, b=10, c=5): return a + b + c add_it(3) self.assertEqual(add_it(3), 18) add_it(5, b=7) self.assertEqual(add_it(5, b=7), 17) add_it(6, c=3) self.assertEqual(add_it(6, c=3), 19) def test_store_retrieve(self): self.c.store("foo", "bar") foo = self.c.get("foo") self.assertEqual(foo, "bar") def test_json(self): payload = {"example": "data"} self.c.store_json("json", payload) self.assertEqual(self.c.get_json("json"), payload) def test_pickle(self): payload = ComplexNumber(3, 4) self.c.store_pickle("pickle", payload) self.assertEqual(self.c.get_pickle("pickle"), payload) def test_decorator(self): self.redis.flushall() mutable = [] @cache_it(cache=self.c) def append(n): mutable.append(n) return mutable append(1) len_before = len(mutable) mutable_cached = append(1) len_after = len(mutable) self.assertEqual(len_before, len_after) self.assertNotEqual(id(mutable), id(mutable_cached)) self.assertEqual(mutable, mutable_cached) def test_decorator_do_not_cache(self): @cache_it(cache=self.c) def test_no_cache(n): result = n * 10 raise DoNotCache(result) keys_before = len(self.c.keys()) r1 = test_no_cache(20) r2 = test_no_cache(10) r3 = test_no_cache(30) r4 = test_no_cache(20) self.assertEqual(r1, (10 * 20)) self.assertEqual(r2, (10 * 10)) self.assertEqual(r3, (10 * 30)) self.assertEqual(r4, (10 * 20)) keys_after = len(self.c.keys()) self.assertEqual(keys_before, keys_after) def test_decorator_do_not_cache_reraised(self): @cache_it(cache=self.c) def test_no_cache(n): result = n * 10 try: raise DoNotCache(result) except DoNotCache as e: raise e except Exception: pass keys_before = len(self.c.keys()) r1 = test_no_cache(20) r2 = test_no_cache(10) r3 = test_no_cache(30) r4 = test_no_cache(20) self.assertEqual(r1, (10 * 20)) self.assertEqual(r4, (10 * 20)) self.assertEqual(r2, (10 * 10)) self.assertEqual(r3, (10 * 30)) keys_after = len(self.c.keys()) self.assertEqual(keys_before, keys_after) def test_decorator_do_not_cache_wrapping_exception(self): @cache_it(cache=self.c) def test_no_cache(n): try: result = n / 0 except ZeroDivisionError as e: raise DoNotCache(e) keys_before = len(self.c.keys()) r1 = test_no_cache(20) self.assertTrue(isinstance(r1, ZeroDivisionError)) keys_after = len(self.c.keys()) self.assertEqual(keys_before, keys_after) def test_decorator_json(self): import random mutable = {} @cache_it_json(cache=self.c) def set_key(n): mutable[str(random.random())] = n return mutable set_key('a') len_before = len(mutable) mutable_cached = set_key('a') len_after = len(mutable) self.assertEqual(len_before, len_after) self.assertNotEqual(id(mutable), id(mutable_cached)) self.assertEqual(mutable, mutable_cached) def test_decorator_complex_type(self): import math @cache_it(cache=self.c) def add(x, y): return ComplexNumber(x.real + y.real, x.imag + y.imag) result = add(ComplexNumber(3, 4), ComplexNumber(4, 5)) result_cached = add(ComplexNumber(3, 4), ComplexNumber(4, 5)) self.assertNotEqual(id(result), id(result_cached)) self.assertEqual(result, result_cached) self.assertEqual(result, complex(3, 4) + complex(4, 5)) def test_cache_limit(self): for i in range(100): self.c.store("foo%d" % i, "foobar") self.assertTrue(len(self.c) <= 10) self.assertTrue(len(self.c.keys()) <= 10) def test_flush(self): connection = self.c.connection connection.set("will_not_be_deleted", '42') self.c.store("will_be_deleted", '10') len_before = len(self.c) len_keys_before = len(connection.keys(self.c.make_key("*"))) self.c.flush() len_after = len(self.c) len_keys_after = connection.get("will_not_be_deleted") self.assertTrue(len_before > 0) self.assertEqual(len_after, 0) self.assertTrue(len_keys_before > 0) self.assertEqual(len_keys_after, '42') self.assertEqual(connection.get("will_not_be_deleted"), '42') connection.delete("will_not_be_deleted") def test_flush_namespace(self): self.redis.flushall() self.c.store("foo:one", "bir") self.c.store("foo:two", "bor") self.c.store("fii", "bur") len_keys_before = len(self.c.keys()) self.c.flush_namespace('foo') len_keys_after = len(self.c.keys()) self.assertEqual((len_keys_before - len_keys_after), 2) self.assertEqual(self.c.get('fii'), 'bur') self.assertRaises(CacheMissException, self.c.get, "foo:one") self.assertRaises(CacheMissException, self.c.get, "foo:two") self.c.flush() def test_flush_multiple(self): c1 = SimpleCache(10, namespace=__name__) c2 = SimpleCache(10) c1.store("foo", "bar") c2.store("foo", "bar") c1.flush() self.assertEqual(len(c1), 0) self.assertEqual(len(c2), 1) c2.flush() def test_expire_all_in_set(self): self.c.store("foo", "bir") self.c.store("fuu", "bor") self.c.store("fii", "bur") self.assertEqual(self.c.expire_all_in_set(), (3, 3)) self.assertRaises(ExpiredKeyException, self.c.get, "foo") self.assertRaises(ExpiredKeyException, self.c.get, "fuu") self.assertRaises(ExpiredKeyException, self.c.get, "fii") self.assertTrue(self.c.isexpired("foo")) self.assertTrue(self.c.isexpired("fuu")) self.assertTrue(self.c.isexpired("fii")) def test_expire_namespace(self): self.c.store("foo:one", "bir") self.c.store("foo:two", "bor") self.c.store("fii", "bur") self.assertEqual(self.c.expire_namespace('foo'), (3, 2)) self.assertRaises(ExpiredKeyException, self.c.get, "foo:one") self.assertRaises(ExpiredKeyException, self.c.get, "foo:two") self.assertTrue(self.c.isexpired("foo:one")) self.assertTrue(self.c.isexpired("foo:two")) self.assertTrue(self.c.isexpired("fii") > 0) self.c.flush() def test_mget(self): self.c.store("a1", "a") self.c.store("a2", "aa") self.c.store("a3", "aaa") d = self.c.mget(["a1", "a2", "a3"]) self.assertEqual(d["a1"], "a") self.assertEqual(d["a2"], "aa") self.assertEqual(d["a3"], "aaa") def test_mget_nonexistant_key(self): self.c.store("b1", "b") self.c.store("b3", "bbb") d = self.c.mget(["b1", "b2", "b3"]) self.assertEqual(d["b1"], "b") self.assertTrue("b2" not in d) self.assertEqual(d["b3"], "bbb") def test_mget_expiry(self): self.c.store("c1", "c") self.c.store("c2", "cc", expire=1) self.c.store("c3", "ccc") time.sleep(1.1) d = self.c.mget(["c1", "c2", "c3"]) self.assertEqual(d["c1"], "c") self.assertTrue("c2" not in d) self.assertEqual(d["c3"], "ccc") def test_mget_json(self): payload_a1 = {"example_a1": "data_a1"} payload_a2 = {"example_a2": "data_a2"} self.c.store_json("json_a1", payload_a1) self.c.store_json("json_a2", payload_a2) d = self.c.mget_json(["json_a1", "json_a2"]) self.assertEqual(d["json_a1"], payload_a1) self.assertEqual(d["json_a2"], payload_a2) def test_mget_json_nonexistant_key(self): payload_b1 = {"example_b1": "data_b1"} payload_b3 = {"example_b3": "data_b3"} self.c.store_json("json_b1", payload_b1) self.c.store_json("json_b3", payload_b3) d = self.c.mget_json(["json_b1", "json_b2", "json_b3"]) self.assertEqual(d["json_b1"], payload_b1) self.assertTrue("json_b2" not in d) self.assertEqual(d["json_b3"], payload_b3) def test_invalidate_key(self): self.c.store("d1", "d") self.c.store("d2", "dd") self.c.store("d3", "ddd") self.c.invalidate("d2") d = self.c.mget(["d1", "d2", "d3"]) self.assertEqual(d["d1"], "d") self.assertTrue("d2" not in d) self.assertEqual(d["d3"], "ddd") def tearDown(self): self.c.flush() if __name__ == '__main__': main()
33.252427
117
0.588808
from datetime import timedelta from rediscache import SimpleCache, RedisConnect, cache_it, cache_it_json, CacheMissException, ExpiredKeyException, \ DoNotCache from unittest import TestCase, main import time class ComplexNumber(object): def __init__(self, real, imag): self.real = real self.imag = imag def __eq__(self, other): return self.real == other.real and self.imag == other.imag class SimpleCacheTest(TestCase): def setUp(self): self.c = SimpleCache(10) self.assertIsNotNone(self.c.connection) self.redis = RedisConnect().connect() def test_expire(self): quick_c = SimpleCache() quick_c.store("foo", "bar", expire=1) time.sleep(1.1) self.assertRaises(ExpiredKeyException, quick_c.get, "foo") quick_c.flush() quick_c.store("foo", "bar", expire=timedelta(seconds=1)) time.sleep(1.1) self.assertRaises(ExpiredKeyException, quick_c.get, "foo") quick_c.flush() def test_miss(self): self.assertRaises(CacheMissException, self.c.get, "blablabla") def test_kwargs_decorator(self): @cache_it_json(cache=self.c) def add_it(a, b=10, c=5): return a + b + c add_it(3) self.assertEqual(add_it(3), 18) add_it(5, b=7) self.assertEqual(add_it(5, b=7), 17) add_it(6, c=3) self.assertEqual(add_it(6, c=3), 19) def test_store_retrieve(self): self.c.store("foo", "bar") foo = self.c.get("foo") self.assertEqual(foo, "bar") def test_json(self): payload = {"example": "data"} self.c.store_json("json", payload) self.assertEqual(self.c.get_json("json"), payload) def test_pickle(self): payload = ComplexNumber(3, 4) self.c.store_pickle("pickle", payload) self.assertEqual(self.c.get_pickle("pickle"), payload) def test_decorator(self): self.redis.flushall() mutable = [] @cache_it(cache=self.c) def append(n): mutable.append(n) return mutable append(1) len_before = len(mutable) mutable_cached = append(1) len_after = len(mutable) self.assertEqual(len_before, len_after) self.assertNotEqual(id(mutable), id(mutable_cached)) self.assertEqual(mutable, mutable_cached) def test_decorator_do_not_cache(self): @cache_it(cache=self.c) def test_no_cache(n): result = n * 10 raise DoNotCache(result) keys_before = len(self.c.keys()) r1 = test_no_cache(20) r2 = test_no_cache(10) r3 = test_no_cache(30) r4 = test_no_cache(20) self.assertEqual(r1, (10 * 20)) self.assertEqual(r2, (10 * 10)) self.assertEqual(r3, (10 * 30)) self.assertEqual(r4, (10 * 20)) keys_after = len(self.c.keys()) self.assertEqual(keys_before, keys_after) def test_decorator_do_not_cache_reraised(self): @cache_it(cache=self.c) def test_no_cache(n): result = n * 10 try: raise DoNotCache(result) except DoNotCache as e: raise e except Exception: pass keys_before = len(self.c.keys()) r1 = test_no_cache(20) r2 = test_no_cache(10) r3 = test_no_cache(30) r4 = test_no_cache(20) self.assertEqual(r1, (10 * 20)) self.assertEqual(r4, (10 * 20)) self.assertEqual(r2, (10 * 10)) self.assertEqual(r3, (10 * 30)) keys_after = len(self.c.keys()) self.assertEqual(keys_before, keys_after) def test_decorator_do_not_cache_wrapping_exception(self): @cache_it(cache=self.c) def test_no_cache(n): try: result = n / 0 except ZeroDivisionError as e: raise DoNotCache(e) keys_before = len(self.c.keys()) r1 = test_no_cache(20) self.assertTrue(isinstance(r1, ZeroDivisionError)) keys_after = len(self.c.keys()) self.assertEqual(keys_before, keys_after) def test_decorator_json(self): import random mutable = {} @cache_it_json(cache=self.c) def set_key(n): mutable[str(random.random())] = n return mutable set_key('a') len_before = len(mutable) mutable_cached = set_key('a') len_after = len(mutable) self.assertEqual(len_before, len_after) self.assertNotEqual(id(mutable), id(mutable_cached)) self.assertEqual(mutable, mutable_cached) def test_decorator_complex_type(self): import math @cache_it(cache=self.c) def add(x, y): return ComplexNumber(x.real + y.real, x.imag + y.imag) result = add(ComplexNumber(3, 4), ComplexNumber(4, 5)) result_cached = add(ComplexNumber(3, 4), ComplexNumber(4, 5)) self.assertNotEqual(id(result), id(result_cached)) self.assertEqual(result, result_cached) self.assertEqual(result, complex(3, 4) + complex(4, 5)) def test_cache_limit(self): for i in range(100): self.c.store("foo%d" % i, "foobar") self.assertTrue(len(self.c) <= 10) self.assertTrue(len(self.c.keys()) <= 10) def test_flush(self): connection = self.c.connection connection.set("will_not_be_deleted", '42') self.c.store("will_be_deleted", '10') len_before = len(self.c) len_keys_before = len(connection.keys(self.c.make_key("*"))) self.c.flush() len_after = len(self.c) len_keys_after = connection.get("will_not_be_deleted") self.assertTrue(len_before > 0) self.assertEqual(len_after, 0) self.assertTrue(len_keys_before > 0) self.assertEqual(len_keys_after, '42') self.assertEqual(connection.get("will_not_be_deleted"), '42') connection.delete("will_not_be_deleted") def test_flush_namespace(self): self.redis.flushall() self.c.store("foo:one", "bir") self.c.store("foo:two", "bor") self.c.store("fii", "bur") len_keys_before = len(self.c.keys()) self.c.flush_namespace('foo') len_keys_after = len(self.c.keys()) self.assertEqual((len_keys_before - len_keys_after), 2) self.assertEqual(self.c.get('fii'), 'bur') self.assertRaises(CacheMissException, self.c.get, "foo:one") self.assertRaises(CacheMissException, self.c.get, "foo:two") self.c.flush() def test_flush_multiple(self): c1 = SimpleCache(10, namespace=__name__) c2 = SimpleCache(10) c1.store("foo", "bar") c2.store("foo", "bar") c1.flush() self.assertEqual(len(c1), 0) self.assertEqual(len(c2), 1) c2.flush() def test_expire_all_in_set(self): self.c.store("foo", "bir") self.c.store("fuu", "bor") self.c.store("fii", "bur") self.assertEqual(self.c.expire_all_in_set(), (3, 3)) self.assertRaises(ExpiredKeyException, self.c.get, "foo") self.assertRaises(ExpiredKeyException, self.c.get, "fuu") self.assertRaises(ExpiredKeyException, self.c.get, "fii") self.assertTrue(self.c.isexpired("foo")) self.assertTrue(self.c.isexpired("fuu")) self.assertTrue(self.c.isexpired("fii")) def test_expire_namespace(self): self.c.store("foo:one", "bir") self.c.store("foo:two", "bor") self.c.store("fii", "bur") self.assertEqual(self.c.expire_namespace('foo'), (3, 2)) self.assertRaises(ExpiredKeyException, self.c.get, "foo:one") self.assertRaises(ExpiredKeyException, self.c.get, "foo:two") self.assertTrue(self.c.isexpired("foo:one")) self.assertTrue(self.c.isexpired("foo:two")) self.assertTrue(self.c.isexpired("fii") > 0) self.c.flush() def test_mget(self): self.c.store("a1", "a") self.c.store("a2", "aa") self.c.store("a3", "aaa") d = self.c.mget(["a1", "a2", "a3"]) self.assertEqual(d["a1"], "a") self.assertEqual(d["a2"], "aa") self.assertEqual(d["a3"], "aaa") def test_mget_nonexistant_key(self): self.c.store("b1", "b") self.c.store("b3", "bbb") d = self.c.mget(["b1", "b2", "b3"]) self.assertEqual(d["b1"], "b") self.assertTrue("b2" not in d) self.assertEqual(d["b3"], "bbb") def test_mget_expiry(self): self.c.store("c1", "c") self.c.store("c2", "cc", expire=1) self.c.store("c3", "ccc") time.sleep(1.1) d = self.c.mget(["c1", "c2", "c3"]) self.assertEqual(d["c1"], "c") self.assertTrue("c2" not in d) self.assertEqual(d["c3"], "ccc") def test_mget_json(self): payload_a1 = {"example_a1": "data_a1"} payload_a2 = {"example_a2": "data_a2"} self.c.store_json("json_a1", payload_a1) self.c.store_json("json_a2", payload_a2) d = self.c.mget_json(["json_a1", "json_a2"]) self.assertEqual(d["json_a1"], payload_a1) self.assertEqual(d["json_a2"], payload_a2) def test_mget_json_nonexistant_key(self): payload_b1 = {"example_b1": "data_b1"} payload_b3 = {"example_b3": "data_b3"} self.c.store_json("json_b1", payload_b1) self.c.store_json("json_b3", payload_b3) d = self.c.mget_json(["json_b1", "json_b2", "json_b3"]) self.assertEqual(d["json_b1"], payload_b1) self.assertTrue("json_b2" not in d) self.assertEqual(d["json_b3"], payload_b3) def test_invalidate_key(self): self.c.store("d1", "d") self.c.store("d2", "dd") self.c.store("d3", "ddd") self.c.invalidate("d2") d = self.c.mget(["d1", "d2", "d3"]) self.assertEqual(d["d1"], "d") self.assertTrue("d2" not in d) self.assertEqual(d["d3"], "ddd") def tearDown(self): self.c.flush() if __name__ == '__main__': main()
true
true
f7182cf422c1ce203e5951c6e5cd92b91dbb91ce
4,237
py
Python
chatbot_env/Lib/site-packages/nltk/test/unit/lm/test_counter.py
rakmakan/Chatbot
d04bc1526b56961a16c25148d9ef18c4f157e9c4
[ "MIT" ]
10
2021-05-31T07:18:08.000Z
2022-03-19T09:20:11.000Z
chatbot_env/Lib/site-packages/nltk/test/unit/lm/test_counter.py
rakmakan/Chatbot
d04bc1526b56961a16c25148d9ef18c4f157e9c4
[ "MIT" ]
37
2020-10-20T08:30:53.000Z
2020-12-22T13:15:45.000Z
chatbot_env/Lib/site-packages/nltk/test/unit/lm/test_counter.py
rakmakan/Chatbot
d04bc1526b56961a16c25148d9ef18c4f157e9c4
[ "MIT" ]
7
2015-09-30T03:00:44.000Z
2021-06-04T05:34:39.000Z
# Natural Language Toolkit: Language Model Unit Tests # # Copyright (C) 2001-2020 NLTK Project # Author: Ilia Kurenkov <ilia.kurenkov@gmail.com> # URL: <http://nltk.org/> # For license information, see LICENSE.TXT import unittest from nltk import FreqDist from nltk.lm import NgramCounter from nltk.util import everygrams class NgramCounterTests(unittest.TestCase): """Tests for NgramCounter that only involve lookup, no modification.""" @classmethod def setUpClass(cls): text = [list("abcd"), list("egdbe")] cls.trigram_counter = NgramCounter( (everygrams(sent, max_len=3) for sent in text) ) cls.bigram_counter = NgramCounter( (everygrams(sent, max_len=2) for sent in text) ) def test_N(self): self.assertEqual(self.bigram_counter.N(), 16) self.assertEqual(self.trigram_counter.N(), 21) def test_counter_len_changes_with_lookup(self): self.assertEqual(len(self.bigram_counter), 2) _ = self.bigram_counter[50] self.assertEqual(len(self.bigram_counter), 3) def test_ngram_order_access_unigrams(self): self.assertEqual(self.bigram_counter[1], self.bigram_counter.unigrams) def test_ngram_conditional_freqdist(self): expected_trigram_contexts = [ ("a", "b"), ("b", "c"), ("e", "g"), ("g", "d"), ("d", "b"), ] expected_bigram_contexts = [("a",), ("b",), ("d",), ("e",), ("c",), ("g",)] bigrams = self.trigram_counter[2] trigrams = self.trigram_counter[3] self.assertCountEqual(expected_bigram_contexts, bigrams.conditions()) self.assertCountEqual(expected_trigram_contexts, trigrams.conditions()) def test_bigram_counts_seen_ngrams(self): b_given_a_count = 1 unk_given_b_count = 1 self.assertEqual(b_given_a_count, self.bigram_counter[["a"]]["b"]) self.assertEqual(unk_given_b_count, self.bigram_counter[["b"]]["c"]) def test_bigram_counts_unseen_ngrams(self): z_given_b_count = 0 self.assertEqual(z_given_b_count, self.bigram_counter[["b"]]["z"]) def test_unigram_counts_seen_words(self): expected_count_b = 2 self.assertEqual(expected_count_b, self.bigram_counter["b"]) def test_unigram_counts_completely_unseen_words(self): unseen_count = 0 self.assertEqual(unseen_count, self.bigram_counter["z"]) class NgramCounterTrainingTests(unittest.TestCase): def setUp(self): self.counter = NgramCounter() def test_empty_string(self): test = NgramCounter("") self.assertNotIn(2, test) self.assertEqual(test[1], FreqDist()) def test_empty_list(self): test = NgramCounter([]) self.assertNotIn(2, test) self.assertEqual(test[1], FreqDist()) def test_None(self): test = NgramCounter(None) self.assertNotIn(2, test) self.assertEqual(test[1], FreqDist()) def test_train_on_unigrams(self): words = list("abcd") counter = NgramCounter([[(w,) for w in words]]) self.assertFalse(bool(counter[3])) self.assertFalse(bool(counter[2])) self.assertCountEqual(words, counter[1].keys()) def test_train_on_illegal_sentences(self): str_sent = ["Check", "this", "out", "!"] list_sent = [["Check", "this"], ["this", "out"], ["out", "!"]] with self.assertRaises(TypeError): NgramCounter([str_sent]) with self.assertRaises(TypeError): NgramCounter([list_sent]) def test_train_on_bigrams(self): bigram_sent = [("a", "b"), ("c", "d")] counter = NgramCounter([bigram_sent]) self.assertFalse(bool(counter[3])) def test_train_on_mix(self): mixed_sent = [("a", "b"), ("c", "d"), ("e", "f", "g"), ("h",)] counter = NgramCounter([mixed_sent]) unigrams = ["h"] bigram_contexts = [("a",), ("c",)] trigram_contexts = [("e", "f")] self.assertCountEqual(unigrams, counter[1].keys()) self.assertCountEqual(bigram_contexts, counter[2].keys()) self.assertCountEqual(trigram_contexts, counter[3].keys())
31.857143
83
0.626623
import unittest from nltk import FreqDist from nltk.lm import NgramCounter from nltk.util import everygrams class NgramCounterTests(unittest.TestCase): @classmethod def setUpClass(cls): text = [list("abcd"), list("egdbe")] cls.trigram_counter = NgramCounter( (everygrams(sent, max_len=3) for sent in text) ) cls.bigram_counter = NgramCounter( (everygrams(sent, max_len=2) for sent in text) ) def test_N(self): self.assertEqual(self.bigram_counter.N(), 16) self.assertEqual(self.trigram_counter.N(), 21) def test_counter_len_changes_with_lookup(self): self.assertEqual(len(self.bigram_counter), 2) _ = self.bigram_counter[50] self.assertEqual(len(self.bigram_counter), 3) def test_ngram_order_access_unigrams(self): self.assertEqual(self.bigram_counter[1], self.bigram_counter.unigrams) def test_ngram_conditional_freqdist(self): expected_trigram_contexts = [ ("a", "b"), ("b", "c"), ("e", "g"), ("g", "d"), ("d", "b"), ] expected_bigram_contexts = [("a",), ("b",), ("d",), ("e",), ("c",), ("g",)] bigrams = self.trigram_counter[2] trigrams = self.trigram_counter[3] self.assertCountEqual(expected_bigram_contexts, bigrams.conditions()) self.assertCountEqual(expected_trigram_contexts, trigrams.conditions()) def test_bigram_counts_seen_ngrams(self): b_given_a_count = 1 unk_given_b_count = 1 self.assertEqual(b_given_a_count, self.bigram_counter[["a"]]["b"]) self.assertEqual(unk_given_b_count, self.bigram_counter[["b"]]["c"]) def test_bigram_counts_unseen_ngrams(self): z_given_b_count = 0 self.assertEqual(z_given_b_count, self.bigram_counter[["b"]]["z"]) def test_unigram_counts_seen_words(self): expected_count_b = 2 self.assertEqual(expected_count_b, self.bigram_counter["b"]) def test_unigram_counts_completely_unseen_words(self): unseen_count = 0 self.assertEqual(unseen_count, self.bigram_counter["z"]) class NgramCounterTrainingTests(unittest.TestCase): def setUp(self): self.counter = NgramCounter() def test_empty_string(self): test = NgramCounter("") self.assertNotIn(2, test) self.assertEqual(test[1], FreqDist()) def test_empty_list(self): test = NgramCounter([]) self.assertNotIn(2, test) self.assertEqual(test[1], FreqDist()) def test_None(self): test = NgramCounter(None) self.assertNotIn(2, test) self.assertEqual(test[1], FreqDist()) def test_train_on_unigrams(self): words = list("abcd") counter = NgramCounter([[(w,) for w in words]]) self.assertFalse(bool(counter[3])) self.assertFalse(bool(counter[2])) self.assertCountEqual(words, counter[1].keys()) def test_train_on_illegal_sentences(self): str_sent = ["Check", "this", "out", "!"] list_sent = [["Check", "this"], ["this", "out"], ["out", "!"]] with self.assertRaises(TypeError): NgramCounter([str_sent]) with self.assertRaises(TypeError): NgramCounter([list_sent]) def test_train_on_bigrams(self): bigram_sent = [("a", "b"), ("c", "d")] counter = NgramCounter([bigram_sent]) self.assertFalse(bool(counter[3])) def test_train_on_mix(self): mixed_sent = [("a", "b"), ("c", "d"), ("e", "f", "g"), ("h",)] counter = NgramCounter([mixed_sent]) unigrams = ["h"] bigram_contexts = [("a",), ("c",)] trigram_contexts = [("e", "f")] self.assertCountEqual(unigrams, counter[1].keys()) self.assertCountEqual(bigram_contexts, counter[2].keys()) self.assertCountEqual(trigram_contexts, counter[3].keys())
true
true
f7182d31dac31bfb93476460c912fb64e81d7691
15,236
py
Python
ambari-server/target/classes/common-services/KAFKA/0.8.1.2.2/package/scripts/params.py
willwill1101/ambari
3bed8e0abd0b6f60f15ffd4fa0035b5a57cf81e1
[ "Apache-2.0", "MIT" ]
3
2016-12-01T15:55:11.000Z
2016-12-01T15:56:38.000Z
ambari-server/target/classes/common-services/KAFKA/0.8.1.2.2/package/scripts/params.py
willwill1101/ambari
3bed8e0abd0b6f60f15ffd4fa0035b5a57cf81e1
[ "Apache-2.0", "MIT" ]
null
null
null
ambari-server/target/classes/common-services/KAFKA/0.8.1.2.2/package/scripts/params.py
willwill1101/ambari
3bed8e0abd0b6f60f15ffd4fa0035b5a57cf81e1
[ "Apache-2.0", "MIT" ]
null
null
null
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from resource_management.libraries.functions import format from resource_management.libraries.script.script import Script from resource_management.libraries.functions.version import format_hdp_stack_version, compare_versions from resource_management.libraries.functions.default import default from utils import get_bare_principal from resource_management.libraries.functions.get_hdp_version import get_hdp_version from resource_management.libraries.functions.is_empty import is_empty import status_params from resource_management.core.logger import Logger from resource_management.libraries.resources.hdfs_resource import HdfsResource from resource_management.libraries.functions import hdp_select from resource_management.libraries.functions import conf_select from resource_management.libraries.functions import get_kinit_path from resource_management.libraries.functions.get_not_managed_resources import get_not_managed_resources # server configurations config = Script.get_config() tmp_dir = Script.get_tmp_dir() stack_name = default("/hostLevelParams/stack_name", None) retryAble = default("/commandParams/command_retry_enabled", False) # Version being upgraded/downgraded to version = default("/commandParams/version", None) # Version that is CURRENT. current_version = default("/hostLevelParams/current_version", None) host_sys_prepped = default("/hostLevelParams/host_sys_prepped", False) stack_version_unformatted = str(config['hostLevelParams']['stack_version']) hdp_stack_version = format_hdp_stack_version(stack_version_unformatted) upgrade_direction = default("/commandParams/upgrade_direction", None) # When downgrading the 'version' and 'current_version' are both pointing to the downgrade-target version # downgrade_from_version provides the source-version the downgrade is happening from downgrade_from_version = default("/commandParams/downgrade_from_version", None) hostname = config['hostname'] # default kafka parameters kafka_home = '/usr/lib/kafka/' kafka_bin = kafka_home+'/bin/kafka' conf_dir = "/etc/kafka/conf" limits_conf_dir = "/etc/security/limits.d" # Used while upgrading the stack in a kerberized cluster and running kafka-acls.sh zookeeper_connect = default("/configurations/kafka-broker/zookeeper.connect", None) kafka_user_nofile_limit = config['configurations']['kafka-env']['kafka_user_nofile_limit'] kafka_user_nproc_limit = config['configurations']['kafka-env']['kafka_user_nproc_limit'] # parameters for 2.2+ if Script.is_hdp_stack_greater_or_equal("2.2"): kafka_home = '/usr/hdp/current/kafka-broker/' kafka_bin = kafka_home+'bin/kafka' conf_dir = "/usr/hdp/current/kafka-broker/config" kafka_user = config['configurations']['kafka-env']['kafka_user'] kafka_log_dir = config['configurations']['kafka-env']['kafka_log_dir'] kafka_pid_dir = status_params.kafka_pid_dir kafka_pid_file = kafka_pid_dir+"/kafka.pid" # This is hardcoded on the kafka bash process lifecycle on which we have no control over kafka_managed_pid_dir = "/var/run/kafka" kafka_managed_log_dir = "/var/log/kafka" user_group = config['configurations']['cluster-env']['user_group'] java64_home = config['hostLevelParams']['java_home'] kafka_env_sh_template = config['configurations']['kafka-env']['content'] kafka_hosts = config['clusterHostInfo']['kafka_broker_hosts'] kafka_hosts.sort() zookeeper_hosts = config['clusterHostInfo']['zookeeper_hosts'] zookeeper_hosts.sort() if (('kafka-log4j' in config['configurations']) and ('content' in config['configurations']['kafka-log4j'])): log4j_props = config['configurations']['kafka-log4j']['content'] else: log4j_props = None if 'ganglia_server_host' in config['clusterHostInfo'] and \ len(config['clusterHostInfo']['ganglia_server_host'])>0: ganglia_installed = True ganglia_server = config['clusterHostInfo']['ganglia_server_host'][0] ganglia_report_interval = 60 else: ganglia_installed = False metric_collector_host = "" metric_collector_port = "" metric_collector_protocol = "" metric_truststore_path= default("/configurations/ams-ssl-client/ssl.client.truststore.location", "") metric_truststore_type= default("/configurations/ams-ssl-client/ssl.client.truststore.type", "") metric_truststore_password= default("/configurations/ams-ssl-client/ssl.client.truststore.password", "") ams_collector_hosts = default("/clusterHostInfo/metrics_collector_hosts", []) has_metric_collector = not len(ams_collector_hosts) == 0 if has_metric_collector: if 'cluster-env' in config['configurations'] and \ 'metrics_collector_vip_host' in config['configurations']['cluster-env']: metric_collector_host = config['configurations']['cluster-env']['metrics_collector_vip_host'] else: metric_collector_host = ams_collector_hosts[0] if 'cluster-env' in config['configurations'] and \ 'metrics_collector_vip_port' in config['configurations']['cluster-env']: metric_collector_port = config['configurations']['cluster-env']['metrics_collector_vip_port'] else: metric_collector_web_address = default("/configurations/ams-site/timeline.metrics.service.webapp.address", "localhost:6188") if metric_collector_web_address.find(':') != -1: metric_collector_port = metric_collector_web_address.split(':')[1] else: metric_collector_port = '6188' if default("/configurations/ams-site/timeline.metrics.service.http.policy", "HTTP_ONLY") == "HTTPS_ONLY": metric_collector_protocol = 'https' else: metric_collector_protocol = 'http' pass # Security-related params security_enabled = config['configurations']['cluster-env']['security_enabled'] kafka_kerberos_enabled = (('security.inter.broker.protocol' in config['configurations']['kafka-broker']) and ((config['configurations']['kafka-broker']['security.inter.broker.protocol'] == "PLAINTEXTSASL") or (config['configurations']['kafka-broker']['security.inter.broker.protocol'] == "SASL_PLAINTEXT"))) if security_enabled and hdp_stack_version != "" and 'kafka_principal_name' in config['configurations']['kafka-env'] and compare_versions(hdp_stack_version, '2.3') >= 0: _hostname_lowercase = config['hostname'].lower() _kafka_principal_name = config['configurations']['kafka-env']['kafka_principal_name'] kafka_jaas_principal = _kafka_principal_name.replace('_HOST',_hostname_lowercase) kafka_keytab_path = config['configurations']['kafka-env']['kafka_keytab'] kafka_bare_jaas_principal = get_bare_principal(_kafka_principal_name) kafka_kerberos_params = "-Djava.security.auth.login.config="+ conf_dir +"/kafka_jaas.conf" else: kafka_kerberos_params = '' # *********************** RANGER PLUGIN CHANGES *********************** # ranger host # ********************************************************************** ranger_admin_hosts = default("/clusterHostInfo/ranger_admin_hosts", []) has_ranger_admin = not len(ranger_admin_hosts) == 0 xml_configurations_supported = config['configurations']['ranger-env']['xml_configurations_supported'] ambari_server_hostname = config['clusterHostInfo']['ambari_server_host'][0] ranger_admin_log_dir = default("/configurations/ranger-env/ranger_admin_log_dir","/var/log/ranger/admin") is_supported_kafka_ranger = config['configurations']['kafka-env']['is_supported_kafka_ranger'] #ranger kafka properties if has_ranger_admin and is_supported_kafka_ranger: enable_ranger_kafka = config['configurations']['ranger-kafka-plugin-properties']['ranger-kafka-plugin-enabled'] enable_ranger_kafka = not is_empty(enable_ranger_kafka) and enable_ranger_kafka.lower() == 'yes' policymgr_mgr_url = config['configurations']['admin-properties']['policymgr_external_url'] sql_connector_jar = config['configurations']['admin-properties']['SQL_CONNECTOR_JAR'] xa_audit_db_flavor = config['configurations']['admin-properties']['DB_FLAVOR'] xa_audit_db_flavor = xa_audit_db_flavor.lower() if xa_audit_db_flavor else None xa_audit_db_name = config['configurations']['admin-properties']['audit_db_name'] xa_audit_db_user = config['configurations']['admin-properties']['audit_db_user'] xa_audit_db_password = unicode(config['configurations']['admin-properties']['audit_db_password']) xa_db_host = config['configurations']['admin-properties']['db_host'] repo_name = str(config['clusterName']) + '_kafka' ranger_env = config['configurations']['ranger-env'] ranger_plugin_properties = config['configurations']['ranger-kafka-plugin-properties'] ranger_kafka_audit = config['configurations']['ranger-kafka-audit'] ranger_kafka_audit_attrs = config['configuration_attributes']['ranger-kafka-audit'] ranger_kafka_security = config['configurations']['ranger-kafka-security'] ranger_kafka_security_attrs = config['configuration_attributes']['ranger-kafka-security'] ranger_kafka_policymgr_ssl = config['configurations']['ranger-kafka-policymgr-ssl'] ranger_kafka_policymgr_ssl_attrs = config['configuration_attributes']['ranger-kafka-policymgr-ssl'] policy_user = config['configurations']['ranger-kafka-plugin-properties']['policy_user'] ranger_plugin_config = { 'username' : config['configurations']['ranger-kafka-plugin-properties']['REPOSITORY_CONFIG_USERNAME'], 'password' : unicode(config['configurations']['ranger-kafka-plugin-properties']['REPOSITORY_CONFIG_PASSWORD']), 'zookeeper.connect' : config['configurations']['ranger-kafka-plugin-properties']['zookeeper.connect'], 'commonNameForCertificate' : config['configurations']['ranger-kafka-plugin-properties']['common.name.for.certificate'] } kafka_ranger_plugin_repo = { 'isEnabled': 'true', 'configs': ranger_plugin_config, 'description': 'kafka repo', 'name': repo_name, 'repositoryType': 'kafka', 'type': 'kafka', 'assetType': '1' } #For curl command in ranger plugin to get db connector jdk_location = config['hostLevelParams']['jdk_location'] java_share_dir = '/usr/share/java' if xa_audit_db_flavor and xa_audit_db_flavor == 'mysql': jdbc_symlink_name = "mysql-jdbc-driver.jar" jdbc_jar_name = "mysql-connector-java.jar" audit_jdbc_url = format('jdbc:mysql://{xa_db_host}/{xa_audit_db_name}') jdbc_driver = "com.mysql.jdbc.Driver" elif xa_audit_db_flavor and xa_audit_db_flavor == 'oracle': jdbc_jar_name = "ojdbc6.jar" jdbc_symlink_name = "oracle-jdbc-driver.jar" colon_count = xa_db_host.count(':') if colon_count == 2 or colon_count == 0: audit_jdbc_url = format('jdbc:oracle:thin:@{xa_db_host}') else: audit_jdbc_url = format('jdbc:oracle:thin:@//{xa_db_host}') jdbc_driver = "oracle.jdbc.OracleDriver" elif xa_audit_db_flavor and xa_audit_db_flavor == 'postgres': jdbc_jar_name = "postgresql.jar" jdbc_symlink_name = "postgres-jdbc-driver.jar" audit_jdbc_url = format('jdbc:postgresql://{xa_db_host}/{xa_audit_db_name}') jdbc_driver = "org.postgresql.Driver" elif xa_audit_db_flavor and xa_audit_db_flavor == 'mssql': jdbc_jar_name = "sqljdbc4.jar" jdbc_symlink_name = "mssql-jdbc-driver.jar" audit_jdbc_url = format('jdbc:sqlserver://{xa_db_host};databaseName={xa_audit_db_name}') jdbc_driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver" elif xa_audit_db_flavor and xa_audit_db_flavor == 'sqla': jdbc_jar_name = "sajdbc4.jar" jdbc_symlink_name = "sqlanywhere-jdbc-driver.tar.gz" audit_jdbc_url = format('jdbc:sqlanywhere:database={xa_audit_db_name};host={xa_db_host}') jdbc_driver = "sap.jdbc4.sqlanywhere.IDriver" downloaded_custom_connector = format("{tmp_dir}/{jdbc_jar_name}") driver_curl_source = format("{jdk_location}/{jdbc_symlink_name}") driver_curl_target = format("{kafka_home}libs/{jdbc_jar_name}") ranger_audit_solr_urls = config['configurations']['ranger-admin-site']['ranger.audit.solr.urls'] xa_audit_db_is_enabled = config['configurations']['ranger-kafka-audit']['xasecure.audit.destination.db'] if xml_configurations_supported else None xa_audit_hdfs_is_enabled = config['configurations']['ranger-kafka-audit']['xasecure.audit.destination.hdfs'] if xml_configurations_supported else None ssl_keystore_password = unicode(config['configurations']['ranger-kafka-policymgr-ssl']['xasecure.policymgr.clientssl.keystore.password']) if xml_configurations_supported else None ssl_truststore_password = unicode(config['configurations']['ranger-kafka-policymgr-ssl']['xasecure.policymgr.clientssl.truststore.password']) if xml_configurations_supported else None credential_file = format('/etc/ranger/{repo_name}/cred.jceks') if xml_configurations_supported else None hdp_version = get_hdp_version('kafka-broker') setup_ranger_env_sh_source = format('/usr/hdp/{hdp_version}/ranger-kafka-plugin/install/conf.templates/enable/kafka-ranger-env.sh') setup_ranger_env_sh_target = format("{conf_dir}/kafka-ranger-env.sh") #For SQLA explicitly disable audit to DB for Ranger if xa_audit_db_flavor == 'sqla': xa_audit_db_is_enabled = False namenode_hosts = default("/clusterHostInfo/namenode_host", []) has_namenode = not len(namenode_hosts) == 0 hdfs_user = config['configurations']['hadoop-env']['hdfs_user'] if has_namenode else None hdfs_user_keytab = config['configurations']['hadoop-env']['hdfs_user_keytab'] if has_namenode else None hdfs_principal_name = config['configurations']['hadoop-env']['hdfs_principal_name'] if has_namenode else None hdfs_site = config['configurations']['hdfs-site'] if has_namenode else None default_fs = config['configurations']['core-site']['fs.defaultFS'] if has_namenode else None hadoop_bin_dir = hdp_select.get_hadoop_dir("bin") if has_namenode else None hadoop_conf_dir = conf_select.get_hadoop_conf_dir() if has_namenode else None kinit_path_local = get_kinit_path(default('/configurations/kerberos-env/executable_search_paths', None)) import functools #create partial functions with common arguments for every HdfsResource call #to create/delete hdfs directory/file/copyfromlocal we need to call params.HdfsResource in code HdfsResource = functools.partial( HdfsResource, user=hdfs_user, hdfs_resource_ignore_file = "/var/lib/ambari-agent/data/.hdfs_resource_ignore", security_enabled = security_enabled, keytab = hdfs_user_keytab, kinit_path_local = kinit_path_local, hadoop_bin_dir = hadoop_bin_dir, hadoop_conf_dir = hadoop_conf_dir, principal_name = hdfs_principal_name, hdfs_site = hdfs_site, default_fs = default_fs, immutable_paths = get_not_managed_resources() )
52.537931
185
0.774416
from resource_management.libraries.functions import format from resource_management.libraries.script.script import Script from resource_management.libraries.functions.version import format_hdp_stack_version, compare_versions from resource_management.libraries.functions.default import default from utils import get_bare_principal from resource_management.libraries.functions.get_hdp_version import get_hdp_version from resource_management.libraries.functions.is_empty import is_empty import status_params from resource_management.core.logger import Logger from resource_management.libraries.resources.hdfs_resource import HdfsResource from resource_management.libraries.functions import hdp_select from resource_management.libraries.functions import conf_select from resource_management.libraries.functions import get_kinit_path from resource_management.libraries.functions.get_not_managed_resources import get_not_managed_resources config = Script.get_config() tmp_dir = Script.get_tmp_dir() stack_name = default("/hostLevelParams/stack_name", None) retryAble = default("/commandParams/command_retry_enabled", False) version = default("/commandParams/version", None) current_version = default("/hostLevelParams/current_version", None) host_sys_prepped = default("/hostLevelParams/host_sys_prepped", False) stack_version_unformatted = str(config['hostLevelParams']['stack_version']) hdp_stack_version = format_hdp_stack_version(stack_version_unformatted) upgrade_direction = default("/commandParams/upgrade_direction", None) downgrade_from_version = default("/commandParams/downgrade_from_version", None) hostname = config['hostname'] kafka_home = '/usr/lib/kafka/' kafka_bin = kafka_home+'/bin/kafka' conf_dir = "/etc/kafka/conf" limits_conf_dir = "/etc/security/limits.d" zookeeper_connect = default("/configurations/kafka-broker/zookeeper.connect", None) kafka_user_nofile_limit = config['configurations']['kafka-env']['kafka_user_nofile_limit'] kafka_user_nproc_limit = config['configurations']['kafka-env']['kafka_user_nproc_limit'] if Script.is_hdp_stack_greater_or_equal("2.2"): kafka_home = '/usr/hdp/current/kafka-broker/' kafka_bin = kafka_home+'bin/kafka' conf_dir = "/usr/hdp/current/kafka-broker/config" kafka_user = config['configurations']['kafka-env']['kafka_user'] kafka_log_dir = config['configurations']['kafka-env']['kafka_log_dir'] kafka_pid_dir = status_params.kafka_pid_dir kafka_pid_file = kafka_pid_dir+"/kafka.pid" kafka_managed_pid_dir = "/var/run/kafka" kafka_managed_log_dir = "/var/log/kafka" user_group = config['configurations']['cluster-env']['user_group'] java64_home = config['hostLevelParams']['java_home'] kafka_env_sh_template = config['configurations']['kafka-env']['content'] kafka_hosts = config['clusterHostInfo']['kafka_broker_hosts'] kafka_hosts.sort() zookeeper_hosts = config['clusterHostInfo']['zookeeper_hosts'] zookeeper_hosts.sort() if (('kafka-log4j' in config['configurations']) and ('content' in config['configurations']['kafka-log4j'])): log4j_props = config['configurations']['kafka-log4j']['content'] else: log4j_props = None if 'ganglia_server_host' in config['clusterHostInfo'] and \ len(config['clusterHostInfo']['ganglia_server_host'])>0: ganglia_installed = True ganglia_server = config['clusterHostInfo']['ganglia_server_host'][0] ganglia_report_interval = 60 else: ganglia_installed = False metric_collector_host = "" metric_collector_port = "" metric_collector_protocol = "" metric_truststore_path= default("/configurations/ams-ssl-client/ssl.client.truststore.location", "") metric_truststore_type= default("/configurations/ams-ssl-client/ssl.client.truststore.type", "") metric_truststore_password= default("/configurations/ams-ssl-client/ssl.client.truststore.password", "") ams_collector_hosts = default("/clusterHostInfo/metrics_collector_hosts", []) has_metric_collector = not len(ams_collector_hosts) == 0 if has_metric_collector: if 'cluster-env' in config['configurations'] and \ 'metrics_collector_vip_host' in config['configurations']['cluster-env']: metric_collector_host = config['configurations']['cluster-env']['metrics_collector_vip_host'] else: metric_collector_host = ams_collector_hosts[0] if 'cluster-env' in config['configurations'] and \ 'metrics_collector_vip_port' in config['configurations']['cluster-env']: metric_collector_port = config['configurations']['cluster-env']['metrics_collector_vip_port'] else: metric_collector_web_address = default("/configurations/ams-site/timeline.metrics.service.webapp.address", "localhost:6188") if metric_collector_web_address.find(':') != -1: metric_collector_port = metric_collector_web_address.split(':')[1] else: metric_collector_port = '6188' if default("/configurations/ams-site/timeline.metrics.service.http.policy", "HTTP_ONLY") == "HTTPS_ONLY": metric_collector_protocol = 'https' else: metric_collector_protocol = 'http' pass security_enabled = config['configurations']['cluster-env']['security_enabled'] kafka_kerberos_enabled = (('security.inter.broker.protocol' in config['configurations']['kafka-broker']) and ((config['configurations']['kafka-broker']['security.inter.broker.protocol'] == "PLAINTEXTSASL") or (config['configurations']['kafka-broker']['security.inter.broker.protocol'] == "SASL_PLAINTEXT"))) if security_enabled and hdp_stack_version != "" and 'kafka_principal_name' in config['configurations']['kafka-env'] and compare_versions(hdp_stack_version, '2.3') >= 0: _hostname_lowercase = config['hostname'].lower() _kafka_principal_name = config['configurations']['kafka-env']['kafka_principal_name'] kafka_jaas_principal = _kafka_principal_name.replace('_HOST',_hostname_lowercase) kafka_keytab_path = config['configurations']['kafka-env']['kafka_keytab'] kafka_bare_jaas_principal = get_bare_principal(_kafka_principal_name) kafka_kerberos_params = "-Djava.security.auth.login.config="+ conf_dir +"/kafka_jaas.conf" else: kafka_kerberos_params = '' ranger_admin_hosts = default("/clusterHostInfo/ranger_admin_hosts", []) has_ranger_admin = not len(ranger_admin_hosts) == 0 xml_configurations_supported = config['configurations']['ranger-env']['xml_configurations_supported'] ambari_server_hostname = config['clusterHostInfo']['ambari_server_host'][0] ranger_admin_log_dir = default("/configurations/ranger-env/ranger_admin_log_dir","/var/log/ranger/admin") is_supported_kafka_ranger = config['configurations']['kafka-env']['is_supported_kafka_ranger'] if has_ranger_admin and is_supported_kafka_ranger: enable_ranger_kafka = config['configurations']['ranger-kafka-plugin-properties']['ranger-kafka-plugin-enabled'] enable_ranger_kafka = not is_empty(enable_ranger_kafka) and enable_ranger_kafka.lower() == 'yes' policymgr_mgr_url = config['configurations']['admin-properties']['policymgr_external_url'] sql_connector_jar = config['configurations']['admin-properties']['SQL_CONNECTOR_JAR'] xa_audit_db_flavor = config['configurations']['admin-properties']['DB_FLAVOR'] xa_audit_db_flavor = xa_audit_db_flavor.lower() if xa_audit_db_flavor else None xa_audit_db_name = config['configurations']['admin-properties']['audit_db_name'] xa_audit_db_user = config['configurations']['admin-properties']['audit_db_user'] xa_audit_db_password = unicode(config['configurations']['admin-properties']['audit_db_password']) xa_db_host = config['configurations']['admin-properties']['db_host'] repo_name = str(config['clusterName']) + '_kafka' ranger_env = config['configurations']['ranger-env'] ranger_plugin_properties = config['configurations']['ranger-kafka-plugin-properties'] ranger_kafka_audit = config['configurations']['ranger-kafka-audit'] ranger_kafka_audit_attrs = config['configuration_attributes']['ranger-kafka-audit'] ranger_kafka_security = config['configurations']['ranger-kafka-security'] ranger_kafka_security_attrs = config['configuration_attributes']['ranger-kafka-security'] ranger_kafka_policymgr_ssl = config['configurations']['ranger-kafka-policymgr-ssl'] ranger_kafka_policymgr_ssl_attrs = config['configuration_attributes']['ranger-kafka-policymgr-ssl'] policy_user = config['configurations']['ranger-kafka-plugin-properties']['policy_user'] ranger_plugin_config = { 'username' : config['configurations']['ranger-kafka-plugin-properties']['REPOSITORY_CONFIG_USERNAME'], 'password' : unicode(config['configurations']['ranger-kafka-plugin-properties']['REPOSITORY_CONFIG_PASSWORD']), 'zookeeper.connect' : config['configurations']['ranger-kafka-plugin-properties']['zookeeper.connect'], 'commonNameForCertificate' : config['configurations']['ranger-kafka-plugin-properties']['common.name.for.certificate'] } kafka_ranger_plugin_repo = { 'isEnabled': 'true', 'configs': ranger_plugin_config, 'description': 'kafka repo', 'name': repo_name, 'repositoryType': 'kafka', 'type': 'kafka', 'assetType': '1' } jdk_location = config['hostLevelParams']['jdk_location'] java_share_dir = '/usr/share/java' if xa_audit_db_flavor and xa_audit_db_flavor == 'mysql': jdbc_symlink_name = "mysql-jdbc-driver.jar" jdbc_jar_name = "mysql-connector-java.jar" audit_jdbc_url = format('jdbc:mysql://{xa_db_host}/{xa_audit_db_name}') jdbc_driver = "com.mysql.jdbc.Driver" elif xa_audit_db_flavor and xa_audit_db_flavor == 'oracle': jdbc_jar_name = "ojdbc6.jar" jdbc_symlink_name = "oracle-jdbc-driver.jar" colon_count = xa_db_host.count(':') if colon_count == 2 or colon_count == 0: audit_jdbc_url = format('jdbc:oracle:thin:@{xa_db_host}') else: audit_jdbc_url = format('jdbc:oracle:thin:@//{xa_db_host}') jdbc_driver = "oracle.jdbc.OracleDriver" elif xa_audit_db_flavor and xa_audit_db_flavor == 'postgres': jdbc_jar_name = "postgresql.jar" jdbc_symlink_name = "postgres-jdbc-driver.jar" audit_jdbc_url = format('jdbc:postgresql://{xa_db_host}/{xa_audit_db_name}') jdbc_driver = "org.postgresql.Driver" elif xa_audit_db_flavor and xa_audit_db_flavor == 'mssql': jdbc_jar_name = "sqljdbc4.jar" jdbc_symlink_name = "mssql-jdbc-driver.jar" audit_jdbc_url = format('jdbc:sqlserver://{xa_db_host};databaseName={xa_audit_db_name}') jdbc_driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver" elif xa_audit_db_flavor and xa_audit_db_flavor == 'sqla': jdbc_jar_name = "sajdbc4.jar" jdbc_symlink_name = "sqlanywhere-jdbc-driver.tar.gz" audit_jdbc_url = format('jdbc:sqlanywhere:database={xa_audit_db_name};host={xa_db_host}') jdbc_driver = "sap.jdbc4.sqlanywhere.IDriver" downloaded_custom_connector = format("{tmp_dir}/{jdbc_jar_name}") driver_curl_source = format("{jdk_location}/{jdbc_symlink_name}") driver_curl_target = format("{kafka_home}libs/{jdbc_jar_name}") ranger_audit_solr_urls = config['configurations']['ranger-admin-site']['ranger.audit.solr.urls'] xa_audit_db_is_enabled = config['configurations']['ranger-kafka-audit']['xasecure.audit.destination.db'] if xml_configurations_supported else None xa_audit_hdfs_is_enabled = config['configurations']['ranger-kafka-audit']['xasecure.audit.destination.hdfs'] if xml_configurations_supported else None ssl_keystore_password = unicode(config['configurations']['ranger-kafka-policymgr-ssl']['xasecure.policymgr.clientssl.keystore.password']) if xml_configurations_supported else None ssl_truststore_password = unicode(config['configurations']['ranger-kafka-policymgr-ssl']['xasecure.policymgr.clientssl.truststore.password']) if xml_configurations_supported else None credential_file = format('/etc/ranger/{repo_name}/cred.jceks') if xml_configurations_supported else None hdp_version = get_hdp_version('kafka-broker') setup_ranger_env_sh_source = format('/usr/hdp/{hdp_version}/ranger-kafka-plugin/install/conf.templates/enable/kafka-ranger-env.sh') setup_ranger_env_sh_target = format("{conf_dir}/kafka-ranger-env.sh") if xa_audit_db_flavor == 'sqla': xa_audit_db_is_enabled = False namenode_hosts = default("/clusterHostInfo/namenode_host", []) has_namenode = not len(namenode_hosts) == 0 hdfs_user = config['configurations']['hadoop-env']['hdfs_user'] if has_namenode else None hdfs_user_keytab = config['configurations']['hadoop-env']['hdfs_user_keytab'] if has_namenode else None hdfs_principal_name = config['configurations']['hadoop-env']['hdfs_principal_name'] if has_namenode else None hdfs_site = config['configurations']['hdfs-site'] if has_namenode else None default_fs = config['configurations']['core-site']['fs.defaultFS'] if has_namenode else None hadoop_bin_dir = hdp_select.get_hadoop_dir("bin") if has_namenode else None hadoop_conf_dir = conf_select.get_hadoop_conf_dir() if has_namenode else None kinit_path_local = get_kinit_path(default('/configurations/kerberos-env/executable_search_paths', None)) import functools HdfsResource = functools.partial( HdfsResource, user=hdfs_user, hdfs_resource_ignore_file = "/var/lib/ambari-agent/data/.hdfs_resource_ignore", security_enabled = security_enabled, keytab = hdfs_user_keytab, kinit_path_local = kinit_path_local, hadoop_bin_dir = hadoop_bin_dir, hadoop_conf_dir = hadoop_conf_dir, principal_name = hdfs_principal_name, hdfs_site = hdfs_site, default_fs = default_fs, immutable_paths = get_not_managed_resources() )
true
true
f7182d6adde17e18d0bef7bffd4aa49b2b45e58d
22,427
py
Python
sdk/python/pulumi_azure_native/storagesync/v20190601/registered_server.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/storagesync/v20190601/registered_server.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
sdk/python/pulumi_azure_native/storagesync/v20190601/registered_server.py
sebtelko/pulumi-azure-native
711ec021b5c73da05611c56c8a35adb0ce3244e4
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = ['RegisteredServerArgs', 'RegisteredServer'] @pulumi.input_type class RegisteredServerArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], storage_sync_service_name: pulumi.Input[str], agent_version: Optional[pulumi.Input[str]] = None, cluster_id: Optional[pulumi.Input[str]] = None, cluster_name: Optional[pulumi.Input[str]] = None, friendly_name: Optional[pulumi.Input[str]] = None, last_heart_beat: Optional[pulumi.Input[str]] = None, server_certificate: Optional[pulumi.Input[str]] = None, server_id: Optional[pulumi.Input[str]] = None, server_os_version: Optional[pulumi.Input[str]] = None, server_role: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a RegisteredServer resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[str] storage_sync_service_name: Name of Storage Sync Service resource. :param pulumi.Input[str] agent_version: Registered Server Agent Version :param pulumi.Input[str] cluster_id: Registered Server clusterId :param pulumi.Input[str] cluster_name: Registered Server clusterName :param pulumi.Input[str] friendly_name: Friendly Name :param pulumi.Input[str] last_heart_beat: Registered Server last heart beat :param pulumi.Input[str] server_certificate: Registered Server Certificate :param pulumi.Input[str] server_id: Registered Server serverId :param pulumi.Input[str] server_os_version: Registered Server OS Version :param pulumi.Input[str] server_role: Registered Server serverRole """ pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "storage_sync_service_name", storage_sync_service_name) if agent_version is not None: pulumi.set(__self__, "agent_version", agent_version) if cluster_id is not None: pulumi.set(__self__, "cluster_id", cluster_id) if cluster_name is not None: pulumi.set(__self__, "cluster_name", cluster_name) if friendly_name is not None: pulumi.set(__self__, "friendly_name", friendly_name) if last_heart_beat is not None: pulumi.set(__self__, "last_heart_beat", last_heart_beat) if server_certificate is not None: pulumi.set(__self__, "server_certificate", server_certificate) if server_id is not None: pulumi.set(__self__, "server_id", server_id) if server_os_version is not None: pulumi.set(__self__, "server_os_version", server_os_version) if server_role is not None: pulumi.set(__self__, "server_role", server_role) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: """ The name of the resource group. The name is case insensitive. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="storageSyncServiceName") def storage_sync_service_name(self) -> pulumi.Input[str]: """ Name of Storage Sync Service resource. """ return pulumi.get(self, "storage_sync_service_name") @storage_sync_service_name.setter def storage_sync_service_name(self, value: pulumi.Input[str]): pulumi.set(self, "storage_sync_service_name", value) @property @pulumi.getter(name="agentVersion") def agent_version(self) -> Optional[pulumi.Input[str]]: """ Registered Server Agent Version """ return pulumi.get(self, "agent_version") @agent_version.setter def agent_version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "agent_version", value) @property @pulumi.getter(name="clusterId") def cluster_id(self) -> Optional[pulumi.Input[str]]: """ Registered Server clusterId """ return pulumi.get(self, "cluster_id") @cluster_id.setter def cluster_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "cluster_id", value) @property @pulumi.getter(name="clusterName") def cluster_name(self) -> Optional[pulumi.Input[str]]: """ Registered Server clusterName """ return pulumi.get(self, "cluster_name") @cluster_name.setter def cluster_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "cluster_name", value) @property @pulumi.getter(name="friendlyName") def friendly_name(self) -> Optional[pulumi.Input[str]]: """ Friendly Name """ return pulumi.get(self, "friendly_name") @friendly_name.setter def friendly_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "friendly_name", value) @property @pulumi.getter(name="lastHeartBeat") def last_heart_beat(self) -> Optional[pulumi.Input[str]]: """ Registered Server last heart beat """ return pulumi.get(self, "last_heart_beat") @last_heart_beat.setter def last_heart_beat(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "last_heart_beat", value) @property @pulumi.getter(name="serverCertificate") def server_certificate(self) -> Optional[pulumi.Input[str]]: """ Registered Server Certificate """ return pulumi.get(self, "server_certificate") @server_certificate.setter def server_certificate(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "server_certificate", value) @property @pulumi.getter(name="serverId") def server_id(self) -> Optional[pulumi.Input[str]]: """ Registered Server serverId """ return pulumi.get(self, "server_id") @server_id.setter def server_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "server_id", value) @property @pulumi.getter(name="serverOSVersion") def server_os_version(self) -> Optional[pulumi.Input[str]]: """ Registered Server OS Version """ return pulumi.get(self, "server_os_version") @server_os_version.setter def server_os_version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "server_os_version", value) @property @pulumi.getter(name="serverRole") def server_role(self) -> Optional[pulumi.Input[str]]: """ Registered Server serverRole """ return pulumi.get(self, "server_role") @server_role.setter def server_role(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "server_role", value) class RegisteredServer(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, agent_version: Optional[pulumi.Input[str]] = None, cluster_id: Optional[pulumi.Input[str]] = None, cluster_name: Optional[pulumi.Input[str]] = None, friendly_name: Optional[pulumi.Input[str]] = None, last_heart_beat: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, server_certificate: Optional[pulumi.Input[str]] = None, server_id: Optional[pulumi.Input[str]] = None, server_os_version: Optional[pulumi.Input[str]] = None, server_role: Optional[pulumi.Input[str]] = None, storage_sync_service_name: Optional[pulumi.Input[str]] = None, __props__=None): """ Registered Server resource. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] agent_version: Registered Server Agent Version :param pulumi.Input[str] cluster_id: Registered Server clusterId :param pulumi.Input[str] cluster_name: Registered Server clusterName :param pulumi.Input[str] friendly_name: Friendly Name :param pulumi.Input[str] last_heart_beat: Registered Server last heart beat :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[str] server_certificate: Registered Server Certificate :param pulumi.Input[str] server_id: Registered Server serverId :param pulumi.Input[str] server_os_version: Registered Server OS Version :param pulumi.Input[str] server_role: Registered Server serverRole :param pulumi.Input[str] storage_sync_service_name: Name of Storage Sync Service resource. """ ... @overload def __init__(__self__, resource_name: str, args: RegisteredServerArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Registered Server resource. :param str resource_name: The name of the resource. :param RegisteredServerArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(RegisteredServerArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, agent_version: Optional[pulumi.Input[str]] = None, cluster_id: Optional[pulumi.Input[str]] = None, cluster_name: Optional[pulumi.Input[str]] = None, friendly_name: Optional[pulumi.Input[str]] = None, last_heart_beat: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, server_certificate: Optional[pulumi.Input[str]] = None, server_id: Optional[pulumi.Input[str]] = None, server_os_version: Optional[pulumi.Input[str]] = None, server_role: Optional[pulumi.Input[str]] = None, storage_sync_service_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = RegisteredServerArgs.__new__(RegisteredServerArgs) __props__.__dict__["agent_version"] = agent_version __props__.__dict__["cluster_id"] = cluster_id __props__.__dict__["cluster_name"] = cluster_name __props__.__dict__["friendly_name"] = friendly_name __props__.__dict__["last_heart_beat"] = last_heart_beat if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["server_certificate"] = server_certificate __props__.__dict__["server_id"] = server_id __props__.__dict__["server_os_version"] = server_os_version __props__.__dict__["server_role"] = server_role if storage_sync_service_name is None and not opts.urn: raise TypeError("Missing required property 'storage_sync_service_name'") __props__.__dict__["storage_sync_service_name"] = storage_sync_service_name __props__.__dict__["discovery_endpoint_uri"] = None __props__.__dict__["last_operation_name"] = None __props__.__dict__["last_workflow_id"] = None __props__.__dict__["management_endpoint_uri"] = None __props__.__dict__["monitoring_configuration"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["resource_location"] = None __props__.__dict__["server_management_error_code"] = None __props__.__dict__["service_location"] = None __props__.__dict__["storage_sync_service_uid"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:storagesync/v20190601:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20170605preview:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20170605preview:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20180402:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20180402:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20180701:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20180701:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20181001:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20181001:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20190201:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20190201:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20190301:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20190301:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20191001:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20191001:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20200301:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20200301:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20200901:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20200901:RegisteredServer")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(RegisteredServer, __self__).__init__( 'azure-native:storagesync/v20190601:RegisteredServer', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'RegisteredServer': """ Get an existing RegisteredServer resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = RegisteredServerArgs.__new__(RegisteredServerArgs) __props__.__dict__["agent_version"] = None __props__.__dict__["cluster_id"] = None __props__.__dict__["cluster_name"] = None __props__.__dict__["discovery_endpoint_uri"] = None __props__.__dict__["friendly_name"] = None __props__.__dict__["last_heart_beat"] = None __props__.__dict__["last_operation_name"] = None __props__.__dict__["last_workflow_id"] = None __props__.__dict__["management_endpoint_uri"] = None __props__.__dict__["monitoring_configuration"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["resource_location"] = None __props__.__dict__["server_certificate"] = None __props__.__dict__["server_id"] = None __props__.__dict__["server_management_error_code"] = None __props__.__dict__["server_os_version"] = None __props__.__dict__["server_role"] = None __props__.__dict__["service_location"] = None __props__.__dict__["storage_sync_service_uid"] = None __props__.__dict__["type"] = None return RegisteredServer(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="agentVersion") def agent_version(self) -> pulumi.Output[Optional[str]]: """ Registered Server Agent Version """ return pulumi.get(self, "agent_version") @property @pulumi.getter(name="clusterId") def cluster_id(self) -> pulumi.Output[Optional[str]]: """ Registered Server clusterId """ return pulumi.get(self, "cluster_id") @property @pulumi.getter(name="clusterName") def cluster_name(self) -> pulumi.Output[Optional[str]]: """ Registered Server clusterName """ return pulumi.get(self, "cluster_name") @property @pulumi.getter(name="discoveryEndpointUri") def discovery_endpoint_uri(self) -> pulumi.Output[Optional[str]]: """ Resource discoveryEndpointUri """ return pulumi.get(self, "discovery_endpoint_uri") @property @pulumi.getter(name="friendlyName") def friendly_name(self) -> pulumi.Output[Optional[str]]: """ Friendly Name """ return pulumi.get(self, "friendly_name") @property @pulumi.getter(name="lastHeartBeat") def last_heart_beat(self) -> pulumi.Output[Optional[str]]: """ Registered Server last heart beat """ return pulumi.get(self, "last_heart_beat") @property @pulumi.getter(name="lastOperationName") def last_operation_name(self) -> pulumi.Output[Optional[str]]: """ Resource Last Operation Name """ return pulumi.get(self, "last_operation_name") @property @pulumi.getter(name="lastWorkflowId") def last_workflow_id(self) -> pulumi.Output[Optional[str]]: """ Registered Server lastWorkflowId """ return pulumi.get(self, "last_workflow_id") @property @pulumi.getter(name="managementEndpointUri") def management_endpoint_uri(self) -> pulumi.Output[Optional[str]]: """ Management Endpoint Uri """ return pulumi.get(self, "management_endpoint_uri") @property @pulumi.getter(name="monitoringConfiguration") def monitoring_configuration(self) -> pulumi.Output[Optional[str]]: """ Monitoring Configuration """ return pulumi.get(self, "monitoring_configuration") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the resource """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[Optional[str]]: """ Registered Server Provisioning State """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceLocation") def resource_location(self) -> pulumi.Output[Optional[str]]: """ Resource Location """ return pulumi.get(self, "resource_location") @property @pulumi.getter(name="serverCertificate") def server_certificate(self) -> pulumi.Output[Optional[str]]: """ Registered Server Certificate """ return pulumi.get(self, "server_certificate") @property @pulumi.getter(name="serverId") def server_id(self) -> pulumi.Output[Optional[str]]: """ Registered Server serverId """ return pulumi.get(self, "server_id") @property @pulumi.getter(name="serverManagementErrorCode") def server_management_error_code(self) -> pulumi.Output[Optional[int]]: """ Registered Server Management Error Code """ return pulumi.get(self, "server_management_error_code") @property @pulumi.getter(name="serverOSVersion") def server_os_version(self) -> pulumi.Output[Optional[str]]: """ Registered Server OS Version """ return pulumi.get(self, "server_os_version") @property @pulumi.getter(name="serverRole") def server_role(self) -> pulumi.Output[Optional[str]]: """ Registered Server serverRole """ return pulumi.get(self, "server_role") @property @pulumi.getter(name="serviceLocation") def service_location(self) -> pulumi.Output[Optional[str]]: """ Service Location """ return pulumi.get(self, "service_location") @property @pulumi.getter(name="storageSyncServiceUid") def storage_sync_service_uid(self) -> pulumi.Output[Optional[str]]: """ Registered Server storageSyncServiceUid """ return pulumi.get(self, "storage_sync_service_uid") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ The type of the resource. E.g. "Microsoft.Compute/virtualMachines" or "Microsoft.Storage/storageAccounts" """ return pulumi.get(self, "type")
43.295367
1,633
0.661925
import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities __all__ = ['RegisteredServerArgs', 'RegisteredServer'] @pulumi.input_type class RegisteredServerArgs: def __init__(__self__, *, resource_group_name: pulumi.Input[str], storage_sync_service_name: pulumi.Input[str], agent_version: Optional[pulumi.Input[str]] = None, cluster_id: Optional[pulumi.Input[str]] = None, cluster_name: Optional[pulumi.Input[str]] = None, friendly_name: Optional[pulumi.Input[str]] = None, last_heart_beat: Optional[pulumi.Input[str]] = None, server_certificate: Optional[pulumi.Input[str]] = None, server_id: Optional[pulumi.Input[str]] = None, server_os_version: Optional[pulumi.Input[str]] = None, server_role: Optional[pulumi.Input[str]] = None): pulumi.set(__self__, "resource_group_name", resource_group_name) pulumi.set(__self__, "storage_sync_service_name", storage_sync_service_name) if agent_version is not None: pulumi.set(__self__, "agent_version", agent_version) if cluster_id is not None: pulumi.set(__self__, "cluster_id", cluster_id) if cluster_name is not None: pulumi.set(__self__, "cluster_name", cluster_name) if friendly_name is not None: pulumi.set(__self__, "friendly_name", friendly_name) if last_heart_beat is not None: pulumi.set(__self__, "last_heart_beat", last_heart_beat) if server_certificate is not None: pulumi.set(__self__, "server_certificate", server_certificate) if server_id is not None: pulumi.set(__self__, "server_id", server_id) if server_os_version is not None: pulumi.set(__self__, "server_os_version", server_os_version) if server_role is not None: pulumi.set(__self__, "server_role", server_role) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> pulumi.Input[str]: return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: pulumi.Input[str]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="storageSyncServiceName") def storage_sync_service_name(self) -> pulumi.Input[str]: return pulumi.get(self, "storage_sync_service_name") @storage_sync_service_name.setter def storage_sync_service_name(self, value: pulumi.Input[str]): pulumi.set(self, "storage_sync_service_name", value) @property @pulumi.getter(name="agentVersion") def agent_version(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "agent_version") @agent_version.setter def agent_version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "agent_version", value) @property @pulumi.getter(name="clusterId") def cluster_id(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "cluster_id") @cluster_id.setter def cluster_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "cluster_id", value) @property @pulumi.getter(name="clusterName") def cluster_name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "cluster_name") @cluster_name.setter def cluster_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "cluster_name", value) @property @pulumi.getter(name="friendlyName") def friendly_name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "friendly_name") @friendly_name.setter def friendly_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "friendly_name", value) @property @pulumi.getter(name="lastHeartBeat") def last_heart_beat(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "last_heart_beat") @last_heart_beat.setter def last_heart_beat(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "last_heart_beat", value) @property @pulumi.getter(name="serverCertificate") def server_certificate(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "server_certificate") @server_certificate.setter def server_certificate(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "server_certificate", value) @property @pulumi.getter(name="serverId") def server_id(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "server_id") @server_id.setter def server_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "server_id", value) @property @pulumi.getter(name="serverOSVersion") def server_os_version(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "server_os_version") @server_os_version.setter def server_os_version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "server_os_version", value) @property @pulumi.getter(name="serverRole") def server_role(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "server_role") @server_role.setter def server_role(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "server_role", value) class RegisteredServer(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, agent_version: Optional[pulumi.Input[str]] = None, cluster_id: Optional[pulumi.Input[str]] = None, cluster_name: Optional[pulumi.Input[str]] = None, friendly_name: Optional[pulumi.Input[str]] = None, last_heart_beat: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, server_certificate: Optional[pulumi.Input[str]] = None, server_id: Optional[pulumi.Input[str]] = None, server_os_version: Optional[pulumi.Input[str]] = None, server_role: Optional[pulumi.Input[str]] = None, storage_sync_service_name: Optional[pulumi.Input[str]] = None, __props__=None): ... @overload def __init__(__self__, resource_name: str, args: RegisteredServerArgs, opts: Optional[pulumi.ResourceOptions] = None): ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(RegisteredServerArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, agent_version: Optional[pulumi.Input[str]] = None, cluster_id: Optional[pulumi.Input[str]] = None, cluster_name: Optional[pulumi.Input[str]] = None, friendly_name: Optional[pulumi.Input[str]] = None, last_heart_beat: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, server_certificate: Optional[pulumi.Input[str]] = None, server_id: Optional[pulumi.Input[str]] = None, server_os_version: Optional[pulumi.Input[str]] = None, server_role: Optional[pulumi.Input[str]] = None, storage_sync_service_name: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = RegisteredServerArgs.__new__(RegisteredServerArgs) __props__.__dict__["agent_version"] = agent_version __props__.__dict__["cluster_id"] = cluster_id __props__.__dict__["cluster_name"] = cluster_name __props__.__dict__["friendly_name"] = friendly_name __props__.__dict__["last_heart_beat"] = last_heart_beat if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__.__dict__["resource_group_name"] = resource_group_name __props__.__dict__["server_certificate"] = server_certificate __props__.__dict__["server_id"] = server_id __props__.__dict__["server_os_version"] = server_os_version __props__.__dict__["server_role"] = server_role if storage_sync_service_name is None and not opts.urn: raise TypeError("Missing required property 'storage_sync_service_name'") __props__.__dict__["storage_sync_service_name"] = storage_sync_service_name __props__.__dict__["discovery_endpoint_uri"] = None __props__.__dict__["last_operation_name"] = None __props__.__dict__["last_workflow_id"] = None __props__.__dict__["management_endpoint_uri"] = None __props__.__dict__["monitoring_configuration"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["resource_location"] = None __props__.__dict__["server_management_error_code"] = None __props__.__dict__["service_location"] = None __props__.__dict__["storage_sync_service_uid"] = None __props__.__dict__["type"] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:storagesync/v20190601:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20170605preview:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20170605preview:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20180402:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20180402:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20180701:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20180701:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20181001:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20181001:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20190201:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20190201:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20190301:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20190301:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20191001:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20191001:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20200301:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20200301:RegisteredServer"), pulumi.Alias(type_="azure-native:storagesync/v20200901:RegisteredServer"), pulumi.Alias(type_="azure-nextgen:storagesync/v20200901:RegisteredServer")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(RegisteredServer, __self__).__init__( 'azure-native:storagesync/v20190601:RegisteredServer', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'RegisteredServer': opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = RegisteredServerArgs.__new__(RegisteredServerArgs) __props__.__dict__["agent_version"] = None __props__.__dict__["cluster_id"] = None __props__.__dict__["cluster_name"] = None __props__.__dict__["discovery_endpoint_uri"] = None __props__.__dict__["friendly_name"] = None __props__.__dict__["last_heart_beat"] = None __props__.__dict__["last_operation_name"] = None __props__.__dict__["last_workflow_id"] = None __props__.__dict__["management_endpoint_uri"] = None __props__.__dict__["monitoring_configuration"] = None __props__.__dict__["name"] = None __props__.__dict__["provisioning_state"] = None __props__.__dict__["resource_location"] = None __props__.__dict__["server_certificate"] = None __props__.__dict__["server_id"] = None __props__.__dict__["server_management_error_code"] = None __props__.__dict__["server_os_version"] = None __props__.__dict__["server_role"] = None __props__.__dict__["service_location"] = None __props__.__dict__["storage_sync_service_uid"] = None __props__.__dict__["type"] = None return RegisteredServer(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="agentVersion") def agent_version(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "agent_version") @property @pulumi.getter(name="clusterId") def cluster_id(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "cluster_id") @property @pulumi.getter(name="clusterName") def cluster_name(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "cluster_name") @property @pulumi.getter(name="discoveryEndpointUri") def discovery_endpoint_uri(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "discovery_endpoint_uri") @property @pulumi.getter(name="friendlyName") def friendly_name(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "friendly_name") @property @pulumi.getter(name="lastHeartBeat") def last_heart_beat(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "last_heart_beat") @property @pulumi.getter(name="lastOperationName") def last_operation_name(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "last_operation_name") @property @pulumi.getter(name="lastWorkflowId") def last_workflow_id(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "last_workflow_id") @property @pulumi.getter(name="managementEndpointUri") def management_endpoint_uri(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "management_endpoint_uri") @property @pulumi.getter(name="monitoringConfiguration") def monitoring_configuration(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "monitoring_configuration") @property @pulumi.getter def name(self) -> pulumi.Output[str]: return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="resourceLocation") def resource_location(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "resource_location") @property @pulumi.getter(name="serverCertificate") def server_certificate(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "server_certificate") @property @pulumi.getter(name="serverId") def server_id(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "server_id") @property @pulumi.getter(name="serverManagementErrorCode") def server_management_error_code(self) -> pulumi.Output[Optional[int]]: return pulumi.get(self, "server_management_error_code") @property @pulumi.getter(name="serverOSVersion") def server_os_version(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "server_os_version") @property @pulumi.getter(name="serverRole") def server_role(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "server_role") @property @pulumi.getter(name="serviceLocation") def service_location(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "service_location") @property @pulumi.getter(name="storageSyncServiceUid") def storage_sync_service_uid(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "storage_sync_service_uid") @property @pulumi.getter def type(self) -> pulumi.Output[str]: return pulumi.get(self, "type")
true
true