hexsha
stringlengths
40
40
size
int64
10
805k
ext
stringclasses
6 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
176
max_stars_repo_name
stringlengths
7
114
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
176
max_issues_repo_name
stringlengths
7
114
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
48.5k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
176
max_forks_repo_name
stringlengths
7
114
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
10
805k
avg_line_length
float64
5.53
11k
max_line_length
int64
10
129k
alphanum_fraction
float64
0.13
0.93
content_no_comment
stringlengths
0
449k
is_comment_constant_removed
bool
2 classes
is_sharp_comment_removed
bool
1 class
f712c86400d482f402d2dea0381b0ef298481b24
80
py
Python
tadpole/template/app/lib/__init__.py
echoyuanliang/pine
22175e6aea0ca9b02d6542677b27a690c1501c9c
[ "MIT" ]
2
2017-12-02T07:02:31.000Z
2020-10-13T02:20:18.000Z
tadpole/template/app/lib/__init__.py
echoyuanliang/pine
22175e6aea0ca9b02d6542677b27a690c1501c9c
[ "MIT" ]
null
null
null
tadpole/template/app/lib/__init__.py
echoyuanliang/pine
22175e6aea0ca9b02d6542677b27a690c1501c9c
[ "MIT" ]
1
2018-04-23T04:59:38.000Z
2018-04-23T04:59:38.000Z
#!/usr/bin/env python # coding: utf-8 """ create at 2017/11/5 by allen """
11.428571
32
0.5875
true
true
f712c86751b2c032848e2d896cff8be52f3866a2
1,979
py
Python
computorv2/types/function.py
ayoubyt/ComputorV2
d3aef2802b795327b8b3b190e0744d39508638b3
[ "MIT" ]
null
null
null
computorv2/types/function.py
ayoubyt/ComputorV2
d3aef2802b795327b8b3b190e0744d39508638b3
[ "MIT" ]
null
null
null
computorv2/types/function.py
ayoubyt/ComputorV2
d3aef2802b795327b8b3b190e0744d39508638b3
[ "MIT" ]
null
null
null
from inspect import signature from typing import Callable, Any, List import re import copy from .type import Type class Function(Type): def __init__(self, fn: Callable[..., Any], name: str = "anonymouse") -> None: self.name = name self.vars = list(signature(fn).parameters) self.expr = "[built-in]" self.fn = fn self.varnum = len(signature(fn).parameters) def __call__(self, *args, **kwds): return self.fn(*args, **kwds) def __str__(self) -> str: return f"{self.name}({','.join(self.vars)})={self.expr}" class ListFunction(Function): pattern = r"[a-zA-Z]+\(.+\)" def __init__(self, expr: str, vars: List[str], name: str = "anonymouse") -> None: self.name = name self.expr = expr self.vars = vars self.varnum = len(vars) from ..expression import infix_to_rpnlist rpn_list = infix_to_rpnlist(expr) for i in range(len(rpn_list)): if (rpn_list[i] in vars): rpn_list[i] = str(vars.index(rpn_list[i])) self.rpn_list = rpn_list def __call__(self, *args, **kwds): res = copy.deepcopy(self.rpn_list) for i in range(len(self.rpn_list)): if isinstance(res[i], str) and res[i].isdigit(): res[i] = args[int(res[i])] from ..expression import eval_rpn return eval_rpn(res) def subvars(self): # a function to replace variables with there values def f(m: re.Match): from ..ft_global import user_vars word = m.group().lower() if word in user_vars and not isinstance(user_vars[word], Function): return(str(user_vars[word])) else: return(m.group()) result = re.sub(r"[a-zA-Z]+", f, self.expr) return result.strip() def __str__(self) -> str: result = self.subvars() return f"{self.name}({','.join(self.vars)}) = {result}"
32.983333
86
0.573017
from inspect import signature from typing import Callable, Any, List import re import copy from .type import Type class Function(Type): def __init__(self, fn: Callable[..., Any], name: str = "anonymouse") -> None: self.name = name self.vars = list(signature(fn).parameters) self.expr = "[built-in]" self.fn = fn self.varnum = len(signature(fn).parameters) def __call__(self, *args, **kwds): return self.fn(*args, **kwds) def __str__(self) -> str: return f"{self.name}({','.join(self.vars)})={self.expr}" class ListFunction(Function): pattern = r"[a-zA-Z]+\(.+\)" def __init__(self, expr: str, vars: List[str], name: str = "anonymouse") -> None: self.name = name self.expr = expr self.vars = vars self.varnum = len(vars) from ..expression import infix_to_rpnlist rpn_list = infix_to_rpnlist(expr) for i in range(len(rpn_list)): if (rpn_list[i] in vars): rpn_list[i] = str(vars.index(rpn_list[i])) self.rpn_list = rpn_list def __call__(self, *args, **kwds): res = copy.deepcopy(self.rpn_list) for i in range(len(self.rpn_list)): if isinstance(res[i], str) and res[i].isdigit(): res[i] = args[int(res[i])] from ..expression import eval_rpn return eval_rpn(res) def subvars(self): def f(m: re.Match): from ..ft_global import user_vars word = m.group().lower() if word in user_vars and not isinstance(user_vars[word], Function): return(str(user_vars[word])) else: return(m.group()) result = re.sub(r"[a-zA-Z]+", f, self.expr) return result.strip() def __str__(self) -> str: result = self.subvars() return f"{self.name}({','.join(self.vars)}) = {result}"
true
true
f712c8a3fe4a7f1fe2a76a5437c55a3f6b98cd80
12,509
py
Python
gracebot/gracebot.py
Roald87/GraceDB
5c7e6cc93a33b00c1c30ce040ef26326c003630d
[ "Apache-2.0" ]
7
2019-05-16T20:08:11.000Z
2021-10-07T03:15:00.000Z
gracebot/gracebot.py
Roald87/GraceDB
5c7e6cc93a33b00c1c30ce040ef26326c003630d
[ "Apache-2.0" ]
24
2019-07-07T06:14:12.000Z
2021-09-21T18:50:50.000Z
gracebot/gracebot.py
Roald87/GraceDB
5c7e6cc93a33b00c1c30ce040ef26326c003630d
[ "Apache-2.0" ]
null
null
null
import logging from collections import Counter, defaultdict import aiogram from aiogram import Bot, types from aiogram.utils.emoji import emojize from detector import Detector from gwevents import Events, time_ago from keyboard import InlineKeyboard from permanentset import PermanentSet class GraceBot(Bot): def __init__(self, token: str): super().__init__(token=token) self.events: Events = Events() self.events.update_all() self.event_keyboards: dict = defaultdict(InlineKeyboard) self.new_event_messages_send: PermanentSet = PermanentSet( "new_event_messages_send.txt", str ) self.subscribers: PermanentSet = PermanentSet("subscribers.txt", int) self.event_types: dict = { # Probability that the source is a binary black hole merger (both # objects heavier than 5 solar masses) "BBH": "binary black hole merger", # Probability that the source is a binary neutron star merger # (both objects lighter than 3 solar masses) "BNS": "binary neutron star merger", # Probability that the source is a neutron star-black hole merger # (primary heavier than 5 solar masses, secondary lighter than 3 # solar masses) "NSBH": "neutron star black hole merger", # Probability that the source is terrestrial(i.e., a background # noise fluctuation or a glitch) "Terrestrial": "terrestrial", # Probability that the source has at least one object between 3 and # 5 solar masses "MassGap": "mass gap", } async def send_preliminary(self, message): event_id = event_id_from_message(message) logging.info(f"Event to update from preliminary message: {event_id}") if event_id in self.new_event_messages_send.data: return else: self.events.update_events_last_week() self.new_event_messages_send.add(event_id) text = f"A new event has been measured!\n\n" await self._send_event_info_to_all_users(event_id, text) async def send_update(self, message): event_id = event_id_from_message(message) self.events.update_single(event_id) text = f"Event {event_id} has been updated.\n\n" await self._send_event_info_to_all_users(event_id, text) async def send_retraction(self, message): event_id = event_id_from_message(message) text = f"Event {event_id} has been retracted. The event details were:\n\n" await self._send_event_info_to_all_users(event_id, text) self.events.update_all() async def _send_event_info_to_all_users(self, event_id: str, pre_text: str) -> None: for user_id in self.subscribers.data: try: await self.send_event_info(user_id, event_id, pre_text) except aiogram.utils.exceptions.BotBlocked: logging.info(f"User {user_id} has blocked the bot.") continue async def send_event_info( self, chat_id: str, event_id: str, pre_text: str = "" ) -> None: """ Send information of a specific event to the user. Parameters ---------- chat_id : str Where to send the message to. event_id : str The event to send the information about. pre_text : str Will be added to the beginning of the message. Returns ------- None """ try: event = self.events.data[event_id] except KeyError: logging.error(f"Warning couldn't find event with id {event_id}") return link = f"https://gracedb.ligo.org/superevents/{event_id}/view/" text = ( pre_text + f"*{event_id.upper()}*\n" + f"{time_ago(event['created'])}\n\n" ) try: event_type = self.events.get_likely_event_type(event_id) confidence = self.events.data[event_id]["event_types"][event_type] text += ( f"Unconfirmed {self.event_types[event_type]} ({confidence:.2%}) event." ) distance_mean = round(event["distance_mean_Mly"] / 1000, 2) distance_std = round(event["distance_std_Mly"] / 1000, 2) text = ( text[:-1] + f" at {distance_mean} ± {distance_std} billion light years." ) instruments = self.events.data[event_id]["instruments_long"] text += f" The event was measured by {inline_list(instruments)}." except KeyError: pass text += f"\n\n[Event page]({link})" await self.send_message(chat_id, text, parse_mode="markdown") try: with open(self.events.picture(event_id), "rb") as picture: await self.send_photo(chat_id, picture) except FileNotFoundError: logging.error("Couldn't find the event image") return None async def send_welcome_message(self, message: types.Message) -> None: """ Send a welcome message to the user. Parameters ---------- message : aiogram.types.Message The message send by the user. Returns ------- None. """ text = ( "Stay up-to-date on LIGO/Virgo gravitational wave events!\n" "\n" "You can /subscribe to automatically receive a message whenever a new event is " "measured, or an existing event is updated. Use /unsubscribe to stop receiving " "messages.\n" "\n" "Furthermore you can check out the /latest event, or select a past /event. " "Use /stats to see and overview of all O3 events or view the live detector /status." ) await self.send_message(message.chat.id, text) async def send_latest(self, message: types.Message) -> None: """ Send some details of the most recent gravitational wave event. Parameters ---------- message : aiogram.types.Message The message send by the user. Returns ------- None. """ event_id = list(self.events.latest)[0] await self.send_event_info(message.chat.id, event_id) @property def event_keys(self) -> list: return [f"{id}_{info['most_likely']}" for id, info in self.events.data.items()] async def send_event_selector(self, message: types.Message) -> None: """ User can select any event from the O3 run and get a message with the details. Parameters ---------- message : types.Message Returns ------- None """ self.event_keyboards[message.chat.id] = InlineKeyboard( self.event_keys, rows=4, columns=2 ) await self.send_message( chat_id=message.chat.id, text="Select the event you want to see the details of.", reply_markup=self.event_keyboards[message.chat.id], ) async def event_selector_callback_handler(self, query: types.CallbackQuery) -> None: """ This is called when the user presses a button to select an event. Parameters ---------- query : types.CallbackQuery Callback query which contains info on which message the InlineKeyboard is attached to. Returns ------- None """ await query.answer() # send answer to close the rounding circle answer_data = query.data logging.debug(f"answer_data={answer_data}") user_id = query.from_user.id valid_event_ids = self.event_keyboards[user_id].visible_keys if answer_data in valid_event_ids: event_id, _ = answer_data.split("_") await self.send_event_info(user_id, event_id) else: await self.event_keyboards[user_id].update(query) async def send_o3_stats(self, message: types.Message) -> None: """ Send some statistics of observational run 3 (O3). Parameters ---------- message : aiogram.types.Message The message send by the user. Returns ------- None. """ # TODO take confirmed from other source since it will not be updated # in graceDB if they are confirmed. For that use: # https://www.gw-openscience.org/catalog/GWTC-1-confident/html/ event_counter = Counter( [info["most_likely"] for info in self.events.data.values()] ) unconfirmed_bbh = event_counter["BBH"] unconfirmed_bns = event_counter["BNS"] unconfirmed_nsbh = event_counter["NSBH"] unconfirmed_mg = event_counter["MassGap"] terrestrial = event_counter["Terrestrial"] text = ( f"Observational run 3 has detected *{len(self.events.data)}* " "events since April 1st 2019.\n\n" "" "*Event types*\n" f"Binary black hole mergers: *{unconfirmed_bbh}*.\n" f"Binary neutron star mergers: *{unconfirmed_bns}*.\n" f"Neutron star black hole mergers: *{unconfirmed_nsbh}*\n" f"At least one object between 3 and 5 solar masses: *{unconfirmed_mg}*.\n" f"Likely terrestrial (false alarm): *{terrestrial}*.\n" ) await self.send_message(message.chat.id, text, parse_mode="markdown") async def send_detector_status(self, message: types.Message) -> None: """ Send status of all three detectors to the user. Parameters ---------- message : types.Message The message send by the user. Returns ------- None """ detectors = [Detector("Hanford"), Detector("Livingston"), Detector("Virgo")] detector_status = [] for detector in detectors: hours = detector.status_duration.days * 24 + ( detector.status_duration.seconds // 3600 ) minutes = (detector.status_duration.seconds % 3600) // 60 detector_status.append( f"{emojize(detector.status_icon)} {detector.name}: " f"{detector.status} {hours}h {minutes}m" ) text = "\n".join(detector_status) await self.send_message(message.chat.id, text) async def add_subscriber(self, message: types.Message) -> None: """ Add the user from the message to the subscriber list. Parameters ---------- message : aiogram.types.Message The message send by the user. Returns ------- None. """ user_id = message.chat.id if self.subscribers.is_in_list(user_id): await self.send_message(user_id, "You are already subscribed.") else: self.subscribers.add(message.chat.id) await self.send_message( user_id, "You will now receive the latest event updates." ) async def remove_subscriber(self, message: types.Message) -> None: """ Remove the user from the message from the subscriber list. Parameters ---------- message : aiogram.types.Message The message send by the user. Returns ------- None. """ user_id = message.chat.id if not self.subscribers.is_in_list(user_id): await self.send_message(user_id, "You are not subscribed.") else: self.subscribers.remove(message.chat.id) await self.send_message( user_id, "You will no longer receive the latest event updates." ) def event_id_from_message(message: types.Message) -> str: """ Return the event id which is assumed to come right after the command. Parameters ---------- message : aiogram.types.Message The message send by the user. Returns ------- The event id. """ try: event_id = message.text.split(" ")[-1] except KeyError: event_id = None return event_id def inline_list(items): if len(items) == 0: return "" elif len(items) == 1: return items[0] else: return ", ".join(items[:-1]) + f" and {items[-1]}"
33.268617
96
0.587257
import logging from collections import Counter, defaultdict import aiogram from aiogram import Bot, types from aiogram.utils.emoji import emojize from detector import Detector from gwevents import Events, time_ago from keyboard import InlineKeyboard from permanentset import PermanentSet class GraceBot(Bot): def __init__(self, token: str): super().__init__(token=token) self.events: Events = Events() self.events.update_all() self.event_keyboards: dict = defaultdict(InlineKeyboard) self.new_event_messages_send: PermanentSet = PermanentSet( "new_event_messages_send.txt", str ) self.subscribers: PermanentSet = PermanentSet("subscribers.txt", int) self.event_types: dict = { "BBH": "binary black hole merger", "BNS": "binary neutron star merger", "NSBH": "neutron star black hole merger", "Terrestrial": "terrestrial", "MassGap": "mass gap", } async def send_preliminary(self, message): event_id = event_id_from_message(message) logging.info(f"Event to update from preliminary message: {event_id}") if event_id in self.new_event_messages_send.data: return else: self.events.update_events_last_week() self.new_event_messages_send.add(event_id) text = f"A new event has been measured!\n\n" await self._send_event_info_to_all_users(event_id, text) async def send_update(self, message): event_id = event_id_from_message(message) self.events.update_single(event_id) text = f"Event {event_id} has been updated.\n\n" await self._send_event_info_to_all_users(event_id, text) async def send_retraction(self, message): event_id = event_id_from_message(message) text = f"Event {event_id} has been retracted. The event details were:\n\n" await self._send_event_info_to_all_users(event_id, text) self.events.update_all() async def _send_event_info_to_all_users(self, event_id: str, pre_text: str) -> None: for user_id in self.subscribers.data: try: await self.send_event_info(user_id, event_id, pre_text) except aiogram.utils.exceptions.BotBlocked: logging.info(f"User {user_id} has blocked the bot.") continue async def send_event_info( self, chat_id: str, event_id: str, pre_text: str = "" ) -> None: try: event = self.events.data[event_id] except KeyError: logging.error(f"Warning couldn't find event with id {event_id}") return link = f"https://gracedb.ligo.org/superevents/{event_id}/view/" text = ( pre_text + f"*{event_id.upper()}*\n" + f"{time_ago(event['created'])}\n\n" ) try: event_type = self.events.get_likely_event_type(event_id) confidence = self.events.data[event_id]["event_types"][event_type] text += ( f"Unconfirmed {self.event_types[event_type]} ({confidence:.2%}) event." ) distance_mean = round(event["distance_mean_Mly"] / 1000, 2) distance_std = round(event["distance_std_Mly"] / 1000, 2) text = ( text[:-1] + f" at {distance_mean} ± {distance_std} billion light years." ) instruments = self.events.data[event_id]["instruments_long"] text += f" The event was measured by {inline_list(instruments)}." except KeyError: pass text += f"\n\n[Event page]({link})" await self.send_message(chat_id, text, parse_mode="markdown") try: with open(self.events.picture(event_id), "rb") as picture: await self.send_photo(chat_id, picture) except FileNotFoundError: logging.error("Couldn't find the event image") return None async def send_welcome_message(self, message: types.Message) -> None: text = ( "Stay up-to-date on LIGO/Virgo gravitational wave events!\n" "\n" "You can /subscribe to automatically receive a message whenever a new event is " "measured, or an existing event is updated. Use /unsubscribe to stop receiving " "messages.\n" "\n" "Furthermore you can check out the /latest event, or select a past /event. " "Use /stats to see and overview of all O3 events or view the live detector /status." ) await self.send_message(message.chat.id, text) async def send_latest(self, message: types.Message) -> None: event_id = list(self.events.latest)[0] await self.send_event_info(message.chat.id, event_id) @property def event_keys(self) -> list: return [f"{id}_{info['most_likely']}" for id, info in self.events.data.items()] async def send_event_selector(self, message: types.Message) -> None: self.event_keyboards[message.chat.id] = InlineKeyboard( self.event_keys, rows=4, columns=2 ) await self.send_message( chat_id=message.chat.id, text="Select the event you want to see the details of.", reply_markup=self.event_keyboards[message.chat.id], ) async def event_selector_callback_handler(self, query: types.CallbackQuery) -> None: await query.answer() answer_data = query.data logging.debug(f"answer_data={answer_data}") user_id = query.from_user.id valid_event_ids = self.event_keyboards[user_id].visible_keys if answer_data in valid_event_ids: event_id, _ = answer_data.split("_") await self.send_event_info(user_id, event_id) else: await self.event_keyboards[user_id].update(query) async def send_o3_stats(self, message: types.Message) -> None: event_counter = Counter( [info["most_likely"] for info in self.events.data.values()] ) unconfirmed_bbh = event_counter["BBH"] unconfirmed_bns = event_counter["BNS"] unconfirmed_nsbh = event_counter["NSBH"] unconfirmed_mg = event_counter["MassGap"] terrestrial = event_counter["Terrestrial"] text = ( f"Observational run 3 has detected *{len(self.events.data)}* " "events since April 1st 2019.\n\n" "" "*Event types*\n" f"Binary black hole mergers: *{unconfirmed_bbh}*.\n" f"Binary neutron star mergers: *{unconfirmed_bns}*.\n" f"Neutron star black hole mergers: *{unconfirmed_nsbh}*\n" f"At least one object between 3 and 5 solar masses: *{unconfirmed_mg}*.\n" f"Likely terrestrial (false alarm): *{terrestrial}*.\n" ) await self.send_message(message.chat.id, text, parse_mode="markdown") async def send_detector_status(self, message: types.Message) -> None: detectors = [Detector("Hanford"), Detector("Livingston"), Detector("Virgo")] detector_status = [] for detector in detectors: hours = detector.status_duration.days * 24 + ( detector.status_duration.seconds // 3600 ) minutes = (detector.status_duration.seconds % 3600) // 60 detector_status.append( f"{emojize(detector.status_icon)} {detector.name}: " f"{detector.status} {hours}h {minutes}m" ) text = "\n".join(detector_status) await self.send_message(message.chat.id, text) async def add_subscriber(self, message: types.Message) -> None: user_id = message.chat.id if self.subscribers.is_in_list(user_id): await self.send_message(user_id, "You are already subscribed.") else: self.subscribers.add(message.chat.id) await self.send_message( user_id, "You will now receive the latest event updates." ) async def remove_subscriber(self, message: types.Message) -> None: user_id = message.chat.id if not self.subscribers.is_in_list(user_id): await self.send_message(user_id, "You are not subscribed.") else: self.subscribers.remove(message.chat.id) await self.send_message( user_id, "You will no longer receive the latest event updates." ) def event_id_from_message(message: types.Message) -> str: try: event_id = message.text.split(" ")[-1] except KeyError: event_id = None return event_id def inline_list(items): if len(items) == 0: return "" elif len(items) == 1: return items[0] else: return ", ".join(items[:-1]) + f" and {items[-1]}"
true
true
f712c8de43a8c629aa786fd8a8da9cc2f3bc7f9a
1,788
py
Python
optmlstat/test/test_basic_functions.py
sungheeyun/optmlstat
11d529c915bf27976da9157471a6dbf7df34d205
[ "MIT" ]
4
2020-04-08T03:48:59.000Z
2020-12-30T01:39:52.000Z
optmlstat/test/test_basic_functions.py
sungheeyun/optmlstat
11d529c915bf27976da9157471a6dbf7df34d205
[ "MIT" ]
null
null
null
optmlstat/test/test_basic_functions.py
sungheeyun/optmlstat
11d529c915bf27976da9157471a6dbf7df34d205
[ "MIT" ]
1
2020-04-08T04:04:00.000Z
2020-04-08T04:04:00.000Z
import unittest from logging import Logger, getLogger from numpy import ndarray, power, allclose from numpy.random import randn from freq_used.logging_utils import set_logging_basic_config from optmlstat.functions.function_base import FunctionBase from optmlstat.functions.example_functions import get_sum_of_square_function, get_sum_function logger: Logger = getLogger() class TestBasicFunctions(unittest.TestCase): num_inputs: int = 30 num_data_points: int = 100 x_array_2d: ndarray @classmethod def setUpClass(cls) -> None: set_logging_basic_config(__file__) cls.x_array_2d = randn(cls.num_data_points, cls.num_inputs) def test_sum_of_squares_function(self): y_array_1d: ndarray = TestBasicFunctions._get_y_array_1d( get_sum_of_square_function(TestBasicFunctions.num_inputs) ) true_y_array_1d: ndarray = power(TestBasicFunctions.x_array_2d, 2.0).sum(axis=1) logger.info(y_array_1d.shape) logger.info(true_y_array_1d.shape) logger.info(allclose(y_array_1d, true_y_array_1d)) self.assertTrue(allclose(y_array_1d, true_y_array_1d)) def test_sum_function(self): y_array_1d: ndarray = TestBasicFunctions._get_y_array_1d(get_sum_function(TestBasicFunctions.num_inputs)) true_y_array_1d: ndarray = power(TestBasicFunctions.x_array_2d, 1.0).sum(axis=1) logger.info(y_array_1d.shape) logger.info(true_y_array_1d.shape) logger.info(allclose(y_array_1d, true_y_array_1d)) self.assertTrue(allclose(y_array_1d, true_y_array_1d)) @classmethod def _get_y_array_1d(cls, function: FunctionBase) -> ndarray: return function.get_y_values_2d(cls.x_array_2d).ravel() if __name__ == "__main__": unittest.main()
33.111111
113
0.75
import unittest from logging import Logger, getLogger from numpy import ndarray, power, allclose from numpy.random import randn from freq_used.logging_utils import set_logging_basic_config from optmlstat.functions.function_base import FunctionBase from optmlstat.functions.example_functions import get_sum_of_square_function, get_sum_function logger: Logger = getLogger() class TestBasicFunctions(unittest.TestCase): num_inputs: int = 30 num_data_points: int = 100 x_array_2d: ndarray @classmethod def setUpClass(cls) -> None: set_logging_basic_config(__file__) cls.x_array_2d = randn(cls.num_data_points, cls.num_inputs) def test_sum_of_squares_function(self): y_array_1d: ndarray = TestBasicFunctions._get_y_array_1d( get_sum_of_square_function(TestBasicFunctions.num_inputs) ) true_y_array_1d: ndarray = power(TestBasicFunctions.x_array_2d, 2.0).sum(axis=1) logger.info(y_array_1d.shape) logger.info(true_y_array_1d.shape) logger.info(allclose(y_array_1d, true_y_array_1d)) self.assertTrue(allclose(y_array_1d, true_y_array_1d)) def test_sum_function(self): y_array_1d: ndarray = TestBasicFunctions._get_y_array_1d(get_sum_function(TestBasicFunctions.num_inputs)) true_y_array_1d: ndarray = power(TestBasicFunctions.x_array_2d, 1.0).sum(axis=1) logger.info(y_array_1d.shape) logger.info(true_y_array_1d.shape) logger.info(allclose(y_array_1d, true_y_array_1d)) self.assertTrue(allclose(y_array_1d, true_y_array_1d)) @classmethod def _get_y_array_1d(cls, function: FunctionBase) -> ndarray: return function.get_y_values_2d(cls.x_array_2d).ravel() if __name__ == "__main__": unittest.main()
true
true
f712c989452d45e22101d40c8a7502a2c3174e77
9,381
py
Python
client-py/src/utils/IoTDBRpcDataSet.py
SilverNarcissus/incubator-iotdb
ea5529280a57125f4aa48a026a2b24d394e15ee5
[ "Apache-2.0" ]
1
2020-12-26T11:28:50.000Z
2020-12-26T11:28:50.000Z
client-py/src/utils/IoTDBRpcDataSet.py
SilverNarcissus/incubator-iotdb
ea5529280a57125f4aa48a026a2b24d394e15ee5
[ "Apache-2.0" ]
null
null
null
client-py/src/utils/IoTDBRpcDataSet.py
SilverNarcissus/incubator-iotdb
ea5529280a57125f4aa48a026a2b24d394e15ee5
[ "Apache-2.0" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # from IoTDBConstants import * from thrift.transport import TTransport from iotdb.rpc.TSIService import TSFetchResultsReq, TSCloseOperationReq class IoTDBRpcDataSet(object): TIMESTAMP_STR = "Time" # VALUE_IS_NULL = "The value got by %s (column name) is NULL." START_INDEX = 2 FLAG = 0x80 def __init__(self, sql, column_name_list, column_type_list, column_name_index, ignore_timestamp, query_id, client, session_id, query_data_set, fetch_size): self.__session_id = session_id self.__ignore_timestamp = ignore_timestamp self.__sql = sql self.__query_id = query_id self.__client = client self.__fetch_size = fetch_size self.__column_size = len(column_name_list) self.__column_name_list = [] self.__column_type_list = [] self.__column_ordinal_dict = {} if not ignore_timestamp: self.__column_name_list.append(IoTDBRpcDataSet.TIMESTAMP_STR) self.__column_type_list.append(TSDataType.INT64) self.__column_ordinal_dict[IoTDBRpcDataSet.TIMESTAMP_STR] = 1 if column_name_index is not None: self.__column_type_deduplicated_list = [None for _ in range(len(column_name_index))] for i in range(len(column_name_list)): name = column_name_list[i] self.__column_name_list.append(name) self.__column_type_list.append(TSDataType[column_type_list[i]]) if name not in self.__column_ordinal_dict: index = column_name_index[name] self.__column_ordinal_dict[name] = index + IoTDBRpcDataSet.START_INDEX self.__column_type_deduplicated_list[index] = TSDataType[column_type_list[i]] else: index = IoTDBRpcDataSet.START_INDEX self.__column_type_deduplicated_list = [] for i in range(len(column_name_list)): name = column_name_list[i] self.__column_name_list.append(name) self.__column_type_list.append(TSDataType[column_type_list[i]]) if name not in self.__column_ordinal_dict: self.__column_ordinal_dict[name] = index index += 1 self.__column_type_deduplicated_list.append(TSDataType[column_type_list[i]]) self.__time_bytes = bytes(0) self.__current_bitmap = [bytes(0) for _ in range(len(self.__column_type_deduplicated_list))] self.__value = [None for _ in range(len(self.__column_type_deduplicated_list))] self.__query_data_set = query_data_set self.__is_closed = False self.__empty_resultSet = False self.__has_cached_record = False self.__rows_index = 0 def close(self): if self.__is_closed: return if self.__client is not None: try: status = self.__client.closeOperation(TSCloseOperationReq(self.__session_id, self.__query_id)) print("close session {}, message: {}".format(self.__session_id, status.message)) except TTransport.TException as e: print("close session {} failed because: ".format(self.__session_id), e) raise Exception self.__is_closed = True self.__client = None def next(self): if self.has_cached_result(): self.construct_one_row() return True if self.__empty_resultSet: return False if self.fetch_results(): self.construct_one_row() return True return False def has_cached_result(self): return (self.__query_data_set is not None) and (len(self.__query_data_set.time) != 0) def construct_one_row(self): # simulating buffer, read 8 bytes from data set and discard first 8 bytes which have been read. self.__time_bytes = self.__query_data_set.time[:8] self.__query_data_set.time = self.__query_data_set.time[8:] for i in range(len(self.__query_data_set.bitmapList)): bitmap_buffer = self.__query_data_set.bitmapList[i] # another 8 new rows, should move the bitmap buffer position to next byte if self.__rows_index % 8 == 0: self.__current_bitmap[i] = bitmap_buffer[0] self.__query_data_set.bitmapList[i] = bitmap_buffer[1:] if not self.is_null(i, self.__rows_index): value_buffer = self.__query_data_set.valueList[i] data_type = self.__column_type_deduplicated_list[i] # simulating buffer if data_type == TSDataType.BOOLEAN: self.__value[i] = value_buffer[:1] self.__query_data_set.valueList[i] = value_buffer[1:] elif data_type == TSDataType.INT32: self.__value[i] = value_buffer[:4] self.__query_data_set.valueList[i] = value_buffer[4:] elif data_type == TSDataType.INT64: self.__value[i] = value_buffer[:8] self.__query_data_set.valueList[i] = value_buffer[8:] elif data_type == TSDataType.FLOAT: self.__value[i] = value_buffer[:4] self.__query_data_set.valueList[i] = value_buffer[4:] elif data_type == TSDataType.DOUBLE: self.__value[i] = value_buffer[:8] self.__query_data_set.valueList[i] = value_buffer[8:] elif data_type == TSDataType.TEXT: length = int.from_bytes(value_buffer[:4], byteorder="big", signed=False) self.__value[i] = value_buffer[4: 4 + length] self.__query_data_set.valueList[i] = value_buffer[4 + length:] else: print("unsupported data type {}.".format(data_type)) # could raise exception here self.__rows_index += 1 self.__has_cached_record = True def fetch_results(self): self.__rows_index = 0 request = TSFetchResultsReq(self.__session_id, self.__sql, self.__fetch_size, self.__query_id, True) try: resp = self.__client.fetchResults(request) if not resp.hasResultSet: self.__empty_resultSet = True else: self.__query_data_set = resp.queryDataSet return resp.hasResultSet except TTransport.TException as e: print("Cannot fetch result from server, because of network connection: ", e) def is_null(self, index, row_num): bitmap = self.__current_bitmap[index] shift = row_num % 8 return ((IoTDBRpcDataSet.FLAG >> shift) & (bitmap & 0xff)) == 0 def is_null_by_index(self, column_index): index = self.__column_ordinal_dict[self.find_column_name_by_index(column_index)] - IoTDBRpcDataSet.START_INDEX # time column will never be None if index < 0: return True return self.is_null(index, self.__rows_index - 1) def is_null_by_name(self, column_name): index = self.__column_ordinal_dict[column_name] - IoTDBRpcDataSet.START_INDEX # time column will never be None if index < 0: return True return self.is_null(index, self.__rows_index - 1) def find_column_name_by_index(self, column_index): if column_index <= 0: raise Exception("Column index should start from 1") if column_index > len(self.__column_name_list): raise Exception("column index {} out of range {}".format(column_index, self.__column_size)) return self.__column_name_list[column_index - 1] def get_fetch_size(self): return self.__fetch_size def set_fetch_size(self, fetch_size): self.__fetch_size = fetch_size def get_column_names(self): return self.__column_name_list def get_column_types(self): return self.__column_type_list def get_column_size(self): return self.__column_size def get_ignore_timestamp(self): return self.__ignore_timestamp def get_column_ordinal_dict(self): return self.__column_ordinal_dict def get_column_type_deduplicated_list(self): return self.__column_type_deduplicated_list def get_values(self): return self.__value def get_time_bytes(self): return self.__time_bytes def get_has_cached_record(self): return self.__has_cached_record
42.640909
118
0.644601
from IoTDBConstants import * from thrift.transport import TTransport from iotdb.rpc.TSIService import TSFetchResultsReq, TSCloseOperationReq class IoTDBRpcDataSet(object): TIMESTAMP_STR = "Time" START_INDEX = 2 FLAG = 0x80 def __init__(self, sql, column_name_list, column_type_list, column_name_index, ignore_timestamp, query_id, client, session_id, query_data_set, fetch_size): self.__session_id = session_id self.__ignore_timestamp = ignore_timestamp self.__sql = sql self.__query_id = query_id self.__client = client self.__fetch_size = fetch_size self.__column_size = len(column_name_list) self.__column_name_list = [] self.__column_type_list = [] self.__column_ordinal_dict = {} if not ignore_timestamp: self.__column_name_list.append(IoTDBRpcDataSet.TIMESTAMP_STR) self.__column_type_list.append(TSDataType.INT64) self.__column_ordinal_dict[IoTDBRpcDataSet.TIMESTAMP_STR] = 1 if column_name_index is not None: self.__column_type_deduplicated_list = [None for _ in range(len(column_name_index))] for i in range(len(column_name_list)): name = column_name_list[i] self.__column_name_list.append(name) self.__column_type_list.append(TSDataType[column_type_list[i]]) if name not in self.__column_ordinal_dict: index = column_name_index[name] self.__column_ordinal_dict[name] = index + IoTDBRpcDataSet.START_INDEX self.__column_type_deduplicated_list[index] = TSDataType[column_type_list[i]] else: index = IoTDBRpcDataSet.START_INDEX self.__column_type_deduplicated_list = [] for i in range(len(column_name_list)): name = column_name_list[i] self.__column_name_list.append(name) self.__column_type_list.append(TSDataType[column_type_list[i]]) if name not in self.__column_ordinal_dict: self.__column_ordinal_dict[name] = index index += 1 self.__column_type_deduplicated_list.append(TSDataType[column_type_list[i]]) self.__time_bytes = bytes(0) self.__current_bitmap = [bytes(0) for _ in range(len(self.__column_type_deduplicated_list))] self.__value = [None for _ in range(len(self.__column_type_deduplicated_list))] self.__query_data_set = query_data_set self.__is_closed = False self.__empty_resultSet = False self.__has_cached_record = False self.__rows_index = 0 def close(self): if self.__is_closed: return if self.__client is not None: try: status = self.__client.closeOperation(TSCloseOperationReq(self.__session_id, self.__query_id)) print("close session {}, message: {}".format(self.__session_id, status.message)) except TTransport.TException as e: print("close session {} failed because: ".format(self.__session_id), e) raise Exception self.__is_closed = True self.__client = None def next(self): if self.has_cached_result(): self.construct_one_row() return True if self.__empty_resultSet: return False if self.fetch_results(): self.construct_one_row() return True return False def has_cached_result(self): return (self.__query_data_set is not None) and (len(self.__query_data_set.time) != 0) def construct_one_row(self): self.__time_bytes = self.__query_data_set.time[:8] self.__query_data_set.time = self.__query_data_set.time[8:] for i in range(len(self.__query_data_set.bitmapList)): bitmap_buffer = self.__query_data_set.bitmapList[i] if self.__rows_index % 8 == 0: self.__current_bitmap[i] = bitmap_buffer[0] self.__query_data_set.bitmapList[i] = bitmap_buffer[1:] if not self.is_null(i, self.__rows_index): value_buffer = self.__query_data_set.valueList[i] data_type = self.__column_type_deduplicated_list[i] if data_type == TSDataType.BOOLEAN: self.__value[i] = value_buffer[:1] self.__query_data_set.valueList[i] = value_buffer[1:] elif data_type == TSDataType.INT32: self.__value[i] = value_buffer[:4] self.__query_data_set.valueList[i] = value_buffer[4:] elif data_type == TSDataType.INT64: self.__value[i] = value_buffer[:8] self.__query_data_set.valueList[i] = value_buffer[8:] elif data_type == TSDataType.FLOAT: self.__value[i] = value_buffer[:4] self.__query_data_set.valueList[i] = value_buffer[4:] elif data_type == TSDataType.DOUBLE: self.__value[i] = value_buffer[:8] self.__query_data_set.valueList[i] = value_buffer[8:] elif data_type == TSDataType.TEXT: length = int.from_bytes(value_buffer[:4], byteorder="big", signed=False) self.__value[i] = value_buffer[4: 4 + length] self.__query_data_set.valueList[i] = value_buffer[4 + length:] else: print("unsupported data type {}.".format(data_type)) self.__rows_index += 1 self.__has_cached_record = True def fetch_results(self): self.__rows_index = 0 request = TSFetchResultsReq(self.__session_id, self.__sql, self.__fetch_size, self.__query_id, True) try: resp = self.__client.fetchResults(request) if not resp.hasResultSet: self.__empty_resultSet = True else: self.__query_data_set = resp.queryDataSet return resp.hasResultSet except TTransport.TException as e: print("Cannot fetch result from server, because of network connection: ", e) def is_null(self, index, row_num): bitmap = self.__current_bitmap[index] shift = row_num % 8 return ((IoTDBRpcDataSet.FLAG >> shift) & (bitmap & 0xff)) == 0 def is_null_by_index(self, column_index): index = self.__column_ordinal_dict[self.find_column_name_by_index(column_index)] - IoTDBRpcDataSet.START_INDEX if index < 0: return True return self.is_null(index, self.__rows_index - 1) def is_null_by_name(self, column_name): index = self.__column_ordinal_dict[column_name] - IoTDBRpcDataSet.START_INDEX if index < 0: return True return self.is_null(index, self.__rows_index - 1) def find_column_name_by_index(self, column_index): if column_index <= 0: raise Exception("Column index should start from 1") if column_index > len(self.__column_name_list): raise Exception("column index {} out of range {}".format(column_index, self.__column_size)) return self.__column_name_list[column_index - 1] def get_fetch_size(self): return self.__fetch_size def set_fetch_size(self, fetch_size): self.__fetch_size = fetch_size def get_column_names(self): return self.__column_name_list def get_column_types(self): return self.__column_type_list def get_column_size(self): return self.__column_size def get_ignore_timestamp(self): return self.__ignore_timestamp def get_column_ordinal_dict(self): return self.__column_ordinal_dict def get_column_type_deduplicated_list(self): return self.__column_type_deduplicated_list def get_values(self): return self.__value def get_time_bytes(self): return self.__time_bytes def get_has_cached_record(self): return self.__has_cached_record
true
true
f712c99545e91e441d992d541c1ccf79df97e92d
5,158
py
Python
mlfromscratch/unsupervised_learning/gaussian_mixture_model.py
mmderakhshani/ML-From-Scratch
4593ffbb64399ed9eaf4921d6c0d5430d81ec1cb
[ "MIT" ]
6
2017-09-14T08:36:04.000Z
2021-11-06T12:23:30.000Z
mlfromscratch/unsupervised_learning/gaussian_mixture_model.py
ZexinYan/ML-From-Scratch
86ccc5273e0182b66c5d93c428f75dad61d8ced3
[ "MIT" ]
null
null
null
mlfromscratch/unsupervised_learning/gaussian_mixture_model.py
ZexinYan/ML-From-Scratch
86ccc5273e0182b66c5d93c428f75dad61d8ced3
[ "MIT" ]
1
2018-01-02T22:45:05.000Z
2018-01-02T22:45:05.000Z
from __future__ import division, print_function import sys import os import math import random from sklearn import datasets import numpy as np # Import helper functions from mlfromscratch.utils.data_manipulation import normalize from mlfromscratch.utils.data_operation import euclidean_distance, calculate_covariance_matrix from mlfromscratch.unsupervised_learning import PCA from mlfromscratch.utils import Plot class GaussianMixtureModel(): """A probabilistic clustering method for determining groupings among data samples. Parameters: ----------- k: int The number of clusters the algorithm will form. max_iterations: int The number of iterations the algorithm will run for if it does not converge before that. tolerance: float If the difference of the results from one iteration to the next is smaller than this value we will say that the algorithm has converged. """ def __init__(self, k=2, max_iterations=2000, tolerance=1e-8): self.k = k self.parameters = [] self.max_iterations = max_iterations self.tolerance = tolerance self.responsibilities = [] self.sample_assignments = None self.responsibility = None # Initialize gaussian randomly def _init_random_gaussians(self, X): n_samples = np.shape(X)[0] self.priors = (1 / self.k) * np.ones(self.k) for i in range(self.k): params = {} params["mean"] = X[np.random.choice(range(n_samples))] params["cov"] = calculate_covariance_matrix(X) self.parameters.append(params) # Likelihood def multivariate_gaussian(self, X, params): n_features = np.shape(X)[1] mean = params["mean"] covar = params["cov"] determinant = np.linalg.det(covar) likelihoods = np.zeros(np.shape(X)[0]) for i, sample in enumerate(X): d = n_features # dimension coeff = (1.0 / (math.pow((2.0 * math.pi), d / 2) * math.sqrt(determinant))) exponent = math.exp(-0.5 * (sample - mean).T.dot(np.linalg.pinv(covar)).dot((sample - mean))) likelihoods[i] = coeff * exponent return likelihoods # Calculate the likelihood over all samples def _get_likelihoods(self, X): n_samples = np.shape(X)[0] likelihoods = np.zeros((n_samples, self.k)) for i in range(self.k): likelihoods[ :, i] = self.multivariate_gaussian( X, self.parameters[i]) return likelihoods # Calculate the responsibility def _expectation(self, X): # Calculate probabilities of X belonging to the different clusters weighted_likelihoods = self._get_likelihoods(X) * self.priors sum_likelihoods = np.expand_dims( np.sum(weighted_likelihoods, axis=1), axis=1) # Determine responsibility as P(X|y)*P(y)/P(X) self.responsibility = weighted_likelihoods / sum_likelihoods # Assign samples to cluster that has largest probability self.sample_assignments = self.responsibility.argmax(axis=1) # Save value for convergence check self.responsibilities.append(np.max(self.responsibility, axis=1)) # Update the parameters and priors def _maximization(self, X): # Iterate through clusters and recalculate mean and covariance for i in range(self.k): resp = np.expand_dims(self.responsibility[:, i], axis=1) mean = (resp * X).sum(axis=0) / resp.sum() covariance = (X - mean).T.dot((X - mean) * resp) / resp.sum() self.parameters[i]["mean"], self.parameters[ i]["cov"] = mean, covariance # Update weights n_samples = np.shape(X)[0] self.priors = self.responsibility.sum(axis=0) / n_samples # Covergence if || likehood - last_likelihood || < tolerance def _converged(self, X): if len(self.responsibilities) < 2: return False diff = np.linalg.norm( self.responsibilities[-1] - self.responsibilities[-2]) # print ("Likelihood update: %s (tol: %s)" % (diff, self.tolerance)) return diff <= self.tolerance # Run GMM and return the cluster indices def predict(self, X): # Initialize the gaussians randomly self._init_random_gaussians(X) # Run EM until convergence or for max iterations for _ in range(self.max_iterations): self._expectation(X) # E-step self._maximization(X) # M-step # Check convergence if self._converged(X): break # Make new assignments and return them self._expectation(X) return self.sample_assignments def main(): # Load the dataset X, y = datasets.make_blobs() # Cluster the data clf = GaussianMixtureModel(k=3) y_pred = clf.predict(X) p = MatplotlibWrapper() p.plot_in_2d(X, y_pred, title="GMM Clustering") p.plot_in_2d(X, y, title="Actual Clustering") if __name__ == "__main__": main()
35.819444
105
0.630865
from __future__ import division, print_function import sys import os import math import random from sklearn import datasets import numpy as np from mlfromscratch.utils.data_manipulation import normalize from mlfromscratch.utils.data_operation import euclidean_distance, calculate_covariance_matrix from mlfromscratch.unsupervised_learning import PCA from mlfromscratch.utils import Plot class GaussianMixtureModel(): def __init__(self, k=2, max_iterations=2000, tolerance=1e-8): self.k = k self.parameters = [] self.max_iterations = max_iterations self.tolerance = tolerance self.responsibilities = [] self.sample_assignments = None self.responsibility = None def _init_random_gaussians(self, X): n_samples = np.shape(X)[0] self.priors = (1 / self.k) * np.ones(self.k) for i in range(self.k): params = {} params["mean"] = X[np.random.choice(range(n_samples))] params["cov"] = calculate_covariance_matrix(X) self.parameters.append(params) def multivariate_gaussian(self, X, params): n_features = np.shape(X)[1] mean = params["mean"] covar = params["cov"] determinant = np.linalg.det(covar) likelihoods = np.zeros(np.shape(X)[0]) for i, sample in enumerate(X): d = n_features coeff = (1.0 / (math.pow((2.0 * math.pi), d / 2) * math.sqrt(determinant))) exponent = math.exp(-0.5 * (sample - mean).T.dot(np.linalg.pinv(covar)).dot((sample - mean))) likelihoods[i] = coeff * exponent return likelihoods def _get_likelihoods(self, X): n_samples = np.shape(X)[0] likelihoods = np.zeros((n_samples, self.k)) for i in range(self.k): likelihoods[ :, i] = self.multivariate_gaussian( X, self.parameters[i]) return likelihoods def _expectation(self, X): weighted_likelihoods = self._get_likelihoods(X) * self.priors sum_likelihoods = np.expand_dims( np.sum(weighted_likelihoods, axis=1), axis=1) self.responsibility = weighted_likelihoods / sum_likelihoods self.sample_assignments = self.responsibility.argmax(axis=1) self.responsibilities.append(np.max(self.responsibility, axis=1)) def _maximization(self, X): for i in range(self.k): resp = np.expand_dims(self.responsibility[:, i], axis=1) mean = (resp * X).sum(axis=0) / resp.sum() covariance = (X - mean).T.dot((X - mean) * resp) / resp.sum() self.parameters[i]["mean"], self.parameters[ i]["cov"] = mean, covariance n_samples = np.shape(X)[0] self.priors = self.responsibility.sum(axis=0) / n_samples def _converged(self, X): if len(self.responsibilities) < 2: return False diff = np.linalg.norm( self.responsibilities[-1] - self.responsibilities[-2]) return diff <= self.tolerance def predict(self, X): self._init_random_gaussians(X) for _ in range(self.max_iterations): self._expectation(X) self._maximization(X) if self._converged(X): break self._expectation(X) return self.sample_assignments def main(): X, y = datasets.make_blobs() clf = GaussianMixtureModel(k=3) y_pred = clf.predict(X) p = MatplotlibWrapper() p.plot_in_2d(X, y_pred, title="GMM Clustering") p.plot_in_2d(X, y, title="Actual Clustering") if __name__ == "__main__": main()
true
true
f712cb48c2676caa70abd3795aeccf02d5574156
3,509
py
Python
lnbits/core/views/generic.py
frankhinek/lnbits
30f5eef3b547ba0626ee91bcf4bfc0dcdf8265a1
[ "MIT" ]
null
null
null
lnbits/core/views/generic.py
frankhinek/lnbits
30f5eef3b547ba0626ee91bcf4bfc0dcdf8265a1
[ "MIT" ]
1
2020-08-08T13:11:34.000Z
2020-08-08T16:38:09.000Z
lnbits/core/views/generic.py
dennisreimann/lnbits
8ea72c9934feff6307c116a91d28236f2d9f6e2a
[ "MIT" ]
null
null
null
from flask import g, abort, redirect, request, render_template, send_from_directory, url_for from http import HTTPStatus from os import getenv, path from lnbits.core import core_app from lnbits.decorators import check_user_exists, validate_uuids from lnbits.settings import SERVICE_FEE from ..crud import ( create_account, get_user, update_user_extension, create_wallet, delete_wallet, ) @core_app.route("/favicon.ico") def favicon(): return send_from_directory(path.join(core_app.root_path, "static"), "favicon.ico") @core_app.route("/") def home(): return render_template("core/index.html", lnurl=request.args.get("lightning", None)) @core_app.route("/extensions") @validate_uuids(["usr"], required=True) @check_user_exists() def extensions(): extension_to_enable = request.args.get("enable", type=str) extension_to_disable = request.args.get("disable", type=str) if extension_to_enable and extension_to_disable: abort(HTTPStatus.BAD_REQUEST, "You can either `enable` or `disable` an extension.") if extension_to_enable: update_user_extension(user_id=g.user.id, extension=extension_to_enable, active=1) elif extension_to_disable: update_user_extension(user_id=g.user.id, extension=extension_to_disable, active=0) return render_template("core/extensions.html", user=get_user(g.user.id)) @core_app.route("/wallet") @validate_uuids(["usr", "wal"]) def wallet(): user_id = request.args.get("usr", type=str) wallet_id = request.args.get("wal", type=str) wallet_name = request.args.get("nme", type=str) service_fee = int(SERVICE_FEE) if int(SERVICE_FEE) == SERVICE_FEE else SERVICE_FEE # just wallet_name: create a new user, then create a new wallet for user with wallet_name # just user_id: return the first user wallet or create one if none found (with default wallet_name) # user_id and wallet_name: create a new wallet for user with wallet_name # user_id and wallet_id: return that wallet if user is the owner # nothing: create everything if not user_id: user = get_user(create_account().id) else: user = get_user(user_id) or abort(HTTPStatus.NOT_FOUND, "User does not exist.") allowed_users = getenv("LNBITS_ALLOWED_USERS", "all") if allowed_users != "all" and user_id not in allowed_users.split(","): abort(HTTPStatus.UNAUTHORIZED, f"User not authorized.") if not wallet_id: if user.wallets and not wallet_name: wallet = user.wallets[0] else: wallet = create_wallet(user_id=user.id, wallet_name=wallet_name) return redirect(url_for("core.wallet", usr=user.id, wal=wallet.id)) if wallet_id not in user.wallet_ids: abort(HTTPStatus.FORBIDDEN, "Not your wallet.") return render_template("core/wallet.html", user=user, wallet=user.get_wallet(wallet_id), service_fee=service_fee) @core_app.route("/deletewallet") @validate_uuids(["usr", "wal"], required=True) @check_user_exists() def deletewallet(): wallet_id = request.args.get("wal", type=str) user_wallet_ids = g.user.wallet_ids if wallet_id not in user_wallet_ids: abort(HTTPStatus.FORBIDDEN, "Not your wallet.") else: delete_wallet(user_id=g.user.id, wallet_id=wallet_id) user_wallet_ids.remove(wallet_id) if user_wallet_ids: return redirect(url_for("core.wallet", usr=g.user.id, wal=user_wallet_ids[0])) return redirect(url_for("core.home"))
35.09
117
0.717013
from flask import g, abort, redirect, request, render_template, send_from_directory, url_for from http import HTTPStatus from os import getenv, path from lnbits.core import core_app from lnbits.decorators import check_user_exists, validate_uuids from lnbits.settings import SERVICE_FEE from ..crud import ( create_account, get_user, update_user_extension, create_wallet, delete_wallet, ) @core_app.route("/favicon.ico") def favicon(): return send_from_directory(path.join(core_app.root_path, "static"), "favicon.ico") @core_app.route("/") def home(): return render_template("core/index.html", lnurl=request.args.get("lightning", None)) @core_app.route("/extensions") @validate_uuids(["usr"], required=True) @check_user_exists() def extensions(): extension_to_enable = request.args.get("enable", type=str) extension_to_disable = request.args.get("disable", type=str) if extension_to_enable and extension_to_disable: abort(HTTPStatus.BAD_REQUEST, "You can either `enable` or `disable` an extension.") if extension_to_enable: update_user_extension(user_id=g.user.id, extension=extension_to_enable, active=1) elif extension_to_disable: update_user_extension(user_id=g.user.id, extension=extension_to_disable, active=0) return render_template("core/extensions.html", user=get_user(g.user.id)) @core_app.route("/wallet") @validate_uuids(["usr", "wal"]) def wallet(): user_id = request.args.get("usr", type=str) wallet_id = request.args.get("wal", type=str) wallet_name = request.args.get("nme", type=str) service_fee = int(SERVICE_FEE) if int(SERVICE_FEE) == SERVICE_FEE else SERVICE_FEE if not user_id: user = get_user(create_account().id) else: user = get_user(user_id) or abort(HTTPStatus.NOT_FOUND, "User does not exist.") allowed_users = getenv("LNBITS_ALLOWED_USERS", "all") if allowed_users != "all" and user_id not in allowed_users.split(","): abort(HTTPStatus.UNAUTHORIZED, f"User not authorized.") if not wallet_id: if user.wallets and not wallet_name: wallet = user.wallets[0] else: wallet = create_wallet(user_id=user.id, wallet_name=wallet_name) return redirect(url_for("core.wallet", usr=user.id, wal=wallet.id)) if wallet_id not in user.wallet_ids: abort(HTTPStatus.FORBIDDEN, "Not your wallet.") return render_template("core/wallet.html", user=user, wallet=user.get_wallet(wallet_id), service_fee=service_fee) @core_app.route("/deletewallet") @validate_uuids(["usr", "wal"], required=True) @check_user_exists() def deletewallet(): wallet_id = request.args.get("wal", type=str) user_wallet_ids = g.user.wallet_ids if wallet_id not in user_wallet_ids: abort(HTTPStatus.FORBIDDEN, "Not your wallet.") else: delete_wallet(user_id=g.user.id, wallet_id=wallet_id) user_wallet_ids.remove(wallet_id) if user_wallet_ids: return redirect(url_for("core.wallet", usr=g.user.id, wal=user_wallet_ids[0])) return redirect(url_for("core.home"))
true
true
f712ccf8aad1c576c4bb7d20447015501ae5c134
961
py
Python
src/quo/layout/dummy.py
chouette254/quo
8979afd118e77d3d0f93f9fbe8711efada7158c5
[ "MIT" ]
1
2021-02-15T03:56:00.000Z
2021-02-15T03:56:00.000Z
src/quo/layout/dummy.py
chouette254/quo
8979afd118e77d3d0f93f9fbe8711efada7158c5
[ "MIT" ]
3
2021-02-22T11:49:23.000Z
2021-02-28T06:47:41.000Z
src/quo/layout/dummy.py
secretuminc/quo
c4f77d52f015c612d32ed0fc2fc79545af598f10
[ "MIT" ]
null
null
null
""" Dummy layout. Used when somebody creates an `Application` without specifying a `Layout`. """ from quo.text import HTML from quo.keys import KeyBinder from quo.keys.key_binding.key_processor import KeyPressEvent from .containers import Window from .controls import FormattedTextControl from .dimension import D from .layout import Layout __all__ = [ "create_dummy_layout", ] E = KeyPressEvent def create_dummy_layout() -> Layout: """ Create a dummy layout for use in an 'Application' that doesn't have a layout specified. When ENTER is pressed, the application quits. """ kb = KeyBinder() @kb.add("enter") def enter(event: E) -> None: event.app.exit() control = FormattedTextControl( HTML("No layout specified. Press <reverse>ENTER</reverse> to quit."), key_bindings=kb, ) window = Window(content=control, height=D(min=1)) return Layout(container=window, focused_element=window)
25.289474
78
0.707596
from quo.text import HTML from quo.keys import KeyBinder from quo.keys.key_binding.key_processor import KeyPressEvent from .containers import Window from .controls import FormattedTextControl from .dimension import D from .layout import Layout __all__ = [ "create_dummy_layout", ] E = KeyPressEvent def create_dummy_layout() -> Layout: kb = KeyBinder() @kb.add("enter") def enter(event: E) -> None: event.app.exit() control = FormattedTextControl( HTML("No layout specified. Press <reverse>ENTER</reverse> to quit."), key_bindings=kb, ) window = Window(content=control, height=D(min=1)) return Layout(container=window, focused_element=window)
true
true
f712cd35d53a7f9e2846be7bc0df488a47a60401
581
py
Python
koco/patch.py
inmoonlight/koco
1ad92c91ffe47f2455190970024c948554923770
[ "MIT" ]
24
2020-05-20T14:51:59.000Z
2021-12-12T13:08:57.000Z
koco/patch.py
alisonykim/koco
1ad92c91ffe47f2455190970024c948554923770
[ "MIT" ]
null
null
null
koco/patch.py
alisonykim/koco
1ad92c91ffe47f2455190970024c948554923770
[ "MIT" ]
2
2021-01-24T20:55:05.000Z
2022-03-17T09:36:18.000Z
import logging import zipfile import wget from .utils import DOWNLOAD_DIR, make_dirs baseurl = 'https://codeload.github.com/kocohub/{}/zip/master' logger = logging.getLogger(__name__) def download_dataset(dataset, verbose=True): make_dirs(DOWNLOAD_DIR) url = baseurl.format(dataset) wget.download(url, f'{DOWNLOAD_DIR}/{dataset}.zip') unzip(f'{DOWNLOAD_DIR}/{dataset}.zip') if verbose: logger.info(f'Dataset {dataset} downloaded to {DOWNLOAD_DIR}.') def unzip(zippath): with zipfile.ZipFile(zippath) as z: z.extractall(DOWNLOAD_DIR)
23.24
71
0.719449
import logging import zipfile import wget from .utils import DOWNLOAD_DIR, make_dirs baseurl = 'https://codeload.github.com/kocohub/{}/zip/master' logger = logging.getLogger(__name__) def download_dataset(dataset, verbose=True): make_dirs(DOWNLOAD_DIR) url = baseurl.format(dataset) wget.download(url, f'{DOWNLOAD_DIR}/{dataset}.zip') unzip(f'{DOWNLOAD_DIR}/{dataset}.zip') if verbose: logger.info(f'Dataset {dataset} downloaded to {DOWNLOAD_DIR}.') def unzip(zippath): with zipfile.ZipFile(zippath) as z: z.extractall(DOWNLOAD_DIR)
true
true
f712cd5980cb2bd7a24133bce003672fd878a49a
5,271
py
Python
ptsemseg/loader/mapillary_vistas_loader.py
EEEGUI/Mapillary-vistas-semseg
d07a107fd08a7536f09f25e426a6f15033cbb609
[ "MIT" ]
14
2019-07-17T06:04:15.000Z
2021-09-24T08:00:52.000Z
ptsemseg/loader/mapillary_vistas_loader.py
EEEGUI/Mapillary-vistas-semseg
d07a107fd08a7536f09f25e426a6f15033cbb609
[ "MIT" ]
null
null
null
ptsemseg/loader/mapillary_vistas_loader.py
EEEGUI/Mapillary-vistas-semseg
d07a107fd08a7536f09f25e426a6f15033cbb609
[ "MIT" ]
5
2019-07-17T06:03:58.000Z
2022-01-26T08:57:33.000Z
import os import json import torch import numpy as np from torch.utils import data from PIL import Image from ptsemseg.utils import recursive_glob from ptsemseg.augmentations import Compose, RandomHorizontallyFlip, RandomRotate class mapillaryVistasLoader(data.Dataset): def __init__( self, root, split="training", img_size=(1025, 2049), is_transform=True, augmentations=None, test_mode=False, ): self.root = root self.split = split self.is_transform = is_transform self.augmentations = augmentations self.n_classes = 9 self.img_size = img_size if isinstance(img_size, tuple) else (img_size, img_size) self.mean = np.array([80.5423, 91.3162, 81.4312]) self.files = {} if not test_mode: self.images_base = os.path.join(self.root, self.split, "images") self.annotations_base = os.path.join(self.root, self.split, "labels") self.files[split] = recursive_glob(rootdir=self.images_base, suffix=".jpg") if not self.files[split]: raise Exception("No files for split=[%s] found in %s" % (split, self.images_base)) print("Found %d %s images" % (len(self.files[split]), split)) self.class_names, self.class_ids, self.class_colors, self.class_major_ids = self.parse_config() self.ignore_id = 250 def parse_config(self): with open(os.path.join(self.root, "config.json")) as config_file: config = json.load(config_file) labels = config["labels"] class_names = [] class_ids = [] class_colors = [] class_major_ids = [] for label_id, label in enumerate(labels): class_names.append(label["readable"]) class_ids.append(label_id) class_colors.append(label["color"]) class_major_ids.append(label['majorclass']) print("There are {} labels in the config file".format(len(set(class_major_ids)))) return class_names, class_ids, class_colors, class_major_ids def __len__(self): """__len__""" return len(self.files[self.split]) def __getitem__(self, index): """__getitem__ :param index: """ img_path = self.files[self.split][index].rstrip() lbl_path = os.path.join( self.annotations_base, os.path.basename(img_path).replace(".jpg", ".png") ) img = Image.open(img_path) lbl = Image.open(lbl_path) if self.augmentations is not None: img, lbl = self.augmentations(img, lbl) if self.is_transform: img, lbl = self.transform(img, lbl) return img, lbl def transform(self, img, lbl): if self.img_size == ("same", "same"): pass else: img = img.resize( (self.img_size[1], self.img_size[0]), resample=Image.LANCZOS ) # uint8 with RGB mode lbl = lbl.resize((self.img_size[1], self.img_size[0])) img = np.array(img).astype(np.float64) / 255.0 img = torch.from_numpy(img.transpose(2, 0, 1)).float() # From HWC to CHW # # lbl = torch.from_numpy(np.array(lbl)).long() # lbl[lbl == 65] = self.ignore_id # lbl = torch.from_numpy(np.array(lbl)).long() lbl[lbl == self.ignore_id] = 65 lbl = self.encode_segmap(lbl) lbl[lbl == 0] = self.ignore_id return img, lbl def decode_segmap(self, temp): class_major_colors = [[0, 0, 0], [70, 70, 70], [180, 165, 180], [128, 64, 64], [220, 20, 60], [255, 255, 255], [70, 130, 180], [250, 170, 30], [0, 0, 142]] r = temp.copy() g = temp.copy() b = temp.copy() for l in range(0, len(class_major_colors)): r[temp == l] = class_major_colors[l][0] g[temp == l] = class_major_colors[l][1] b[temp == l] = class_major_colors[l][2] rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) # rgb[:, :, 0] = r / 255.0 # rgb[:, :, 1] = g / 255.0 # rgb[:, :, 2] = b / 255.0 rgb[:, :, 0] = r rgb[:, :, 1] = g rgb[:, :, 2] = b return rgb def encode_segmap(self, mask): # Put all void classes to zero for id in self.class_ids: mask[mask == id] = self.class_major_ids[id]+100 mask = mask - 100 return mask if __name__ == "__main__": augment = Compose([RandomHorizontallyFlip(0.5), RandomRotate(6)]) local_path = "/home/lin/Documents/dataset/mapillary" dst = mapillaryVistasLoader( local_path, split='validation', img_size=(512, 1024), is_transform=True, augmentations=None ) bs = 1 trainloader = data.DataLoader(dst, batch_size=bs, num_workers=4, shuffle=True) for i, data_samples in enumerate(trainloader): x = dst.decode_segmap(data_samples[1][0].numpy()) x = Image.fromarray(np.uint8(x)) x.show()
33.788462
103
0.554544
import os import json import torch import numpy as np from torch.utils import data from PIL import Image from ptsemseg.utils import recursive_glob from ptsemseg.augmentations import Compose, RandomHorizontallyFlip, RandomRotate class mapillaryVistasLoader(data.Dataset): def __init__( self, root, split="training", img_size=(1025, 2049), is_transform=True, augmentations=None, test_mode=False, ): self.root = root self.split = split self.is_transform = is_transform self.augmentations = augmentations self.n_classes = 9 self.img_size = img_size if isinstance(img_size, tuple) else (img_size, img_size) self.mean = np.array([80.5423, 91.3162, 81.4312]) self.files = {} if not test_mode: self.images_base = os.path.join(self.root, self.split, "images") self.annotations_base = os.path.join(self.root, self.split, "labels") self.files[split] = recursive_glob(rootdir=self.images_base, suffix=".jpg") if not self.files[split]: raise Exception("No files for split=[%s] found in %s" % (split, self.images_base)) print("Found %d %s images" % (len(self.files[split]), split)) self.class_names, self.class_ids, self.class_colors, self.class_major_ids = self.parse_config() self.ignore_id = 250 def parse_config(self): with open(os.path.join(self.root, "config.json")) as config_file: config = json.load(config_file) labels = config["labels"] class_names = [] class_ids = [] class_colors = [] class_major_ids = [] for label_id, label in enumerate(labels): class_names.append(label["readable"]) class_ids.append(label_id) class_colors.append(label["color"]) class_major_ids.append(label['majorclass']) print("There are {} labels in the config file".format(len(set(class_major_ids)))) return class_names, class_ids, class_colors, class_major_ids def __len__(self): return len(self.files[self.split]) def __getitem__(self, index): img_path = self.files[self.split][index].rstrip() lbl_path = os.path.join( self.annotations_base, os.path.basename(img_path).replace(".jpg", ".png") ) img = Image.open(img_path) lbl = Image.open(lbl_path) if self.augmentations is not None: img, lbl = self.augmentations(img, lbl) if self.is_transform: img, lbl = self.transform(img, lbl) return img, lbl def transform(self, img, lbl): if self.img_size == ("same", "same"): pass else: img = img.resize( (self.img_size[1], self.img_size[0]), resample=Image.LANCZOS ) lbl = lbl.resize((self.img_size[1], self.img_size[0])) img = np.array(img).astype(np.float64) / 255.0 img = torch.from_numpy(img.transpose(2, 0, 1)).float() lbl = torch.from_numpy(np.array(lbl)).long() lbl[lbl == self.ignore_id] = 65 lbl = self.encode_segmap(lbl) lbl[lbl == 0] = self.ignore_id return img, lbl def decode_segmap(self, temp): class_major_colors = [[0, 0, 0], [70, 70, 70], [180, 165, 180], [128, 64, 64], [220, 20, 60], [255, 255, 255], [70, 130, 180], [250, 170, 30], [0, 0, 142]] r = temp.copy() g = temp.copy() b = temp.copy() for l in range(0, len(class_major_colors)): r[temp == l] = class_major_colors[l][0] g[temp == l] = class_major_colors[l][1] b[temp == l] = class_major_colors[l][2] rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) rgb[:, :, 0] = r rgb[:, :, 1] = g rgb[:, :, 2] = b return rgb def encode_segmap(self, mask): for id in self.class_ids: mask[mask == id] = self.class_major_ids[id]+100 mask = mask - 100 return mask if __name__ == "__main__": augment = Compose([RandomHorizontallyFlip(0.5), RandomRotate(6)]) local_path = "/home/lin/Documents/dataset/mapillary" dst = mapillaryVistasLoader( local_path, split='validation', img_size=(512, 1024), is_transform=True, augmentations=None ) bs = 1 trainloader = data.DataLoader(dst, batch_size=bs, num_workers=4, shuffle=True) for i, data_samples in enumerate(trainloader): x = dst.decode_segmap(data_samples[1][0].numpy()) x = Image.fromarray(np.uint8(x)) x.show()
true
true
f712cde8cb3f42ff94400d66337b26560b041a31
1,728
py
Python
02_Arrays/max_non_negative_subArray.py
Sheetal0601/InterviewBit
72ba1507278dafac6e5fb81da20d372e3d141348
[ "MIT" ]
61
2018-02-18T08:16:31.000Z
2022-02-17T17:18:57.000Z
02_Arrays/max_non_negative_subArray.py
Sheetal0601/InterviewBit
72ba1507278dafac6e5fb81da20d372e3d141348
[ "MIT" ]
1
2018-02-23T20:06:18.000Z
2019-12-29T18:52:20.000Z
02_Arrays/max_non_negative_subArray.py
Sheetal0601/InterviewBit
72ba1507278dafac6e5fb81da20d372e3d141348
[ "MIT" ]
30
2018-03-28T19:02:23.000Z
2021-07-06T20:00:14.000Z
# Max Non Negative SubArray # https://www.interviewbit.com/problems/max-non-negative-subarray/ # # Find out the maximum sub-array of non negative numbers from an array. # The sub-array should be continuous. That is, a sub-array created by choosing # the second and fourth element and skipping the third element is invalid. # # Maximum sub-array is defined in terms of the sum of the elements in the sub-array. # Sub-array A is greater than sub-array B if sum(A) > sum(B). # # Example: # # A : [1, 2, 5, -7, 2, 3] # The two sub-arrays are [1, 2, 5] [2, 3]. # The answer is [1, 2, 5] as its sum is larger than [2, 3] # # NOTE: If there is a tie, then compare with segment's length and return segment which has maximum length # NOTE 2: If there is still a tie, then return the segment with minimum starting index # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # class Solution: # @param A : list of integers # @return a list of integers def maxset(self, A): max_sum = max_left = max_right = -1 tmp_sum = left = 0 for i, elem in enumerate(A): if elem >= 0: tmp_sum += elem else: if tmp_sum > max_sum: max_sum, max_left, max_right = tmp_sum, left, i tmp_sum = 0 left = i + 1 else: if tmp_sum > max_sum: max_left, max_right = left, len(A) return [] if max_left == max_right == -1 else A[max_left: max_right] # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if __name__ == "__main__": s = Solution() print(s.maxset([0, 0, -1, 0]))
36.765957
105
0.538194
# NOTE 2: If there is still a tie, then return the segment with minimum starting index # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # class Solution: # @param A : list of integers # @return a list of integers def maxset(self, A): max_sum = max_left = max_right = -1 tmp_sum = left = 0 for i, elem in enumerate(A): if elem >= 0: tmp_sum += elem else: if tmp_sum > max_sum: max_sum, max_left, max_right = tmp_sum, left, i tmp_sum = 0 left = i + 1 else: if tmp_sum > max_sum: max_left, max_right = left, len(A) return [] if max_left == max_right == -1 else A[max_left: max_right] # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # if __name__ == "__main__": s = Solution() print(s.maxset([0, 0, -1, 0]))
true
true
f712ce0b1470383ff19a2fba7bee20d030c85cf0
454
py
Python
models/dist_phold/experiment.py
MISTCARRYYOU/PythonPDEVS
53cad29832b3c489ab037bdc487affcbf1e3f408
[ "Apache-2.0" ]
1
2018-09-19T14:42:28.000Z
2018-09-19T14:42:28.000Z
models/dist_phold/experiment.py
MISTCARRYYOU/PythonPDEVS
53cad29832b3c489ab037bdc487affcbf1e3f408
[ "Apache-2.0" ]
null
null
null
models/dist_phold/experiment.py
MISTCARRYYOU/PythonPDEVS
53cad29832b3c489ab037bdc487affcbf1e3f408
[ "Apache-2.0" ]
1
2021-01-14T12:21:35.000Z
2021-01-14T12:21:35.000Z
import model import logging import sys sys.path.append('../../src/') from simulator import Simulator sys.setrecursionlimit(50000) model = model.AutoDistPHOLD(int(sys.argv[1]), int(sys.argv[2]), int(sys.argv[3])) sim = Simulator(model) #sim.setVerbose(None) sim.setTerminationTime(200) sim.setMessageCopy('custom') sim.setStateSaving("custom") sim.setMemoization(True) sim.setGVTInterval(5) #sim.setGVTInterval(30) #sim.setShowProgress() sim.simulate()
22.7
81
0.768722
import model import logging import sys sys.path.append('../../src/') from simulator import Simulator sys.setrecursionlimit(50000) model = model.AutoDistPHOLD(int(sys.argv[1]), int(sys.argv[2]), int(sys.argv[3])) sim = Simulator(model) sim.setTerminationTime(200) sim.setMessageCopy('custom') sim.setStateSaving("custom") sim.setMemoization(True) sim.setGVTInterval(5) sim.simulate()
true
true
f712ce2546498b7793961eedc7b6a1340fa62324
340
py
Python
persons/api_urls.py
mbaragiola/heimdallerp
8d32131a20bd0f3609d772ac437f4f24622abfc7
[ "0BSD" ]
8
2016-04-07T11:58:42.000Z
2019-06-24T01:38:12.000Z
persons/api_urls.py
mbaragiola/heimdallerp
8d32131a20bd0f3609d772ac437f4f24622abfc7
[ "0BSD" ]
null
null
null
persons/api_urls.py
mbaragiola/heimdallerp
8d32131a20bd0f3609d772ac437f4f24622abfc7
[ "0BSD" ]
null
null
null
from django.conf.urls import include, url from persons import views from rest_framework.routers import DefaultRouter router = DefaultRouter() router.register(r'physicaladdresses', views.PhysicalAddressViewSet) router.register(r'companies', views.CompanyViewSet) app_name = 'persons' urlpatterns = [ url(r'^', include(router.urls)), ]
26.153846
67
0.788235
from django.conf.urls import include, url from persons import views from rest_framework.routers import DefaultRouter router = DefaultRouter() router.register(r'physicaladdresses', views.PhysicalAddressViewSet) router.register(r'companies', views.CompanyViewSet) app_name = 'persons' urlpatterns = [ url(r'^', include(router.urls)), ]
true
true
f712ce60e828ba1f2912f4462a14e369e218292b
1,692
py
Python
tests/jenkins/python/install_conda.py
E3SM-Project/acme_processflow
84110cab08f7897d1489a6dc925258580a5d2bff
[ "MIT" ]
3
2019-02-06T23:46:36.000Z
2022-02-28T01:39:26.000Z
tests/jenkins/python/install_conda.py
E3SM-Project/acme_processflow
84110cab08f7897d1489a6dc925258580a5d2bff
[ "MIT" ]
62
2017-09-15T00:14:53.000Z
2018-03-23T22:07:12.000Z
tests/jenkins/python/install_conda.py
E3SM-Project/acme_processflow
84110cab08f7897d1489a6dc925258580a5d2bff
[ "MIT" ]
4
2018-07-26T16:07:07.000Z
2021-06-02T12:01:48.000Z
import argparse import os import sys from Util import SUCCESS, FAILURE from Util import run_cmd parser = argparse.ArgumentParser(description="install conda", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-w", "--workdir", help="working directory -- miniconda will be installed in a subdirectory under this directory") args = parser.parse_args() workdir = args.workdir # create a unique dir if os.path.isdir(workdir): print("Work directory {} already exists".format(workdir)) conda_bin = os.path.join(workdir, 'miniconda', 'bin') if os.path.isdir(conda_bin): print('Miniconda seems to be already installed') sys.exit(FAILURE) else: os.makedirs(workdir) # get miniconda source_url = 'https://repo.continuum.io/miniconda/Miniconda2-4.3.31-Linux-x86_64.sh' conda_script = os.path.join(workdir, 'miniconda2.sh') cmd = "wget --no-check {url} -O {the_script}".format( url=source_url, the_script=conda_script) ret_code = run_cmd(cmd, True, False, True) if ret_code != SUCCESS: sys.exit(FAILURE) # install miniconda conda_path = os.path.join(workdir, 'miniconda2') cmd = "bash {conda_script} -b -p {conda_path}".format( conda_script=conda_script, conda_path=conda_path) ret_code = run_cmd(cmd, True, False, True) if ret_code != SUCCESS: sys.exit(FAILURE) # check conda command conda_cmd = os.path.join(conda_path, 'bin', 'conda') cmd = "ls -l {conda_cmd}".format(conda_cmd=conda_cmd) ret_code = run_cmd(cmd, True, False, True) if ret_code == SUCCESS: print("\nMiniconda is successfully installed under~: {}".format(workdir)) sys.exit(ret_code)
29.172414
115
0.706856
import argparse import os import sys from Util import SUCCESS, FAILURE from Util import run_cmd parser = argparse.ArgumentParser(description="install conda", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-w", "--workdir", help="working directory -- miniconda will be installed in a subdirectory under this directory") args = parser.parse_args() workdir = args.workdir if os.path.isdir(workdir): print("Work directory {} already exists".format(workdir)) conda_bin = os.path.join(workdir, 'miniconda', 'bin') if os.path.isdir(conda_bin): print('Miniconda seems to be already installed') sys.exit(FAILURE) else: os.makedirs(workdir) source_url = 'https://repo.continuum.io/miniconda/Miniconda2-4.3.31-Linux-x86_64.sh' conda_script = os.path.join(workdir, 'miniconda2.sh') cmd = "wget --no-check {url} -O {the_script}".format( url=source_url, the_script=conda_script) ret_code = run_cmd(cmd, True, False, True) if ret_code != SUCCESS: sys.exit(FAILURE) conda_path = os.path.join(workdir, 'miniconda2') cmd = "bash {conda_script} -b -p {conda_path}".format( conda_script=conda_script, conda_path=conda_path) ret_code = run_cmd(cmd, True, False, True) if ret_code != SUCCESS: sys.exit(FAILURE) conda_cmd = os.path.join(conda_path, 'bin', 'conda') cmd = "ls -l {conda_cmd}".format(conda_cmd=conda_cmd) ret_code = run_cmd(cmd, True, False, True) if ret_code == SUCCESS: print("\nMiniconda is successfully installed under~: {}".format(workdir)) sys.exit(ret_code)
true
true
f712cf680f5b3fed52d193239019e11f40f5a36d
854
py
Python
threads/simple_threads.py
bchekuri/python101
b025bb52c56ee69647310a6f883c88f80697a2d0
[ "MIT" ]
null
null
null
threads/simple_threads.py
bchekuri/python101
b025bb52c56ee69647310a6f883c88f80697a2d0
[ "MIT" ]
null
null
null
threads/simple_threads.py
bchekuri/python101
b025bb52c56ee69647310a6f883c88f80697a2d0
[ "MIT" ]
null
null
null
# Simple Threads Pool from multiprocessing.dummy import Pool as ThreadPool from datetime import date from datetime import datetime import time multiply_results = [] def squareNumber(n): multiply_results.append(n ** 2) dt_string = datetime.now().strftime("%H:%M:%S") millis = int(round(time.time() * 1000)) print("Each Thread Time - %d" % millis) time.sleep(n) return n ** 2 # function to be mapped over def calculateParallel(numbers, threads=10): pool = ThreadPool(threads) results = pool.map(squareNumber, numbers) pool.close() #pool.join() return results if __name__ == "__main__": numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] squaredNumbers = calculateParallel(numbers, 15) for n in multiply_results: print(n) print("Results Length - %d" % len(multiply_results))
28.466667
65
0.669789
from multiprocessing.dummy import Pool as ThreadPool from datetime import date from datetime import datetime import time multiply_results = [] def squareNumber(n): multiply_results.append(n ** 2) dt_string = datetime.now().strftime("%H:%M:%S") millis = int(round(time.time() * 1000)) print("Each Thread Time - %d" % millis) time.sleep(n) return n ** 2 def calculateParallel(numbers, threads=10): pool = ThreadPool(threads) results = pool.map(squareNumber, numbers) pool.close() return results if __name__ == "__main__": numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] squaredNumbers = calculateParallel(numbers, 15) for n in multiply_results: print(n) print("Results Length - %d" % len(multiply_results))
true
true
f712d08b33b9d9be7a030ff73142cdebe8d78a2d
176
py
Python
Code Bundle/Chapter03/tests/test_slow.py
ghanigreen/pytest_code
dbdcc322b3469c62ad328043060518edf2b2d83f
[ "MIT" ]
46
2018-06-28T04:40:08.000Z
2022-02-14T05:36:48.000Z
Code Bundle/Chapter03/tests/test_slow.py
ghanigreen/pytest_code
dbdcc322b3469c62ad328043060518edf2b2d83f
[ "MIT" ]
null
null
null
Code Bundle/Chapter03/tests/test_slow.py
ghanigreen/pytest_code
dbdcc322b3469c62ad328043060518edf2b2d83f
[ "MIT" ]
22
2018-06-10T23:20:29.000Z
2022-02-24T06:47:18.000Z
import pytest @pytest.mark.slow def test_long_computation(): ... @pytest.mark.timeout(10, method="thread") def test_topology_sort(): ... def test_foo(): pass
11
41
0.664773
import pytest @pytest.mark.slow def test_long_computation(): ... @pytest.mark.timeout(10, method="thread") def test_topology_sort(): ... def test_foo(): pass
true
true
f712d258066fe75e06fb27363746e555f80b0561
13,566
py
Python
trainer/trainer.py
vinay-swamy/gMVP
62202baa0769dfe0e47c230e78dffa42fb1280f1
[ "MIT" ]
2
2021-04-24T03:23:40.000Z
2021-06-28T11:51:10.000Z
trainer/trainer.py
vinay-swamy/gMVP
62202baa0769dfe0e47c230e78dffa42fb1280f1
[ "MIT" ]
null
null
null
trainer/trainer.py
vinay-swamy/gMVP
62202baa0769dfe0e47c230e78dffa42fb1280f1
[ "MIT" ]
2
2021-09-14T13:03:38.000Z
2022-03-23T02:49:19.000Z
import time import json import argparse import os import sys import logging import shutil from datetime import datetime import glob import random from scipy.stats import mannwhitneyu from scipy.stats import spearmanr import numpy as np from sklearn.metrics import roc_auc_score, precision_recall_curve, auc import tensorflow as tf import tensorflow_addons as tfa #from optimization import create_optimizer from model_attention import ModelAttention from dataset import build_dataset from loss import compute_loss os.environ['CUDA_VISIBLE_DEVICES'] = '0' tf.config.threading.set_intra_op_parallelism_threads(60) tf.config.threading.set_inter_op_parallelism_threads(60) logger = logging.getLogger() logger.setLevel(logging.DEBUG) logging_formatter = logging.Formatter( '%(asctime)s - %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') ch = logging.StreamHandler(sys.stdout) ch.setFormatter(logging_formatter) logger.addHandler(ch) class LearningRate(tf.keras.optimizers.schedules.LearningRateSchedule): def __init__(self, base_lr, end_learning_rate, warmup_steps, decay_steps): super(LearningRate, self).__init__() self.base_lr = base_lr self.warmup_steps = warmup_steps self.decay_steps = decay_steps if decay_steps == 0: self.poly_decay_fn = lambda x: self.base_lr else: self.poly_decay_fn = tf.keras.optimizers.schedules.PolynomialDecay( base_lr, decay_steps, end_learning_rate=end_learning_rate, power=1.0) def __call__(self, step): lr = tf.cond( step < self.warmup_steps, lambda: self.base_lr * tf.cast( step + 1, tf.float32) / tf.cast(self.warmup_steps, tf.float32), lambda: self.poly_decay_fn(step - self.warmup_steps)) #if step % 100 == 0: # tf.print('learning_rate', step, lr) return lr class TestMetric(object): def __init__(self): self._targets = tf.zeros((0, ), tf.int32) self._preds = tf.zeros((0, ), tf.float32) def reset_states(self): self._targets = tf.zeros((0, ), tf.int32) self._preds = tf.zeros((0, ), tf.float32) def update_state(self, targets, preds): self._targets = tf.concat( [self._targets, tf.cast(targets, tf.int32)], axis=-1) self._preds = tf.concat( [self._preds, tf.cast(preds, tf.float32)], axis=-1) def result_auROC(self): try: auROC = roc_auc_score(self._targets.numpy(), self._preds.numpy()) return auROC except: return 0.0 def result_auPR(self): try: precision, recall, _ = precision_recall_curve( self._targets.numpy(), self._preds.numpy()) auPR = auc(recall, precision) return auPR except: return 0.0 def result_pvalue(self): all_pred = self._preds.numpy() all_label = self._targets.numpy() mtest = mannwhitneyu(all_pred[all_label == 1], all_pred[all_label == 0], alternative='two-sided') pvalue = mtest.pvalue return pvalue def result_total(self): res = self._targets.numpy() return res.shape[0] def result_neg(self): res = self._targets.numpy() return res.shape[0] - np.sum(res) def result_pos(self): res = self._targets.numpy() return np.sum(res) def result_corr(self): try: all_pred = self._preds.numpy() all_label = self._targets.numpy() corr, pvalue = spearmanr(all_pred, all_label) return corr, pvalue except: return 0.0 def result_max(self): try: all_pred = self._preds.numpy() return np.max(all_pred) except: return 0.0 def train_single_gpu(config, args): #setup logger str_t = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') train_dir = f'./res/{str_t}' config['train']['train_dir'] = train_dir os.makedirs(train_dir) os.makedirs(train_dir + '/result') os.makedirs(train_dir + '/model') fh = logging.FileHandler(f'{train_dir}/train.log') fh.setFormatter(logging_formatter) logger.addHandler(fh) logger.info(json.dumps(config, indent=4)) #train and validate files batch_size = config['train']['batch_size'] input_config = config['input'] input_base_dir = input_config['base_dir'] all_files = glob.glob(input_base_dir + '/' + input_config['train'][:-1] + args.random + '*tfrec') #all_files = glob.glob('../dataset/tf/f_v1_w64_2021_v2' + '/' + # input_config['train'][:-1] + args.random + '*tfrec') random.seed(2020) random.shuffle(all_files) train_files, validate_files = [], [] for i in range(10): if i == args.cv: validate_files.append(all_files[i]) else: train_files.append(all_files[i]) print(train_files) print(validate_files) asd = glob.glob(input_base_dir + '/' + 'ASD' + '.tfrec') ndd = glob.glob(input_base_dir + '/' + 'NDD' + '.tfrec') control = glob.glob(input_base_dir + '/' + 'Control' + '.tfrec') brca2 = glob.glob(input_base_dir + '/' + 'BRCA2' + '.tfrec') pparg = glob.glob(input_base_dir + '/' + 'PPARG' + '.tfrec') #train_files += pparg train_dataset = build_dataset(train_files, batch_size) validate_dataset = build_dataset(validate_files, batch_size) #model model_type = config['train']['model_type'] if model_type == 'attention': model = ModelAttention(config['model']) else: raise ValueError(f'model type {model_type} does not exist.') #learning rate init_learning_rate = config['train']['learning_rate'] end_learning_rate = config['train']['end_learning_rate'] ''' warmup_epochs = config['train']['warmup_epochs'] decay_epochs = config['train']['decay_epochs'] training_samples = 0 for inputs in train_dataset: training_samples += inputs[0].shape[0] logger.info(f'training_samples= {training_samples}') batches_each_epoch = int(training_samples / batch_size) warmup_steps = batches_each_epoch * warmup_epochs decay_steps = batches_each_epoch * decay_epochs ''' warmup_steps, decay_steps = config['train']['warmup_steps'], config[ 'train']['decay_steps'] learning_rate = LearningRate(init_learning_rate, end_learning_rate=end_learning_rate, warmup_steps=warmup_steps, decay_steps=decay_steps) #training algorithm opt = config['train'].get('opt', 'adam') if opt == 'adam': optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) #optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3) elif opt == 'adamw': weight_decay_rate = config['train']['weight_decay_rate'] optimizer = tfa.optimizers.AdamW( weight_decay=weight_decay_rate, learning_rate=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-8, ) ''' optimizer = create_optimizer(init_learning_rate, decay_steps + warmup_steps, warmup_steps, end_lr=end_learning_rate, optimizer_type='adamw') ''' else: raise NotImplementedError(f"opt {opt} not NotImplementedError") #metrics metric_train_loss = tf.keras.metrics.Mean(name='train_loss') metric_test_loss = tf.keras.metrics.Mean(name='test_loss') metric_test = TestMetric() #summary train_log_dir = f'{train_dir}/summary/train' train_summary_writer = tf.summary.create_file_writer(train_log_dir) def _update_histogram_summary(): with train_summary_writer.as_default(): for var in model.trainable_variables: if 'kernel:' in var.name or 'gamma:' in var.name or 'beta:' in var.name: tf.summary.histogram(var.name, var, step=optimizer.iterations) def _update_gradient_norm_summary(var, grad): with train_summary_writer.as_default(): for v, g in zip(var, grad): if 'kernel:' in v.name or 'gamma:' in v.name or 'beta:' in v.name: tf.summary.scalar(f'gradient_norm/{v.name}', tf.norm(g, ord='euclidean'), step=optimizer.iterations) @tf.function(input_signature=[validate_dataset.element_spec]) def test_step(sample): var, ref_aa, alt_aa, feature, label, padding_mask = sample logit = model((ref_aa, alt_aa, feature), False, padding_mask) loss = compute_loss(label, logit) pred = model.predict_from_logit(logit) return var, label, pred, loss def _save_res(var_id, target, pred, name, epoch): with open(f'{train_dir}/result/epoch_{epoch}_{name}.score', 'w') as f: f.write('var\ttarget\tScore\n') for a, c, d in zip(var_id, target, pred): f.write('{}\t{:d}\t{:f}\n'.format(a.numpy().decode('utf-8'), int(c), d)) return True def test(test_dataset, data_name, epoch, auc=False, pvalue=False, corr=False): metric_test_loss.reset_states() metric_test.reset_states() all_pred, all_label, all_var = [], [], [] for step, sample in enumerate(test_dataset): var, label, pred, loss = test_step(sample) metric_test.update_state(label, pred) metric_test_loss.update_state(loss) all_pred.extend(list(pred)) all_label.extend(list(label)) all_var.extend(list(var)) all_var = np.array(all_var) all_label = np.array(all_label) all_pred = np.array(all_pred) _save_res(all_var, all_label, all_pred, data_name, epoch) if auc: logger.info( f'{data_name} pos= {metric_test.result_pos()} neg= {metric_test.result_neg()} loss= {metric_test_loss.result()} auPR= {metric_test.result_auPR()} auROC= {metric_test.result_auROC()} max= {metric_test.result_max()}' ) if pvalue: logger.info( f'{data_name} pos= {metric_test.result_pos()} neg= {metric_test.result_neg()} loss= {metric_test_loss.result()} pvalue= {metric_test.result_pvalue()}' ) if corr: corr, pvalue = metric_test.result_corr() logger.info( f'{data_name} pos= {metric_test.result_total()} corr= {corr} pvalue= {pvalue} max= {metric_test.result_max()}' ) return metric_test_loss.result() @tf.function(input_signature=[train_dataset.element_spec]) def train_step(sample): var, ref_aa, alt_aa, feature, label, padding_mask = sample with tf.GradientTape() as tape: logit = model((ref_aa, alt_aa, feature), True, padding_mask) loss = compute_loss(label, logit) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) metric_train_loss.update_state(loss) #if optimizer.iterations % 512 == 0: # _update_gradient_norm_summary(model.trainable_variables, gradients) return loss EPOCHS = 512 watch_loss = 10000.0 watch_epoch = -1 patience_epochs = 5 for epoch in range(EPOCHS): start = time.time() for step, samples in enumerate(train_dataset): loss = train_step(samples) #tf.print( # f'lr= {learning_rate(global_step)} wd={weight_decay(global_step)}' #) #model summary if optimizer.iterations == 1: model.summary(print_fn=logger.info) #logging kernel weights #if (optimizer.iterations + 1) % 512 == 0: # _update_histogram_summary() logger.info(f'Epoch {epoch} Loss {metric_train_loss.result():.4f}') metric_train_loss.reset_states() model.save_weights(f'{train_dir}/model/epoch-{epoch}.h5') #validate and test validate_loss = test(validate_dataset, 'validate', epoch, pvalue=False, auc=True, corr=False) if validate_loss < watch_loss: watch_loss = validate_loss watch_epoch = epoch #denovo if epoch - watch_epoch == patience_epochs: logger.info(f'best_epoch {watch_epoch} min_loss= {watch_loss}') break def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, required=True) parser.add_argument('--cv', type=int, default=0) parser.add_argument('--random', type=str, default='0') args = parser.parse_args() with open(args.config) as f: config = json.load(f) train_single_gpu(config, args) if __name__ == '__main__': main()
33.830424
231
0.597523
import time import json import argparse import os import sys import logging import shutil from datetime import datetime import glob import random from scipy.stats import mannwhitneyu from scipy.stats import spearmanr import numpy as np from sklearn.metrics import roc_auc_score, precision_recall_curve, auc import tensorflow as tf import tensorflow_addons as tfa from model_attention import ModelAttention from dataset import build_dataset from loss import compute_loss os.environ['CUDA_VISIBLE_DEVICES'] = '0' tf.config.threading.set_intra_op_parallelism_threads(60) tf.config.threading.set_inter_op_parallelism_threads(60) logger = logging.getLogger() logger.setLevel(logging.DEBUG) logging_formatter = logging.Formatter( '%(asctime)s - %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') ch = logging.StreamHandler(sys.stdout) ch.setFormatter(logging_formatter) logger.addHandler(ch) class LearningRate(tf.keras.optimizers.schedules.LearningRateSchedule): def __init__(self, base_lr, end_learning_rate, warmup_steps, decay_steps): super(LearningRate, self).__init__() self.base_lr = base_lr self.warmup_steps = warmup_steps self.decay_steps = decay_steps if decay_steps == 0: self.poly_decay_fn = lambda x: self.base_lr else: self.poly_decay_fn = tf.keras.optimizers.schedules.PolynomialDecay( base_lr, decay_steps, end_learning_rate=end_learning_rate, power=1.0) def __call__(self, step): lr = tf.cond( step < self.warmup_steps, lambda: self.base_lr * tf.cast( step + 1, tf.float32) / tf.cast(self.warmup_steps, tf.float32), lambda: self.poly_decay_fn(step - self.warmup_steps)) return lr class TestMetric(object): def __init__(self): self._targets = tf.zeros((0, ), tf.int32) self._preds = tf.zeros((0, ), tf.float32) def reset_states(self): self._targets = tf.zeros((0, ), tf.int32) self._preds = tf.zeros((0, ), tf.float32) def update_state(self, targets, preds): self._targets = tf.concat( [self._targets, tf.cast(targets, tf.int32)], axis=-1) self._preds = tf.concat( [self._preds, tf.cast(preds, tf.float32)], axis=-1) def result_auROC(self): try: auROC = roc_auc_score(self._targets.numpy(), self._preds.numpy()) return auROC except: return 0.0 def result_auPR(self): try: precision, recall, _ = precision_recall_curve( self._targets.numpy(), self._preds.numpy()) auPR = auc(recall, precision) return auPR except: return 0.0 def result_pvalue(self): all_pred = self._preds.numpy() all_label = self._targets.numpy() mtest = mannwhitneyu(all_pred[all_label == 1], all_pred[all_label == 0], alternative='two-sided') pvalue = mtest.pvalue return pvalue def result_total(self): res = self._targets.numpy() return res.shape[0] def result_neg(self): res = self._targets.numpy() return res.shape[0] - np.sum(res) def result_pos(self): res = self._targets.numpy() return np.sum(res) def result_corr(self): try: all_pred = self._preds.numpy() all_label = self._targets.numpy() corr, pvalue = spearmanr(all_pred, all_label) return corr, pvalue except: return 0.0 def result_max(self): try: all_pred = self._preds.numpy() return np.max(all_pred) except: return 0.0 def train_single_gpu(config, args): str_t = datetime.now().strftime('%Y-%m-%d-%H-%M-%S') train_dir = f'./res/{str_t}' config['train']['train_dir'] = train_dir os.makedirs(train_dir) os.makedirs(train_dir + '/result') os.makedirs(train_dir + '/model') fh = logging.FileHandler(f'{train_dir}/train.log') fh.setFormatter(logging_formatter) logger.addHandler(fh) logger.info(json.dumps(config, indent=4)) batch_size = config['train']['batch_size'] input_config = config['input'] input_base_dir = input_config['base_dir'] all_files = glob.glob(input_base_dir + '/' + input_config['train'][:-1] + args.random + '*tfrec') random.seed(2020) random.shuffle(all_files) train_files, validate_files = [], [] for i in range(10): if i == args.cv: validate_files.append(all_files[i]) else: train_files.append(all_files[i]) print(train_files) print(validate_files) asd = glob.glob(input_base_dir + '/' + 'ASD' + '.tfrec') ndd = glob.glob(input_base_dir + '/' + 'NDD' + '.tfrec') control = glob.glob(input_base_dir + '/' + 'Control' + '.tfrec') brca2 = glob.glob(input_base_dir + '/' + 'BRCA2' + '.tfrec') pparg = glob.glob(input_base_dir + '/' + 'PPARG' + '.tfrec') train_dataset = build_dataset(train_files, batch_size) validate_dataset = build_dataset(validate_files, batch_size) model_type = config['train']['model_type'] if model_type == 'attention': model = ModelAttention(config['model']) else: raise ValueError(f'model type {model_type} does not exist.') init_learning_rate = config['train']['learning_rate'] end_learning_rate = config['train']['end_learning_rate'] warmup_steps, decay_steps = config['train']['warmup_steps'], config[ 'train']['decay_steps'] learning_rate = LearningRate(init_learning_rate, end_learning_rate=end_learning_rate, warmup_steps=warmup_steps, decay_steps=decay_steps) opt = config['train'].get('opt', 'adam') if opt == 'adam': optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) elif opt == 'adamw': weight_decay_rate = config['train']['weight_decay_rate'] optimizer = tfa.optimizers.AdamW( weight_decay=weight_decay_rate, learning_rate=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-8, ) ''' optimizer = create_optimizer(init_learning_rate, decay_steps + warmup_steps, warmup_steps, end_lr=end_learning_rate, optimizer_type='adamw') ''' else: raise NotImplementedError(f"opt {opt} not NotImplementedError") metric_train_loss = tf.keras.metrics.Mean(name='train_loss') metric_test_loss = tf.keras.metrics.Mean(name='test_loss') metric_test = TestMetric() train_log_dir = f'{train_dir}/summary/train' train_summary_writer = tf.summary.create_file_writer(train_log_dir) def _update_histogram_summary(): with train_summary_writer.as_default(): for var in model.trainable_variables: if 'kernel:' in var.name or 'gamma:' in var.name or 'beta:' in var.name: tf.summary.histogram(var.name, var, step=optimizer.iterations) def _update_gradient_norm_summary(var, grad): with train_summary_writer.as_default(): for v, g in zip(var, grad): if 'kernel:' in v.name or 'gamma:' in v.name or 'beta:' in v.name: tf.summary.scalar(f'gradient_norm/{v.name}', tf.norm(g, ord='euclidean'), step=optimizer.iterations) @tf.function(input_signature=[validate_dataset.element_spec]) def test_step(sample): var, ref_aa, alt_aa, feature, label, padding_mask = sample logit = model((ref_aa, alt_aa, feature), False, padding_mask) loss = compute_loss(label, logit) pred = model.predict_from_logit(logit) return var, label, pred, loss def _save_res(var_id, target, pred, name, epoch): with open(f'{train_dir}/result/epoch_{epoch}_{name}.score', 'w') as f: f.write('var\ttarget\tScore\n') for a, c, d in zip(var_id, target, pred): f.write('{}\t{:d}\t{:f}\n'.format(a.numpy().decode('utf-8'), int(c), d)) return True def test(test_dataset, data_name, epoch, auc=False, pvalue=False, corr=False): metric_test_loss.reset_states() metric_test.reset_states() all_pred, all_label, all_var = [], [], [] for step, sample in enumerate(test_dataset): var, label, pred, loss = test_step(sample) metric_test.update_state(label, pred) metric_test_loss.update_state(loss) all_pred.extend(list(pred)) all_label.extend(list(label)) all_var.extend(list(var)) all_var = np.array(all_var) all_label = np.array(all_label) all_pred = np.array(all_pred) _save_res(all_var, all_label, all_pred, data_name, epoch) if auc: logger.info( f'{data_name} pos= {metric_test.result_pos()} neg= {metric_test.result_neg()} loss= {metric_test_loss.result()} auPR= {metric_test.result_auPR()} auROC= {metric_test.result_auROC()} max= {metric_test.result_max()}' ) if pvalue: logger.info( f'{data_name} pos= {metric_test.result_pos()} neg= {metric_test.result_neg()} loss= {metric_test_loss.result()} pvalue= {metric_test.result_pvalue()}' ) if corr: corr, pvalue = metric_test.result_corr() logger.info( f'{data_name} pos= {metric_test.result_total()} corr= {corr} pvalue= {pvalue} max= {metric_test.result_max()}' ) return metric_test_loss.result() @tf.function(input_signature=[train_dataset.element_spec]) def train_step(sample): var, ref_aa, alt_aa, feature, label, padding_mask = sample with tf.GradientTape() as tape: logit = model((ref_aa, alt_aa, feature), True, padding_mask) loss = compute_loss(label, logit) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) metric_train_loss.update_state(loss) return loss EPOCHS = 512 watch_loss = 10000.0 watch_epoch = -1 patience_epochs = 5 for epoch in range(EPOCHS): start = time.time() for step, samples in enumerate(train_dataset): loss = train_step(samples) if optimizer.iterations == 1: model.summary(print_fn=logger.info) logger.info(f'Epoch {epoch} Loss {metric_train_loss.result():.4f}') metric_train_loss.reset_states() model.save_weights(f'{train_dir}/model/epoch-{epoch}.h5') validate_loss = test(validate_dataset, 'validate', epoch, pvalue=False, auc=True, corr=False) if validate_loss < watch_loss: watch_loss = validate_loss watch_epoch = epoch if epoch - watch_epoch == patience_epochs: logger.info(f'best_epoch {watch_epoch} min_loss= {watch_loss}') break def main(): parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, required=True) parser.add_argument('--cv', type=int, default=0) parser.add_argument('--random', type=str, default='0') args = parser.parse_args() with open(args.config) as f: config = json.load(f) train_single_gpu(config, args) if __name__ == '__main__': main()
true
true
f712d3de3c53306b7e8cbd2a8d7569448d1f0fa1
150
py
Python
mne/io/edf/__init__.py
dgwakeman/mne-python
3cc7a3f8456d78c828355f1860dd7e0297e59c73
[ "BSD-3-Clause" ]
4
2017-10-25T18:42:30.000Z
2019-06-15T06:48:10.000Z
mne/io/edf/__init__.py
alexandrebarachant/mne-python
b54e38c9bbac38c6f53747075b5bad2936fbc5b9
[ "BSD-3-Clause" ]
4
2015-04-20T16:10:47.000Z
2016-11-01T13:32:48.000Z
mne/io/edf/__init__.py
alexandrebarachant/mne-python
b54e38c9bbac38c6f53747075b5bad2936fbc5b9
[ "BSD-3-Clause" ]
2
2018-04-02T06:45:11.000Z
2018-07-16T23:39:02.000Z
"""EDF+,BDF module for conversion to FIF""" # Author: Teon Brooks <teon.brooks@gmail.com> # # License: BSD (3-clause) from .edf import read_raw_edf
18.75
45
0.706667
from .edf import read_raw_edf
true
true
f712d4a70a34e71d9b6b998c3bb2d73d7e9cf24b
2,349
py
Python
minimax/algorithm.py
ARBII-xD/Checkers-Using-Minimax-Algorithm
f687757dca7689b4838a0d210abf6b255b1ab15a
[ "MIT" ]
null
null
null
minimax/algorithm.py
ARBII-xD/Checkers-Using-Minimax-Algorithm
f687757dca7689b4838a0d210abf6b255b1ab15a
[ "MIT" ]
null
null
null
minimax/algorithm.py
ARBII-xD/Checkers-Using-Minimax-Algorithm
f687757dca7689b4838a0d210abf6b255b1ab15a
[ "MIT" ]
null
null
null
from copy import deepcopy import pygame RED = (0,100,100) WHITE = (255, 255, 255) def minimax(position, depth, max_player, game): if depth == 0 or position.winner() != None: #maximum depth reach or someone has won, returning position along with evaluating the position return position.evaluate(), position #position where we move to if max_player: #maximizing player.. maxEval = float('-inf') best_move = None for move in get_all_moves(position, WHITE, game): evaluation = minimax(move, depth-1, False, game)[0] #recursive call to minimax algo maxEval = max(maxEval, evaluation) if maxEval == evaluation: best_move = move return maxEval, best_move else: minEval = float('inf') #minimizing the player best_move = None for move in get_all_moves(position, RED, game): evaluation = minimax(move, depth-1, True, game)[0] #recursive call to minimax algo minEval = min(minEval, evaluation) if minEval == evaluation: best_move = move return minEval, best_move def simulate_move(piece, move, board, game, skip): board.move(piece, move[0], move[1]) if skip: board.remove(skip) return board def get_all_moves(board, color, game): moves = [] for piece in board.get_all_pieces(color): valid_moves = board.get_valid_moves(piece) for move, skip in valid_moves.items(): draw_moves(game, board, piece) temp_board = deepcopy(board) #copy all of the pieces that are stored in board temp_piece = temp_board.get_piece(piece.row, piece.col) new_board = simulate_move(temp_piece, move, temp_board, game, skip) moves.append(new_board) return moves def draw_moves(game, board, piece): valid_moves = board.get_valid_moves(piece) board.draw(game.win) pygame.draw.circle(game.win, (0,255,0), (piece.x, piece.y), 50, 5) game.draw_valid_moves(valid_moves.keys()) pygame.display.update() #to simulate all possible move of all checkers before any move # pygame.time.delay(100) #just delay 1 second before AI checkers move
34.544118
146
0.616007
from copy import deepcopy import pygame RED = (0,100,100) WHITE = (255, 255, 255) def minimax(position, depth, max_player, game): if depth == 0 or position.winner() != None: return position.evaluate(), position if max_player: maxEval = float('-inf') best_move = None for move in get_all_moves(position, WHITE, game): evaluation = minimax(move, depth-1, False, game)[0] maxEval = max(maxEval, evaluation) if maxEval == evaluation: best_move = move return maxEval, best_move else: minEval = float('inf') best_move = None for move in get_all_moves(position, RED, game): evaluation = minimax(move, depth-1, True, game)[0] minEval = min(minEval, evaluation) if minEval == evaluation: best_move = move return minEval, best_move def simulate_move(piece, move, board, game, skip): board.move(piece, move[0], move[1]) if skip: board.remove(skip) return board def get_all_moves(board, color, game): moves = [] for piece in board.get_all_pieces(color): valid_moves = board.get_valid_moves(piece) for move, skip in valid_moves.items(): draw_moves(game, board, piece) temp_board = deepcopy(board) temp_piece = temp_board.get_piece(piece.row, piece.col) new_board = simulate_move(temp_piece, move, temp_board, game, skip) moves.append(new_board) return moves def draw_moves(game, board, piece): valid_moves = board.get_valid_moves(piece) board.draw(game.win) pygame.draw.circle(game.win, (0,255,0), (piece.x, piece.y), 50, 5) game.draw_valid_moves(valid_moves.keys()) pygame.display.update()
true
true
f712d5b23f3d353d51169075f17ae12ccbceea2b
785
py
Python
python/qidoc/test/test_qidoc_clean.py
PrashantKumar-sudo/qibuild
a16ce425cf25127ceff29507feeeeca37af23351
[ "BSD-3-Clause" ]
null
null
null
python/qidoc/test/test_qidoc_clean.py
PrashantKumar-sudo/qibuild
a16ce425cf25127ceff29507feeeeca37af23351
[ "BSD-3-Clause" ]
null
null
null
python/qidoc/test/test_qidoc_clean.py
PrashantKumar-sudo/qibuild
a16ce425cf25127ceff29507feeeeca37af23351
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2012-2019 SoftBank Robotics. All rights reserved. # Use of this source code is governed by a BSD-style license (see the COPYING file). """ QiBuild """ from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import os def test_simple(qidoc_action): """ Test Simple """ world_proj = qidoc_action.add_test_project("world") build_dir = os.path.join(world_proj.path, "build-doc") assert not os.path.exists(build_dir) qidoc_action("build", "world") assert os.path.exists(build_dir) qidoc_action("clean", "world") assert os.path.exists(build_dir) qidoc_action("clean", "world", "--force") assert not os.path.exists(build_dir)
32.708333
84
0.719745
from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function import os def test_simple(qidoc_action): world_proj = qidoc_action.add_test_project("world") build_dir = os.path.join(world_proj.path, "build-doc") assert not os.path.exists(build_dir) qidoc_action("build", "world") assert os.path.exists(build_dir) qidoc_action("clean", "world") assert os.path.exists(build_dir) qidoc_action("clean", "world", "--force") assert not os.path.exists(build_dir)
true
true
f712d63ef56485edfd05b220d59ea32a53d6543b
11,764
py
Python
src/oci/signer.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
249
2017-09-11T22:06:05.000Z
2022-03-04T17:09:29.000Z
src/oci/signer.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
228
2017-09-11T23:07:26.000Z
2022-03-23T10:58:50.000Z
src/oci/signer.py
Manny27nyc/oci-python-sdk
de60b04e07a99826254f7255e992f41772902df7
[ "Apache-2.0", "BSD-3-Clause" ]
224
2017-09-27T07:32:43.000Z
2022-03-25T16:55:42.000Z
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from __future__ import absolute_import import base64 import email.utils import hashlib import io import functools import os from oci._vendor import six from oci.util import record_body_position_for_rewind, rewind_body, back_up_body_calculate_stream_content_length, read_stream_for_signing from ._vendor import httpsig_cffi, requests from .exceptions import InvalidPrivateKey, MissingPrivateKeyPassphrase from cryptography.exceptions import UnsupportedAlgorithm from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import serialization import logging logger = logging.getLogger(__name__) SIGNATURE_VERSION = "1" def load_private_key_from_file(filename, pass_phrase=None): filename = os.path.expanduser(filename) with io.open(filename, mode="rb") as f: private_key_data = f.read().strip() return load_private_key(private_key_data, pass_phrase) def load_private_key(secret, pass_phrase): """Loads a private key that may use a pass_phrase. Tries to correct or diagnose common errors: - provided pass_phrase but didn't need one - provided a public key """ if isinstance(secret, six.text_type): secret = secret.encode("ascii") if isinstance(pass_phrase, six.text_type): pass_phrase = pass_phrase.encode("ascii") backend = default_backend() try: # 0) Try with pass_phrase return serialization.load_pem_private_key(secret, pass_phrase, backend=backend) except TypeError: # 1) Either: # - key has pass_phrase and one wasn't provided # - key doesn't have pass_phrase and one was provided. # # Can't fix the first, but we *can* fix the second. # This can happen if the DEFAULT profile has a pass_phrase but # another profile uses a key file without a pass_phrase. if pass_phrase is None: # 1.1) private key needed a pass_phrase and we don't have one raise MissingPrivateKeyPassphrase("The provided key requires a passphrase.") else: # 1.2) try again without pass_phrase; could be an artifact from DEFAULT return serialization.load_pem_private_key(secret, None, backend=backend) except ValueError: # 2) Try to determine what kind of failure this is. # Most likely, this is either a bad password or a public key. # If loading it as a public key fails, it's almost certainly a bad password. for loader in [ serialization.load_der_public_key, serialization.load_pem_public_key, serialization.load_ssh_public_key ]: try: loader(secret, backend=backend) except (ValueError, UnsupportedAlgorithm): # 2.1) Not a public key; try the next format pass else: # 2.2) This is a public key raise InvalidPrivateKey("Authentication requires a private key, but a public key was provided.") # 2.3) Password is probably wrong. raise InvalidPrivateKey("The provided key is not a private key, or the provided passphrase is incorrect.") def inject_missing_headers(request, sign_body, enforce_content_headers): # Inject date, host, and content-type if missing request.headers.setdefault( "date", email.utils.formatdate(usegmt=True)) request.headers.setdefault( "host", six.moves.urllib.parse.urlparse(request.url).netloc) if hasattr(request.body, "buffer") or hasattr(request.body, "read"): request.headers.setdefault("content-type", "application/octet-stream") request.headers.setdefault("content-type", "application/json") if enforce_content_headers: # Requests with a body need to send content-type, # content-length, and x-content-sha256 if "x-content-sha256" not in request.headers and sign_body: body = request.body or "" m = hashlib.sha256() # Handle String types if isinstance(body, six.string_types): body = body.encode("utf-8") request.headers.setdefault("content-length", str(len(body))) m.update(body) # Handle bytes elif isinstance(body, (bytes, bytearray)): m.update(body) # Handling signing for Files/stdin elif hasattr(body, "buffer") or hasattr(body, "read"): is_body_rewindable, original_position = record_body_position_for_rewind(body) if is_body_rewindable: content_length = read_stream_for_signing(m, body) if content_length == -1: raise IOError("Unable to read stream for signing! Please sign the stream yourself by using the custom header x-content-sha256") request.headers.setdefault("content-length", str(content_length)) is_rewind_success = rewind_body(body, original_position) if not is_rewind_success: raise IOError("Unable to rewind request body while signing!") else: logger.warning("Stream cannot be rewound, trying to backup and sign the body!") stream = back_up_body_calculate_stream_content_length(body) # Updating request body as it cannot be rewound request.body = stream.get("byte_content") m.update(stream.get("byte_content")) request.headers.setdefault("content-length", str(stream.get("content_length"))) # Update sha256 header if m: base64digest = base64.b64encode(m.digest()) base64string = base64digest.decode("utf-8") request.headers["x-content-sha256"] = base64string # HeaderSigner doesn't support private keys with passwords. # Patched since the constructor parses the key in __init__ class _PatchedHeaderSigner(httpsig_cffi.sign.HeaderSigner): HEADER_SIGNER_TEMPLATE = 'Signature algorithm="rsa-sha256",headers="{}",keyId="{}",signature="%s",version="{}"' """Internal. If you need to construct a Signer, use :class:`~.Signer` instead.""" def __init__(self, key_id, private_key, headers): # Dropped general support for the specific signing/hash the SDK uses. self.sign_algorithm = "rsa" self.hash_algorithm = "sha256" self._hash = None self._rsahash = httpsig_cffi.utils.HASHES[self.hash_algorithm] self._rsa_private = private_key self._rsa_public = self._rsa_private.public_key() self.headers = headers self.signature_template = self.HEADER_SIGNER_TEMPLATE.format(" ".join(headers), key_id, SIGNATURE_VERSION) def reset_signer(self, key_id, private_key): self._hash = None self._rsa_private = private_key self._rsa_public = self._rsa_private.public_key() self.signature_template = self.HEADER_SIGNER_TEMPLATE.format(" ".join(self.headers), key_id, SIGNATURE_VERSION) # An abstract class whose subclasses can sign requests. This contains the core logic for creating a signer and signing # requests, but does not source the required information: # # - api key # - private key # - headers # # As concrete implementations are expected to provide these and have their ways of sourcing/constructing them. class AbstractBaseSigner(requests.auth.AuthBase): def create_signers(self, api_key, private_key, generic_headers, body_headers): self._basic_signer = _PatchedHeaderSigner( key_id=api_key, private_key=private_key, headers=generic_headers) self._body_signer = _PatchedHeaderSigner( key_id=api_key, private_key=private_key, headers=generic_headers + body_headers) def validate_request(self, request): verb = request.method.lower() if verb not in ["get", "head", "delete", "put", "post", "patch"]: raise ValueError("Don't know how to sign request verb {}".format(verb)) def do_request_sign(self, request, enforce_content_headers=True): verb = request.method.lower() sign_body = verb in ["put", "post", "patch"] if sign_body and enforce_content_headers: signer = self._body_signer else: signer = self._basic_signer # The requests library sets the Transfer-Encoding header to 'chunked' if the # body is a stream with 0 length. Object storage does not currently support this option, # and the request will fail if it is not removed. This is the only hook available where we # can do this after the header is added and before the request is sent. request.headers.pop('Transfer-Encoding', None) inject_missing_headers(request, sign_body, enforce_content_headers) signed_headers = signer.sign( request.headers, host=six.moves.urllib.parse.urlparse(request.url).netloc, method=request.method, path=request.path_url) request.headers.update(signed_headers) return request def __call__(self, request, enforce_content_headers=True): self.validate_request(request) return self.do_request_sign(request, enforce_content_headers) @property def without_content_headers(self): return functools.partial(self, enforce_content_headers=False) class Signer(AbstractBaseSigner): """ A requests auth instance that can be reused across requests. This signer is intended to be used when signing requests for a given user and it requires that user's ID, their private key and cerificate fingerprint. The private key can be sourced from a file (private_key_file_location) or the PEM string can be provided directly (private_key_content). The headers to be signed by this signer are not customizable. You can manually sign calls by creating an instance of the signer, and providing it as the ``auth`` argument to Requests functions: .. code-block:: python import requests from oci import Signer auth = Signer(...) resp = requests.get("https://...", auth=auth) """ def __init__(self, tenancy, user, fingerprint, private_key_file_location, pass_phrase=None, private_key_content=None): self.api_key = tenancy + "/" + user + "/" + fingerprint if private_key_content: self.private_key = load_private_key(private_key_content, pass_phrase) else: self.private_key = load_private_key_from_file(private_key_file_location, pass_phrase) generic_headers = ["date", "(request-target)", "host"] body_headers = ["content-length", "content-type", "x-content-sha256"] self.create_signers(self.api_key, self.private_key, generic_headers, body_headers) @staticmethod def from_config(config): from .config import validate_config validate_config(config) return Signer( config['tenancy'], config['user'], config['fingerprint'], private_key_file_location=config['key_file'], pass_phrase=config.get('pass_phrase'), private_key_content=config.get('key_content') )
43.091575
245
0.670095
from __future__ import absolute_import import base64 import email.utils import hashlib import io import functools import os from oci._vendor import six from oci.util import record_body_position_for_rewind, rewind_body, back_up_body_calculate_stream_content_length, read_stream_for_signing from ._vendor import httpsig_cffi, requests from .exceptions import InvalidPrivateKey, MissingPrivateKeyPassphrase from cryptography.exceptions import UnsupportedAlgorithm from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import serialization import logging logger = logging.getLogger(__name__) SIGNATURE_VERSION = "1" def load_private_key_from_file(filename, pass_phrase=None): filename = os.path.expanduser(filename) with io.open(filename, mode="rb") as f: private_key_data = f.read().strip() return load_private_key(private_key_data, pass_phrase) def load_private_key(secret, pass_phrase): if isinstance(secret, six.text_type): secret = secret.encode("ascii") if isinstance(pass_phrase, six.text_type): pass_phrase = pass_phrase.encode("ascii") backend = default_backend() try: return serialization.load_pem_private_key(secret, pass_phrase, backend=backend) except TypeError: # - key doesn't have pass_phrase and one was provided. # This can happen if the DEFAULT profile has a pass_phrase but # another profile uses a key file without a pass_phrase. if pass_phrase is None: # 1.1) private key needed a pass_phrase and we don't have one raise MissingPrivateKeyPassphrase("The provided key requires a passphrase.") else: return serialization.load_pem_private_key(secret, None, backend=backend) except ValueError: for loader in [ serialization.load_der_public_key, serialization.load_pem_public_key, serialization.load_ssh_public_key ]: try: loader(secret, backend=backend) except (ValueError, UnsupportedAlgorithm): # 2.1) Not a public key; try the next format pass else: # 2.2) This is a public key raise InvalidPrivateKey("Authentication requires a private key, but a public key was provided.") # 2.3) Password is probably wrong. raise InvalidPrivateKey("The provided key is not a private key, or the provided passphrase is incorrect.") def inject_missing_headers(request, sign_body, enforce_content_headers): # Inject date, host, and content-type if missing request.headers.setdefault( "date", email.utils.formatdate(usegmt=True)) request.headers.setdefault( "host", six.moves.urllib.parse.urlparse(request.url).netloc) if hasattr(request.body, "buffer") or hasattr(request.body, "read"): request.headers.setdefault("content-type", "application/octet-stream") request.headers.setdefault("content-type", "application/json") if enforce_content_headers: # Requests with a body need to send content-type, # content-length, and x-content-sha256 if "x-content-sha256" not in request.headers and sign_body: body = request.body or "" m = hashlib.sha256() # Handle String types if isinstance(body, six.string_types): body = body.encode("utf-8") request.headers.setdefault("content-length", str(len(body))) m.update(body) # Handle bytes elif isinstance(body, (bytes, bytearray)): m.update(body) # Handling signing for Files/stdin elif hasattr(body, "buffer") or hasattr(body, "read"): is_body_rewindable, original_position = record_body_position_for_rewind(body) if is_body_rewindable: content_length = read_stream_for_signing(m, body) if content_length == -1: raise IOError("Unable to read stream for signing! Please sign the stream yourself by using the custom header x-content-sha256") request.headers.setdefault("content-length", str(content_length)) is_rewind_success = rewind_body(body, original_position) if not is_rewind_success: raise IOError("Unable to rewind request body while signing!") else: logger.warning("Stream cannot be rewound, trying to backup and sign the body!") stream = back_up_body_calculate_stream_content_length(body) # Updating request body as it cannot be rewound request.body = stream.get("byte_content") m.update(stream.get("byte_content")) request.headers.setdefault("content-length", str(stream.get("content_length"))) # Update sha256 header if m: base64digest = base64.b64encode(m.digest()) base64string = base64digest.decode("utf-8") request.headers["x-content-sha256"] = base64string # HeaderSigner doesn't support private keys with passwords. class _PatchedHeaderSigner(httpsig_cffi.sign.HeaderSigner): HEADER_SIGNER_TEMPLATE = 'Signature algorithm="rsa-sha256",headers="{}",keyId="{}",signature="%s",version="{}"' def __init__(self, key_id, private_key, headers): self.sign_algorithm = "rsa" self.hash_algorithm = "sha256" self._hash = None self._rsahash = httpsig_cffi.utils.HASHES[self.hash_algorithm] self._rsa_private = private_key self._rsa_public = self._rsa_private.public_key() self.headers = headers self.signature_template = self.HEADER_SIGNER_TEMPLATE.format(" ".join(headers), key_id, SIGNATURE_VERSION) def reset_signer(self, key_id, private_key): self._hash = None self._rsa_private = private_key self._rsa_public = self._rsa_private.public_key() self.signature_template = self.HEADER_SIGNER_TEMPLATE.format(" ".join(self.headers), key_id, SIGNATURE_VERSION) class AbstractBaseSigner(requests.auth.AuthBase): def create_signers(self, api_key, private_key, generic_headers, body_headers): self._basic_signer = _PatchedHeaderSigner( key_id=api_key, private_key=private_key, headers=generic_headers) self._body_signer = _PatchedHeaderSigner( key_id=api_key, private_key=private_key, headers=generic_headers + body_headers) def validate_request(self, request): verb = request.method.lower() if verb not in ["get", "head", "delete", "put", "post", "patch"]: raise ValueError("Don't know how to sign request verb {}".format(verb)) def do_request_sign(self, request, enforce_content_headers=True): verb = request.method.lower() sign_body = verb in ["put", "post", "patch"] if sign_body and enforce_content_headers: signer = self._body_signer else: signer = self._basic_signer # The requests library sets the Transfer-Encoding header to 'chunked' if the # body is a stream with 0 length. Object storage does not currently support this option, # and the request will fail if it is not removed. This is the only hook available where we # can do this after the header is added and before the request is sent. request.headers.pop('Transfer-Encoding', None) inject_missing_headers(request, sign_body, enforce_content_headers) signed_headers = signer.sign( request.headers, host=six.moves.urllib.parse.urlparse(request.url).netloc, method=request.method, path=request.path_url) request.headers.update(signed_headers) return request def __call__(self, request, enforce_content_headers=True): self.validate_request(request) return self.do_request_sign(request, enforce_content_headers) @property def without_content_headers(self): return functools.partial(self, enforce_content_headers=False) class Signer(AbstractBaseSigner): def __init__(self, tenancy, user, fingerprint, private_key_file_location, pass_phrase=None, private_key_content=None): self.api_key = tenancy + "/" + user + "/" + fingerprint if private_key_content: self.private_key = load_private_key(private_key_content, pass_phrase) else: self.private_key = load_private_key_from_file(private_key_file_location, pass_phrase) generic_headers = ["date", "(request-target)", "host"] body_headers = ["content-length", "content-type", "x-content-sha256"] self.create_signers(self.api_key, self.private_key, generic_headers, body_headers) @staticmethod def from_config(config): from .config import validate_config validate_config(config) return Signer( config['tenancy'], config['user'], config['fingerprint'], private_key_file_location=config['key_file'], pass_phrase=config.get('pass_phrase'), private_key_content=config.get('key_content') )
true
true
f712d66ca7e4d5f30fd049146ccec02a60361ca6
5,779
py
Python
gnuradio-3.7.13.4/gr-analog/python/analog/qa_fastnoise.py
v1259397/cosmic-gnuradio
64c149520ac6a7d44179c3f4a38f38add45dd5dc
[ "BSD-3-Clause" ]
1
2021-03-09T07:32:37.000Z
2021-03-09T07:32:37.000Z
gnuradio-3.7.13.4/gr-analog/python/analog/qa_fastnoise.py
v1259397/cosmic-gnuradio
64c149520ac6a7d44179c3f4a38f38add45dd5dc
[ "BSD-3-Clause" ]
null
null
null
gnuradio-3.7.13.4/gr-analog/python/analog/qa_fastnoise.py
v1259397/cosmic-gnuradio
64c149520ac6a7d44179c3f4a38f38add45dd5dc
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # Copyright 2007,2010,2012 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from gnuradio import gr, gr_unittest, analog, blocks import numpy class test_fastnoise_source(gr_unittest.TestCase): def setUp (self): self.num = 2**22 self.num_items = 10**6 self.default_args = {"samples": self.num, "seed": 43, "ampl": 1} def tearDown (self): pass def run_test_real(self, form): """ Run test case with float input/output """ tb = gr.top_block() src = analog.fastnoise_source_f(type=form, **self.default_args) head = blocks.head(nitems=self.num_items, sizeof_stream_item=gr.sizeof_float) sink = blocks.vector_sink_f() tb.connect(src, head, sink) tb.run() return numpy.array(sink.data()) def run_test_complex(self, form): """ Run test case with complex input/output """ tb = gr.top_block() src = analog.fastnoise_source_c(type=form, **self.default_args) head = blocks.head(nitems=self.num_items, sizeof_stream_item=gr.sizeof_gr_complex) sink = blocks.vector_sink_c() tb.connect(src, head, sink) tb.run() return numpy.array(sink.data()) def test_001_real_uniform_moments(self): data = self.run_test_real(analog.GR_UNIFORM) self.assertAlmostEqual(min(data), -1, places=4) self.assertAlmostEqual(max(data), 1, places=4) # mean, variance self.assertAlmostEqual(data.mean(), 0, places=2) self.assertAlmostEqual(data.var(), (1-(-1))**2./12, places=3) def test_001_real_gaussian_moments(self): data = self.run_test_real(analog.GR_GAUSSIAN) # mean, variance self.assertAlmostEqual(data.mean(), 0, places=2) self.assertAlmostEqual(data.var(), 1, places=2) def test_001_real_laplacian_moments(self): data = self.run_test_real(analog.GR_LAPLACIAN) # mean, variance self.assertAlmostEqual(data.mean(), 0, places=2) self.assertAlmostEqual(data.var(), 2, places=2) def test_001_complex_uniform_moments(self): data = self.run_test_complex(analog.GR_UNIFORM) # mean, variance self.assertAlmostEqual(data.real.mean(), 0, places=2) self.assertAlmostEqual(data.real.var(), 0.5*(1-(-1))**2./12, places=3) self.assertAlmostEqual(data.imag.mean(), 0, places=2) self.assertAlmostEqual(data.imag.var(), 0.5*(1-(-1))**2./12, places=3) def test_001_complex_gaussian_moments(self): data = self.run_test_complex(analog.GR_GAUSSIAN) # mean, variance self.assertAlmostEqual(data.real.mean(), 0, places=2) self.assertAlmostEqual(data.real.var(), 0.5, places=2) self.assertAlmostEqual(data.imag.mean(), 0, places=2) self.assertAlmostEqual(data.imag.var(), 0.5, places=2) def test_002_real_uniform_reproducibility(self): data1 = self.run_test_real(analog.GR_UNIFORM) data2 = self.run_test_real(analog.GR_UNIFORM) # It's pseudoramdo thus must be equal self.assertTrue(numpy.array_equal(data1, data2)) def test_002_real_gaussian_reproducibility(self): data1 = self.run_test_real(analog.GR_GAUSSIAN) data2 = self.run_test_real(analog.GR_GAUSSIAN) self.assertTrue(numpy.array_equal(data1, data2)) def test_003_real_uniform_pool(self): src = analog.fastnoise_source_f(type=analog.GR_UNIFORM, **self.default_args) src2 = analog.fastnoise_source_f(type=analog.GR_UNIFORM, **self.default_args) self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples()))) def test_003_real_gaussian_pool(self): src = analog.fastnoise_source_f(type=analog.GR_GAUSSIAN, **self.default_args) src2 = analog.fastnoise_source_f(type=analog.GR_GAUSSIAN, **self.default_args) self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples()))) def test_003_cmplx_gaussian_pool(self): src = analog.fastnoise_source_c(type=analog.GR_GAUSSIAN, **self.default_args) src2 = analog.fastnoise_source_c(type=analog.GR_GAUSSIAN, **self.default_args) self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples()))) def test_003_cmplx_uniform_pool(self): src = analog.fastnoise_source_c(type=analog.GR_UNIFORM, **self.default_args) src2 = analog.fastnoise_source_c(type=analog.GR_UNIFORM, **self.default_args) self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples()))) def test_003_real_laplacian_pool(self): src = analog.fastnoise_source_f(type=analog.GR_LAPLACIAN, **self.default_args) src2 = analog.fastnoise_source_f(type=analog.GR_LAPLACIAN, **self.default_args) self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples()))) if __name__ == '__main__': gr_unittest.run(test_fastnoise_source, "test_fastnoise_source.xml")
41.278571
99
0.693719
from gnuradio import gr, gr_unittest, analog, blocks import numpy class test_fastnoise_source(gr_unittest.TestCase): def setUp (self): self.num = 2**22 self.num_items = 10**6 self.default_args = {"samples": self.num, "seed": 43, "ampl": 1} def tearDown (self): pass def run_test_real(self, form): tb = gr.top_block() src = analog.fastnoise_source_f(type=form, **self.default_args) head = blocks.head(nitems=self.num_items, sizeof_stream_item=gr.sizeof_float) sink = blocks.vector_sink_f() tb.connect(src, head, sink) tb.run() return numpy.array(sink.data()) def run_test_complex(self, form): tb = gr.top_block() src = analog.fastnoise_source_c(type=form, **self.default_args) head = blocks.head(nitems=self.num_items, sizeof_stream_item=gr.sizeof_gr_complex) sink = blocks.vector_sink_c() tb.connect(src, head, sink) tb.run() return numpy.array(sink.data()) def test_001_real_uniform_moments(self): data = self.run_test_real(analog.GR_UNIFORM) self.assertAlmostEqual(min(data), -1, places=4) self.assertAlmostEqual(max(data), 1, places=4) self.assertAlmostEqual(data.mean(), 0, places=2) self.assertAlmostEqual(data.var(), (1-(-1))**2./12, places=3) def test_001_real_gaussian_moments(self): data = self.run_test_real(analog.GR_GAUSSIAN) self.assertAlmostEqual(data.mean(), 0, places=2) self.assertAlmostEqual(data.var(), 1, places=2) def test_001_real_laplacian_moments(self): data = self.run_test_real(analog.GR_LAPLACIAN) self.assertAlmostEqual(data.mean(), 0, places=2) self.assertAlmostEqual(data.var(), 2, places=2) def test_001_complex_uniform_moments(self): data = self.run_test_complex(analog.GR_UNIFORM) self.assertAlmostEqual(data.real.mean(), 0, places=2) self.assertAlmostEqual(data.real.var(), 0.5*(1-(-1))**2./12, places=3) self.assertAlmostEqual(data.imag.mean(), 0, places=2) self.assertAlmostEqual(data.imag.var(), 0.5*(1-(-1))**2./12, places=3) def test_001_complex_gaussian_moments(self): data = self.run_test_complex(analog.GR_GAUSSIAN) self.assertAlmostEqual(data.real.mean(), 0, places=2) self.assertAlmostEqual(data.real.var(), 0.5, places=2) self.assertAlmostEqual(data.imag.mean(), 0, places=2) self.assertAlmostEqual(data.imag.var(), 0.5, places=2) def test_002_real_uniform_reproducibility(self): data1 = self.run_test_real(analog.GR_UNIFORM) data2 = self.run_test_real(analog.GR_UNIFORM) self.assertTrue(numpy.array_equal(data1, data2)) def test_002_real_gaussian_reproducibility(self): data1 = self.run_test_real(analog.GR_GAUSSIAN) data2 = self.run_test_real(analog.GR_GAUSSIAN) self.assertTrue(numpy.array_equal(data1, data2)) def test_003_real_uniform_pool(self): src = analog.fastnoise_source_f(type=analog.GR_UNIFORM, **self.default_args) src2 = analog.fastnoise_source_f(type=analog.GR_UNIFORM, **self.default_args) self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples()))) def test_003_real_gaussian_pool(self): src = analog.fastnoise_source_f(type=analog.GR_GAUSSIAN, **self.default_args) src2 = analog.fastnoise_source_f(type=analog.GR_GAUSSIAN, **self.default_args) self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples()))) def test_003_cmplx_gaussian_pool(self): src = analog.fastnoise_source_c(type=analog.GR_GAUSSIAN, **self.default_args) src2 = analog.fastnoise_source_c(type=analog.GR_GAUSSIAN, **self.default_args) self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples()))) def test_003_cmplx_uniform_pool(self): src = analog.fastnoise_source_c(type=analog.GR_UNIFORM, **self.default_args) src2 = analog.fastnoise_source_c(type=analog.GR_UNIFORM, **self.default_args) self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples()))) def test_003_real_laplacian_pool(self): src = analog.fastnoise_source_f(type=analog.GR_LAPLACIAN, **self.default_args) src2 = analog.fastnoise_source_f(type=analog.GR_LAPLACIAN, **self.default_args) self.assertTrue(numpy.array_equal(numpy.array(src.samples()), numpy.array(src2.samples()))) if __name__ == '__main__': gr_unittest.run(test_fastnoise_source, "test_fastnoise_source.xml")
true
true
f712d6e22f52ae42d8161b676b62d682117d0c50
4,316
py
Python
openfoodfact/utils.py
pythonmentor/teiva-p11
4be26edbad6e490c3991ca1ce5680e889b2ab75a
[ "MIT", "Unlicense" ]
null
null
null
openfoodfact/utils.py
pythonmentor/teiva-p11
4be26edbad6e490c3991ca1ce5680e889b2ab75a
[ "MIT", "Unlicense" ]
4
2021-03-30T14:25:16.000Z
2021-06-17T06:53:27.000Z
openfoodfact/utils.py
pythonmentor/teiva-p11
4be26edbad6e490c3991ca1ce5680e889b2ab75a
[ "MIT", "Unlicense" ]
2
2020-08-15T17:23:42.000Z
2020-08-15T17:23:55.000Z
"""Useful command to download and clean data from OpenFoodfact.""" import requests keys = [ "id", "product_name_fr", "nutrition_grade_fr", "url", "image_front_url", "image_ingredients_url", ] class RequestData: """The class fetch the data and save it in to a json file.""" def __init__(self): self.cat_url = "https://fr.openfoodfacts.org/categories.json" self.search_url = "https://fr.openfoodfacts.org/cgi/search.pl" self.list_cat = [] self.list_prod = [] self.data = {} def exec(self, page_size): """Main public function executing all necessary privates functions.""" self.list_cat = self._fetch_category() data = self._fetch_products(page_size) return data def _fetch_category(self): """Request the list of category from the API.""" print("Getting Categories from API") try: response = self._req(self.cat_url) data = response.json() list_cat = [i["name"] for i in data["tags"]][:17] self.data = {} return list_cat except requests.exceptions.Timeout as t: print("Request Timeout, please retry : ", t) except requests.exceptions.RequestException as err: print("Something went bad, please retry : :", err) def _fetch_products(self, page_size): """Request the products in respect for the categories loaded.""" print( "Getting Products from API in respect to the" " Categories previously got" ) fields = ",".join(keys) all_products = {} for category in self.list_cat: config = { "action": "process", # Get the result by category "tagtype_0": "categories", # the tag represents the article search "tag_0": category, "fields": fields, "tag_contains_0": "contains", # Number of articles per page # Min content 20, Max content 1000 "page_size": page_size, # The API response in JSON "json": 1, } response = self._req(self.search_url, param=config) all_products[category] = response.json() return all_products def _req(self, url, param=None): """Small request function used multiple times.""" response = requests.get(url, param) return response class Cleaner: """This class will handle the data formatting before db use.""" def __init__(self, data): """Initialize variables and launch filter_products.""" self.data = data self.keys = keys self.list_cat = [categories for categories in self.data] self._dict_data = {} self.list_of_dictio = [] self.barcode_list = [] self.name_list = [] def filter_product(self): """Get the data from json files and run checks.""" for category in self.list_cat: for element in self.data[category]["products"]: if self._data_exist(element): self.list_of_dictio.append(element) self._dict_data[category] = self.list_of_dictio self.list_of_dictio = [] return self._dict_data def _data_exist(self, element): """Run trough the data, if something's missing it's discarded.""" for x in self.keys: if ( x not in element or element[x] == "" or len(element["id"]) != 13 ): return False barcode = int(element["id"]) if barcode in self.barcode_list: return False else: self.barcode_list.append(barcode) name = element["product_name_fr"].lower() if name in self.name_list: return False else: self.name_list.append(name) return True def req_and_clean(page_size): """Main function to instantiate and launch operations.""" r = RequestData() data = r.exec(page_size) c = Cleaner(data) data = c.filter_product() return data if __name__ == "__main__": data = req_and_clean() print(data)
31.50365
78
0.568119
import requests keys = [ "id", "product_name_fr", "nutrition_grade_fr", "url", "image_front_url", "image_ingredients_url", ] class RequestData: def __init__(self): self.cat_url = "https://fr.openfoodfacts.org/categories.json" self.search_url = "https://fr.openfoodfacts.org/cgi/search.pl" self.list_cat = [] self.list_prod = [] self.data = {} def exec(self, page_size): self.list_cat = self._fetch_category() data = self._fetch_products(page_size) return data def _fetch_category(self): print("Getting Categories from API") try: response = self._req(self.cat_url) data = response.json() list_cat = [i["name"] for i in data["tags"]][:17] self.data = {} return list_cat except requests.exceptions.Timeout as t: print("Request Timeout, please retry : ", t) except requests.exceptions.RequestException as err: print("Something went bad, please retry : :", err) def _fetch_products(self, page_size): print( "Getting Products from API in respect to the" " Categories previously got" ) fields = ",".join(keys) all_products = {} for category in self.list_cat: config = { "action": "process", "tagtype_0": "categories", "tag_0": category, "fields": fields, "tag_contains_0": "contains", "page_size": page_size, "json": 1, } response = self._req(self.search_url, param=config) all_products[category] = response.json() return all_products def _req(self, url, param=None): response = requests.get(url, param) return response class Cleaner: def __init__(self, data): self.data = data self.keys = keys self.list_cat = [categories for categories in self.data] self._dict_data = {} self.list_of_dictio = [] self.barcode_list = [] self.name_list = [] def filter_product(self): for category in self.list_cat: for element in self.data[category]["products"]: if self._data_exist(element): self.list_of_dictio.append(element) self._dict_data[category] = self.list_of_dictio self.list_of_dictio = [] return self._dict_data def _data_exist(self, element): for x in self.keys: if ( x not in element or element[x] == "" or len(element["id"]) != 13 ): return False barcode = int(element["id"]) if barcode in self.barcode_list: return False else: self.barcode_list.append(barcode) name = element["product_name_fr"].lower() if name in self.name_list: return False else: self.name_list.append(name) return True def req_and_clean(page_size): r = RequestData() data = r.exec(page_size) c = Cleaner(data) data = c.filter_product() return data if __name__ == "__main__": data = req_and_clean() print(data)
true
true
f712d787e5627871c91f146aa80f27825ee8dab9
1,046
py
Python
alipay/aop/api/response/AlipayDataDataexchangeDtmorseSyncResponse.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/response/AlipayDataDataexchangeDtmorseSyncResponse.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
alipay/aop/api/response/AlipayDataDataexchangeDtmorseSyncResponse.py
articuly/alipay-sdk-python-all
0259cd28eca0f219b97dac7f41c2458441d5e7a6
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayDataDataexchangeDtmorseSyncResponse(AlipayResponse): def __init__(self): super(AlipayDataDataexchangeDtmorseSyncResponse, self).__init__() self._result_extent = None self._success = None @property def result_extent(self): return self._result_extent @result_extent.setter def result_extent(self, value): self._result_extent = value @property def success(self): return self._success @success.setter def success(self, value): self._success = value def parse_response_content(self, response_content): response = super(AlipayDataDataexchangeDtmorseSyncResponse, self).parse_response_content(response_content) if 'result_extent' in response: self.result_extent = response['result_extent'] if 'success' in response: self.success = response['success']
29.055556
114
0.700765
import simplejson as json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayDataDataexchangeDtmorseSyncResponse(AlipayResponse): def __init__(self): super(AlipayDataDataexchangeDtmorseSyncResponse, self).__init__() self._result_extent = None self._success = None @property def result_extent(self): return self._result_extent @result_extent.setter def result_extent(self, value): self._result_extent = value @property def success(self): return self._success @success.setter def success(self, value): self._success = value def parse_response_content(self, response_content): response = super(AlipayDataDataexchangeDtmorseSyncResponse, self).parse_response_content(response_content) if 'result_extent' in response: self.result_extent = response['result_extent'] if 'success' in response: self.success = response['success']
true
true
f712d827a636f2d74376374332f5d9a6bde70b89
530
py
Python
CarHome/CarHome/items.py
monkey-hjy/SpiderCarHome
302e470a653f680c2b1aa72649848d61c9626ddd
[ "MIT" ]
3
2020-03-23T09:57:10.000Z
2022-02-23T08:20:23.000Z
CarHome/CarHome/items.py
monkey-hjy/SpiderCarHome
302e470a653f680c2b1aa72649848d61c9626ddd
[ "MIT" ]
null
null
null
CarHome/CarHome/items.py
monkey-hjy/SpiderCarHome
302e470a653f680c2b1aa72649848d61c9626ddd
[ "MIT" ]
1
2021-03-29T02:41:37.000Z
2021-03-29T02:41:37.000Z
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class CarhomeItem(scrapy.Item): # define the fields for your item here like: car_name = scrapy.Field() car_url = scrapy.Field() # 车辆评分 car_score = scrapy.Field() # 车辆级别 car_gray = scrapy.Field() # 车身结构和续航里程 car_structure = scrapy.Field() # 发动机和电动机 car_engine = scrapy.Field() car_price = scrapy.Field() pass
21.2
53
0.656604
import scrapy class CarhomeItem(scrapy.Item): car_name = scrapy.Field() car_url = scrapy.Field() car_score = scrapy.Field() car_gray = scrapy.Field() car_structure = scrapy.Field() car_engine = scrapy.Field() car_price = scrapy.Field() pass
true
true
f712d8a32d790551e15d9bc33d66e68b3e000da2
125
py
Python
test/run/t315.py
timmartin/skulpt
2e3a3fbbaccc12baa29094a717ceec491a8a6750
[ "MIT" ]
2,671
2015-01-03T08:23:25.000Z
2022-03-31T06:15:48.000Z
test/run/t315.py
timmartin/skulpt
2e3a3fbbaccc12baa29094a717ceec491a8a6750
[ "MIT" ]
972
2015-01-05T08:11:00.000Z
2022-03-29T13:47:15.000Z
test/run/t315.py
timmartin/skulpt
2e3a3fbbaccc12baa29094a717ceec491a8a6750
[ "MIT" ]
845
2015-01-03T19:53:36.000Z
2022-03-29T18:34:22.000Z
def default_outside(x=[]): return x a = default_outside() a.append(1) print a b = default_outside() b.append(2) print b
12.5
26
0.688
def default_outside(x=[]): return x a = default_outside() a.append(1) print a b = default_outside() b.append(2) print b
false
true
f712d8aae613059300d69cf1c8864f9738f9af0e
32,052
py
Python
azure-mgmt-network/azure/mgmt/network/v2018_06_01/operations/connection_monitors_operations.py
jmalobicky/azure-sdk-for-python
61234a3d83f8fb481d1dd2386e54e888864878fd
[ "MIT" ]
null
null
null
azure-mgmt-network/azure/mgmt/network/v2018_06_01/operations/connection_monitors_operations.py
jmalobicky/azure-sdk-for-python
61234a3d83f8fb481d1dd2386e54e888864878fd
[ "MIT" ]
null
null
null
azure-mgmt-network/azure/mgmt/network/v2018_06_01/operations/connection_monitors_operations.py
jmalobicky/azure-sdk-for-python
61234a3d83f8fb481d1dd2386e54e888864878fd
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from msrest.polling import LROPoller, NoPolling from msrestazure.polling.arm_polling import ARMPolling from .. import models class ConnectionMonitorsOperations(object): """ConnectionMonitorsOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client API version. Constant value: "2018-06-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2018-06-01" self.config = config def _create_or_update_initial( self, resource_group_name, network_watcher_name, connection_monitor_name, parameters, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.create_or_update.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'ConnectionMonitor') # Construct and send request request = self._client.put(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 201]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('ConnectionMonitorResult', response) if response.status_code == 201: deserialized = self._deserialize('ConnectionMonitorResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def create_or_update( self, resource_group_name, network_watcher_name, connection_monitor_name, parameters, custom_headers=None, raw=False, polling=True, **operation_config): """Create or update a connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :param parameters: Parameters that define the operation to create a connection monitor. :type parameters: ~azure.mgmt.network.v2018_06_01.models.ConnectionMonitor :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns ConnectionMonitorResult or ClientRawResponse<ConnectionMonitorResult> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_06_01.models.ConnectionMonitorResult] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_06_01.models.ConnectionMonitorResult]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, parameters=parameters, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('ConnectionMonitorResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} def get( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, **operation_config): """Gets a connection monitor by name. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: ConnectionMonitorResult or ClientRawResponse if raw=true :rtype: ~azure.mgmt.network.v2018_06_01.models.ConnectionMonitorResult or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('ConnectionMonitorResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} def _delete_initial( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.delete.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [202, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def delete( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, polling=True, **operation_config): """Deletes the specified connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns None or ClientRawResponse<None> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[None] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[None]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._delete_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} def _stop_initial( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.stop.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def stop( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, polling=True, **operation_config): """Stops the specified connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns None or ClientRawResponse<None> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[None] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[None]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._stop_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) stop.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/stop'} def _start_initial( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.start.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def start( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, polling=True, **operation_config): """Starts the specified connection monitor. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name of the connection monitor. :type connection_monitor_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns None or ClientRawResponse<None> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[None] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[None]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._start_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) start.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/start'} def _query_initial( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.query.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('ConnectionMonitorQueryResult', response) if response.status_code == 202: deserialized = self._deserialize('ConnectionMonitorQueryResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def query( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, polling=True, **operation_config): """Query a snapshot of the most recent connection states. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param connection_monitor_name: The name given to the connection monitor. :type connection_monitor_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns ConnectionMonitorQueryResult or ClientRawResponse<ConnectionMonitorQueryResult> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2018_06_01.models.ConnectionMonitorQueryResult] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2018_06_01.models.ConnectionMonitorQueryResult]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._query_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('ConnectionMonitorQueryResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) query.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/query'} def list( self, resource_group_name, network_watcher_name, custom_headers=None, raw=False, **operation_config): """Lists all connection monitors for the specified Network Watcher. :param resource_group_name: The name of the resource group containing Network Watcher. :type resource_group_name: str :param network_watcher_name: The name of the Network Watcher resource. :type network_watcher_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of ConnectionMonitorResult :rtype: ~azure.mgmt.network.v2018_06_01.models.ConnectionMonitorResultPaged[~azure.mgmt.network.v2018_06_01.models.ConnectionMonitorResult] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.ConnectionMonitorResultPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.ConnectionMonitorResultPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors'}
50.00312
217
0.689442
import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from msrest.polling import LROPoller, NoPolling from msrestazure.polling.arm_polling import ARMPolling from .. import models class ConnectionMonitorsOperations(object): models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2018-06-01" self.config = config def _create_or_update_initial( self, resource_group_name, network_watcher_name, connection_monitor_name, parameters, custom_headers=None, raw=False, **operation_config): url = self.create_or_update.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') body_content = self._serialize.body(parameters, 'ConnectionMonitor') request = self._client.put(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 201]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('ConnectionMonitorResult', response) if response.status_code == 201: deserialized = self._deserialize('ConnectionMonitorResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def create_or_update( self, resource_group_name, network_watcher_name, connection_monitor_name, parameters, custom_headers=None, raw=False, polling=True, **operation_config): raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, parameters=parameters, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('ConnectionMonitorResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} def get( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, **operation_config): url = self.get.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('ConnectionMonitorResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} def _delete_initial( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, **operation_config): url = self.delete.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') request = self._client.delete(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [202, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def delete( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, polling=True, **operation_config): raw_result = self._delete_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}'} def _stop_initial( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, **operation_config): url = self.stop.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def stop( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, polling=True, **operation_config): raw_result = self._stop_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) stop.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/stop'} def _start_initial( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, **operation_config): url = self.start.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') header_parameters = {} if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def start( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, polling=True, **operation_config): raw_result = self._start_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) start.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/start'} def _query_initial( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, **operation_config): url = self.query.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'connectionMonitorName': self._serialize.url("connection_monitor_name", connection_monitor_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') request = self._client.post(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 202]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('ConnectionMonitorQueryResult', response) if response.status_code == 202: deserialized = self._deserialize('ConnectionMonitorQueryResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def query( self, resource_group_name, network_watcher_name, connection_monitor_name, custom_headers=None, raw=False, polling=True, **operation_config): raw_result = self._query_initial( resource_group_name=resource_group_name, network_watcher_name=network_watcher_name, connection_monitor_name=connection_monitor_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('ConnectionMonitorQueryResult', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) query.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors/{connectionMonitorName}/query'} def list( self, resource_group_name, network_watcher_name, custom_headers=None, raw=False, **operation_config): def internal_paging(next_link=None, raw=False): if not next_link: url = self.list.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'networkWatcherName': self._serialize.url("network_watcher_name", network_watcher_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} header_parameters = {} header_parameters['Accept'] = 'application/json' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') request = self._client.get(url, query_parameters, header_parameters) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response deserialized = models.ConnectionMonitorResultPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.ConnectionMonitorResultPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/networkWatchers/{networkWatcherName}/connectionMonitors'}
true
true
f712d92458ee75bbf3600c3bc00250da44027dad
5,258
py
Python
languages/python/docs/conf.py
hobofan/oso
2656313dc46581a588fcf0c57dee7bf91afbb3d0
[ "Apache-2.0" ]
null
null
null
languages/python/docs/conf.py
hobofan/oso
2656313dc46581a588fcf0c57dee7bf91afbb3d0
[ "Apache-2.0" ]
null
null
null
languages/python/docs/conf.py
hobofan/oso
2656313dc46581a588fcf0c57dee7bf91afbb3d0
[ "Apache-2.0" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys from sphinx.highlighting import lexers from sphinxcontrib.spelling.filters import ContractionFilter from enchant.tokenize import Filter sys.path.insert(0, os.path.abspath("../django-oso")) sys.path.insert(0, os.path.abspath("../flask-oso")) sys.path.insert(0, os.path.abspath("../sqlalchemy-oso")) sys.path.insert(0, os.path.abspath("..")) sys.path.insert(0, os.path.abspath(".")) sys.path.append(os.path.abspath("_ext")) # DJANGO SETUP FOR DJANGO-OSO # import django from django.conf import settings settings.configure() django.setup() ## import lexer # -- Project information ----------------------------------------------------- project = "oso" copyright = "2020-2021 Oso Security, Inc" author = "oso" version = "0.26.1" release = "0.26.1" # -- General configuration --------------------------------------------------- html_title = "oso Documentation" release_mode = os.environ.get("DOCS_RELEASE", "") == "1" master_doc = "index" # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx_copybutton", "sphinx.ext.autodoc", "sphinx.ext.doctest", "sphinx.ext.extlinks", "sphinx.ext.githubpages", "sphinx.ext.ifconfig", "sphinx.ext.todo", "sphinxcontrib.contentui", "sphinxcontrib.spelling", ] lexers["node"] = lexer.NodeShellLexer() lexers["polar"] = lexer.PolarLexer() lexers["jshell"] = lexer.JShellLexer() lexers["oso"] = lexer.OsoLexer() class HyphenatedWordFilter(Filter): """Treat some hyphenated words as allowed due to made up words in our docs.""" # This cannot just be allowed words because hyphenated words are split. words = {"un-taken", "un-run"} def _skip(self, word): return word in self.words spelling_word_list_filename = "spelling_allowed_words.txt" spelling_filters = [ # Fix spell check of contractions ContractionFilter, HyphenatedWordFilter, ] # html_static_path = ["_static"] # Add any paths that contain templates here, relative to this directory. templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ["_build"] # Don't copy the source or show a link html_copy_source = False html_show_sourcelink = False # add copy button to <pre> elements inside a div with class="copyable" copybutton_selector = "div.copybutton pre" copybutton_prompt_text = "\\[\\d*\\]: |\\.\\.\\.: |\\$ " copybutton_prompt_is_regexp = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = "borland" ### Show/hide TODOs todo_include_todos = False # -- Options for HTML output ------------------------------------------------- # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"] # html_extra_path = ["_api_docs"] # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = "sphinx_rtd_theme" html_theme = "sphinx_material" # html_theme_options = {"logo_only": True} html_theme_options = { # Include the master document at the top of the page in the breadcrumb bar. "master_doc": False, # Set the name of the project to appear in the navigation. "nav_title": "oso Documentation", # Specify a base_url used to generate sitemap.xml. If not # specified, then no sitemap will be built. "base_url": "https://docs.osohq.com/", # Set the color and the accent color "color_primary": "#0E024E", "color_accent": "#FFFFFF", # Set the repo location to get a badge with stats "repo_url": "https://github.com/osohq/oso/", "repo_name": "osohq/oso", # Visible levels of the global TOC; -1 means unlimited "globaltoc_depth": 3, # If False, expand all TOC entries "globaltoc_collapse": True, # If True, show hidden TOC entries "globaltoc_includehidden": True, # "heroes": {"index": "Welcome to the home of the oso documentation!",}, "html_minify": release_mode, "css_minify": release_mode, "nav_links": False, } html_show_sphinx = False version_dropdown = False html_sidebars = {"**": ["globaltoc.html", "localtoc.html"]} # html_logo = "oso_logo_trimmed.png" html_js_files = [ # "js/custom.js", ] html_css_files = [ # "css/custom.css", # "css/matter.css", ] # html_favicon = "favicon.ico"
29.875
82
0.68391
import os import sys from sphinx.highlighting import lexers from sphinxcontrib.spelling.filters import ContractionFilter from enchant.tokenize import Filter sys.path.insert(0, os.path.abspath("../django-oso")) sys.path.insert(0, os.path.abspath("../flask-oso")) sys.path.insert(0, os.path.abspath("../sqlalchemy-oso")) sys.path.insert(0, os.path.abspath("..")) sys.path.insert(0, os.path.abspath(".")) sys.path.append(os.path.abspath("_ext")) import django from django.conf import settings settings.configure() django.setup() import lexer project = "oso" copyright = "2020-2021 Oso Security, Inc" author = "oso" version = "0.26.1" release = "0.26.1" html_title = "oso Documentation" release_mode = os.environ.get("DOCS_RELEASE", "") == "1" master_doc = "index" extensions = [ "sphinx_copybutton", "sphinx.ext.autodoc", "sphinx.ext.doctest", "sphinx.ext.extlinks", "sphinx.ext.githubpages", "sphinx.ext.ifconfig", "sphinx.ext.todo", "sphinxcontrib.contentui", "sphinxcontrib.spelling", ] lexers["node"] = lexer.NodeShellLexer() lexers["polar"] = lexer.PolarLexer() lexers["jshell"] = lexer.JShellLexer() lexers["oso"] = lexer.OsoLexer() class HyphenatedWordFilter(Filter): words = {"un-taken", "un-run"} def _skip(self, word): return word in self.words spelling_word_list_filename = "spelling_allowed_words.txt" spelling_filters = [ ContractionFilter, HyphenatedWordFilter, ] templates_path = ["_templates"] exclude_patterns = ["_build"] html_copy_source = False html_show_sourcelink = False # add copy button to <pre> elements inside a div with class="copyable" copybutton_selector = "div.copybutton pre" copybutton_prompt_text = "\\[\\d*\\]: |\\.\\.\\.: |\\$ " copybutton_prompt_is_regexp = True # The name of the Pygments (syntax highlighting) style to use. pygments_style = "borland" ### Show/hide TODOs todo_include_todos = False # -- Options for HTML output ------------------------------------------------- # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"] # html_extra_path = ["_api_docs"] # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = "sphinx_rtd_theme" html_theme = "sphinx_material" # html_theme_options = {"logo_only": True} html_theme_options = { # Include the master document at the top of the page in the breadcrumb bar. "master_doc": False, # Set the name of the project to appear in the navigation. "nav_title": "oso Documentation", # Specify a base_url used to generate sitemap.xml. If not # specified, then no sitemap will be built. "base_url": "https://docs.osohq.com/", # Set the color and the accent color "color_primary": "#0E024E", "color_accent": "#FFFFFF", # Set the repo location to get a badge with stats "repo_url": "https://github.com/osohq/oso/", "repo_name": "osohq/oso", # Visible levels of the global TOC; -1 means unlimited "globaltoc_depth": 3, # If False, expand all TOC entries "globaltoc_collapse": True, # If True, show hidden TOC entries "globaltoc_includehidden": True, # "heroes": {"index": "Welcome to the home of the oso documentation!",}, "html_minify": release_mode, "css_minify": release_mode, "nav_links": False, } html_show_sphinx = False version_dropdown = False html_sidebars = {"**": ["globaltoc.html", "localtoc.html"]} # html_logo = "oso_logo_trimmed.png" html_js_files = [ # "js/custom.js", ] html_css_files = [ # "css/custom.css", # "css/matter.css", ] # html_favicon = "favicon.ico"
true
true
f712d9f94983a2b03e5360c5cb331880264eac96
2,183
py
Python
profil3r/app/_menu.py
fxcebx/Profil3r
9b51f17f44e7b5cb9247bb5ed86aaf27685cb83e
[ "MIT" ]
1
2021-11-17T09:47:18.000Z
2021-11-17T09:47:18.000Z
profil3r/app/_menu.py
fxcebx/Profil3r
9b51f17f44e7b5cb9247bb5ed86aaf27685cb83e
[ "MIT" ]
null
null
null
profil3r/app/_menu.py
fxcebx/Profil3r
9b51f17f44e7b5cb9247bb5ed86aaf27685cb83e
[ "MIT" ]
null
null
null
from PyInquirer import prompt, Separator # The menus displays a list of checkboxes, which allows the user to select the separators and modules he wants to use def separators_menu(self): # Get a list of all existing separators separators = self.config["separators"] separators_menu = [ { 'type': 'checkbox', 'qmark': '⚙️ ', 'message': 'Select separators', 'name': 'separators', 'choices': [] } ] for separator, value in separators.items(): # Separator title separators_menu[0]["choices"].append(Separator("{} - Exemple : john{}doe".format(separator, value))) # Separator separators_menu[0]["choices"].append({"name": value}) self.separators = prompt(separators_menu)["separators"] def services_menu(self): # Get a list of all enabled modules modules_list = sorted([module for module in self.config["plateform"] if self.config["plateform"][module]["enabled"] == "yes"]) # Create a list of all existing categories categories = sorted(list(set([content["type"] for module, content in self.config["plateform"].items() if module in modules_list]))) services_menu = [ { 'type': 'checkbox', 'qmark': '⚙️ ', 'message': 'Select services', 'name': 'modules', 'choices': [ ], 'validate': lambda answer: 'You must choose at least one service !' \ if len(answer) == 0 else True } ] for category in categories: # Category title services_menu[0]["choices"].append(Separator(category.upper())) # Append category items for module in modules_list: if self.config["plateform"][module]["type"] == category: services_menu[0]["choices"].append( { 'name': module, # Checked by default 'checked': module in self.config["report_elements"] }) modules = prompt(services_menu)["modules"] self.modules_update(modules)
35.786885
139
0.561612
from PyInquirer import prompt, Separator def separators_menu(self): separators = self.config["separators"] separators_menu = [ { 'type': 'checkbox', 'qmark': '⚙️ ', 'message': 'Select separators', 'name': 'separators', 'choices': [] } ] for separator, value in separators.items(): separators_menu[0]["choices"].append(Separator("{} - Exemple : john{}doe".format(separator, value))) separators_menu[0]["choices"].append({"name": value}) self.separators = prompt(separators_menu)["separators"] def services_menu(self): modules_list = sorted([module for module in self.config["plateform"] if self.config["plateform"][module]["enabled"] == "yes"]) categories = sorted(list(set([content["type"] for module, content in self.config["plateform"].items() if module in modules_list]))) services_menu = [ { 'type': 'checkbox', 'qmark': '⚙️ ', 'message': 'Select services', 'name': 'modules', 'choices': [ ], 'validate': lambda answer: 'You must choose at least one service !' \ if len(answer) == 0 else True } ] for category in categories: services_menu[0]["choices"].append(Separator(category.upper())) for module in modules_list: if self.config["plateform"][module]["type"] == category: services_menu[0]["choices"].append( { 'name': module, 'checked': module in self.config["report_elements"] }) modules = prompt(services_menu)["modules"] self.modules_update(modules)
true
true
f712da4b952c50969a2013d5aeb86c1c59be1dc0
3,466
py
Python
watero_go/services/base_service.py
Qinnnnnn/Watero_Go
4e277f197971ba190591a0e83b00424b075dce3d
[ "MIT" ]
null
null
null
watero_go/services/base_service.py
Qinnnnnn/Watero_Go
4e277f197971ba190591a0e83b00424b075dce3d
[ "MIT" ]
null
null
null
watero_go/services/base_service.py
Qinnnnnn/Watero_Go
4e277f197971ba190591a0e83b00424b075dce3d
[ "MIT" ]
null
null
null
#!/usr/bin/pythonr # -*- coding: utf-8 -*- """ File : base_service.py Author : Zerui Qin CreateDate : 2018-12-20 10:00:00 LastModifiedDate : 2018-12-20 10:00:00 Note : Agent基础服务类, 获取Agent数据服务相关方法 """ import datetime import psutil import pytz import requests from watero_go.utils import hardware from watero_go.utils.log import log_debug from watero_go.utils.mapping import Route class BaseService: """ Agent基础服务 """ def __init__(self, p_url_prefix): """ 初始化 :param p_url_prefix: 中心服务地址前缀 """ self.url_prefix = p_url_prefix self.mac_addr = hardware.get_mac_address() self.tz = pytz.timezone('Asia/Shanghai') # 设置获取的时区 self.access_token = '' def auth(self): """ Agent认证 :return: int - 响应状态码 """ payload = dict() payload['mac_addr'] = self.mac_addr response = requests.get(url=self.url_prefix + Route.AUTH.value, data=payload) res_json = response.json() status = res_json['status'] if response.status_code: # 服务器状态码为200 self.access_token = res_json['message']['access_token'] log_debug.logger.info(res_json['message']['access_token']) elif response.status_code == 403: log_debug.logger.info(res_json['message']) return status def heartbeat(self): """ 发送Agent心跳信息 :return: int - 响应状态码 """ payload = dict() payload['mac_addr'] = self.mac_addr payload['access_token'] = self.access_token payload['create_time'] = datetime.datetime.now(self.tz).strftime("%Y-%m-%d %H:%M:%S") response = requests.post(url=self.url_prefix + Route.HEARTBEAT.value, data=payload) res_json = response.json() status = res_json['status'] if response.status_code == 200: # 服务器状态码为200 log_debug.logger.info(res_json['message']) elif response.status_code == 403: # 服务器状态码为403 log_debug.logger.error(res_json['message']) return status def resource(self): """ 发送Agent设备资源信息 :return: int - 响应状态码 """ payload = dict() payload['mac_addr'] = self.mac_addr payload['access_token'] = self.access_token payload['cpu_percent'] = psutil.cpu_percent() # CPU占用率 payload['cpu_count'] = psutil.cpu_count(logical=False) # CPU非逻辑核心数 payload['cpu_freq_current'] = psutil.cpu_freq()[0] # CPU当前频率 payload['total_memory'] = int(psutil.virtual_memory()[0] / 1024 / 1024) # 总内存 payload['available_memory'] = int(psutil.virtual_memory()[1] / 1024 / 1024) # 可用内存 payload['sensors_battery_percent'] = psutil.sensors_battery() # 电量百分比 payload['boot_time'] = psutil.datetime.datetime.fromtimestamp(psutil.boot_time()).strftime( "%Y-%m-%d %H:%M:%S") # 启动时间 payload['create_time'] = datetime.datetime.now(self.tz).strftime("%Y-%m-%d %H:%M:%S") response = requests.post(url=self.url_prefix + Route.RESOURCE.value, data=payload) res_json = response.json() status = res_json['status'] if response.status_code == 200: # 服务器状态码为200 log_debug.logger.info(res_json['message']) elif response.status_code == 403: # 服务器状态码为403 log_debug.logger.error(res_json['message']) else: log_debug.logger.error('Unknown error') return status
33.980392
99
0.615695
import datetime import psutil import pytz import requests from watero_go.utils import hardware from watero_go.utils.log import log_debug from watero_go.utils.mapping import Route class BaseService: def __init__(self, p_url_prefix): self.url_prefix = p_url_prefix self.mac_addr = hardware.get_mac_address() self.tz = pytz.timezone('Asia/Shanghai') self.access_token = '' def auth(self): payload = dict() payload['mac_addr'] = self.mac_addr response = requests.get(url=self.url_prefix + Route.AUTH.value, data=payload) res_json = response.json() status = res_json['status'] if response.status_code: self.access_token = res_json['message']['access_token'] log_debug.logger.info(res_json['message']['access_token']) elif response.status_code == 403: log_debug.logger.info(res_json['message']) return status def heartbeat(self): payload = dict() payload['mac_addr'] = self.mac_addr payload['access_token'] = self.access_token payload['create_time'] = datetime.datetime.now(self.tz).strftime("%Y-%m-%d %H:%M:%S") response = requests.post(url=self.url_prefix + Route.HEARTBEAT.value, data=payload) res_json = response.json() status = res_json['status'] if response.status_code == 200: log_debug.logger.info(res_json['message']) elif response.status_code == 403: log_debug.logger.error(res_json['message']) return status def resource(self): payload = dict() payload['mac_addr'] = self.mac_addr payload['access_token'] = self.access_token payload['cpu_percent'] = psutil.cpu_percent() payload['cpu_count'] = psutil.cpu_count(logical=False) payload['cpu_freq_current'] = psutil.cpu_freq()[0] payload['total_memory'] = int(psutil.virtual_memory()[0] / 1024 / 1024) payload['available_memory'] = int(psutil.virtual_memory()[1] / 1024 / 1024) payload['sensors_battery_percent'] = psutil.sensors_battery() payload['boot_time'] = psutil.datetime.datetime.fromtimestamp(psutil.boot_time()).strftime( "%Y-%m-%d %H:%M:%S") payload['create_time'] = datetime.datetime.now(self.tz).strftime("%Y-%m-%d %H:%M:%S") response = requests.post(url=self.url_prefix + Route.RESOURCE.value, data=payload) res_json = response.json() status = res_json['status'] if response.status_code == 200: log_debug.logger.info(res_json['message']) elif response.status_code == 403: log_debug.logger.error(res_json['message']) else: log_debug.logger.error('Unknown error') return status
true
true
f712dc5199108dec890f7de5823fae6ab14f629e
28,210
py
Python
tensorflow_transform/schema_inference.py
Saiprasad16/transform
774458bf0c296f8275fedf3ace303427654dace7
[ "Apache-2.0" ]
1
2021-05-10T10:52:06.000Z
2021-05-10T10:52:06.000Z
tensorflow_transform/schema_inference.py
Saiprasad16/transform
774458bf0c296f8275fedf3ace303427654dace7
[ "Apache-2.0" ]
null
null
null
tensorflow_transform/schema_inference.py
Saiprasad16/transform
774458bf0c296f8275fedf3ace303427654dace7
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Logic associated with schema inference and propagation. This module contains functionality to set the schema assciated with a Tensor, and to infer the schema for a tensor, including any information that has been set. This module will also contain any schema propagation logic, i.e. deducing the schema of a tensor from its parents in the graph. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from typing import Callable, Dict, Mapping, Optional, Tuple # GOOGLE-INITIALIZATION import tensorflow as tf from tensorflow_transform import common from tensorflow_transform import common_types from tensorflow_transform import graph_context from tensorflow_transform import tf2_utils from tensorflow_transform import tf_utils from tensorflow_transform.saved import saved_transform_io_v2 from tensorflow_transform.tf_metadata import schema_utils from google.protobuf import any_pb2 # pylint: disable=g-direct-tensorflow-import from tensorflow.python.eager import function from tensorflow.python.framework import ops # pylint: enable=g-direct-tensorflow-import from tensorflow_metadata.proto.v0 import schema_pb2 def _feature_spec_from_batched_tensors(tensors): """Infer a feature spec from a dict of tensors. Args: tensors: A dict whose keys are strings and values are `Tensor`, `SparseTensor`, or `RaggedTensor`s. Returns: A feature spec inferred from the types and shapes of the tensors. Raises: ValueError: If the feature spec cannot be inferred. TypeError: If any of the values of `tensors` are not a `Tensor`, `SparseTensor`, or `RaggedTensor`. """ feature_spec = {} for name, tensor in tensors.items(): if tensor.dtype not in (tf.string, tf.int64, tf.float32): raise ValueError('Feature {} ({}) had invalid dtype {} for feature spec' .format(name, tensor, tensor.dtype)) if isinstance(tensor, tf.SparseTensor): shape = tensor.get_shape() if shape.ndims > 2: feature_spec[name] = tf.io.SparseFeature( index_key=[ '{}$sparse_indices_{}'.format(name, idx) for idx in range(shape.ndims - 1) ], value_key='{}$sparse_values'.format(name), dtype=tensor.dtype, size=shape[1:], already_sorted=True) else: feature_spec[name] = tf.io.VarLenFeature(tensor.dtype) elif isinstance(tensor, tf.Tensor): shape = tensor.get_shape() if shape.ndims in [None, 0]: raise ValueError( 'Feature {} ({}) had invalid shape {} for FixedLenFeature: must ' 'have rank at least 1'.format(name, tensor, shape)) if any(dim is None for dim in shape.as_list()[1:]): raise ValueError( 'Feature {} ({}) had invalid shape {} for FixedLenFeature: apart ' 'from the batch dimension, all dimensions must have known size' .format(name, tensor, shape)) feature_spec[name] = tf.io.FixedLenFeature(shape.as_list()[1:], tensor.dtype) elif isinstance(tensor, tf.RaggedTensor): tf.compat.v1.logging.warn( 'Feature %s was a RaggedTensor. A Schema will be generated but the ' 'Schema cannot be used with a coder (e.g. to materialize output ' 'data) or to generated a feature spec.', name) # Arbitrarily select VarLenFeature. feature_spec[name] = tf.io.VarLenFeature(tensor.dtype) else: raise TypeError( 'Expected a Tensor, SparseTensor, or RaggedTensor got {} of type {} ' 'for feature {}' .format(tensor, type(tensor), name)) return feature_spec def infer_feature_schema(features, graph, session=None): """Given a dict of tensors, creates a `Schema`. Infers a schema, in the format of a tf.Transform `Schema`, for the given dictionary of tensors. If there is an override specified, we override the inferred schema for the given feature's tensor. An override has the meaning that we should set is_categorical=True. If session is not provided then we just set is_categorical=True, and if the session is provided then was also compute values of the tensors representing the min and max values and set them in the schema. If annotations have been specified, they are added to the output schema. Args: features: A dict mapping column names to `Tensor` or `SparseTensor`s. The `Tensor` or `SparseTensor`s should have a 0'th dimension which is interpreted as the batch dimension. graph: A `tf.Graph` used to determine schema overrides. session: (optional) A `tf.Session` used to compute schema overrides. If None, schema overrides will not be computed. Returns: A `Schema` proto. """ tensor_ranges = _get_tensor_ranges(graph) if session is None: tensor_ranges = {hashable: (None, None) for hashable in tensor_ranges} tensor_annotations = {} global_annotations = [] else: tensor_ranges = session.run(tensor_ranges) tensor_annotations, global_annotations = _get_schema_annotations( graph, session) modified_tensor_ranges = {} feature_annotations = {} for name, tensor in features.items(): if isinstance(tensor, tf.SparseTensor): values = tensor.values elif isinstance(tensor, tf.RaggedTensor): values = tensor.flat_values else: values = tensor hashable_values = tf_utils.hashable_tensor_or_op(values) if hashable_values in tensor_ranges: assert values.dtype == tf.int64 modified_tensor_ranges[name] = tensor_ranges[hashable_values] # tensor_annotations is a defaultdict(list) so always returns a list. feature_annotations[name] = tensor_annotations.get(hashable_values, []) return _infer_feature_schema_common(features, modified_tensor_ranges, feature_annotations, global_annotations) def infer_feature_schema_v2(features, concrete_metadata_fn, evaluate_schema_overrides): """Given a dict of tensors, creates a `Schema`. Infers a schema, in the format of a tf.Transform `Schema`, for the given dictionary of tensors. If there is an override specified, we override the inferred schema for the given feature's tensor. An override has the meaning that we should set is_categorical=True. If evaluate_schema_overrides is False then we just set is_categorical=True, and if evaluate_schema_overrides is True then we also compute values of the tensors representing the min and max values and set them in the schema. If annotations have been specified, they are added to the output schema. Args: features: A dict mapping column names to `Tensor` or `SparseTensor`s. The `Tensor` or `SparseTensor`s should have a 0'th dimension which is interpreted as the batch dimension. concrete_metadata_fn: A `tf.ConcreteFunction` that returns a dictionary containing the deferred annotations added to the graph when invoked with any valid input. evaluate_schema_overrides: A Boolean used to compute schema overrides. If `False`, schema overrides will not be computed. Returns: A `Schema` proto. """ optimized_concrete_fn = saved_transform_io_v2.optimize_concrete_function( concrete_metadata_fn) metadata = collections.defaultdict(list, optimized_concrete_fn()) if not evaluate_schema_overrides: tensor_ranges = { tensor.numpy().decode(): (None, None) for tensor in metadata[_TF_METADATA_TENSOR_COLLECTION] } tensor_annotations = {} global_annotations = [] else: tensor_ranges = _get_tensor_ranges_v2(metadata) tensor_annotations, global_annotations = _get_schema_annotations_v2( metadata) return _infer_feature_schema_common(features, tensor_ranges, tensor_annotations, global_annotations) def _infer_feature_schema_common(features, tensor_ranges, feature_annotations, global_annotations): """Given a dict of tensors, creates a `Schema`. Args: features: A dict mapping column names to `Tensor` or `SparseTensor`s. The `Tensor` or `SparseTensor`s should have a 0'th dimension which is interpreted as the batch dimension. tensor_ranges: A dict mapping a tensor to a tuple containing its min and max value. feature_annotations: dictionary from feature name to list of any_pb2.Any protos to be added as an annotation for that feature in the schema. global_annotations: list of any_pb2.Any protos to be added at the global schema level. Returns: A `Schema` proto. """ domains = {} feature_tags = collections.defaultdict(list) for name, tensor in features.items(): if isinstance(tensor, tf.RaggedTensor): # Add the 'ragged_tensor' tag which will cause coder and # schema_as_feature_spec to raise an error, as currently there is no # feature spec for ragged tensors. feature_tags[name].append(schema_utils.RAGGED_TENSOR_TAG) if name in tensor_ranges: min_value, max_value = tensor_ranges[name] domains[name] = schema_pb2.IntDomain( min=min_value, max=max_value, is_categorical=True) feature_spec = _feature_spec_from_batched_tensors(features) schema_proto = schema_utils.schema_from_feature_spec(feature_spec, domains) # Add the annotations to the schema. for annotation in global_annotations: schema_proto.annotation.extra_metadata.add().CopyFrom(annotation) # Build a map from logical feature names to Feature protos feature_protos_by_name = {} for feature in schema_proto.feature: feature_protos_by_name[feature.name] = feature for sparse_feature in schema_proto.sparse_feature: for index_feature in sparse_feature.index_feature: feature_protos_by_name.pop(index_feature.name) value_feature = feature_protos_by_name.pop( sparse_feature.value_feature.name) feature_protos_by_name[sparse_feature.name] = value_feature # Update annotations for feature_name, annotations in feature_annotations.items(): feature_proto = feature_protos_by_name[feature_name] for annotation in annotations: feature_proto.annotation.extra_metadata.add().CopyFrom(annotation) for feature_name, tags in feature_tags.items(): feature_proto = feature_protos_by_name[feature_name] for tag in tags: feature_proto.annotation.tag.append(tag) return schema_proto # Names of collections, which should all be the same length and contain tensors. # Each tensor in the first collection should have its min/max described by the # tensors in the other two collections. _TF_METADATA_TENSOR_COLLECTION = 'tft_schema_override_tensor' _TF_METADATA_TENSOR_MIN_COLLECTION = 'tft_schema_override_min' _TF_METADATA_TENSOR_MAX_COLLECTION = 'tft_schema_override_max' # Collections for adding to annotation.extra_metadata on the schema. Each # tensor in the first collection should have a proto type and proto message in # the other two collections _TF_METADATA_EXTRA_ANNOTATION = 'tft_schema_override_annotation_tensor' _TF_METADATA_EXTRA_ANNOTATION_TYPE_URL = 'tft_schema_override_annotation_type' _TF_METADATA_EXTRA_ANNOTATION_PROTO = 'tft_schema_override_annotation_proto' # Used to indicate that an annotation should be applied at the schema level. _TF_METADATA_EXTRA_ANNOTATION_GLOBAL = 'tft_schema_override_global_sentinel' def set_tensor_schema_override(tensor, min_value, max_value): """Override parts of the schema of a `Tensor`. Args: tensor: The `Tensor` whose range is being set. Must have dtype int64. min_value: A `Tensor` representing the min value of `tensor`. max_value: A `Tensor` representing the max value of `tensor`. Raises: ValueError: If any arguments are invalid. """ if not isinstance(tensor, tf.Tensor): raise ValueError('tensor {} was not a Tensor'.format(tensor)) if tensor.dtype != tf.int64: raise ValueError( 'Range can only be set for feature of type tf.int64, got {}'.format( tensor.dtype)) if not isinstance(min_value, tf.Tensor): raise ValueError('min_value {} was not a Tensor'.format(min_value)) if not isinstance(max_value, tf.Tensor): raise ValueError('max_value {} was not a Tensor'.format(max_value)) tf.compat.v1.add_to_collection(_TF_METADATA_TENSOR_COLLECTION, tensor) tf.compat.v1.add_to_collection(_TF_METADATA_TENSOR_MIN_COLLECTION, min_value) tf.compat.v1.add_to_collection(_TF_METADATA_TENSOR_MAX_COLLECTION, max_value) def _get_tensor_ranges(graph): """Lookup overrides for `Tensor`s or `SparseTensor`s.""" tensors = graph.get_collection(_TF_METADATA_TENSOR_COLLECTION) min_values = graph.get_collection(_TF_METADATA_TENSOR_MIN_COLLECTION) max_values = graph.get_collection(_TF_METADATA_TENSOR_MAX_COLLECTION) assert len(tensors) == len(min_values), '{} != {}'.format(tensors, min_values) assert len(tensors) == len(max_values), '{} != {}'.format(tensors, max_values) return dict(zip(map(tf_utils.hashable_tensor_or_op, tensors), zip(min_values, max_values))) def _get_tensor_ranges_v2(metadata): """Lookup overrides for `Tensor`s or `SparseTensor`s.""" tensors = metadata[_TF_METADATA_TENSOR_COLLECTION] min_values = metadata[_TF_METADATA_TENSOR_MIN_COLLECTION] max_values = metadata[_TF_METADATA_TENSOR_MAX_COLLECTION] assert len(tensors) == len(min_values), '{} != {}'.format(tensors, min_values) assert len(tensors) == len(max_values), '{} != {}'.format(tensors, max_values) return { tensor.numpy().decode(): (min_value.numpy(), max_value.numpy()) for (tensor, min_value, max_value) in zip(tensors, min_values, max_values) } def get_tensor_schema_override( tensor: common_types.TensorType) -> Tuple[tf.Tensor, tf.Tensor]: """Lookup schema overrides for a `Tensor` or `SparseTensor`.""" if isinstance(tensor, tf.SparseTensor): tensor = tensor.values overrides = _get_tensor_ranges(tensor.graph) min_max = overrides.get(tf_utils.hashable_tensor_or_op(tensor), None) if min_max is None: raise ValueError('Requested tensor does not have recorded min/max values') return min_max def annotate(type_url, proto_message, tensor=None): """Adds a deferred annotation to the schema. Experimental: This API is subject to change. This function allows analyzers or end users to annotate the post-transform schema with additional information based on analyzer output. These annotations are stored in the annotation.extra_metadata field of the tf.metadata schema: https://github.com/tensorflow/metadata/blob/master/tensorflow_metadata/proto/v0/schema.proto#L193 Args: type_url: A string or string `Tensor` containing the type url which uniquely identifies the type of the serialized proto message. See https://github.com/protocolbuffers/protobuf/blob/master/src/google/protobuf/any.proto#L151 proto_message: A deferred string tensor containing the serialized proto to write to the feature schema. tensor: (optional) If provided, the annotation will be written to the Feature proto that is created for this tensor in the schema. If None, the annotation is assumed to be global. Note: if the tensor is not present in the output signature of `preprocessing_fn`, this will be a no-op. """ if tensor is None: tensor = tf.constant('unused', name=_TF_METADATA_EXTRA_ANNOTATION_GLOBAL) if not isinstance(tensor, (tf.Tensor, tf.SparseTensor)): raise ValueError('tensor {} was not a Tensor'.format(tensor)) if not isinstance(proto_message, tf.Tensor): raise ValueError('proto_message {} was not a Tensor'.format(proto_message)) # If the type_url is passed as a plain string, create a string tensor. if not isinstance(type_url, tf.Tensor): type_url = tf.constant(type_url, dtype=tf.string) # Note: The tensors, types, and messages are stored in separate collections # because SavedModel only supports primitive types in collections. tf.compat.v1.add_to_collection(_TF_METADATA_EXTRA_ANNOTATION, tensor) tf.compat.v1.add_to_collection(_TF_METADATA_EXTRA_ANNOTATION_TYPE_URL, type_url) tf.compat.v1.add_to_collection(_TF_METADATA_EXTRA_ANNOTATION_PROTO, proto_message) def _get_schema_annotations(graph, session): """Fetch extra_metadata annotations to be applied to the schema. Extracts any deferred annotations that have been added to the graph and evaluates them to obtain any_pb2.Any proto messages. Args: graph: A `tf.Graph` used to determine schema overrides. session: (optional) A `tf.Session` used to compute schema annotations. If None, schema annotations will not be computed. Returns: tensor_annotations: dictionary from tensor to list of any_pb2.Any protos to be added as an annotation for that tensor's feature in the schema. global_annotations: list of any_pb2.Any protos to be added at the global schema level. """ tensors = graph.get_collection(_TF_METADATA_EXTRA_ANNOTATION) type_urls = session.run( graph.get_collection(_TF_METADATA_EXTRA_ANNOTATION_TYPE_URL)) proto_values = session.run( graph.get_collection(_TF_METADATA_EXTRA_ANNOTATION_PROTO)) tensor_annotation_keys = [] for tensor in tensors: # Entries meant for the global schema annotation will have names like # tft_schema_override_global_sentinel:0 or # transform/tft_schema_override_global_sentinel_1:0 tensor_name = tensor.name.split('/')[-1] if tensor_name.startswith(_TF_METADATA_EXTRA_ANNOTATION_GLOBAL): tensor_annotation_keys.append(_TF_METADATA_EXTRA_ANNOTATION_GLOBAL) else: tensor_annotation_keys.append(tf_utils.hashable_tensor_or_op(tensor)) return _get_schema_annotations_common(tensor_annotation_keys, type_urls, proto_values) def _get_schema_annotations_v2(metadata): """Fetch extra_metadata annotations to be applied to the schema. Extracts any deferred annotations that have been added to the graph and evaluates them to obtain any_pb2.Any proto messages. Args: metadata: A dictionary containing the deferred annotations added to the graph. Returns: tensor_annotations: dictionary from tensor to list of any_pb2.Any protos to be added as an annotation for that tensor's feature in the schema. global_annotations: list of any_pb2.Any protos to be added at the global schema level. """ type_urls = [ type_url.numpy() for type_url in metadata[_TF_METADATA_EXTRA_ANNOTATION_TYPE_URL] ] proto_values = [ proto_value.numpy() for proto_value in metadata[_TF_METADATA_EXTRA_ANNOTATION_PROTO] ] tensor_annotation_keys = [ tensor.numpy().decode() for tensor in metadata[_TF_METADATA_EXTRA_ANNOTATION] ] return _get_schema_annotations_common(tensor_annotation_keys, type_urls, proto_values) def _get_schema_annotations_common(tensor_annotation_keys, type_urls, proto_values): """Fetch extra_metadata annotations to be applied to the schema. Args: tensor_annotation_keys: A list containing either `_TF_METADATA_EXTRA_ANNOTATION_GLOBAL` or a hashed tensor representation corresponding to each entry in `proto_values`. If an entry is`_TF_METADATA_EXTRA_ANNOTATION_GLOBAL`, the corresponding any_pb2.Any proto in `proto_values` is returned in `global_annotations`. Otherwise, it is returned in `feature_annotations`. type_urls: A list of type urls corresponding to the serialized protos in `proto_values`. proto_values: A list of serialized any_pb2.Any protos. Returns: A tuple of: tensor_annotations: dictionary from tensor to list of any_pb2.Any protos to be added as an annotation for that tensor's feature in the schema. global_annotations: list of any_pb2.Any protos to be added at the global schema level. """ tensor_annotations = collections.defaultdict(list) global_annotations = [] if not common.IS_ANNOTATIONS_PB_AVAILABLE: return tensor_annotations, global_annotations assert len(tensor_annotation_keys) == len(type_urls) == len(proto_values) for (tensor_annotation_key, type_url, proto_value) in zip(tensor_annotation_keys, type_urls, proto_values): annotation = any_pb2.Any(type_url=type_url, value=proto_value) if (isinstance(_TF_METADATA_EXTRA_ANNOTATION_GLOBAL, type(tensor_annotation_key)) and tensor_annotation_key == _TF_METADATA_EXTRA_ANNOTATION_GLOBAL): global_annotations.append(annotation) else: tensor_annotations[tensor_annotation_key].append(annotation) return tensor_annotations, global_annotations def _get_tensor_value_to_key_map(features_dict): """Get reverse map from name of tensor values to key in `features_dict`.""" result = {} for key, tensor in features_dict.items(): if isinstance(tensor, tf.SparseTensor): values = tensor.values elif isinstance(tensor, tf.RaggedTensor): values = tensor.flat_values else: values = tensor result[values.name] = key return result def _get_schema_overrides(graph, tensor_name_to_key_map, tensor_collection_key, overrides_keys, default_tensor_name=None): """Obtain schema overrides from graph collections. For every tensor in the `tensor_collection_key` collection, the corresponding feature name is in `tensor_name_to_key_map` and its schema overrides are in the graph collections defined by keys in `overrides_keys`. If a tensor does not exist in `tensor_name_to_key_map` but its name starts with `default_tensor_name` (if provided), the overrides are returned with this key. Args: graph: A `FuncGraph`. tensor_name_to_key_map: A dictionary from tensor name to output feature key. tensor_collection_key: Key for the graph collection that contains list of tensors to annotate. overrides_keys: A list of graph collection keys that contain schema overrides/annotations. default_tensor_name: (Optional) A String. If provided, use as feature key if a tensor in the graph collections is not in `tensor_name_to_key_map`. Returns: A dictionary from graph collection keys to lists of features and their schema overrides/annotations. """ tensors = graph.get_collection(tensor_collection_key) overrides_list = [graph.get_collection(k) for k in overrides_keys] result = collections.defaultdict(list) assert (len(tensors) == len(overrides_list[0]) and all(len(lst) == len(overrides_list[0]) for lst in overrides_list)) for tensor, overrides_tuple in zip(tensors, zip(*overrides_list)): if tensor.name in tensor_name_to_key_map: result[tensor_collection_key].append(tensor_name_to_key_map[tensor.name]) else: if default_tensor_name is None: continue tensor_name = tensor.name.split('/')[-1] if tensor.dtype == tf.string and tensor_name.startswith( default_tensor_name): result[tensor_collection_key].append(default_tensor_name) else: continue # If a feature name was added to the result list for tensor_collection_key, # add its annotations as well. assert len(overrides_keys) == len(overrides_tuple) for overrides_key, override in zip(overrides_keys, overrides_tuple): result[overrides_key].append(override) return result def get_traced_metadata_fn( tensor_replacement_map: Optional[Dict[str, tf.Tensor]], preprocessing_fn: Callable[[Mapping[str, common_types.InputTensorType]], Mapping[str, common_types.InputTensorType]], structured_inputs: Mapping[str, common_types.InputTensorType], base_temp_dir: str, evaluate_schema_overrides: bool) -> function.Function: """Get a tf.function that returns a dictionary of annotations. Annotations are added to graph collections keyed by graph tensor names when `preprocessing_fn` is being traced. The metadata fn defined by this method converts the graph tensor names to output feature keys. If `evaluate_schema_overrides` is True, tracing the `preprocessing_fn` will add overrides for feature ranges (min/max) and/or feature protos to the graph collection, if applicable. These overrides are returned when the function returned by this method is invoked. Args: tensor_replacement_map: A map from placeholder tensor names to their evaluated replacement tensors. preprocessing_fn: A user defined python function to be traced. structured_inputs: A dictionary of placeholder inputs to `preprocessing_fn`. base_temp_dir: Base path to write any dummy assets to during tracing. evaluate_schema_overrides: If `False`, the returned dictionary contains a single key `_TF_METADATA_TENSOR_COLLECTION` as all other annotations are deferred. Else, the returned dictionary contains several deferred annotations. Returns: A dictionary whose keys represent the types of annotations and the values are collections of feature keys/annotations. """ # Since this is a TFT-internal function with constant outputs, autograph will # not affect its behavior. It will only increase tracing time, if enabled. # Hence, trace with `autograph=False` here. @tf.function(input_signature=[], autograph=False) def metadata_fn(): graph = ops.get_default_graph() inputs = tf2_utils.supply_missing_inputs(structured_inputs, batch_size=1) with graph_context.TFGraphContext( temp_dir=base_temp_dir, evaluated_replacements=tensor_replacement_map): transformed_features = preprocessing_fn(inputs) # Get a map from tensor value names to feature keys. reversed_features = _get_tensor_value_to_key_map(transformed_features) result = collections.defaultdict(list) if not evaluate_schema_overrides: schema_override_tensors = graph.get_collection( _TF_METADATA_TENSOR_COLLECTION) for tensor in schema_override_tensors: if tensor.name in reversed_features: result[_TF_METADATA_TENSOR_COLLECTION].append( reversed_features[tensor.name]) else: # Obtain schema overrides for feature tensor ranges. result.update( _get_schema_overrides(graph, reversed_features, _TF_METADATA_TENSOR_COLLECTION, [ _TF_METADATA_TENSOR_MIN_COLLECTION, _TF_METADATA_TENSOR_MAX_COLLECTION ])) # Obtain schema overrides for feature protos. If no feature tensor is in # the `_TF_METADATA_EXTRA_ANNOTATION` collection for a specified # annotation, `_TF_METADATA_EXTRA_ANNOTATION_GLOBAL` is used as the # feature name to indicate that this annotation should be added to the # global schema. result.update( _get_schema_overrides(graph, reversed_features, _TF_METADATA_EXTRA_ANNOTATION, [ _TF_METADATA_EXTRA_ANNOTATION_TYPE_URL, _TF_METADATA_EXTRA_ANNOTATION_PROTO ], _TF_METADATA_EXTRA_ANNOTATION_GLOBAL)) return result return metadata_fn
43.668731
99
0.731301
from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections from typing import Callable, Dict, Mapping, Optional, Tuple import tensorflow as tf from tensorflow_transform import common from tensorflow_transform import common_types from tensorflow_transform import graph_context from tensorflow_transform import tf2_utils from tensorflow_transform import tf_utils from tensorflow_transform.saved import saved_transform_io_v2 from tensorflow_transform.tf_metadata import schema_utils from google.protobuf import any_pb2 from tensorflow.python.eager import function from tensorflow.python.framework import ops from tensorflow_metadata.proto.v0 import schema_pb2 def _feature_spec_from_batched_tensors(tensors): feature_spec = {} for name, tensor in tensors.items(): if tensor.dtype not in (tf.string, tf.int64, tf.float32): raise ValueError('Feature {} ({}) had invalid dtype {} for feature spec' .format(name, tensor, tensor.dtype)) if isinstance(tensor, tf.SparseTensor): shape = tensor.get_shape() if shape.ndims > 2: feature_spec[name] = tf.io.SparseFeature( index_key=[ '{}$sparse_indices_{}'.format(name, idx) for idx in range(shape.ndims - 1) ], value_key='{}$sparse_values'.format(name), dtype=tensor.dtype, size=shape[1:], already_sorted=True) else: feature_spec[name] = tf.io.VarLenFeature(tensor.dtype) elif isinstance(tensor, tf.Tensor): shape = tensor.get_shape() if shape.ndims in [None, 0]: raise ValueError( 'Feature {} ({}) had invalid shape {} for FixedLenFeature: must ' 'have rank at least 1'.format(name, tensor, shape)) if any(dim is None for dim in shape.as_list()[1:]): raise ValueError( 'Feature {} ({}) had invalid shape {} for FixedLenFeature: apart ' 'from the batch dimension, all dimensions must have known size' .format(name, tensor, shape)) feature_spec[name] = tf.io.FixedLenFeature(shape.as_list()[1:], tensor.dtype) elif isinstance(tensor, tf.RaggedTensor): tf.compat.v1.logging.warn( 'Feature %s was a RaggedTensor. A Schema will be generated but the ' 'Schema cannot be used with a coder (e.g. to materialize output ' 'data) or to generated a feature spec.', name) feature_spec[name] = tf.io.VarLenFeature(tensor.dtype) else: raise TypeError( 'Expected a Tensor, SparseTensor, or RaggedTensor got {} of type {} ' 'for feature {}' .format(tensor, type(tensor), name)) return feature_spec def infer_feature_schema(features, graph, session=None): tensor_ranges = _get_tensor_ranges(graph) if session is None: tensor_ranges = {hashable: (None, None) for hashable in tensor_ranges} tensor_annotations = {} global_annotations = [] else: tensor_ranges = session.run(tensor_ranges) tensor_annotations, global_annotations = _get_schema_annotations( graph, session) modified_tensor_ranges = {} feature_annotations = {} for name, tensor in features.items(): if isinstance(tensor, tf.SparseTensor): values = tensor.values elif isinstance(tensor, tf.RaggedTensor): values = tensor.flat_values else: values = tensor hashable_values = tf_utils.hashable_tensor_or_op(values) if hashable_values in tensor_ranges: assert values.dtype == tf.int64 modified_tensor_ranges[name] = tensor_ranges[hashable_values] feature_annotations[name] = tensor_annotations.get(hashable_values, []) return _infer_feature_schema_common(features, modified_tensor_ranges, feature_annotations, global_annotations) def infer_feature_schema_v2(features, concrete_metadata_fn, evaluate_schema_overrides): optimized_concrete_fn = saved_transform_io_v2.optimize_concrete_function( concrete_metadata_fn) metadata = collections.defaultdict(list, optimized_concrete_fn()) if not evaluate_schema_overrides: tensor_ranges = { tensor.numpy().decode(): (None, None) for tensor in metadata[_TF_METADATA_TENSOR_COLLECTION] } tensor_annotations = {} global_annotations = [] else: tensor_ranges = _get_tensor_ranges_v2(metadata) tensor_annotations, global_annotations = _get_schema_annotations_v2( metadata) return _infer_feature_schema_common(features, tensor_ranges, tensor_annotations, global_annotations) def _infer_feature_schema_common(features, tensor_ranges, feature_annotations, global_annotations): domains = {} feature_tags = collections.defaultdict(list) for name, tensor in features.items(): if isinstance(tensor, tf.RaggedTensor): feature_tags[name].append(schema_utils.RAGGED_TENSOR_TAG) if name in tensor_ranges: min_value, max_value = tensor_ranges[name] domains[name] = schema_pb2.IntDomain( min=min_value, max=max_value, is_categorical=True) feature_spec = _feature_spec_from_batched_tensors(features) schema_proto = schema_utils.schema_from_feature_spec(feature_spec, domains) for annotation in global_annotations: schema_proto.annotation.extra_metadata.add().CopyFrom(annotation) feature_protos_by_name = {} for feature in schema_proto.feature: feature_protos_by_name[feature.name] = feature for sparse_feature in schema_proto.sparse_feature: for index_feature in sparse_feature.index_feature: feature_protos_by_name.pop(index_feature.name) value_feature = feature_protos_by_name.pop( sparse_feature.value_feature.name) feature_protos_by_name[sparse_feature.name] = value_feature for feature_name, annotations in feature_annotations.items(): feature_proto = feature_protos_by_name[feature_name] for annotation in annotations: feature_proto.annotation.extra_metadata.add().CopyFrom(annotation) for feature_name, tags in feature_tags.items(): feature_proto = feature_protos_by_name[feature_name] for tag in tags: feature_proto.annotation.tag.append(tag) return schema_proto _TF_METADATA_TENSOR_COLLECTION = 'tft_schema_override_tensor' _TF_METADATA_TENSOR_MIN_COLLECTION = 'tft_schema_override_min' _TF_METADATA_TENSOR_MAX_COLLECTION = 'tft_schema_override_max' _TF_METADATA_EXTRA_ANNOTATION = 'tft_schema_override_annotation_tensor' _TF_METADATA_EXTRA_ANNOTATION_TYPE_URL = 'tft_schema_override_annotation_type' _TF_METADATA_EXTRA_ANNOTATION_PROTO = 'tft_schema_override_annotation_proto' _TF_METADATA_EXTRA_ANNOTATION_GLOBAL = 'tft_schema_override_global_sentinel' def set_tensor_schema_override(tensor, min_value, max_value): if not isinstance(tensor, tf.Tensor): raise ValueError('tensor {} was not a Tensor'.format(tensor)) if tensor.dtype != tf.int64: raise ValueError( 'Range can only be set for feature of type tf.int64, got {}'.format( tensor.dtype)) if not isinstance(min_value, tf.Tensor): raise ValueError('min_value {} was not a Tensor'.format(min_value)) if not isinstance(max_value, tf.Tensor): raise ValueError('max_value {} was not a Tensor'.format(max_value)) tf.compat.v1.add_to_collection(_TF_METADATA_TENSOR_COLLECTION, tensor) tf.compat.v1.add_to_collection(_TF_METADATA_TENSOR_MIN_COLLECTION, min_value) tf.compat.v1.add_to_collection(_TF_METADATA_TENSOR_MAX_COLLECTION, max_value) def _get_tensor_ranges(graph): tensors = graph.get_collection(_TF_METADATA_TENSOR_COLLECTION) min_values = graph.get_collection(_TF_METADATA_TENSOR_MIN_COLLECTION) max_values = graph.get_collection(_TF_METADATA_TENSOR_MAX_COLLECTION) assert len(tensors) == len(min_values), '{} != {}'.format(tensors, min_values) assert len(tensors) == len(max_values), '{} != {}'.format(tensors, max_values) return dict(zip(map(tf_utils.hashable_tensor_or_op, tensors), zip(min_values, max_values))) def _get_tensor_ranges_v2(metadata): tensors = metadata[_TF_METADATA_TENSOR_COLLECTION] min_values = metadata[_TF_METADATA_TENSOR_MIN_COLLECTION] max_values = metadata[_TF_METADATA_TENSOR_MAX_COLLECTION] assert len(tensors) == len(min_values), '{} != {}'.format(tensors, min_values) assert len(tensors) == len(max_values), '{} != {}'.format(tensors, max_values) return { tensor.numpy().decode(): (min_value.numpy(), max_value.numpy()) for (tensor, min_value, max_value) in zip(tensors, min_values, max_values) } def get_tensor_schema_override( tensor: common_types.TensorType) -> Tuple[tf.Tensor, tf.Tensor]: if isinstance(tensor, tf.SparseTensor): tensor = tensor.values overrides = _get_tensor_ranges(tensor.graph) min_max = overrides.get(tf_utils.hashable_tensor_or_op(tensor), None) if min_max is None: raise ValueError('Requested tensor does not have recorded min/max values') return min_max def annotate(type_url, proto_message, tensor=None): if tensor is None: tensor = tf.constant('unused', name=_TF_METADATA_EXTRA_ANNOTATION_GLOBAL) if not isinstance(tensor, (tf.Tensor, tf.SparseTensor)): raise ValueError('tensor {} was not a Tensor'.format(tensor)) if not isinstance(proto_message, tf.Tensor): raise ValueError('proto_message {} was not a Tensor'.format(proto_message)) if not isinstance(type_url, tf.Tensor): type_url = tf.constant(type_url, dtype=tf.string) tf.compat.v1.add_to_collection(_TF_METADATA_EXTRA_ANNOTATION, tensor) tf.compat.v1.add_to_collection(_TF_METADATA_EXTRA_ANNOTATION_TYPE_URL, type_url) tf.compat.v1.add_to_collection(_TF_METADATA_EXTRA_ANNOTATION_PROTO, proto_message) def _get_schema_annotations(graph, session): tensors = graph.get_collection(_TF_METADATA_EXTRA_ANNOTATION) type_urls = session.run( graph.get_collection(_TF_METADATA_EXTRA_ANNOTATION_TYPE_URL)) proto_values = session.run( graph.get_collection(_TF_METADATA_EXTRA_ANNOTATION_PROTO)) tensor_annotation_keys = [] for tensor in tensors: tensor_name = tensor.name.split('/')[-1] if tensor_name.startswith(_TF_METADATA_EXTRA_ANNOTATION_GLOBAL): tensor_annotation_keys.append(_TF_METADATA_EXTRA_ANNOTATION_GLOBAL) else: tensor_annotation_keys.append(tf_utils.hashable_tensor_or_op(tensor)) return _get_schema_annotations_common(tensor_annotation_keys, type_urls, proto_values) def _get_schema_annotations_v2(metadata): type_urls = [ type_url.numpy() for type_url in metadata[_TF_METADATA_EXTRA_ANNOTATION_TYPE_URL] ] proto_values = [ proto_value.numpy() for proto_value in metadata[_TF_METADATA_EXTRA_ANNOTATION_PROTO] ] tensor_annotation_keys = [ tensor.numpy().decode() for tensor in metadata[_TF_METADATA_EXTRA_ANNOTATION] ] return _get_schema_annotations_common(tensor_annotation_keys, type_urls, proto_values) def _get_schema_annotations_common(tensor_annotation_keys, type_urls, proto_values): tensor_annotations = collections.defaultdict(list) global_annotations = [] if not common.IS_ANNOTATIONS_PB_AVAILABLE: return tensor_annotations, global_annotations assert len(tensor_annotation_keys) == len(type_urls) == len(proto_values) for (tensor_annotation_key, type_url, proto_value) in zip(tensor_annotation_keys, type_urls, proto_values): annotation = any_pb2.Any(type_url=type_url, value=proto_value) if (isinstance(_TF_METADATA_EXTRA_ANNOTATION_GLOBAL, type(tensor_annotation_key)) and tensor_annotation_key == _TF_METADATA_EXTRA_ANNOTATION_GLOBAL): global_annotations.append(annotation) else: tensor_annotations[tensor_annotation_key].append(annotation) return tensor_annotations, global_annotations def _get_tensor_value_to_key_map(features_dict): result = {} for key, tensor in features_dict.items(): if isinstance(tensor, tf.SparseTensor): values = tensor.values elif isinstance(tensor, tf.RaggedTensor): values = tensor.flat_values else: values = tensor result[values.name] = key return result def _get_schema_overrides(graph, tensor_name_to_key_map, tensor_collection_key, overrides_keys, default_tensor_name=None): tensors = graph.get_collection(tensor_collection_key) overrides_list = [graph.get_collection(k) for k in overrides_keys] result = collections.defaultdict(list) assert (len(tensors) == len(overrides_list[0]) and all(len(lst) == len(overrides_list[0]) for lst in overrides_list)) for tensor, overrides_tuple in zip(tensors, zip(*overrides_list)): if tensor.name in tensor_name_to_key_map: result[tensor_collection_key].append(tensor_name_to_key_map[tensor.name]) else: if default_tensor_name is None: continue tensor_name = tensor.name.split('/')[-1] if tensor.dtype == tf.string and tensor_name.startswith( default_tensor_name): result[tensor_collection_key].append(default_tensor_name) else: continue assert len(overrides_keys) == len(overrides_tuple) for overrides_key, override in zip(overrides_keys, overrides_tuple): result[overrides_key].append(override) return result def get_traced_metadata_fn( tensor_replacement_map: Optional[Dict[str, tf.Tensor]], preprocessing_fn: Callable[[Mapping[str, common_types.InputTensorType]], Mapping[str, common_types.InputTensorType]], structured_inputs: Mapping[str, common_types.InputTensorType], base_temp_dir: str, evaluate_schema_overrides: bool) -> function.Function: @tf.function(input_signature=[], autograph=False) def metadata_fn(): graph = ops.get_default_graph() inputs = tf2_utils.supply_missing_inputs(structured_inputs, batch_size=1) with graph_context.TFGraphContext( temp_dir=base_temp_dir, evaluated_replacements=tensor_replacement_map): transformed_features = preprocessing_fn(inputs) reversed_features = _get_tensor_value_to_key_map(transformed_features) result = collections.defaultdict(list) if not evaluate_schema_overrides: schema_override_tensors = graph.get_collection( _TF_METADATA_TENSOR_COLLECTION) for tensor in schema_override_tensors: if tensor.name in reversed_features: result[_TF_METADATA_TENSOR_COLLECTION].append( reversed_features[tensor.name]) else: result.update( _get_schema_overrides(graph, reversed_features, _TF_METADATA_TENSOR_COLLECTION, [ _TF_METADATA_TENSOR_MIN_COLLECTION, _TF_METADATA_TENSOR_MAX_COLLECTION ])) result.update( _get_schema_overrides(graph, reversed_features, _TF_METADATA_EXTRA_ANNOTATION, [ _TF_METADATA_EXTRA_ANNOTATION_TYPE_URL, _TF_METADATA_EXTRA_ANNOTATION_PROTO ], _TF_METADATA_EXTRA_ANNOTATION_GLOBAL)) return result return metadata_fn
true
true
f712dc6eb272c7e1cfc8af53279c9be612493ee3
132
py
Python
chia/util/default_root.py
wei-zero/shell-blockchain
f792a54b39d491efbac8e165228268716e07409e
[ "Apache-2.0" ]
1
2021-09-19T18:58:32.000Z
2021-09-19T18:58:32.000Z
chia/util/default_root.py
wei-zero/shell-blockchain
f792a54b39d491efbac8e165228268716e07409e
[ "Apache-2.0" ]
null
null
null
chia/util/default_root.py
wei-zero/shell-blockchain
f792a54b39d491efbac8e165228268716e07409e
[ "Apache-2.0" ]
null
null
null
import os from pathlib import Path DEFAULT_ROOT_PATH = Path(os.path.expanduser(os.getenv("SHL_ROOT", "~/.shl/mainnet"))).resolve()
26.4
95
0.75
import os from pathlib import Path DEFAULT_ROOT_PATH = Path(os.path.expanduser(os.getenv("SHL_ROOT", "~/.shl/mainnet"))).resolve()
true
true
f712dd6bed08e1c48b8aaf9f59279ca864fa33d6
16,424
py
Python
yatube/posts/tests/test_views.py
Dimanitto/yatube
1d93d5b90c2a9f7c888ce83eac5acdc4d9ed40e2
[ "MIT" ]
null
null
null
yatube/posts/tests/test_views.py
Dimanitto/yatube
1d93d5b90c2a9f7c888ce83eac5acdc4d9ed40e2
[ "MIT" ]
null
null
null
yatube/posts/tests/test_views.py
Dimanitto/yatube
1d93d5b90c2a9f7c888ce83eac5acdc4d9ed40e2
[ "MIT" ]
null
null
null
import shutil import tempfile from django.core.cache import cache from http import HTTPStatus from django.conf import settings from django.core.files.uploadedfile import SimpleUploadedFile from django.contrib.auth import get_user_model from django.test import Client, TestCase, override_settings from django.urls import reverse from ..models import Group, Post, Comment, Follow from django import forms User = get_user_model() # Создаем временную папку для медиа-файлов; # на момент теста медиа папка будет переопределена TEMP_MEDIA_ROOT = tempfile.mkdtemp(dir=settings.BASE_DIR) # Для сохранения media-файлов в тестах будет использоваться # временная папка TEMP_MEDIA_ROOT, а потом мы ее удалим @override_settings(MEDIA_ROOT=TEMP_MEDIA_ROOT) class TaskPagesTests(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.user = User.objects.create_user(username='tester') # Создадим запись в БД small_gif = ( b'\x47\x49\x46\x38\x39\x61\x02\x00' b'\x01\x00\x80\x00\x00\x00\x00\x00' b'\xFF\xFF\xFF\x21\xF9\x04\x00\x00' b'\x00\x00\x00\x2C\x00\x00\x00\x00' b'\x02\x00\x01\x00\x00\x02\x02\x0C' b'\x0A\x00\x3B' ) uploaded = SimpleUploadedFile( name='small.gif', content=small_gif, content_type='image/gif' ) cls.group = Group.objects.create( title='Тестовая группа', slug='test-slug', description='Тестовое описание', ) cls.post = Post.objects.create( author=cls.user, text='Тестовая пост', group=cls.group, image=uploaded, ) @classmethod def tearDownClass(cls): super().tearDownClass() # Модуль shutil - библиотека Python с удобными инструментами # для управления файлами и директориями: # создание, удаление, копирование, перемещение, изменение папок, файлов # Метод shutil.rmtree удаляет директорию и всё её содержимое shutil.rmtree(TEMP_MEDIA_ROOT, ignore_errors=True) def setUp(self): # Создаем авторизованный клиент self.user = User.objects.create_user(username='auth') self.authorized_client = Client() self.authorized_client.force_login(self.user) # Проверяем используемые шаблоны def test_pages_uses_correct_template(self): """URL-адрес использует соответствующий шаблон.""" self.authorized_client.force_login(self.post.author) # Собираем в словарь пары "reverse(name): имя_html_шаблона" templates_pages_names = { reverse('posts:index'): 'posts/index.html', reverse('posts:group_posts', kwargs={'slug': 'test-slug'}): 'posts/group_list.html', reverse('posts:profile', kwargs={'username': 'tester'}): 'posts/profile.html', reverse('posts:post_detail', kwargs={'post_id': 1}): 'posts/post_detail.html', reverse('posts:post_edit', kwargs={'post_id': 1}): 'posts/create_post.html', reverse('posts:post_create'): 'posts/create_post.html', } # Проверяем, что при обращении к name вызывается # соответствующий HTML-шаблон for reverse_name, template in templates_pages_names.items(): with self.subTest(reverse_name=reverse_name): response = self.authorized_client.get(reverse_name) self.assertTemplateUsed(response, template) # Проверяем, что словарь context страницы index # содержит ожидаемые значения def test_index_detail_pages_show_correct_context(self): """Шаблон index сформирован с правильным контекстом.""" response = (self.authorized_client.get(reverse('posts:index'))) # Взяли первый элемент из списка и проверили, что его содержание # совпадает с ожидаемым first_object = response.context['page_obj'][0] # Проверим все объекты контекста self.assertEqual(first_object.author, self.post.author) self.assertEqual(first_object.group, self.group) self.assertEqual(first_object.text, 'Тестовая пост') self.assertEqual(first_object.image, 'posts/small.gif') def test_group_list_detail_pages_show_correct_context(self): """Шаблон group_posts сформирован с правильным контекстом.""" response = (self.authorized_client. get(reverse('posts:group_posts', kwargs={'slug': 'test-slug'})) ) # Взяли первый элемент из списка и проверили, что его содержание # совпадает с ожидаемым отфильтрованным first_object = response.context['group'] second_object = response.context['page_obj'][0] task_group_0 = first_object.title self.assertEqual(task_group_0, 'Тестовая группа') self.assertEqual(second_object.image, 'posts/small.gif') def test_profile_detail_show_correct_context(self): """Шаблон profile отфильтрован по пользователю""" response = (self.authorized_client. get(reverse('posts:profile', kwargs={'username': 'tester'})) ) first_object = response.context['client'] second_object = response.context['page_obj'][0] task_client_0 = first_object.username task_post_0 = second_object.text # Проверим пост и пользователя self.assertEqual(task_client_0, 'tester') self.assertEqual(task_post_0, 'Тестовая пост') self.assertEqual(second_object.image, 'posts/small.gif') def test_post_detail_show_correct_context(self): """Шаблон post detail отфильтрован по id""" response = (self.authorized_client. get(reverse('posts:post_detail', kwargs={'post_id': 1})) ) first_object = response.context['count'] second_object = response.context['post'] task_count_0 = first_object task_post_0 = second_object.text # Проверим что пост один self.assertEqual(task_count_0, 1) self.assertEqual(task_post_0, 'Тестовая пост') self.assertEqual(second_object.image, 'posts/small.gif') def test_edit_post_show_correct_context(self): """Шаблон create post форма редактирования поста""" # Снова нужно авторизироваться под автором поста (tester), # без этого мы не сможем редактировать пост от имени (auth) self.authorized_client.force_login(self.post.author) response = (self.authorized_client. get(reverse('posts:post_edit', kwargs={'post_id': 1})) ) # Словарь ожидаемых типов полей формы: # указываем, объектами какого класса должны быть поля формы form_fields = { # При создании формы поля модели типа TextField # преобразуются в CharField с виджетом forms.Textarea 'text': forms.fields.CharField, 'group': forms.fields.ChoiceField, } # Проверяем, что типы полей формы в словаре context # соответствуют ожиданиям for value, expected in form_fields.items(): with self.subTest(value=value): form_field = response.context.get('form').fields.get(value) # Проверяет, что поле формы является экземпляром # указанного класса self.assertIsInstance(form_field, expected) def test_post_create_show_correct_context(self): """Шаблон create post форма создания поста""" response = self.authorized_client.get(reverse('posts:post_create')) form_fields = { 'text': forms.fields.CharField, 'group': forms.fields.ChoiceField, } for value, expected in form_fields.items(): with self.subTest(value=value): form_field = response.context.get('form').fields.get(value) self.assertIsInstance(form_field, expected) def test_post_additional_verification_create(self): """Проверка пост не попал в другую группу""" # Создадим группу с постом различную чтобы сравнить group = Group.objects.create( title='Заголовок для 2 тестовой группы', slug='test_slug2' ) Post.objects.create( author=self.user, text='Test post 2', group=group, ) # Т.к мы создали второй пост с другой группой # проверим что на странице группы этот пост один response = self.authorized_client.get( reverse('posts:group_posts', kwargs={'slug': group.slug})) count = response.context["page_obj"].object_list # Теперь всего постов 2, и только один должен быть # на странице группы self.assertEqual(len(count), Post.objects.count() - 1) self.assertEqual(response.status_code, 200) def test_comment_succesful(self): """Комментарий появляется на странице поста""" Comment.objects.create( post=self.post, author=self.user, text='Test comment' ) response = (self.authorized_client. get(reverse('posts:post_detail', kwargs={'post_id': 1})) ) first_object = response.context['comments'] # Из-за QuerySet пришлось добавить .get() # Без нее была бы ошибка, как ниже # <QuerySet [<Comment: Test comment>]> != 'Test comment' self.assertEqual(first_object.get().text, 'Test comment') # Проверим и автора self.assertEqual(first_object.get().author, self.user) # Проверим и пост относящийся к комментарию self.assertEqual(first_object.get().post.text, self.post.text) def test_cache(self): """Проверка кеширования главной страницы""" # Логика теста: при удалении записи из базы, она остаётся # в response.content главной страницы до тех пор, # пока кэш не будет очищен принудительно. response = self.authorized_client.get(reverse('posts:index')) count_before_del = Post.objects.count() instance = Post.objects.get(text='Тестовая пост') # Удалим едиственный пост instance.delete() first_obj = response.content # Удалим принудительно кеш, не ждать же нам 20 секунд) cache.clear() response = self.authorized_client.get(reverse('posts:index')) second_obj = response.content count_after_del = Post.objects.count() # Проверим что content до удаления и после кеширования разный self.assertNotEqual(first_obj, second_obj) # Кол-во постов = 0 self.assertEqual(count_after_del, count_before_del - 1) def test_new_post_in_feed_who_followed(self): """Новая запись пользователя появляется в ленте тех, кто на него подписан""" # Подпишемся на tester'a у него 1 пост Follow.objects.create( user=self.user, author=self.post.author ) response = self.authorized_client.get(reverse('posts:follow_index')) first_object = response.context['page_obj'][0] # Проверим пост и пользователя что он есть в ленте self.assertEqual(first_object.author.username, 'tester') self.assertEqual(first_object.text, 'Тестовая пост') self.assertEqual(first_object.image, 'posts/small.gif') def test_new_post_not_appear_in_feed_who_unfollowed(self): """Новая запись пользователя не появляется в ленте тех, кто не подписан на него""" # Создадим второго авторизованного не подписанного на автора self.user = User.objects.create_user(username='auth_without') self.authorized_client = Client() self.authorized_client.force_login(self.user) response = self.authorized_client.get(reverse('posts:follow_index')) # Т.к он ни на кого не подписан в ленте у него 0 постов # QuerySet будет пустым без единого объекта # object_list он вернет список для того чтобы подсчитать кол-во second_object = response.context['page_obj'] self.assertEqual(second_object.object_list.count(), 0) def test_auth_user_can_follow(self): """Авторизованный пользователь может подписываться на других пользователей""" count = Follow.objects.count() # Создадим подписку Follow.objects.create( user=self.user, author=self.post.author ) url = f'/profile/{self.user}/follow/' # Проверим поочереди для авторизованного и для гостя response = self.authorized_client.get(url) # Т.к там идет редирект сразу код проверки 302 self.assertEqual(response.status_code, HTTPStatus.FOUND) # Проверим что кол-во подписок увеличилось self.assertEqual(Follow.objects.count(), count + 1) # Все поля соотвествуют self.assertTrue( Follow.objects.filter( user=self.user, author=self.post.author ).exists() ) self.guest_client = Client() response = self.guest_client.get(url) # Проверим что не авторизованный пользователь перейдет # на страницу входа self.assertEqual(response.url, f'/auth/login/?next={url}') def test_auth_user_can_unfollow(self): """Авторизованный пользователь может удалять подписки""" # Создадим подписку Follow.objects.create( user=self.user, author=self.post.author ) count = Follow.objects.count() # Удалим подписку Follow.objects.filter( user=self.user, author=self.post.author ).delete() self.assertEqual(Follow.objects.count(), count - 1) url = f'/profile/{self.user}/unfollow/' # Проверим поочереди для авторизованного и для гостя response = self.authorized_client.get(url) # Т.к там идет редирект сразу код проверки 302 self.assertEqual(response.status_code, HTTPStatus.FOUND) self.guest_client = Client() response = self.guest_client.get(url) # Проверим что не авторизованный пользователь перейдет # на страницу входа self.assertEqual(response.url, f'/auth/login/?next={url}') class PaginatorViewsTest(TestCase): # Здесь создаются фикстуры: клиент и 13 тестовых записей. @classmethod def setUpClass(cls): super().setUpClass() cls.user = User.objects.create_user(username='tester') cls.group = Group.objects.create( title='Тестовая группа', slug='test-slug', description='Тестовое описание', ) # Создадим 13 записей в БД for i in range(13): cls.post = Post.objects.create( author=cls.user, text=f'Тестовая пост {i}', # Привяжем созданную выше группу к посту group=cls.group, ) def setUp(self): # Создаем авторизованный клиент self.user = User.objects.create_user(username='auth') self.authorized_client = Client() self.authorized_client.force_login(self.user) def test_first_page_contains_ten_records(self): urls = ( reverse('posts:index'), reverse('posts:group_posts', kwargs={'slug': 'test-slug'}), reverse('posts:profile', kwargs={'username': 'tester'}), ) for url in urls: response = self.authorized_client.get(url) # Проверка: количество постов на первой странице равно 10. self.assertEqual(len(response.context['page_obj']), 10) def test_second_page_contains_three_records(self): # Проверка: на второй странице должно быть три поста. urls = ( reverse('posts:index'), reverse('posts:group_posts', kwargs={'slug': 'test-slug'}), reverse('posts:profile', kwargs={'username': 'tester'}), ) for url in urls: response = self.authorized_client.get(url + '?page=3') self.assertEqual(len(response.context['page_obj']), 3)
42.439276
79
0.631089
import shutil import tempfile from django.core.cache import cache from http import HTTPStatus from django.conf import settings from django.core.files.uploadedfile import SimpleUploadedFile from django.contrib.auth import get_user_model from django.test import Client, TestCase, override_settings from django.urls import reverse from ..models import Group, Post, Comment, Follow from django import forms User = get_user_model() TEMP_MEDIA_ROOT = tempfile.mkdtemp(dir=settings.BASE_DIR) @override_settings(MEDIA_ROOT=TEMP_MEDIA_ROOT) class TaskPagesTests(TestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.user = User.objects.create_user(username='tester') small_gif = ( b'\x47\x49\x46\x38\x39\x61\x02\x00' b'\x01\x00\x80\x00\x00\x00\x00\x00' b'\xFF\xFF\xFF\x21\xF9\x04\x00\x00' b'\x00\x00\x00\x2C\x00\x00\x00\x00' b'\x02\x00\x01\x00\x00\x02\x02\x0C' b'\x0A\x00\x3B' ) uploaded = SimpleUploadedFile( name='small.gif', content=small_gif, content_type='image/gif' ) cls.group = Group.objects.create( title='Тестовая группа', slug='test-slug', description='Тестовое описание', ) cls.post = Post.objects.create( author=cls.user, text='Тестовая пост', group=cls.group, image=uploaded, ) @classmethod def tearDownClass(cls): super().tearDownClass() shutil.rmtree(TEMP_MEDIA_ROOT, ignore_errors=True) def setUp(self): self.user = User.objects.create_user(username='auth') self.authorized_client = Client() self.authorized_client.force_login(self.user) def test_pages_uses_correct_template(self): self.authorized_client.force_login(self.post.author) templates_pages_names = { reverse('posts:index'): 'posts/index.html', reverse('posts:group_posts', kwargs={'slug': 'test-slug'}): 'posts/group_list.html', reverse('posts:profile', kwargs={'username': 'tester'}): 'posts/profile.html', reverse('posts:post_detail', kwargs={'post_id': 1}): 'posts/post_detail.html', reverse('posts:post_edit', kwargs={'post_id': 1}): 'posts/create_post.html', reverse('posts:post_create'): 'posts/create_post.html', } for reverse_name, template in templates_pages_names.items(): with self.subTest(reverse_name=reverse_name): response = self.authorized_client.get(reverse_name) self.assertTemplateUsed(response, template) def test_index_detail_pages_show_correct_context(self): response = (self.authorized_client.get(reverse('posts:index'))) first_object = response.context['page_obj'][0] self.assertEqual(first_object.author, self.post.author) self.assertEqual(first_object.group, self.group) self.assertEqual(first_object.text, 'Тестовая пост') self.assertEqual(first_object.image, 'posts/small.gif') def test_group_list_detail_pages_show_correct_context(self): response = (self.authorized_client. get(reverse('posts:group_posts', kwargs={'slug': 'test-slug'})) ) first_object = response.context['group'] second_object = response.context['page_obj'][0] task_group_0 = first_object.title self.assertEqual(task_group_0, 'Тестовая группа') self.assertEqual(second_object.image, 'posts/small.gif') def test_profile_detail_show_correct_context(self): response = (self.authorized_client. get(reverse('posts:profile', kwargs={'username': 'tester'})) ) first_object = response.context['client'] second_object = response.context['page_obj'][0] task_client_0 = first_object.username task_post_0 = second_object.text self.assertEqual(task_client_0, 'tester') self.assertEqual(task_post_0, 'Тестовая пост') self.assertEqual(second_object.image, 'posts/small.gif') def test_post_detail_show_correct_context(self): response = (self.authorized_client. get(reverse('posts:post_detail', kwargs={'post_id': 1})) ) first_object = response.context['count'] second_object = response.context['post'] task_count_0 = first_object task_post_0 = second_object.text self.assertEqual(task_count_0, 1) self.assertEqual(task_post_0, 'Тестовая пост') self.assertEqual(second_object.image, 'posts/small.gif') def test_edit_post_show_correct_context(self): self.authorized_client.force_login(self.post.author) response = (self.authorized_client. get(reverse('posts:post_edit', kwargs={'post_id': 1})) ) form_fields = { 'text': forms.fields.CharField, 'group': forms.fields.ChoiceField, } for value, expected in form_fields.items(): with self.subTest(value=value): form_field = response.context.get('form').fields.get(value) self.assertIsInstance(form_field, expected) def test_post_create_show_correct_context(self): response = self.authorized_client.get(reverse('posts:post_create')) form_fields = { 'text': forms.fields.CharField, 'group': forms.fields.ChoiceField, } for value, expected in form_fields.items(): with self.subTest(value=value): form_field = response.context.get('form').fields.get(value) self.assertIsInstance(form_field, expected) def test_post_additional_verification_create(self): group = Group.objects.create( title='Заголовок для 2 тестовой группы', slug='test_slug2' ) Post.objects.create( author=self.user, text='Test post 2', group=group, ) response = self.authorized_client.get( reverse('posts:group_posts', kwargs={'slug': group.slug})) count = response.context["page_obj"].object_list self.assertEqual(len(count), Post.objects.count() - 1) self.assertEqual(response.status_code, 200) def test_comment_succesful(self): Comment.objects.create( post=self.post, author=self.user, text='Test comment' ) response = (self.authorized_client. get(reverse('posts:post_detail', kwargs={'post_id': 1})) ) first_object = response.context['comments'] self.assertEqual(first_object.get().text, 'Test comment') self.assertEqual(first_object.get().author, self.user) self.assertEqual(first_object.get().post.text, self.post.text) def test_cache(self): response = self.authorized_client.get(reverse('posts:index')) count_before_del = Post.objects.count() instance = Post.objects.get(text='Тестовая пост') instance.delete() first_obj = response.content cache.clear() response = self.authorized_client.get(reverse('posts:index')) second_obj = response.content count_after_del = Post.objects.count() self.assertNotEqual(first_obj, second_obj) self.assertEqual(count_after_del, count_before_del - 1) def test_new_post_in_feed_who_followed(self): Follow.objects.create( user=self.user, author=self.post.author ) response = self.authorized_client.get(reverse('posts:follow_index')) first_object = response.context['page_obj'][0] # Проверим пост и пользователя что он есть в ленте self.assertEqual(first_object.author.username, 'tester') self.assertEqual(first_object.text, 'Тестовая пост') self.assertEqual(first_object.image, 'posts/small.gif') def test_new_post_not_appear_in_feed_who_unfollowed(self): # Создадим второго авторизованного не подписанного на автора self.user = User.objects.create_user(username='auth_without') self.authorized_client = Client() self.authorized_client.force_login(self.user) response = self.authorized_client.get(reverse('posts:follow_index')) # Т.к он ни на кого не подписан в ленте у него 0 постов # QuerySet будет пустым без единого объекта # object_list он вернет список для того чтобы подсчитать кол-во second_object = response.context['page_obj'] self.assertEqual(second_object.object_list.count(), 0) def test_auth_user_can_follow(self): count = Follow.objects.count() # Создадим подписку Follow.objects.create( user=self.user, author=self.post.author ) url = f'/profile/{self.user}/follow/' # Проверим поочереди для авторизованного и для гостя response = self.authorized_client.get(url) # Т.к там идет редирект сразу код проверки 302 self.assertEqual(response.status_code, HTTPStatus.FOUND) # Проверим что кол-во подписок увеличилось self.assertEqual(Follow.objects.count(), count + 1) # Все поля соотвествуют self.assertTrue( Follow.objects.filter( user=self.user, author=self.post.author ).exists() ) self.guest_client = Client() response = self.guest_client.get(url) # Проверим что не авторизованный пользователь перейдет # на страницу входа self.assertEqual(response.url, f'/auth/login/?next={url}') def test_auth_user_can_unfollow(self): # Создадим подписку Follow.objects.create( user=self.user, author=self.post.author ) count = Follow.objects.count() # Удалим подписку Follow.objects.filter( user=self.user, author=self.post.author ).delete() self.assertEqual(Follow.objects.count(), count - 1) url = f'/profile/{self.user}/unfollow/' # Проверим поочереди для авторизованного и для гостя response = self.authorized_client.get(url) # Т.к там идет редирект сразу код проверки 302 self.assertEqual(response.status_code, HTTPStatus.FOUND) self.guest_client = Client() response = self.guest_client.get(url) # Проверим что не авторизованный пользователь перейдет # на страницу входа self.assertEqual(response.url, f'/auth/login/?next={url}') class PaginatorViewsTest(TestCase): # Здесь создаются фикстуры: клиент и 13 тестовых записей. @classmethod def setUpClass(cls): super().setUpClass() cls.user = User.objects.create_user(username='tester') cls.group = Group.objects.create( title='Тестовая группа', slug='test-slug', description='Тестовое описание', ) # Создадим 13 записей в БД for i in range(13): cls.post = Post.objects.create( author=cls.user, text=f'Тестовая пост {i}', # Привяжем созданную выше группу к посту group=cls.group, ) def setUp(self): # Создаем авторизованный клиент self.user = User.objects.create_user(username='auth') self.authorized_client = Client() self.authorized_client.force_login(self.user) def test_first_page_contains_ten_records(self): urls = ( reverse('posts:index'), reverse('posts:group_posts', kwargs={'slug': 'test-slug'}), reverse('posts:profile', kwargs={'username': 'tester'}), ) for url in urls: response = self.authorized_client.get(url) # Проверка: количество постов на первой странице равно 10. self.assertEqual(len(response.context['page_obj']), 10) def test_second_page_contains_three_records(self): # Проверка: на второй странице должно быть три поста. urls = ( reverse('posts:index'), reverse('posts:group_posts', kwargs={'slug': 'test-slug'}), reverse('posts:profile', kwargs={'username': 'tester'}), ) for url in urls: response = self.authorized_client.get(url + '?page=3') self.assertEqual(len(response.context['page_obj']), 3)
true
true
f712dd6d2f6273bf1a9e18367b21be5b5e836958
331
py
Python
wiske/util/logger.py
jthistle/wiskesynth
b2132c7edf79c9f52b0a67779ae77a8d427ae712
[ "MIT" ]
null
null
null
wiske/util/logger.py
jthistle/wiskesynth
b2132c7edf79c9f52b0a67779ae77a8d427ae712
[ "MIT" ]
null
null
null
wiske/util/logger.py
jthistle/wiskesynth
b2132c7edf79c9f52b0a67779ae77a8d427ae712
[ "MIT" ]
null
null
null
import logging def get_logger(): logger = logging.getLogger("debug") hdlr = logging.FileHandler("debug.log") formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') hdlr.setFormatter(formatter) logger.addHandler(hdlr) logger.setLevel(logging.DEBUG) return logger logger = get_logger()
23.642857
74
0.703927
import logging def get_logger(): logger = logging.getLogger("debug") hdlr = logging.FileHandler("debug.log") formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s') hdlr.setFormatter(formatter) logger.addHandler(hdlr) logger.setLevel(logging.DEBUG) return logger logger = get_logger()
true
true
f712dd782c3efe97099c83a527417452c37a4862
3,562
py
Python
docs/source/conf.py
jbueltemeier/pystiche_papers
d162c2db87251f9e3280fea35cf149d030dc335b
[ "BSD-3-Clause" ]
null
null
null
docs/source/conf.py
jbueltemeier/pystiche_papers
d162c2db87251f9e3280fea35cf149d030dc335b
[ "BSD-3-Clause" ]
null
null
null
docs/source/conf.py
jbueltemeier/pystiche_papers
d162c2db87251f9e3280fea35cf149d030dc335b
[ "BSD-3-Clause" ]
null
null
null
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Imports --------------------------------------------------------------------------- import os from datetime import datetime from distutils.util import strtobool from importlib_metadata import metadata from os import path # -- Run config ------------------------------------------------------------------------ def get_bool_env_var(name, default=False): try: return bool(strtobool(os.environ[name])) except KeyError: return default run_by_github_actions = get_bool_env_var("GITHUB_ACTIONS") run_by_rtd = get_bool_env_var("READTHEDOCS") run_by_ci = run_by_github_actions or run_by_rtd or get_bool_env_var("CI") # -- Path setup ------------------------------------------------------------------------ # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) PROJECT_ROOT = path.abspath(path.join(path.abspath(path.dirname(__file__)), "..", "..")) # -- Project information --------------------------------------------------------------- meta = metadata("pystiche_papers") project = meta["name"] author = meta["author"] copyright = f"{datetime.now().year}, {author}" release = meta["version"] version = ".".join(release.split(".")[:2]) # -- General configuration ------------------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ "sphinx.ext.autodoc", "sphinx.ext.napoleon", "sphinx.ext.intersphinx", "sphinx_autodoc_typehints", "sphinxcontrib.bibtex", "sphinx.ext.doctest", ] # Add any paths that contain templates here, relative to this directory. # templates_path = ["_templates"] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. # exclude_patterns = [] # -- Config for intersphinx ----------------------------------------------------------- intersphinx_mapping = { "python": ("https://docs.python.org/3.6", None), "torch": ("https://pytorch.org/docs/stable/", None), "torchvision": ("https://pytorch.org/docs/stable/", None), "pystiche": ("https://pystiche.readthedocs.io/en/stable/", None), } # -- Options for Latex / MathJax ------------------------------------------------------ with open("custom_cmds.tex", "r") as fh: custom_cmds = fh.read() latex_elements = {"preamble": custom_cmds} mathjax_inline = [r"\(" + custom_cmds, r"\)"] mathjax_display = [r"\[" + custom_cmds, r"\]"] # -- Options for HTML output ----------------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = "sphinx_rtd_theme" # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". # html_static_path = ["_static"]
32.981481
88
0.613419
import os from datetime import datetime from distutils.util import strtobool from importlib_metadata import metadata from os import path def get_bool_env_var(name, default=False): try: return bool(strtobool(os.environ[name])) except KeyError: return default run_by_github_actions = get_bool_env_var("GITHUB_ACTIONS") run_by_rtd = get_bool_env_var("READTHEDOCS") run_by_ci = run_by_github_actions or run_by_rtd or get_bool_env_var("CI") PROJECT_ROOT = path.abspath(path.join(path.abspath(path.dirname(__file__)), "..", "..")) meta = metadata("pystiche_papers") project = meta["name"] author = meta["author"] copyright = f"{datetime.now().year}, {author}" release = meta["version"] version = ".".join(release.split(".")[:2]) extensions = [ "sphinx.ext.autodoc", "sphinx.ext.napoleon", "sphinx.ext.intersphinx", "sphinx_autodoc_typehints", "sphinxcontrib.bibtex", "sphinx.ext.doctest", ] intersphinx_mapping = { "python": ("https://docs.python.org/3.6", None), "torch": ("https://pytorch.org/docs/stable/", None), "torchvision": ("https://pytorch.org/docs/stable/", None), "pystiche": ("https://pystiche.readthedocs.io/en/stable/", None), } with open("custom_cmds.tex", "r") as fh: custom_cmds = fh.read() latex_elements = {"preamble": custom_cmds} mathjax_inline = [r"\(" + custom_cmds, r"\)"] mathjax_display = [r"\[" + custom_cmds, r"\]"] html_theme = "sphinx_rtd_theme"
true
true
f712ddaddf5fa16ffdec898ed9bf189ea59a2c2f
30,939
py
Python
kaku_events.py
bear/kaku
a86ad97eac2a9069d3b8b2897567595894f0beee
[ "MIT" ]
26
2015-10-09T14:46:35.000Z
2022-01-11T21:28:50.000Z
kaku_events.py
bear/kaku
a86ad97eac2a9069d3b8b2897567595894f0beee
[ "MIT" ]
4
2016-05-10T09:28:50.000Z
2019-12-03T02:17:18.000Z
kaku_events.py
bear/kaku
a86ad97eac2a9069d3b8b2897567595894f0beee
[ "MIT" ]
5
2016-06-21T05:43:36.000Z
2019-11-18T23:25:50.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- """ :copyright: (c) 2013-2016 by Mike Taylor :license: CC0 1.0 Universal, see LICENSE for more details. """ import os import json import uuid import types import errno import shutil import logging import datetime import argparse import pytz import redis import jinja2 import ronkyuu import requests import markdown2 from bs4 import BeautifulSoup from logging.handlers import RotatingFileHandler from dateutil.parser import parse from bearlib.config import Config, findConfigFile from bearlib.tools import normalizeFilename try: # python 3 from urllib.parse import urlparse except ImportError: from urlparse import urlparse logger = logging.getLogger(__name__) def getTimestamp(): utcdate = datetime.datetime.utcnow() tzLocal = pytz.timezone('America/New_York') return tzLocal.localize(utcdate, is_dst=None) def mkpath(path): try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def createPath(path, log): result = True try: os.makedirs(path) except OSError as exc: # Python >2.5 log.exception(exc) if os.path.isdir(path): pass else: result = False return result def escXML(text, escape_quotes=False): if isinstance(text, types.UnicodeType): s = list(text) else: if isinstance(text, types.IntType): s = str(text) else: s = text s = list(unicode(s, 'utf-8', 'ignore')) cc = 0 matches = ('&', '<', '"', '>') for c in s: if c in matches: if c == '&': s[cc] = u'&amp;' elif c == '<': s[cc] = u'&lt;' elif c == '>': s[cc] = u'&gt;' elif escape_quotes: s[cc] = u'&quot;' cc += 1 return ''.join(s) def readMD(targetFile): result = {} content = [] header = True mdFile = '%s.md' % targetFile for line in open(mdFile, 'r').readlines(): item = line.decode('utf-8', 'xmlcharrefreplace') if header and len(item.strip()) == 0: header = False if header and ':' in item: tag, value = item.split(':', 1) result[tag.lower()] = value.strip() else: content.append(item) result['modified'] = os.path.getmtime(mdFile) result['path'] = os.path.dirname(mdFile) result['content'] = u''.join(content[1:]) if 'created' not in result and 'date' in result: result['created'] = result['date'] if 'published' not in result and 'created' in result: result['published'] = result['created'] return result def writeMD(targetFile, data): page = mdPost % data with open('%s.md' % targetFile, 'w+') as h: h.write(page.encode('utf-8')) def loadMetadata(targetFile): mdData = readMD(targetFile) if os.path.exists('%s.json' % targetFile): with open('%s.json' % targetFile, 'r') as h: result = json.load(h) if 'published' not in result: result['published'] = result['created'] if 'route' not in result: result['route'] = u'%(year)s/%(doy)s/%(slug)s' % result if 'url' not in result: result['url'] = '%s%s.html' % (cfg.baseroute, result['route']) for key in ('created', 'published', 'updated', 'deleted'): if key in result: result[key] = parse(result[key]) else: for key in ('created', 'published'): mdData[key] = parse(mdData[key]) created = mdData['created'] mdData['key'] = created.strftime('%Y%m%d%H%M%S') mdData['year'] = created.strftime('%Y') mdData['doy'] = created.strftime('%j') mdData['route'] = u'%(year)s/%(doy)s/%(slug)s' % mdData mdData['url'] = '%s%s.html' % (cfg.baseroute, mdData['route']) result = {} for key in mdData: result[key] = mdData[key] result['modified'] = mdData['modified'] result['content'] = mdData['content'] return result def saveMetadata(targetFile, data): if 'created' not in data: data['created'] = data['date'] if 'published' not in data: data['published'] = data['created'] for key in ('created', 'published', 'updated', 'deleted'): if key in data: data[key] = data[key].strftime('%Y-%m-%d %H:%M:%S') with open('%s.json' % targetFile, 'w+') as h: h.write(json.dumps(data, indent=2)) def loadOurWebmentions(targetFile): result = {} if os.path.exists('%s.mentions' % targetFile): with open('%s.mentions' % targetFile, 'r') as h: result = json.load(h) return result def saveOurMentions(targetFile, mentions): logger.info('saving webmentions for %s' % targetFile) with open('%s.mentions' % targetFile, 'w+') as h: h.write(json.dumps(mentions, indent=2)) def scanOurMentions(sourceURL, mentions): # loop thru to see if this mention is already present found = None for key in mentions: item = mentions[key]['mention'] url = urlparse(item['sourceURL']) if url.netloc == sourceURL.netloc and url.path == sourceURL.path: found = key break logger.info('scanOurMentions result [%s]' % found) return found def loadOutboundWebmentions(targetFile): result = {} if os.path.exists('%s.outboundmentions' % targetFile): with open('%s.outboundmentions' % targetFile, 'r') as h: result = json.load(h) return result def saveOutboundWebmentions(targetFile, mentions): logger.info('saving outbound webmentions from %s' % targetFile) with open('%s.outboundmentions' % targetFile, 'w+') as h: h.write(json.dumps(mentions, indent=2)) def checkOutboundWebmentions(sourceURL, html, targetFile, update=False): logger.info('checking for outbound webmentions [%s]' % sourceURL) try: cached = loadOutboundWebmentions(targetFile) found = ronkyuu.findMentions(sourceURL, content=html) mentions = {} # loop thru webmentions found in our post and # check if they are new/updated or already seen for href in found['refs']: if sourceURL != href: logger.info(href) key = 'webmention::%s::%s' % (sourceURL, href) keySeen = db.exists(key) if keySeen: if update: keySeen = False s = 'update forced' else: s = 'already processed' else: s = 'new mention' logger.info('\t%s [%s]' % (s, key)) mentions[key] = { 'key': key, 'href': href, 'keySeen': keySeen, 'removed': False } # loop thru found webmentions and check against cache for any removed for key in cached: if key not in mentions: mentions[key] = cached[key] mentions[key]['removed'] = True if 'keySeen' not in mentions[key]: mentions[key]['keySeen'] = False removed = [] for key in mentions: mention = mentions[key] logger.info('seen: %(keySeen)s removed: %(removed)s [%(key)s]' % mention) # send webmentions for new/updated or removed if mention['removed'] or not mention['keySeen']: if mention['removed']: removed.append(key) href = mention['href'] wmStatus, wmUrl, debug = ronkyuu.discoverEndpoint(href, test_urls=False, debug=True) logger.info('webmention endpoint discovery: %s [%s]' % (wmStatus, wmUrl)) if len(debug) > 0: logger.info('\n\tdebug: '.join(debug)) if wmUrl is not None and wmStatus == 200: logger.info('\tfound webmention endpoint %s for %s' % (wmUrl, href)) resp, debug = ronkyuu.sendWebmention(sourceURL, href, wmUrl, debug=True) if len(debug) > 0: logger.info('\n\tdebug: '.join(debug)) if resp.status_code == requests.codes.ok: if key not in cached: cached[key] = { 'key': key, 'href': href, 'wmUrl': wmUrl, 'status': resp.status_code } if len(resp.history) == 0: db.set(key, resp.status_code) logger.info('\twebmention sent successfully') else: logger.info('\twebmention POST was redirected') else: logger.info('\twebmention send returned a status code of %s' % resp.status_code) for key in removed: del cached[key] db.delete(key) saveOutboundWebmentions(targetFile, cached) except: logger.exception('exception during checkOutboundWebmentions') def postUpdate(targetFile, action=None): """Generate data for targeted file. All mentions to the post are checked for updates. The post is also scanned for any outbound Webmentions. targetFile: path and filename without extension. """ pageEnv = {} templateLoader = jinja2.FileSystemLoader(searchpath=cfg.paths.templates) templates = jinja2.Environment(loader=templateLoader) postTemplate = templates.get_template(cfg.templates['post']) postPageTemplate = templates.get_template(cfg.templates['postPage']) post = loadMetadata(targetFile) ourMentions = loadOurWebmentions(targetFile) # bring over site config items for s in ('title',): pageEnv[s] = cfg[s] if action == 'update': post['updated'] = getTimestamp() if os.path.exists('%s.deleted' % targetFile): logger.info('post [%s] is marked as deleted' % targetFile) if action == 'delete' and 'deleted' not in post: post['deleted'] = getTimestamp() post['html'] = '<p>This article has been deleted.</p>' pageEnv['title'] = 'This article has been deleted' pageEnv['meta'] = '<meta http-equiv="Status" content="410 GONE" />' pageEnv['mentions'] = [] else: logger.info('updating post [%s]' % targetFile) post['html'] = md.convert(post['content']) if 'deleted' in post: del post['deleted'] removed = [] for key in ourMentions: m = ourMentions[key]['mention'] r = requests.get(m['sourceURL'], verify=True) if r.status_code == 410: logger.info('a mention no longer exists - removing [%s]' % key) removed.append(key) else: if 'charset' in r.headers.get('content-type', ''): content = r.text else: content = r.content soup = BeautifulSoup(content, 'html5lib') status = None for meta in soup.findAll('meta', attrs={'http-equiv': lambda x: x and x.lower() == 'status'}): try: status = int(meta['content'].split(' ')[0]) except: pass if status == 410: logger.info('a mention no longer exists (via http-equiv) - removing [%s]' % key) removed.append(key) for key in removed: del ourMentions[key] mentions = [] for key in ourMentions: m = ourMentions[key]['mention'] # convert string dates into datetime's for template processing if 'postDate' in m: m['postDate'] = parse(m['postDate']) mentions.append(m) pageEnv['title'] = post['title'] pageEnv['mentions'] = mentions pageEnv['meta'] = metaEmbed % post post['xml'] = escXML(post['html']) pageEnv['post'] = post postHtml = postTemplate.render(pageEnv) postPage = postPageTemplate.render(pageEnv) with open('%s.html' % targetFile, 'w+') as h: h.write(postHtml.encode('utf-8')) htmlDir = os.path.join(cfg.paths.output, post['year'], post['doy']) if not os.path.exists(htmlDir): mkpath(htmlDir) with open(os.path.join(htmlDir, '%s.html' % post['slug']), 'w+') as h: h.write(postPage.encode('utf-8')) saveMetadata(targetFile, post) checkOutboundWebmentions('%s%s' % (cfg.baseurl, post['url']), postHtml, targetFile, update=True) def checkPost(targetFile, eventData): """Check if the post's markdown file is present and create it if not. targetFile: path and filename without extension. eventData: Micropub data to create the post from. """ if not os.path.exists('%s.md' % targetFile): if 'micropub' in eventData: micropub = eventData['micropub'] if 'content' in micropub: content = micropub['content'] if 'html' in micropub and len(micropub['html']) > 0: content.append(micropub['html']) if 'category' in micropub: categories = ','.join(micropub['category']) else: categories = '' if 'photo' in micropub: for url, alt in micropub['photo']: if len(alt) > 0: t = ' alt="%s"' % alt else: t = '' content.append('<img src="%s"%s></img>' % (url, t)) logger.info(micropub.keys()) if 'photo_files' in micropub: for filename in micropub['photo_files']: photoSrc = os.path.join(cfg.paths.uploads, filename) photoTgt = os.path.join(cfg.paths.output, 'images', filename) logger.info('photo file: %s %s %s' % (filename, photoSrc, photoTgt)) shutil.copyfile(photoSrc, photoTgt) url = '%s%s%s/%s' % (cfg.baseurl, cfg.baseroute, 'images', filename) content.append('<img src="%s"></img>' % url) # location = "geo:40.0958,-74.90736;u=92" # in-reply-to = "https://bear.im/bearlog/2016/123/testing-delete.html" # bookmark-of = "https://bear.im" # category = [u'code', u'indieweb'] # html = [u'<p>something</p><p class="">line2</p><p class="">line3<br></p><p class=""><br></p>'] logger.info('content: %d %s' % (len(content), content)) data = { 'created': eventData['timestamp'], 'published': eventData['timestamp'], 'slug': eventData['slug'], 'author': 'bear', 'tags': categories, 'content': '\n'.join(content), 'title': eventData['title'], 'summary': eventData['title'], 'year': eventData['year'], 'doy': eventData['doy'], 'uuid': str(uuid.uuid4()), 'payload': eventData['micropub'], } writeMD(targetFile, data) else: logger.error('checkPost for [%s] - no Micropub data included' % targetFile) def mentionDelete(mention): logger.info('mention delete of [%s] within [%s]' % (mention['targetURL'], mention['sourceURL'])) # update() handles removal of out of date mentions targetURL = urlparse(mention['targetURL']) targetRoute = targetURL.path.replace(cfg.baseroute, '') postUpdate(os.path.join(cfg.paths.content, targetRoute)) def mentionUpdate(mention): logger.info('mention update of [%s] within [%s]' % (mention['targetURL'], mention['sourceURL'])) targetPath = urlparse(mention['targetURL'].strip()).path pathItems = targetPath.split('.') logger.info('[%s] %s' % (targetPath, pathItems)) if pathItems[-1].lower() == 'html': targetPath = '.'.join(pathItems[:-1]) eventDate = getTimestamp() sourceURL = urlparse(mention['sourceURL']) targetRoute = targetPath.replace(cfg.baseroute, '') targetFile = os.path.join(cfg.paths.content, targetRoute) logger.info('targetFile [%s]' % targetFile) ourMentions = loadOurWebmentions(targetFile) found = scanOurMentions(sourceURL, ourMentions) if found is not None: logger.info('updated mention of [%s] within [%s]' % (found, mention['targetURL'])) ourMentions[found]['updated'] = eventDate.strftime('%Y-%m-%dT%H:%M:%S') ourMentions[found]['mention'] = mention else: key = 'mention::%s::%s' % (sourceURL.netloc, sourceURL.path) ourMentions[key] = { 'created': mention['postDate'], 'updated': None, 'mention': mention, } logger.info('added mention of [%s] within [%s]' % (key, mention['targetURL'])) saveOurMentions(targetFile, ourMentions) postUpdate(targetFile) def indexUpdate(): """Scan all posts and generate the index page. """ frontpage = {} logger.info('building index page') for path, dirlist, filelist in os.walk(cfg.paths.content): if len(filelist) > 0: for item in filelist: filename, ext = os.path.splitext(item) if ext in ('.json',) and '.mentions.json' not in item: if os.path.exists(os.path.join(path, '%s.deleted' % filename)): logger.info('skipping deleted post [%s]' % filename) else: page = loadMetadata(os.path.join(path, filename)) frontpage[page['key']] = page templateLoader = jinja2.FileSystemLoader(searchpath=cfg.paths.templates) templates = jinja2.Environment(loader=templateLoader) indexTemplate = templates.get_template(cfg.templates['index']) pageEnv = { 'posts': [], 'title': cfg.title, } frontpageKeys = frontpage.keys() frontpageKeys.sort(reverse=True) for key in frontpageKeys[:cfg.index_articles]: pageEnv['posts'].append(frontpage[key]) page = indexTemplate.render(pageEnv) indexDir = os.path.join(cfg.paths.output) if not os.path.exists(indexDir): mkpath(indexDir) with open(os.path.join(indexDir, 'index.html'), 'w+') as h: h.write(page.encode('utf-8')) def isUpdated(path, filename, force=False): mFile = os.path.join(path, '%s.md' % filename) jFile = os.path.join(path, '%s.json' % filename) if os.path.exists(os.path.join(path, '%s.deleted' % filename)): return 'delete' if os.path.exists(jFile): mTime = os.path.getmtime(mFile) jTime = os.path.getmtime(jFile) if force or mTime > jTime: return 'update' else: return 'unchanged' else: return 'create' def gather(filepath, filename=None, force=False): logger.info('gather [%s] [%s] [%s]' % (filepath, filename, force)) if filename is None: if filepath is None: logger.error('A specific file or a path to walk must be specified') else: for path, dirlist, filelist in os.walk(filepath): if len(filelist) > 0: for item in filelist: filename, ext = os.path.splitext(item) if ext in ('.md',): state = isUpdated(path, filename, force) key = 'kaku-event::%s::%s::%s' % ('post', state, str(uuid.uuid4())) data = { 'type': 'post', 'action': state, 'data': { 'path': path, 'file': filename }, 'key': key } db.set(key, json.dumps(data)) db.publish(cfg.events, key) else: s = normalizeFilename(filename) if not os.path.exists(s): s = normalizeFilename(os.path.join(filepath, filename)) logger.info('checking [%s]' % s) if os.path.exists(s): path = os.path.dirname(s) filename, ext = os.path.splitext(s) if ext in ('.md',): state = isUpdated(path, filename, force) key = 'kaku-event::%s::%s::%s' % ('post', state, str(uuid.uuid4())) data = { 'type': 'post', 'action': state, 'data': { 'path': path, 'file': filename }, 'key': key } db.set(key, json.dumps(data)) db.publish(cfg.events, key) def handlePost(eventAction, eventData): """Process the Kaku event for Posts. eventAction: create, update, delete, undelete or unchanged eventData: a dict that contains information about the post Micropub generated post events will have eventData keys: slug, title, location, timestamp, micropub Post events generated by the gather daemon will have keys: path, file """ if eventAction == 'create': if 'path' in eventData: postDir = eventData['path'] targetFile = eventData['file'] else: timestamp = parse(eventData['timestamp']) eventData['year'] = str(timestamp.year) eventData['doy'] = timestamp.strftime('%j') slug = eventData['slug'] postDir = os.path.join(cfg.paths.content, eventData['year'], eventData['doy']) targetFile = os.path.join(postDir, slug) if not os.path.exists(postDir): mkpath(postDir) checkPost(targetFile, eventData) postUpdate(targetFile, eventAction) elif eventAction in ('update', 'delete', 'add'): if 'file' in eventData: targetFile = eventData['file'] else: targetURL = urlparse(eventData['url']) targetRoute = targetURL.path.replace(cfg.baseroute, '') targetFile = os.path.join(cfg.paths.content, targetRoute) changed = False if eventAction == 'delete': with open('%s.deleted' % targetFile, 'a'): os.utime('%s.deleted' % targetFile, None) changed = True elif eventAction == 'update': actionData = eventData['micropub'] actionKey = eventData['actionkey'] data = loadMetadata(targetFile) for key in ('slug', 'tags', 'content', 'html'): logger.info(' -- %s: %s' % (key, data[key])) logger.info('update (%s) %s' % (actionKey, json.dumps(actionData))) if actionKey == 'replace': if 'content' in actionData: data['content'] = '\n'.join(actionData['content']) changed = True if 'category' in actionData: tags = data['tags'].split(',') for tag in actionData['category']: if tag not in tags: tags.append(tag) changed = True data['tags'] = ','.join(tags) elif actionKey == 'add': if 'content' in actionData: data['content'] += '\n'.join(actionData['content']) changed = True if 'category' in actionData: tags = data['tags'].split(',') for tag in actionData['category']: if tag not in tags: tags.append(tag) changed = True data['tags'] = ','.join(tags) elif actionKey == 'delete': if 'category' in actionData: if type(actionData) is dict: tags = data['tags'].split(',') for tag in actionData['category']: if tag in tags: tags.remove(tag) changed = True data['tags'] = ','.join(tags) else: data['tags'] = '' changed = True for key in ('slug', 'tags', 'content', 'html'): logger.info(' -- %s: %s' % (key, data[key])) if changed: writeMD(targetFile, data) saveMetadata(targetFile, data) if changed: postUpdate(targetFile, eventAction) elif eventAction == 'undelete': logger.info(eventData.keys()) if 'url' in eventData: targetURL = urlparse(eventData['url']) targetRoute = targetURL.path.replace(cfg.baseroute, '') targetFile = os.path.join(cfg.paths.content, targetRoute) logger.info('checking delete marker %s.deleted' % targetFile) if os.path.exists('%s.deleted' % targetFile): logger.info('removing delete marker') os.remove('%s.deleted' % targetFile) postUpdate(targetFile, eventAction) indexUpdate() def handleMentions(eventAction, eventData): """Process the Kaku event for mentions. eventAction: create, update or delete eventData: dict with the keys sourceURL, targetURL, vouchDomain, vouched, postDate, hcard, mf2data """ if eventAction == 'create' or eventAction == 'update': mentionUpdate(eventData) elif eventAction == 'delete': mentionDelete(eventData) def handleGather(eventData): if 'file' in eventData: gather(cfg.paths.content, eventData['file'], eventData['force']) else: gather(cfg.paths.content) def handleEvent(eventKey): """Process an incoming Kaku Event. Retrieve the event data from the key given and call the appropriate handler. Valid Event Types are mention, post, gather For gather events, only the data item will be found For mention and post, action and data will be found Valid Event Action are create, update, delete, undelete Event Data is a dict of items relevant to the event """ try: event = json.loads(db.get(eventKey)) eventType = event['type'] if eventType == 'gather': handleGather(event['data']) else: eventAction = event['action'] eventData = event['data'] logger.info('dispatching %(action)s for %(type)s' % event) if eventType == 'post': handlePost(eventAction, eventData) elif eventType == 'mention': handleMentions(eventAction, eventData) db.expire(eventKey, 86400) except: logger.exception('error during event [%s]' % eventKey) def initLogging(logpath, logname): logFormatter = logging.Formatter("%(asctime)s %(levelname)-9s %(message)s", "%Y-%m-%d %H:%M:%S") logfilename = os.path.join(logpath, logname) logHandler = RotatingFileHandler(logfilename, maxBytes=1024 * 1024 * 100, backupCount=7) logHandler.setFormatter(logFormatter) logger.addHandler(logHandler) logger.setLevel(logging.DEBUG) def getRedis(redisURL): url = urlparse(redisURL) host = url.netloc if ':' in host: host, port = host.split(':') port = int(port) else: port = 6379 if len(url.path) > 0: db = int(url.path[1:]) else: db = 0 return redis.StrictRedis(host=host, port=port, db=db) # Example config file # { # "baseroute": "/bearlog/", # "baseurl": "https://bear.im", # "index_articles": 15, # "redis": "redis://127.0.0.1:6379/1", # "markdown_extras": [ "fenced-code-blocks", "cuddled-lists" ], # "logname": "kaku_events.log", # "events": "kaku-events", # "paths": { # "templates": "/home/bearim/templates/", # "content": "/home/bearim/content/", # "output": "/srv/bear.im/bearlog/", # "log": "/home/bearim/" # }, # "templates": { # "post": "article.jinja", # "mention": "mention.jinja", # "postPage": "article_page.jinja", # "index": "blog_index.jinja", # "markdown": "post.md", # "embed": "meta.embed" # } # } if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--config', default='./kaku_events.cfg') parser.add_argument('--file', default=None, help='A specific markdown file to check and then exit') parser.add_argument('--force', default=False, action='store_true', help='Force any found markdown files (or specific file) to be considered an update.') args = parser.parse_args() cfgFiles = findConfigFile(args.config) cfg = Config() cfg.fromJson(cfgFiles[0]) initLogging(cfg.paths.log, cfg.logname) logger.info('kaku_events started') db = getRedis(cfg.redis) with open(os.path.join(cfg.paths.templates, cfg.templates.markdown)) as h: mdPost = h.read() with open(os.path.join(cfg.paths.templates, cfg.templates.embed)) as h: metaEmbed = h.read() if args.file is not None: gather(cfg.paths.content, args.file, args.force) else: md = markdown2.Markdown(extras=cfg.markdown_extras) p = db.pubsub() p.subscribe(cfg.events) logger.info('listening for events') for item in p.listen(): if item['type'] == 'message': key = item['data'] if key.startswith('kaku-event::'): logger.info('handling event [%s]' % key) handleEvent(key)
39.015132
115
0.531013
import os import json import uuid import types import errno import shutil import logging import datetime import argparse import pytz import redis import jinja2 import ronkyuu import requests import markdown2 from bs4 import BeautifulSoup from logging.handlers import RotatingFileHandler from dateutil.parser import parse from bearlib.config import Config, findConfigFile from bearlib.tools import normalizeFilename try: from urllib.parse import urlparse except ImportError: from urlparse import urlparse logger = logging.getLogger(__name__) def getTimestamp(): utcdate = datetime.datetime.utcnow() tzLocal = pytz.timezone('America/New_York') return tzLocal.localize(utcdate, is_dst=None) def mkpath(path): try: os.makedirs(path) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise def createPath(path, log): result = True try: os.makedirs(path) except OSError as exc: log.exception(exc) if os.path.isdir(path): pass else: result = False return result def escXML(text, escape_quotes=False): if isinstance(text, types.UnicodeType): s = list(text) else: if isinstance(text, types.IntType): s = str(text) else: s = text s = list(unicode(s, 'utf-8', 'ignore')) cc = 0 matches = ('&', '<', '"', '>') for c in s: if c in matches: if c == '&': s[cc] = u'&amp;' elif c == '<': s[cc] = u'&lt;' elif c == '>': s[cc] = u'&gt;' elif escape_quotes: s[cc] = u'&quot;' cc += 1 return ''.join(s) def readMD(targetFile): result = {} content = [] header = True mdFile = '%s.md' % targetFile for line in open(mdFile, 'r').readlines(): item = line.decode('utf-8', 'xmlcharrefreplace') if header and len(item.strip()) == 0: header = False if header and ':' in item: tag, value = item.split(':', 1) result[tag.lower()] = value.strip() else: content.append(item) result['modified'] = os.path.getmtime(mdFile) result['path'] = os.path.dirname(mdFile) result['content'] = u''.join(content[1:]) if 'created' not in result and 'date' in result: result['created'] = result['date'] if 'published' not in result and 'created' in result: result['published'] = result['created'] return result def writeMD(targetFile, data): page = mdPost % data with open('%s.md' % targetFile, 'w+') as h: h.write(page.encode('utf-8')) def loadMetadata(targetFile): mdData = readMD(targetFile) if os.path.exists('%s.json' % targetFile): with open('%s.json' % targetFile, 'r') as h: result = json.load(h) if 'published' not in result: result['published'] = result['created'] if 'route' not in result: result['route'] = u'%(year)s/%(doy)s/%(slug)s' % result if 'url' not in result: result['url'] = '%s%s.html' % (cfg.baseroute, result['route']) for key in ('created', 'published', 'updated', 'deleted'): if key in result: result[key] = parse(result[key]) else: for key in ('created', 'published'): mdData[key] = parse(mdData[key]) created = mdData['created'] mdData['key'] = created.strftime('%Y%m%d%H%M%S') mdData['year'] = created.strftime('%Y') mdData['doy'] = created.strftime('%j') mdData['route'] = u'%(year)s/%(doy)s/%(slug)s' % mdData mdData['url'] = '%s%s.html' % (cfg.baseroute, mdData['route']) result = {} for key in mdData: result[key] = mdData[key] result['modified'] = mdData['modified'] result['content'] = mdData['content'] return result def saveMetadata(targetFile, data): if 'created' not in data: data['created'] = data['date'] if 'published' not in data: data['published'] = data['created'] for key in ('created', 'published', 'updated', 'deleted'): if key in data: data[key] = data[key].strftime('%Y-%m-%d %H:%M:%S') with open('%s.json' % targetFile, 'w+') as h: h.write(json.dumps(data, indent=2)) def loadOurWebmentions(targetFile): result = {} if os.path.exists('%s.mentions' % targetFile): with open('%s.mentions' % targetFile, 'r') as h: result = json.load(h) return result def saveOurMentions(targetFile, mentions): logger.info('saving webmentions for %s' % targetFile) with open('%s.mentions' % targetFile, 'w+') as h: h.write(json.dumps(mentions, indent=2)) def scanOurMentions(sourceURL, mentions): # loop thru to see if this mention is already present found = None for key in mentions: item = mentions[key]['mention'] url = urlparse(item['sourceURL']) if url.netloc == sourceURL.netloc and url.path == sourceURL.path: found = key break logger.info('scanOurMentions result [%s]' % found) return found def loadOutboundWebmentions(targetFile): result = {} if os.path.exists('%s.outboundmentions' % targetFile): with open('%s.outboundmentions' % targetFile, 'r') as h: result = json.load(h) return result def saveOutboundWebmentions(targetFile, mentions): logger.info('saving outbound webmentions from %s' % targetFile) with open('%s.outboundmentions' % targetFile, 'w+') as h: h.write(json.dumps(mentions, indent=2)) def checkOutboundWebmentions(sourceURL, html, targetFile, update=False): logger.info('checking for outbound webmentions [%s]' % sourceURL) try: cached = loadOutboundWebmentions(targetFile) found = ronkyuu.findMentions(sourceURL, content=html) mentions = {} # loop thru webmentions found in our post and # check if they are new/updated or already seen for href in found['refs']: if sourceURL != href: logger.info(href) key = 'webmention::%s::%s' % (sourceURL, href) keySeen = db.exists(key) if keySeen: if update: keySeen = False s = 'update forced' else: s = 'already processed' else: s = 'new mention' logger.info('\t%s [%s]' % (s, key)) mentions[key] = { 'key': key, 'href': href, 'keySeen': keySeen, 'removed': False } # loop thru found webmentions and check against cache for any removed for key in cached: if key not in mentions: mentions[key] = cached[key] mentions[key]['removed'] = True if 'keySeen' not in mentions[key]: mentions[key]['keySeen'] = False removed = [] for key in mentions: mention = mentions[key] logger.info('seen: %(keySeen)s removed: %(removed)s [%(key)s]' % mention) # send webmentions for new/updated or removed if mention['removed'] or not mention['keySeen']: if mention['removed']: removed.append(key) href = mention['href'] wmStatus, wmUrl, debug = ronkyuu.discoverEndpoint(href, test_urls=False, debug=True) logger.info('webmention endpoint discovery: %s [%s]' % (wmStatus, wmUrl)) if len(debug) > 0: logger.info('\n\tdebug: '.join(debug)) if wmUrl is not None and wmStatus == 200: logger.info('\tfound webmention endpoint %s for %s' % (wmUrl, href)) resp, debug = ronkyuu.sendWebmention(sourceURL, href, wmUrl, debug=True) if len(debug) > 0: logger.info('\n\tdebug: '.join(debug)) if resp.status_code == requests.codes.ok: if key not in cached: cached[key] = { 'key': key, 'href': href, 'wmUrl': wmUrl, 'status': resp.status_code } if len(resp.history) == 0: db.set(key, resp.status_code) logger.info('\twebmention sent successfully') else: logger.info('\twebmention POST was redirected') else: logger.info('\twebmention send returned a status code of %s' % resp.status_code) for key in removed: del cached[key] db.delete(key) saveOutboundWebmentions(targetFile, cached) except: logger.exception('exception during checkOutboundWebmentions') def postUpdate(targetFile, action=None): pageEnv = {} templateLoader = jinja2.FileSystemLoader(searchpath=cfg.paths.templates) templates = jinja2.Environment(loader=templateLoader) postTemplate = templates.get_template(cfg.templates['post']) postPageTemplate = templates.get_template(cfg.templates['postPage']) post = loadMetadata(targetFile) ourMentions = loadOurWebmentions(targetFile) # bring over site config items for s in ('title',): pageEnv[s] = cfg[s] if action == 'update': post['updated'] = getTimestamp() if os.path.exists('%s.deleted' % targetFile): logger.info('post [%s] is marked as deleted' % targetFile) if action == 'delete' and 'deleted' not in post: post['deleted'] = getTimestamp() post['html'] = '<p>This article has been deleted.</p>' pageEnv['title'] = 'This article has been deleted' pageEnv['meta'] = '<meta http-equiv="Status" content="410 GONE" />' pageEnv['mentions'] = [] else: logger.info('updating post [%s]' % targetFile) post['html'] = md.convert(post['content']) if 'deleted' in post: del post['deleted'] removed = [] for key in ourMentions: m = ourMentions[key]['mention'] r = requests.get(m['sourceURL'], verify=True) if r.status_code == 410: logger.info('a mention no longer exists - removing [%s]' % key) removed.append(key) else: if 'charset' in r.headers.get('content-type', ''): content = r.text else: content = r.content soup = BeautifulSoup(content, 'html5lib') status = None for meta in soup.findAll('meta', attrs={'http-equiv': lambda x: x and x.lower() == 'status'}): try: status = int(meta['content'].split(' ')[0]) except: pass if status == 410: logger.info('a mention no longer exists (via http-equiv) - removing [%s]' % key) removed.append(key) for key in removed: del ourMentions[key] mentions = [] for key in ourMentions: m = ourMentions[key]['mention'] # convert string dates into datetime's for template processing if 'postDate' in m: m['postDate'] = parse(m['postDate']) mentions.append(m) pageEnv['title'] = post['title'] pageEnv['mentions'] = mentions pageEnv['meta'] = metaEmbed % post post['xml'] = escXML(post['html']) pageEnv['post'] = post postHtml = postTemplate.render(pageEnv) postPage = postPageTemplate.render(pageEnv) with open('%s.html' % targetFile, 'w+') as h: h.write(postHtml.encode('utf-8')) htmlDir = os.path.join(cfg.paths.output, post['year'], post['doy']) if not os.path.exists(htmlDir): mkpath(htmlDir) with open(os.path.join(htmlDir, '%s.html' % post['slug']), 'w+') as h: h.write(postPage.encode('utf-8')) saveMetadata(targetFile, post) checkOutboundWebmentions('%s%s' % (cfg.baseurl, post['url']), postHtml, targetFile, update=True) def checkPost(targetFile, eventData): if not os.path.exists('%s.md' % targetFile): if 'micropub' in eventData: micropub = eventData['micropub'] if 'content' in micropub: content = micropub['content'] if 'html' in micropub and len(micropub['html']) > 0: content.append(micropub['html']) if 'category' in micropub: categories = ','.join(micropub['category']) else: categories = '' if 'photo' in micropub: for url, alt in micropub['photo']: if len(alt) > 0: t = ' alt="%s"' % alt else: t = '' content.append('<img src="%s"%s></img>' % (url, t)) logger.info(micropub.keys()) if 'photo_files' in micropub: for filename in micropub['photo_files']: photoSrc = os.path.join(cfg.paths.uploads, filename) photoTgt = os.path.join(cfg.paths.output, 'images', filename) logger.info('photo file: %s %s %s' % (filename, photoSrc, photoTgt)) shutil.copyfile(photoSrc, photoTgt) url = '%s%s%s/%s' % (cfg.baseurl, cfg.baseroute, 'images', filename) content.append('<img src="%s"></img>' % url) # location = "geo:40.0958,-74.90736;u=92" # in-reply-to = "https://bear.im/bearlog/2016/123/testing-delete.html" # bookmark-of = "https://bear.im" # category = [u'code', u'indieweb'] # html = [u'<p>something</p><p class="">line2</p><p class="">line3<br></p><p class=""><br></p>'] logger.info('content: %d %s' % (len(content), content)) data = { 'created': eventData['timestamp'], 'published': eventData['timestamp'], 'slug': eventData['slug'], 'author': 'bear', 'tags': categories, 'content': '\n'.join(content), 'title': eventData['title'], 'summary': eventData['title'], 'year': eventData['year'], 'doy': eventData['doy'], 'uuid': str(uuid.uuid4()), 'payload': eventData['micropub'], } writeMD(targetFile, data) else: logger.error('checkPost for [%s] - no Micropub data included' % targetFile) def mentionDelete(mention): logger.info('mention delete of [%s] within [%s]' % (mention['targetURL'], mention['sourceURL'])) # update() handles removal of out of date mentions targetURL = urlparse(mention['targetURL']) targetRoute = targetURL.path.replace(cfg.baseroute, '') postUpdate(os.path.join(cfg.paths.content, targetRoute)) def mentionUpdate(mention): logger.info('mention update of [%s] within [%s]' % (mention['targetURL'], mention['sourceURL'])) targetPath = urlparse(mention['targetURL'].strip()).path pathItems = targetPath.split('.') logger.info('[%s] %s' % (targetPath, pathItems)) if pathItems[-1].lower() == 'html': targetPath = '.'.join(pathItems[:-1]) eventDate = getTimestamp() sourceURL = urlparse(mention['sourceURL']) targetRoute = targetPath.replace(cfg.baseroute, '') targetFile = os.path.join(cfg.paths.content, targetRoute) logger.info('targetFile [%s]' % targetFile) ourMentions = loadOurWebmentions(targetFile) found = scanOurMentions(sourceURL, ourMentions) if found is not None: logger.info('updated mention of [%s] within [%s]' % (found, mention['targetURL'])) ourMentions[found]['updated'] = eventDate.strftime('%Y-%m-%dT%H:%M:%S') ourMentions[found]['mention'] = mention else: key = 'mention::%s::%s' % (sourceURL.netloc, sourceURL.path) ourMentions[key] = { 'created': mention['postDate'], 'updated': None, 'mention': mention, } logger.info('added mention of [%s] within [%s]' % (key, mention['targetURL'])) saveOurMentions(targetFile, ourMentions) postUpdate(targetFile) def indexUpdate(): frontpage = {} logger.info('building index page') for path, dirlist, filelist in os.walk(cfg.paths.content): if len(filelist) > 0: for item in filelist: filename, ext = os.path.splitext(item) if ext in ('.json',) and '.mentions.json' not in item: if os.path.exists(os.path.join(path, '%s.deleted' % filename)): logger.info('skipping deleted post [%s]' % filename) else: page = loadMetadata(os.path.join(path, filename)) frontpage[page['key']] = page templateLoader = jinja2.FileSystemLoader(searchpath=cfg.paths.templates) templates = jinja2.Environment(loader=templateLoader) indexTemplate = templates.get_template(cfg.templates['index']) pageEnv = { 'posts': [], 'title': cfg.title, } frontpageKeys = frontpage.keys() frontpageKeys.sort(reverse=True) for key in frontpageKeys[:cfg.index_articles]: pageEnv['posts'].append(frontpage[key]) page = indexTemplate.render(pageEnv) indexDir = os.path.join(cfg.paths.output) if not os.path.exists(indexDir): mkpath(indexDir) with open(os.path.join(indexDir, 'index.html'), 'w+') as h: h.write(page.encode('utf-8')) def isUpdated(path, filename, force=False): mFile = os.path.join(path, '%s.md' % filename) jFile = os.path.join(path, '%s.json' % filename) if os.path.exists(os.path.join(path, '%s.deleted' % filename)): return 'delete' if os.path.exists(jFile): mTime = os.path.getmtime(mFile) jTime = os.path.getmtime(jFile) if force or mTime > jTime: return 'update' else: return 'unchanged' else: return 'create' def gather(filepath, filename=None, force=False): logger.info('gather [%s] [%s] [%s]' % (filepath, filename, force)) if filename is None: if filepath is None: logger.error('A specific file or a path to walk must be specified') else: for path, dirlist, filelist in os.walk(filepath): if len(filelist) > 0: for item in filelist: filename, ext = os.path.splitext(item) if ext in ('.md',): state = isUpdated(path, filename, force) key = 'kaku-event::%s::%s::%s' % ('post', state, str(uuid.uuid4())) data = { 'type': 'post', 'action': state, 'data': { 'path': path, 'file': filename }, 'key': key } db.set(key, json.dumps(data)) db.publish(cfg.events, key) else: s = normalizeFilename(filename) if not os.path.exists(s): s = normalizeFilename(os.path.join(filepath, filename)) logger.info('checking [%s]' % s) if os.path.exists(s): path = os.path.dirname(s) filename, ext = os.path.splitext(s) if ext in ('.md',): state = isUpdated(path, filename, force) key = 'kaku-event::%s::%s::%s' % ('post', state, str(uuid.uuid4())) data = { 'type': 'post', 'action': state, 'data': { 'path': path, 'file': filename }, 'key': key } db.set(key, json.dumps(data)) db.publish(cfg.events, key) def handlePost(eventAction, eventData): if eventAction == 'create': if 'path' in eventData: postDir = eventData['path'] targetFile = eventData['file'] else: timestamp = parse(eventData['timestamp']) eventData['year'] = str(timestamp.year) eventData['doy'] = timestamp.strftime('%j') slug = eventData['slug'] postDir = os.path.join(cfg.paths.content, eventData['year'], eventData['doy']) targetFile = os.path.join(postDir, slug) if not os.path.exists(postDir): mkpath(postDir) checkPost(targetFile, eventData) postUpdate(targetFile, eventAction) elif eventAction in ('update', 'delete', 'add'): if 'file' in eventData: targetFile = eventData['file'] else: targetURL = urlparse(eventData['url']) targetRoute = targetURL.path.replace(cfg.baseroute, '') targetFile = os.path.join(cfg.paths.content, targetRoute) changed = False if eventAction == 'delete': with open('%s.deleted' % targetFile, 'a'): os.utime('%s.deleted' % targetFile, None) changed = True elif eventAction == 'update': actionData = eventData['micropub'] actionKey = eventData['actionkey'] data = loadMetadata(targetFile) for key in ('slug', 'tags', 'content', 'html'): logger.info(' -- %s: %s' % (key, data[key])) logger.info('update (%s) %s' % (actionKey, json.dumps(actionData))) if actionKey == 'replace': if 'content' in actionData: data['content'] = '\n'.join(actionData['content']) changed = True if 'category' in actionData: tags = data['tags'].split(',') for tag in actionData['category']: if tag not in tags: tags.append(tag) changed = True data['tags'] = ','.join(tags) elif actionKey == 'add': if 'content' in actionData: data['content'] += '\n'.join(actionData['content']) changed = True if 'category' in actionData: tags = data['tags'].split(',') for tag in actionData['category']: if tag not in tags: tags.append(tag) changed = True data['tags'] = ','.join(tags) elif actionKey == 'delete': if 'category' in actionData: if type(actionData) is dict: tags = data['tags'].split(',') for tag in actionData['category']: if tag in tags: tags.remove(tag) changed = True data['tags'] = ','.join(tags) else: data['tags'] = '' changed = True for key in ('slug', 'tags', 'content', 'html'): logger.info(' -- %s: %s' % (key, data[key])) if changed: writeMD(targetFile, data) saveMetadata(targetFile, data) if changed: postUpdate(targetFile, eventAction) elif eventAction == 'undelete': logger.info(eventData.keys()) if 'url' in eventData: targetURL = urlparse(eventData['url']) targetRoute = targetURL.path.replace(cfg.baseroute, '') targetFile = os.path.join(cfg.paths.content, targetRoute) logger.info('checking delete marker %s.deleted' % targetFile) if os.path.exists('%s.deleted' % targetFile): logger.info('removing delete marker') os.remove('%s.deleted' % targetFile) postUpdate(targetFile, eventAction) indexUpdate() def handleMentions(eventAction, eventData): if eventAction == 'create' or eventAction == 'update': mentionUpdate(eventData) elif eventAction == 'delete': mentionDelete(eventData) def handleGather(eventData): if 'file' in eventData: gather(cfg.paths.content, eventData['file'], eventData['force']) else: gather(cfg.paths.content) def handleEvent(eventKey): try: event = json.loads(db.get(eventKey)) eventType = event['type'] if eventType == 'gather': handleGather(event['data']) else: eventAction = event['action'] eventData = event['data'] logger.info('dispatching %(action)s for %(type)s' % event) if eventType == 'post': handlePost(eventAction, eventData) elif eventType == 'mention': handleMentions(eventAction, eventData) db.expire(eventKey, 86400) except: logger.exception('error during event [%s]' % eventKey) def initLogging(logpath, logname): logFormatter = logging.Formatter("%(asctime)s %(levelname)-9s %(message)s", "%Y-%m-%d %H:%M:%S") logfilename = os.path.join(logpath, logname) logHandler = RotatingFileHandler(logfilename, maxBytes=1024 * 1024 * 100, backupCount=7) logHandler.setFormatter(logFormatter) logger.addHandler(logHandler) logger.setLevel(logging.DEBUG) def getRedis(redisURL): url = urlparse(redisURL) host = url.netloc if ':' in host: host, port = host.split(':') port = int(port) else: port = 6379 if len(url.path) > 0: db = int(url.path[1:]) else: db = 0 return redis.StrictRedis(host=host, port=port, db=db) # Example config file # { # "baseroute": "/bearlog/", # "baseurl": "https://bear.im", # "index_articles": 15, # "redis": "redis://127.0.0.1:6379/1", # "markdown_extras": [ "fenced-code-blocks", "cuddled-lists" ], # "logname": "kaku_events.log", # "events": "kaku-events", # "paths": { # "templates": "/home/bearim/templates/", # "content": "/home/bearim/content/", # "output": "/srv/bear.im/bearlog/", # "log": "/home/bearim/" # }, # "templates": { # "post": "article.jinja", # "mention": "mention.jinja", # "postPage": "article_page.jinja", # "index": "blog_index.jinja", # "markdown": "post.md", # "embed": "meta.embed" # } # } if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--config', default='./kaku_events.cfg') parser.add_argument('--file', default=None, help='A specific markdown file to check and then exit') parser.add_argument('--force', default=False, action='store_true', help='Force any found markdown files (or specific file) to be considered an update.') args = parser.parse_args() cfgFiles = findConfigFile(args.config) cfg = Config() cfg.fromJson(cfgFiles[0]) initLogging(cfg.paths.log, cfg.logname) logger.info('kaku_events started') db = getRedis(cfg.redis) with open(os.path.join(cfg.paths.templates, cfg.templates.markdown)) as h: mdPost = h.read() with open(os.path.join(cfg.paths.templates, cfg.templates.embed)) as h: metaEmbed = h.read() if args.file is not None: gather(cfg.paths.content, args.file, args.force) else: md = markdown2.Markdown(extras=cfg.markdown_extras) p = db.pubsub() p.subscribe(cfg.events) logger.info('listening for events') for item in p.listen(): if item['type'] == 'message': key = item['data'] if key.startswith('kaku-event::'): logger.info('handling event [%s]' % key) handleEvent(key)
true
true
f712de466750aaf771cb56bf97edbee3086e0194
2,719
py
Python
playbooks/files/rax-maas/plugins/bonding_iface_check.py
odyssey4me/rpc-maas
6ba26ee4e793de740124d0e22d2cee6a943440f9
[ "Apache-2.0" ]
null
null
null
playbooks/files/rax-maas/plugins/bonding_iface_check.py
odyssey4me/rpc-maas
6ba26ee4e793de740124d0e22d2cee6a943440f9
[ "Apache-2.0" ]
2
2020-08-13T19:29:13.000Z
2020-08-13T21:45:39.000Z
playbooks/files/rax-maas/plugins/bonding_iface_check.py
odyssey4me/rpc-maas
6ba26ee4e793de740124d0e22d2cee6a943440f9
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2018, Rackspace US, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from maas_common import metric_bool from maas_common import print_output def bonding_ifaces_check(_): bonding_ifaces = os.listdir("/proc/net/bonding") for bonding_iface in bonding_ifaces: bonding_iface_check_cmd = ['cat', '/proc/net/bonding/%s' % bonding_iface] bonding_iface_check_cmd_output = subprocess.check_output( bonding_iface_check_cmd ) bonding_iface_check_cmd_output_lines = ( bonding_iface_check_cmd_output.split('\n') ) slave_count = 0 for idx, line in enumerate(bonding_iface_check_cmd_output_lines): if line.startswith("Slave Interface"): slave_count = slave_count + 1 has_slave_down = False for idx, line in enumerate(bonding_iface_check_cmd_output_lines): if line.startswith("Slave Interface"): slave_inface_mii_status_line = ( bonding_iface_check_cmd_output_lines[idx + 1] ) slave_inface_mii_status = ( slave_inface_mii_status_line.split(":")[1].strip() ) if 'up' not in slave_inface_mii_status or slave_count < 2: has_slave_down = True if has_slave_down: metric_bool('host_bonding_iface_%s_slave_down' % bonding_iface, True) else: metric_bool('host_bonding_iface_%s_slave_down' % bonding_iface, False) def main(args): bonding_ifaces_check(args) if __name__ == "__main__": parser = argparse.ArgumentParser( description='Check statuses of local bonding interfaces') parser.add_argument('--telegraf-output', action='store_true', default=False, help='Set the output format to telegraf') args = parser.parse_args() with print_output(print_telegraf=args.telegraf_output): main(args)
34.858974
74
0.630379
import argparse import os import subprocess from maas_common import metric_bool from maas_common import print_output def bonding_ifaces_check(_): bonding_ifaces = os.listdir("/proc/net/bonding") for bonding_iface in bonding_ifaces: bonding_iface_check_cmd = ['cat', '/proc/net/bonding/%s' % bonding_iface] bonding_iface_check_cmd_output = subprocess.check_output( bonding_iface_check_cmd ) bonding_iface_check_cmd_output_lines = ( bonding_iface_check_cmd_output.split('\n') ) slave_count = 0 for idx, line in enumerate(bonding_iface_check_cmd_output_lines): if line.startswith("Slave Interface"): slave_count = slave_count + 1 has_slave_down = False for idx, line in enumerate(bonding_iface_check_cmd_output_lines): if line.startswith("Slave Interface"): slave_inface_mii_status_line = ( bonding_iface_check_cmd_output_lines[idx + 1] ) slave_inface_mii_status = ( slave_inface_mii_status_line.split(":")[1].strip() ) if 'up' not in slave_inface_mii_status or slave_count < 2: has_slave_down = True if has_slave_down: metric_bool('host_bonding_iface_%s_slave_down' % bonding_iface, True) else: metric_bool('host_bonding_iface_%s_slave_down' % bonding_iface, False) def main(args): bonding_ifaces_check(args) if __name__ == "__main__": parser = argparse.ArgumentParser( description='Check statuses of local bonding interfaces') parser.add_argument('--telegraf-output', action='store_true', default=False, help='Set the output format to telegraf') args = parser.parse_args() with print_output(print_telegraf=args.telegraf_output): main(args)
true
true
f712df66591fc0d8b0718cae5fe6211b949499cd
556
py
Python
tablarray/kwtools/__init__.py
chriscannon9001/tablarray
f07530f84a8c86abe996cdb999233ed9bb8edf7e
[ "BSD-3-Clause" ]
null
null
null
tablarray/kwtools/__init__.py
chriscannon9001/tablarray
f07530f84a8c86abe996cdb999233ed9bb8edf7e
[ "BSD-3-Clause" ]
null
null
null
tablarray/kwtools/__init__.py
chriscannon9001/tablarray
f07530f84a8c86abe996cdb999233ed9bb8edf7e
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ kwargs_tools by Chris Cannon ==== Provides 1. kwargs_scan - convert header and values from csv into a dictionary 2. kwargs_db - instance = myclass(search='name') is converted to instance = myclass(param1, param2, ...) using a database lookup 3. kwargs_gui @author: Chris Cannon """ __author__ = "Chris Cannon" __version__ = "0.0.0" __license__ = "GPLv3" __status__ = "Prototype" from .kwargs_scan import * from .kwargs_db import *
21.384615
73
0.625899
__author__ = "Chris Cannon" __version__ = "0.0.0" __license__ = "GPLv3" __status__ = "Prototype" from .kwargs_scan import * from .kwargs_db import *
true
true
f712e0700d6b0fc427bb1da21e1c1cd0184c3f10
1,715
py
Python
ee/tasks/send_license_usage.py
asherf/posthog
1e50704d76cba484e80b83f1e1f658bd6e98743a
[ "MIT" ]
null
null
null
ee/tasks/send_license_usage.py
asherf/posthog
1e50704d76cba484e80b83f1e1f658bd6e98743a
[ "MIT" ]
null
null
null
ee/tasks/send_license_usage.py
asherf/posthog
1e50704d76cba484e80b83f1e1f658bd6e98743a
[ "MIT" ]
null
null
null
import posthoganalytics import requests from dateutil.relativedelta import relativedelta from django.utils import timezone from ee.clickhouse.client import sync_execute from ee.models.license import License from posthog.models import User def send_license_usage(): license = License.objects.first_valid() if not license: return try: date_from = (timezone.now() - relativedelta(days=1)).replace(hour=0, minute=0, second=0, microsecond=0) date_to = timezone.now().replace(hour=0, minute=0, second=0, microsecond=0) events_count = sync_execute( "select count(1) from events where timestamp >= %(date_from)s and timestamp < %(date_to)s", {"date_from": date_from, "date_to": date_to}, )[0][0] response = requests.post( "https://license.posthog.com/licenses/usage", data={"date": date_from.strftime("%Y-%m-%d"), "key": license.key, "events_count": events_count,}, ) response.raise_for_status() if not response.ok: posthoganalytics.capture( User.objects.first().distinct_id, # type: ignore "send license usage data error", { "error": response.content, "status_code": response.status_code, "date": date_from.strftime("%Y-%m-%d"), "events_count": events_count, }, ) except Exception as err: posthoganalytics.capture( User.objects.first().distinct_id, # type: ignore "send license usage data error", {"error": str(err), "date": date_from.strftime("%Y-%m-%d")}, )
38.111111
111
0.594752
import posthoganalytics import requests from dateutil.relativedelta import relativedelta from django.utils import timezone from ee.clickhouse.client import sync_execute from ee.models.license import License from posthog.models import User def send_license_usage(): license = License.objects.first_valid() if not license: return try: date_from = (timezone.now() - relativedelta(days=1)).replace(hour=0, minute=0, second=0, microsecond=0) date_to = timezone.now().replace(hour=0, minute=0, second=0, microsecond=0) events_count = sync_execute( "select count(1) from events where timestamp >= %(date_from)s and timestamp < %(date_to)s", {"date_from": date_from, "date_to": date_to}, )[0][0] response = requests.post( "https://license.posthog.com/licenses/usage", data={"date": date_from.strftime("%Y-%m-%d"), "key": license.key, "events_count": events_count,}, ) response.raise_for_status() if not response.ok: posthoganalytics.capture( User.objects.first().distinct_id, "send license usage data error", { "error": response.content, "status_code": response.status_code, "date": date_from.strftime("%Y-%m-%d"), "events_count": events_count, }, ) except Exception as err: posthoganalytics.capture( User.objects.first().distinct_id, "send license usage data error", {"error": str(err), "date": date_from.strftime("%Y-%m-%d")}, )
true
true
f712e0eb5555667a488c2bf52ce2443674b5782c
1,719
py
Python
Sec24_Design/q0284.py
OctoberChang/LeetCode-Solutions
bb7958194e7b196729611cbad19ee792ba41c429
[ "MIT" ]
2
2021-01-26T00:59:47.000Z
2021-11-20T02:55:13.000Z
Sec24_Design/q0284.py
OctoberChang/LeetCode-Solutions
bb7958194e7b196729611cbad19ee792ba41c429
[ "MIT" ]
null
null
null
Sec24_Design/q0284.py
OctoberChang/LeetCode-Solutions
bb7958194e7b196729611cbad19ee792ba41c429
[ "MIT" ]
null
null
null
#!/usr/bin/env python # encoding: utf-8 # Below is the interface for Iterator, which is already defined for you. # # class Iterator: # def __init__(self, nums): # """ # Initializes an iterator object to the beginning of a list. # :type nums: List[int] # """ # # def hasNext(self): # """ # Returns true if the iteration has more elements. # :rtype: bool # """ # # def next(self): # """ # Returns the next element in the iteration. # :rtype: int # """ class PeekingIterator: def __init__(self, iterator): """ Initialize your data structure here. :type iterator: Iterator """ self.iterator = iterator self.val_ = None self.has_next_ = iterator.hasNext() self.has_peak_ = False def peek(self): """ Returns the next element in the iteration without advancing the iterator. :rtype: int """ if not self.has_peak_: self.has_peak_ = True self.val_ = self.iterator.next() return self.val_ def next(self): """ :rtype: int """ self.val_ = self.peek() self.has_peak_ = False self.has_next_ = self.iterator.hasNext() return self.val_ def hasNext(self): """ :rtype: bool """ return self.has_next_ # Your PeekingIterator object will be instantiated and called as such: # iter = PeekingIterator(Iterator(nums)) # while iter.hasNext(): # val = iter.peek() # Get the next element but not advance the iterator. # iter.next() # Should return the same value as [val].
25.656716
81
0.556719
# Initializes an iterator object to the beginning of a list. # :type nums: List[int] # """ # Returns true if the iteration has more elements. # :rtype: bool # """ # Returns the next element in the iteration. # :rtype: int # """ class PeekingIterator: def __init__(self, iterator): self.iterator = iterator self.val_ = None self.has_next_ = iterator.hasNext() self.has_peak_ = False def peek(self): if not self.has_peak_: self.has_peak_ = True self.val_ = self.iterator.next() return self.val_ def next(self): self.val_ = self.peek() self.has_peak_ = False self.has_next_ = self.iterator.hasNext() return self.val_ def hasNext(self): return self.has_next_
true
true
f712e225df2cc8743f4e2cf410c78b74be4c512a
523
py
Python
index.py
kavehkm/MiddleWareSystem
de5484d7fab6582904506dcf7db19ecfffcc8df7
[ "Apache-2.0" ]
null
null
null
index.py
kavehkm/MiddleWareSystem
de5484d7fab6582904506dcf7db19ecfffcc8df7
[ "Apache-2.0" ]
null
null
null
index.py
kavehkm/MiddleWareSystem
de5484d7fab6582904506dcf7db19ecfffcc8df7
[ "Apache-2.0" ]
null
null
null
# standard from importlib import import_module # internal import settings def core_func(*args, **kwargs): print('core_func executed with args={} + kwargs={}'.format(args, kwargs)) def set_middlewares(func): for middleware in reversed(settings.MIDDLEWARES): p, m = middleware.rsplit('.', 1) mod = import_module(p) met = getattr(mod, m) func = met(func) return func if __name__ == '__main__': args = (1, 2, 3) kwargs = { 'a': 'x', 'b': 'y', 'c': 'z' } set_middlewares(core_func)(*args, **kwargs)
17.433333
74
0.65392
from importlib import import_module import settings def core_func(*args, **kwargs): print('core_func executed with args={} + kwargs={}'.format(args, kwargs)) def set_middlewares(func): for middleware in reversed(settings.MIDDLEWARES): p, m = middleware.rsplit('.', 1) mod = import_module(p) met = getattr(mod, m) func = met(func) return func if __name__ == '__main__': args = (1, 2, 3) kwargs = { 'a': 'x', 'b': 'y', 'c': 'z' } set_middlewares(core_func)(*args, **kwargs)
true
true
f712e2465ddae95ed0184616de702dadd275e6fe
3,225
py
Python
Algorithm.Python/FinancialAdvisorDemoAlgorithm.py
theGOTOguy/Lean-1
99327d106cf7f6b40a5cb43d7cf40350bd6eb02a
[ "Apache-2.0" ]
null
null
null
Algorithm.Python/FinancialAdvisorDemoAlgorithm.py
theGOTOguy/Lean-1
99327d106cf7f6b40a5cb43d7cf40350bd6eb02a
[ "Apache-2.0" ]
null
null
null
Algorithm.Python/FinancialAdvisorDemoAlgorithm.py
theGOTOguy/Lean-1
99327d106cf7f6b40a5cb43d7cf40350bd6eb02a
[ "Apache-2.0" ]
null
null
null
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. # Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * ### <summary> ### This algorithm demonstrates how to submit orders to a Financial Advisor account group, allocation profile or a single managed account. ### </summary> ### <meta name="tag" content="using data" /> ### <meta name="tag" content="using quantconnect" /> ### <meta name="tag" content="trading and orders" /> ### <meta name="tag" content="financial advisor" /> class FinancialAdvisorDemoAlgorithm(QCAlgorithm): def Initialize(self): # Initialise the data and resolution required, as well as the cash and start-end dates for your algorithm. All algorithms must be initialized. self.SetStartDate(2013,10,07) #Set Start Date self.SetEndDate(2013,10,11) #Set End Date self.SetCash(100000) #Set Strategy Cash self.symbol = self.AddEquity("SPY", Resolution.Second).Symbol # The default order properties can be set here to choose the FA settings # to be automatically used in any order submission method (such as SetHoldings, Buy, Sell and Order) # Use a default FA Account Group with an Allocation Method self.DefaultOrderProperties = InteractiveBrokersOrderProperties() # account group created manually in IB/TWS self.DefaultOrderProperties.FaGroup = "TestGroupEQ" # supported allocation methods are: EqualQuantity, NetLiq, AvailableEquity, PctChange self.DefaultOrderProperties.FaMethod = "EqualQuantity" # set a default FA Allocation Profile # DefaultOrderProperties = InteractiveBrokersOrderProperties() # allocation profile created manually in IB/TWS # self.DefaultOrderProperties.FaProfile = "TestProfileP" # send all orders to a single managed account # DefaultOrderProperties = InteractiveBrokersOrderProperties() # a sub-account linked to the Financial Advisor master account # self.DefaultOrderProperties.Account = "DU123456" def OnData(self, data): # OnData event is the primary entry point for your algorithm. Each new data point will be pumped in here. if not self.Portfolio.Invested: # when logged into IB as a Financial Advisor, this call will use order properties # set in the DefaultOrderProperties property of QCAlgorithm self.SetHoldings("SPY", 1)
47.426471
150
0.728992
 from clr import AddReference AddReference("System") AddReference("QuantConnect.Algorithm") AddReference("QuantConnect.Common") from System import * from QuantConnect import * from QuantConnect.Algorithm import * self.SetHoldings("SPY", 1)
false
true
f712e29e44bdca122469aef17d117cb64090f78d
1,306
py
Python
Data_Processing/BoxPlot_error.py
ZzhKlaus/2018-SURF-Trajectory-Estimation
71c62c816d1531f6806bfa9455fec9affe36496c
[ "MIT" ]
14
2018-09-03T03:01:00.000Z
2021-07-13T13:22:08.000Z
Data_Processing/BoxPlot_error.py
ZzhKlaus/2018-SURF-Trajectory-Estimation
71c62c816d1531f6806bfa9455fec9affe36496c
[ "MIT" ]
null
null
null
Data_Processing/BoxPlot_error.py
ZzhKlaus/2018-SURF-Trajectory-Estimation
71c62c816d1531f6806bfa9455fec9affe36496c
[ "MIT" ]
13
2018-09-08T08:49:31.000Z
2021-04-23T12:27:58.000Z
#By Zhenghang(Klaus) Zhong #Box Plot of error distribution from pandas import DataFrame from pandas import read_csv import pandas as pd import numpy as np from matplotlib import pyplot # load results into a dataframe filenames_128 = ['dis_diff_128.csv'] filenames_256 = ['dis_diff_256.csv'] filenames_512 = ['dis_diff_512.csv'] results = DataFrame() for name in filenames_128: results_128 = read_csv(name, header=0,usecols = [1]) # describe all results, as 1 unit = 10cm, we want to transfer to meters, /10 results_128 = results_128.div(10, axis = 0) for name in filenames_256: results_256 = read_csv(name, header=0,usecols = [1]) # describe all results results_256 = results_256.div(10, axis = 0) for name in filenames_512: results_512 = read_csv(name, header=0,usecols = [1]) # describe all results results_512 = results_512.div(10, axis = 0) print(results_128.describe()) print(results_256.describe()) print(results_512.describe()) # box and whisker plot df = pd.DataFrame(np.concatenate((results_128,results_512),axis = 1), columns=['128', '512']) df.boxplot(sym='k',showmeans = True,showfliers = False,return_type='dict') #results_256.boxplot(sym='k',showmeans = True,whis = [0,8],showfliers = False,return_type='dict') pyplot.xlabel('Hidden node') pyplot.ylabel('Error (m)') pyplot.show()
29.681818
97
0.748086
from pandas import DataFrame from pandas import read_csv import pandas as pd import numpy as np from matplotlib import pyplot filenames_128 = ['dis_diff_128.csv'] filenames_256 = ['dis_diff_256.csv'] filenames_512 = ['dis_diff_512.csv'] results = DataFrame() for name in filenames_128: results_128 = read_csv(name, header=0,usecols = [1]) results_128 = results_128.div(10, axis = 0) for name in filenames_256: results_256 = read_csv(name, header=0,usecols = [1]) results_256 = results_256.div(10, axis = 0) for name in filenames_512: results_512 = read_csv(name, header=0,usecols = [1]) results_512 = results_512.div(10, axis = 0) print(results_128.describe()) print(results_256.describe()) print(results_512.describe()) df = pd.DataFrame(np.concatenate((results_128,results_512),axis = 1), columns=['128', '512']) df.boxplot(sym='k',showmeans = True,showfliers = False,return_type='dict') pyplot.xlabel('Hidden node') pyplot.ylabel('Error (m)') pyplot.show()
true
true
f712e366441a3726dfdd8750a0e6012404d00359
383
py
Python
main.py
afrigon/sharify-api
383baa5ae089d996c2d68da8b55e566dd0cfbbf9
[ "MIT" ]
1
2020-01-06T17:29:39.000Z
2020-01-06T17:29:39.000Z
main.py
afrigon/sharify-api
383baa5ae089d996c2d68da8b55e566dd0cfbbf9
[ "MIT" ]
null
null
null
main.py
afrigon/sharify-api
383baa5ae089d996c2d68da8b55e566dd0cfbbf9
[ "MIT" ]
2
2020-01-07T14:25:38.000Z
2021-06-23T16:10:57.000Z
import os from dotenv import load_dotenv from app.utils.cache import Cache from app import ApplicationFactory load_dotenv() with open('./AppleMusicAuthKey.p8', 'r') as f: os.environ['APPLE_KEY'] = f.read() TITLE = 'Sharify' DESCRIPTION = '' DEBUG = os.environ.get('APP_DEBUG') or False Cache.instance().init() app = ApplicationFactory(TITLE, DESCRIPTION).create(debug=DEBUG)
22.529412
64
0.744125
import os from dotenv import load_dotenv from app.utils.cache import Cache from app import ApplicationFactory load_dotenv() with open('./AppleMusicAuthKey.p8', 'r') as f: os.environ['APPLE_KEY'] = f.read() TITLE = 'Sharify' DESCRIPTION = '' DEBUG = os.environ.get('APP_DEBUG') or False Cache.instance().init() app = ApplicationFactory(TITLE, DESCRIPTION).create(debug=DEBUG)
true
true
f712e38bdcebebf07f396d967e3bb465facc3362
648
py
Python
src/popoto/utils/list_search.py
yudame/portfolio
936b92e39e764e0e511c4203a978e240a0a90714
[ "MIT" ]
5
2021-11-21T01:36:02.000Z
2022-01-28T23:16:51.000Z
src/popoto/utils/list_search.py
yudame/portfolio
936b92e39e764e0e511c4203a978e240a0a90714
[ "MIT" ]
1
2021-12-29T13:20:17.000Z
2021-12-29T13:20:17.000Z
src/popoto/utils/list_search.py
yudame/portfolio
936b92e39e764e0e511c4203a978e240a0a90714
[ "MIT" ]
null
null
null
# https://stackoverflow.com/questions/16974047/efficient-way-to-find-missing-elements-in-an-integer-sequence/16974075#16974075 from itertools import islice, chain def window(seq, n=2): "Returns a sliding window (of width n) over data from the iterable" " s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... " it = iter(seq) result = tuple(islice(it, n)) if len(result) == n: yield result for elem in it: result = result[1:] + (elem,) yield result def missing_elements(L): missing = chain.from_iterable(range(x + 1, y) for x, y in window(L) if (y - x) > 1) return list(missing)
34.105263
126
0.611111
rtools import islice, chain def window(seq, n=2): it = iter(seq) result = tuple(islice(it, n)) if len(result) == n: yield result for elem in it: result = result[1:] + (elem,) yield result def missing_elements(L): missing = chain.from_iterable(range(x + 1, y) for x, y in window(L) if (y - x) > 1) return list(missing)
true
true
f712e48a3d3608959b97bc229c46bebab602676f
10,349
py
Python
tests/krs/test_groups.py
WIPACrepo/keycloak-rest-services
2661b0db2dd320bdb8eefc62c805188bec52ecc7
[ "MIT" ]
1
2021-09-23T14:39:36.000Z
2021-09-23T14:39:36.000Z
tests/krs/test_groups.py
WIPACrepo/keycloak-rest-services
2661b0db2dd320bdb8eefc62c805188bec52ecc7
[ "MIT" ]
38
2020-08-31T22:53:09.000Z
2022-03-28T20:55:39.000Z
tests/krs/test_groups.py
WIPACrepo/keycloak-rest-services
2661b0db2dd320bdb8eefc62c805188bec52ecc7
[ "MIT" ]
null
null
null
import pytest from krs.token import get_token from krs import groups, users from ..util import keycloak_bootstrap @pytest.mark.asyncio async def test_list_groups_empty(keycloak_bootstrap): ret = await groups.list_groups(rest_client=keycloak_bootstrap) assert ret == {} @pytest.mark.asyncio async def test_list_groups(keycloak_bootstrap): await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup/testgroup2', rest_client=keycloak_bootstrap) ret = await groups.list_groups(rest_client=keycloak_bootstrap) assert list(ret.keys()) == ['/testgroup','/testgroup/testgroup2'] assert ret['/testgroup']['children'] == ['testgroup2'] @pytest.mark.asyncio async def test_group_info(keycloak_bootstrap): with pytest.raises(Exception): await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup/testgroup2', rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['name'] == 'testgroup' assert ret['path'] == '/testgroup' assert [g['name'] for g in ret['subGroups']] == ['testgroup2'] @pytest.mark.asyncio async def test_group_attrs(keycloak_bootstrap): await groups.create_group('/testgroup', attrs={'foo':'bar'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['name'] == 'testgroup' assert ret['path'] == '/testgroup' assert ret['attributes'] == {'foo': 'bar'} @pytest.mark.asyncio async def test_modify_group(keycloak_bootstrap): await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {} await groups.modify_group('/testgroup', {'baz': 'foo'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {'baz': 'foo'} @pytest.mark.asyncio async def test_modify_group_with_attrs(keycloak_bootstrap): await groups.create_group('/testgroup', attrs={'foo':'bar'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {'foo': 'bar'} await groups.modify_group('/testgroup', {'baz': 'foo'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {'foo': 'bar', 'baz': 'foo'} @pytest.mark.asyncio async def test_modify_group_del_attr(keycloak_bootstrap): await groups.create_group('/testgroup', attrs={'foo':'bar'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {'foo': 'bar'} await groups.modify_group('/testgroup', {'foo': None, 'baz': 'foo'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {'baz': 'foo'} @pytest.mark.asyncio async def test_group_info_by_id(keycloak_bootstrap): with pytest.raises(Exception): await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup/testgroup2', rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) group_id = ret['id'] ret = await groups.group_info_by_id(group_id, rest_client=keycloak_bootstrap) assert ret['name'] == 'testgroup' assert ret['path'] == '/testgroup' assert [g['name'] for g in ret['subGroups']] == ['testgroup2'] @pytest.mark.asyncio async def test_create_group(keycloak_bootstrap): await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) @pytest.mark.asyncio async def test_create_subgroup(keycloak_bootstrap): await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup/testgroup2', rest_client=keycloak_bootstrap) @pytest.mark.asyncio async def test_delete_group(keycloak_bootstrap): # first test non-existing group await groups.delete_group('/testgroup', rest_client=keycloak_bootstrap) # now test existing group await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.delete_group('/testgroup', rest_client=keycloak_bootstrap) @pytest.mark.asyncio async def test_get_user_groups(keycloak_bootstrap): with pytest.raises(Exception): await groups.get_user_groups('testuser', rest_client=keycloak_bootstrap) await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) ret = await groups.get_user_groups('testuser', rest_client=keycloak_bootstrap) assert ret == [] await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_user_groups('testuser', rest_client=keycloak_bootstrap) assert ret == ['/testgroup'] @pytest.mark.asyncio async def test_add_user_group(keycloak_bootstrap): with pytest.raises(Exception): await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) with pytest.raises(Exception): await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) @pytest.mark.asyncio async def test_remove_user_group(keycloak_bootstrap): with pytest.raises(Exception): await groups.remove_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) with pytest.raises(Exception): await groups.remove_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) # test for not being a member of the group await groups.remove_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) # now test for removing the group await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await groups.remove_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_user_groups('testuser', rest_client=keycloak_bootstrap) assert ret == [] @pytest.mark.asyncio async def test_get_group_membership(keycloak_bootstrap): with pytest.raises(Exception): await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) with pytest.raises(Exception): await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) ret = await groups.get_group_membership('/testgroup', rest_client=keycloak_bootstrap) assert ret == [] await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_group_membership('/testgroup', rest_client=keycloak_bootstrap) assert ret == ['testuser'] @pytest.mark.asyncio async def test_parent_child_group_membership(keycloak_bootstrap): await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) await groups.create_group('/parent', rest_client=keycloak_bootstrap) await groups.create_group('/parent/child', rest_client=keycloak_bootstrap) await groups.add_user_group('/parent', 'testuser', rest_client=keycloak_bootstrap) await groups.add_user_group('/parent/child', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_group_membership('/parent', rest_client=keycloak_bootstrap) assert ret == ['testuser'] ret = await groups.get_group_membership('/parent/child', rest_client=keycloak_bootstrap) assert ret == ['testuser'] @pytest.mark.asyncio async def test_child_parent_group_membership(keycloak_bootstrap): await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) await groups.create_group('/parent', rest_client=keycloak_bootstrap) await groups.create_group('/parent/child', rest_client=keycloak_bootstrap) await groups.add_user_group('/parent/child', 'testuser', rest_client=keycloak_bootstrap) await groups.add_user_group('/parent', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_group_membership('/parent', rest_client=keycloak_bootstrap) assert ret == ['testuser'] ret = await groups.get_group_membership('/parent/child', rest_client=keycloak_bootstrap) assert ret == ['testuser'] @pytest.mark.asyncio async def test_add_user_group_multiple(keycloak_bootstrap): await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) await groups.create_group('/foo', rest_client=keycloak_bootstrap) await groups.create_group('/foo/bar', rest_client=keycloak_bootstrap) await groups.create_group('/bar', rest_client=keycloak_bootstrap) await groups.create_group('/foo/bar/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/bar/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.add_user_group('/foo/bar/testgroup', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_group_membership('/foo/bar/testgroup', rest_client=keycloak_bootstrap) assert ret == ['testuser'] ret = await groups.get_group_membership('/bar/testgroup', rest_client=keycloak_bootstrap) assert ret == [] ret = await groups.get_group_membership('/testgroup', rest_client=keycloak_bootstrap) assert ret == []
48.359813
104
0.757948
import pytest from krs.token import get_token from krs import groups, users from ..util import keycloak_bootstrap @pytest.mark.asyncio async def test_list_groups_empty(keycloak_bootstrap): ret = await groups.list_groups(rest_client=keycloak_bootstrap) assert ret == {} @pytest.mark.asyncio async def test_list_groups(keycloak_bootstrap): await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup/testgroup2', rest_client=keycloak_bootstrap) ret = await groups.list_groups(rest_client=keycloak_bootstrap) assert list(ret.keys()) == ['/testgroup','/testgroup/testgroup2'] assert ret['/testgroup']['children'] == ['testgroup2'] @pytest.mark.asyncio async def test_group_info(keycloak_bootstrap): with pytest.raises(Exception): await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup/testgroup2', rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['name'] == 'testgroup' assert ret['path'] == '/testgroup' assert [g['name'] for g in ret['subGroups']] == ['testgroup2'] @pytest.mark.asyncio async def test_group_attrs(keycloak_bootstrap): await groups.create_group('/testgroup', attrs={'foo':'bar'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['name'] == 'testgroup' assert ret['path'] == '/testgroup' assert ret['attributes'] == {'foo': 'bar'} @pytest.mark.asyncio async def test_modify_group(keycloak_bootstrap): await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {} await groups.modify_group('/testgroup', {'baz': 'foo'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {'baz': 'foo'} @pytest.mark.asyncio async def test_modify_group_with_attrs(keycloak_bootstrap): await groups.create_group('/testgroup', attrs={'foo':'bar'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {'foo': 'bar'} await groups.modify_group('/testgroup', {'baz': 'foo'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {'foo': 'bar', 'baz': 'foo'} @pytest.mark.asyncio async def test_modify_group_del_attr(keycloak_bootstrap): await groups.create_group('/testgroup', attrs={'foo':'bar'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {'foo': 'bar'} await groups.modify_group('/testgroup', {'foo': None, 'baz': 'foo'}, rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) assert ret['attributes'] == {'baz': 'foo'} @pytest.mark.asyncio async def test_group_info_by_id(keycloak_bootstrap): with pytest.raises(Exception): await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup/testgroup2', rest_client=keycloak_bootstrap) ret = await groups.group_info('/testgroup', rest_client=keycloak_bootstrap) group_id = ret['id'] ret = await groups.group_info_by_id(group_id, rest_client=keycloak_bootstrap) assert ret['name'] == 'testgroup' assert ret['path'] == '/testgroup' assert [g['name'] for g in ret['subGroups']] == ['testgroup2'] @pytest.mark.asyncio async def test_create_group(keycloak_bootstrap): await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) @pytest.mark.asyncio async def test_create_subgroup(keycloak_bootstrap): await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup/testgroup2', rest_client=keycloak_bootstrap) @pytest.mark.asyncio async def test_delete_group(keycloak_bootstrap): await groups.delete_group('/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.delete_group('/testgroup', rest_client=keycloak_bootstrap) @pytest.mark.asyncio async def test_get_user_groups(keycloak_bootstrap): with pytest.raises(Exception): await groups.get_user_groups('testuser', rest_client=keycloak_bootstrap) await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) ret = await groups.get_user_groups('testuser', rest_client=keycloak_bootstrap) assert ret == [] await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_user_groups('testuser', rest_client=keycloak_bootstrap) assert ret == ['/testgroup'] @pytest.mark.asyncio async def test_add_user_group(keycloak_bootstrap): with pytest.raises(Exception): await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) with pytest.raises(Exception): await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) @pytest.mark.asyncio async def test_remove_user_group(keycloak_bootstrap): with pytest.raises(Exception): await groups.remove_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) with pytest.raises(Exception): await groups.remove_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.remove_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await groups.remove_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_user_groups('testuser', rest_client=keycloak_bootstrap) assert ret == [] @pytest.mark.asyncio async def test_get_group_membership(keycloak_bootstrap): with pytest.raises(Exception): await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) with pytest.raises(Exception): await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) ret = await groups.get_group_membership('/testgroup', rest_client=keycloak_bootstrap) assert ret == [] await groups.add_user_group('/testgroup', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_group_membership('/testgroup', rest_client=keycloak_bootstrap) assert ret == ['testuser'] @pytest.mark.asyncio async def test_parent_child_group_membership(keycloak_bootstrap): await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) await groups.create_group('/parent', rest_client=keycloak_bootstrap) await groups.create_group('/parent/child', rest_client=keycloak_bootstrap) await groups.add_user_group('/parent', 'testuser', rest_client=keycloak_bootstrap) await groups.add_user_group('/parent/child', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_group_membership('/parent', rest_client=keycloak_bootstrap) assert ret == ['testuser'] ret = await groups.get_group_membership('/parent/child', rest_client=keycloak_bootstrap) assert ret == ['testuser'] @pytest.mark.asyncio async def test_child_parent_group_membership(keycloak_bootstrap): await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) await groups.create_group('/parent', rest_client=keycloak_bootstrap) await groups.create_group('/parent/child', rest_client=keycloak_bootstrap) await groups.add_user_group('/parent/child', 'testuser', rest_client=keycloak_bootstrap) await groups.add_user_group('/parent', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_group_membership('/parent', rest_client=keycloak_bootstrap) assert ret == ['testuser'] ret = await groups.get_group_membership('/parent/child', rest_client=keycloak_bootstrap) assert ret == ['testuser'] @pytest.mark.asyncio async def test_add_user_group_multiple(keycloak_bootstrap): await users.create_user('testuser', 'first', 'last', 'email', rest_client=keycloak_bootstrap) await groups.create_group('/foo', rest_client=keycloak_bootstrap) await groups.create_group('/foo/bar', rest_client=keycloak_bootstrap) await groups.create_group('/bar', rest_client=keycloak_bootstrap) await groups.create_group('/foo/bar/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/bar/testgroup', rest_client=keycloak_bootstrap) await groups.create_group('/testgroup', rest_client=keycloak_bootstrap) await groups.add_user_group('/foo/bar/testgroup', 'testuser', rest_client=keycloak_bootstrap) ret = await groups.get_group_membership('/foo/bar/testgroup', rest_client=keycloak_bootstrap) assert ret == ['testuser'] ret = await groups.get_group_membership('/bar/testgroup', rest_client=keycloak_bootstrap) assert ret == [] ret = await groups.get_group_membership('/testgroup', rest_client=keycloak_bootstrap) assert ret == []
true
true
f712e55f8833113841675aec904201ea6fc6f2de
1,487
py
Python
setup.py
jbn/idgraph
f610e72bed77de011f2a6610daa3fb45ea4caa8c
[ "MIT" ]
2
2019-10-21T15:07:06.000Z
2019-10-21T15:21:02.000Z
setup.py
jbn/idgraph
f610e72bed77de011f2a6610daa3fb45ea4caa8c
[ "MIT" ]
1
2019-10-20T21:07:11.000Z
2019-10-20T21:07:11.000Z
setup.py
jbn/idgraph
f610e72bed77de011f2a6610daa3fb45ea4caa8c
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- """The setup script.""" from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = [ ] setup_requirements = ['pytest-runner', 'requests', 'IPython', 'jmespath'] test_requirements = ['pytest>=3', ] setup( author="John Bjorn Nelson", author_email='jbn@abreka.com', python_requires='>=3, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], description="Provides IPython cell magic for dgraph queries, mutations, and alteration remote execution.", install_requires=requirements, license="MIT license", long_description=readme + '\n\n' + history, include_package_data=True, keywords='idgraph', name='idgraph', packages=find_packages(include=['idgraph', 'idgraph.*']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/jbn/idgraph', version='0.0.1', zip_safe=False, )
30.346939
111
0.639543
from setuptools import setup, find_packages with open('README.rst') as readme_file: readme = readme_file.read() with open('HISTORY.rst') as history_file: history = history_file.read() requirements = [ ] setup_requirements = ['pytest-runner', 'requests', 'IPython', 'jmespath'] test_requirements = ['pytest>=3', ] setup( author="John Bjorn Nelson", author_email='jbn@abreka.com', python_requires='>=3, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], description="Provides IPython cell magic for dgraph queries, mutations, and alteration remote execution.", install_requires=requirements, license="MIT license", long_description=readme + '\n\n' + history, include_package_data=True, keywords='idgraph', name='idgraph', packages=find_packages(include=['idgraph', 'idgraph.*']), setup_requires=setup_requirements, test_suite='tests', tests_require=test_requirements, url='https://github.com/jbn/idgraph', version='0.0.1', zip_safe=False, )
true
true
f712e80bcddd2868db294705cd39a8d69135bad5
3,615
py
Python
xlab/local_settings.py
topd333/Xlab
28d89b3b18717957229ca52cb2cbbbc20bd31eae
[ "Unlicense" ]
null
null
null
xlab/local_settings.py
topd333/Xlab
28d89b3b18717957229ca52cb2cbbbc20bd31eae
[ "Unlicense" ]
null
null
null
xlab/local_settings.py
topd333/Xlab
28d89b3b18717957229ca52cb2cbbbc20bd31eae
[ "Unlicense" ]
null
null
null
#import django.conf.global_settings as DEFAULT_SETTINGS from .settings import * import os from django.utils.translation import ugettext as _ BASE_DIR = os.path.dirname(os.path.dirname(__file__)) DEBUG = True TEMPLATE_DEBUG = DEBUG ALLOWED_HOSTS = ['*'] ADMINS = ( ('Admin User', 'jamesh@linkinulife.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', # Add 'postgresql_psycopg2', 'mysql', 'sqlite3' or 'oracle'. 'NAME': 'xlab_dev', # Or path to database file if using sqlite3. # The following settings are not used with sqlite3: 'USER': 'django', 'PASSWORD': 'xxxxxxxxxxxxx', 'HOST': '127.0.0.1', # Empty for localhost through domain sockets or '127.0.0.1' for localhost through TCP. 'PORT': '3306', # Set to empty string for default. 'ATOMIC_REQUESTS': True, }, 'oxdata': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'oxdata', 'USER': 'txservice', 'PASSWORD': 'xxxxxxxxxx, 'HOST': '127.0.0.1', 'PORT': '3306', 'ATOMIC_REQUESTS': True, }, 'grid_space': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'grid_space', 'USER': 'django', 'PASSWORD': 'xxxxxxxxxxxxxx', 'HOST': '127.0.0.1', 'PORT': '3306', 'ATOMIC_REQUESTS': True, }, 'robust_grid': { 'NAME': 'robust_grid', 'ENGINE': 'django.db.backends.mysql', 'HOST': '127.0.0.1', 'USER': 'opensim', 'PORT': '3306', 'PASSWORD': 'xxxxxxxxxxxxxxxxx', }, 'estates': { 'NAME': 'estates', 'ENGINE': 'django.db.backends.mysql', 'HOST': '127.0.0.1', 'USER': 'os_estates', 'PORT': '3308', 'PASSWORD': 'xxxxxxxxxxxxxxx', }, } DATABASE_ROUTERS = ['grid_db.dbhelper.SpaceRouter', 'grid_db.dbhelper.RobustGridRouter', 'grid_db.dbhelper.EstatesRouter', #'grid_db.dbhelper.StagingRouter', ] # Make this unique, and don't share it with anybody. SECRET_KEY = 'l$ykc444%f&s8dmqvcpsl29@pj8**3&abg$8+l*%(ad=&z*6jkh' # Site Application SITE_NAME = 'Linkinu' SITE_TITLE = 'Linkinu' # Welecome Application WELCOME_HEADING = 'Linkinu' WELCOME_TITLE = 'Linkinu' # grid_user application # Activation link, etc. ACCOUNT_SERVER_ADDRESS = 'http://linkinulife.com' LOGIN_URL = "/login" AUTH_USER_MODEL = 'grid_user.User' AUTH_SERVER_URL = 'http://linkinulife.com:8003' ACCOUNT_SERVER_URL = 'http://linkinulife.com:8003' ACCOUNT_ADMIN_EMAIL = 'jamesh@linkinulife.com' XMLRPC_GATEWAY_IP = '144.76.18.178' # Grid-Wide Estate Database Default Settings ESTATE_DATABASE = 'estates' ESTATE_DATASOURCE = 'linkinulife.com' ESTATE_DATABASE_PORT = '3308' ESTATE_DATABASE_USER = 'os_estates' ESTATE_DATABASE_PASSWORD = 'xxxxxxxxxxxxxxxx' # Default Estate Settings DEFAULT_ESTATE_NAME = "Mainland" DEFAULT_ESTATE_OWNER_NAME = "Governor LinkniU" # Settings for grid user database for import. USER_DATA_HOST = "127.0.0.1" USER_DATA_USERNAME = "root" USER_DATA_USERPASS = "xxxxxxxxxxxxxxxxxxxxxxxxx" USER_DATA_DBNAME = "robust_grid" # Settings for oxdata database for import. OXDATA_DATA_HOST = "127.0.0.1" OXDATA_DATA_USERNAME = "txservice" OXDATA_DATA_USERPASS = "xxxxxxxxxxxxxxxxxxxx" OXDATA_DATA_DBNAME = "oxdata" LANGUAGES = ( ('en', U'English'), ('ar', u'Arabic'), ('hi', u'Hindi'), ) LOCALE_PATHS = ( os.path.join(DIRNAME, '../locale') )
26.195652
136
0.6213
from .settings import * import os from django.utils.translation import ugettext as _ BASE_DIR = os.path.dirname(os.path.dirname(__file__)) DEBUG = True TEMPLATE_DEBUG = DEBUG ALLOWED_HOSTS = ['*'] ADMINS = ( ('Admin User', 'jamesh@linkinulife.com'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'xlab_dev', 'USER': 'django', 'PASSWORD': 'xxxxxxxxxxxxx', 'HOST': '127.0.0.1', 'PORT': '3306', 'ATOMIC_REQUESTS': True, }, 'oxdata': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'oxdata', 'USER': 'txservice', 'PASSWORD': 'xxxxxxxxxx, 'HOST': '127.0.0.1', 'PORT': '3306', 'ATOMIC_REQUESTS': True, }, 'grid_space': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'grid_space', 'USER': 'django', 'PASSWORD': 'xxxxxxxxxxxxxx', 'HOST': '127.0.0.1', 'PORT': '3306', 'ATOMIC_REQUESTS': True, }, 'robust_grid': { 'NAME': 'robust_grid', 'ENGINE': 'django.db.backends.mysql', 'HOST': '127.0.0.1', 'USER': 'opensim', 'PORT': '3306', 'PASSWORD': 'xxxxxxxxxxxxxxxxx', }, 'estates': { 'NAME': 'estates', 'ENGINE': 'django.db.backends.mysql', 'HOST': '127.0.0.1', 'USER': 'os_estates', 'PORT': '3308', 'PASSWORD': 'xxxxxxxxxxxxxxx', }, } DATABASE_ROUTERS = ['grid_db.dbhelper.SpaceRouter', 'grid_db.dbhelper.RobustGridRouter', 'grid_db.dbhelper.EstatesRouter', #'grid_db.dbhelper.StagingRouter', ] # Make this unique, and don't share it with anybody. SECRET_KEY = 'l$ykc444%f&s8dmqvcpsl29@pj8**3&abg$8+l*%(ad=&z*6jkh' SITE_NAME = 'Linkinu' SITE_TITLE = 'Linkinu' WELCOME_HEADING = 'Linkinu' WELCOME_TITLE = 'Linkinu' ACCOUNT_SERVER_ADDRESS = 'http://linkinulife.com' LOGIN_URL = "/login" AUTH_USER_MODEL = 'grid_user.User' AUTH_SERVER_URL = 'http://linkinulife.com:8003' ACCOUNT_SERVER_URL = 'http://linkinulife.com:8003' ACCOUNT_ADMIN_EMAIL = 'jamesh@linkinulife.com' XMLRPC_GATEWAY_IP = '144.76.18.178' ESTATE_DATABASE = 'estates' ESTATE_DATASOURCE = 'linkinulife.com' ESTATE_DATABASE_PORT = '3308' ESTATE_DATABASE_USER = 'os_estates' ESTATE_DATABASE_PASSWORD = 'xxxxxxxxxxxxxxxx' DEFAULT_ESTATE_NAME = "Mainland" DEFAULT_ESTATE_OWNER_NAME = "Governor LinkniU" USER_DATA_HOST = "127.0.0.1" USER_DATA_USERNAME = "root" USER_DATA_USERPASS = "xxxxxxxxxxxxxxxxxxxxxxxxx" USER_DATA_DBNAME = "robust_grid" OXDATA_DATA_HOST = "127.0.0.1" OXDATA_DATA_USERNAME = "txservice" OXDATA_DATA_USERPASS = "xxxxxxxxxxxxxxxxxxxx" OXDATA_DATA_DBNAME = "oxdata" LANGUAGES = ( ('en', U'English'), ('ar', u'Arabic'), ('hi', u'Hindi'), ) LOCALE_PATHS = ( os.path.join(DIRNAME, '../locale') )
false
true
f712e81c27b57e8b397111576bc790c2e0fc749e
1,567
py
Python
algorithms_and_data_structures/binary-search.py
amgad01/algorithms
53eecf06e907cde806d4b78dc78fcd70d0271e3e
[ "MIT" ]
1
2021-03-05T18:13:02.000Z
2021-03-05T18:13:02.000Z
algorithms_and_data_structures/binary-search.py
amgad01/algorithms
53eecf06e907cde806d4b78dc78fcd70d0271e3e
[ "MIT" ]
null
null
null
algorithms_and_data_structures/binary-search.py
amgad01/algorithms
53eecf06e907cde806d4b78dc78fcd70d0271e3e
[ "MIT" ]
1
2021-07-25T01:55:12.000Z
2021-07-25T01:55:12.000Z
from util import time_it # Time complexity: O(N) @time_it def linear_search(list1: [], element) -> int: """Returns the index of a given element in a given sorted list, otherwise returns -1""" for index, item in enumerate(list1): if item == element: return index return -1 @time_it def binary_search(list1: [], element) -> int: """Returns the index of a given element in a given sorted list , otherwise returns -1""" list_length = len(list1) left = 0 right = list_length - 1 while left <= right: middle = (left + right) // 2 middle_element = list1[middle] if element == middle_element: return middle if element < middle_element: right = middle - 1 else: left = middle + 1 return -1 def binary_search_recursive(list1, element, left=0, right=None): if right is None: right = len(list1) - 1 if right < left: return -1 mid_index = (left + right) // 2 mid_number = list1[mid_index] if mid_number == element: return mid_index if mid_number < element: left = mid_index + 1 else: right = mid_index - 1 return binary_search_recursive(list1, element, left, right) if __name__ == "__main__": nums = [10, 23, 35, 87, 120, 940] linear_search([i for i in range(10000001)], 1000000) binary_search([i for i in range(10000001)], 1000000) for i in nums: print( binary_search_recursive(nums, i)) print( binary_search_recursive(nums, i+1))
27.017241
92
0.611997
from util import time_it @time_it def linear_search(list1: [], element) -> int: """Returns the index of a given element in a given sorted list, otherwise returns -1""" for index, item in enumerate(list1): if item == element: return index return -1 @time_it def binary_search(list1: [], element) -> int: """Returns the index of a given element in a given sorted list , otherwise returns -1""" list_length = len(list1) left = 0 right = list_length - 1 while left <= right: middle = (left + right) // 2 middle_element = list1[middle] if element == middle_element: return middle if element < middle_element: right = middle - 1 else: left = middle + 1 return -1 def binary_search_recursive(list1, element, left=0, right=None): if right is None: right = len(list1) - 1 if right < left: return -1 mid_index = (left + right) // 2 mid_number = list1[mid_index] if mid_number == element: return mid_index if mid_number < element: left = mid_index + 1 else: right = mid_index - 1 return binary_search_recursive(list1, element, left, right) if __name__ == "__main__": nums = [10, 23, 35, 87, 120, 940] linear_search([i for i in range(10000001)], 1000000) binary_search([i for i in range(10000001)], 1000000) for i in nums: print( binary_search_recursive(nums, i)) print( binary_search_recursive(nums, i+1))
false
true
f712e8c8aad123e2fecb19d1455f5c0d1ee29767
1,768
py
Python
color_format.py
among-us-bot/aque-worker
662ac8b762af753f1d184b6e8532ef794b6a7a0a
[ "MIT" ]
1
2020-11-10T18:21:59.000Z
2020-11-10T18:21:59.000Z
color_format.py
among-us-bot/aque-worker
662ac8b762af753f1d184b6e8532ef794b6a7a0a
[ "MIT" ]
null
null
null
color_format.py
among-us-bot/aque-worker
662ac8b762af753f1d184b6e8532ef794b6a7a0a
[ "MIT" ]
null
null
null
""" Created by Epic at 10/13/20 Original script by FireDiscordBot on GitHub """ import logging from copy import copy from logging import Logger, DEBUG import sys BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) RESET_SEQ = "\033[0m" COLOR_SEQ = "\033[1;%dm" BOLD_SEQ = "\033[1m" def getcolor(color=None): return COLOR_SEQ % (30 + (color or WHITE)) def formatter_message(message): for k, v in COLORS.items(): message = message.replace(k, v) return message LEVELS = { "WARNING": YELLOW, "INFO": GREEN, "DEBUG": BLUE, "CRITICAL": YELLOW, "ERROR": RED } COLORS = { "$GREEN": getcolor(GREEN), "$BLUE": getcolor(BLUE), "$RED": getcolor(RED), "$YELLOW": getcolor(YELLOW), "$BLACK": getcolor(BLACK), "$MAGENTA": getcolor(MAGENTA), "$CYAN": getcolor(CYAN), "$WHITE": getcolor(WHITE), "$RESET": RESET_SEQ, "$BOLD": BOLD_SEQ } class ColoredFormatter(logging.Formatter): def __init__(self, msg): super().__init__(msg) def format(self, record): record = copy(record) levelname = record.levelname if levelname in LEVELS: levelname_color = COLOR_SEQ % (30 + LEVELS[levelname]) + levelname + RESET_SEQ record.levelname = levelname_color for k, v in COLORS.items(): record.msg = str(record.msg).replace(k, v) return super().format(record) def basicConfig(logger: Logger): stdout = logging.StreamHandler(sys.stdout) stdout.setLevel(DEBUG) color_format = formatter_message( "[$BOLD%(name)s$RESET][%(levelname)s] %(message)s $RESET($BOLD%(filename)s$RESET:%(lineno)d)") stdout.setFormatter(ColoredFormatter(color_format)) logger.addHandler(stdout)
24.219178
102
0.636312
import logging from copy import copy from logging import Logger, DEBUG import sys BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) RESET_SEQ = "\033[0m" COLOR_SEQ = "\033[1;%dm" BOLD_SEQ = "\033[1m" def getcolor(color=None): return COLOR_SEQ % (30 + (color or WHITE)) def formatter_message(message): for k, v in COLORS.items(): message = message.replace(k, v) return message LEVELS = { "WARNING": YELLOW, "INFO": GREEN, "DEBUG": BLUE, "CRITICAL": YELLOW, "ERROR": RED } COLORS = { "$GREEN": getcolor(GREEN), "$BLUE": getcolor(BLUE), "$RED": getcolor(RED), "$YELLOW": getcolor(YELLOW), "$BLACK": getcolor(BLACK), "$MAGENTA": getcolor(MAGENTA), "$CYAN": getcolor(CYAN), "$WHITE": getcolor(WHITE), "$RESET": RESET_SEQ, "$BOLD": BOLD_SEQ } class ColoredFormatter(logging.Formatter): def __init__(self, msg): super().__init__(msg) def format(self, record): record = copy(record) levelname = record.levelname if levelname in LEVELS: levelname_color = COLOR_SEQ % (30 + LEVELS[levelname]) + levelname + RESET_SEQ record.levelname = levelname_color for k, v in COLORS.items(): record.msg = str(record.msg).replace(k, v) return super().format(record) def basicConfig(logger: Logger): stdout = logging.StreamHandler(sys.stdout) stdout.setLevel(DEBUG) color_format = formatter_message( "[$BOLD%(name)s$RESET][%(levelname)s] %(message)s $RESET($BOLD%(filename)s$RESET:%(lineno)d)") stdout.setFormatter(ColoredFormatter(color_format)) logger.addHandler(stdout)
true
true
f712e8db6a738c49cf8e7633062bc54f0157a74a
713
py
Python
main.py
python3f/spectral_clustering
bd5900dfa7ada69bd77080b905ef08ea62b420e9
[ "MIT" ]
null
null
null
main.py
python3f/spectral_clustering
bd5900dfa7ada69bd77080b905ef08ea62b420e9
[ "MIT" ]
null
null
null
main.py
python3f/spectral_clustering
bd5900dfa7ada69bd77080b905ef08ea62b420e9
[ "MIT" ]
null
null
null
from sklearn.cluster import KMeans from sklearn.neighbors import kneighbors_graph from scipy.spatial.distance import pdist, squareform from scipy.sparse.csgraph import laplacian import numpy as np """Args: X: input samples, array (num, dim) n_clusters: no. of clusters n_neighbours: neighborhood size Returns: Y: labels for samples, array (num,) """ def spectral_clustering(X, n_clusters=2, n_neighbors=10): n, d = X.shape A = kneighbors_graph(X, n_neighbors, mode='connectivity').toarray() L = laplacian(A, normed=True) w, v = np.linalg.eig(L) w, v = w.real, v.real i = np.argsort(w) w, v = w[i], v[:,i] Y = KMeans(n_clusters).fit_predict(v[:,:2]) return Y
27.423077
71
0.683029
from sklearn.cluster import KMeans from sklearn.neighbors import kneighbors_graph from scipy.spatial.distance import pdist, squareform from scipy.sparse.csgraph import laplacian import numpy as np def spectral_clustering(X, n_clusters=2, n_neighbors=10): n, d = X.shape A = kneighbors_graph(X, n_neighbors, mode='connectivity').toarray() L = laplacian(A, normed=True) w, v = np.linalg.eig(L) w, v = w.real, v.real i = np.argsort(w) w, v = w[i], v[:,i] Y = KMeans(n_clusters).fit_predict(v[:,:2]) return Y
true
true
f712e989579dcf78423172da1b70edb9359eb352
1,688
py
Python
set_matrix_zeroes.py
tusharsadhwani/leetcode
a17a8a7587c5654f05fcd13ae7cdf47263ab2ea8
[ "MIT" ]
6
2021-05-21T01:10:42.000Z
2021-12-16T16:12:30.000Z
set_matrix_zeroes.py
tusharsadhwani/leetcode
a17a8a7587c5654f05fcd13ae7cdf47263ab2ea8
[ "MIT" ]
null
null
null
set_matrix_zeroes.py
tusharsadhwani/leetcode
a17a8a7587c5654f05fcd13ae7cdf47263ab2ea8
[ "MIT" ]
null
null
null
from typing import Callable class Solution: def setZeroes(self, matrix: list[list[int]]) -> None: """Do not return anything, modify matrix in-place instead.""" first_column_zero = False for row in matrix: for j, cell in enumerate(row): if cell != 0: continue row[0] = 0 if j == 0: first_column_zero = True else: matrix[0][j] = 0 for i, row in enumerate(matrix[1:], start=1): for j, cell in enumerate(row[1:], start=1): if row[0] == 0: row[j] = 0 if matrix[0][j] == 0: matrix[i][j] = 0 # first row check if matrix[0][0] == 0: first_row = matrix[0] for i in range(len(first_row)): first_row[i] = 0 # first column check if first_column_zero: for i in range(len(matrix)): matrix[i][0] = 0 tests = [ ( ([[1, 1, 1], [1, 0, 1], [1, 1, 1]],), [[1, 0, 1], [0, 0, 0], [1, 0, 1]], ), ( ([[0, 1, 2, 0], [3, 4, 5, 2], [1, 3, 1, 5]],), [[0, 0, 0, 0], [0, 4, 5, 0], [0, 3, 1, 0]], ), ( ([[1, 2, 3, 4], [5, 0, 7, 8], [0, 10, 11, 12], [13, 14, 15, 0]],), [[0, 0, 3, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], ), ] def validator( setZeroes: Callable[[list[list[int]]], None], inputs: tuple[list[list[int]]], expected: list[list[int]] ) -> None: matrix, = inputs setZeroes(matrix) assert matrix == expected, (matrix, expected)
26.375
74
0.414692
from typing import Callable class Solution: def setZeroes(self, matrix: list[list[int]]) -> None: first_column_zero = False for row in matrix: for j, cell in enumerate(row): if cell != 0: continue row[0] = 0 if j == 0: first_column_zero = True else: matrix[0][j] = 0 for i, row in enumerate(matrix[1:], start=1): for j, cell in enumerate(row[1:], start=1): if row[0] == 0: row[j] = 0 if matrix[0][j] == 0: matrix[i][j] = 0 if matrix[0][0] == 0: first_row = matrix[0] for i in range(len(first_row)): first_row[i] = 0 if first_column_zero: for i in range(len(matrix)): matrix[i][0] = 0 tests = [ ( ([[1, 1, 1], [1, 0, 1], [1, 1, 1]],), [[1, 0, 1], [0, 0, 0], [1, 0, 1]], ), ( ([[0, 1, 2, 0], [3, 4, 5, 2], [1, 3, 1, 5]],), [[0, 0, 0, 0], [0, 4, 5, 0], [0, 3, 1, 0]], ), ( ([[1, 2, 3, 4], [5, 0, 7, 8], [0, 10, 11, 12], [13, 14, 15, 0]],), [[0, 0, 3, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], ), ] def validator( setZeroes: Callable[[list[list[int]]], None], inputs: tuple[list[list[int]]], expected: list[list[int]] ) -> None: matrix, = inputs setZeroes(matrix) assert matrix == expected, (matrix, expected)
true
true
f712e99b409c6e441711b6025c241579d0555fa2
1,611
py
Python
froide_campaign/migrations/0002_auto_20160123_1454.py
okfde/froide-campaign
2757888c59dcf89b2b33fba5a4fd517d046aa6cd
[ "MIT" ]
5
2016-01-27T19:00:50.000Z
2021-11-15T12:23:24.000Z
froide_campaign/migrations/0002_auto_20160123_1454.py
okfde/froide-campaign
2757888c59dcf89b2b33fba5a4fd517d046aa6cd
[ "MIT" ]
2
2020-11-02T11:48:44.000Z
2020-11-03T15:39:46.000Z
froide_campaign/migrations/0002_auto_20160123_1454.py
okfde/froide-campaign
2757888c59dcf89b2b33fba5a4fd517d046aa6cd
[ "MIT" ]
1
2020-10-30T09:20:53.000Z
2020-10-30T09:20:53.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('froide_campaign', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='informationobject', options={'ordering': ('ordering',)}, ), migrations.AddField( model_name='informationobject', name='ordering', field=models.CharField(max_length=255, blank=True), ), migrations.AlterField( model_name='campaign', name='template', field=models.TextField(blank=True), ), migrations.AlterField( model_name='informationobject', name='context', field=models.JSONField(blank=True), ), migrations.AlterField( model_name='informationobject', name='documents', field=models.ManyToManyField(to='foirequest.FoiAttachment', blank=True), ), migrations.AlterField( model_name='informationobject', name='foirequest', field=models.ForeignKey(blank=True, to='foirequest.FoiRequest', null=True, on_delete=django.db.models.deletion.SET_NULL), ), migrations.AlterField( model_name='informationobject', name='publicbody', field=models.ForeignKey(blank=True, to='publicbody.PublicBody', null=True, on_delete=django.db.models.deletion.SET_NULL), ), ]
32.22
133
0.599628
from __future__ import unicode_literals from django.db import models, migrations import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('froide_campaign', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='informationobject', options={'ordering': ('ordering',)}, ), migrations.AddField( model_name='informationobject', name='ordering', field=models.CharField(max_length=255, blank=True), ), migrations.AlterField( model_name='campaign', name='template', field=models.TextField(blank=True), ), migrations.AlterField( model_name='informationobject', name='context', field=models.JSONField(blank=True), ), migrations.AlterField( model_name='informationobject', name='documents', field=models.ManyToManyField(to='foirequest.FoiAttachment', blank=True), ), migrations.AlterField( model_name='informationobject', name='foirequest', field=models.ForeignKey(blank=True, to='foirequest.FoiRequest', null=True, on_delete=django.db.models.deletion.SET_NULL), ), migrations.AlterField( model_name='informationobject', name='publicbody', field=models.ForeignKey(blank=True, to='publicbody.PublicBody', null=True, on_delete=django.db.models.deletion.SET_NULL), ), ]
true
true
f712ea1efe173795afb893bc3ccf4c0139b4b0b3
3,709
py
Python
orbit_transfer/models/__init__.py
sinzlab/orbit_transfer
812d89af5c7ab26d9ea26766a4250ae023bb20b8
[ "MIT" ]
null
null
null
orbit_transfer/models/__init__.py
sinzlab/orbit_transfer
812d89af5c7ab26d9ea26766a4250ae023bb20b8
[ "MIT" ]
null
null
null
orbit_transfer/models/__init__.py
sinzlab/orbit_transfer
812d89af5c7ab26d9ea26766a4250ae023bb20b8
[ "MIT" ]
null
null
null
import torch import numpy as np from torch.hub import load_state_dict_from_url from nnfabrik.utility.nn_helpers import load_state_dict from nntransfer.models.resnet import resnet_builder from nntransfer.models.utils import get_model_parameters from nntransfer.models.vgg import vgg_builder from nntransfer.models.lenet import lenet_builder from nntransfer.models.wrappers import * from ..configs.model import ( ClassificationModel, ) from .cnn import cnn_builder from .group_cnn import gcnn_builder from .learned_equiv import equiv_builder from .mlp import mlp_builder from .vit import vit_builder def classification_model_builder(data_loader, seed: int, **config): config = ClassificationModel.from_dict(config) torch.manual_seed(seed) np.random.seed(seed) if "vgg" in config.type: model = vgg_builder(seed, config) from torchvision.models.vgg import model_urls elif "resnet" in config.type: model = resnet_builder(seed, config) from torchvision.models.resnet import model_urls elif "lenet" in config.type: model = lenet_builder(seed, config) elif "mlp" in config.type: model = mlp_builder(seed, config) elif "vit" in config.type: model = vit_builder(seed, config) elif "gcnn" in config.type: model = gcnn_builder(seed, config) elif "cnn" in config.type: model = cnn_builder(seed, config) elif "equiv_transfer" in config.type: model = equiv_builder(seed, config) else: raise Exception("Unknown type {}".format(config.type)) if config.pretrained: print("Downloading pretrained model:", flush=True) url = ( model_urls[config.type] if not config.pretrained_url else config.pretrained_url ) state_dict = load_state_dict_from_url(url, progress=True) try: load_state_dict(model, state_dict) except: load_state_dict(model, state_dict["model_state_dict"]) print("Model with {} parameters.".format(get_model_parameters(model))) if config.add_buffer: for n, p in model.named_parameters(): if p.requires_grad: n = n.replace(".", "__") for b in config.add_buffer: if isinstance(b, str): model.register_buffer( f"{n}_{b}", p.detach().clone().zero_(), ) else: k = b[1] b = b[0] model.register_buffer( f"{n}_{b}", torch.zeros(k, *p.data.shape), ) if config.add_custom_buffer: for key, size in config.add_custom_buffer.items(): model.register_buffer( key, torch.zeros(size), ) # Add wrappers if config.get_intermediate_rep: model = IntermediateLayerGetter( model, return_layers=config.get_intermediate_rep, keep_output=True ) if config.noise_adv_regression or config.noise_adv_classification: assert not config.self_attention model = NoiseAdvWrapper( model, input_size=model.fc.in_features if "resnet" in config.type else model.n_features, hidden_size=model.fc.in_features if "resnet" in config.type else 4096, classification=config.noise_adv_classification, num_noise_readout_layers=config.num_noise_readout_layers, sigmoid_output=config.noise_sigmoid_output, ) return model
35.663462
82
0.619035
import torch import numpy as np from torch.hub import load_state_dict_from_url from nnfabrik.utility.nn_helpers import load_state_dict from nntransfer.models.resnet import resnet_builder from nntransfer.models.utils import get_model_parameters from nntransfer.models.vgg import vgg_builder from nntransfer.models.lenet import lenet_builder from nntransfer.models.wrappers import * from ..configs.model import ( ClassificationModel, ) from .cnn import cnn_builder from .group_cnn import gcnn_builder from .learned_equiv import equiv_builder from .mlp import mlp_builder from .vit import vit_builder def classification_model_builder(data_loader, seed: int, **config): config = ClassificationModel.from_dict(config) torch.manual_seed(seed) np.random.seed(seed) if "vgg" in config.type: model = vgg_builder(seed, config) from torchvision.models.vgg import model_urls elif "resnet" in config.type: model = resnet_builder(seed, config) from torchvision.models.resnet import model_urls elif "lenet" in config.type: model = lenet_builder(seed, config) elif "mlp" in config.type: model = mlp_builder(seed, config) elif "vit" in config.type: model = vit_builder(seed, config) elif "gcnn" in config.type: model = gcnn_builder(seed, config) elif "cnn" in config.type: model = cnn_builder(seed, config) elif "equiv_transfer" in config.type: model = equiv_builder(seed, config) else: raise Exception("Unknown type {}".format(config.type)) if config.pretrained: print("Downloading pretrained model:", flush=True) url = ( model_urls[config.type] if not config.pretrained_url else config.pretrained_url ) state_dict = load_state_dict_from_url(url, progress=True) try: load_state_dict(model, state_dict) except: load_state_dict(model, state_dict["model_state_dict"]) print("Model with {} parameters.".format(get_model_parameters(model))) if config.add_buffer: for n, p in model.named_parameters(): if p.requires_grad: n = n.replace(".", "__") for b in config.add_buffer: if isinstance(b, str): model.register_buffer( f"{n}_{b}", p.detach().clone().zero_(), ) else: k = b[1] b = b[0] model.register_buffer( f"{n}_{b}", torch.zeros(k, *p.data.shape), ) if config.add_custom_buffer: for key, size in config.add_custom_buffer.items(): model.register_buffer( key, torch.zeros(size), ) if config.get_intermediate_rep: model = IntermediateLayerGetter( model, return_layers=config.get_intermediate_rep, keep_output=True ) if config.noise_adv_regression or config.noise_adv_classification: assert not config.self_attention model = NoiseAdvWrapper( model, input_size=model.fc.in_features if "resnet" in config.type else model.n_features, hidden_size=model.fc.in_features if "resnet" in config.type else 4096, classification=config.noise_adv_classification, num_noise_readout_layers=config.num_noise_readout_layers, sigmoid_output=config.noise_sigmoid_output, ) return model
true
true
f712ea94c86b298e1e59b372d543565e614ba7a8
18,505
py
Python
letsencrypt/tests/client_test.py
Alearranat/letsencrypt
e09398c9a8d11d4449ad8639472f6e212291412a
[ "Apache-2.0" ]
null
null
null
letsencrypt/tests/client_test.py
Alearranat/letsencrypt
e09398c9a8d11d4449ad8639472f6e212291412a
[ "Apache-2.0" ]
null
null
null
letsencrypt/tests/client_test.py
Alearranat/letsencrypt
e09398c9a8d11d4449ad8639472f6e212291412a
[ "Apache-2.0" ]
null
null
null
"""Tests for letsencrypt.client.""" import os import shutil import tempfile import unittest import OpenSSL import mock from acme import jose from letsencrypt import account from letsencrypt import errors from letsencrypt import le_util from letsencrypt.tests import test_util KEY = test_util.load_vector("rsa512_key.pem") CSR_SAN = test_util.load_vector("csr-san.der") class ConfigHelper(object): """Creates a dummy object to imitate a namespace object Example: cfg = ConfigHelper(redirect=True, hsts=False, uir=False) will result in: cfg.redirect=True, cfg.hsts=False, etc. """ def __init__(self, **kwds): self.__dict__.update(kwds) class RegisterTest(unittest.TestCase): """Tests for letsencrypt.client.register.""" def setUp(self): self.config = mock.MagicMock(rsa_key_size=1024, register_unsafely_without_email=False) self.account_storage = account.AccountMemoryStorage() self.tos_cb = mock.MagicMock() def _call(self): from letsencrypt.client import register return register(self.config, self.account_storage, self.tos_cb) def test_no_tos(self): with mock.patch("letsencrypt.client.acme_client.Client") as mock_client: mock_client.register().terms_of_service = "http://tos" with mock.patch("letsencrypt.account.report_new_account"): self.tos_cb.return_value = False self.assertRaises(errors.Error, self._call) self.tos_cb.return_value = True self._call() self.tos_cb = None self._call() def test_it(self): with mock.patch("letsencrypt.client.acme_client.Client"): with mock.patch("letsencrypt.account.report_new_account"): self._call() @mock.patch("letsencrypt.account.report_new_account") @mock.patch("letsencrypt.client.display_ops.get_email") def test_email_retry(self, _rep, mock_get_email): from acme import messages msg = "Validation of contact mailto:sousaphone@improbablylongggstring.tld failed" mx_err = messages.Error(detail=msg, typ="malformed", title="title") with mock.patch("letsencrypt.client.acme_client.Client") as mock_client: mock_client().register.side_effect = [mx_err, mock.MagicMock()] self._call() self.assertEqual(mock_get_email.call_count, 1) def test_needs_email(self): self.config.email = None self.assertRaises(errors.Error, self._call) @mock.patch("letsencrypt.client.logger") def test_without_email(self, mock_logger): with mock.patch("letsencrypt.client.acme_client.Client"): with mock.patch("letsencrypt.account.report_new_account"): self.config.email = None self.config.register_unsafely_without_email = True self._call() mock_logger.warn.assert_called_once_with(mock.ANY) class ClientTest(unittest.TestCase): """Tests for letsencrypt.client.Client.""" def setUp(self): self.config = mock.MagicMock( no_verify_ssl=False, config_dir="/etc/letsencrypt") # pylint: disable=star-args self.account = mock.MagicMock(**{"key.pem": KEY}) self.eg_domains = ["example.com", "www.example.com"] from letsencrypt.client import Client with mock.patch("letsencrypt.client.acme_client.Client") as acme: self.acme_client = acme self.acme = acme.return_value = mock.MagicMock() self.client = Client( config=self.config, account_=self.account, dv_auth=None, installer=None) def test_init_acme_verify_ssl(self): net = self.acme_client.call_args[1]["net"] self.assertTrue(net.verify_ssl) def _mock_obtain_certificate(self): self.client.auth_handler = mock.MagicMock() self.acme.request_issuance.return_value = mock.sentinel.certr self.acme.fetch_chain.return_value = mock.sentinel.chain def _check_obtain_certificate(self): self.client.auth_handler.get_authorizations.assert_called_once_with(self.eg_domains) self.acme.request_issuance.assert_called_once_with( jose.ComparableX509(OpenSSL.crypto.load_certificate_request( OpenSSL.crypto.FILETYPE_ASN1, CSR_SAN)), self.client.auth_handler.get_authorizations()) self.acme.fetch_chain.assert_called_once_with(mock.sentinel.certr) # FIXME move parts of this to test_cli.py... @mock.patch("letsencrypt.cli._process_domain") def test_obtain_certificate_from_csr(self, mock_process_domain): self._mock_obtain_certificate() from letsencrypt import cli test_csr = le_util.CSR(form="der", file=None, data=CSR_SAN) mock_parsed_args = mock.MagicMock() with mock.patch("letsencrypt.client.le_util.CSR") as mock_CSR: mock_CSR.return_value = test_csr mock_parsed_args.domains = self.eg_domains[:] mock_parser = mock.MagicMock(cli.HelpfulArgumentParser) cli.HelpfulArgumentParser.handle_csr(mock_parser, mock_parsed_args) # make sure cli processing occurred cli_processed = (call[0][1] for call in mock_process_domain.call_args_list) self.assertEqual(set(cli_processed), set(("example.com", "www.example.com"))) # Now provoke an inconsistent domains error... mock_parsed_args.domains.append("hippopotamus.io") self.assertRaises(errors.ConfigurationError, cli.HelpfulArgumentParser.handle_csr, mock_parser, mock_parsed_args) self.assertEqual( (mock.sentinel.certr, mock.sentinel.chain), self.client.obtain_certificate_from_csr(self.eg_domains, test_csr)) # and that the cert was obtained correctly self._check_obtain_certificate() @mock.patch("letsencrypt.client.crypto_util") def test_obtain_certificate(self, mock_crypto_util): self._mock_obtain_certificate() csr = le_util.CSR(form="der", file=None, data=CSR_SAN) mock_crypto_util.init_save_csr.return_value = csr mock_crypto_util.init_save_key.return_value = mock.sentinel.key domains = ["example.com", "www.example.com"] self.assertEqual( self.client.obtain_certificate(domains), (mock.sentinel.certr, mock.sentinel.chain, mock.sentinel.key, csr)) mock_crypto_util.init_save_key.assert_called_once_with( self.config.rsa_key_size, self.config.key_dir) mock_crypto_util.init_save_csr.assert_called_once_with( mock.sentinel.key, domains, self.config.csr_dir) self._check_obtain_certificate() def test_save_certificate(self): certs = ["matching_cert.pem", "cert.pem", "cert-san.pem"] tmp_path = tempfile.mkdtemp() os.chmod(tmp_path, 0o755) # TODO: really?? certr = mock.MagicMock(body=test_util.load_comparable_cert(certs[0])) chain_cert = [test_util.load_comparable_cert(certs[1]), test_util.load_comparable_cert(certs[2])] candidate_cert_path = os.path.join(tmp_path, "certs", "cert.pem") candidate_chain_path = os.path.join(tmp_path, "chains", "chain.pem") candidate_fullchain_path = os.path.join(tmp_path, "chains", "fullchain.pem") cert_path, chain_path, fullchain_path = self.client.save_certificate( certr, chain_cert, candidate_cert_path, candidate_chain_path, candidate_fullchain_path) self.assertEqual(os.path.dirname(cert_path), os.path.dirname(candidate_cert_path)) self.assertEqual(os.path.dirname(chain_path), os.path.dirname(candidate_chain_path)) self.assertEqual(os.path.dirname(fullchain_path), os.path.dirname(candidate_fullchain_path)) with open(cert_path, "r") as cert_file: cert_contents = cert_file.read() self.assertEqual(cert_contents, test_util.load_vector(certs[0])) with open(chain_path, "r") as chain_file: chain_contents = chain_file.read() self.assertEqual(chain_contents, test_util.load_vector(certs[1]) + test_util.load_vector(certs[2])) shutil.rmtree(tmp_path) def test_deploy_certificate_success(self): self.assertRaises(errors.Error, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") installer = mock.MagicMock() self.client.installer = installer self.client.deploy_certificate( ["foo.bar"], "key", "cert", "chain", "fullchain") installer.deploy_cert.assert_called_once_with( cert_path=os.path.abspath("cert"), chain_path=os.path.abspath("chain"), domain='foo.bar', fullchain_path='fullchain', key_path=os.path.abspath("key")) self.assertEqual(installer.save.call_count, 2) installer.restart.assert_called_once_with() def test_deploy_certificate_failure(self): installer = mock.MagicMock() self.client.installer = installer installer.deploy_cert.side_effect = errors.PluginError self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") installer.recovery_routine.assert_called_once_with() def test_deploy_certificate_save_failure(self): installer = mock.MagicMock() self.client.installer = installer installer.save.side_effect = errors.PluginError self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") installer.recovery_routine.assert_called_once_with() @mock.patch("letsencrypt.client.zope.component.getUtility") def test_deploy_certificate_restart_failure(self, mock_get_utility): installer = mock.MagicMock() installer.restart.side_effect = [errors.PluginError, None] self.client.installer = installer self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") self.assertEqual(mock_get_utility().add_message.call_count, 1) installer.rollback_checkpoints.assert_called_once_with() self.assertEqual(installer.restart.call_count, 2) @mock.patch("letsencrypt.client.zope.component.getUtility") def test_deploy_certificate_restart_failure2(self, mock_get_utility): installer = mock.MagicMock() installer.restart.side_effect = errors.PluginError installer.rollback_checkpoints.side_effect = errors.ReverterError self.client.installer = installer self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") self.assertEqual(mock_get_utility().add_message.call_count, 1) installer.rollback_checkpoints.assert_called_once_with() self.assertEqual(installer.restart.call_count, 1) @mock.patch("letsencrypt.client.enhancements") def test_enhance_config(self, mock_enhancements): config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.Error, self.client.enhance_config, ["foo.bar"], config) mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect"] self.client.enhance_config(["foo.bar"], config) installer.enhance.assert_called_once_with("foo.bar", "redirect", None) self.assertEqual(installer.save.call_count, 1) installer.restart.assert_called_once_with() @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_no_ask(self, mock_enhancements): config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.Error, self.client.enhance_config, ["foo.bar"], config) mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect", "ensure-http-header"] config = ConfigHelper(redirect=True, hsts=False, uir=False) self.client.enhance_config(["foo.bar"], config) installer.enhance.assert_called_with("foo.bar", "redirect", None) config = ConfigHelper(redirect=False, hsts=True, uir=False) self.client.enhance_config(["foo.bar"], config) installer.enhance.assert_called_with("foo.bar", "ensure-http-header", "Strict-Transport-Security") config = ConfigHelper(redirect=False, hsts=False, uir=True) self.client.enhance_config(["foo.bar"], config) installer.enhance.assert_called_with("foo.bar", "ensure-http-header", "Upgrade-Insecure-Requests") self.assertEqual(installer.save.call_count, 3) self.assertEqual(installer.restart.call_count, 3) @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_unsupported(self, mock_enhancements): installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = [] config = ConfigHelper(redirect=None, hsts=True, uir=True) self.client.enhance_config(["foo.bar"], config) installer.enhance.assert_not_called() mock_enhancements.ask.assert_not_called() def test_enhance_config_no_installer(self): config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.Error, self.client.enhance_config, ["foo.bar"], config) @mock.patch("letsencrypt.client.zope.component.getUtility") @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_enhance_failure(self, mock_enhancements, mock_get_utility): mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect"] installer.enhance.side_effect = errors.PluginError config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.PluginError, self.client.enhance_config, ["foo.bar"], config) installer.recovery_routine.assert_called_once_with() self.assertEqual(mock_get_utility().add_message.call_count, 1) @mock.patch("letsencrypt.client.zope.component.getUtility") @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_save_failure(self, mock_enhancements, mock_get_utility): mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect"] installer.save.side_effect = errors.PluginError config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.PluginError, self.client.enhance_config, ["foo.bar"], config) installer.recovery_routine.assert_called_once_with() self.assertEqual(mock_get_utility().add_message.call_count, 1) @mock.patch("letsencrypt.client.zope.component.getUtility") @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_restart_failure(self, mock_enhancements, mock_get_utility): mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect"] installer.restart.side_effect = [errors.PluginError, None] config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.PluginError, self.client.enhance_config, ["foo.bar"], config) self.assertEqual(mock_get_utility().add_message.call_count, 1) installer.rollback_checkpoints.assert_called_once_with() self.assertEqual(installer.restart.call_count, 2) @mock.patch("letsencrypt.client.zope.component.getUtility") @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_restart_failure2(self, mock_enhancements, mock_get_utility): mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect"] installer.restart.side_effect = errors.PluginError installer.rollback_checkpoints.side_effect = errors.ReverterError config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.PluginError, self.client.enhance_config, ["foo.bar"], config) self.assertEqual(mock_get_utility().add_message.call_count, 1) installer.rollback_checkpoints.assert_called_once_with() self.assertEqual(installer.restart.call_count, 1) class RollbackTest(unittest.TestCase): """Tests for letsencrypt.client.rollback.""" def setUp(self): self.m_install = mock.MagicMock() @classmethod def _call(cls, checkpoints, side_effect): from letsencrypt.client import rollback with mock.patch("letsencrypt.client" ".display_ops.pick_installer") as mock_pick_installer: mock_pick_installer.side_effect = side_effect rollback(None, checkpoints, {}, mock.MagicMock()) def test_no_problems(self): self._call(1, self.m_install) self.assertEqual(self.m_install().rollback_checkpoints.call_count, 1) self.assertEqual(self.m_install().restart.call_count, 1) def test_no_installer(self): self._call(1, None) # Just make sure no exceptions are raised if __name__ == "__main__": unittest.main() # pragma: no cover
43.954869
94
0.675277
import os import shutil import tempfile import unittest import OpenSSL import mock from acme import jose from letsencrypt import account from letsencrypt import errors from letsencrypt import le_util from letsencrypt.tests import test_util KEY = test_util.load_vector("rsa512_key.pem") CSR_SAN = test_util.load_vector("csr-san.der") class ConfigHelper(object): def __init__(self, **kwds): self.__dict__.update(kwds) class RegisterTest(unittest.TestCase): def setUp(self): self.config = mock.MagicMock(rsa_key_size=1024, register_unsafely_without_email=False) self.account_storage = account.AccountMemoryStorage() self.tos_cb = mock.MagicMock() def _call(self): from letsencrypt.client import register return register(self.config, self.account_storage, self.tos_cb) def test_no_tos(self): with mock.patch("letsencrypt.client.acme_client.Client") as mock_client: mock_client.register().terms_of_service = "http://tos" with mock.patch("letsencrypt.account.report_new_account"): self.tos_cb.return_value = False self.assertRaises(errors.Error, self._call) self.tos_cb.return_value = True self._call() self.tos_cb = None self._call() def test_it(self): with mock.patch("letsencrypt.client.acme_client.Client"): with mock.patch("letsencrypt.account.report_new_account"): self._call() @mock.patch("letsencrypt.account.report_new_account") @mock.patch("letsencrypt.client.display_ops.get_email") def test_email_retry(self, _rep, mock_get_email): from acme import messages msg = "Validation of contact mailto:sousaphone@improbablylongggstring.tld failed" mx_err = messages.Error(detail=msg, typ="malformed", title="title") with mock.patch("letsencrypt.client.acme_client.Client") as mock_client: mock_client().register.side_effect = [mx_err, mock.MagicMock()] self._call() self.assertEqual(mock_get_email.call_count, 1) def test_needs_email(self): self.config.email = None self.assertRaises(errors.Error, self._call) @mock.patch("letsencrypt.client.logger") def test_without_email(self, mock_logger): with mock.patch("letsencrypt.client.acme_client.Client"): with mock.patch("letsencrypt.account.report_new_account"): self.config.email = None self.config.register_unsafely_without_email = True self._call() mock_logger.warn.assert_called_once_with(mock.ANY) class ClientTest(unittest.TestCase): def setUp(self): self.config = mock.MagicMock( no_verify_ssl=False, config_dir="/etc/letsencrypt") self.account = mock.MagicMock(**{"key.pem": KEY}) self.eg_domains = ["example.com", "www.example.com"] from letsencrypt.client import Client with mock.patch("letsencrypt.client.acme_client.Client") as acme: self.acme_client = acme self.acme = acme.return_value = mock.MagicMock() self.client = Client( config=self.config, account_=self.account, dv_auth=None, installer=None) def test_init_acme_verify_ssl(self): net = self.acme_client.call_args[1]["net"] self.assertTrue(net.verify_ssl) def _mock_obtain_certificate(self): self.client.auth_handler = mock.MagicMock() self.acme.request_issuance.return_value = mock.sentinel.certr self.acme.fetch_chain.return_value = mock.sentinel.chain def _check_obtain_certificate(self): self.client.auth_handler.get_authorizations.assert_called_once_with(self.eg_domains) self.acme.request_issuance.assert_called_once_with( jose.ComparableX509(OpenSSL.crypto.load_certificate_request( OpenSSL.crypto.FILETYPE_ASN1, CSR_SAN)), self.client.auth_handler.get_authorizations()) self.acme.fetch_chain.assert_called_once_with(mock.sentinel.certr) @mock.patch("letsencrypt.cli._process_domain") def test_obtain_certificate_from_csr(self, mock_process_domain): self._mock_obtain_certificate() from letsencrypt import cli test_csr = le_util.CSR(form="der", file=None, data=CSR_SAN) mock_parsed_args = mock.MagicMock() with mock.patch("letsencrypt.client.le_util.CSR") as mock_CSR: mock_CSR.return_value = test_csr mock_parsed_args.domains = self.eg_domains[:] mock_parser = mock.MagicMock(cli.HelpfulArgumentParser) cli.HelpfulArgumentParser.handle_csr(mock_parser, mock_parsed_args) cli_processed = (call[0][1] for call in mock_process_domain.call_args_list) self.assertEqual(set(cli_processed), set(("example.com", "www.example.com"))) mock_parsed_args.domains.append("hippopotamus.io") self.assertRaises(errors.ConfigurationError, cli.HelpfulArgumentParser.handle_csr, mock_parser, mock_parsed_args) self.assertEqual( (mock.sentinel.certr, mock.sentinel.chain), self.client.obtain_certificate_from_csr(self.eg_domains, test_csr)) self._check_obtain_certificate() @mock.patch("letsencrypt.client.crypto_util") def test_obtain_certificate(self, mock_crypto_util): self._mock_obtain_certificate() csr = le_util.CSR(form="der", file=None, data=CSR_SAN) mock_crypto_util.init_save_csr.return_value = csr mock_crypto_util.init_save_key.return_value = mock.sentinel.key domains = ["example.com", "www.example.com"] self.assertEqual( self.client.obtain_certificate(domains), (mock.sentinel.certr, mock.sentinel.chain, mock.sentinel.key, csr)) mock_crypto_util.init_save_key.assert_called_once_with( self.config.rsa_key_size, self.config.key_dir) mock_crypto_util.init_save_csr.assert_called_once_with( mock.sentinel.key, domains, self.config.csr_dir) self._check_obtain_certificate() def test_save_certificate(self): certs = ["matching_cert.pem", "cert.pem", "cert-san.pem"] tmp_path = tempfile.mkdtemp() os.chmod(tmp_path, 0o755) certr = mock.MagicMock(body=test_util.load_comparable_cert(certs[0])) chain_cert = [test_util.load_comparable_cert(certs[1]), test_util.load_comparable_cert(certs[2])] candidate_cert_path = os.path.join(tmp_path, "certs", "cert.pem") candidate_chain_path = os.path.join(tmp_path, "chains", "chain.pem") candidate_fullchain_path = os.path.join(tmp_path, "chains", "fullchain.pem") cert_path, chain_path, fullchain_path = self.client.save_certificate( certr, chain_cert, candidate_cert_path, candidate_chain_path, candidate_fullchain_path) self.assertEqual(os.path.dirname(cert_path), os.path.dirname(candidate_cert_path)) self.assertEqual(os.path.dirname(chain_path), os.path.dirname(candidate_chain_path)) self.assertEqual(os.path.dirname(fullchain_path), os.path.dirname(candidate_fullchain_path)) with open(cert_path, "r") as cert_file: cert_contents = cert_file.read() self.assertEqual(cert_contents, test_util.load_vector(certs[0])) with open(chain_path, "r") as chain_file: chain_contents = chain_file.read() self.assertEqual(chain_contents, test_util.load_vector(certs[1]) + test_util.load_vector(certs[2])) shutil.rmtree(tmp_path) def test_deploy_certificate_success(self): self.assertRaises(errors.Error, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") installer = mock.MagicMock() self.client.installer = installer self.client.deploy_certificate( ["foo.bar"], "key", "cert", "chain", "fullchain") installer.deploy_cert.assert_called_once_with( cert_path=os.path.abspath("cert"), chain_path=os.path.abspath("chain"), domain='foo.bar', fullchain_path='fullchain', key_path=os.path.abspath("key")) self.assertEqual(installer.save.call_count, 2) installer.restart.assert_called_once_with() def test_deploy_certificate_failure(self): installer = mock.MagicMock() self.client.installer = installer installer.deploy_cert.side_effect = errors.PluginError self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") installer.recovery_routine.assert_called_once_with() def test_deploy_certificate_save_failure(self): installer = mock.MagicMock() self.client.installer = installer installer.save.side_effect = errors.PluginError self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") installer.recovery_routine.assert_called_once_with() @mock.patch("letsencrypt.client.zope.component.getUtility") def test_deploy_certificate_restart_failure(self, mock_get_utility): installer = mock.MagicMock() installer.restart.side_effect = [errors.PluginError, None] self.client.installer = installer self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") self.assertEqual(mock_get_utility().add_message.call_count, 1) installer.rollback_checkpoints.assert_called_once_with() self.assertEqual(installer.restart.call_count, 2) @mock.patch("letsencrypt.client.zope.component.getUtility") def test_deploy_certificate_restart_failure2(self, mock_get_utility): installer = mock.MagicMock() installer.restart.side_effect = errors.PluginError installer.rollback_checkpoints.side_effect = errors.ReverterError self.client.installer = installer self.assertRaises(errors.PluginError, self.client.deploy_certificate, ["foo.bar"], "key", "cert", "chain", "fullchain") self.assertEqual(mock_get_utility().add_message.call_count, 1) installer.rollback_checkpoints.assert_called_once_with() self.assertEqual(installer.restart.call_count, 1) @mock.patch("letsencrypt.client.enhancements") def test_enhance_config(self, mock_enhancements): config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.Error, self.client.enhance_config, ["foo.bar"], config) mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect"] self.client.enhance_config(["foo.bar"], config) installer.enhance.assert_called_once_with("foo.bar", "redirect", None) self.assertEqual(installer.save.call_count, 1) installer.restart.assert_called_once_with() @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_no_ask(self, mock_enhancements): config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.Error, self.client.enhance_config, ["foo.bar"], config) mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect", "ensure-http-header"] config = ConfigHelper(redirect=True, hsts=False, uir=False) self.client.enhance_config(["foo.bar"], config) installer.enhance.assert_called_with("foo.bar", "redirect", None) config = ConfigHelper(redirect=False, hsts=True, uir=False) self.client.enhance_config(["foo.bar"], config) installer.enhance.assert_called_with("foo.bar", "ensure-http-header", "Strict-Transport-Security") config = ConfigHelper(redirect=False, hsts=False, uir=True) self.client.enhance_config(["foo.bar"], config) installer.enhance.assert_called_with("foo.bar", "ensure-http-header", "Upgrade-Insecure-Requests") self.assertEqual(installer.save.call_count, 3) self.assertEqual(installer.restart.call_count, 3) @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_unsupported(self, mock_enhancements): installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = [] config = ConfigHelper(redirect=None, hsts=True, uir=True) self.client.enhance_config(["foo.bar"], config) installer.enhance.assert_not_called() mock_enhancements.ask.assert_not_called() def test_enhance_config_no_installer(self): config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.Error, self.client.enhance_config, ["foo.bar"], config) @mock.patch("letsencrypt.client.zope.component.getUtility") @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_enhance_failure(self, mock_enhancements, mock_get_utility): mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect"] installer.enhance.side_effect = errors.PluginError config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.PluginError, self.client.enhance_config, ["foo.bar"], config) installer.recovery_routine.assert_called_once_with() self.assertEqual(mock_get_utility().add_message.call_count, 1) @mock.patch("letsencrypt.client.zope.component.getUtility") @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_save_failure(self, mock_enhancements, mock_get_utility): mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect"] installer.save.side_effect = errors.PluginError config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.PluginError, self.client.enhance_config, ["foo.bar"], config) installer.recovery_routine.assert_called_once_with() self.assertEqual(mock_get_utility().add_message.call_count, 1) @mock.patch("letsencrypt.client.zope.component.getUtility") @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_restart_failure(self, mock_enhancements, mock_get_utility): mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect"] installer.restart.side_effect = [errors.PluginError, None] config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.PluginError, self.client.enhance_config, ["foo.bar"], config) self.assertEqual(mock_get_utility().add_message.call_count, 1) installer.rollback_checkpoints.assert_called_once_with() self.assertEqual(installer.restart.call_count, 2) @mock.patch("letsencrypt.client.zope.component.getUtility") @mock.patch("letsencrypt.client.enhancements") def test_enhance_config_restart_failure2(self, mock_enhancements, mock_get_utility): mock_enhancements.ask.return_value = True installer = mock.MagicMock() self.client.installer = installer installer.supported_enhancements.return_value = ["redirect"] installer.restart.side_effect = errors.PluginError installer.rollback_checkpoints.side_effect = errors.ReverterError config = ConfigHelper(redirect=True, hsts=False, uir=False) self.assertRaises(errors.PluginError, self.client.enhance_config, ["foo.bar"], config) self.assertEqual(mock_get_utility().add_message.call_count, 1) installer.rollback_checkpoints.assert_called_once_with() self.assertEqual(installer.restart.call_count, 1) class RollbackTest(unittest.TestCase): def setUp(self): self.m_install = mock.MagicMock() @classmethod def _call(cls, checkpoints, side_effect): from letsencrypt.client import rollback with mock.patch("letsencrypt.client" ".display_ops.pick_installer") as mock_pick_installer: mock_pick_installer.side_effect = side_effect rollback(None, checkpoints, {}, mock.MagicMock()) def test_no_problems(self): self._call(1, self.m_install) self.assertEqual(self.m_install().rollback_checkpoints.call_count, 1) self.assertEqual(self.m_install().restart.call_count, 1) def test_no_installer(self): self._call(1, None) if __name__ == "__main__": unittest.main()
true
true
f712ec4ae2274d14604fa9d454afd175219c4e6f
2,981
py
Python
test/language/array_types/python/SubtypedBuiltinAutoArrayTest.py
Klebert-Engineering/zserio-1
fbb4fc42d9ab6f3afa6c040a36267357399180f4
[ "BSD-3-Clause" ]
2
2019-02-06T17:50:24.000Z
2019-11-20T16:51:34.000Z
test/language/array_types/python/SubtypedBuiltinAutoArrayTest.py
Klebert-Engineering/zserio-1
fbb4fc42d9ab6f3afa6c040a36267357399180f4
[ "BSD-3-Clause" ]
1
2019-11-25T16:25:51.000Z
2019-11-25T18:09:39.000Z
test/language/array_types/python/SubtypedBuiltinAutoArrayTest.py
Klebert-Engineering/zserio-1
fbb4fc42d9ab6f3afa6c040a36267357399180f4
[ "BSD-3-Clause" ]
null
null
null
import unittest import zserio from testutils import getZserioApi class AutoArrayTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.api = getZserioApi(__file__, "array_types.zs").subtyped_builtin_auto_array def testBitSizeOfLength1(self): self._checkBitSizeOf(self.AUTO_ARRAY_LENGTH1) def testBitSizeOfLength2(self): self._checkBitSizeOf(self.AUTO_ARRAY_LENGTH2) def testInitializeOffsetsLength1(self): self._checkInitializeOffsets(self.AUTO_ARRAY_LENGTH1) def testInitializeOffsetsLength2(self): self._checkInitializeOffsets(self.AUTO_ARRAY_LENGTH2) def testReadLength1(self): self._checkRead(self.AUTO_ARRAY_LENGTH1) def testReadLength2(self): self._checkRead(self.AUTO_ARRAY_LENGTH2) def testWriteLength1(self): self._checkWrite(self.AUTO_ARRAY_LENGTH1) def testWriteLength2(self): self._checkWrite(self.AUTO_ARRAY_LENGTH2) def _checkBitSizeOf(self, numElements): array = list(range(numElements)) subtypedBuiltinAutoArray = self.api.SubtypedBuiltinAutoArray.fromFields(array) bitPosition = 2 autoArrayBitSize = 8 + numElements * 8 self.assertEqual(autoArrayBitSize, subtypedBuiltinAutoArray.bitSizeOf(bitPosition)) def _checkInitializeOffsets(self, numElements): array = list(range(numElements)) subtypedBuiltinAutoArray = self.api.SubtypedBuiltinAutoArray.fromFields(array) bitPosition = 2 expectedEndBitPosition = bitPosition + 8 + numElements * 8 self.assertEqual(expectedEndBitPosition, subtypedBuiltinAutoArray.initializeOffsets(bitPosition)) def _checkRead(self, numElements): writer = zserio.BitStreamWriter() AutoArrayTest._writeAutoArrayToStream(writer, numElements) reader = zserio.BitStreamReader(writer.getByteArray()) subtypedBuiltinAutoArray = self.api.SubtypedBuiltinAutoArray.fromReader(reader) array = subtypedBuiltinAutoArray.getArray() self.assertEqual(numElements, len(array)) for i in range(numElements): self.assertEqual(i, array[i]) def _checkWrite(self, numElements): array = list(range(numElements)) subtypedBuiltinAutoArray = self.api.SubtypedBuiltinAutoArray.fromFields(array) writer = zserio.BitStreamWriter() subtypedBuiltinAutoArray.write(writer) reader = zserio.BitStreamReader(writer.getByteArray()) readAutoArray = self.api.SubtypedBuiltinAutoArray.fromReader(reader) readArray = readAutoArray.getArray() self.assertEqual(numElements, len(readArray)) for i in range(numElements): self.assertEqual(i, readArray[i]) @staticmethod def _writeAutoArrayToStream(writer, numElements): writer.writeVarUInt64(numElements) for i in range(numElements): writer.writeBits(i, 8) AUTO_ARRAY_LENGTH1 = 5 AUTO_ARRAY_LENGTH2 = 10
36.802469
105
0.724925
import unittest import zserio from testutils import getZserioApi class AutoArrayTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.api = getZserioApi(__file__, "array_types.zs").subtyped_builtin_auto_array def testBitSizeOfLength1(self): self._checkBitSizeOf(self.AUTO_ARRAY_LENGTH1) def testBitSizeOfLength2(self): self._checkBitSizeOf(self.AUTO_ARRAY_LENGTH2) def testInitializeOffsetsLength1(self): self._checkInitializeOffsets(self.AUTO_ARRAY_LENGTH1) def testInitializeOffsetsLength2(self): self._checkInitializeOffsets(self.AUTO_ARRAY_LENGTH2) def testReadLength1(self): self._checkRead(self.AUTO_ARRAY_LENGTH1) def testReadLength2(self): self._checkRead(self.AUTO_ARRAY_LENGTH2) def testWriteLength1(self): self._checkWrite(self.AUTO_ARRAY_LENGTH1) def testWriteLength2(self): self._checkWrite(self.AUTO_ARRAY_LENGTH2) def _checkBitSizeOf(self, numElements): array = list(range(numElements)) subtypedBuiltinAutoArray = self.api.SubtypedBuiltinAutoArray.fromFields(array) bitPosition = 2 autoArrayBitSize = 8 + numElements * 8 self.assertEqual(autoArrayBitSize, subtypedBuiltinAutoArray.bitSizeOf(bitPosition)) def _checkInitializeOffsets(self, numElements): array = list(range(numElements)) subtypedBuiltinAutoArray = self.api.SubtypedBuiltinAutoArray.fromFields(array) bitPosition = 2 expectedEndBitPosition = bitPosition + 8 + numElements * 8 self.assertEqual(expectedEndBitPosition, subtypedBuiltinAutoArray.initializeOffsets(bitPosition)) def _checkRead(self, numElements): writer = zserio.BitStreamWriter() AutoArrayTest._writeAutoArrayToStream(writer, numElements) reader = zserio.BitStreamReader(writer.getByteArray()) subtypedBuiltinAutoArray = self.api.SubtypedBuiltinAutoArray.fromReader(reader) array = subtypedBuiltinAutoArray.getArray() self.assertEqual(numElements, len(array)) for i in range(numElements): self.assertEqual(i, array[i]) def _checkWrite(self, numElements): array = list(range(numElements)) subtypedBuiltinAutoArray = self.api.SubtypedBuiltinAutoArray.fromFields(array) writer = zserio.BitStreamWriter() subtypedBuiltinAutoArray.write(writer) reader = zserio.BitStreamReader(writer.getByteArray()) readAutoArray = self.api.SubtypedBuiltinAutoArray.fromReader(reader) readArray = readAutoArray.getArray() self.assertEqual(numElements, len(readArray)) for i in range(numElements): self.assertEqual(i, readArray[i]) @staticmethod def _writeAutoArrayToStream(writer, numElements): writer.writeVarUInt64(numElements) for i in range(numElements): writer.writeBits(i, 8) AUTO_ARRAY_LENGTH1 = 5 AUTO_ARRAY_LENGTH2 = 10
true
true
f712edc8a873297e7c4aff9875cda2f07f1f055b
1,399
py
Python
Configs/dm.py
KoshikKumar17/ilovepdf
c0a05787aa9573e3ead2e791b17bd3af4a386d6b
[ "Apache-2.0" ]
null
null
null
Configs/dm.py
KoshikKumar17/ilovepdf
c0a05787aa9573e3ead2e791b17bd3af4a386d6b
[ "Apache-2.0" ]
null
null
null
Configs/dm.py
KoshikKumar17/ilovepdf
c0a05787aa9573e3ead2e791b17bd3af4a386d6b
[ "Apache-2.0" ]
null
null
null
# fileName: Configs/dm.py # copyright ©️ 2021 nabilanavab import os #---------------> #--------> CONFIG VAR. #-------------------> class Config(object): # get API_ID, API_HASH values from my.telegram.org (Mandatory) API_ID = os.environ.get("API_ID") API_HASH = os.environ.get("API_HASH") # add API_TOKEN from @botfather (Mandatory) API_TOKEN = os.environ.get("API_TOKEN") # channel id for forced Subscription with -100 (Optional) UPDATE_CHANNEL = os.environ.get("UPDATE_CHANNEL") # get convertAPI secret (Optional) CONVERT_API = os.environ.get("CONVERT_API") # set maximum file size for preventing overload (Optional) MAX_FILE_SIZE = os.environ.get("MAX_FILE_SIZE") # add admins Id list by space seperated (Optional) ADMINS = list(set(int(x) for x in os.environ.get("ADMINS", "0").split())) if ADMINS: # Bot only for admins [True/False] (Optional) ADMIN_ONLY = os.environ.get("ADMIN_ONLY", False) # banned Users cant use this bot (Optional) BANNED_USERS = list(set(int(x) for x in os.environ.get("BANNED_USERS", "0").split())) if not BANNED_USERS: BANNED_USERS = [] # thumbnail PDF_THUMBNAIL = "./thumbnail.jpeg" # Telegram: @nabilanavab
26.903846
100
0.580415
import os class Config(object): API_ID = os.environ.get("API_ID") API_HASH = os.environ.get("API_HASH") API_TOKEN = os.environ.get("API_TOKEN") UPDATE_CHANNEL = os.environ.get("UPDATE_CHANNEL") CONVERT_API = os.environ.get("CONVERT_API") MAX_FILE_SIZE = os.environ.get("MAX_FILE_SIZE") ADMINS = list(set(int(x) for x in os.environ.get("ADMINS", "0").split())) if ADMINS: ADMIN_ONLY = os.environ.get("ADMIN_ONLY", False) BANNED_USERS = list(set(int(x) for x in os.environ.get("BANNED_USERS", "0").split())) if not BANNED_USERS: BANNED_USERS = [] PDF_THUMBNAIL = "./thumbnail.jpeg"
true
true
f712ee136bc001e5c792d4c74aba2a21258e8d8c
788
py
Python
python/quadrotorModel/rb_dynamics.py
smallpondtom/quadCaptureSim
b0433e353da9bd1f9a6a04a7cf3eeda73bd52019
[ "MIT" ]
null
null
null
python/quadrotorModel/rb_dynamics.py
smallpondtom/quadCaptureSim
b0433e353da9bd1f9a6a04a7cf3eeda73bd52019
[ "MIT" ]
null
null
null
python/quadrotorModel/rb_dynamics.py
smallpondtom/quadCaptureSim
b0433e353da9bd1f9a6a04a7cf3eeda73bd52019
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # ***************************************************************************** # # Copyright (c) 2021 # Georgia Institute of Technology # Tomoki Koike # <tkoike3@gatech.edu> # # ***************************************************************************** # # DESCRIPTION: # Rigid body dynamics model of a quadrotor. # # LAST EDITED: # 10-26-2021 # # ***************************************************************************** # Modules ********************************************************************* from dataclasses import dataclass import constants import numpy as np import utils # Class @dataclass(order=False, frozen=False) class RBDYNAMICS: m: float # mass of the quadrotor I: np.ndarray # constant inertia matrix R[3x3] small: int
22.514286
79
0.427665
from dataclasses import dataclass import constants import numpy as np import utils @dataclass(order=False, frozen=False) class RBDYNAMICS: m: float I: np.ndarray small: int
true
true
f712ee5300d01cf580380c25fb563ff27ed947d0
227
py
Python
pandoc/filter/python/FirstFilter/myfilter.py
mikoto2000/MiscellaneousStudy
3717edf599fea2cf3a63bd9599ca4e1ddfdd10a6
[ "MIT" ]
3
2015-06-23T03:09:54.000Z
2019-03-27T09:10:13.000Z
pandoc/filter/python/FirstFilter/myfilter.py
mikoto2000/MiscellaneousStudy
3717edf599fea2cf3a63bd9599ca4e1ddfdd10a6
[ "MIT" ]
10
2017-05-18T16:19:45.000Z
2022-02-26T06:16:43.000Z
pandoc/filter/python/FirstFilter/myfilter.py
mikoto2000/MiscellaneousStudy
3717edf599fea2cf3a63bd9599ca4e1ddfdd10a6
[ "MIT" ]
null
null
null
# -*- coding: utf8 -*- from pandocfilters import toJSONFilter, Link, Str def myfilter(key, value, form, meta): if key == 'Link': return Str("replaced_text") if __name__ == "__main__": toJSONFilter(myfilter)
18.916667
49
0.651982
from pandocfilters import toJSONFilter, Link, Str def myfilter(key, value, form, meta): if key == 'Link': return Str("replaced_text") if __name__ == "__main__": toJSONFilter(myfilter)
true
true
f712ee6bfe30e8b52429864f41f6b4669282abe5
1,352
wsgi
Python
trac/web/templates/deploy_trac.wsgi
rwbaumg/trac
a3b8eb6db4f4999fab421e31615bb8eb8da6fdba
[ "BSD-3-Clause" ]
null
null
null
trac/web/templates/deploy_trac.wsgi
rwbaumg/trac
a3b8eb6db4f4999fab421e31615bb8eb8da6fdba
[ "BSD-3-Clause" ]
null
null
null
trac/web/templates/deploy_trac.wsgi
rwbaumg/trac
a3b8eb6db4f4999fab421e31615bb8eb8da6fdba
[ "BSD-3-Clause" ]
null
null
null
{##}#!${executable} {##}# -*- coding: utf-8 -*- {##}# {##}# Copyright (C)2008-2009 Edgewall Software {##}# Copyright (C) 2008 Noah Kantrowitz <noah@coderanger.net> {##}# All rights reserved. {##}# {##}# This software is licensed as described in the file COPYING, which {##}# you should have received as part of this distribution. The terms {##}# are also available at http://trac.edgewall.org/wiki/TracLicense. {##}# {##}# This software consists of voluntary contributions made by many {##}# individuals. For the exact contribution history, see the revision {##}# history and logs, available at http://trac.edgewall.org/log/. {##}# {##}# Author: Noah Kantrowitz <noah@coderanger.net> import os def application(environ, start_request): if not 'trac.env_parent_dir' in environ: environ.setdefault('trac.env_path', ${repr(env.path)}) if 'PYTHON_EGG_CACHE' in environ: os.environ['PYTHON_EGG_CACHE'] = environ['PYTHON_EGG_CACHE'] elif 'trac.env_path' in environ: os.environ['PYTHON_EGG_CACHE'] = \ os.path.join(environ['trac.env_path'], '.egg-cache') elif 'trac.env_parent_dir' in environ: os.environ['PYTHON_EGG_CACHE'] = \ os.path.join(environ['trac.env_parent_dir'], '.egg-cache') from trac.web.main import dispatch_request return dispatch_request(environ, start_request)
42.25
71
0.681953
{
false
true
f712eebd0eb39e575762499a0ae3dc87e97345a0
20,474
py
Python
lib/parser.py
Harshalszz/Pansy
07b7072994374fb0c220230fa5e37ba359e7f4b8
[ "MIT" ]
null
null
null
lib/parser.py
Harshalszz/Pansy
07b7072994374fb0c220230fa5e37ba359e7f4b8
[ "MIT" ]
null
null
null
lib/parser.py
Harshalszz/Pansy
07b7072994374fb0c220230fa5e37ba359e7f4b8
[ "MIT" ]
null
null
null
from lib.utils import token, nodes from lib import errors ####################################### # PARSE RESULT ####################################### class ParseResult: def __init__(self): self.error = None self.node = None self.last_registered_advance_count = 0 self.advanced_count = 0 self.to_reverse_count = 0 def register_advancement(self): self.advanced_count += 1 self.last_registered_advance_count += 1 def register(self, res): self.last_registered_advance_count = res.advanced_count self.advanced_count += res.advanced_count if res.error: self.error = res.error return res.node def try_register(self, res): if res.error: self.to_reverse_count = res.advanced_count return None return self.register(res) def success(self, node): self.node = node return self def failure(self, error): if not self.error or self.advanced_count == 0: self.error = error return self ####################################### # PARSER ####################################### class Parser: def __init__(self, tokens): self.tokens = tokens self.tok_idx = -1 self.advance() def advance(self): self.tok_idx += 1 self.update_current_tok() return self.current_tok def reverse(self, amount=1): self.tok_idx -= amount self.update_current_tok() return self.current_tok def update_current_tok(self): if self.tok_idx >= 0 and self.tok_idx < len(self.tokens): self.current_tok = self.tokens[self.tok_idx] def parse(self): res = self.statements() if not res.error and self.current_tok.type != token.T_EOF: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected '+', '-', '*' or '/'" )) return res ################################### def statements(self): res = ParseResult() statements = [] pos_start = self.current_tok.pos_start.copy() while self.current_tok.type == token.T_NEWLINE: res.register_advancement() self.advance() statement = res.register(self.statement()) if res.error: return res statements.append(statement) more_statements = True while True: newline_count = 0 while self.current_tok.type == token.T_NEWLINE: res.register_advancement() self.advance() newline_count += 1 if newline_count == 0: more_statements = False if not more_statements: break statement = res.try_register(self.statement()) if not statement: self.reverse(res.to_reverse_count) more_statements = False continue statements.append(statement) return res.success(nodes.ListNode( statements, pos_start, self.current_tok.pos_end.copy() )) def statement(self): res = ParseResult() pos_start = self.current_tok.pos_start.copy() if self.current_tok.matches(token.T_KEYWORD, 'return'): res.register_advancement() self.advance() expr = res.try_register(self.expr()) if not expr: self.reverse(res.to_reverse_count) return res.success(nodes.ReturnNode(expr, pos_start, self.current_tok.pos_end.copy())) if self.current_tok.matches(token.T_KEYWORD, 'continue'): res.register_advancement() self.advance() return res.success(nodes.ContinueNode(pos_start, self.current_tok.pos_end.copy())) if self.current_tok.matches(token.T_KEYWORD, 'break'): res.register_advancement() self.advance() return res.success(nodes.BreakNode(pos_start, self.current_tok.pos_end.copy())) expr = res.register(self.expr()) if res.error: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected 'break', 'continue', 'return', 'var', 'if', 'for', 'while', 'func', int, float, identifier, '+', '-', '(', ')' '[' or 'not'" )) return res.success(expr) def call(self): res = ParseResult() atom = res.register(self.atom()) if res.error: return res if self.current_tok.type == token.T_LPAREN: res.register_advancement() self.advance() arg_nodes = [] if self.current_tok.type == token.T_RPAREN: res.register_advancement() self.advance() else: arg_nodes.append(res.register(self.expr())) if res.error: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ')', 'var', 'if', 'for', 'while', 'func', int, float, identifier, '+', '-', '(', '[' or 'not'" )) while self.current_tok.type == token.T_COMMA: res.register_advancement() self.advance() arg_nodes.append(res.register(self.expr())) if res.error: return res if self.current_tok.type != token.T_RPAREN: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ',' or ')'" )) res.register_advancement() self.advance() return res.success(nodes.CallNode(atom, arg_nodes)) return res.success(atom) def atom(self): res = ParseResult() tok = self.current_tok if tok.type in (token.T_INT, token.T_FLOAT): res.register_advancement() self.advance() return res.success(nodes.NumberNode(tok)) elif tok.type in (token.T_STRING): res.register_advancement() self.advance() return res.success(nodes.StringNode(tok)) elif tok.type == token.T_IDENTIFIER: res.register_advancement() self.advance() return res.success(nodes.VarAccessNode(tok)) elif tok.type == token.T_LPAREN: res.register_advancement() self.advance() expr = res.register(self.expr()) if res.error: return res if self.current_tok.type == token.T_RPAREN: res.register_advancement() self.advance() return res.success(expr) else: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ')'" )) elif tok.type == token.T_LSQUARE: list_expr = res.register(self.list_expr()) if res.error: return res return res.success(list_expr) elif tok.matches(token.T_KEYWORD, 'if'): if_expr = res.register(self.if_expr()) if res.error: return res return res.success(if_expr) elif tok.matches(token.T_KEYWORD, 'for'): for_expr = res.register(self.for_expr()) if res.error: return res return res.success(for_expr) elif tok.matches(token.T_KEYWORD, 'while'): while_expr = res.register(self.while_expr()) if res.error: return res return res.success(while_expr) elif tok.matches(token.T_KEYWORD, 'func'): func_def = res.register(self.func_def()) if res.error: return res return res.success(func_def) return res.failure(errors.InvalidSyntaxError( tok.pos_start, tok.pos_end, "Expected int or float, identifier, '+', '-' or '(', , '[', 'if', 'for', 'while' or 'func'" )) def power(self): return self.bin_op(self.call, (token.T_POW, ), self.factor) def list_expr(self): res = ParseResult() element_nodes = [] pos_start = self.current_tok.pos_start.copy() if self.current_tok.type != token.T_LSQUARE: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected '['" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_RSQUARE: res.register_advancement() self.advance() else: element_nodes.append(res.register(self.expr())) if res.error: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ']', 'var', 'if', 'for', 'while', 'func', int, float, identifier, '+', '-', '(', '[' or 'not'" )) while self.current_tok.type == token.T_COMMA: res.register_advancement() self.advance() element_nodes.append(res.register(self.expr())) if res.error: return res if self.current_tok.type != token.T_RSQUARE: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ',' or ']'" )) res.register_advancement() self.advance() return res.success(nodes.ListNode( element_nodes, pos_start, self.current_tok.pos_end.copy() )) def factor(self): res = ParseResult() tok = self.current_tok if tok.type in (token.T_PLUS, token.T_MINUS): res.register_advancement() self.advance() factor = res.register(self.factor()) if res.error: return res return res.success(nodes.UnaryOpNode(tok, factor)) return self.power() def term(self): return self.bin_op(self.factor, (token.T_MUL, token.T_DIV, token.T_INT_DIV, token.T_REMAINDER)) def arithm_expr(self): return self.bin_op(self.term, (token.T_PLUS, token.T_MINUS)) def comp_expr(self): res = ParseResult() if self.current_tok.matches(token.T_KEYWORD, 'not'): op_tok = self.current_tok res.register_advancement() self.advance() node = res.register(self.comp_expr()) if res.error: return res return res.success(nodes.UnaryOpNode(op_tok, node)) node = res.register(self.bin_op(self.arithm_expr, (token.T_EE, token.T_NE, token.T_LT, token.T_GT, token.T_LTE, token.T_GTE))) if res.error: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected int or float, identifier, '+', '-', '(', '[' or 'not'" )) return res.success(node) def expr(self): res = ParseResult() if self.current_tok.matches(token.T_KEYWORD, 'var'): res.register_advancement() self.advance() if self.current_tok.type != token.T_IDENTIFIER: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected identifier" )) var_name = self.current_tok res.register_advancement() self.advance() if self.current_tok.type != token.T_EQ: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected '='" )) res.register_advancement() self.advance() expr = res.register(self.expr()) if res.error: return res return res.success(nodes.VarAssignNode(var_name, expr)) node = res.register(self.bin_op(self.comp_expr, ((token.T_KEYWORD, 'and'), (token.T_KEYWORD, 'or')))) if res.error: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected int or float, identifier, 'var', 'if', 'for', 'while', 'func', '+', '-', '(' or '['" )) return res.success(node) def if_expr(self): res = ParseResult() all_cases = res.register(self.if_expr_cases('if')) if res.error: return res cases, else_case = all_cases return res.success(nodes.IfNode(cases, else_case)) def if_expr_cases(self, case_keyword): res = ParseResult() cases = [] else_case = None if not self.current_tok.matches(token.T_KEYWORD, case_keyword): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected '{case_keyword}'" )) res.register_advancement() self.advance() condition = res.register(self.expr()) if res.error: return res if not self.current_tok.type == token.T_COLON: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ':'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_NEWLINE: res.register_advancement() self.advance() statements = res.register(self.statements()) if res.error: return res cases.append((condition, statements, True)) if self.current_tok.matches(token.T_KEYWORD, 'end'): res.register_advancement() self.advance() else: all_cases = res.register(self.if_expr_b_or_c()) if res.error: return res new_cases, else_case = all_cases cases.extend(new_cases) else: expr = res.register(self.statement()) if res.error: return res cases.append((condition, expr, False)) all_cases = res.register(self.if_expr_b_or_c()) if res.error: return res new_cases, else_case = all_cases cases.extend(new_cases) return res.success((cases, else_case)) def if_expr_b(self): return self.if_expr_cases('elif') def if_expr_c(self): res = ParseResult() else_case = None if self.current_tok.matches(token.T_KEYWORD, 'else'): res.register_advancement() self.advance() if self.current_tok.type != token.T_COLON: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ':'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_NEWLINE: res.register_advancement() self.advance() statements = res.register(self.statements()) if res.error: return res else_case = (statements, True) if self.current_tok.matches(token.T_KEYWORD, 'end'): res.register_advancement() self.advance() else: return res.failure(InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected 'end'" )) else: expr = res.register(self.statement()) if res.error: return res else_case = (expr, False) return res.success(else_case) def if_expr_b_or_c(self): res = ParseResult() cases, else_case = [], None if self.current_tok.matches(token.T_KEYWORD, 'elif'): all_cases = res.register(self.if_expr_b()) if res.error: return res cases, else_case = all_cases else: else_case = res.register(self.if_expr_c()) if res.error: return res return res.success((cases, else_case)) def for_expr(self): res = ParseResult() if not self.current_tok.matches(token.T_KEYWORD, 'for'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'for'" )) res.register_advancement() self.advance() if self.current_tok.type != token.T_IDENTIFIER: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected identifier" )) var_name = self.current_tok res.register_advancement() self.advance() if self.current_tok.type != token.T_EQ: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected '='" )) res.register_advancement() self.advance() start_value = res.register(self.expr()) if res.error: return res if not self.current_tok.matches(token.T_KEYWORD, 'to'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'to'" )) res.register_advancement() self.advance() end_value = res.register(self.expr()) if res.error: return res if self.current_tok.matches(token.T_KEYWORD, 'step'): res.register_advancement() self.advance() step_value = res.register(self.expr()) if res.error: return res else: step_value = None if not self.current_tok.type == token.T_COLON: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ':'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_NEWLINE: res.register_advancement() self.advance() body = res.register(self.statements()) if res.error: return res if not self.current_tok.matches(token.T_KEYWORD, 'end'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'end'" )) res.register_advancement() self.advance() return res.success(nodes.ForNode(var_name, start_value, end_value, step_value, body, True)) body = res.register(self.statement()) if res.error: return res return res.success(nodes.ForNode(var_name, start_value, end_value, step_value, body, False)) def while_expr(self): res = ParseResult() if not self.current_tok.matches(token.T_KEYWORD, 'while'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'while'" )) res.register_advancement() self.advance() condition = res.register(self.expr()) if res.error: return res if not self.current_tok.type == token.T_COLON: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ':'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_NEWLINE: res.register_advancement() self.advance() body = res.register(self.statements()) if res.error: return res if not self.current_tok.matches(token.T_KEYWORD, 'end'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'end'" )) res.register_advancement() self.advance() return res.success(nodes.WhileNode(condition, body, True)) body = res.register(self.statement()) if res.error: return res return res.success(nodes.WhileNode(condition, body, False)) def func_def(self): res = ParseResult() if not self.current_tok.matches(token.T_KEYWORD, 'func'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'func'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_IDENTIFIER: var_name_tok = self.current_tok res.register_advancement() self.advance() if self.current_tok.type != token.T_LPAREN: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected '('" )) else: var_name_tok = None if self.current_tok.type != token.T_LPAREN: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected identifier or '('" )) res.register_advancement() self.advance() arg_name_toks = [] if self.current_tok.type == token.T_IDENTIFIER: arg_name_toks.append(self.current_tok) res.register_advancement() self.advance() while self.current_tok.type == token.T_COMMA: res.register_advancement() self.advance() if self.current_tok.type != token.T_IDENTIFIER: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected identifier" )) arg_name_toks.append(self.current_tok) res.register_advancement() self.advance() if self.current_tok.type != token.T_RPAREN: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected ',' or ')'" )) else: if self.current_tok.type != token.T_RPAREN: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected identifier or ')'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_ARROW: res.register_advancement() self.advance() body = res.register(self.expr()) if res.error: return res return res.success(nodes.FunctionDefNode( var_name_tok, arg_name_toks, body, True )) if self.current_tok.type != token.T_LCURLY: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected '{'" )) res.register_advancement() self.advance() if self.current_tok.type != token.T_NEWLINE: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected '->' or a new line" )) res.register_advancement() self.advance() body = res.register(self.statements()) if res.error: return res if self.current_tok.type != token.T_RCURLY: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected '}'" )) res.register_advancement() self.advance() return res.success(nodes.FunctionDefNode( var_name_tok, arg_name_toks, body, False )) ################################### def bin_op(self, func_a, ops, func_b=None): if func_b == None: func_b = func_a res = ParseResult() left = res.register(func_a()) if res.error: return res while self.current_tok.type in ops or (self.current_tok.type, self.current_tok.value) in ops: op_tok = self.current_tok res.register_advancement() self.advance() right = res.register(func_b()) if res.error: return res left = nodes.BinOpNode(left, op_tok, right) return res.success(left)
26.452196
138
0.69283
from lib.utils import token, nodes from lib import errors es.error: return res if self.current_tok.type == token.T_LPAREN: res.register_advancement() self.advance() arg_nodes = [] if self.current_tok.type == token.T_RPAREN: res.register_advancement() self.advance() else: arg_nodes.append(res.register(self.expr())) if res.error: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ')', 'var', 'if', 'for', 'while', 'func', int, float, identifier, '+', '-', '(', '[' or 'not'" )) while self.current_tok.type == token.T_COMMA: res.register_advancement() self.advance() arg_nodes.append(res.register(self.expr())) if res.error: return res if self.current_tok.type != token.T_RPAREN: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ',' or ')'" )) res.register_advancement() self.advance() return res.success(nodes.CallNode(atom, arg_nodes)) return res.success(atom) def atom(self): res = ParseResult() tok = self.current_tok if tok.type in (token.T_INT, token.T_FLOAT): res.register_advancement() self.advance() return res.success(nodes.NumberNode(tok)) elif tok.type in (token.T_STRING): res.register_advancement() self.advance() return res.success(nodes.StringNode(tok)) elif tok.type == token.T_IDENTIFIER: res.register_advancement() self.advance() return res.success(nodes.VarAccessNode(tok)) elif tok.type == token.T_LPAREN: res.register_advancement() self.advance() expr = res.register(self.expr()) if res.error: return res if self.current_tok.type == token.T_RPAREN: res.register_advancement() self.advance() return res.success(expr) else: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ')'" )) elif tok.type == token.T_LSQUARE: list_expr = res.register(self.list_expr()) if res.error: return res return res.success(list_expr) elif tok.matches(token.T_KEYWORD, 'if'): if_expr = res.register(self.if_expr()) if res.error: return res return res.success(if_expr) elif tok.matches(token.T_KEYWORD, 'for'): for_expr = res.register(self.for_expr()) if res.error: return res return res.success(for_expr) elif tok.matches(token.T_KEYWORD, 'while'): while_expr = res.register(self.while_expr()) if res.error: return res return res.success(while_expr) elif tok.matches(token.T_KEYWORD, 'func'): func_def = res.register(self.func_def()) if res.error: return res return res.success(func_def) return res.failure(errors.InvalidSyntaxError( tok.pos_start, tok.pos_end, "Expected int or float, identifier, '+', '-' or '(', , '[', 'if', 'for', 'while' or 'func'" )) def power(self): return self.bin_op(self.call, (token.T_POW, ), self.factor) def list_expr(self): res = ParseResult() element_nodes = [] pos_start = self.current_tok.pos_start.copy() if self.current_tok.type != token.T_LSQUARE: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected '['" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_RSQUARE: res.register_advancement() self.advance() else: element_nodes.append(res.register(self.expr())) if res.error: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ']', 'var', 'if', 'for', 'while', 'func', int, float, identifier, '+', '-', '(', '[' or 'not'" )) while self.current_tok.type == token.T_COMMA: res.register_advancement() self.advance() element_nodes.append(res.register(self.expr())) if res.error: return res if self.current_tok.type != token.T_RSQUARE: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ',' or ']'" )) res.register_advancement() self.advance() return res.success(nodes.ListNode( element_nodes, pos_start, self.current_tok.pos_end.copy() )) def factor(self): res = ParseResult() tok = self.current_tok if tok.type in (token.T_PLUS, token.T_MINUS): res.register_advancement() self.advance() factor = res.register(self.factor()) if res.error: return res return res.success(nodes.UnaryOpNode(tok, factor)) return self.power() def term(self): return self.bin_op(self.factor, (token.T_MUL, token.T_DIV, token.T_INT_DIV, token.T_REMAINDER)) def arithm_expr(self): return self.bin_op(self.term, (token.T_PLUS, token.T_MINUS)) def comp_expr(self): res = ParseResult() if self.current_tok.matches(token.T_KEYWORD, 'not'): op_tok = self.current_tok res.register_advancement() self.advance() node = res.register(self.comp_expr()) if res.error: return res return res.success(nodes.UnaryOpNode(op_tok, node)) node = res.register(self.bin_op(self.arithm_expr, (token.T_EE, token.T_NE, token.T_LT, token.T_GT, token.T_LTE, token.T_GTE))) if res.error: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected int or float, identifier, '+', '-', '(', '[' or 'not'" )) return res.success(node) def expr(self): res = ParseResult() if self.current_tok.matches(token.T_KEYWORD, 'var'): res.register_advancement() self.advance() if self.current_tok.type != token.T_IDENTIFIER: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected identifier" )) var_name = self.current_tok res.register_advancement() self.advance() if self.current_tok.type != token.T_EQ: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected '='" )) res.register_advancement() self.advance() expr = res.register(self.expr()) if res.error: return res return res.success(nodes.VarAssignNode(var_name, expr)) node = res.register(self.bin_op(self.comp_expr, ((token.T_KEYWORD, 'and'), (token.T_KEYWORD, 'or')))) if res.error: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected int or float, identifier, 'var', 'if', 'for', 'while', 'func', '+', '-', '(' or '['" )) return res.success(node) def if_expr(self): res = ParseResult() all_cases = res.register(self.if_expr_cases('if')) if res.error: return res cases, else_case = all_cases return res.success(nodes.IfNode(cases, else_case)) def if_expr_cases(self, case_keyword): res = ParseResult() cases = [] else_case = None if not self.current_tok.matches(token.T_KEYWORD, case_keyword): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected '{case_keyword}'" )) res.register_advancement() self.advance() condition = res.register(self.expr()) if res.error: return res if not self.current_tok.type == token.T_COLON: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ':'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_NEWLINE: res.register_advancement() self.advance() statements = res.register(self.statements()) if res.error: return res cases.append((condition, statements, True)) if self.current_tok.matches(token.T_KEYWORD, 'end'): res.register_advancement() self.advance() else: all_cases = res.register(self.if_expr_b_or_c()) if res.error: return res new_cases, else_case = all_cases cases.extend(new_cases) else: expr = res.register(self.statement()) if res.error: return res cases.append((condition, expr, False)) all_cases = res.register(self.if_expr_b_or_c()) if res.error: return res new_cases, else_case = all_cases cases.extend(new_cases) return res.success((cases, else_case)) def if_expr_b(self): return self.if_expr_cases('elif') def if_expr_c(self): res = ParseResult() else_case = None if self.current_tok.matches(token.T_KEYWORD, 'else'): res.register_advancement() self.advance() if self.current_tok.type != token.T_COLON: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ':'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_NEWLINE: res.register_advancement() self.advance() statements = res.register(self.statements()) if res.error: return res else_case = (statements, True) if self.current_tok.matches(token.T_KEYWORD, 'end'): res.register_advancement() self.advance() else: return res.failure(InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected 'end'" )) else: expr = res.register(self.statement()) if res.error: return res else_case = (expr, False) return res.success(else_case) def if_expr_b_or_c(self): res = ParseResult() cases, else_case = [], None if self.current_tok.matches(token.T_KEYWORD, 'elif'): all_cases = res.register(self.if_expr_b()) if res.error: return res cases, else_case = all_cases else: else_case = res.register(self.if_expr_c()) if res.error: return res return res.success((cases, else_case)) def for_expr(self): res = ParseResult() if not self.current_tok.matches(token.T_KEYWORD, 'for'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'for'" )) res.register_advancement() self.advance() if self.current_tok.type != token.T_IDENTIFIER: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected identifier" )) var_name = self.current_tok res.register_advancement() self.advance() if self.current_tok.type != token.T_EQ: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected '='" )) res.register_advancement() self.advance() start_value = res.register(self.expr()) if res.error: return res if not self.current_tok.matches(token.T_KEYWORD, 'to'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'to'" )) res.register_advancement() self.advance() end_value = res.register(self.expr()) if res.error: return res if self.current_tok.matches(token.T_KEYWORD, 'step'): res.register_advancement() self.advance() step_value = res.register(self.expr()) if res.error: return res else: step_value = None if not self.current_tok.type == token.T_COLON: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ':'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_NEWLINE: res.register_advancement() self.advance() body = res.register(self.statements()) if res.error: return res if not self.current_tok.matches(token.T_KEYWORD, 'end'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'end'" )) res.register_advancement() self.advance() return res.success(nodes.ForNode(var_name, start_value, end_value, step_value, body, True)) body = res.register(self.statement()) if res.error: return res return res.success(nodes.ForNode(var_name, start_value, end_value, step_value, body, False)) def while_expr(self): res = ParseResult() if not self.current_tok.matches(token.T_KEYWORD, 'while'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'while'" )) res.register_advancement() self.advance() condition = res.register(self.expr()) if res.error: return res if not self.current_tok.type == token.T_COLON: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected ':'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_NEWLINE: res.register_advancement() self.advance() body = res.register(self.statements()) if res.error: return res if not self.current_tok.matches(token.T_KEYWORD, 'end'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'end'" )) res.register_advancement() self.advance() return res.success(nodes.WhileNode(condition, body, True)) body = res.register(self.statement()) if res.error: return res return res.success(nodes.WhileNode(condition, body, False)) def func_def(self): res = ParseResult() if not self.current_tok.matches(token.T_KEYWORD, 'func'): return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected 'func'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_IDENTIFIER: var_name_tok = self.current_tok res.register_advancement() self.advance() if self.current_tok.type != token.T_LPAREN: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected '('" )) else: var_name_tok = None if self.current_tok.type != token.T_LPAREN: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected identifier or '('" )) res.register_advancement() self.advance() arg_name_toks = [] if self.current_tok.type == token.T_IDENTIFIER: arg_name_toks.append(self.current_tok) res.register_advancement() self.advance() while self.current_tok.type == token.T_COMMA: res.register_advancement() self.advance() if self.current_tok.type != token.T_IDENTIFIER: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected identifier" )) arg_name_toks.append(self.current_tok) res.register_advancement() self.advance() if self.current_tok.type != token.T_RPAREN: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected ',' or ')'" )) else: if self.current_tok.type != token.T_RPAREN: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected identifier or ')'" )) res.register_advancement() self.advance() if self.current_tok.type == token.T_ARROW: res.register_advancement() self.advance() body = res.register(self.expr()) if res.error: return res return res.success(nodes.FunctionDefNode( var_name_tok, arg_name_toks, body, True )) if self.current_tok.type != token.T_LCURLY: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected '{'" )) res.register_advancement() self.advance() if self.current_tok.type != token.T_NEWLINE: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, f"Expected '->' or a new line" )) res.register_advancement() self.advance() body = res.register(self.statements()) if res.error: return res if self.current_tok.type != token.T_RCURLY: return res.failure(errors.InvalidSyntaxError( self.current_tok.pos_start, self.current_tok.pos_end, "Expected '}'" )) res.register_advancement() self.advance() return res.success(nodes.FunctionDefNode( var_name_tok, arg_name_toks, body, False ))
true
true
f712efa6c8e65b144dbf8de914a5873c5e8bb92d
6,135
py
Python
sanic_wtf/__init__.py
omarryhan/sanic-wtf
41c24f061fa16652a82d83753c3bee56f746e23a
[ "BSD-3-Clause" ]
3
2019-04-11T11:01:54.000Z
2020-03-09T12:19:26.000Z
sanic_wtf/__init__.py
omarryhan/sanic-wtf
41c24f061fa16652a82d83753c3bee56f746e23a
[ "BSD-3-Clause" ]
null
null
null
sanic_wtf/__init__.py
omarryhan/sanic-wtf
41c24f061fa16652a82d83753c3bee56f746e23a
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from collections import ChainMap from datetime import timedelta from itertools import chain from wtforms import Form from wtforms.csrf.session import SessionCSRF from wtforms.meta import DefaultMeta from wtforms.validators import DataRequired, StopValidation from wtforms.fields.core import Field from ._patch import patch from .recaptcha import RecaptchaField __version__ = '1.0.3.dev0' __all__ = [ 'SanicForm', 'FileAllowed', 'file_allowed', 'FileRequired', 'file_required', 'RecaptchaField' ] def to_bytes(text, encoding='utf8'): if isinstance(text, str): return text.encode(encoding) return bytes(text) def meta_for_request(request): """Create a meta dict object with settings from request.app""" meta = {'csrf': False} if not request: return meta config = request.app.config csrf = meta['csrf'] = config.get('WTF_CSRF_ENABLED', True) if not csrf: return meta meta['csrf_field_name'] = config.get('WTF_CSRF_FIELD_NAME', 'csrf_token') secret = config.get('WTF_CSRF_SECRET_KEY') if secret is None: secret = config.get('SECRET_KEY') if not secret: raise ValueError( 'CSRF protection needs either WTF_CSRF_SECRET_KEY or SECRET_KEY') meta['csrf_secret'] = to_bytes(secret) seconds = config.get('WTF_CSRF_TIME_LIMIT', 1800) meta['csrf_time_limit'] = timedelta(seconds=seconds) name = config.get('WTF_CSRF_CONTEXT_NAME', 'session') meta['csrf_context'] = request[name] return meta SUBMIT_VERBS = frozenset({'DELETE', 'PATCH', 'POST', 'PUT'}) sentinel = object() class FileRequired(DataRequired): """Validate that the data is a non-empty `sanic.request.File` object""" def __call__(self, form, field): # type sanic.request.File as of v 0.5.4 is: # File = namedtuple('File', ['type', 'body', 'name']) # here, we check whether the name contains anything if not getattr(field.data, 'name', ''): msg = self.message or field.gettext('This field is required.') raise StopValidation(msg) file_required = FileRequired class FileAllowed: """Validate that the file (by extention) is one of the listed types""" def __init__(self, extensions, message=None): extensions = (ext.lower() for ext in extensions) extensions = ( ext if ext.startswith('.') else '.' + ext for ext in extensions) self.extensions = frozenset(extensions) self.message = message def __call__(self, form, field): filename = getattr(field.data, 'name', '') if not filename: return filename = filename.lower() # testing with .endswith instead of the fastest `in` test, because # there may be extensions with more than one dot (.), e.g. ".tar.gz" if any(filename.endswith(ext) for ext in self.extensions): return raise StopValidation(self.message or field.gettext( 'File type does not allowed.')) file_allowed = FileAllowed class ChainRequestParameters(ChainMap): """ChainMap with sanic.RequestParameters style API""" def get(self, name, default=None): """Return the first element with key `name`""" return super().get(name, [default])[0] def getlist(self, name, default=None): """Return all elements with key `name` Only elementes of the first chained map with such key are return. """ return super().get(name, default) class SanicForm(Form): """Form with session-based CSRF Protection. Upon initialization, the form instance will setup CSRF protection with settings fetched from provided Sanic style request object. With no request object provided, CSRF protection will be disabled. """ class Meta(DefaultMeta): csrf = True csrf_class = SessionCSRF def __init__(self, request=None, *args, meta=None, **kwargs): # Patching status self.patched = False # Meta form_meta = meta_for_request(request) form_meta.update(meta or {}) kwargs['meta'] = form_meta # Formdata self.request = request if request is not None: formdata = kwargs.pop('formdata', sentinel) if formdata is sentinel: if request.files: formdata = ChainRequestParameters( request.form, request.files) else: formdata = request.form # signature of wtforms.Form (formdata, obj, prefix, ...) args = chain([formdata], args) super().__init__(*args, **kwargs) # Pass app to fields that need it if self.request is not None: for name, field in self._fields.items(): if hasattr(field, '_get_app'): field._get_app(self.request.app) # @unpatch ?? def validate_on_submit(self): ''' For async validators: use self.validate_on_submit_async. This method is only still here for backward compatibility ''' if self.patched is not False: raise RuntimeError('Once you go async, you can never go back. :)\ Continue using validate_on_submit_async \ instead of validate_on submit') """Return `True` if this form is submited and all fields verified""" return self.request and (self.request.method in SUBMIT_VERBS) and \ self.validate() @patch async def validate_on_submit_async(self): ''' Adds support for async validators and Sanic-WTF Recaptcha .. note:: As a side effect of patching wtforms to support async, there's a restriction you must be aware of: Don't use SanifForm.validate_on_submit() (the sync version) after running this method. Doing so will most likely cause an error. ''' return self.request and (self.request.method in SUBMIT_VERBS) and \ await self.validate()
33.342391
98
0.631622
from collections import ChainMap from datetime import timedelta from itertools import chain from wtforms import Form from wtforms.csrf.session import SessionCSRF from wtforms.meta import DefaultMeta from wtforms.validators import DataRequired, StopValidation from wtforms.fields.core import Field from ._patch import patch from .recaptcha import RecaptchaField __version__ = '1.0.3.dev0' __all__ = [ 'SanicForm', 'FileAllowed', 'file_allowed', 'FileRequired', 'file_required', 'RecaptchaField' ] def to_bytes(text, encoding='utf8'): if isinstance(text, str): return text.encode(encoding) return bytes(text) def meta_for_request(request): meta = {'csrf': False} if not request: return meta config = request.app.config csrf = meta['csrf'] = config.get('WTF_CSRF_ENABLED', True) if not csrf: return meta meta['csrf_field_name'] = config.get('WTF_CSRF_FIELD_NAME', 'csrf_token') secret = config.get('WTF_CSRF_SECRET_KEY') if secret is None: secret = config.get('SECRET_KEY') if not secret: raise ValueError( 'CSRF protection needs either WTF_CSRF_SECRET_KEY or SECRET_KEY') meta['csrf_secret'] = to_bytes(secret) seconds = config.get('WTF_CSRF_TIME_LIMIT', 1800) meta['csrf_time_limit'] = timedelta(seconds=seconds) name = config.get('WTF_CSRF_CONTEXT_NAME', 'session') meta['csrf_context'] = request[name] return meta SUBMIT_VERBS = frozenset({'DELETE', 'PATCH', 'POST', 'PUT'}) sentinel = object() class FileRequired(DataRequired): def __call__(self, form, field): if not getattr(field.data, 'name', ''): msg = self.message or field.gettext('This field is required.') raise StopValidation(msg) file_required = FileRequired class FileAllowed: def __init__(self, extensions, message=None): extensions = (ext.lower() for ext in extensions) extensions = ( ext if ext.startswith('.') else '.' + ext for ext in extensions) self.extensions = frozenset(extensions) self.message = message def __call__(self, form, field): filename = getattr(field.data, 'name', '') if not filename: return filename = filename.lower() if any(filename.endswith(ext) for ext in self.extensions): return raise StopValidation(self.message or field.gettext( 'File type does not allowed.')) file_allowed = FileAllowed class ChainRequestParameters(ChainMap): def get(self, name, default=None): return super().get(name, [default])[0] def getlist(self, name, default=None): return super().get(name, default) class SanicForm(Form): class Meta(DefaultMeta): csrf = True csrf_class = SessionCSRF def __init__(self, request=None, *args, meta=None, **kwargs): self.patched = False form_meta = meta_for_request(request) form_meta.update(meta or {}) kwargs['meta'] = form_meta self.request = request if request is not None: formdata = kwargs.pop('formdata', sentinel) if formdata is sentinel: if request.files: formdata = ChainRequestParameters( request.form, request.files) else: formdata = request.form args = chain([formdata], args) super().__init__(*args, **kwargs) if self.request is not None: for name, field in self._fields.items(): if hasattr(field, '_get_app'): field._get_app(self.request.app) def validate_on_submit(self): if self.patched is not False: raise RuntimeError('Once you go async, you can never go back. :)\ Continue using validate_on_submit_async \ instead of validate_on submit') return self.request and (self.request.method in SUBMIT_VERBS) and \ self.validate() @patch async def validate_on_submit_async(self): return self.request and (self.request.method in SUBMIT_VERBS) and \ await self.validate()
true
true
f712efe144ad625bebe21fb5d3a4946f8efaa3af
2,203
py
Python
GAN_tf/src/model/flags.py
inamori/DeepLearningImplementations
8bbd3c5a4a7d24b2c098ba47cfd45fe2c152771d
[ "MIT" ]
2,010
2016-09-22T22:22:05.000Z
2022-03-21T02:43:21.000Z
GAN_tf/src/model/flags.py
inamori/DeepLearningImplementations
8bbd3c5a4a7d24b2c098ba47cfd45fe2c152771d
[ "MIT" ]
81
2016-09-13T01:00:06.000Z
2021-08-17T15:10:28.000Z
GAN_tf/src/model/flags.py
inamori/DeepLearningImplementations
8bbd3c5a4a7d24b2c098ba47cfd45fe2c152771d
[ "MIT" ]
777
2016-09-10T12:44:23.000Z
2022-01-16T04:19:55.000Z
import tensorflow as tf FLAGS = tf.app.flags.FLAGS def define_flags(): ############ # Run mode ############ tf.app.flags.DEFINE_string('run', None, "Which operation to run. [train|inference]") ########################## # Training parameters ########################### tf.app.flags.DEFINE_integer('nb_epoch', 400, "Number of epochs") tf.app.flags.DEFINE_integer('batch_size', 64, "Number of samples per batch.") tf.app.flags.DEFINE_integer('nb_batch_per_epoch', 500, "Number of batches per epoch") tf.app.flags.DEFINE_float('learning_rate', 2E-4, "Learning rate used for AdamOptimizer") tf.app.flags.DEFINE_integer('noise_dim', 100, "Noise dimension for GAN generation") tf.app.flags.DEFINE_integer('random_seed', 0, "Seed used to initialize rng.") ############################################ # General tensorflow parameters parameters ############################################# tf.app.flags.DEFINE_bool('use_XLA', False, "Whether to use XLA compiler.") tf.app.flags.DEFINE_integer('num_threads', 2, "Number of threads to fetch the data") tf.app.flags.DEFINE_float('capacity_factor', 32, "Nuumber of batches to store in queue") ########## # Datasets ########## tf.app.flags.DEFINE_string('data_format', "NCHW", "Tensorflow image data format.") tf.app.flags.DEFINE_string('celebA_path', "../../data/raw/img_align_celeba", "Path to celebA images") tf.app.flags.DEFINE_integer('channels', 3, "Number of channels") tf.app.flags.DEFINE_float('central_fraction', 0.8, "Central crop as a fraction of total image") tf.app.flags.DEFINE_integer('img_size', 64, "Image size") ############## # Directories ############## tf.app.flags.DEFINE_string('model_dir', '../../models', "Output folder where checkpoints are dumped.") tf.app.flags.DEFINE_string('log_dir', '../../logs', "Logs for tensorboard.") tf.app.flags.DEFINE_string('fig_dir', '../../figures', "Where to save figures.") tf.app.flags.DEFINE_string('raw_dir', '../../data/raw', "Where raw data is saved") tf.app.flags.DEFINE_string('data_dir', '../../data/processed', "Where processed data is saved")
45.895833
106
0.622333
import tensorflow as tf FLAGS = tf.app.flags.FLAGS def define_flags():
true
true
f712f03d95082cb78501e5b7a4c3b0f6128a8166
266
py
Python
accounting/accounting/doctype/account/account.py
athul/accounting-app
cde48fde0ee96be212281b3a6a28c82e90d39d8a
[ "MIT" ]
1
2021-05-17T09:48:38.000Z
2021-05-17T09:48:38.000Z
accounting/accounting/doctype/account/account.py
athul/accounting-app
cde48fde0ee96be212281b3a6a28c82e90d39d8a
[ "MIT" ]
null
null
null
accounting/accounting/doctype/account/account.py
athul/accounting-app
cde48fde0ee96be212281b3a6a28c82e90d39d8a
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright (c) 2021, Athul Cyriac Ajay and contributors # For license information, please see license.txt from __future__ import unicode_literals # import frappe from frappe.utils.nestedset import NestedSet class Account(NestedSet): pass
24.181818
56
0.774436
from __future__ import unicode_literals from frappe.utils.nestedset import NestedSet class Account(NestedSet): pass
true
true
f712f0e14d8999105f1c03a1a69665fda1b7c3be
2,465
py
Python
matrixrecovery/matrixrecovery.py
kwangsungjun/lrbandit
2f1f7ca4bbefe2bfd3e0bc50c4423a9791bfcde8
[ "Apache-2.0" ]
2
2019-08-11T22:50:49.000Z
2021-04-21T17:48:20.000Z
matrixrecovery/matrixrecovery.py
kwangsungjun/lrbandit
2f1f7ca4bbefe2bfd3e0bc50c4423a9791bfcde8
[ "Apache-2.0" ]
null
null
null
matrixrecovery/matrixrecovery.py
kwangsungjun/lrbandit
2f1f7ca4bbefe2bfd3e0bc50c4423a9791bfcde8
[ "Apache-2.0" ]
2
2019-08-11T22:52:57.000Z
2021-09-18T05:31:32.000Z
import myutils_cython import numpy as np, numpy.random as ra, scipy.linalg as sla from tqdm import tqdm def rankone(X,Z,y,r,R=.1, C=.1, tolPred=0.01, tolTh=0.01, maxIter=400, verbose=False): """ matrix recovery with rank-one measurements using Burer-Monteiro approach measurement model: (X[i,:] @ Theta) @ Z[i,:] == y[i] (IN) X, Z: N by d matrix y: N-dim vector r: the deemed rank of Theta R: noise level (subgaussian parameter) C: regularization parameter (larger => more regularization) tol: stopping condition maxIter: maximum number of iterations (OUT) (U,V,out_nIter,stat) so that U@V.T ≈ Theta; stat['objs'] has the objective values over time stat['stoppingPredList'], stat['stoppingThetaList'] has stopping conditions over time """ N,d = X.shape initU = ra.randn(d,r) U = initU V = initU # just a placeholder M = np.zeros( (d*r,d*r) ) hatTh = initU @ initU.T # very bad initial hatTh if (verbose): my_tqdm = tqdm else: my_tqdm = lambda x: x objs = []; stoppingPredList = []; stoppingThetaList = [] myeye = R*C*np.eye(d*r) for iIter in my_tqdm(range(1,1+maxIter)): D = np.zeros((N,d*r)) if iIter % 2 == 0: # update U ZV = Z @ V myutils_cython.calcRowwiseKron(D, X, ZV) #- note D will be written! else: # update V XU = X @ U myutils_cython.calcRowwiseKron(D, Z, XU) M[:,:] = myeye + D.T@D b = D.T @ y sol = sla.solve(M,b, assume_a='pos', overwrite_a=True).reshape(d,r) if iIter % 2 == 0: prevU = U U = sol else: prevV = V V = sol prev_hatTh = hatTh hatTh = U@V.T #- compute residual predy = ((X@hatTh)*Z).sum(1) obj = sla.norm(predy - y, 2)**2 + R*C*(sla.norm(U, 'fro')**2 + sla.norm(V, 'fro')**2) objs.append( obj ) stoppingPred = sla.norm(predy - y, 2) / sla.norm(y,2) stoppingPredList.append( stoppingPred ) stoppingTheta = sla.norm(hatTh - prev_hatTh, 'fro') stoppingThetaList.append( stoppingTheta ) if (stoppingPred < tolPred): break if (stoppingTheta < tolTh): break out_nIter = iIter stat = {'objs': objs, 'stoppingPredList': stoppingPredList, 'stoppingThetaList': stoppingThetaList} return U,V,out_nIter,stat
34.71831
103
0.571197
import myutils_cython import numpy as np, numpy.random as ra, scipy.linalg as sla from tqdm import tqdm def rankone(X,Z,y,r,R=.1, C=.1, tolPred=0.01, tolTh=0.01, maxIter=400, verbose=False): N,d = X.shape initU = ra.randn(d,r) U = initU V = initU M = np.zeros( (d*r,d*r) ) hatTh = initU @ initU.T if (verbose): my_tqdm = tqdm else: my_tqdm = lambda x: x objs = []; stoppingPredList = []; stoppingThetaList = [] myeye = R*C*np.eye(d*r) for iIter in my_tqdm(range(1,1+maxIter)): D = np.zeros((N,d*r)) if iIter % 2 == 0: ZV = Z @ V myutils_cython.calcRowwiseKron(D, X, ZV) else: XU = X @ U myutils_cython.calcRowwiseKron(D, Z, XU) M[:,:] = myeye + D.T@D b = D.T @ y sol = sla.solve(M,b, assume_a='pos', overwrite_a=True).reshape(d,r) if iIter % 2 == 0: prevU = U U = sol else: prevV = V V = sol prev_hatTh = hatTh hatTh = U@V.T predy = ((X@hatTh)*Z).sum(1) obj = sla.norm(predy - y, 2)**2 + R*C*(sla.norm(U, 'fro')**2 + sla.norm(V, 'fro')**2) objs.append( obj ) stoppingPred = sla.norm(predy - y, 2) / sla.norm(y,2) stoppingPredList.append( stoppingPred ) stoppingTheta = sla.norm(hatTh - prev_hatTh, 'fro') stoppingThetaList.append( stoppingTheta ) if (stoppingPred < tolPred): break if (stoppingTheta < tolTh): break out_nIter = iIter stat = {'objs': objs, 'stoppingPredList': stoppingPredList, 'stoppingThetaList': stoppingThetaList} return U,V,out_nIter,stat
true
true
f712f1594cbc629a2413df1610f21e67bb57e812
20,937
py
Python
tests/tests_complexity.py
kassyray/NeuroKit
b84d110a71d5d17c0d1efde0d60d00446fda16cb
[ "MIT" ]
null
null
null
tests/tests_complexity.py
kassyray/NeuroKit
b84d110a71d5d17c0d1efde0d60d00446fda16cb
[ "MIT" ]
null
null
null
tests/tests_complexity.py
kassyray/NeuroKit
b84d110a71d5d17c0d1efde0d60d00446fda16cb
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import neurokit2 as nk import nolds from pyentrp import entropy as pyentrp """ For the testing of complexity, we test our implementations against existing and established ones. However, some of these other implementations are not really packaged in a way SO THAT we can easily import them. Thus, we directly copied their content in this file (below the tests). """ # ============================================================================= # Some sanity checks # ============================================================================= def test_complexity_sanity(): signal = np.cos(np.linspace(start=0, stop=30, num=1000)) # Entropy assert np.allclose(nk.entropy_fuzzy(signal), nk.entropy_sample(signal, fuzzy=True), atol=0.000001) # Fractal assert np.allclose(nk.fractal_dfa(signal, windows=np.array([4, 8, 12, 20])), 2.1009048365682133, atol=0.000001) assert np.allclose(nk.fractal_dfa(signal), 1.957966586191164, atol=0.000001) assert np.allclose(nk.fractal_dfa(signal, multifractal=True), 1.957966586191164, atol=0.000001) assert np.allclose(nk.fractal_correlation(signal), 0.7884473170763334, atol=0.000001) assert np.allclose(nk.fractal_correlation(signal, r="nolds"), nolds.corr_dim(signal, 2), atol=0.0001) # ============================================================================= # Comparison against R # ============================================================================= """ R code: library(TSEntropies) library(pracma) signal <- read.csv("https://raw.githubusercontent.com/neuropsychology/NeuroKit/master/data/bio_eventrelated_100hz.csv")$RSP r <- 0.2 * sd(signal) # ApEn -------------------------------------------------------------------- TSEntropies::ApEn(signal, dim=2, lag=1, r=r) 0.04383386 TSEntropies::ApEn(signal, dim=3, lag=2, r=1) 0.0004269369 pracma::approx_entropy(signal[1:200], edim=2, r=r, elag=1) 0.03632554 # SampEn ------------------------------------------------------------------ TSEntropies::SampEn(signal[1:300], dim=2, lag=1, r=r) 0.04777648 TSEntropies::FastSampEn(signal[1:300], dim=2, lag=1, r=r) 0.003490405 pracma::sample_entropy(signal[1:300], edim=2, tau=1, r=r) 0.03784376 pracma::sample_entropy(signal[1:300], edim=3, tau=2, r=r) 0.09185509 """ def test_complexity_vs_R(): signal = pd.read_csv("https://raw.githubusercontent.com/neuropsychology/NeuroKit/master/data/bio_eventrelated_100hz.csv")["RSP"].values r = 0.2 * np.std(signal, ddof=1) # ApEn apen = nk.entropy_approximate(signal, dimension=2, r=r) assert np.allclose(apen, 0.04383386, atol=0.0001) apen = nk.entropy_approximate(signal, dimension=3, delay=2, r=1) assert np.allclose(apen, 0.0004269369, atol=0.0001) apen = nk.entropy_approximate(signal[0:200], dimension=2, delay=1, r=r) assert np.allclose(apen, 0.03632554, atol=0.0001) # SampEn sampen = nk.entropy_sample(signal[0:300], dimension=2, r=r) assert np.allclose(sampen, nk.entropy_sample(signal[0:300], dimension=2, r=r, distance="infinity"), atol=0.001) assert np.allclose(sampen, 0.03784376, atol=0.001) sampen = nk.entropy_sample(signal[0:300], dimension=3, delay=2, r=r) assert np.allclose(sampen, 0.09185509, atol=0.01) # ============================================================================= # Comparison against Python implementations # ============================================================================= def test_complexity_vs_Python(): signal = np.cos(np.linspace(start=0, stop=30, num=100)) # Shannon shannon = nk.entropy_shannon(signal) # assert scipy.stats.entropy(shannon, pd.Series(signal).value_counts()) assert np.allclose(shannon - pyentrp.shannon_entropy(signal), 0) # Approximate assert np.allclose(nk.entropy_approximate(signal), 0.17364897858477146) assert np.allclose(nk.entropy_approximate(signal, dimension=2, r=0.2*np.std(signal, ddof=1)) - entropy_app_entropy(signal, 2), 0) assert nk.entropy_approximate(signal, dimension=2, r=0.2*np.std(signal, ddof=1)) != pyeeg_ap_entropy(signal, 2, 0.2*np.std(signal, ddof=1)) # Sample assert np.allclose(nk.entropy_sample(signal, dimension=2, r=0.2*np.std(signal, ddof=1)) - entropy_sample_entropy(signal, 2), 0) assert np.allclose(nk.entropy_sample(signal, dimension=2, r=0.2) - nolds.sampen(signal, 2, 0.2), 0) assert np.allclose(nk.entropy_sample(signal, dimension=2, r=0.2) - entro_py_sampen(signal, 2, 0.2, scale=False), 0) assert np.allclose(nk.entropy_sample(signal, dimension=2, r=0.2) - pyeeg_samp_entropy(signal, 2, 0.2), 0) # import sampen # sampen.sampen2(signal[0:300], mm=2, r=r) assert nk.entropy_sample(signal, dimension=2, r=0.2) != pyentrp.sample_entropy(signal, 2, 0.2)[1] assert nk.entropy_sample(signal, dimension=2, r=0.2*np.sqrt(np.var(signal))) != MultiscaleEntropy_sample_entropy(signal, 2, 0.2)[0.2][2] # MSE # assert nk.entropy_multiscale(signal, 2, 0.2*np.sqrt(np.var(signal))) != np.trapz(MultiscaleEntropy_mse(signal, [i+1 for i in range(10)], 2, 0.2, return_type="list")) # assert nk.entropy_multiscale(signal, 2, 0.2*np.std(signal, ddof=1)) != np.trapz(pyentrp.multiscale_entropy(signal, 2, 0.2, 10)) # Fuzzy assert np.allclose(nk.entropy_fuzzy(signal, dimension=2, r=0.2, delay=1) - entro_py_fuzzyen(signal, 2, 0.2, 1, scale=False), 0) # DFA assert nk.fractal_dfa(signal, windows=np.array([4, 8, 12, 20])) != nolds.dfa(signal, nvals=[4, 8, 12, 20], fit_exp="poly") # ============================================================================= # Wikipedia # ============================================================================= def wikipedia_sampen(signal, m=2, r=1): N = len(signal) B = 0.0 A = 0.0 # Split time series and save all templates of length m xmi = np.array([signal[i : i + m] for i in range(N - m)]) xmj = np.array([signal[i : i + m] for i in range(N - m + 1)]) # Save all matches minus the self-match, compute B B = np.sum([np.sum(np.abs(xmii - xmj).max(axis=1) <= r) - 1 for xmii in xmi]) # Similar for computing A m += 1 xm = np.array([signal[i : i + m] for i in range(N - m + 1)]) A = np.sum([np.sum(np.abs(xmi - xm).max(axis=1) <= r) - 1 for xmi in xm]) # Return SampEn return -np.log(A / B) # ============================================================================= # Pyeeg # ============================================================================= def pyeeg_embed_seq(time_series, tau, embedding_dimension): if not type(time_series) == np.ndarray: typed_time_series = np.asarray(time_series) else: typed_time_series = time_series shape = ( typed_time_series.size - tau * (embedding_dimension - 1), embedding_dimension ) strides = (typed_time_series.itemsize, tau * typed_time_series.itemsize) return np.lib.stride_tricks.as_strided( typed_time_series, shape=shape, strides=strides ) def pyeeg_bin_power(X, Band, Fs): C = np.fft.fft(X) C = abs(C) Power = np.zeros(len(Band) - 1) for Freq_Index in range(0, len(Band) - 1): Freq = float(Band[Freq_Index]) Next_Freq = float(Band[Freq_Index + 1]) Power[Freq_Index] = sum( C[int(np.floor(Freq / Fs * len(X))): int(np.floor(Next_Freq / Fs * len(X)))] ) Power_Ratio = Power / sum(Power) return Power, Power_Ratio def pyeeg_ap_entropy(X, M, R): N = len(X) Em = pyeeg_embed_seq(X, 1, M) A = np.tile(Em, (len(Em), 1, 1)) B = np.transpose(A, [1, 0, 2]) D = np.abs(A - B) # D[i,j,k] = |Em[i][k] - Em[j][k]| InRange = np.max(D, axis=2) <= R # Probability that random M-sequences are in range Cm = InRange.mean(axis=0) # M+1-sequences in range if M-sequences are in range & last values are close Dp = np.abs( np.tile(X[M:], (N - M, 1)) - np.tile(X[M:], (N - M, 1)).T ) Cmp = np.logical_and(Dp <= R, InRange[:-1, :-1]).mean(axis=0) Phi_m, Phi_mp = np.sum(np.log(Cm)), np.sum(np.log(Cmp)) Ap_En = (Phi_m - Phi_mp) / (N - M) return Ap_En def pyeeg_samp_entropy(X, M, R): N = len(X) Em = pyeeg_embed_seq(X, 1, M)[:-1] A = np.tile(Em, (len(Em), 1, 1)) B = np.transpose(A, [1, 0, 2]) D = np.abs(A - B) # D[i,j,k] = |Em[i][k] - Em[j][k]| InRange = np.max(D, axis=2) <= R np.fill_diagonal(InRange, 0) # Don't count self-matches Cm = InRange.sum(axis=0) # Probability that random M-sequences are in range Dp = np.abs( np.tile(X[M:], (N - M, 1)) - np.tile(X[M:], (N - M, 1)).T ) Cmp = np.logical_and(Dp <= R, InRange).sum(axis=0) # Avoid taking log(0) Samp_En = np.log(np.sum(Cm + 1e-100) / np.sum(Cmp + 1e-100)) return Samp_En # ============================================================================= # Entropy # ============================================================================= from sklearn.neighbors import KDTree def entropy_embed(x, order=3, delay=1): N = len(x) if order * delay > N: raise ValueError("Error: order * delay should be lower than x.size") if delay < 1: raise ValueError("Delay has to be at least 1.") if order < 2: raise ValueError("Order has to be at least 2.") Y = np.zeros((order, N - (order - 1) * delay)) for i in range(order): Y[i] = x[i * delay:i * delay + Y.shape[1]] return Y.T def entropy_app_samp_entropy(x, order, metric='chebyshev', approximate=True): _all_metrics = KDTree.valid_metrics if metric not in _all_metrics: raise ValueError('The given metric (%s) is not valid. The valid ' 'metric names are: %s' % (metric, _all_metrics)) phi = np.zeros(2) r = 0.2 * np.std(x, axis=-1, ddof=1) # compute phi(order, r) _emb_data1 = entropy_embed(x, order, 1) if approximate: emb_data1 = _emb_data1 else: emb_data1 = _emb_data1[:-1] count1 = KDTree(emb_data1, metric=metric).query_radius(emb_data1, r, count_only=True ).astype(np.float64) # compute phi(order + 1, r) emb_data2 = entropy_embed(x, order + 1, 1) count2 = KDTree(emb_data2, metric=metric).query_radius(emb_data2, r, count_only=True ).astype(np.float64) if approximate: phi[0] = np.mean(np.log(count1 / emb_data1.shape[0])) phi[1] = np.mean(np.log(count2 / emb_data2.shape[0])) else: phi[0] = np.mean((count1 - 1) / (emb_data1.shape[0] - 1)) phi[1] = np.mean((count2 - 1) / (emb_data2.shape[0] - 1)) return phi def entropy_app_entropy(x, order=2, metric='chebyshev'): phi = entropy_app_samp_entropy(x, order=order, metric=metric, approximate=True) return np.subtract(phi[0], phi[1]) def entropy_sample_entropy(x, order=2, metric='chebyshev'): x = np.asarray(x, dtype=np.float64) phi = entropy_app_samp_entropy(x, order=order, metric=metric, approximate=False) return -np.log(np.divide(phi[1], phi[0])) # ============================================================================= # entro-py # ============================================================================= def entro_py_sampen(x, dim, r, scale=True): return entro_py_entropy(x, dim, r, scale=scale) def entro_py_cross_sampen(x1, x2, dim, r, scale=True): return entro_py_entropy([x1, x2], dim, r, scale) def entro_py_fuzzyen(x, dim, r, n, scale=True): return entro_py_entropy(x, dim, r, n=n, scale=scale, remove_baseline=True) def entro_py_cross_fuzzyen(x1, x2, dim, r, n, scale=True): return entro_py_entropy([x1, x2], dim, r, n, scale=scale, remove_baseline=True) def entro_py_pattern_mat(x, m): x = np.asarray(x).ravel() if m == 1: return x else: N = len(x) patterns = np.zeros((m, N-m+1)) for i in range(m): patterns[i, :] = x[i:N-m+i+1] return patterns def entro_py_entropy(x, dim, r, n=1, scale=True, remove_baseline=False): fuzzy = True if remove_baseline else False cross = True if type(x) == list else False N = len(x[0]) if cross else len(x) if scale: if cross: x = [entro_py_scale(np.copy(x[0])), entro_py_scale(np.copy(x[1]))] else: x = entro_py_scale(np.copy(x)) phi = [0, 0] # phi(m), phi(m+1) for j in [0, 1]: m = dim + j npat = N-dim # https://github.com/ixjlyons/entro-py/pull/2/files if cross: # patterns = [entro_py_pattern_mat(x[0], m), entro_py_pattern_mat(x[1], m)] patterns = [entro_py_pattern_mat(x[0], m)[:, :npat], entro_py_pattern_mat(x[1], m)[:, :npat]] # https://github.com/ixjlyons/entro-py/pull/2/files else: # patterns = entro_py_pattern_mat(x, m) patterns = entro_py_pattern_mat(x, m)[:, :npat] if remove_baseline: if cross: patterns[0] = entro_py_remove_baseline(patterns[0], axis=0) patterns[1] = entro_py_remove_baseline(patterns[1], axis=0) else: patterns = entro_py_remove_baseline(patterns, axis=0) # count = np.zeros(N-m) # https://github.com/ixjlyons/entro-py/pull/2/files # for i in range(N-m): # https://github.com/ixjlyons/entro-py/pull/2/files count = np.zeros(npat) for i in range(npat): if cross: if m == 1: sub = patterns[1][i] else: sub = patterns[1][:, [i]] dist = np.max(np.abs(patterns[0] - sub), axis=0) else: if m == 1: sub = patterns[i] else: sub = patterns[:, [i]] dist = np.max(np.abs(patterns - sub), axis=0) if fuzzy: sim = np.exp(-np.power(dist, n) / r) else: sim = dist < r count[i] = np.sum(sim) - 1 # phi[j] = np.mean(count) / (N-m-1) phi[j] = np.mean(count) / (N-dim-1) # https://github.com/ixjlyons/entro-py/pull/2/files return np.log(phi[0] / phi[1]) def entro_py_scale(x, axis=None): x = entro_py_remove_baseline(x, axis=axis) x /= np.std(x, ddof=1, axis=axis, keepdims=True) return x def entro_py_remove_baseline(x, axis=None): x -= np.mean(x, axis=axis, keepdims=True) return x # ============================================================================= # MultiscaleEntropy https://github.com/reatank/MultiscaleEntropy/blob/master/MultiscaleEntropy/mse.py # ============================================================================= import math from collections.abc import Iterable def MultiscaleEntropy_init_return_type(return_type): if return_type == 'dict': return {} else: return [] def MultiscaleEntropy_check_type(x, num_type, name): if isinstance(x, num_type): tmp = [x] elif not isinstance(x, Iterable): raise ValueError(name + ' should be a ' + num_type.__name__ + ' or an iterator of ' + num_type.__name__) else: tmp = [] for i in x: tmp.append(i) if not isinstance(i, num_type): raise ValueError(name + ' should be a ' + num_type.__name__ + ' or an iterator of ' + num_type.__name__) return tmp # sum of seperate intervals of x def MultiscaleEntropy_coarse_grain(x, scale_factor): x = np.array(x) x_len = len(x) if x_len % scale_factor: padded_len = (1+int(x_len/scale_factor))*scale_factor else: padded_len = x_len tmp_x = np.zeros(padded_len) tmp_x[:x_len] = x tmp_x = np.reshape(tmp_x, (int(padded_len/scale_factor), scale_factor)) ans = np.reshape(np.sum(tmp_x, axis=1), (-1))/scale_factor return ans def MultiscaleEntropy_sample_entropy(x, m=[2], r=[0.15], sd=None, return_type='dict', safe_mode=False): '''[Sample Entropy, the threshold will be r*sd] Arguments: x {[input signal]} -- [an iterator of numbers] Keyword Arguments: m {list} -- [m in sample entropy] (default: {[2]}) r {list} -- [r in sample entropy] (default: {[0.15]}) sd {number} -- [standard derivation of x, if None, will be calculated] (default: {None}) return_type {str} -- [can be dict or list] (default: {'dict'}) safe_mode {bool} -- [if set True, type checking will be skipped] (default: {False}) Raises: ValueError -- [some values too big] Returns: [dict or list as return_type indicates] -- [if dict, nest as [scale_factor][m][r] for each value of m, r; if list, nest as [i][j] for lengths of m, r] ''' # type checking if not safe_mode: m = MultiscaleEntropy_check_type(m, int, 'm') r = MultiscaleEntropy_check_type(r, float, 'r') if not (sd == None) and not (isinstance(sd, float) or isinstance(sd, int)): raise ValueError('sd should be a number') try: x = np.array(x) except: raise ValueError('x should be a sequence of numbers') # value checking if len(x) < max(m): raise ValueError('the max m is bigger than x\'s length') # initialization if sd == None: sd = np.sqrt(np.var(x)) ans = MultiscaleEntropy_init_return_type(return_type) # calculation for i, rr in enumerate(r): threshold = rr * sd if return_type == 'dict': ans[rr] = MultiscaleEntropy_init_return_type(return_type) else: ans.append(MultiscaleEntropy_init_return_type(return_type)) count = {} tmp_m = [] for mm in m: tmp_m.append(mm) tmp_m.append(mm+1) tmp_m = list(set(tmp_m)) for mm in tmp_m: count[mm] = 0 for j in range(1, len(x)-min(m)+1): cont = 0 for inc in range(0, len(x)-j): if abs(x[inc]-x[j+inc]) < threshold: cont += 1 elif cont > 0: for mm in tmp_m: tmp = cont - mm + 1 count[mm] += tmp if tmp > 0 else 0 cont = 0 if cont > 0: for mm in tmp_m: tmp = cont - mm + 1 count[mm] += tmp if tmp > 0 else 0 for mm in m: if count[mm+1] == 0 or count[mm] == 0: t = len(x)-mm+1 tmp = -math.log(1/(t*(t-1))) else: tmp = -math.log(count[mm+1]/count[mm]) if return_type == 'dict': ans[rr][mm] = tmp else: ans[i].append(tmp) return ans def MultiscaleEntropy_mse(x, scale_factor=[i for i in range(1,21)], m=[2], r=[0.15], return_type='dict', safe_mode=False): '''[Multiscale Entropy] Arguments: x {[input signal]} -- [an iterator of numbers] Keyword Arguments: scale_factor {list} -- [scale factors of coarse graining] (default: {[i for i in range(1,21)]}) m {list} -- [m in sample entropy] (default: {[2]}) r {list} -- [r in sample entropy] (default: {[0.15]}) return_type {str} -- [can be dict or list] (default: {'dict'}) safe_mode {bool} -- [if set True, type checking will be skipped] (default: {False}) Raises: ValueError -- [some values too big] Returns: [dict or list as return_type indicates] -- [if dict, nest as [scale_factor][m][r] for each value of scale_factor, m, r; if list nest as [i][j][k] for lengths of scale_factor, m, r] ''' # type checking if not safe_mode: m = MultiscaleEntropy_check_type(m, int, 'm') r = MultiscaleEntropy_check_type(r, float, 'r') scale_factor = MultiscaleEntropy_check_type(scale_factor, int, 'scale_factor') try: x = np.array(x) except: print('x should be a sequence of numbers') # value checking if max(scale_factor) > len(x): raise ValueError('the max scale_factor is bigger than x\'s length') # calculation sd = np.sqrt(np.var(x)) ms_en = MultiscaleEntropy_init_return_type(return_type) for s_f in scale_factor: y = MultiscaleEntropy_coarse_grain(x, s_f) if return_type == 'dict': ms_en[s_f] = MultiscaleEntropy_sample_entropy(y, m, r, sd, 'dict', True) else: ms_en.append(MultiscaleEntropy_sample_entropy(y, m, r, sd, 'list', True)) if return_type == "list": ms_en = [i[0] for i in ms_en] ms_en = [i[0] for i in ms_en] return ms_en
34.77907
188
0.561542
import numpy as np import pandas as pd import neurokit2 as nk import nolds from pyentrp import entropy as pyentrp def test_complexity_sanity(): signal = np.cos(np.linspace(start=0, stop=30, num=1000)) assert np.allclose(nk.entropy_fuzzy(signal), nk.entropy_sample(signal, fuzzy=True), atol=0.000001) assert np.allclose(nk.fractal_dfa(signal, windows=np.array([4, 8, 12, 20])), 2.1009048365682133, atol=0.000001) assert np.allclose(nk.fractal_dfa(signal), 1.957966586191164, atol=0.000001) assert np.allclose(nk.fractal_dfa(signal, multifractal=True), 1.957966586191164, atol=0.000001) assert np.allclose(nk.fractal_correlation(signal), 0.7884473170763334, atol=0.000001) assert np.allclose(nk.fractal_correlation(signal, r="nolds"), nolds.corr_dim(signal, 2), atol=0.0001) def test_complexity_vs_R(): signal = pd.read_csv("https://raw.githubusercontent.com/neuropsychology/NeuroKit/master/data/bio_eventrelated_100hz.csv")["RSP"].values r = 0.2 * np.std(signal, ddof=1) apen = nk.entropy_approximate(signal, dimension=2, r=r) assert np.allclose(apen, 0.04383386, atol=0.0001) apen = nk.entropy_approximate(signal, dimension=3, delay=2, r=1) assert np.allclose(apen, 0.0004269369, atol=0.0001) apen = nk.entropy_approximate(signal[0:200], dimension=2, delay=1, r=r) assert np.allclose(apen, 0.03632554, atol=0.0001) sampen = nk.entropy_sample(signal[0:300], dimension=2, r=r) assert np.allclose(sampen, nk.entropy_sample(signal[0:300], dimension=2, r=r, distance="infinity"), atol=0.001) assert np.allclose(sampen, 0.03784376, atol=0.001) sampen = nk.entropy_sample(signal[0:300], dimension=3, delay=2, r=r) assert np.allclose(sampen, 0.09185509, atol=0.01) def test_complexity_vs_Python(): signal = np.cos(np.linspace(start=0, stop=30, num=100)) shannon = nk.entropy_shannon(signal) assert np.allclose(shannon - pyentrp.shannon_entropy(signal), 0) assert np.allclose(nk.entropy_approximate(signal), 0.17364897858477146) assert np.allclose(nk.entropy_approximate(signal, dimension=2, r=0.2*np.std(signal, ddof=1)) - entropy_app_entropy(signal, 2), 0) assert nk.entropy_approximate(signal, dimension=2, r=0.2*np.std(signal, ddof=1)) != pyeeg_ap_entropy(signal, 2, 0.2*np.std(signal, ddof=1)) assert np.allclose(nk.entropy_sample(signal, dimension=2, r=0.2*np.std(signal, ddof=1)) - entropy_sample_entropy(signal, 2), 0) assert np.allclose(nk.entropy_sample(signal, dimension=2, r=0.2) - nolds.sampen(signal, 2, 0.2), 0) assert np.allclose(nk.entropy_sample(signal, dimension=2, r=0.2) - entro_py_sampen(signal, 2, 0.2, scale=False), 0) assert np.allclose(nk.entropy_sample(signal, dimension=2, r=0.2) - pyeeg_samp_entropy(signal, 2, 0.2), 0) assert nk.entropy_sample(signal, dimension=2, r=0.2) != pyentrp.sample_entropy(signal, 2, 0.2)[1] assert nk.entropy_sample(signal, dimension=2, r=0.2*np.sqrt(np.var(signal))) != MultiscaleEntropy_sample_entropy(signal, 2, 0.2)[0.2][2] assert np.allclose(nk.entropy_fuzzy(signal, dimension=2, r=0.2, delay=1) - entro_py_fuzzyen(signal, 2, 0.2, 1, scale=False), 0) assert nk.fractal_dfa(signal, windows=np.array([4, 8, 12, 20])) != nolds.dfa(signal, nvals=[4, 8, 12, 20], fit_exp="poly") def wikipedia_sampen(signal, m=2, r=1): N = len(signal) B = 0.0 A = 0.0 xmi = np.array([signal[i : i + m] for i in range(N - m)]) xmj = np.array([signal[i : i + m] for i in range(N - m + 1)]) B = np.sum([np.sum(np.abs(xmii - xmj).max(axis=1) <= r) - 1 for xmii in xmi]) m += 1 xm = np.array([signal[i : i + m] for i in range(N - m + 1)]) A = np.sum([np.sum(np.abs(xmi - xm).max(axis=1) <= r) - 1 for xmi in xm]) return -np.log(A / B) def pyeeg_embed_seq(time_series, tau, embedding_dimension): if not type(time_series) == np.ndarray: typed_time_series = np.asarray(time_series) else: typed_time_series = time_series shape = ( typed_time_series.size - tau * (embedding_dimension - 1), embedding_dimension ) strides = (typed_time_series.itemsize, tau * typed_time_series.itemsize) return np.lib.stride_tricks.as_strided( typed_time_series, shape=shape, strides=strides ) def pyeeg_bin_power(X, Band, Fs): C = np.fft.fft(X) C = abs(C) Power = np.zeros(len(Band) - 1) for Freq_Index in range(0, len(Band) - 1): Freq = float(Band[Freq_Index]) Next_Freq = float(Band[Freq_Index + 1]) Power[Freq_Index] = sum( C[int(np.floor(Freq / Fs * len(X))): int(np.floor(Next_Freq / Fs * len(X)))] ) Power_Ratio = Power / sum(Power) return Power, Power_Ratio def pyeeg_ap_entropy(X, M, R): N = len(X) Em = pyeeg_embed_seq(X, 1, M) A = np.tile(Em, (len(Em), 1, 1)) B = np.transpose(A, [1, 0, 2]) D = np.abs(A - B) InRange = np.max(D, axis=2) <= R Cm = InRange.mean(axis=0) Dp = np.abs( np.tile(X[M:], (N - M, 1)) - np.tile(X[M:], (N - M, 1)).T ) Cmp = np.logical_and(Dp <= R, InRange[:-1, :-1]).mean(axis=0) Phi_m, Phi_mp = np.sum(np.log(Cm)), np.sum(np.log(Cmp)) Ap_En = (Phi_m - Phi_mp) / (N - M) return Ap_En def pyeeg_samp_entropy(X, M, R): N = len(X) Em = pyeeg_embed_seq(X, 1, M)[:-1] A = np.tile(Em, (len(Em), 1, 1)) B = np.transpose(A, [1, 0, 2]) D = np.abs(A - B) InRange = np.max(D, axis=2) <= R np.fill_diagonal(InRange, 0) Cm = InRange.sum(axis=0) # Probability that random M-sequences are in range Dp = np.abs( np.tile(X[M:], (N - M, 1)) - np.tile(X[M:], (N - M, 1)).T ) Cmp = np.logical_and(Dp <= R, InRange).sum(axis=0) # Avoid taking log(0) Samp_En = np.log(np.sum(Cm + 1e-100) / np.sum(Cmp + 1e-100)) return Samp_En # ============================================================================= # Entropy # ============================================================================= from sklearn.neighbors import KDTree def entropy_embed(x, order=3, delay=1): N = len(x) if order * delay > N: raise ValueError("Error: order * delay should be lower than x.size") if delay < 1: raise ValueError("Delay has to be at least 1.") if order < 2: raise ValueError("Order has to be at least 2.") Y = np.zeros((order, N - (order - 1) * delay)) for i in range(order): Y[i] = x[i * delay:i * delay + Y.shape[1]] return Y.T def entropy_app_samp_entropy(x, order, metric='chebyshev', approximate=True): _all_metrics = KDTree.valid_metrics if metric not in _all_metrics: raise ValueError('The given metric (%s) is not valid. The valid ' 'metric names are: %s' % (metric, _all_metrics)) phi = np.zeros(2) r = 0.2 * np.std(x, axis=-1, ddof=1) # compute phi(order, r) _emb_data1 = entropy_embed(x, order, 1) if approximate: emb_data1 = _emb_data1 else: emb_data1 = _emb_data1[:-1] count1 = KDTree(emb_data1, metric=metric).query_radius(emb_data1, r, count_only=True ).astype(np.float64) # compute phi(order + 1, r) emb_data2 = entropy_embed(x, order + 1, 1) count2 = KDTree(emb_data2, metric=metric).query_radius(emb_data2, r, count_only=True ).astype(np.float64) if approximate: phi[0] = np.mean(np.log(count1 / emb_data1.shape[0])) phi[1] = np.mean(np.log(count2 / emb_data2.shape[0])) else: phi[0] = np.mean((count1 - 1) / (emb_data1.shape[0] - 1)) phi[1] = np.mean((count2 - 1) / (emb_data2.shape[0] - 1)) return phi def entropy_app_entropy(x, order=2, metric='chebyshev'): phi = entropy_app_samp_entropy(x, order=order, metric=metric, approximate=True) return np.subtract(phi[0], phi[1]) def entropy_sample_entropy(x, order=2, metric='chebyshev'): x = np.asarray(x, dtype=np.float64) phi = entropy_app_samp_entropy(x, order=order, metric=metric, approximate=False) return -np.log(np.divide(phi[1], phi[0])) # ============================================================================= # entro-py # ============================================================================= def entro_py_sampen(x, dim, r, scale=True): return entro_py_entropy(x, dim, r, scale=scale) def entro_py_cross_sampen(x1, x2, dim, r, scale=True): return entro_py_entropy([x1, x2], dim, r, scale) def entro_py_fuzzyen(x, dim, r, n, scale=True): return entro_py_entropy(x, dim, r, n=n, scale=scale, remove_baseline=True) def entro_py_cross_fuzzyen(x1, x2, dim, r, n, scale=True): return entro_py_entropy([x1, x2], dim, r, n, scale=scale, remove_baseline=True) def entro_py_pattern_mat(x, m): x = np.asarray(x).ravel() if m == 1: return x else: N = len(x) patterns = np.zeros((m, N-m+1)) for i in range(m): patterns[i, :] = x[i:N-m+i+1] return patterns def entro_py_entropy(x, dim, r, n=1, scale=True, remove_baseline=False): fuzzy = True if remove_baseline else False cross = True if type(x) == list else False N = len(x[0]) if cross else len(x) if scale: if cross: x = [entro_py_scale(np.copy(x[0])), entro_py_scale(np.copy(x[1]))] else: x = entro_py_scale(np.copy(x)) phi = [0, 0] # phi(m), phi(m+1) for j in [0, 1]: m = dim + j npat = N-dim # https://github.com/ixjlyons/entro-py/pull/2/files if cross: # patterns = [entro_py_pattern_mat(x[0], m), entro_py_pattern_mat(x[1], m)] patterns = [entro_py_pattern_mat(x[0], m)[:, :npat], entro_py_pattern_mat(x[1], m)[:, :npat]] # https://github.com/ixjlyons/entro-py/pull/2/files else: # patterns = entro_py_pattern_mat(x, m) patterns = entro_py_pattern_mat(x, m)[:, :npat] if remove_baseline: if cross: patterns[0] = entro_py_remove_baseline(patterns[0], axis=0) patterns[1] = entro_py_remove_baseline(patterns[1], axis=0) else: patterns = entro_py_remove_baseline(patterns, axis=0) # count = np.zeros(N-m) # https://github.com/ixjlyons/entro-py/pull/2/files # for i in range(N-m): # https://github.com/ixjlyons/entro-py/pull/2/files count = np.zeros(npat) for i in range(npat): if cross: if m == 1: sub = patterns[1][i] else: sub = patterns[1][:, [i]] dist = np.max(np.abs(patterns[0] - sub), axis=0) else: if m == 1: sub = patterns[i] else: sub = patterns[:, [i]] dist = np.max(np.abs(patterns - sub), axis=0) if fuzzy: sim = np.exp(-np.power(dist, n) / r) else: sim = dist < r count[i] = np.sum(sim) - 1 # phi[j] = np.mean(count) / (N-m-1) phi[j] = np.mean(count) / (N-dim-1) # https://github.com/ixjlyons/entro-py/pull/2/files return np.log(phi[0] / phi[1]) def entro_py_scale(x, axis=None): x = entro_py_remove_baseline(x, axis=axis) x /= np.std(x, ddof=1, axis=axis, keepdims=True) return x def entro_py_remove_baseline(x, axis=None): x -= np.mean(x, axis=axis, keepdims=True) return x # ============================================================================= # MultiscaleEntropy https://github.com/reatank/MultiscaleEntropy/blob/master/MultiscaleEntropy/mse.py # ============================================================================= import math from collections.abc import Iterable def MultiscaleEntropy_init_return_type(return_type): if return_type == 'dict': return {} else: return [] def MultiscaleEntropy_check_type(x, num_type, name): if isinstance(x, num_type): tmp = [x] elif not isinstance(x, Iterable): raise ValueError(name + ' should be a ' + num_type.__name__ + ' or an iterator of ' + num_type.__name__) else: tmp = [] for i in x: tmp.append(i) if not isinstance(i, num_type): raise ValueError(name + ' should be a ' + num_type.__name__ + ' or an iterator of ' + num_type.__name__) return tmp # sum of seperate intervals of x def MultiscaleEntropy_coarse_grain(x, scale_factor): x = np.array(x) x_len = len(x) if x_len % scale_factor: padded_len = (1+int(x_len/scale_factor))*scale_factor else: padded_len = x_len tmp_x = np.zeros(padded_len) tmp_x[:x_len] = x tmp_x = np.reshape(tmp_x, (int(padded_len/scale_factor), scale_factor)) ans = np.reshape(np.sum(tmp_x, axis=1), (-1))/scale_factor return ans def MultiscaleEntropy_sample_entropy(x, m=[2], r=[0.15], sd=None, return_type='dict', safe_mode=False): # type checking if not safe_mode: m = MultiscaleEntropy_check_type(m, int, 'm') r = MultiscaleEntropy_check_type(r, float, 'r') if not (sd == None) and not (isinstance(sd, float) or isinstance(sd, int)): raise ValueError('sd should be a number') try: x = np.array(x) except: raise ValueError('x should be a sequence of numbers') # value checking if len(x) < max(m): raise ValueError('the max m is bigger than x\'s length') if sd == None: sd = np.sqrt(np.var(x)) ans = MultiscaleEntropy_init_return_type(return_type) for i, rr in enumerate(r): threshold = rr * sd if return_type == 'dict': ans[rr] = MultiscaleEntropy_init_return_type(return_type) else: ans.append(MultiscaleEntropy_init_return_type(return_type)) count = {} tmp_m = [] for mm in m: tmp_m.append(mm) tmp_m.append(mm+1) tmp_m = list(set(tmp_m)) for mm in tmp_m: count[mm] = 0 for j in range(1, len(x)-min(m)+1): cont = 0 for inc in range(0, len(x)-j): if abs(x[inc]-x[j+inc]) < threshold: cont += 1 elif cont > 0: for mm in tmp_m: tmp = cont - mm + 1 count[mm] += tmp if tmp > 0 else 0 cont = 0 if cont > 0: for mm in tmp_m: tmp = cont - mm + 1 count[mm] += tmp if tmp > 0 else 0 for mm in m: if count[mm+1] == 0 or count[mm] == 0: t = len(x)-mm+1 tmp = -math.log(1/(t*(t-1))) else: tmp = -math.log(count[mm+1]/count[mm]) if return_type == 'dict': ans[rr][mm] = tmp else: ans[i].append(tmp) return ans def MultiscaleEntropy_mse(x, scale_factor=[i for i in range(1,21)], m=[2], r=[0.15], return_type='dict', safe_mode=False): if not safe_mode: m = MultiscaleEntropy_check_type(m, int, 'm') r = MultiscaleEntropy_check_type(r, float, 'r') scale_factor = MultiscaleEntropy_check_type(scale_factor, int, 'scale_factor') try: x = np.array(x) except: print('x should be a sequence of numbers') if max(scale_factor) > len(x): raise ValueError('the max scale_factor is bigger than x\'s length') # calculation sd = np.sqrt(np.var(x)) ms_en = MultiscaleEntropy_init_return_type(return_type) for s_f in scale_factor: y = MultiscaleEntropy_coarse_grain(x, s_f) if return_type == 'dict': ms_en[s_f] = MultiscaleEntropy_sample_entropy(y, m, r, sd, 'dict', True) else: ms_en.append(MultiscaleEntropy_sample_entropy(y, m, r, sd, 'list', True)) if return_type == "list": ms_en = [i[0] for i in ms_en] ms_en = [i[0] for i in ms_en] return ms_en
true
true
f712f324f95489601d591ac5a91a4fc13b4cd06d
63,499
py
Python
tests/models/tapas/test_tokenization_tapas.py
shangz-ai/transformers
75259b44bf2e2b98b5a4d431fb400b7190342a01
[ "Apache-2.0" ]
5
2020-09-01T09:15:48.000Z
2020-09-15T03:25:05.000Z
tests/models/tapas/test_tokenization_tapas.py
shangz-ai/transformers
75259b44bf2e2b98b5a4d431fb400b7190342a01
[ "Apache-2.0" ]
null
null
null
tests/models/tapas/test_tokenization_tapas.py
shangz-ai/transformers
75259b44bf2e2b98b5a4d431fb400b7190342a01
[ "Apache-2.0" ]
3
2020-08-20T04:46:25.000Z
2020-10-14T08:39:13.000Z
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os import shutil import tempfile import unittest from typing import List import numpy as np import pandas as pd from transformers import AddedToken from transformers.models.tapas.tokenization_tapas import ( VOCAB_FILES_NAMES, BasicTokenizer, TapasTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import ( is_pt_tf_cross_test, require_pandas, require_scatter, require_tensorflow_probability, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english, merge_model_tokenizer_mappings @require_tokenizers @require_pandas class TapasTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = TapasTokenizer test_rust_tokenizer = False space_between_special_tokens = True from_pretrained_filter = filter_non_english test_seq2seq = False def get_table( self, tokenizer: TapasTokenizer, length=5, ): toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))] if length == 0: data = {} else: data = {toks[0]: [toks[tok] for tok in range(1, length)]} table = pd.DataFrame.from_dict(data) return table def get_table_and_query( self, tokenizer: TapasTokenizer, length=5, ): toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))] table = self.get_table(tokenizer, length=length - 3) query = " ".join(toks[:3]) return table, query def get_clean_sequence( self, tokenizer: TapasTokenizer, with_prefix_space=False, max_length=20, min_length=5, empty_table: bool = False, add_special_tokens: bool = True, return_table_and_query: bool = False, ): toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))] if empty_table: table = pd.DataFrame.from_dict({}) query = " ".join(toks[:min_length]) else: data = {toks[0]: [toks[tok] for tok in range(1, min_length - 3)]} table = pd.DataFrame.from_dict(data) query = " ".join(toks[:3]) output_ids = tokenizer.encode(table, query, add_special_tokens=add_special_tokens) output_txt = tokenizer.decode(output_ids) assert len(output_ids) >= min_length, "Update the code to generate the sequences so that they are larger" assert len(output_ids) <= max_length, "Update the code to generate the sequences so that they are smaller" if return_table_and_query: return output_txt, output_ids, table, query return output_txt, output_ids def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text @require_tensorflow_probability def test_tf_encode_plus_sent_to_model(self): super().test_tf_encode_plus_sent_to_model() def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) # With lower casing tokenizer = self.get_tokenizer(do_lower_case=True) rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True) sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_chinese(self): tokenizer = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def test_basic_tokenizer_lower(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_no_lower(self): tokenizer = BasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def test_clean_text(self): tokenizer = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual( [tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], ["[EMPTY]"], ["[UNK]"]] ) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("google/tapas-base-finetuned-wtq") empty_table = self.get_table(tokenizer, length=0) table = self.get_table(tokenizer, length=10) text = tokenizer.encode(table, add_special_tokens=False) text_2 = tokenizer.encode(empty_table, "multi-sequence build", add_special_tokens=False) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_pair == [101] + text + [102] + text_2 def test_offsets_with_special_characters(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." tokens = tokenizer_r.encode_plus( sentence, return_attention_mask=False, return_token_type_ids=False, return_offsets_mapping=True, add_special_tokens=True, ) do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False expected_results = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]) ) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) def test_add_special_tokens(self): tokenizers: List[TapasTokenizer] = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_table = self.get_table(tokenizer, length=0) special_token = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode(input_table, special_token, add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_add_tokens_tokenizer(self): tokenizers: List[TapasTokenizer] = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) vocab_size = tokenizer.vocab_size all_size = len(tokenizer) self.assertNotEqual(vocab_size, 0) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"] added_toks = tokenizer.add_tokens(new_toks) vocab_size_2 = tokenizer.vocab_size all_size_2 = len(tokenizer) self.assertNotEqual(vocab_size_2, 0) self.assertEqual(vocab_size, vocab_size_2) self.assertEqual(added_toks, len(new_toks)) self.assertEqual(all_size_2, all_size + len(new_toks)) tokens = tokenizer.encode(table, "aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False) self.assertGreaterEqual(len(tokens), 4) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} added_toks_2 = tokenizer.add_special_tokens(new_toks_2) vocab_size_3 = tokenizer.vocab_size all_size_3 = len(tokenizer) self.assertNotEqual(vocab_size_3, 0) self.assertEqual(vocab_size, vocab_size_3) self.assertEqual(added_toks_2, len(new_toks_2)) self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) tokens = tokenizer.encode( table, ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False, ) self.assertGreaterEqual(len(tokens), 6) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[0], tokens[1]) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokens[-3]) self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[-2], tokenizer.pad_token_id) @require_tokenizers def test_encode_decode_with_spaces(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)] tokenizer.add_tokens(new_toks) input = "[ABC][DEF][ABC][DEF]" if self.space_between_special_tokens: output = "[ABC] [DEF] [ABC] [DEF]" else: output = input encoded = tokenizer.encode(table, input, add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) self.assertIn(decoded, [output, output.lower()]) def test_encode_plus_with_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) sequence = "Sequence" # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_size = 10 padding_idx = tokenizer.pad_token_id token_type_padding_idx = tokenizer.pad_token_type_id encoded_sequence = tokenizer.encode_plus(table, sequence, return_special_tokens_mask=True) input_ids = encoded_sequence["input_ids"] special_tokens_mask = encoded_sequence["special_tokens_mask"] sequence_length = len(input_ids) # Test 'longest' and 'no_padding' don't do anything tokenizer.padding_side = "right" not_padded_sequence = tokenizer.encode_plus( table, sequence, padding=False, return_special_tokens_mask=True, ) not_padded_input_ids = not_padded_sequence["input_ids"] not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] not_padded_sequence_length = len(not_padded_input_ids) assert sequence_length == not_padded_sequence_length assert input_ids == not_padded_input_ids assert special_tokens_mask == not_padded_special_tokens_mask not_padded_sequence = tokenizer.encode_plus( table, sequence, padding=False, return_special_tokens_mask=True, ) not_padded_input_ids = not_padded_sequence["input_ids"] not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] not_padded_sequence_length = len(not_padded_input_ids) assert sequence_length == not_padded_sequence_length assert input_ids == not_padded_input_ids assert special_tokens_mask == not_padded_special_tokens_mask # Test right padding tokenizer.padding_side = "right" right_padded_sequence = tokenizer.encode_plus( table, sequence, max_length=sequence_length + padding_size, padding="max_length", return_special_tokens_mask=True, ) right_padded_input_ids = right_padded_sequence["input_ids"] right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"] right_padded_sequence_length = len(right_padded_input_ids) assert sequence_length + padding_size == right_padded_sequence_length assert input_ids + [padding_idx] * padding_size == right_padded_input_ids assert special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask # Test left padding tokenizer.padding_side = "left" left_padded_sequence = tokenizer.encode_plus( table, sequence, max_length=sequence_length + padding_size, padding="max_length", return_special_tokens_mask=True, ) left_padded_input_ids = left_padded_sequence["input_ids"] left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"] left_padded_sequence_length = len(left_padded_input_ids) assert sequence_length + padding_size == left_padded_sequence_length assert [padding_idx] * padding_size + input_ids == left_padded_input_ids assert [1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask if "token_type_ids" in tokenizer.model_input_names: token_type_ids = encoded_sequence["token_type_ids"] left_padded_token_type_ids = left_padded_sequence["token_type_ids"] right_padded_token_type_ids = right_padded_sequence["token_type_ids"] assert ( token_type_ids + [[token_type_padding_idx] * 7] * padding_size == right_padded_token_type_ids ) assert [[token_type_padding_idx] * 7] * padding_size + token_type_ids == left_padded_token_type_ids if "attention_mask" in tokenizer.model_input_names: attention_mask = encoded_sequence["attention_mask"] right_padded_attention_mask = right_padded_sequence["attention_mask"] left_padded_attention_mask = left_padded_sequence["attention_mask"] assert attention_mask + [0] * padding_size == right_padded_attention_mask assert [0] * padding_size + attention_mask == left_padded_attention_mask def test_internal_consistency(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) input_text, output_text = self.get_input_output_texts(tokenizer) tokens = tokenizer.tokenize(input_text) ids = tokenizer.convert_tokens_to_ids(tokens) ids_2 = tokenizer.encode(table, input_text, add_special_tokens=False) self.assertListEqual(ids, ids_2) tokens_2 = tokenizer.convert_ids_to_tokens(ids) self.assertNotEqual(len(tokens_2), 0) text_2 = tokenizer.decode(ids) self.assertIsInstance(text_2, str) self.assertEqual(text_2, output_text) def test_mask_output(self): tokenizers = self.get_tokenizers(fast=False, do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table, query = self.get_table_and_query(tokenizer) if ( tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer" and "token_type_ids" in tokenizer.model_input_names ): information = tokenizer.encode_plus(table, query, add_special_tokens=True) sequences, mask = information["input_ids"], information["token_type_ids"] self.assertEqual(len(sequences), len(mask)) @unittest.skip("TAPAS tokenizer only handles two sequences.") def test_maximum_encoding_length_pair_input(self): pass @unittest.skip("TAPAS tokenizer only handles two sequences.") def test_maximum_encoding_length_single_input(self): pass def test_number_of_added_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table, query = self.get_table_and_query(tokenizer) sequences = tokenizer.encode(table, query, add_special_tokens=False) attached_sequences = tokenizer.encode(table, query, add_special_tokens=True) # Method is implemented (e.g. not GPT-2) if len(attached_sequences) != 2: self.assertEqual( tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences) ) def test_padding_to_max_length(self): """We keep this test for backward compatibility but it should be removed when `pad_to_max_length` will be deprecated""" tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer) sequence = "Sequence" padding_size = 10 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_idx = tokenizer.pad_token_id # Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(table, sequence) sequence_length = len(encoded_sequence) # FIXME: the next line should be padding(max_length) to avoid warning padded_sequence = tokenizer.encode( table, sequence, max_length=sequence_length + padding_size, padding=True ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert encoded_sequence + [padding_idx] * padding_size == padded_sequence # Check that nothing is done when a maximum length is not specified encoded_sequence = tokenizer.encode(table, sequence) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(table, sequence, pad_to_max_length=True) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right def test_call(self): # Tests that all call wrap to encode_plus and batch_encode_plus tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] # Test not batched table = self.get_table(tokenizer, length=0) encoded_sequences_1 = tokenizer.encode_plus(table, sequences[0]) encoded_sequences_2 = tokenizer(table, sequences[0]) self.assertEqual(encoded_sequences_1, encoded_sequences_2) # Test not batched pairs table = self.get_table(tokenizer, length=10) encoded_sequences_1 = tokenizer.encode_plus(table, sequences[1]) encoded_sequences_2 = tokenizer(table, sequences[1]) self.assertEqual(encoded_sequences_1, encoded_sequences_2) # Test batched table = self.get_table(tokenizer, length=0) encoded_sequences_1 = tokenizer.batch_encode_plus(table, sequences) encoded_sequences_2 = tokenizer(table, sequences) self.assertEqual(encoded_sequences_1, encoded_sequences_2) def test_batch_encode_plus_batch_sequence_length(self): # Tests that all encoded values have the correct size tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] encoded_sequences = [tokenizer.encode_plus(table, sequence) for sequence in sequences] encoded_sequences_batch = tokenizer.batch_encode_plus(table, sequences, padding=False) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) maximum_length = len( max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len) ) # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences_padded = [ tokenizer.encode_plus(table, sequence, max_length=maximum_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch_padded = tokenizer.batch_encode_plus(table, sequences, padding=True) self.assertListEqual( encoded_sequences_padded, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded), ) # check 'longest' is unsensitive to a max length encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(table, sequences, padding=True) encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( table, sequences, max_length=maximum_length + 10, padding="longest" ) for key in encoded_sequences_batch_padded_1.keys(): self.assertListEqual( encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key], ) # check 'no_padding' is unsensitive to a max length encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(table, sequences, padding=False) encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( table, sequences, max_length=maximum_length + 10, padding=False ) for key in encoded_sequences_batch_padded_1.keys(): self.assertListEqual( encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key], ) @unittest.skip("batch_encode_plus does not handle overflowing tokens.") def test_batch_encode_plus_overflowing_tokens(self): pass def test_batch_encode_plus_padding(self): # Test that padded sequences are equivalent between batch_encode_plus and encode_plus # Right padding tests tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] max_length = 100 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences = [ tokenizer.encode_plus(table, sequence, max_length=max_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch = tokenizer.batch_encode_plus( table, sequences, max_length=max_length, padding="max_length" ) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) # Left padding tests tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokenizer.padding_side = "left" sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] max_length = 100 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences = [ tokenizer.encode_plus(table, sequence, max_length=max_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch = tokenizer.batch_encode_plus( table, sequences, max_length=max_length, padding="max_length" ) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) def test_padding_to_multiple_of(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) if tokenizer.pad_token is None: self.skipTest("No padding token.") else: empty_tokens = tokenizer(table, padding=True, pad_to_multiple_of=8) normal_tokens = tokenizer(table, "This is a sample input", padding=True, pad_to_multiple_of=8) for key, value in empty_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") normal_tokens = tokenizer(table, "This", pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") # Should also work with truncation normal_tokens = tokenizer(table, "This", padding=True, truncation=True, pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") @unittest.skip("TAPAS cannot handle `prepare_for_model` without passing by `encode_plus` or `batch_encode_plus`") def test_prepare_for_model(self): pass def test_tokenizer_slow_store_full_signature(self): signature = inspect.signature(self.tokenizer_class.__init__) tokenizer = self.get_tokenizer() for parameter_name, parameter in signature.parameters.items(): if parameter.default != inspect.Parameter.empty: self.assertIn(parameter_name, tokenizer.init_kwargs) def test_special_tokens_mask_input_pairs(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence_0 = "Encode this." empty_table = self.get_table(tokenizer, length=0) table = self.get_table(tokenizer, length=10) encoded_sequence = tokenizer.encode(empty_table, sequence_0, add_special_tokens=False) encoded_sequence += tokenizer.encode(table, "", add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( table, sequence_0, add_special_tokens=True, return_special_tokens_mask=True, # add_prefix_space=False, ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) ] filtered_sequence = [x for x in filtered_sequence if x is not None] self.assertEqual(encoded_sequence, filtered_sequence) def test_special_tokens_mask(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) sequence_0 = "Encode this." # Testing single inputs encoded_sequence = tokenizer.encode(table, sequence_0, add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( table, sequence_0, add_special_tokens=True, return_special_tokens_mask=True ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]] self.assertEqual(encoded_sequence, filtered_sequence) def test_save_and_load_tokenizer(self): # safety check on max_len default value so we are sure the test works tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) # Now let's start the test tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc table = self.get_table(tokenizer, length=0) tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" before_tokens = tokenizer.encode(table, sample_text, add_special_tokens=False) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(table, sample_text, add_special_tokens=False) after_vocab = after_tokenizer.get_vocab() self.assertListEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) shutil.rmtree(tmpdirname) @unittest.skip("Not implemented") def test_right_and_left_truncation(self): pass def test_right_and_left_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) sequence = "Sequence" padding_size = 10 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_idx = tokenizer.pad_token_id # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(table, sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( table, sequence, max_length=sequence_length + padding_size, padding="max_length" ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert encoded_sequence + [padding_idx] * padding_size == padded_sequence # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "left" encoded_sequence = tokenizer.encode(table, sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( table, sequence, max_length=sequence_length + padding_size, padding="max_length" ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert [padding_idx] * padding_size + encoded_sequence == padded_sequence # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding' encoded_sequence = tokenizer.encode(table, sequence) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(table, sequence, padding=True) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(table, sequence, padding="longest") padded_sequence_left_length = len(padded_sequence_left) assert sequence_length == padded_sequence_left_length assert encoded_sequence == padded_sequence_left tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(table, sequence) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(table, sequence, padding=False) padded_sequence_left_length = len(padded_sequence_left) assert sequence_length == padded_sequence_left_length assert encoded_sequence == padded_sequence_left def test_token_type_ids(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): empty_table = self.get_table(tokenizer, length=0) seq_0 = "Test this method." # We want to have sequence 0 and sequence 1 are tagged # respectively with 0 and 1 token_ids # (regardless of whether the model use token type ids) # We use this assumption in the QA pipeline among other place output = tokenizer(empty_table, seq_0, return_token_type_ids=True) # Assert that the token type IDs have the same length as the input IDs self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"])) # Assert that each token type ID has 7 values self.assertTrue(all(len(token_type_ids) == 7 for token_type_ids in output["token_type_ids"])) # Do the same test as modeling common. self.assertIn(0, output["token_type_ids"][0]) @require_torch @slow @require_scatter def test_torch_encode_plus_sent_to_model(self): import torch from transformers import MODEL_MAPPING, TOKENIZER_MAPPING MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING) tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: return config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] config = config_class() if config.is_encoder_decoder or config.pad_token_id is None: return model = model_class(config) # Make sure the model contains at least the full vocabulary size in its embedding matrix is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight") assert ( (model.get_input_embeddings().weight.shape[0] >= len(tokenizer)) if is_using_common_embeddings else True ) # Build sequence first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) table = self.get_table(tokenizer, length=0) encoded_sequence = tokenizer.encode_plus(table, sequence, return_tensors="pt") batch_encoded_sequence = tokenizer.batch_encode_plus(table, [sequence, sequence], return_tensors="pt") # This should not fail with torch.no_grad(): # saves some time model(**encoded_sequence) model(**batch_encoded_sequence) @unittest.skip("TAPAS doesn't handle pre-tokenized inputs.") def test_pretokenized_inputs(self): pass @slow def test_tapas_truncation_integration_test(self): data = { "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Age": ["56", "45", "59"], "Number of movies": ["87", "53", "69"], "Date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } queries = [ "When was Brad Pitt born?", "Which actor appeared in the least number of movies?", "What is the average number of movies?", ] table = pd.DataFrame.from_dict(data) tokenizer = TapasTokenizer.from_pretrained("lysandre/tapas-temporary-repo", model_max_length=512) for i in range(12): # The table cannot even encode the headers, so raise an error with self.assertRaises(ValueError): tokenizer.encode(table=table, query=queries[0], max_length=i, truncation="drop_rows_to_fit") for i in range(12, 512): new_encoded_inputs = tokenizer.encode( table=table, query=queries[0], max_length=i, truncation="drop_rows_to_fit" ) # Ensure that the input IDs are less than the max length defined. self.assertLessEqual(len(new_encoded_inputs), i) tokenizer.model_max_length = 20 new_encoded_inputs = tokenizer.encode(table=table, query=queries[0], truncation=True) dropped_encoded_inputs = tokenizer.encode(table=table, query=queries[0], truncation="drop_rows_to_fit") # Ensure that the input IDs are still truncated when no max_length is specified self.assertListEqual(new_encoded_inputs, dropped_encoded_inputs) self.assertLessEqual(len(new_encoded_inputs), 20) @slow def test_min_max_question_length(self): data = { "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Age": ["56", "45", "59"], "Number of movies": ["87", "53", "69"], "Date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } queries = "When was Brad Pitt born?" table = pd.DataFrame.from_dict(data) # test max_question_length tokenizer = TapasTokenizer.from_pretrained("lysandre/tapas-temporary-repo", max_question_length=2) encoding = tokenizer(table=table, queries=queries) # query should not be tokenized as it's longer than the specified max_question_length expected_results = [101, 102] self.assertListEqual(encoding.input_ids[:2], expected_results) # test min_question_length tokenizer = TapasTokenizer.from_pretrained("lysandre/tapas-temporary-repo", min_question_length=30) encoding = tokenizer(table=table, queries=queries) # query should not be tokenized as it's shorter than the specified min_question_length expected_results = [101, 102] self.assertListEqual(encoding.input_ids[:2], expected_results) @is_pt_tf_cross_test def test_batch_encode_plus_tensors(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] table = self.get_table(tokenizer, length=0) # A Tensor cannot be build by sequences which are not the same size self.assertRaises(ValueError, tokenizer.batch_encode_plus, table, sequences, return_tensors="pt") self.assertRaises(ValueError, tokenizer.batch_encode_plus, table, sequences, return_tensors="tf") if tokenizer.pad_token_id is None: self.assertRaises( ValueError, tokenizer.batch_encode_plus, table, sequences, padding=True, return_tensors="pt", ) self.assertRaises( ValueError, tokenizer.batch_encode_plus, table, sequences, padding="longest", return_tensors="tf", ) else: pytorch_tensor = tokenizer.batch_encode_plus(table, sequences, padding=True, return_tensors="pt") tensorflow_tensor = tokenizer.batch_encode_plus( table, sequences, padding="longest", return_tensors="tf" ) encoded_sequences = tokenizer.batch_encode_plus(table, sequences, padding=True) for key in encoded_sequences.keys(): pytorch_value = pytorch_tensor[key].tolist() tensorflow_value = tensorflow_tensor[key].numpy().tolist() encoded_value = encoded_sequences[key] self.assertEqual(pytorch_value, tensorflow_value, encoded_value) @slow def test_tapas_integration_test(self): data = { "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Age": ["56", "45", "59"], "Number of movies": ["87", "53", "69"], "Date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } queries = [ "When was Brad Pitt born?", "Which actor appeared in the least number of movies?", "What is the average number of movies?", ] table = pd.DataFrame.from_dict(data) tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq", model_max_length=512) # fmt: off expected_results = {'input_ids':[101,2043,2001,8226,15091,2141,1029,102,5889,2287,2193,1997,5691,3058,1997,4182,8226,15091,5179,6584,2324,2285,3699,14720,4487,6178,9488,3429,5187,2340,2281,3326,2577,18856,7828,3240,5354,6353,1020,2089,3777],'attention_mask':[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],'token_type_ids':[[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[1,1,0,0,0,0,0],[1,2,0,0,0,0,0],[1,3,0,0,0,0,0],[1,3,0,0,0,0,0],[1,3,0,0,0,0,0],[1,4,0,0,0,0,0],[1,4,0,0,0,0,0],[1,4,0,0,0,0,0],[1,1,1,0,0,0,0],[1,1,1,0,0,0,0],[1,2,1,0,2,2,0],[1,3,1,0,3,1,0],[1,4,1,0,2,2,0],[1,4,1,0,2,2,0],[1,4,1,0,2,2,0],[1,1,2,0,0,0,0],[1,1,2,0,0,0,0],[1,1,2,0,0,0,0],[1,1,2,0,0,0,0],[1,2,2,0,1,3,0],[1,3,2,0,1,3,0],[1,4,2,0,3,1,0],[1,4,2,0,3,1,0],[1,4,2,0,3,1,0],[1,1,3,0,0,0,0],[1,1,3,0,0,0,0],[1,1,3,0,0,0,0],[1,1,3,0,0,0,0],[1,2,3,0,3,1,0],[1,3,3,0,2,2,0],[1,4,3,0,1,3,0],[1,4,3,0,1,3,0],[1,4,3,0,1,3,0]]} # noqa: E231 # fmt: on new_encoded_inputs = tokenizer.encode_plus(table=table, query=queries[0]) self.assertDictEqual(dict(new_encoded_inputs), expected_results) @slow def test_full_tokenizer(self): data = [ ["Pos", "No", "Driver", "Team", "Laps", "Time/Retired", "Grid", "Points"], ["1", "32", "Patrick Carpentier", "Team Player's", "87", "1:48:11.023", "1", "22"], ["2", "1", "Bruno Junqueira", "Newman/Haas Racing", "87", "+0.8 secs", "2", "17"], ["3", "3", "Paul Tracy", "Team Player's", "87", "+28.6 secs", "3", "14"], ["4", "9", "Michel Jourdain, Jr.", "Team Rahal", "87", "+40.8 secs", "13", "12"], ["5", "34", "Mario Haberfeld", "Mi-Jack Conquest Racing", "87", "+42.1 secs", "6", "10"], ["6", "20", "Oriol Servia", "Patrick Racing", "87", "+1:00.2", "10", "8"], ["7", "51", "Adrian Fernandez", "Fernandez Racing", "87", "+1:01.4", "5", "6"], ["8", "12", "Jimmy Vasser", "American Spirit Team Johansson", "87", "+1:01.8", "8", "5"], ["9", "7", "Tiago Monteiro", "Fittipaldi-Dingman Racing", "86", "+ 1 Lap", "15", "4"], ["10", "55", "Mario Dominguez", "Herdez Competition", "86", "+ 1 Lap", "11", "3"], ["11", "27", "Bryan Herta", "PK Racing", "86", "+ 1 Lap", "12", "2"], ["12", "31", "Ryan Hunter-Reay", "American Spirit Team Johansson", "86", "+ 1 Lap", "17", "1"], ["13", "19", "Joel Camathias", "Dale Coyne Racing", "85", "+ 2 Laps", "18", "0"], ["14", "33", "Alex Tagliani", "Rocketsports Racing", "85", "+ 2 Laps", "14", "0"], ["15", "4", "Roberto Moreno", "Herdez Competition", "85", "+ 2 Laps", "9", "0"], ["16", "11", "Geoff Boss", "Dale Coyne Racing", "83", "Mechanical", "19", "0"], ["17", "2", "Sebastien Bourdais", "Newman/Haas Racing", "77", "Mechanical", "4", "0"], ["18", "15", "Darren Manning", "Walker Racing", "12", "Mechanical", "7", "0"], ["19", "5", "Rodolfo Lavin", "Walker Racing", "10", "Mechanical", "16", "0"], ] query = "what were the drivers names?" table = pd.DataFrame.from_records(data[1:], columns=data[0]) tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq", model_max_length=512) model_inputs = tokenizer(table, query, padding="max_length") input_ids = model_inputs["input_ids"] token_type_ids = np.array(model_inputs["token_type_ids"]) segment_ids = token_type_ids[:, 0] column_ids = token_type_ids[:, 1] row_ids = token_type_ids[:, 2] # fmt: off expected_results = {'input_ids':[101,2054,2020,1996,6853,3415,1029,102,13433,2015,2053,4062,2136,10876,2051,1013,3394,8370,2685,1015,3590,4754,29267,4765,3771,2136,2447,1005,1055,6584,1015,1024,4466,1024,2340,1012,6185,2509,1015,2570,1016,1015,10391,12022,4226,7895,10625,1013,22996,3868,6584,1009,1014,1012,1022,10819,2015,1016,2459,1017,1017,2703,10555,2136,2447,1005,1055,6584,1009,2654,1012,1020,10819,2015,1017,2403,1018,1023,8709,8183,3126,21351,2078,1010,3781,1012,2136,10958,8865,6584,1009,2871,1012,1022,10819,2015,2410,2260,1019,4090,7986,5292,5677,8151,2771,1011,2990,9187,3868,6584,1009,4413,1012,1015,10819,2015,1020,2184,1020,2322,2030,20282,14262,9035,4754,3868,6584,1009,1015,1024,4002,1012,1016,2184,1022,1021,4868,7918,12023,12023,3868,6584,1009,1015,1024,5890,1012,1018,1019,1020,1022,2260,5261,12436,18116,2137,4382,2136,26447,6584,1009,1015,1024,5890,1012,1022,1022,1019,1023,1021,27339,3995,10125,9711,4906,25101,24657,1011,22033,2386,3868,6564,1009,1015,5001,2321,1018,2184,4583,7986,14383,2075,29488,14906,9351,2971,6564,1009,1015,5001,2340,1017,2340,2676,8527,2014,2696,1052,2243,3868,6564,1009,1015,5001,2260,1016,2260,2861,4575,4477,1011,2128,4710,2137,4382,2136,26447,6564,1009,1015,5001,2459,1015,2410,2539,8963,11503,25457,3022,8512,2522,9654,3868,5594,1009,1016,10876,2324,1014,2403,3943,4074,6415,15204,2072,12496,25378,3868,5594,1009,1016,10876,2403,1014,2321,1018,10704,17921,14906,9351,2971,5594,1009,1016,10876,1023,1014,2385,2340,14915,5795,8512,2522,9654,3868,6640,6228,2539,1014,2459,1016,28328,8945,3126,21351,2015,10625,1013,22996,3868,6255,6228,1018,1014,2324,2321,12270,11956,5232,3868,2260,6228,1021,1014,2539,1019,8473,28027,2080,2474,6371,5232,3868,2184,6228,2385,1014,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],'column_ids':[0,0,0,0,0,0,0,0,1,1,2,3,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,5,6,6,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,3,3,3,3,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,3,4,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,4,4,4,4,5,6,7,8,1,2,3,3,3,3,3,4,4,4,4,5,6,7,8,1,2,3,3,4,4,5,6,7,8,1,2,3,3,3,3,3,4,4,5,6,7,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],'row_ids':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,18,18,18,18,18,18,18,18,18,18,19,19,19,19,19,19,19,19,19,19,19,19,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],'segment_ids':[0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]} # noqa: E231 # fmt: on self.assertListEqual(input_ids, expected_results["input_ids"]) self.assertListEqual(segment_ids.tolist(), expected_results["segment_ids"]) self.assertListEqual(column_ids.tolist(), expected_results["column_ids"]) self.assertListEqual(row_ids.tolist(), expected_results["row_ids"]) @unittest.skip("Skip this test while all models are still to be uploaded.") def test_pretrained_model_lists(self): pass @unittest.skip("Doesn't support another framework than PyTorch") def test_np_encode_plus_sent_to_model(self): pass
51.044212
5,363
0.605632
import inspect import os import shutil import tempfile import unittest from typing import List import numpy as np import pandas as pd from transformers import AddedToken from transformers.models.tapas.tokenization_tapas import ( VOCAB_FILES_NAMES, BasicTokenizer, TapasTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import ( is_pt_tf_cross_test, require_pandas, require_scatter, require_tensorflow_probability, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english, merge_model_tokenizer_mappings @require_tokenizers @require_pandas class TapasTokenizationTest(TokenizerTesterMixin, unittest.TestCase): tokenizer_class = TapasTokenizer test_rust_tokenizer = False space_between_special_tokens = True from_pretrained_filter = filter_non_english test_seq2seq = False def get_table( self, tokenizer: TapasTokenizer, length=5, ): toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))] if length == 0: data = {} else: data = {toks[0]: [toks[tok] for tok in range(1, length)]} table = pd.DataFrame.from_dict(data) return table def get_table_and_query( self, tokenizer: TapasTokenizer, length=5, ): toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))] table = self.get_table(tokenizer, length=length - 3) query = " ".join(toks[:3]) return table, query def get_clean_sequence( self, tokenizer: TapasTokenizer, with_prefix_space=False, max_length=20, min_length=5, empty_table: bool = False, add_special_tokens: bool = True, return_table_and_query: bool = False, ): toks = [tokenizer.decode([i], clean_up_tokenization_spaces=False) for i in range(len(tokenizer))] if empty_table: table = pd.DataFrame.from_dict({}) query = " ".join(toks[:min_length]) else: data = {toks[0]: [toks[tok] for tok in range(1, min_length - 3)]} table = pd.DataFrame.from_dict(data) query = " ".join(toks[:3]) output_ids = tokenizer.encode(table, query, add_special_tokens=add_special_tokens) output_txt = tokenizer.decode(output_ids) assert len(output_ids) >= min_length, "Update the code to generate the sequences so that they are larger" assert len(output_ids) <= max_length, "Update the code to generate the sequences so that they are smaller" if return_table_and_query: return output_txt, output_ids, table, query return output_txt, output_ids def setUp(self): super().setUp() vocab_tokens = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def get_input_output_texts(self, tokenizer): input_text = "UNwant\u00E9d,running" output_text = "unwanted, running" return input_text, output_text @require_tensorflow_probability def test_tf_encode_plus_sent_to_model(self): super().test_tf_encode_plus_sent_to_model() def test_rust_and_python_full_tokenizers(self): if not self.test_rust_tokenizer: return tokenizer = self.get_tokenizer() rust_tokenizer = self.get_rust_tokenizer() sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) tokenizer = self.get_tokenizer(do_lower_case=True) rust_tokenizer = self.get_rust_tokenizer(do_lower_case=True) sequence = "UNwant\u00E9d,running" tokens = tokenizer.tokenize(sequence) rust_tokens = rust_tokenizer.tokenize(sequence) self.assertListEqual(tokens, rust_tokens) ids = tokenizer.encode(sequence, add_special_tokens=False) rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False) self.assertListEqual(ids, rust_ids) rust_tokenizer = self.get_rust_tokenizer() ids = tokenizer.encode(sequence) rust_ids = rust_tokenizer.encode(sequence) self.assertListEqual(ids, rust_ids) def test_chinese(self): tokenizer = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz"), ["ah", "\u535A", "\u63A8", "zz"]) def test_basic_tokenizer_lower(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["h\u00E9llo"]) def test_basic_tokenizer_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=True, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_lower_strip_accents_default(self): tokenizer = BasicTokenizer(do_lower_case=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo"), ["hello"]) def test_basic_tokenizer_no_lower(self): tokenizer = BasicTokenizer(do_lower_case=False) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? "), ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_false(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=False) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_no_lower_strip_accents_true(self): tokenizer = BasicTokenizer(do_lower_case=False, strip_accents=True) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? "), ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def test_basic_tokenizer_respects_never_split_tokens(self): tokenizer = BasicTokenizer(do_lower_case=False, never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]"), ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def test_wordpiece_tokenizer(self): vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] vocab = {} for i, token in enumerate(vocab_tokens): vocab[token] = i tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize(""), []) self.assertListEqual(tokenizer.tokenize("unwanted running"), ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"]) def test_is_whitespace(self): self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def test_is_control(self): self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def test_is_punctuation(self): self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def test_clean_text(self): tokenizer = self.get_tokenizer() self.assertListEqual( [tokenizer.tokenize(t) for t in ["Test", "\xad", "test"]], [["[UNK]"], ["[EMPTY]"], ["[UNK]"]] ) @slow def test_sequence_builders(self): tokenizer = self.tokenizer_class.from_pretrained("google/tapas-base-finetuned-wtq") empty_table = self.get_table(tokenizer, length=0) table = self.get_table(tokenizer, length=10) text = tokenizer.encode(table, add_special_tokens=False) text_2 = tokenizer.encode(empty_table, "multi-sequence build", add_special_tokens=False) encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2) assert encoded_pair == [101] + text + [102] + text_2 def test_offsets_with_special_characters(self): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"): tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs) sentence = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." tokens = tokenizer_r.encode_plus( sentence, return_attention_mask=False, return_token_type_ids=False, return_offsets_mapping=True, add_special_tokens=True, ) do_lower_case = tokenizer_r.do_lower_case if hasattr(tokenizer_r, "do_lower_case") else False expected_results = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results], tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]) ) self.assertEqual([e[0] for e in expected_results], tokens["offset_mapping"]) def test_add_special_tokens(self): tokenizers: List[TapasTokenizer] = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): input_table = self.get_table(tokenizer, length=0) special_token = "[SPECIAL_TOKEN]" tokenizer.add_special_tokens({"cls_token": special_token}) encoded_special_token = tokenizer.encode(input_table, special_token, add_special_tokens=False) self.assertEqual(len(encoded_special_token), 1) decoded = tokenizer.decode(encoded_special_token, skip_special_tokens=True) self.assertTrue(special_token not in decoded) def test_add_tokens_tokenizer(self): tokenizers: List[TapasTokenizer] = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) vocab_size = tokenizer.vocab_size all_size = len(tokenizer) self.assertNotEqual(vocab_size, 0) # self.assertEqual(vocab_size, all_size) new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"] added_toks = tokenizer.add_tokens(new_toks) vocab_size_2 = tokenizer.vocab_size all_size_2 = len(tokenizer) self.assertNotEqual(vocab_size_2, 0) self.assertEqual(vocab_size, vocab_size_2) self.assertEqual(added_toks, len(new_toks)) self.assertEqual(all_size_2, all_size + len(new_toks)) tokens = tokenizer.encode(table, "aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False) self.assertGreaterEqual(len(tokens), 4) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} added_toks_2 = tokenizer.add_special_tokens(new_toks_2) vocab_size_3 = tokenizer.vocab_size all_size_3 = len(tokenizer) self.assertNotEqual(vocab_size_3, 0) self.assertEqual(vocab_size, vocab_size_3) self.assertEqual(added_toks_2, len(new_toks_2)) self.assertEqual(all_size_3, all_size_2 + len(new_toks_2)) tokens = tokenizer.encode( table, ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False, ) self.assertGreaterEqual(len(tokens), 6) self.assertGreater(tokens[0], tokenizer.vocab_size - 1) self.assertGreater(tokens[0], tokens[1]) self.assertGreater(tokens[-2], tokenizer.vocab_size - 1) self.assertGreater(tokens[-2], tokens[-3]) self.assertEqual(tokens[0], tokenizer.eos_token_id) self.assertEqual(tokens[-2], tokenizer.pad_token_id) @require_tokenizers def test_encode_decode_with_spaces(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) new_toks = [AddedToken("[ABC]", normalized=False), AddedToken("[DEF]", normalized=False)] tokenizer.add_tokens(new_toks) input = "[ABC][DEF][ABC][DEF]" if self.space_between_special_tokens: output = "[ABC] [DEF] [ABC] [DEF]" else: output = input encoded = tokenizer.encode(table, input, add_special_tokens=False) decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens) self.assertIn(decoded, [output, output.lower()]) def test_encode_plus_with_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) sequence = "Sequence" # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_size = 10 padding_idx = tokenizer.pad_token_id token_type_padding_idx = tokenizer.pad_token_type_id encoded_sequence = tokenizer.encode_plus(table, sequence, return_special_tokens_mask=True) input_ids = encoded_sequence["input_ids"] special_tokens_mask = encoded_sequence["special_tokens_mask"] sequence_length = len(input_ids) # Test 'longest' and 'no_padding' don't do anything tokenizer.padding_side = "right" not_padded_sequence = tokenizer.encode_plus( table, sequence, padding=False, return_special_tokens_mask=True, ) not_padded_input_ids = not_padded_sequence["input_ids"] not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] not_padded_sequence_length = len(not_padded_input_ids) assert sequence_length == not_padded_sequence_length assert input_ids == not_padded_input_ids assert special_tokens_mask == not_padded_special_tokens_mask not_padded_sequence = tokenizer.encode_plus( table, sequence, padding=False, return_special_tokens_mask=True, ) not_padded_input_ids = not_padded_sequence["input_ids"] not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"] not_padded_sequence_length = len(not_padded_input_ids) assert sequence_length == not_padded_sequence_length assert input_ids == not_padded_input_ids assert special_tokens_mask == not_padded_special_tokens_mask tokenizer.padding_side = "right" right_padded_sequence = tokenizer.encode_plus( table, sequence, max_length=sequence_length + padding_size, padding="max_length", return_special_tokens_mask=True, ) right_padded_input_ids = right_padded_sequence["input_ids"] right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"] right_padded_sequence_length = len(right_padded_input_ids) assert sequence_length + padding_size == right_padded_sequence_length assert input_ids + [padding_idx] * padding_size == right_padded_input_ids assert special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask tokenizer.padding_side = "left" left_padded_sequence = tokenizer.encode_plus( table, sequence, max_length=sequence_length + padding_size, padding="max_length", return_special_tokens_mask=True, ) left_padded_input_ids = left_padded_sequence["input_ids"] left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"] left_padded_sequence_length = len(left_padded_input_ids) assert sequence_length + padding_size == left_padded_sequence_length assert [padding_idx] * padding_size + input_ids == left_padded_input_ids assert [1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask if "token_type_ids" in tokenizer.model_input_names: token_type_ids = encoded_sequence["token_type_ids"] left_padded_token_type_ids = left_padded_sequence["token_type_ids"] right_padded_token_type_ids = right_padded_sequence["token_type_ids"] assert ( token_type_ids + [[token_type_padding_idx] * 7] * padding_size == right_padded_token_type_ids ) assert [[token_type_padding_idx] * 7] * padding_size + token_type_ids == left_padded_token_type_ids if "attention_mask" in tokenizer.model_input_names: attention_mask = encoded_sequence["attention_mask"] right_padded_attention_mask = right_padded_sequence["attention_mask"] left_padded_attention_mask = left_padded_sequence["attention_mask"] assert attention_mask + [0] * padding_size == right_padded_attention_mask assert [0] * padding_size + attention_mask == left_padded_attention_mask def test_internal_consistency(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) input_text, output_text = self.get_input_output_texts(tokenizer) tokens = tokenizer.tokenize(input_text) ids = tokenizer.convert_tokens_to_ids(tokens) ids_2 = tokenizer.encode(table, input_text, add_special_tokens=False) self.assertListEqual(ids, ids_2) tokens_2 = tokenizer.convert_ids_to_tokens(ids) self.assertNotEqual(len(tokens_2), 0) text_2 = tokenizer.decode(ids) self.assertIsInstance(text_2, str) self.assertEqual(text_2, output_text) def test_mask_output(self): tokenizers = self.get_tokenizers(fast=False, do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table, query = self.get_table_and_query(tokenizer) if ( tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer" and "token_type_ids" in tokenizer.model_input_names ): information = tokenizer.encode_plus(table, query, add_special_tokens=True) sequences, mask = information["input_ids"], information["token_type_ids"] self.assertEqual(len(sequences), len(mask)) @unittest.skip("TAPAS tokenizer only handles two sequences.") def test_maximum_encoding_length_pair_input(self): pass @unittest.skip("TAPAS tokenizer only handles two sequences.") def test_maximum_encoding_length_single_input(self): pass def test_number_of_added_tokens(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table, query = self.get_table_and_query(tokenizer) sequences = tokenizer.encode(table, query, add_special_tokens=False) attached_sequences = tokenizer.encode(table, query, add_special_tokens=True) if len(attached_sequences) != 2: self.assertEqual( tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences) ) def test_padding_to_max_length(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer) sequence = "Sequence" padding_size = 10 self._check_no_pad_token_padding(tokenizer, sequence) padding_idx = tokenizer.pad_token_id tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(table, sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( table, sequence, max_length=sequence_length + padding_size, padding=True ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert encoded_sequence + [padding_idx] * padding_size == padded_sequence encoded_sequence = tokenizer.encode(table, sequence) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(table, sequence, pad_to_max_length=True) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right def test_call(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] table = self.get_table(tokenizer, length=0) encoded_sequences_1 = tokenizer.encode_plus(table, sequences[0]) encoded_sequences_2 = tokenizer(table, sequences[0]) self.assertEqual(encoded_sequences_1, encoded_sequences_2) table = self.get_table(tokenizer, length=10) encoded_sequences_1 = tokenizer.encode_plus(table, sequences[1]) encoded_sequences_2 = tokenizer(table, sequences[1]) self.assertEqual(encoded_sequences_1, encoded_sequences_2) table = self.get_table(tokenizer, length=0) encoded_sequences_1 = tokenizer.batch_encode_plus(table, sequences) encoded_sequences_2 = tokenizer(table, sequences) self.assertEqual(encoded_sequences_1, encoded_sequences_2) def test_batch_encode_plus_batch_sequence_length(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] encoded_sequences = [tokenizer.encode_plus(table, sequence) for sequence in sequences] encoded_sequences_batch = tokenizer.batch_encode_plus(table, sequences, padding=False) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) maximum_length = len( max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len) ) self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences_padded = [ tokenizer.encode_plus(table, sequence, max_length=maximum_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch_padded = tokenizer.batch_encode_plus(table, sequences, padding=True) self.assertListEqual( encoded_sequences_padded, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded), ) encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(table, sequences, padding=True) encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( table, sequences, max_length=maximum_length + 10, padding="longest" ) for key in encoded_sequences_batch_padded_1.keys(): self.assertListEqual( encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key], ) encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(table, sequences, padding=False) encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus( table, sequences, max_length=maximum_length + 10, padding=False ) for key in encoded_sequences_batch_padded_1.keys(): self.assertListEqual( encoded_sequences_batch_padded_1[key], encoded_sequences_batch_padded_2[key], ) @unittest.skip("batch_encode_plus does not handle overflowing tokens.") def test_batch_encode_plus_overflowing_tokens(self): pass def test_batch_encode_plus_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] max_length = 100 self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences = [ tokenizer.encode_plus(table, sequence, max_length=max_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch = tokenizer.batch_encode_plus( table, sequences, max_length=max_length, padding="max_length" ) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): tokenizer.padding_side = "left" sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] max_length = 100 self._check_no_pad_token_padding(tokenizer, sequences) encoded_sequences = [ tokenizer.encode_plus(table, sequence, max_length=max_length, padding="max_length") for sequence in sequences ] encoded_sequences_batch = tokenizer.batch_encode_plus( table, sequences, max_length=max_length, padding="max_length" ) self.assertListEqual( encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch) ) def test_padding_to_multiple_of(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) if tokenizer.pad_token is None: self.skipTest("No padding token.") else: empty_tokens = tokenizer(table, padding=True, pad_to_multiple_of=8) normal_tokens = tokenizer(table, "This is a sample input", padding=True, pad_to_multiple_of=8) for key, value in empty_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") normal_tokens = tokenizer(table, "This", pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") normal_tokens = tokenizer(table, "This", padding=True, truncation=True, pad_to_multiple_of=8) for key, value in normal_tokens.items(): self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8") @unittest.skip("TAPAS cannot handle `prepare_for_model` without passing by `encode_plus` or `batch_encode_plus`") def test_prepare_for_model(self): pass def test_tokenizer_slow_store_full_signature(self): signature = inspect.signature(self.tokenizer_class.__init__) tokenizer = self.get_tokenizer() for parameter_name, parameter in signature.parameters.items(): if parameter.default != inspect.Parameter.empty: self.assertIn(parameter_name, tokenizer.init_kwargs) def test_special_tokens_mask_input_pairs(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequence_0 = "Encode this." empty_table = self.get_table(tokenizer, length=0) table = self.get_table(tokenizer, length=10) encoded_sequence = tokenizer.encode(empty_table, sequence_0, add_special_tokens=False) encoded_sequence += tokenizer.encode(table, "", add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( table, sequence_0, add_special_tokens=True, return_special_tokens_mask=True, ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special) ] filtered_sequence = [x for x in filtered_sequence if x is not None] self.assertEqual(encoded_sequence, filtered_sequence) def test_special_tokens_mask(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) sequence_0 = "Encode this." encoded_sequence = tokenizer.encode(table, sequence_0, add_special_tokens=False) encoded_sequence_dict = tokenizer.encode_plus( table, sequence_0, add_special_tokens=True, return_special_tokens_mask=True ) encoded_sequence_w_special = encoded_sequence_dict["input_ids"] special_tokens_mask = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special)) filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]] self.assertEqual(encoded_sequence, filtered_sequence) def test_save_and_load_tokenizer(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): self.assertNotEqual(tokenizer.model_max_length, 42) tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): # Isolate this from the other tests because we save additional tokens/etc table = self.get_table(tokenizer, length=0) tmpdirname = tempfile.mkdtemp() sample_text = " He is very happy, UNwant\u00E9d,running" before_tokens = tokenizer.encode(table, sample_text, add_special_tokens=False) before_vocab = tokenizer.get_vocab() tokenizer.save_pretrained(tmpdirname) after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname) after_tokens = after_tokenizer.encode(table, sample_text, add_special_tokens=False) after_vocab = after_tokenizer.get_vocab() self.assertListEqual(before_tokens, after_tokens) self.assertDictEqual(before_vocab, after_vocab) shutil.rmtree(tmpdirname) @unittest.skip("Not implemented") def test_right_and_left_truncation(self): pass def test_right_and_left_padding(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): table = self.get_table(tokenizer, length=0) sequence = "Sequence" padding_size = 10 # check correct behaviour if no pad_token_id exists and add it eventually self._check_no_pad_token_padding(tokenizer, sequence) padding_idx = tokenizer.pad_token_id # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "right" encoded_sequence = tokenizer.encode(table, sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( table, sequence, max_length=sequence_length + padding_size, padding="max_length" ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert encoded_sequence + [padding_idx] * padding_size == padded_sequence # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True tokenizer.padding_side = "left" encoded_sequence = tokenizer.encode(table, sequence) sequence_length = len(encoded_sequence) padded_sequence = tokenizer.encode( table, sequence, max_length=sequence_length + padding_size, padding="max_length" ) padded_sequence_length = len(padded_sequence) assert sequence_length + padding_size == padded_sequence_length assert [padding_idx] * padding_size + encoded_sequence == padded_sequence # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding' encoded_sequence = tokenizer.encode(table, sequence) sequence_length = len(encoded_sequence) tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(table, sequence, padding=True) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(table, sequence, padding="longest") padded_sequence_left_length = len(padded_sequence_left) assert sequence_length == padded_sequence_left_length assert encoded_sequence == padded_sequence_left tokenizer.padding_side = "right" padded_sequence_right = tokenizer.encode(table, sequence) padded_sequence_right_length = len(padded_sequence_right) assert sequence_length == padded_sequence_right_length assert encoded_sequence == padded_sequence_right tokenizer.padding_side = "left" padded_sequence_left = tokenizer.encode(table, sequence, padding=False) padded_sequence_left_length = len(padded_sequence_left) assert sequence_length == padded_sequence_left_length assert encoded_sequence == padded_sequence_left def test_token_type_ids(self): tokenizers = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): empty_table = self.get_table(tokenizer, length=0) seq_0 = "Test this method." # We want to have sequence 0 and sequence 1 are tagged # respectively with 0 and 1 token_ids # (regardless of whether the model use token type ids) # We use this assumption in the QA pipeline among other place output = tokenizer(empty_table, seq_0, return_token_type_ids=True) # Assert that the token type IDs have the same length as the input IDs self.assertEqual(len(output["token_type_ids"]), len(output["input_ids"])) # Assert that each token type ID has 7 values self.assertTrue(all(len(token_type_ids) == 7 for token_type_ids in output["token_type_ids"])) # Do the same test as modeling common. self.assertIn(0, output["token_type_ids"][0]) @require_torch @slow @require_scatter def test_torch_encode_plus_sent_to_model(self): import torch from transformers import MODEL_MAPPING, TOKENIZER_MAPPING MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING) tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING: return config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__] config = config_class() if config.is_encoder_decoder or config.pad_token_id is None: return model = model_class(config) # Make sure the model contains at least the full vocabulary size in its embedding matrix is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight") assert ( (model.get_input_embeddings().weight.shape[0] >= len(tokenizer)) if is_using_common_embeddings else True ) # Build sequence first_ten_tokens = list(tokenizer.get_vocab().keys())[:10] sequence = " ".join(first_ten_tokens) table = self.get_table(tokenizer, length=0) encoded_sequence = tokenizer.encode_plus(table, sequence, return_tensors="pt") batch_encoded_sequence = tokenizer.batch_encode_plus(table, [sequence, sequence], return_tensors="pt") # This should not fail with torch.no_grad(): # saves some time model(**encoded_sequence) model(**batch_encoded_sequence) @unittest.skip("TAPAS doesn't handle pre-tokenized inputs.") def test_pretokenized_inputs(self): pass @slow def test_tapas_truncation_integration_test(self): data = { "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Age": ["56", "45", "59"], "Number of movies": ["87", "53", "69"], "Date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } queries = [ "When was Brad Pitt born?", "Which actor appeared in the least number of movies?", "What is the average number of movies?", ] table = pd.DataFrame.from_dict(data) tokenizer = TapasTokenizer.from_pretrained("lysandre/tapas-temporary-repo", model_max_length=512) for i in range(12): with self.assertRaises(ValueError): tokenizer.encode(table=table, query=queries[0], max_length=i, truncation="drop_rows_to_fit") for i in range(12, 512): new_encoded_inputs = tokenizer.encode( table=table, query=queries[0], max_length=i, truncation="drop_rows_to_fit" ) self.assertLessEqual(len(new_encoded_inputs), i) tokenizer.model_max_length = 20 new_encoded_inputs = tokenizer.encode(table=table, query=queries[0], truncation=True) dropped_encoded_inputs = tokenizer.encode(table=table, query=queries[0], truncation="drop_rows_to_fit") self.assertListEqual(new_encoded_inputs, dropped_encoded_inputs) self.assertLessEqual(len(new_encoded_inputs), 20) @slow def test_min_max_question_length(self): data = { "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Age": ["56", "45", "59"], "Number of movies": ["87", "53", "69"], "Date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } queries = "When was Brad Pitt born?" table = pd.DataFrame.from_dict(data) tokenizer = TapasTokenizer.from_pretrained("lysandre/tapas-temporary-repo", max_question_length=2) encoding = tokenizer(table=table, queries=queries) expected_results = [101, 102] self.assertListEqual(encoding.input_ids[:2], expected_results) # test min_question_length tokenizer = TapasTokenizer.from_pretrained("lysandre/tapas-temporary-repo", min_question_length=30) encoding = tokenizer(table=table, queries=queries) # query should not be tokenized as it's shorter than the specified min_question_length expected_results = [101, 102] self.assertListEqual(encoding.input_ids[:2], expected_results) @is_pt_tf_cross_test def test_batch_encode_plus_tensors(self): tokenizers = self.get_tokenizers(do_lower_case=False) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}"): sequences = [ "Testing batch encode plus", "Testing batch encode plus with different sequence lengths", "Testing batch encode plus with different sequence lengths correctly pads", ] table = self.get_table(tokenizer, length=0) self.assertRaises(ValueError, tokenizer.batch_encode_plus, table, sequences, return_tensors="pt") self.assertRaises(ValueError, tokenizer.batch_encode_plus, table, sequences, return_tensors="tf") if tokenizer.pad_token_id is None: self.assertRaises( ValueError, tokenizer.batch_encode_plus, table, sequences, padding=True, return_tensors="pt", ) self.assertRaises( ValueError, tokenizer.batch_encode_plus, table, sequences, padding="longest", return_tensors="tf", ) else: pytorch_tensor = tokenizer.batch_encode_plus(table, sequences, padding=True, return_tensors="pt") tensorflow_tensor = tokenizer.batch_encode_plus( table, sequences, padding="longest", return_tensors="tf" ) encoded_sequences = tokenizer.batch_encode_plus(table, sequences, padding=True) for key in encoded_sequences.keys(): pytorch_value = pytorch_tensor[key].tolist() tensorflow_value = tensorflow_tensor[key].numpy().tolist() encoded_value = encoded_sequences[key] self.assertEqual(pytorch_value, tensorflow_value, encoded_value) @slow def test_tapas_integration_test(self): data = { "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], "Age": ["56", "45", "59"], "Number of movies": ["87", "53", "69"], "Date of birth": ["18 december 1963", "11 november 1974", "6 may 1961"], } queries = [ "When was Brad Pitt born?", "Which actor appeared in the least number of movies?", "What is the average number of movies?", ] table = pd.DataFrame.from_dict(data) tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq", model_max_length=512) expected_results = {'input_ids':[101,2043,2001,8226,15091,2141,1029,102,5889,2287,2193,1997,5691,3058,1997,4182,8226,15091,5179,6584,2324,2285,3699,14720,4487,6178,9488,3429,5187,2340,2281,3326,2577,18856,7828,3240,5354,6353,1020,2089,3777],'attention_mask':[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1],'token_type_ids':[[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[0,0,0,0,0,0,0],[1,1,0,0,0,0,0],[1,2,0,0,0,0,0],[1,3,0,0,0,0,0],[1,3,0,0,0,0,0],[1,3,0,0,0,0,0],[1,4,0,0,0,0,0],[1,4,0,0,0,0,0],[1,4,0,0,0,0,0],[1,1,1,0,0,0,0],[1,1,1,0,0,0,0],[1,2,1,0,2,2,0],[1,3,1,0,3,1,0],[1,4,1,0,2,2,0],[1,4,1,0,2,2,0],[1,4,1,0,2,2,0],[1,1,2,0,0,0,0],[1,1,2,0,0,0,0],[1,1,2,0,0,0,0],[1,1,2,0,0,0,0],[1,2,2,0,1,3,0],[1,3,2,0,1,3,0],[1,4,2,0,3,1,0],[1,4,2,0,3,1,0],[1,4,2,0,3,1,0],[1,1,3,0,0,0,0],[1,1,3,0,0,0,0],[1,1,3,0,0,0,0],[1,1,3,0,0,0,0],[1,2,3,0,3,1,0],[1,3,3,0,2,2,0],[1,4,3,0,1,3,0],[1,4,3,0,1,3,0],[1,4,3,0,1,3,0]]} new_encoded_inputs = tokenizer.encode_plus(table=table, query=queries[0]) self.assertDictEqual(dict(new_encoded_inputs), expected_results) @slow def test_full_tokenizer(self): data = [ ["Pos", "No", "Driver", "Team", "Laps", "Time/Retired", "Grid", "Points"], ["1", "32", "Patrick Carpentier", "Team Player's", "87", "1:48:11.023", "1", "22"], ["2", "1", "Bruno Junqueira", "Newman/Haas Racing", "87", "+0.8 secs", "2", "17"], ["3", "3", "Paul Tracy", "Team Player's", "87", "+28.6 secs", "3", "14"], ["4", "9", "Michel Jourdain, Jr.", "Team Rahal", "87", "+40.8 secs", "13", "12"], ["5", "34", "Mario Haberfeld", "Mi-Jack Conquest Racing", "87", "+42.1 secs", "6", "10"], ["6", "20", "Oriol Servia", "Patrick Racing", "87", "+1:00.2", "10", "8"], ["7", "51", "Adrian Fernandez", "Fernandez Racing", "87", "+1:01.4", "5", "6"], ["8", "12", "Jimmy Vasser", "American Spirit Team Johansson", "87", "+1:01.8", "8", "5"], ["9", "7", "Tiago Monteiro", "Fittipaldi-Dingman Racing", "86", "+ 1 Lap", "15", "4"], ["10", "55", "Mario Dominguez", "Herdez Competition", "86", "+ 1 Lap", "11", "3"], ["11", "27", "Bryan Herta", "PK Racing", "86", "+ 1 Lap", "12", "2"], ["12", "31", "Ryan Hunter-Reay", "American Spirit Team Johansson", "86", "+ 1 Lap", "17", "1"], ["13", "19", "Joel Camathias", "Dale Coyne Racing", "85", "+ 2 Laps", "18", "0"], ["14", "33", "Alex Tagliani", "Rocketsports Racing", "85", "+ 2 Laps", "14", "0"], ["15", "4", "Roberto Moreno", "Herdez Competition", "85", "+ 2 Laps", "9", "0"], ["16", "11", "Geoff Boss", "Dale Coyne Racing", "83", "Mechanical", "19", "0"], ["17", "2", "Sebastien Bourdais", "Newman/Haas Racing", "77", "Mechanical", "4", "0"], ["18", "15", "Darren Manning", "Walker Racing", "12", "Mechanical", "7", "0"], ["19", "5", "Rodolfo Lavin", "Walker Racing", "10", "Mechanical", "16", "0"], ] query = "what were the drivers names?" table = pd.DataFrame.from_records(data[1:], columns=data[0]) tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq", model_max_length=512) model_inputs = tokenizer(table, query, padding="max_length") input_ids = model_inputs["input_ids"] token_type_ids = np.array(model_inputs["token_type_ids"]) segment_ids = token_type_ids[:, 0] column_ids = token_type_ids[:, 1] row_ids = token_type_ids[:, 2] expected_results = {'input_ids':[101,2054,2020,1996,6853,3415,1029,102,13433,2015,2053,4062,2136,10876,2051,1013,3394,8370,2685,1015,3590,4754,29267,4765,3771,2136,2447,1005,1055,6584,1015,1024,4466,1024,2340,1012,6185,2509,1015,2570,1016,1015,10391,12022,4226,7895,10625,1013,22996,3868,6584,1009,1014,1012,1022,10819,2015,1016,2459,1017,1017,2703,10555,2136,2447,1005,1055,6584,1009,2654,1012,1020,10819,2015,1017,2403,1018,1023,8709,8183,3126,21351,2078,1010,3781,1012,2136,10958,8865,6584,1009,2871,1012,1022,10819,2015,2410,2260,1019,4090,7986,5292,5677,8151,2771,1011,2990,9187,3868,6584,1009,4413,1012,1015,10819,2015,1020,2184,1020,2322,2030,20282,14262,9035,4754,3868,6584,1009,1015,1024,4002,1012,1016,2184,1022,1021,4868,7918,12023,12023,3868,6584,1009,1015,1024,5890,1012,1018,1019,1020,1022,2260,5261,12436,18116,2137,4382,2136,26447,6584,1009,1015,1024,5890,1012,1022,1022,1019,1023,1021,27339,3995,10125,9711,4906,25101,24657,1011,22033,2386,3868,6564,1009,1015,5001,2321,1018,2184,4583,7986,14383,2075,29488,14906,9351,2971,6564,1009,1015,5001,2340,1017,2340,2676,8527,2014,2696,1052,2243,3868,6564,1009,1015,5001,2260,1016,2260,2861,4575,4477,1011,2128,4710,2137,4382,2136,26447,6564,1009,1015,5001,2459,1015,2410,2539,8963,11503,25457,3022,8512,2522,9654,3868,5594,1009,1016,10876,2324,1014,2403,3943,4074,6415,15204,2072,12496,25378,3868,5594,1009,1016,10876,2403,1014,2321,1018,10704,17921,14906,9351,2971,5594,1009,1016,10876,1023,1014,2385,2340,14915,5795,8512,2522,9654,3868,6640,6228,2539,1014,2459,1016,28328,8945,3126,21351,2015,10625,1013,22996,3868,6255,6228,1018,1014,2324,2321,12270,11956,5232,3868,2260,6228,1021,1014,2539,1019,8473,28027,2080,2474,6371,5232,3868,2184,6228,2385,1014,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],'column_ids':[0,0,0,0,0,0,0,0,1,1,2,3,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,5,6,6,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,3,3,3,3,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,4,4,4,4,5,6,6,6,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,3,4,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,4,5,6,6,6,7,8,1,2,3,3,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,4,4,4,5,6,6,6,7,8,1,2,3,3,4,4,4,4,5,6,7,8,1,2,3,3,3,3,3,4,4,4,4,5,6,7,8,1,2,3,3,4,4,5,6,7,8,1,2,3,3,3,3,3,4,4,5,6,7,8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],'row_ids':[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,15,15,15,15,15,15,15,15,15,15,15,15,15,16,16,16,16,16,16,16,16,16,16,16,16,17,17,17,17,17,17,17,17,17,17,17,17,17,17,17,18,18,18,18,18,18,18,18,18,18,19,19,19,19,19,19,19,19,19,19,19,19,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],'segment_ids':[0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]} self.assertListEqual(input_ids, expected_results["input_ids"]) self.assertListEqual(segment_ids.tolist(), expected_results["segment_ids"]) self.assertListEqual(column_ids.tolist(), expected_results["column_ids"]) self.assertListEqual(row_ids.tolist(), expected_results["row_ids"]) @unittest.skip("Skip this test while all models are still to be uploaded.") def test_pretrained_model_lists(self): pass @unittest.skip("Doesn't support another framework than PyTorch") def test_np_encode_plus_sent_to_model(self): pass
true
true
f712f35d11e9baf743377f65259f9f175c99f59d
9,052
py
Python
challenges/multiview_matting/worker.py
Haiper-ai/kubric
d096ba178b8a78ea2c840ae121646d36281d31d9
[ "Apache-2.0" ]
null
null
null
challenges/multiview_matting/worker.py
Haiper-ai/kubric
d096ba178b8a78ea2c840ae121646d36281d31d9
[ "Apache-2.0" ]
null
null
null
challenges/multiview_matting/worker.py
Haiper-ai/kubric
d096ba178b8a78ea2c840ae121646d36281d31d9
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 The Kubric Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Worker file for the Multi-View Background removal dataset. This dataset creates a scene where a foreground object is to be distinguished from the background. Foreground objects are borrowed from shapnet. Backgrounds are from indoor scenes of polyhaven. All foreground objects are situated on top of a "table" which is gernated to be random in color. Instead of background removal with a single image. This dataset is special in that multiple images of the foreground object (taken from different camera poses) are given. This "multi-view" persepctive should be very helpful for background removal but is currently underexplored in the literature. """ import logging import numpy as np import kubric as kb from kubric.renderer import Blender as KubricRenderer # --- WARNING: this path is not yet public source_path = ( "gs://tensorflow-graphics/public/60c9de9c410be30098c297ac/ShapeNetCore.v2") # --- CLI arguments (and modified defaults) parser = kb.ArgumentParser() parser.set_defaults( seed=1, frame_start=1, frame_end=10, width=128, height=128, ) parser.add_argument("--backgrounds_split", choices=["train", "test"], default="train") parser.add_argument("--dataset_mode", choices=["easy", "hard"], default="hard") parser.add_argument("--hdri_dir", type=str, default="gs://mv_bckgr_removal/hdri_haven/4k/") # "/mnt/mydata/images/" FLAGS = parser.parse_args() if FLAGS.dataset_mode == "hard": add_distractors = False def add_hdri_dome(hdri_source, scene, background_hdri=None): dome_path = hdri_source.fetch("dome.blend") dome = kb.FileBasedObject( name="BackgroundDome", position=(0, 0, 0), static=True, background=True, simulation_filename=None, render_filename=str(dome_path), render_import_kwargs={ "filepath": str(dome_path / "Object" / "Dome"), "directory": str(dome_path / "Object"), "filename": "Dome", }) scene.add(dome) # pylint: disable=import-outside-toplevel from kubric.renderer import Blender import bpy blender_renderer = [v for v in scene.views if isinstance(v, Blender)] if blender_renderer: dome_blender = dome.linked_objects[blender_renderer[0]] dome_blender.cycles_visibility.shadow = False if background_hdri is not None: dome_mat = dome_blender.data.materials[0] texture_node = dome_mat.node_tree.nodes["Image Texture"] texture_node.image = bpy.data.images.load(background_hdri.filename) return dome # --- Common setups kb.utils.setup_logging(FLAGS.logging_level) kb.utils.log_my_flags(FLAGS) job_dir = kb.as_path(FLAGS.job_dir) rng = np.random.RandomState(FLAGS.seed) scene = kb.Scene.from_flags(FLAGS) # --- Add a renderer renderer = KubricRenderer(scene, use_denoising=True, adaptive_sampling=False, background_transparency=True) # --- Fetch a random asset asset_source = kb.AssetSource(source_path) all_ids = list(asset_source.db['id']) fraction = 0.1 held_out_obj_ids = list(asset_source.db.sample( frac=fraction, replace=False, random_state=42)["id"]) train_obj_ids = [i for i in asset_source.db["id"] if i not in held_out_obj_ids] if FLAGS.backgrounds_split == "train": asset_id = rng.choice(train_obj_ids) else: asset_id = rng.choice(held_out_obj_ids) obj = asset_source.create(asset_id=asset_id) logging.info(f"selected '{asset_id}'") # --- make object flat on X/Y and not penetrate floor obj.quaternion = kb.Quaternion(axis=[1,0,0], degrees=90) obj.position = obj.position - (0, 0, obj.aabbox[0][2]) obj_size = np.linalg.norm(obj.aabbox[1] - obj.aabbox[0]) if add_distractors: obj_radius = np.linalg.norm(obj.aabbox[1][:2] - obj.aabbox[0][:2]) obj_height = obj.aabbox[1][2] - obj.aabbox[0][2] obj.metadata = { "asset_id": obj.asset_id, "category": asset_source.db[ asset_source.db["id"] == obj.asset_id].iloc[0]["category_name"], } scene.add(obj) size_multiple = 1. if add_distractors: distractor_locs = [] for i in range(4): asset_id_2 = rng.choice(train_obj_ids) obj2 = asset_source.create(asset_id=asset_id_2) logging.info(f"selected '{asset_id}'") # --- make object flat on X/Y and not penetrate floor obj2.quaternion = kb.Quaternion(axis=[1,0,0], degrees=90) obj_2_radius = np.linalg.norm(obj2.aabbox[1][:2] - obj2.aabbox[0][:2]) position = rng.rand((2)) * 2 - 1 position /= np.linalg.norm(position) position *= (obj_radius + obj_2_radius) / 2. distractor_locs.append(-position) obj2.position = obj2.position - (position[0], position[1], obj2.aabbox[0][2]) obj_size_2 = np.linalg.norm(obj2.aabbox[1] - obj2.aabbox[0]) obj_height_2 = obj2.aabbox[1][2] - obj2.aabbox[0][2] obj2.metadata = { "asset_id": obj.asset_id, "category": asset_source.db[ asset_source.db["id"] == obj2.asset_id].iloc[0]["category_name"], } scene.add(obj2) distractor_dir = np.vstack(distractor_locs) distractor_dir /= np.linalg.norm(distractor_dir, axis=-1, keepdims=True) size_multiple = 1.5 material = kb.PrincipledBSDFMaterial( color=kb.Color.from_hsv(rng.uniform(), 1, 1), metallic=1.0, roughness=0.2, ior=2.5) table = kb.Cube(name="floor", scale=(obj_size*size_multiple, obj_size*size_multiple, 0.02), position=(0, 0, -0.02), material=material) scene += table logging.info("Loading background HDRIs from %s", FLAGS.hdri_dir) hdri_source = kb.TextureSource(FLAGS.hdri_dir) train_backgrounds, held_out_backgrounds = hdri_source.get_test_split( fraction=0.1) if FLAGS.backgrounds_split == "train": logging.info("Choosing one of the %d training backgrounds...", len(train_backgrounds)) background_hdri = hdri_source.create(texture_name=rng.choice(train_backgrounds)) else: logging.info("Choosing one of the %d held-out backgrounds...", len(held_out_backgrounds)) background_hdri = hdri_source.create( texture_name=rng.choice(held_out_backgrounds)) dome = kb.assets.utils.add_hdri_dome(hdri_source, scene, background_hdri) dome = add_hdri_dome(hdri_source, scene, background_hdri) renderer._set_ambient_light_hdri(background_hdri.filename) # table = add_table(hdri_source, scene, background_hdri) # --- Add Klevr-like lights to the scene scene += kb.assets.utils.get_clevr_lights(rng=rng) # scene.ambient_illumination = kb.Color.from_hsv(np.random.uniform(), 1, 1) # scene.ambient_illumination = kb.Color(0.05, 0.05, 0.05) def sample_point_in_half_sphere_shell( inner_radius: float, outer_radius: float, rng: np.random.RandomState ): """Uniformly sample points that are in a given distance range from the origin and with z >= 0.""" while True: v = rng.uniform((-outer_radius, -outer_radius, obj_height/1.2), (outer_radius, outer_radius, obj_height)) len_v = np.linalg.norm(v) correct_angle = True if add_distractors: cam_dir = v[:2] / np.linalg.norm(v[:2]) correct_angle = np.all(np.dot(distractor_dir, cam_dir) < np.cos(np.pi / 9.)) if inner_radius <= len_v <= outer_radius and correct_angle: return tuple(v) # --- Keyframe the camera scene.camera = kb.PerspectiveCamera() for frame in range(FLAGS.frame_start, FLAGS.frame_end + 1): # scene.camera.position = (1, 1, 1) #< frozen camera scene.camera.position = sample_point_in_half_sphere_shell( obj_size*1.7, obj_size*2, rng) scene.camera.look_at((0, 0, obj_height/2)) scene.camera.keyframe_insert("position", frame) scene.camera.keyframe_insert("quaternion", frame) # --- Rendering logging.info("Rendering the scene ...") renderer.save_state(job_dir / "scene.blend") data_stack = renderer.render() # --- Postprocessing kb.compute_visibility(data_stack["segmentation"], scene.assets) data_stack["segmentation"] = kb.adjust_segmentation_idxs( data_stack["segmentation"], scene.assets, [obj]).astype(np.uint8) # --- Discard non-used information del data_stack["uv"] del data_stack["forward_flow"] del data_stack["backward_flow"] del data_stack["depth"] del data_stack["normal"] # --- Save to image files kb.file_io.write_image_dict(data_stack, job_dir) # --- Collect metadata logging.info("Collecting and storing metadata for each object.") data = { "metadata": kb.get_scene_metadata(scene), "camera": kb.get_camera_info(scene.camera), } kb.file_io.write_json(filename=job_dir / "metadata.json", data=data) kb.done()
35.085271
91
0.715091
import logging import numpy as np import kubric as kb from kubric.renderer import Blender as KubricRenderer source_path = ( "gs://tensorflow-graphics/public/60c9de9c410be30098c297ac/ShapeNetCore.v2") parser = kb.ArgumentParser() parser.set_defaults( seed=1, frame_start=1, frame_end=10, width=128, height=128, ) parser.add_argument("--backgrounds_split", choices=["train", "test"], default="train") parser.add_argument("--dataset_mode", choices=["easy", "hard"], default="hard") parser.add_argument("--hdri_dir", type=str, default="gs://mv_bckgr_removal/hdri_haven/4k/") FLAGS = parser.parse_args() if FLAGS.dataset_mode == "hard": add_distractors = False def add_hdri_dome(hdri_source, scene, background_hdri=None): dome_path = hdri_source.fetch("dome.blend") dome = kb.FileBasedObject( name="BackgroundDome", position=(0, 0, 0), static=True, background=True, simulation_filename=None, render_filename=str(dome_path), render_import_kwargs={ "filepath": str(dome_path / "Object" / "Dome"), "directory": str(dome_path / "Object"), "filename": "Dome", }) scene.add(dome) from kubric.renderer import Blender import bpy blender_renderer = [v for v in scene.views if isinstance(v, Blender)] if blender_renderer: dome_blender = dome.linked_objects[blender_renderer[0]] dome_blender.cycles_visibility.shadow = False if background_hdri is not None: dome_mat = dome_blender.data.materials[0] texture_node = dome_mat.node_tree.nodes["Image Texture"] texture_node.image = bpy.data.images.load(background_hdri.filename) return dome kb.utils.setup_logging(FLAGS.logging_level) kb.utils.log_my_flags(FLAGS) job_dir = kb.as_path(FLAGS.job_dir) rng = np.random.RandomState(FLAGS.seed) scene = kb.Scene.from_flags(FLAGS) renderer = KubricRenderer(scene, use_denoising=True, adaptive_sampling=False, background_transparency=True) asset_source = kb.AssetSource(source_path) all_ids = list(asset_source.db['id']) fraction = 0.1 held_out_obj_ids = list(asset_source.db.sample( frac=fraction, replace=False, random_state=42)["id"]) train_obj_ids = [i for i in asset_source.db["id"] if i not in held_out_obj_ids] if FLAGS.backgrounds_split == "train": asset_id = rng.choice(train_obj_ids) else: asset_id = rng.choice(held_out_obj_ids) obj = asset_source.create(asset_id=asset_id) logging.info(f"selected '{asset_id}'") obj.quaternion = kb.Quaternion(axis=[1,0,0], degrees=90) obj.position = obj.position - (0, 0, obj.aabbox[0][2]) obj_size = np.linalg.norm(obj.aabbox[1] - obj.aabbox[0]) if add_distractors: obj_radius = np.linalg.norm(obj.aabbox[1][:2] - obj.aabbox[0][:2]) obj_height = obj.aabbox[1][2] - obj.aabbox[0][2] obj.metadata = { "asset_id": obj.asset_id, "category": asset_source.db[ asset_source.db["id"] == obj.asset_id].iloc[0]["category_name"], } scene.add(obj) size_multiple = 1. if add_distractors: distractor_locs = [] for i in range(4): asset_id_2 = rng.choice(train_obj_ids) obj2 = asset_source.create(asset_id=asset_id_2) logging.info(f"selected '{asset_id}'") obj2.quaternion = kb.Quaternion(axis=[1,0,0], degrees=90) obj_2_radius = np.linalg.norm(obj2.aabbox[1][:2] - obj2.aabbox[0][:2]) position = rng.rand((2)) * 2 - 1 position /= np.linalg.norm(position) position *= (obj_radius + obj_2_radius) / 2. distractor_locs.append(-position) obj2.position = obj2.position - (position[0], position[1], obj2.aabbox[0][2]) obj_size_2 = np.linalg.norm(obj2.aabbox[1] - obj2.aabbox[0]) obj_height_2 = obj2.aabbox[1][2] - obj2.aabbox[0][2] obj2.metadata = { "asset_id": obj.asset_id, "category": asset_source.db[ asset_source.db["id"] == obj2.asset_id].iloc[0]["category_name"], } scene.add(obj2) distractor_dir = np.vstack(distractor_locs) distractor_dir /= np.linalg.norm(distractor_dir, axis=-1, keepdims=True) size_multiple = 1.5 material = kb.PrincipledBSDFMaterial( color=kb.Color.from_hsv(rng.uniform(), 1, 1), metallic=1.0, roughness=0.2, ior=2.5) table = kb.Cube(name="floor", scale=(obj_size*size_multiple, obj_size*size_multiple, 0.02), position=(0, 0, -0.02), material=material) scene += table logging.info("Loading background HDRIs from %s", FLAGS.hdri_dir) hdri_source = kb.TextureSource(FLAGS.hdri_dir) train_backgrounds, held_out_backgrounds = hdri_source.get_test_split( fraction=0.1) if FLAGS.backgrounds_split == "train": logging.info("Choosing one of the %d training backgrounds...", len(train_backgrounds)) background_hdri = hdri_source.create(texture_name=rng.choice(train_backgrounds)) else: logging.info("Choosing one of the %d held-out backgrounds...", len(held_out_backgrounds)) background_hdri = hdri_source.create( texture_name=rng.choice(held_out_backgrounds)) dome = kb.assets.utils.add_hdri_dome(hdri_source, scene, background_hdri) dome = add_hdri_dome(hdri_source, scene, background_hdri) renderer._set_ambient_light_hdri(background_hdri.filename) scene += kb.assets.utils.get_clevr_lights(rng=rng) def sample_point_in_half_sphere_shell( inner_radius: float, outer_radius: float, rng: np.random.RandomState ): while True: v = rng.uniform((-outer_radius, -outer_radius, obj_height/1.2), (outer_radius, outer_radius, obj_height)) len_v = np.linalg.norm(v) correct_angle = True if add_distractors: cam_dir = v[:2] / np.linalg.norm(v[:2]) correct_angle = np.all(np.dot(distractor_dir, cam_dir) < np.cos(np.pi / 9.)) if inner_radius <= len_v <= outer_radius and correct_angle: return tuple(v) scene.camera = kb.PerspectiveCamera() for frame in range(FLAGS.frame_start, FLAGS.frame_end + 1): position = sample_point_in_half_sphere_shell( obj_size*1.7, obj_size*2, rng) scene.camera.look_at((0, 0, obj_height/2)) scene.camera.keyframe_insert("position", frame) scene.camera.keyframe_insert("quaternion", frame) logging.info("Rendering the scene ...") renderer.save_state(job_dir / "scene.blend") data_stack = renderer.render() kb.compute_visibility(data_stack["segmentation"], scene.assets) data_stack["segmentation"] = kb.adjust_segmentation_idxs( data_stack["segmentation"], scene.assets, [obj]).astype(np.uint8) del data_stack["uv"] del data_stack["forward_flow"] del data_stack["backward_flow"] del data_stack["depth"] del data_stack["normal"] kb.file_io.write_image_dict(data_stack, job_dir) logging.info("Collecting and storing metadata for each object.") data = { "metadata": kb.get_scene_metadata(scene), "camera": kb.get_camera_info(scene.camera), } kb.file_io.write_json(filename=job_dir / "metadata.json", data=data) kb.done()
true
true
f712f558e36700c9a2b16f8b5e67cffbd02340f7
558
py
Python
booking/migrations/0012_auto_20210920_0214.py
starsouf/Python-Django-web-app
0af1a4f97a7b7583858bd3e487d8a1b502b4daa7
[ "Unlicense" ]
null
null
null
booking/migrations/0012_auto_20210920_0214.py
starsouf/Python-Django-web-app
0af1a4f97a7b7583858bd3e487d8a1b502b4daa7
[ "Unlicense" ]
null
null
null
booking/migrations/0012_auto_20210920_0214.py
starsouf/Python-Django-web-app
0af1a4f97a7b7583858bd3e487d8a1b502b4daa7
[ "Unlicense" ]
null
null
null
# Generated by Django 3.1.2 on 2021-09-20 06:14 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('booking', '0011_auto_20210920_0204'), ] operations = [ migrations.AlterField( model_name='appointment', name='appointment_statue', field=models.CharField(choices=[('waiting', 'ينتظر'), ('in progress', 'يعمل على قصة شعره'), ('finished', 'انتهى'), ('did not show up', 'لم يحضر')], default=('waiting', 'ينتظر'), max_length=20), ), ]
29.368421
205
0.611111
from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('booking', '0011_auto_20210920_0204'), ] operations = [ migrations.AlterField( model_name='appointment', name='appointment_statue', field=models.CharField(choices=[('waiting', 'ينتظر'), ('in progress', 'يعمل على قصة شعره'), ('finished', 'انتهى'), ('did not show up', 'لم يحضر')], default=('waiting', 'ينتظر'), max_length=20), ), ]
true
true
f712f6558ed50db7fff7120d2677a6ee59fe1aa4
15,039
py
Python
defoe/fmp/document.py
kallewesterling/defoe
d72af2f748fd4363a4718c93bb0b0284b8cb1f3e
[ "MIT" ]
2
2022-02-14T12:10:54.000Z
2022-02-14T12:35:44.000Z
defoe/fmp/document.py
kallewesterling/defoe
d72af2f748fd4363a4718c93bb0b0284b8cb1f3e
[ "MIT" ]
17
2022-02-09T21:46:14.000Z
2022-02-25T14:55:09.000Z
defoe/fmp/document.py
kallewesterling/defoe
d72af2f748fd4363a4718c93bb0b0284b8cb1f3e
[ "MIT" ]
1
2022-02-14T13:19:08.000Z
2022-02-14T13:19:08.000Z
""" Object model representation of a document represented as a collection of XML files in METS/MODS format. """ from defoe.fmp.page import Page from lxml import etree import re class Document(object): """ Object model representation of a document represented as a collection of XML files in METS/MODS format. """ def __init__(self, code, archive): """ Constructor :param code: identifier for this document within an archive :type code: str or unicode :param archive: archive to which this document belongs :type archive: defoe.alto.archive.Archive """ self.namespaces = { "mods": "http://www.loc.gov/mods/v3", "mets": "http://www.loc.gov/METS/", "xsi": "http://www.w3.org/2001/XMLSchema-instance", "premis": "info:lc/xmlns/premis-v2", "dcterms": "http://purl.org/dc/terms/", "fits": "http://hul.harvard.edu/ois/xml/ns/fits/fits_output", "xlink": "http://www.w3.org/1999/xlink", } self.archive = archive self.code = code self.num_pages = 0 self.metadata = self.archive.open_document(self.code) self.metadata_tree = etree.parse(self.metadata) self.title = self.single_query("//mods:title/text()") self.page_codes = sorted( self.archive.document_codes[self.code], key=Document.sorter ) self.num_pages = len(self.page_codes) self.years = Document.parse_year(self.single_query("//mods:dateIssued/text()")) self.publisher = self.single_query("//mods:publisher/text()") self.place = self.single_query("//mods:placeTerm/text()") # place may often have a year in. self.years += Document.parse_year(self.place) self.years = sorted(self.years) self.documentId = self.single_query("//mods:identifier/text()") if self.years: self.year = self.years[0] else: self.year = None self.date = self.single_query("//mods:dateIssued/text()") self.document_type = "newspaper" self.model = "fmp" #### New ############ # [art0001, art0002, art0003] self.articlesId = self.parse_structMap_Logical() # {'#art0001':['#pa0001001', '#pa0001002', '#pa0001003', '#pa0001004', '#pa0001005', '#pa0001006', '#pa0001007'], '#art0002': ['#pa0001008', '#pa0001009' ..]} # {'pa0001001': 'page1 area1', 'pa0001003': 'page1 area3'} self.articlesParts, self.partsPage = self.parse_structLink() # {'pa0001001': ['RECT', '1220,5,2893,221'], 'pa0001003': ['RECT', '2934,14,3709,211'], 'pa0004044': ['RECT', '5334,2088,5584,2121']} self.partsCoord = self.parse_structMap_Physical() self.num_articles = len(self.articlesId) ####################### @staticmethod def parse_year(text): """ Parse text to extract years of form 16xx to 19xx. Any date of form NN following a year of form CCYY to CCYY is used to derive a date CCNN. As an exception to this rule, single years are parsed from dates precisely matching the format YYYY-MM-DD. For example: * "1862, [1861]" returns [1861, 1862] * "1847 [1846, 47]" returns [1846, 1847] * "1873-80" returns [1873, 1880] * "1870-09-01" returns [1870] :param text: text to parse :type text: str or unicode :return: years :rtype: set(int) """ try: date_pattern = re.compile( "(1[6-9]\d{2}(-|/)(0[1-9]|1[0-2])(-|/)(0[1-9]|[12]\d|3[01]))" ) if date_pattern.match(text): return [int(text[0:4])] long_pattern = re.compile("(1[6-9]\d\d)") short_pattern = re.compile("\d\d") results = [] chunks = iter(long_pattern.split(text)[1:]) for year, rest in zip(chunks, chunks): results.append(int(year)) century = year[0:2] short_years = short_pattern.findall(rest) for short_year in short_years: results.append(int(century + short_year)) return sorted(set(results)) except TypeError: return [] @staticmethod def sorter(page_code): """ Given a page code of form [0-9]*(_[0-9]*), split this into the sub-codes. For example, given 123_456, return [123, 456] :param page_code: page code :type page_code: str or unicode :return: list of page codes :rtype: list(int) """ codes = list(map(int, page_code.split("_"))) return codes def query(self, query): """ Run XPath query. :param query: XPath query :type query: str or unicode :return: list of query results or None if none :rtype: list(lxml.etree.<MODULE>) (depends on query) """ return self.metadata_tree.xpath(query, namespaces=self.namespaces) def single_query(self, query): """ Run XPath query and return first result. :param query: XPath query :type query: str or unicode :return: query result or None if none :rtype: str or unicode """ result = self.query(query) if not result: return None return str(result[0]) def page(self, code): """ Given a page code, return a new Page object. :param code: page code :type code: str or unicode :return: Page object :rtype: defoe.alto.page.Page """ return Page(self, code) def get_document_info(self): """ Gets information from ZIP file about metadata file corresponding to this document. :return: information :rtype: zipfile.ZipInfo """ return self.archive.get_document_info(self.code) def get_page_info(self, page_code): """ Gets information from ZIP file about a page file within this document. :param page_code: file code :type page_code: str or unicode :return: information :rtype: zipfile.ZipInfo """ return self.archive.get_page_info(self.code, page_code) def __getitem__(self, index): """ Given a page index, return a new Page object. :param index: page index :type index: int :return: Page object :rtype: defoe.alto.page.Page """ return self.page(self.page_codes[index]) def __iter__(self): """ Iterate over page codes, returning new Page objects. :return: Page object :rtype: defoe.alto.page.Page """ for page_code in self.page_codes: yield self.page(page_code) def scan_strings(self): """ Iterate over strings in pages. :return: page and string :rtype: tuple(defoe.alto.page.Page, str or unicode) """ for page in self: for string in page.strings: yield page, string def scan_tb(self): """ Iterate over textblocks in pages :return: page and textblock :rtype: tuple(defoe.alto.page.Page, str or unicode) """ for page in self: for tb in page.tb: yield page, tb def scan_words(self): """ Iterate over words in pages. :return: page and word :rtype: tuple(defoe.alto.page.Page, str or unicode) """ for page in self: for word in page.words: yield page, word def scan_wc(self): """ Iterate over words cualities in pages. :return: page and wc :rtype: tuple(defoe.alto.page.Page, str or unicode) """ for page in self: for wc in page.wc: yield page, wc @property def articles(self): """ Iterate calculates the articles in each page. :return: a dictionary per page with all the articles. Each articles is conformed by one or more textblocks :rtype: dictionary of articles. Each {'art0001': ['pa0001001': ['RECT', '1220,5,2893,221', 'page1 area1'], 'pa0001003': ['RECT', '2934,14,3709,211', page1 area3], ...]], ...} """ self.document_articles = {} articlesInfo = self.articles_info() for page in self: for tb in page.tb: for articleId in articlesInfo: for partId in articlesInfo[articleId]: if partId == tb.textblock_id: if articleId not in self.document_articles: self.document_articles[articleId] = [] tb.textblock_shape = articlesInfo[articleId][partId][0] tb.textblock_coords = articlesInfo[articleId][partId][1] tb.textblock_page_area = articlesInfo[articleId][partId][2] self.document_articles[articleId].append(tb) return self.document_articles def scan_cc(self): """ Iterate over characters cualities in pages. :return: page and cc :rtype: tuple(defoe.alto.page.Page, str or unicode) """ for page in self: for cc in page.cc: yield page, cc def scan_images(self): """ Iterate over images in pages. :return: page and XML fragment with image :rtype: tuple(defoe.alto.page.Page, lxml.etree._Element) """ for page in self: for image in page.images: yield page, image def strings(self): """ Iterate over strings. :return: string :rtype: str or unicode """ for _, string in self.scan_strings(): yield string def tb(self): """ Iterate over strings. :return: string :rtype: str or unicode """ for _, tb in self.scan_tb(): yield tb def words(self): """ Iterate over strings. :return: word :rtype: str or unicode """ for _, word in self.scan_words(): yield word def images(self): """ Iterate over images. :return: XML fragment with image :rtype: lxml.etree._Element """ for _, image in self.scan_images(): yield image def wc(self): """ Iterate over words cualities. :return: wc :rtype: str or unicode """ for _, wc in self.scan_wc(): yield wc def cc(self): """ Iterate over characters cualities. :return: wc :rtype: str or unicode """ for _, cc in self.scan_cc(): yield cc def parse_structMap_Physical(self): """ Parse the structMap Physical information :return: dictionary with the ID of each part as a keyword. For each part, it gets the shape and coord. :rtype: dictionary {'pa0001001': ['RECT', '1220,5,2893,221'], 'pa0001003': ['RECT', '2934,14,3709,211'], 'pa0004044': ['RECT', '5334,2088,5584,2121']} """ partsCoord = dict() elem = self.metadata_tree.find( 'mets:structMap[@TYPE="PHYSICAL"]', self.namespaces ) for physic in elem: parts = physic.findall('mets:div[@TYPE="page"]', self.namespaces) for part in parts: metadata_parts = part.findall("mets:div", self.namespaces) for metadata in metadata_parts: fptr = metadata.find("mets:fptr", self.namespaces) for fp in fptr: partsCoord[list(metadata.values())[0]] = [ list(fp.values())[1], list(fp.values())[2], ] return partsCoord def parse_structMap_Logical(self): """ Parse the structMap Logical information :return: list of articlesID that conforms each document/issue. It only returns the articles ID, no other type of elements. :rtype: list [art0001, art0002, art0003] """ articlesId = [] elem = self.metadata_tree.find( 'mets:structMap[@TYPE="LOGICAL"]', self.namespaces ) for logic in elem: articles = logic.findall('mets:div[@TYPE="ARTICLE"]', self.namespaces) for article in articles: articlesId.append(list(article.values())[0]) return articlesId def parse_structLink(self): """ Parse the strucLink information :return: 1) A dictionary with articles IDs as keys. And per article ID, we have a list of parts/textblokcs ids that conform each article. 2) A dictionary with parts/textblocks ids as keys, and page and area as values. :rtype: two dictionaries {'#art0001':['#pa0001001', '#pa0001002', '#pa0001003', '#pa0001004', '#pa0001005', '#pa0001006', '#pa0001007'], '#art0002': ['#pa0001008', '#pa0001009' ..]} {'pa0001001': 'page1 area1', 'pa0001003': 'page1 area3'} """ articlesId = [] articlesParts = dict() partsPage = dict() elem = self.metadata_tree.findall("mets:structLink", self.namespaces) for smlinkgrp in elem: parts = smlinkgrp.findall("mets:smLinkGrp", self.namespaces) for linklocator in smlinkgrp: linkl = linklocator.findall("mets:smLocatorLink", self.namespaces) article_parts = [] for link in linkl: idstring = list(link.values())[0] partId = re.sub("[^A-Za-z0-9]+", "", idstring) article_parts.append(partId) partsPage[partId] = list(link.values())[1] articlesParts[article_parts[0]] = article_parts[1:] return articlesParts, partsPage def articles_info(self): """ :return: create a dicitionary, with articles IDs as keys. Each entry has has a dictionary of parts/textblocks as values, with all the parts information (shape, coords and page_area). :rtype: dictionary #{'art0001 {'pa0001001': ['RECT', '1220,5,2893,221', 'page1 area1'], 'pa0001003': ['RECT', '2934,14,3709,211', 'page1 area3'], ....}} """ articlesId = [] articlesInfo = dict() for a_id in self.articlesId: articlesInfo[a_id] = dict() for p_id in self.articlesParts[a_id]: if p_id in self.partsCoord: self.partsCoord[p_id].append(self.partsPage[p_id]) articlesInfo[a_id][p_id] = self.partsCoord[p_id] return articlesInfo
33.948081
191
0.554558
from defoe.fmp.page import Page from lxml import etree import re class Document(object): def __init__(self, code, archive): self.namespaces = { "mods": "http://www.loc.gov/mods/v3", "mets": "http://www.loc.gov/METS/", "xsi": "http://www.w3.org/2001/XMLSchema-instance", "premis": "info:lc/xmlns/premis-v2", "dcterms": "http://purl.org/dc/terms/", "fits": "http://hul.harvard.edu/ois/xml/ns/fits/fits_output", "xlink": "http://www.w3.org/1999/xlink", } self.archive = archive self.code = code self.num_pages = 0 self.metadata = self.archive.open_document(self.code) self.metadata_tree = etree.parse(self.metadata) self.title = self.single_query("//mods:title/text()") self.page_codes = sorted( self.archive.document_codes[self.code], key=Document.sorter ) self.num_pages = len(self.page_codes) self.years = Document.parse_year(self.single_query("//mods:dateIssued/text()")) self.publisher = self.single_query("//mods:publisher/text()") self.place = self.single_query("//mods:placeTerm/text()") self.years += Document.parse_year(self.place) self.years = sorted(self.years) self.documentId = self.single_query("//mods:identifier/text()") if self.years: self.year = self.years[0] else: self.year = None self.date = self.single_query("//mods:dateIssued/text()") self.document_type = "newspaper" self.model = "fmp" parse_structLink() self.partsCoord = self.parse_structMap_Physical() self.num_articles = len(self.articlesId) [int(text[0:4])] long_pattern = re.compile("(1[6-9]\d\d)") short_pattern = re.compile("\d\d") results = [] chunks = iter(long_pattern.split(text)[1:]) for year, rest in zip(chunks, chunks): results.append(int(year)) century = year[0:2] short_years = short_pattern.findall(rest) for short_year in short_years: results.append(int(century + short_year)) return sorted(set(results)) except TypeError: return [] @staticmethod def sorter(page_code): codes = list(map(int, page_code.split("_"))) return codes def query(self, query): return self.metadata_tree.xpath(query, namespaces=self.namespaces) def single_query(self, query): result = self.query(query) if not result: return None return str(result[0]) def page(self, code): return Page(self, code) def get_document_info(self): return self.archive.get_document_info(self.code) def get_page_info(self, page_code): return self.archive.get_page_info(self.code, page_code) def __getitem__(self, index): return self.page(self.page_codes[index]) def __iter__(self): for page_code in self.page_codes: yield self.page(page_code) def scan_strings(self): for page in self: for string in page.strings: yield page, string def scan_tb(self): for page in self: for tb in page.tb: yield page, tb def scan_words(self): for page in self: for word in page.words: yield page, word def scan_wc(self): for page in self: for wc in page.wc: yield page, wc @property def articles(self): self.document_articles = {} articlesInfo = self.articles_info() for page in self: for tb in page.tb: for articleId in articlesInfo: for partId in articlesInfo[articleId]: if partId == tb.textblock_id: if articleId not in self.document_articles: self.document_articles[articleId] = [] tb.textblock_shape = articlesInfo[articleId][partId][0] tb.textblock_coords = articlesInfo[articleId][partId][1] tb.textblock_page_area = articlesInfo[articleId][partId][2] self.document_articles[articleId].append(tb) return self.document_articles def scan_cc(self): for page in self: for cc in page.cc: yield page, cc def scan_images(self): for page in self: for image in page.images: yield page, image def strings(self): for _, string in self.scan_strings(): yield string def tb(self): for _, tb in self.scan_tb(): yield tb def words(self): for _, word in self.scan_words(): yield word def images(self): for _, image in self.scan_images(): yield image def wc(self): for _, wc in self.scan_wc(): yield wc def cc(self): for _, cc in self.scan_cc(): yield cc def parse_structMap_Physical(self): partsCoord = dict() elem = self.metadata_tree.find( 'mets:structMap[@TYPE="PHYSICAL"]', self.namespaces ) for physic in elem: parts = physic.findall('mets:div[@TYPE="page"]', self.namespaces) for part in parts: metadata_parts = part.findall("mets:div", self.namespaces) for metadata in metadata_parts: fptr = metadata.find("mets:fptr", self.namespaces) for fp in fptr: partsCoord[list(metadata.values())[0]] = [ list(fp.values())[1], list(fp.values())[2], ] return partsCoord def parse_structMap_Logical(self): articlesId = [] elem = self.metadata_tree.find( 'mets:structMap[@TYPE="LOGICAL"]', self.namespaces ) for logic in elem: articles = logic.findall('mets:div[@TYPE="ARTICLE"]', self.namespaces) for article in articles: articlesId.append(list(article.values())[0]) return articlesId def parse_structLink(self): articlesId = [] articlesParts = dict() partsPage = dict() elem = self.metadata_tree.findall("mets:structLink", self.namespaces) for smlinkgrp in elem: parts = smlinkgrp.findall("mets:smLinkGrp", self.namespaces) for linklocator in smlinkgrp: linkl = linklocator.findall("mets:smLocatorLink", self.namespaces) article_parts = [] for link in linkl: idstring = list(link.values())[0] partId = re.sub("[^A-Za-z0-9]+", "", idstring) article_parts.append(partId) partsPage[partId] = list(link.values())[1] articlesParts[article_parts[0]] = article_parts[1:] return articlesParts, partsPage def articles_info(self): articlesId = [] articlesInfo = dict() for a_id in self.articlesId: articlesInfo[a_id] = dict() for p_id in self.articlesParts[a_id]: if p_id in self.partsCoord: self.partsCoord[p_id].append(self.partsPage[p_id]) articlesInfo[a_id][p_id] = self.partsCoord[p_id] return articlesInfo
true
true
f712f6eace062c31fb8cd15f637e74b23214b100
4,302
py
Python
tfnn_mlp.py
KiLJ4EdeN/tf2_nn
0ccec7692f061e7e066a4a2439683e3b09faa7bc
[ "MIT" ]
1
2021-11-19T16:04:39.000Z
2021-11-19T16:04:39.000Z
tfnn_mlp.py
KiLJ4EdeN/tf2_nn
0ccec7692f061e7e066a4a2439683e3b09faa7bc
[ "MIT" ]
null
null
null
tfnn_mlp.py
KiLJ4EdeN/tf2_nn
0ccec7692f061e7e066a4a2439683e3b09faa7bc
[ "MIT" ]
null
null
null
import tensorflow as tf import matplotlib.pyplot as plt # MNIST dataset parameters. num_classes = 10 # 0 to 9 digits num_features = 784 # 28*28 # Training parameters. learning_rate = 0.001 training_steps = 1000 batch_size = 256 display_step = 100 # Network parameters. n_hidden_1 = 128 # 1st layer number of neurons. n_hidden_2 = 256 # 2nd layer number of neurons. # Prepare MNIST data. from tensorflow.keras.datasets import mnist (X_train, Y_train), (X_test, Y_test) = mnist.load_data() # Convert to float32. X_train = tf.Variable(X_train, dtype=tf.float32) X_test = tf.Variable(X_test, dtype=tf.float32) # Flatten images to 1-D vector of 784 features (28*28). X_train = tf.reshape(X_train, [-1, num_features]) X_test = tf.reshape(X_test, [-1, num_features]) # Normalize images value from [0, 255] to [0, 1]. X_train = X_train / 255. X_test = X_test / 255. print(X_train.shape) print(X_test.shape) # Use tf.data API to shuffle and batch data. train_data = tf.data.Dataset.from_tensor_slices((X_train, Y_train)) # repeat adds the data again, prefetch speeds up outputs with the cost of ram. train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1) num_hidden_units = [n_hidden_1, n_hidden_2, num_classes] random_normal = tf.initializers.RandomNormal() # Weight of shape [784, 10], the 28*28 image features, and total number of classes. W1 = tf.Variable(random_normal([num_features, num_hidden_units[0]]), name="weight1") W2 = tf.Variable(random_normal([num_hidden_units[0], num_hidden_units[1]]), name="weight2") W3 = tf.Variable(random_normal([num_hidden_units[1], num_hidden_units[2]]), name="weight3") # Bias of shape [10], the total number of classes. b1 = tf.Variable(tf.zeros([num_hidden_units[0]]), name="bias1") b2 = tf.Variable(tf.zeros([num_hidden_units[1]]), name="bias2") b3 = tf.Variable(tf.zeros([num_hidden_units[2]]), name="bias3") def multilayer_perceptron(x): # Apply softmax to normalize the logits to a probability distribution. h1 = tf.nn.relu(tf.add(tf.matmul(x, W1), b1)) h2 = tf.nn.relu(tf.add(tf.matmul(h1, W2), b2)) h3 = tf.nn.relu(tf.add(tf.matmul(h2, W3), b3)) return tf.nn.softmax(h3) # Cross-Entropy loss function. def cross_entropy(y_pred, y_true): # Encode label to a one hot vector. y_true = tf.one_hot(y_true, depth=num_classes) # Clip prediction values to avoid log(0) error. y_pred = tf.clip_by_value(y_pred, 1e-9, 1.) # Compute cross-entropy. return tf.reduce_mean(-tf.reduce_sum(y_true * tf.math.log(y_pred))) # Accuracy metric. def accuracy(y_pred, y_true): # Predicted class is the index of highest score in prediction vector (i.e. argmax). correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64)) return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1) # Stochastic gradient descent optimizer. optimizer = tf.optimizers.SGD(learning_rate) # Optimization process. def run_optimization(x, y): # Wrap computation inside a GradientTape for automatic differentiation. with tf.GradientTape() as g: pred = multilayer_perceptron(x) loss = cross_entropy(pred, y) # Compute gradients. gradients = g.gradient(loss, [W1, W2, W3, b1, b2, b3]) # Update W and b following gradients. optimizer.apply_gradients(zip(gradients, [W1, W2, W3, b1, b2, b3])) # Run training for the given number of steps. for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1): # Run the optimization to update W and b values. run_optimization(batch_x, batch_y) if step % display_step == 0: pred = multilayer_perceptron(batch_x) loss = cross_entropy(pred, batch_y) acc = accuracy(pred, batch_y) print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc)) # Test model on validation set. pred = multilayer_perceptron(X_test) print("Test Accuracy: %f" % accuracy(pred, Y_test)) # Visualize predictions. # Predict 5 images from validation set. n_images = 5 test_images = X_test[:n_images] predictions = multilayer_perceptron(test_images) # Display image and model prediction. for i in range(n_images): plt.imshow(tf.reshape(test_images[i], [28, 28]), cmap='gray') plt.show() print("Model prediction: %i" % tf.argmax(predictions.numpy()[i]))
37.736842
91
0.718968
import tensorflow as tf import matplotlib.pyplot as plt num_classes = 10 num_features = 784 learning_rate = 0.001 training_steps = 1000 batch_size = 256 display_step = 100 n_hidden_1 = 128 n_hidden_2 = 256 from tensorflow.keras.datasets import mnist (X_train, Y_train), (X_test, Y_test) = mnist.load_data() X_train = tf.Variable(X_train, dtype=tf.float32) X_test = tf.Variable(X_test, dtype=tf.float32) X_train = tf.reshape(X_train, [-1, num_features]) X_test = tf.reshape(X_test, [-1, num_features]) X_train = X_train / 255. X_test = X_test / 255. print(X_train.shape) print(X_test.shape) train_data = tf.data.Dataset.from_tensor_slices((X_train, Y_train)) train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1) num_hidden_units = [n_hidden_1, n_hidden_2, num_classes] random_normal = tf.initializers.RandomNormal() W1 = tf.Variable(random_normal([num_features, num_hidden_units[0]]), name="weight1") W2 = tf.Variable(random_normal([num_hidden_units[0], num_hidden_units[1]]), name="weight2") W3 = tf.Variable(random_normal([num_hidden_units[1], num_hidden_units[2]]), name="weight3") b1 = tf.Variable(tf.zeros([num_hidden_units[0]]), name="bias1") b2 = tf.Variable(tf.zeros([num_hidden_units[1]]), name="bias2") b3 = tf.Variable(tf.zeros([num_hidden_units[2]]), name="bias3") def multilayer_perceptron(x): h1 = tf.nn.relu(tf.add(tf.matmul(x, W1), b1)) h2 = tf.nn.relu(tf.add(tf.matmul(h1, W2), b2)) h3 = tf.nn.relu(tf.add(tf.matmul(h2, W3), b3)) return tf.nn.softmax(h3) def cross_entropy(y_pred, y_true): y_true = tf.one_hot(y_true, depth=num_classes) y_pred = tf.clip_by_value(y_pred, 1e-9, 1.) return tf.reduce_mean(-tf.reduce_sum(y_true * tf.math.log(y_pred))) def accuracy(y_pred, y_true): correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64)) return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1) optimizer = tf.optimizers.SGD(learning_rate) def run_optimization(x, y): with tf.GradientTape() as g: pred = multilayer_perceptron(x) loss = cross_entropy(pred, y) gradients = g.gradient(loss, [W1, W2, W3, b1, b2, b3]) optimizer.apply_gradients(zip(gradients, [W1, W2, W3, b1, b2, b3])) for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1): run_optimization(batch_x, batch_y) if step % display_step == 0: pred = multilayer_perceptron(batch_x) loss = cross_entropy(pred, batch_y) acc = accuracy(pred, batch_y) print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc)) pred = multilayer_perceptron(X_test) print("Test Accuracy: %f" % accuracy(pred, Y_test)) n_images = 5 test_images = X_test[:n_images] predictions = multilayer_perceptron(test_images) for i in range(n_images): plt.imshow(tf.reshape(test_images[i], [28, 28]), cmap='gray') plt.show() print("Model prediction: %i" % tf.argmax(predictions.numpy()[i]))
true
true
f712f7710849a450ed29af68d0147dcb2e216c9f
665
py
Python
tests/conftest.py
sebastien-prudhomme/docker-pytest
fc1b4ed3af860a40f95bff04b7f8e434fe16432e
[ "MIT" ]
null
null
null
tests/conftest.py
sebastien-prudhomme/docker-pytest
fc1b4ed3af860a40f95bff04b7f8e434fe16432e
[ "MIT" ]
85
2021-11-23T22:30:20.000Z
2022-02-21T03:14:01.000Z
tests/conftest.py
sebastien-prudhomme/docker-pytest
fc1b4ed3af860a40f95bff04b7f8e434fe16432e
[ "MIT" ]
1
2021-12-06T17:33:06.000Z
2021-12-06T17:33:06.000Z
import subprocess import pytest import testinfra def pytest_addoption(parser): parser.addoption("--image") @pytest.fixture(scope="session") def image(request): return request.config.getoption("--image") @pytest.fixture(scope="session") def host(image): run_command = ["docker", "run", "-d", image, "sleep", "infinity"] output = subprocess.check_output(run_command) docker_id = output.decode().rstrip() yield testinfra.get_host(f"docker://{docker_id}") rm_command = ["docker", "rm", "-f", docker_id] subprocess.check_call(rm_command) @pytest.fixture(scope="session") def packages(host): return host.pip.get_packages()
20.78125
69
0.697744
import subprocess import pytest import testinfra def pytest_addoption(parser): parser.addoption("--image") @pytest.fixture(scope="session") def image(request): return request.config.getoption("--image") @pytest.fixture(scope="session") def host(image): run_command = ["docker", "run", "-d", image, "sleep", "infinity"] output = subprocess.check_output(run_command) docker_id = output.decode().rstrip() yield testinfra.get_host(f"docker://{docker_id}") rm_command = ["docker", "rm", "-f", docker_id] subprocess.check_call(rm_command) @pytest.fixture(scope="session") def packages(host): return host.pip.get_packages()
true
true
f712f7cf75786e46db7389f593830972a3844b31
2,501
py
Python
cirq-core/cirq/contrib/routing/device_test.py
stubbi/Cirq
6d2cd16991bd7fde352010d31010f85d7eafc0ba
[ "Apache-2.0" ]
2
2019-01-12T07:10:32.000Z
2020-09-08T03:47:22.000Z
cirq-core/cirq/contrib/routing/device_test.py
resduo/Cirq
680f897345eb1c71c9242515edda8f04b8594319
[ "Apache-2.0" ]
5
2020-08-20T01:03:57.000Z
2021-04-13T00:26:48.000Z
cirq-core/cirq/contrib/routing/device_test.py
resduo/Cirq
680f897345eb1c71c9242515edda8f04b8594319
[ "Apache-2.0" ]
1
2019-06-17T11:21:53.000Z
2019-06-17T11:21:53.000Z
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import networkx as nx import cirq import cirq.contrib.routing as ccr def test_xmon_device_to_graph(): with cirq.testing.assert_deprecated("gridqubits_to_graph_device", deadline="v0.12"): class TestDevice: qubits = cirq.GridQubit.rect(2, 11) foxtail_graph = ccr.xmon_device_to_graph(TestDevice()) two_by_eleven_grid_graph = ccr.get_grid_device_graph(2, 11) assert foxtail_graph.nodes == two_by_eleven_grid_graph.nodes assert foxtail_graph.edges() == two_by_eleven_grid_graph.edges() @pytest.mark.parametrize('n_qubits', (2, 5, 11)) def test_get_linear_device_graph(n_qubits): graph = ccr.get_linear_device_graph(n_qubits) assert sorted(graph) == cirq.LineQubit.range(n_qubits) assert len(graph.edges()) == n_qubits - 1 assert all(abs(a.x - b.x) == 1 for a, b in graph.edges()) def test_nx_qubit_layout(): grid_qubit_graph = ccr.gridqubits_to_graph_device(cirq.GridQubit.rect(5, 5)) pos = ccr.nx_qubit_layout(grid_qubit_graph) assert len(pos) == len(grid_qubit_graph) for k, (x, y) in pos.items(): assert x == k.col assert y == -k.row def test_nx_qubit_layout_2(): g = nx.from_edgelist( [ (cirq.LineQubit(0), cirq.LineQubit(1)), (cirq.LineQubit(1), cirq.LineQubit(2)), ] ) pos = ccr.nx_qubit_layout(g) for k, (x, y) in pos.items(): assert x == k.x assert y == 0.5 def test_nx_qubit_layout_3(): g = nx.from_edgelist( [ (cirq.NamedQubit('a'), cirq.NamedQubit('b')), (cirq.NamedQubit('b'), cirq.NamedQubit('c')), ] ) node_to_i = { cirq.NamedQubit('a'): 0, cirq.NamedQubit('b'): 1, cirq.NamedQubit('c'): 2, } pos = ccr.nx_qubit_layout(g) for k, (x, y) in pos.items(): assert x == 0.5 assert y == node_to_i[k] + 1
30.5
88
0.656937
import pytest import networkx as nx import cirq import cirq.contrib.routing as ccr def test_xmon_device_to_graph(): with cirq.testing.assert_deprecated("gridqubits_to_graph_device", deadline="v0.12"): class TestDevice: qubits = cirq.GridQubit.rect(2, 11) foxtail_graph = ccr.xmon_device_to_graph(TestDevice()) two_by_eleven_grid_graph = ccr.get_grid_device_graph(2, 11) assert foxtail_graph.nodes == two_by_eleven_grid_graph.nodes assert foxtail_graph.edges() == two_by_eleven_grid_graph.edges() @pytest.mark.parametrize('n_qubits', (2, 5, 11)) def test_get_linear_device_graph(n_qubits): graph = ccr.get_linear_device_graph(n_qubits) assert sorted(graph) == cirq.LineQubit.range(n_qubits) assert len(graph.edges()) == n_qubits - 1 assert all(abs(a.x - b.x) == 1 for a, b in graph.edges()) def test_nx_qubit_layout(): grid_qubit_graph = ccr.gridqubits_to_graph_device(cirq.GridQubit.rect(5, 5)) pos = ccr.nx_qubit_layout(grid_qubit_graph) assert len(pos) == len(grid_qubit_graph) for k, (x, y) in pos.items(): assert x == k.col assert y == -k.row def test_nx_qubit_layout_2(): g = nx.from_edgelist( [ (cirq.LineQubit(0), cirq.LineQubit(1)), (cirq.LineQubit(1), cirq.LineQubit(2)), ] ) pos = ccr.nx_qubit_layout(g) for k, (x, y) in pos.items(): assert x == k.x assert y == 0.5 def test_nx_qubit_layout_3(): g = nx.from_edgelist( [ (cirq.NamedQubit('a'), cirq.NamedQubit('b')), (cirq.NamedQubit('b'), cirq.NamedQubit('c')), ] ) node_to_i = { cirq.NamedQubit('a'): 0, cirq.NamedQubit('b'): 1, cirq.NamedQubit('c'): 2, } pos = ccr.nx_qubit_layout(g) for k, (x, y) in pos.items(): assert x == 0.5 assert y == node_to_i[k] + 1
true
true
f712f7f0a4f7bb5575b634061313c5538d1a265f
10,549
py
Python
src/generator/AutoRest.Python.Tests/Expected/AcceptanceTests/BodyBoolean/auto_rest_bool_test_service/operations/bool_model_operations.py
ljhljh235/AutoRest
b9ab4000e9b93d16925db84d08bafc225b098f8e
[ "MIT" ]
3
2018-03-20T22:36:32.000Z
2021-07-15T02:36:51.000Z
src/generator/AutoRest.Python.Tests/Expected/AcceptanceTests/BodyBoolean/auto_rest_bool_test_service/operations/bool_model_operations.py
ljhljh235/AutoRest
b9ab4000e9b93d16925db84d08bafc225b098f8e
[ "MIT" ]
null
null
null
src/generator/AutoRest.Python.Tests/Expected/AcceptanceTests/BodyBoolean/auto_rest_bool_test_service/operations/bool_model_operations.py
ljhljh235/AutoRest
b9ab4000e9b93d16925db84d08bafc225b098f8e
[ "MIT" ]
1
2019-07-20T12:20:03.000Z
2019-07-20T12:20:03.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.pipeline import ClientRawResponse from .. import models class BoolModelOperations(object): """BoolModelOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.config = config def get_true( self, custom_headers=None, raw=False, **operation_config): """Get true Boolean value. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: bool :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`ErrorException<fixtures.acceptancetestsbodyboolean.models.ErrorException>` """ # Construct URL url = '/bool/true' # Construct parameters query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('bool', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def put_true( self, bool_body, custom_headers=None, raw=False, **operation_config): """Set Boolean value true. :param bool_body: :type bool_body: bool :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: None :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`ErrorException<fixtures.acceptancetestsbodyboolean.models.ErrorException>` """ # Construct URL url = '/bool/true' # Construct parameters query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct body body_content = self._serialize.body(bool_body, 'bool') # Construct and send request request = self._client.put(url, query_parameters) response = self._client.send( request, header_parameters, body_content, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def get_false( self, custom_headers=None, raw=False, **operation_config): """Get false Boolean value. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: bool :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`ErrorException<fixtures.acceptancetestsbodyboolean.models.ErrorException>` """ # Construct URL url = '/bool/false' # Construct parameters query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('bool', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def put_false( self, bool_body, custom_headers=None, raw=False, **operation_config): """Set Boolean value false. :param bool_body: :type bool_body: bool :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: None :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`ErrorException<fixtures.acceptancetestsbodyboolean.models.ErrorException>` """ # Construct URL url = '/bool/false' # Construct parameters query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct body body_content = self._serialize.body(bool_body, 'bool') # Construct and send request request = self._client.put(url, query_parameters) response = self._client.send( request, header_parameters, body_content, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def get_null( self, custom_headers=None, raw=False, **operation_config): """Get null Boolean value. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: bool :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`ErrorException<fixtures.acceptancetestsbodyboolean.models.ErrorException>` """ # Construct URL url = '/bool/null' # Construct parameters query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('bool', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def get_invalid( self, custom_headers=None, raw=False, **operation_config): """Get invalid Boolean value. :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :rtype: bool :rtype: :class:`ClientRawResponse<msrest.pipeline.ClientRawResponse>` if raw=true :raises: :class:`ErrorException<fixtures.acceptancetestsbodyboolean.models.ErrorException>` """ # Construct URL url = '/bool/invalid' # Construct parameters query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('bool', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized
35.046512
91
0.645274
from msrest.pipeline import ClientRawResponse from .. import models class BoolModelOperations(object): def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.config = config def get_true( self, custom_headers=None, raw=False, **operation_config): url = '/bool/true' query_parameters = {} header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('bool', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def put_true( self, bool_body, custom_headers=None, raw=False, **operation_config): url = '/bool/true' query_parameters = {} header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) body_content = self._serialize.body(bool_body, 'bool') request = self._client.put(url, query_parameters) response = self._client.send( request, header_parameters, body_content, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def get_false( self, custom_headers=None, raw=False, **operation_config): url = '/bool/false' query_parameters = {} header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('bool', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def put_false( self, bool_body, custom_headers=None, raw=False, **operation_config): url = '/bool/false' query_parameters = {} header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) body_content = self._serialize.body(bool_body, 'bool') request = self._client.put(url, query_parameters) response = self._client.send( request, header_parameters, body_content, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def get_null( self, custom_headers=None, raw=False, **operation_config): url = '/bool/null' query_parameters = {} header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('bool', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def get_invalid( self, custom_headers=None, raw=False, **operation_config): url = '/bool/invalid' query_parameters = {} header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, **operation_config) if response.status_code not in [200]: raise models.ErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('bool', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized
true
true
f712f93fa50415847d9a2a993a502e1fbea5717c
761
py
Python
ConfirmVersionAndTag.py
matthewfcarlson/edk2-pytool-extensions
60a6b32a8a9e8deaed7fd197779a27a8bbf44c84
[ "BSD-2-Clause-Patent" ]
null
null
null
ConfirmVersionAndTag.py
matthewfcarlson/edk2-pytool-extensions
60a6b32a8a9e8deaed7fd197779a27a8bbf44c84
[ "BSD-2-Clause-Patent" ]
null
null
null
ConfirmVersionAndTag.py
matthewfcarlson/edk2-pytool-extensions
60a6b32a8a9e8deaed7fd197779a27a8bbf44c84
[ "BSD-2-Clause-Patent" ]
null
null
null
## @file # Quick script to check that the wheel/package created is aligned on a git tag. # Official releases should not be made from non-tagged code. # # Copyright (c) Microsoft Corporation # # SPDX-License-Identifier: BSD-2-Clause-Patent ## import glob import os import sys p = os.path.join(os.getcwd(), "dist") whlfile = glob.glob(os.path.join(p, "*.whl")) if(len(whlfile) != 1): for filename in whlfile: print(filename) raise Exception("Too many wheel files") rfn = os.path.relpath(whlfile[0], os.getcwd()) v = rfn.split("-")[1] if v.count(".") != 2: raise Exception("Version %s not in format major.minor.patch" % v) if "dev" in v: raise Exception("No Dev versions allowed to be published.") print("version: " + str(v)) sys.exit(0)
27.178571
79
0.678055
import glob import os import sys p = os.path.join(os.getcwd(), "dist") whlfile = glob.glob(os.path.join(p, "*.whl")) if(len(whlfile) != 1): for filename in whlfile: print(filename) raise Exception("Too many wheel files") rfn = os.path.relpath(whlfile[0], os.getcwd()) v = rfn.split("-")[1] if v.count(".") != 2: raise Exception("Version %s not in format major.minor.patch" % v) if "dev" in v: raise Exception("No Dev versions allowed to be published.") print("version: " + str(v)) sys.exit(0)
true
true
f712f954c7bbf6e7b96547d67794e6b38cba128d
278
py
Python
ex096.py
LeoWshington/Exercicios_CursoEmVideo_Python
294d14d9aaab5e32aaf39d70b0cd1266f0b55a02
[ "MIT" ]
null
null
null
ex096.py
LeoWshington/Exercicios_CursoEmVideo_Python
294d14d9aaab5e32aaf39d70b0cd1266f0b55a02
[ "MIT" ]
null
null
null
ex096.py
LeoWshington/Exercicios_CursoEmVideo_Python
294d14d9aaab5e32aaf39d70b0cd1266f0b55a02
[ "MIT" ]
null
null
null
def area(c, la): print(f'A area de um terreno {c :.2f}m x {la :.2f}m é de {c * la :.2f}m².') # Programa principal print(f'{"Controle de Terrenos" :^30}\n' f'{"-" * 30}') comp = float(input('Comprimento (m)): ')) larg = float(input('Largura (m): ')) area(comp, larg)
25.272727
79
0.571942
def area(c, la): print(f'A area de um terreno {c :.2f}m x {la :.2f}m é de {c * la :.2f}m².') print(f'{"Controle de Terrenos" :^30}\n' f'{"-" * 30}') comp = float(input('Comprimento (m)): ')) larg = float(input('Largura (m): ')) area(comp, larg)
true
true
f712f97584455965df05168aab1f03822ef439d1
977
py
Python
igibson/utils/data_utils/ext_object/scripts/step_2_merge.py
mamadbiabon/iGibson
d416a470240eb7ad86e04fee475ae4bd67263a7c
[ "MIT" ]
360
2020-04-02T11:12:09.000Z
2022-03-24T21:46:58.000Z
igibson/utils/data_utils/ext_object/scripts/step_2_merge.py
mamadbiabon/iGibson
d416a470240eb7ad86e04fee475ae4bd67263a7c
[ "MIT" ]
169
2020-04-07T21:01:05.000Z
2022-03-31T10:07:39.000Z
igibson/utils/data_utils/ext_object/scripts/step_2_merge.py
mamadbiabon/iGibson
d416a470240eb7ad86e04fee475ae4bd67263a7c
[ "MIT" ]
94
2020-04-09T23:22:17.000Z
2022-03-17T21:49:03.000Z
import os import sys import bpy script_dir = os.path.dirname(os.path.abspath(__file__)) utils_dir = os.path.join(script_dir, "../../blender_utils") sys.path.append(utils_dir) from utils import clean_unused, import_obj_folder model_id = sys.argv[-3] obj_dir = sys.argv[-2] save_dir = sys.argv[-1] os.makedirs(save_dir, exist_ok=True) for on in bpy.context.scene.objects.keys(): obj = bpy.context.scene.objects[on] bpy.data.objects.remove(obj) clean_unused() import_obj_folder("object", obj_dir, use_split_objects=True) for obj in bpy.context.scene.objects: obj.select_set(True) bpy.context.view_layer.objects.active = obj bpy.ops.object.select_all(action="SELECT") save_path = os.path.join(save_dir, "{}_cm.obj".format(model_id)) bpy.ops.export_scene.obj( filepath=save_path, use_selection=True, axis_up="Z", axis_forward="X", use_materials=False, use_normals=False, use_uvs=False, use_triangles=True, path_mode="COPY", )
26.405405
64
0.733879
import os import sys import bpy script_dir = os.path.dirname(os.path.abspath(__file__)) utils_dir = os.path.join(script_dir, "../../blender_utils") sys.path.append(utils_dir) from utils import clean_unused, import_obj_folder model_id = sys.argv[-3] obj_dir = sys.argv[-2] save_dir = sys.argv[-1] os.makedirs(save_dir, exist_ok=True) for on in bpy.context.scene.objects.keys(): obj = bpy.context.scene.objects[on] bpy.data.objects.remove(obj) clean_unused() import_obj_folder("object", obj_dir, use_split_objects=True) for obj in bpy.context.scene.objects: obj.select_set(True) bpy.context.view_layer.objects.active = obj bpy.ops.object.select_all(action="SELECT") save_path = os.path.join(save_dir, "{}_cm.obj".format(model_id)) bpy.ops.export_scene.obj( filepath=save_path, use_selection=True, axis_up="Z", axis_forward="X", use_materials=False, use_normals=False, use_uvs=False, use_triangles=True, path_mode="COPY", )
true
true
f712f9a4f811eb447ce4ca49292f63080e7cea3d
9,291
py
Python
app/fsr_cfg.py
tappi287/openvr_fsr_app
a41feca64b53a42dc4808ea5f16ad1d3a851eaf9
[ "MIT" ]
146
2021-07-21T23:03:53.000Z
2022-03-30T15:03:01.000Z
app/fsr_cfg.py
tappi287/openvr_fsr_app
a41feca64b53a42dc4808ea5f16ad1d3a851eaf9
[ "MIT" ]
45
2021-08-09T12:19:44.000Z
2022-03-31T14:22:08.000Z
app/fsr_cfg.py
tappi287/openvr_fsr_app
a41feca64b53a42dc4808ea5f16ad1d3a851eaf9
[ "MIT" ]
5
2021-09-03T16:12:15.000Z
2022-01-22T07:45:35.000Z
from .openvr_mod_cfg import OpenVRModCfgSetting, OpenVRModSettings class FsrSettings(OpenVRModSettings): cfg_key = 'fsr' format = 'cfg' def __init__(self): self.enabled = OpenVRModCfgSetting( key='enabled', name='Enabled', category='FSR Settings', desc="enable image upscaling through AMD's FSR or NVIDIA's NIS", value=True, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.useNIS = OpenVRModCfgSetting( key='useNIS', name="Use NVIDIA's Image Scaling", category='FSR Settings', desc="if enabled, uses NVIDIA's Image Scaling instead of the default " "AMD FidelityFX SuperResolution. Both algorithms work similarly, but produce" "somewhat different results. You may want to experiment switching between the" "two to determine which one you like better for a particular game.", value=False, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.renderScale = OpenVRModCfgSetting( key='renderScale', name='Render Scale', category='FSR Settings', desc="Per-dimension render scale. If <1, will lower the game's render resolution" "accordingly and afterwards upscale to the native resolution set in SteamVR. " "If >1, the game will render at its native resolution, and afterwards the " "image is upscaled to a higher resolution as per the given value. " "If =1, effectively disables upsampling, but you'll still get the sharpening stage. " "AMD presets: Ultra Quality => 0.77 Quality => 0.67 Balanced => 0.59 " "Performance => 0.50", value=0.77, settings=[{'settingType': 'range', 'min': 0.10, 'max': 3.0, 'step': 0.01, 'display': 'floatpercent'}] ) self.sharpness = OpenVRModCfgSetting( key='sharpness', name='Sharpness', category='FSR Settings', desc="tune sharpness, values range from 0 to 1", value=0.9, settings=[{'settingType': 'range', 'min': 0.10, 'max': 3.0, 'step': 0.01, 'display': 'floatpercent'}] ) self.radius = OpenVRModCfgSetting( key='radius', name='Radius', category='FSR Settings', desc="Only apply FSR/NIS to the given radius around the center of the image. " "Anything outside this radius is upscaled by simple bilinear filtering," " which is cheaper and thus saves a bit of performance. Due to the design" " of current HMD lenses, you can experiment with fairly small radii and may" " still not see a noticeable difference." " Sensible values probably lie somewhere between [0.2, 1.0]. However, note" " that, since the image is not spheric, even a value of 1.0 technically still" " skips some pixels in the corner of the image, so if you want to completely" " disable this optimization, you can choose a value of 2." " IMPORTANT: if you face issues like the view appearing offset or mismatched" " between the eyes, turn this optimization off by setting the value to 2.0", value=0.50, settings=[{'settingType': 'range', 'min': 0.20, 'max': 2.00, 'step': 0.01}] ) self.applyMIPBias = OpenVRModCfgSetting( key='applyMIPBias', name='Apply MIP Bias', category='FSR Settings', desc="if enabled, applies a negative LOD bias to texture MIP levels" " should theoretically improve texture detail in the upscaled image" " IMPORTANT: if you experience issues with rendering like disappearing" " textures or strange patterns in the rendering, try turning this off" " by setting the value to false.", value=True, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.debugMode = OpenVRModCfgSetting( key='debugMode', name='Debug Mode', category='FSR Settings', desc="If enabled, will visualize the radius to which FSR/NIS is applied." " Will also periodically log the GPU cost for applying FSR/NIS in the" " current configuration.", value=False, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) # --- # Hotkey Settings # --- self.hotkeys = OpenVRModCfgSetting( key='hotkeys', name='Hotkeys', category='Hotkey Settings', hidden=True, value=dict(), settings=list(), ) self.hotkeysEnabled = OpenVRModCfgSetting( key='enabled', parent=self.hotkeys.key, name='Hotkeys Enabled', category='Hotkey Settings', desc="If enabled, you can change certain settings of the mod on the fly by" " pressing certain hotkeys. Good to see the visual difference. But you" " may want to turn off hotkeys during regular play to prevent them from" " interfering with game hotkeys.", value=True, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.hotkeysRequireCtrl = OpenVRModCfgSetting( key='requireCtrl', parent=self.hotkeys.key, name='Require Ctrl', category='Hotkey Settings', desc="if enabled, must also be holding CTRL key to use hotkeys", value=False, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.hotkeysRequireAlt = OpenVRModCfgSetting( key='requireAlt', parent=self.hotkeys.key, name='Require Alt', category='Hotkey Settings', desc="if enabled, must also be holding ALT key to use hotkeys", value=False, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.hotkeysRequireShift = OpenVRModCfgSetting( key='requireShift', parent=self.hotkeys.key, name='Require Shift', category='Hotkey Settings', desc="if enabled, must also be holding SHIFT key to use hotkeys", value=False, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.hotkeysToggleUseNIS = OpenVRModCfgSetting( key='toggleUseNIS', parent=self.hotkeys.key, name='Toggle NIS', category='Hotkeys', desc='switch between FSR and NIS', value=112, # F1 settings=[{'settingType': 'key'}] ) self.hotkeysToggleDebugMode = OpenVRModCfgSetting( key='toggleDebugMode', parent=self.hotkeys.key, name='Toggle Debug Mode', category='Hotkeys', desc='toggle debug mode on or off', value=113, # F2 settings=[{'settingType': 'key'}] ) self.hotkeysDecreaseSharpness = OpenVRModCfgSetting( key='decreaseSharpness', parent=self.hotkeys.key, name='Decrease Sharpness', category='Hotkeys', desc='decrease sharpness by 0.05', value=114, # F3 settings=[{'settingType': 'key'}] ) self.hotkeysIncreaseSharpness = OpenVRModCfgSetting( key='increaseSharpness', parent=self.hotkeys.key, name='Increase Sharpness', category='Hotkeys', desc='increase sharpness by 0.05', value=115, # F4 settings=[{'settingType': 'key'}] ) self.hotkeysDecreaseRadius = OpenVRModCfgSetting( key='decreaseRadius', parent=self.hotkeys.key, name='Decrease Radius', category='Hotkeys', desc='decrease sharpening radius by 0.05', value=116, # F5 settings=[{'settingType': 'key'}] ) self.hotkeysIncreaseRadius = OpenVRModCfgSetting( key='increaseRadius', parent=self.hotkeys.key, name='Increase Radius', category='Hotkeys', desc='increase sharpening radius by 0.05', value=117, # F6 settings=[{'settingType': 'key'}] ) self.hotkeysCaptureOutput = OpenVRModCfgSetting( key='captureOutput', parent=self.hotkeys.key, name='Capture Output', category='Hotkeys', desc='take a screenshot of the final output sent to the HMD', value=118, # F7 settings=[{'settingType': 'key'}] ) self.option_field_names = self.get_setting_fields()
45.321951
113
0.551394
from .openvr_mod_cfg import OpenVRModCfgSetting, OpenVRModSettings class FsrSettings(OpenVRModSettings): cfg_key = 'fsr' format = 'cfg' def __init__(self): self.enabled = OpenVRModCfgSetting( key='enabled', name='Enabled', category='FSR Settings', desc="enable image upscaling through AMD's FSR or NVIDIA's NIS", value=True, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.useNIS = OpenVRModCfgSetting( key='useNIS', name="Use NVIDIA's Image Scaling", category='FSR Settings', desc="if enabled, uses NVIDIA's Image Scaling instead of the default " "AMD FidelityFX SuperResolution. Both algorithms work similarly, but produce" "somewhat different results. You may want to experiment switching between the" "two to determine which one you like better for a particular game.", value=False, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.renderScale = OpenVRModCfgSetting( key='renderScale', name='Render Scale', category='FSR Settings', desc="Per-dimension render scale. If <1, will lower the game's render resolution" "accordingly and afterwards upscale to the native resolution set in SteamVR. " "If >1, the game will render at its native resolution, and afterwards the " "image is upscaled to a higher resolution as per the given value. " "If =1, effectively disables upsampling, but you'll still get the sharpening stage. " "AMD presets: Ultra Quality => 0.77 Quality => 0.67 Balanced => 0.59 " "Performance => 0.50", value=0.77, settings=[{'settingType': 'range', 'min': 0.10, 'max': 3.0, 'step': 0.01, 'display': 'floatpercent'}] ) self.sharpness = OpenVRModCfgSetting( key='sharpness', name='Sharpness', category='FSR Settings', desc="tune sharpness, values range from 0 to 1", value=0.9, settings=[{'settingType': 'range', 'min': 0.10, 'max': 3.0, 'step': 0.01, 'display': 'floatpercent'}] ) self.radius = OpenVRModCfgSetting( key='radius', name='Radius', category='FSR Settings', desc="Only apply FSR/NIS to the given radius around the center of the image. " "Anything outside this radius is upscaled by simple bilinear filtering," " which is cheaper and thus saves a bit of performance. Due to the design" " of current HMD lenses, you can experiment with fairly small radii and may" " still not see a noticeable difference." " Sensible values probably lie somewhere between [0.2, 1.0]. However, note" " that, since the image is not spheric, even a value of 1.0 technically still" " skips some pixels in the corner of the image, so if you want to completely" " disable this optimization, you can choose a value of 2." " IMPORTANT: if you face issues like the view appearing offset or mismatched" " between the eyes, turn this optimization off by setting the value to 2.0", value=0.50, settings=[{'settingType': 'range', 'min': 0.20, 'max': 2.00, 'step': 0.01}] ) self.applyMIPBias = OpenVRModCfgSetting( key='applyMIPBias', name='Apply MIP Bias', category='FSR Settings', desc="if enabled, applies a negative LOD bias to texture MIP levels" " should theoretically improve texture detail in the upscaled image" " IMPORTANT: if you experience issues with rendering like disappearing" " textures or strange patterns in the rendering, try turning this off" " by setting the value to false.", value=True, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.debugMode = OpenVRModCfgSetting( key='debugMode', name='Debug Mode', category='FSR Settings', desc="If enabled, will visualize the radius to which FSR/NIS is applied." " Will also periodically log the GPU cost for applying FSR/NIS in the" " current configuration.", value=False, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.hotkeys = OpenVRModCfgSetting( key='hotkeys', name='Hotkeys', category='Hotkey Settings', hidden=True, value=dict(), settings=list(), ) self.hotkeysEnabled = OpenVRModCfgSetting( key='enabled', parent=self.hotkeys.key, name='Hotkeys Enabled', category='Hotkey Settings', desc="If enabled, you can change certain settings of the mod on the fly by" " pressing certain hotkeys. Good to see the visual difference. But you" " may want to turn off hotkeys during regular play to prevent them from" " interfering with game hotkeys.", value=True, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.hotkeysRequireCtrl = OpenVRModCfgSetting( key='requireCtrl', parent=self.hotkeys.key, name='Require Ctrl', category='Hotkey Settings', desc="if enabled, must also be holding CTRL key to use hotkeys", value=False, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.hotkeysRequireAlt = OpenVRModCfgSetting( key='requireAlt', parent=self.hotkeys.key, name='Require Alt', category='Hotkey Settings', desc="if enabled, must also be holding ALT key to use hotkeys", value=False, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.hotkeysRequireShift = OpenVRModCfgSetting( key='requireShift', parent=self.hotkeys.key, name='Require Shift', category='Hotkey Settings', desc="if enabled, must also be holding SHIFT key to use hotkeys", value=False, settings=[{'value': True, 'name': 'On'}, {'value': False, 'name': 'Off'}] ) self.hotkeysToggleUseNIS = OpenVRModCfgSetting( key='toggleUseNIS', parent=self.hotkeys.key, name='Toggle NIS', category='Hotkeys', desc='switch between FSR and NIS', value=112, settings=[{'settingType': 'key'}] ) self.hotkeysToggleDebugMode = OpenVRModCfgSetting( key='toggleDebugMode', parent=self.hotkeys.key, name='Toggle Debug Mode', category='Hotkeys', desc='toggle debug mode on or off', value=113, settings=[{'settingType': 'key'}] ) self.hotkeysDecreaseSharpness = OpenVRModCfgSetting( key='decreaseSharpness', parent=self.hotkeys.key, name='Decrease Sharpness', category='Hotkeys', desc='decrease sharpness by 0.05', value=114, settings=[{'settingType': 'key'}] ) self.hotkeysIncreaseSharpness = OpenVRModCfgSetting( key='increaseSharpness', parent=self.hotkeys.key, name='Increase Sharpness', category='Hotkeys', desc='increase sharpness by 0.05', value=115, settings=[{'settingType': 'key'}] ) self.hotkeysDecreaseRadius = OpenVRModCfgSetting( key='decreaseRadius', parent=self.hotkeys.key, name='Decrease Radius', category='Hotkeys', desc='decrease sharpening radius by 0.05', value=116, settings=[{'settingType': 'key'}] ) self.hotkeysIncreaseRadius = OpenVRModCfgSetting( key='increaseRadius', parent=self.hotkeys.key, name='Increase Radius', category='Hotkeys', desc='increase sharpening radius by 0.05', value=117, settings=[{'settingType': 'key'}] ) self.hotkeysCaptureOutput = OpenVRModCfgSetting( key='captureOutput', parent=self.hotkeys.key, name='Capture Output', category='Hotkeys', desc='take a screenshot of the final output sent to the HMD', value=118, settings=[{'settingType': 'key'}] ) self.option_field_names = self.get_setting_fields()
true
true
f712f9debe1711e0dceba667d636b17c24e7f00f
19,164
py
Python
projectRoot/env/Lib/site-packages/django/contrib/staticfiles/storage.py
russellgoldman/Beer-Finder
89b8493f72cb77cc79896b4221d5d8b7953bb5f6
[ "MIT" ]
3
2018-05-12T18:13:19.000Z
2018-05-27T00:06:31.000Z
projectRoot/env/Lib/site-packages/django/contrib/staticfiles/storage.py
russellgoldman/Beer-Finder
89b8493f72cb77cc79896b4221d5d8b7953bb5f6
[ "MIT" ]
1
2020-06-05T18:32:05.000Z
2020-06-05T18:32:05.000Z
projectRoot/env/Lib/site-packages/django/contrib/staticfiles/storage.py
russellgoldman/Beer-Finder
89b8493f72cb77cc79896b4221d5d8b7953bb5f6
[ "MIT" ]
5
2018-05-17T18:08:26.000Z
2018-12-10T17:37:11.000Z
import hashlib import json import os import posixpath import re from collections import OrderedDict from urllib.parse import unquote, urldefrag, urlsplit, urlunsplit from django.conf import settings from django.contrib.staticfiles.utils import check_settings, matches_patterns from django.core.cache import ( InvalidCacheBackendError, cache as default_cache, caches, ) from django.core.exceptions import ImproperlyConfigured from django.core.files.base import ContentFile from django.core.files.storage import FileSystemStorage, get_storage_class from django.utils.encoding import force_bytes from django.utils.functional import LazyObject class StaticFilesStorage(FileSystemStorage): """ Standard file system storage for static files. The defaults for ``location`` and ``base_url`` are ``STATIC_ROOT`` and ``STATIC_URL``. """ def __init__(self, location=None, base_url=None, *args, **kwargs): if location is None: location = settings.STATIC_ROOT if base_url is None: base_url = settings.STATIC_URL check_settings(base_url) super().__init__(location, base_url, *args, **kwargs) # FileSystemStorage fallbacks to MEDIA_ROOT when location # is empty, so we restore the empty value. if not location: self.base_location = None self.location = None def path(self, name): if not self.location: raise ImproperlyConfigured("You're using the staticfiles app " "without having set the STATIC_ROOT " "setting to a filesystem path.") return super().path(name) class HashedFilesMixin: default_template = """url("%s")""" max_post_process_passes = 5 patterns = ( ("*.styling", ( r"""(url\(['"]{0,1}\s*(.*?)["']{0,1}\))""", (r"""(@import\s*["']\s*(.*?)["'])""", """@import url("%s")"""), )), ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._patterns = OrderedDict() self.hashed_files = {} for extension, patterns in self.patterns: for pattern in patterns: if isinstance(pattern, (tuple, list)): pattern, template = pattern else: template = self.default_template compiled = re.compile(pattern, re.IGNORECASE) self._patterns.setdefault(extension, []).append((compiled, template)) def file_hash(self, name, content=None): """ Return a hash of the file with the given name and optional content. """ if content is None: return None md5 = hashlib.md5() for chunk in content.chunks(): md5.update(chunk) return md5.hexdigest()[:12] def hashed_name(self, name, content=None, filename=None): # `filename` is the name of file to hash if `content` isn't given. # `name` is the base name to construct the new hashed filename from. parsed_name = urlsplit(unquote(name)) clean_name = parsed_name.path.strip() if filename: filename = urlsplit(unquote(filename)).path.strip() filename = filename or clean_name opened = False if content is None: if not self.exists(filename): raise ValueError("The file '%s' could not be found with %r." % (filename, self)) try: content = self.open(filename) except IOError: # Handle directory paths and fragments return name opened = True try: file_hash = self.file_hash(clean_name, content) finally: if opened: content.close() path, filename = os.path.split(clean_name) root, ext = os.path.splitext(filename) if file_hash is not None: file_hash = ".%s" % file_hash hashed_name = os.path.join(path, "%s%s%s" % (root, file_hash, ext)) unparsed_name = list(parsed_name) unparsed_name[2] = hashed_name # Special casing for a @font-face hack, like url(myfont.eot?#iefix") # http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax if '?#' in name and not unparsed_name[3]: unparsed_name[2] += '?' return urlunsplit(unparsed_name) def _url(self, hashed_name_func, name, force=False, hashed_files=None): """ Return the non-hashed URL in DEBUG mode. """ if settings.DEBUG and not force: hashed_name, fragment = name, '' else: clean_name, fragment = urldefrag(name) if urlsplit(clean_name).path.endswith('/'): # don't hash paths hashed_name = name else: args = (clean_name,) if hashed_files is not None: args += (hashed_files,) hashed_name = hashed_name_func(*args) final_url = super().url(hashed_name) # Special casing for a @font-face hack, like url(myfont.eot?#iefix") # http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax query_fragment = '?#' in name # [sic!] if fragment or query_fragment: urlparts = list(urlsplit(final_url)) if fragment and not urlparts[4]: urlparts[4] = fragment if query_fragment and not urlparts[3]: urlparts[2] += '?' final_url = urlunsplit(urlparts) return unquote(final_url) def url(self, name, force=False): """ Return the non-hashed URL in DEBUG mode. """ return self._url(self.stored_name, name, force) def url_converter(self, name, hashed_files, template=None): """ Return the custom URL converter for the given file name. """ if template is None: template = self.default_template def converter(matchobj): """ Convert the matched URL to a normalized and hashed URL. This requires figuring out which files the matched URL resolves to and calling the url() method of the storage. """ matched, url = matchobj.groups() # Ignore absolute/protocol-relative and data-uri URLs. if re.match(r'^[a-z]+:', url): return matched # Ignore absolute URLs that don't point to a static file (dynamic # CSS / JS?). Note that STATIC_URL cannot be empty. if url.startswith('/') and not url.startswith(settings.STATIC_URL): return matched # Strip off the fragment so a path-like fragment won't interfere. url_path, fragment = urldefrag(url) if url_path.startswith('/'): # Otherwise the condition above would have returned prematurely. assert url_path.startswith(settings.STATIC_URL) target_name = url_path[len(settings.STATIC_URL):] else: # We're using the posixpath module to mix paths and URLs conveniently. source_name = name if os.sep == '/' else name.replace(os.sep, '/') target_name = posixpath.join(posixpath.dirname(source_name), url_path) # Determine the hashed name of the target file with the storage backend. hashed_url = self._url( self._stored_name, unquote(target_name), force=True, hashed_files=hashed_files, ) transformed_url = '/'.join(url_path.split('/')[:-1] + hashed_url.split('/')[-1:]) # Restore the fragment that was stripped off earlier. if fragment: transformed_url += ('?#' if '?#' in url else '#') + fragment # Return the hashed version to the file return template % unquote(transformed_url) return converter def post_process(self, paths, dry_run=False, **options): """ Post process the given OrderedDict of files (called from collectstatic). Processing is actually two separate operations: 1. renaming files to include a hash of their content for cache-busting, and copying those files to the target storage. 2. adjusting files which contain references to other files so they refer to the cache-busting filenames. If either of these are performed on a file, then that file is considered post-processed. """ # don't even dare to process the files if we're in dry run mode if dry_run: return # where to store the new paths hashed_files = OrderedDict() # build a list of adjustable files adjustable_paths = [ path for path in paths if matches_patterns(path, self._patterns) ] # Do a single pass first. Post-process all files once, then repeat for # adjustable files. for name, hashed_name, processed, _ in self._post_process(paths, adjustable_paths, hashed_files): yield name, hashed_name, processed paths = {path: paths[path] for path in adjustable_paths} for i in range(self.max_post_process_passes): substitutions = False for name, hashed_name, processed, subst in self._post_process(paths, adjustable_paths, hashed_files): yield name, hashed_name, processed substitutions = substitutions or subst if not substitutions: break if substitutions: yield 'All', None, RuntimeError('Max post-process passes exceeded.') # Store the processed paths self.hashed_files.update(hashed_files) def _post_process(self, paths, adjustable_paths, hashed_files): # Sort the files by directory level def path_level(name): return len(name.split(os.sep)) for name in sorted(paths, key=path_level, reverse=True): substitutions = True # use the original, local file, not the copied-but-unprocessed # file, which might be somewhere far away, like S3 storage, path = paths[name] with storage.open(path) as original_file: cleaned_name = self.clean_name(name) hash_key = self.hash_key(cleaned_name) # generate the hash with the original content, even for # adjustable files. if hash_key not in hashed_files: hashed_name = self.hashed_name(name, original_file) else: hashed_name = hashed_files[hash_key] # then get the original's file content.. if hasattr(original_file, 'seek'): original_file.seek(0) hashed_file_exists = self.exists(hashed_name) processed = False # ..to apply each replacement pattern to the content if name in adjustable_paths: old_hashed_name = hashed_name content = original_file.read().decode(settings.FILE_CHARSET) for extension, patterns in self._patterns.items(): if matches_patterns(path, (extension,)): for pattern, template in patterns: converter = self.url_converter(name, hashed_files, template) try: content = pattern.sub(converter, content) except ValueError as exc: yield name, None, exc, False if hashed_file_exists: self.delete(hashed_name) # then save the processed result content_file = ContentFile(force_bytes(content)) # Save intermediate file for reference saved_name = self._save(hashed_name, content_file) hashed_name = self.hashed_name(name, content_file) if self.exists(hashed_name): self.delete(hashed_name) saved_name = self._save(hashed_name, content_file) hashed_name = self.clean_name(saved_name) # If the file hash stayed the same, this file didn't change if old_hashed_name == hashed_name: substitutions = False processed = True if not processed: # or handle the case in which neither processing nor # a change to the original file happened if not hashed_file_exists: processed = True saved_name = self._save(hashed_name, original_file) hashed_name = self.clean_name(saved_name) # and then set the cache accordingly hashed_files[hash_key] = hashed_name yield name, hashed_name, processed, substitutions def clean_name(self, name): return name.replace('\\', '/') def hash_key(self, name): return name def _stored_name(self, name, hashed_files): # Normalize the path to avoid multiple names for the same file like # ../foo/bar.styling and ../foo/../foo/bar.styling which normalize to the same # path. name = posixpath.normpath(name) cleaned_name = self.clean_name(name) hash_key = self.hash_key(cleaned_name) cache_name = hashed_files.get(hash_key) if cache_name is None: cache_name = self.clean_name(self.hashed_name(name)) return cache_name def stored_name(self, name): cleaned_name = self.clean_name(name) hash_key = self.hash_key(cleaned_name) cache_name = self.hashed_files.get(hash_key) if cache_name: return cache_name # No cached name found, recalculate it from the files. intermediate_name = name for i in range(self.max_post_process_passes + 1): cache_name = self.clean_name( self.hashed_name(name, content=None, filename=intermediate_name) ) if intermediate_name == cache_name: # Store the hashed name if there was a miss. self.hashed_files[hash_key] = cache_name return cache_name else: # Move on to the next intermediate file. intermediate_name = cache_name # If the cache name can't be determined after the max number of passes, # the intermediate files on disk may be corrupt; avoid an infinite loop. raise ValueError("The name '%s' could not be hashed with %r." % (name, self)) class ManifestFilesMixin(HashedFilesMixin): manifest_version = '1.0' # the manifest format standard manifest_name = 'staticfiles.json' manifest_strict = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.hashed_files = self.load_manifest() def read_manifest(self): try: with self.open(self.manifest_name) as manifest: return manifest.read().decode() except IOError: return None def load_manifest(self): content = self.read_manifest() if content is None: return OrderedDict() try: stored = json.loads(content, object_pairs_hook=OrderedDict) except ValueError: pass else: version = stored.get('version') if version == '1.0': return stored.get('paths', OrderedDict()) raise ValueError("Couldn't load manifest '%s' (version %s)" % (self.manifest_name, self.manifest_version)) def post_process(self, *args, **kwargs): self.hashed_files = OrderedDict() yield from super().post_process(*args, **kwargs) self.save_manifest() def save_manifest(self): payload = {'paths': self.hashed_files, 'version': self.manifest_version} if self.exists(self.manifest_name): self.delete(self.manifest_name) contents = json.dumps(payload).encode() self._save(self.manifest_name, ContentFile(contents)) def stored_name(self, name): parsed_name = urlsplit(unquote(name)) clean_name = parsed_name.path.strip() hash_key = self.hash_key(clean_name) cache_name = self.hashed_files.get(hash_key) if cache_name is None: if self.manifest_strict: raise ValueError("Missing staticfiles manifest entry for '%s'" % clean_name) cache_name = self.clean_name(self.hashed_name(name)) unparsed_name = list(parsed_name) unparsed_name[2] = cache_name # Special casing for a @font-face hack, like url(myfont.eot?#iefix") # http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax if '?#' in name and not unparsed_name[3]: unparsed_name[2] += '?' return urlunsplit(unparsed_name) class _MappingCache: """ A small dict-like wrapper for a given cache backend instance. """ def __init__(self, cache): self.cache = cache def __setitem__(self, key, value): self.cache.set(key, value) def __getitem__(self, key): value = self.cache.get(key) if value is None: raise KeyError("Couldn't find a file name '%s'" % key) return value def clear(self): self.cache.clear() def update(self, data): self.cache.set_many(data) def get(self, key, default=None): try: return self[key] except KeyError: return default class CachedFilesMixin(HashedFilesMixin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) try: self.hashed_files = _MappingCache(caches['staticfiles']) except InvalidCacheBackendError: # Use the default backend self.hashed_files = _MappingCache(default_cache) def hash_key(self, name): key = hashlib.md5(force_bytes(self.clean_name(name))).hexdigest() return 'staticfiles:%s' % key class CachedStaticFilesStorage(CachedFilesMixin, StaticFilesStorage): """ A static file system storage backend which also saves hashed copies of the files it saves. """ pass class ManifestStaticFilesStorage(ManifestFilesMixin, StaticFilesStorage): """ A static file system storage backend which also saves hashed copies of the files it saves. """ pass class ConfiguredStorage(LazyObject): def _setup(self): self._wrapped = get_storage_class(settings.STATICFILES_STORAGE)() staticfiles_storage = ConfiguredStorage()
38.481928
113
0.593143
import hashlib import json import os import posixpath import re from collections import OrderedDict from urllib.parse import unquote, urldefrag, urlsplit, urlunsplit from django.conf import settings from django.contrib.staticfiles.utils import check_settings, matches_patterns from django.core.cache import ( InvalidCacheBackendError, cache as default_cache, caches, ) from django.core.exceptions import ImproperlyConfigured from django.core.files.base import ContentFile from django.core.files.storage import FileSystemStorage, get_storage_class from django.utils.encoding import force_bytes from django.utils.functional import LazyObject class StaticFilesStorage(FileSystemStorage): def __init__(self, location=None, base_url=None, *args, **kwargs): if location is None: location = settings.STATIC_ROOT if base_url is None: base_url = settings.STATIC_URL check_settings(base_url) super().__init__(location, base_url, *args, **kwargs) if not location: self.base_location = None self.location = None def path(self, name): if not self.location: raise ImproperlyConfigured("You're using the staticfiles app " "without having set the STATIC_ROOT " "setting to a filesystem path.") return super().path(name) class HashedFilesMixin: default_template = """url("%s")""" max_post_process_passes = 5 patterns = ( ("*.styling", ( r"""(url\(['"]{0,1}\s*(.*?)["']{0,1}\))""", (r"""(@import\s*["']\s*(.*?)["'])""", """@import url("%s")"""), )), ) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._patterns = OrderedDict() self.hashed_files = {} for extension, patterns in self.patterns: for pattern in patterns: if isinstance(pattern, (tuple, list)): pattern, template = pattern else: template = self.default_template compiled = re.compile(pattern, re.IGNORECASE) self._patterns.setdefault(extension, []).append((compiled, template)) def file_hash(self, name, content=None): if content is None: return None md5 = hashlib.md5() for chunk in content.chunks(): md5.update(chunk) return md5.hexdigest()[:12] def hashed_name(self, name, content=None, filename=None): # `filename` is the name of file to hash if `content` isn't given. parsed_name = urlsplit(unquote(name)) clean_name = parsed_name.path.strip() if filename: filename = urlsplit(unquote(filename)).path.strip() filename = filename or clean_name opened = False if content is None: if not self.exists(filename): raise ValueError("The file '%s' could not be found with %r." % (filename, self)) try: content = self.open(filename) except IOError: return name opened = True try: file_hash = self.file_hash(clean_name, content) finally: if opened: content.close() path, filename = os.path.split(clean_name) root, ext = os.path.splitext(filename) if file_hash is not None: file_hash = ".%s" % file_hash hashed_name = os.path.join(path, "%s%s%s" % (root, file_hash, ext)) unparsed_name = list(parsed_name) unparsed_name[2] = hashed_name # http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax if '?#' in name and not unparsed_name[3]: unparsed_name[2] += '?' return urlunsplit(unparsed_name) def _url(self, hashed_name_func, name, force=False, hashed_files=None): if settings.DEBUG and not force: hashed_name, fragment = name, '' else: clean_name, fragment = urldefrag(name) if urlsplit(clean_name).path.endswith('/'): # don't hash paths hashed_name = name else: args = (clean_name,) if hashed_files is not None: args += (hashed_files,) hashed_name = hashed_name_func(*args) final_url = super().url(hashed_name) # Special casing for a @font-face hack, like url(myfont.eot?#iefix") # http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax query_fragment = '? if fragment or query_fragment: urlparts = list(urlsplit(final_url)) if fragment and not urlparts[4]: urlparts[4] = fragment if query_fragment and not urlparts[3]: urlparts[2] += '?' final_url = urlunsplit(urlparts) return unquote(final_url) def url(self, name, force=False): return self._url(self.stored_name, name, force) def url_converter(self, name, hashed_files, template=None): if template is None: template = self.default_template def converter(matchobj): matched, url = matchobj.groups() # Ignore absolute/protocol-relative and data-uri URLs. if re.match(r'^[a-z]+:', url): return matched # Ignore absolute URLs that don't point to a static file (dynamic if url.startswith('/') and not url.startswith(settings.STATIC_URL): return matched url_path, fragment = urldefrag(url) if url_path.startswith('/'): # Otherwise the condition above would have returned prematurely. assert url_path.startswith(settings.STATIC_URL) target_name = url_path[len(settings.STATIC_URL):] else: # We're using the posixpath module to mix paths and URLs conveniently. source_name = name if os.sep == '/' else name.replace(os.sep, '/') target_name = posixpath.join(posixpath.dirname(source_name), url_path) hashed_url = self._url( self._stored_name, unquote(target_name), force=True, hashed_files=hashed_files, ) transformed_url = '/'.join(url_path.split('/')[:-1] + hashed_url.split('/')[-1:]) if fragment: transformed_url += ('?#' if '?#' in url else '#') + fragment return template % unquote(transformed_url) return converter def post_process(self, paths, dry_run=False, **options): if dry_run: return hashed_files = OrderedDict() adjustable_paths = [ path for path in paths if matches_patterns(path, self._patterns) ] for name, hashed_name, processed, _ in self._post_process(paths, adjustable_paths, hashed_files): yield name, hashed_name, processed paths = {path: paths[path] for path in adjustable_paths} for i in range(self.max_post_process_passes): substitutions = False for name, hashed_name, processed, subst in self._post_process(paths, adjustable_paths, hashed_files): yield name, hashed_name, processed substitutions = substitutions or subst if not substitutions: break if substitutions: yield 'All', None, RuntimeError('Max post-process passes exceeded.') self.hashed_files.update(hashed_files) def _post_process(self, paths, adjustable_paths, hashed_files): def path_level(name): return len(name.split(os.sep)) for name in sorted(paths, key=path_level, reverse=True): substitutions = True storage, path = paths[name] with storage.open(path) as original_file: cleaned_name = self.clean_name(name) hash_key = self.hash_key(cleaned_name) if hash_key not in hashed_files: hashed_name = self.hashed_name(name, original_file) else: hashed_name = hashed_files[hash_key] if hasattr(original_file, 'seek'): original_file.seek(0) hashed_file_exists = self.exists(hashed_name) processed = False # ..to apply each replacement pattern to the content if name in adjustable_paths: old_hashed_name = hashed_name content = original_file.read().decode(settings.FILE_CHARSET) for extension, patterns in self._patterns.items(): if matches_patterns(path, (extension,)): for pattern, template in patterns: converter = self.url_converter(name, hashed_files, template) try: content = pattern.sub(converter, content) except ValueError as exc: yield name, None, exc, False if hashed_file_exists: self.delete(hashed_name) # then save the processed result content_file = ContentFile(force_bytes(content)) # Save intermediate file for reference saved_name = self._save(hashed_name, content_file) hashed_name = self.hashed_name(name, content_file) if self.exists(hashed_name): self.delete(hashed_name) saved_name = self._save(hashed_name, content_file) hashed_name = self.clean_name(saved_name) # If the file hash stayed the same, this file didn't change if old_hashed_name == hashed_name: substitutions = False processed = True if not processed: if not hashed_file_exists: processed = True saved_name = self._save(hashed_name, original_file) hashed_name = self.clean_name(saved_name) hashed_files[hash_key] = hashed_name yield name, hashed_name, processed, substitutions def clean_name(self, name): return name.replace('\\', '/') def hash_key(self, name): return name def _stored_name(self, name, hashed_files): name = posixpath.normpath(name) cleaned_name = self.clean_name(name) hash_key = self.hash_key(cleaned_name) cache_name = hashed_files.get(hash_key) if cache_name is None: cache_name = self.clean_name(self.hashed_name(name)) return cache_name def stored_name(self, name): cleaned_name = self.clean_name(name) hash_key = self.hash_key(cleaned_name) cache_name = self.hashed_files.get(hash_key) if cache_name: return cache_name intermediate_name = name for i in range(self.max_post_process_passes + 1): cache_name = self.clean_name( self.hashed_name(name, content=None, filename=intermediate_name) ) if intermediate_name == cache_name: self.hashed_files[hash_key] = cache_name return cache_name else: intermediate_name = cache_name # the intermediate files on disk may be corrupt; avoid an infinite loop. raise ValueError("The name '%s' could not be hashed with %r." % (name, self)) class ManifestFilesMixin(HashedFilesMixin): manifest_version = '1.0' # the manifest format standard manifest_name = 'staticfiles.json' manifest_strict = True def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.hashed_files = self.load_manifest() def read_manifest(self): try: with self.open(self.manifest_name) as manifest: return manifest.read().decode() except IOError: return None def load_manifest(self): content = self.read_manifest() if content is None: return OrderedDict() try: stored = json.loads(content, object_pairs_hook=OrderedDict) except ValueError: pass else: version = stored.get('version') if version == '1.0': return stored.get('paths', OrderedDict()) raise ValueError("Couldn't load manifest '%s' (version %s)" % (self.manifest_name, self.manifest_version)) def post_process(self, *args, **kwargs): self.hashed_files = OrderedDict() yield from super().post_process(*args, **kwargs) self.save_manifest() def save_manifest(self): payload = {'paths': self.hashed_files, 'version': self.manifest_version} if self.exists(self.manifest_name): self.delete(self.manifest_name) contents = json.dumps(payload).encode() self._save(self.manifest_name, ContentFile(contents)) def stored_name(self, name): parsed_name = urlsplit(unquote(name)) clean_name = parsed_name.path.strip() hash_key = self.hash_key(clean_name) cache_name = self.hashed_files.get(hash_key) if cache_name is None: if self.manifest_strict: raise ValueError("Missing staticfiles manifest entry for '%s'" % clean_name) cache_name = self.clean_name(self.hashed_name(name)) unparsed_name = list(parsed_name) unparsed_name[2] = cache_name # http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax if '?#' in name and not unparsed_name[3]: unparsed_name[2] += '?' return urlunsplit(unparsed_name) class _MappingCache: def __init__(self, cache): self.cache = cache def __setitem__(self, key, value): self.cache.set(key, value) def __getitem__(self, key): value = self.cache.get(key) if value is None: raise KeyError("Couldn't find a file name '%s'" % key) return value def clear(self): self.cache.clear() def update(self, data): self.cache.set_many(data) def get(self, key, default=None): try: return self[key] except KeyError: return default class CachedFilesMixin(HashedFilesMixin): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) try: self.hashed_files = _MappingCache(caches['staticfiles']) except InvalidCacheBackendError: # Use the default backend self.hashed_files = _MappingCache(default_cache) def hash_key(self, name): key = hashlib.md5(force_bytes(self.clean_name(name))).hexdigest() return 'staticfiles:%s' % key class CachedStaticFilesStorage(CachedFilesMixin, StaticFilesStorage): pass class ManifestStaticFilesStorage(ManifestFilesMixin, StaticFilesStorage): pass class ConfiguredStorage(LazyObject): def _setup(self): self._wrapped = get_storage_class(settings.STATICFILES_STORAGE)() staticfiles_storage = ConfiguredStorage()
true
true
f712fa692140b87d42856b40c9e6ecd289c79a5a
408
py
Python
frontends/pytorch/test/extension_coexistence.py
cathyzhyi/mlir-npcomp
79a3f639bfb449ba1409ff6dff161badf5a11b44
[ "Apache-2.0" ]
null
null
null
frontends/pytorch/test/extension_coexistence.py
cathyzhyi/mlir-npcomp
79a3f639bfb449ba1409ff6dff161badf5a11b44
[ "Apache-2.0" ]
6
2020-10-21T18:18:10.000Z
2021-04-02T20:38:28.000Z
frontends/pytorch/test/extension_coexistence.py
cathyzhyi/mlir-npcomp
79a3f639bfb449ba1409ff6dff161badf5a11b44
[ "Apache-2.0" ]
null
null
null
# -*- Python -*- # This file is licensed under a pytorch-style license # See frontends/pytorch/LICENSE for license information. # Some checks that we can import the various extensions and libraries and # not have symbol collisions or other goings on. # RUN: %PYTHON %s import sys print(f"PYTHONPATH={sys.path}") import mlir import npcomp import _npcomp import _torch_mlir print("Extensions all loaded")
21.473684
73
0.764706
import sys print(f"PYTHONPATH={sys.path}") import mlir import npcomp import _npcomp import _torch_mlir print("Extensions all loaded")
true
true
f712fa9c033a17ba9d2b04ae09b2bba1b4db81c7
10,862
py
Python
libcloud/loadbalancer/drivers/alb.py
dupontz/libcloud
419c69441ea10e7bbf37319e5e8d02e82e7e6b40
[ "Apache-2.0" ]
null
null
null
libcloud/loadbalancer/drivers/alb.py
dupontz/libcloud
419c69441ea10e7bbf37319e5e8d02e82e7e6b40
[ "Apache-2.0" ]
null
null
null
libcloud/loadbalancer/drivers/alb.py
dupontz/libcloud
419c69441ea10e7bbf37319e5e8d02e82e7e6b40
[ "Apache-2.0" ]
1
2021-11-04T21:48:14.000Z
2021-11-04T21:48:14.000Z
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = [ 'ApplicationLBDriver' ] from libcloud.utils.xml import findtext, findall from libcloud.loadbalancer.types import State from libcloud.loadbalancer.base import Driver, LoadBalancer, Member from libcloud.common.aws import AWSGenericResponse, SignedAWSConnection VERSION = '2015-12-01' HOST = 'elasticloadbalancing.%s.amazonaws.com' ROOT = '/%s/' % (VERSION) NS = 'http://elasticloadbalancing.amazonaws.com/doc/%s/' % (VERSION, ) class ALBResponse(AWSGenericResponse): """ Amazon ALB response class. """ namespace = NS exceptions = {} xpath = 'Error' class ALBConnection(SignedAWSConnection): version = VERSION host = HOST responseCls = ALBResponse service_name = 'elasticloadbalancing' class ApplicationLBDriver(Driver): name = 'Amazon Application Load Balancing' website = 'http://aws.amazon.com/elasticloadbalancing/' connectionCls = ALBConnection signature_version = '4' def __init__(self, access_id, secret, region, token=None): self.token = token super(ApplicationLBDriver, self).__init__( access_id, secret, token=token ) self.region = region self.region_name = region self.connection.host = HOST % (region) def list_protocols(self): return ['http', 'https'] def list_balancers(self): params = {'Action': 'DescribeLoadBalancers'} data = self.connection.request(ROOT, params=params).object return self._to_balancers(data) def balancer_list_members(self, balancer): return balancer._members def get_balancer(self, balancer_id): params = { 'Action': 'DescribeLoadBalancers', 'LoadBalancerNames.member.1': balancer_id } data = self.connection.request(ROOT, params=params).object return self._to_balancers(data)[0] def ex_balancer_list_listeners(self, balancer): return balancer.extra.get('listeners', []) def _to_listeners(self, data): xpath = 'DescribeListenersResult/Listeners/member' return [self._to_listener(el) for el in findall( element=data, xpath=xpath, namespace=NS )] def _to_listener(self, el): listener_arn = findtext(element=el, xpath='ListenerArn', namespace=NS) listener = { 'id': listener_arn, 'protocol': findtext(element=el, xpath='Protocol', namespace=NS), 'port': findtext(element=el, xpath='Port', namespace=NS), 'rules': self._ex_get_rules_for_listener(listener_arn) } return listener def _to_targets(self, data): xpath = 'DefaultActions/member' return [self._to_target(el) for el in findall( element=data, xpath=xpath, namespace=NS )] def _to_target(self, el): return findtext( element=el, xpath='DefaultActions/member/TargetGroupArn', namespace=NS ) def _to_balancer(self, el): name = findtext(element=el, xpath='LoadBalancerName', namespace=NS) id = findtext(element=el, xpath='LoadBalancerArn', namespace=NS) dns_name = findtext(el, xpath='DNSName', namespace=NS) balancer = LoadBalancer( id=id, name=name, state=State.UNKNOWN, ip=dns_name, port=None, driver=self.connection.driver ) extra = { 'listeners': self._ex_get_balancer_listeners(balancer), 'target_groups': self._ex_get_balancer_target_groups(balancer), 'tags': self._ex_get_balancer_tags(balancer) } balancer.extra = extra if len(extra['listeners']) > 0: balancer.port = extra['listeners'][0]['port'] else: balancer.port = None balancer._members = self._ex_get_balancer_memebers(balancer) return balancer def _to_balancers(self, data): xpath = 'DescribeLoadBalancersResult/LoadBalancers/member' return [self._to_balancer(el) for el in findall(element=data, xpath=xpath, namespace=NS)] def _to_tags(self, data): """ return tags dict """ tags = {} xpath = 'DescribeTagsResult/TagDescriptions/member/Tags/member' for el in findall(element=data, xpath=xpath, namespace=NS): key = findtext(element=el, xpath='Key', namespace=NS) value = findtext(element=el, xpath='Value', namespace=NS) if key: tags[key] = value return tags def _to_rule(self, el): def __to_bool__(val): return val.lower() in ("yes", "true", "t", "1") id = findtext(element=el, xpath='RuleArn', namespace=NS) is_default = findtext(element=el, xpath='IsDefault', namespace=NS) priority = findtext(element=el, xpath='Priority', namespace=NS) target_group = findtext( element=el, xpath='Actions/member/TargetGroupArn', namespace=NS ) conditions = {} cond_members = findall( element=el, xpath='Conditions/member', namespace=NS ) for cond_member in cond_members: field = findtext(element=cond_member, xpath='Field', namespace=NS) conditions[field] = [] value_members = findall( element=cond_member, xpath='Values/member', namespace=NS ) for value_member in value_members: conditions[field].append(value_member.text) rule = { 'id': id, 'is_default': __to_bool__(is_default), 'priority': priority, 'target_group': target_group, 'conditions': conditions } return rule def _to_rules(self, data): xpath = 'DescribeRulesResult/Rules/member' return [self._to_rule(el) for el in findall(element=data, xpath=xpath, namespace=NS)] def _to_target_groups(self, data): xpath = 'DescribeTargetGroupsResult/TargetGroups/member' return [self._to_target_group(el) for el in findall(element=data, xpath=xpath, namespace=NS)] def _to_target_group(self, el): target_group_arn = findtext( element=el, xpath='TargetGroupArn', namespace=NS ) name = findtext(element=el, xpath='TargetGroupName', namespace=NS) members = self._ex_get_target_group_members(target_group_arn) return {'id': target_group_arn, 'name': name, 'members': members} def _to_target_group_members(self, data): xpath = 'DescribeTargetHealthResult/TargetHealthDescriptions/member' return [self._to_target_group_member(el) for el in findall(element=data, xpath=xpath, namespace=NS)] def _to_target_group_member(self, el): id = findtext(element=el, xpath='Target/Id', namespace=NS) port = findtext(element=el, xpath='Target/Port', namespace=NS) health = findtext( element=el, xpath='TargetHealth/State', namespace=NS ) return {'id': id, 'port': port, 'health': health} def _ex_get_balancer_memebers(self, balancer): balancer_members = [] for tg in balancer.extra['target_groups']: for tg_member in tg['members']: new_member = Member( tg_member['id'], None, tg_member['port'], balancer=balancer, extra={ 'health': tg_member['health'], 'target_group': tg['name'] } ) balancer_members.append(new_member) return balancer_members def _ex_get_target_group_members(self, target_group_arn): """ Return a list of target group member dicts. :rtype: ``list`` of ``dict`` """ params = { 'Action': 'DescribeTargetHealth', 'TargetGroupArn': target_group_arn } data = self.connection.request(ROOT, params=params).object return self._to_target_group_members(data) def _ex_get_balancer_target_groups(self, balancer): """ Return a list of load balancer target groups with members. :rtype: ``list`` of ``dict`` """ params = { 'Action': 'DescribeTargetGroups', 'LoadBalancerArn': balancer.id } data = self.connection.request(ROOT, params=params).object return self._to_target_groups(data) def _ex_get_balancer_listeners(self, balancer): """ Return a list of load balancer listeners dicts. :rtype: ``list`` of ``dict`` """ params = { 'Action': 'DescribeListeners', 'LoadBalancerArn': balancer.id } data = self.connection.request(ROOT, params=params).object return self._to_listeners(data) def _ex_get_rules_for_listener(self, listener_arn): """ Return a list of listeners rule dicts. :rtype: ``list`` of ``dict`` """ params = { 'Action': 'DescribeRules', 'ListenerArn': listener_arn } data = self.connection.request(ROOT, params=params).object return self._to_rules(data) def _ex_connection_class_kwargs(self): pdriver = super(ApplicationLBDriver, self) kwargs = pdriver._ex_connection_class_kwargs() if hasattr(self, 'token') and self.token is not None: kwargs['token'] = self.token kwargs['signature_version'] = '4' else: kwargs['signature_version'] = self.signature_version return kwargs def _ex_get_balancer_tags(self, balancer): params = { 'Action': 'DescribeTags', 'ResourceArns.member.1': balancer.id } data = self.connection.request(ROOT, params=params).object return self._to_tags(data)
33.732919
78
0.614712
__all__ = [ 'ApplicationLBDriver' ] from libcloud.utils.xml import findtext, findall from libcloud.loadbalancer.types import State from libcloud.loadbalancer.base import Driver, LoadBalancer, Member from libcloud.common.aws import AWSGenericResponse, SignedAWSConnection VERSION = '2015-12-01' HOST = 'elasticloadbalancing.%s.amazonaws.com' ROOT = '/%s/' % (VERSION) NS = 'http://elasticloadbalancing.amazonaws.com/doc/%s/' % (VERSION, ) class ALBResponse(AWSGenericResponse): namespace = NS exceptions = {} xpath = 'Error' class ALBConnection(SignedAWSConnection): version = VERSION host = HOST responseCls = ALBResponse service_name = 'elasticloadbalancing' class ApplicationLBDriver(Driver): name = 'Amazon Application Load Balancing' website = 'http://aws.amazon.com/elasticloadbalancing/' connectionCls = ALBConnection signature_version = '4' def __init__(self, access_id, secret, region, token=None): self.token = token super(ApplicationLBDriver, self).__init__( access_id, secret, token=token ) self.region = region self.region_name = region self.connection.host = HOST % (region) def list_protocols(self): return ['http', 'https'] def list_balancers(self): params = {'Action': 'DescribeLoadBalancers'} data = self.connection.request(ROOT, params=params).object return self._to_balancers(data) def balancer_list_members(self, balancer): return balancer._members def get_balancer(self, balancer_id): params = { 'Action': 'DescribeLoadBalancers', 'LoadBalancerNames.member.1': balancer_id } data = self.connection.request(ROOT, params=params).object return self._to_balancers(data)[0] def ex_balancer_list_listeners(self, balancer): return balancer.extra.get('listeners', []) def _to_listeners(self, data): xpath = 'DescribeListenersResult/Listeners/member' return [self._to_listener(el) for el in findall( element=data, xpath=xpath, namespace=NS )] def _to_listener(self, el): listener_arn = findtext(element=el, xpath='ListenerArn', namespace=NS) listener = { 'id': listener_arn, 'protocol': findtext(element=el, xpath='Protocol', namespace=NS), 'port': findtext(element=el, xpath='Port', namespace=NS), 'rules': self._ex_get_rules_for_listener(listener_arn) } return listener def _to_targets(self, data): xpath = 'DefaultActions/member' return [self._to_target(el) for el in findall( element=data, xpath=xpath, namespace=NS )] def _to_target(self, el): return findtext( element=el, xpath='DefaultActions/member/TargetGroupArn', namespace=NS ) def _to_balancer(self, el): name = findtext(element=el, xpath='LoadBalancerName', namespace=NS) id = findtext(element=el, xpath='LoadBalancerArn', namespace=NS) dns_name = findtext(el, xpath='DNSName', namespace=NS) balancer = LoadBalancer( id=id, name=name, state=State.UNKNOWN, ip=dns_name, port=None, driver=self.connection.driver ) extra = { 'listeners': self._ex_get_balancer_listeners(balancer), 'target_groups': self._ex_get_balancer_target_groups(balancer), 'tags': self._ex_get_balancer_tags(balancer) } balancer.extra = extra if len(extra['listeners']) > 0: balancer.port = extra['listeners'][0]['port'] else: balancer.port = None balancer._members = self._ex_get_balancer_memebers(balancer) return balancer def _to_balancers(self, data): xpath = 'DescribeLoadBalancersResult/LoadBalancers/member' return [self._to_balancer(el) for el in findall(element=data, xpath=xpath, namespace=NS)] def _to_tags(self, data): tags = {} xpath = 'DescribeTagsResult/TagDescriptions/member/Tags/member' for el in findall(element=data, xpath=xpath, namespace=NS): key = findtext(element=el, xpath='Key', namespace=NS) value = findtext(element=el, xpath='Value', namespace=NS) if key: tags[key] = value return tags def _to_rule(self, el): def __to_bool__(val): return val.lower() in ("yes", "true", "t", "1") id = findtext(element=el, xpath='RuleArn', namespace=NS) is_default = findtext(element=el, xpath='IsDefault', namespace=NS) priority = findtext(element=el, xpath='Priority', namespace=NS) target_group = findtext( element=el, xpath='Actions/member/TargetGroupArn', namespace=NS ) conditions = {} cond_members = findall( element=el, xpath='Conditions/member', namespace=NS ) for cond_member in cond_members: field = findtext(element=cond_member, xpath='Field', namespace=NS) conditions[field] = [] value_members = findall( element=cond_member, xpath='Values/member', namespace=NS ) for value_member in value_members: conditions[field].append(value_member.text) rule = { 'id': id, 'is_default': __to_bool__(is_default), 'priority': priority, 'target_group': target_group, 'conditions': conditions } return rule def _to_rules(self, data): xpath = 'DescribeRulesResult/Rules/member' return [self._to_rule(el) for el in findall(element=data, xpath=xpath, namespace=NS)] def _to_target_groups(self, data): xpath = 'DescribeTargetGroupsResult/TargetGroups/member' return [self._to_target_group(el) for el in findall(element=data, xpath=xpath, namespace=NS)] def _to_target_group(self, el): target_group_arn = findtext( element=el, xpath='TargetGroupArn', namespace=NS ) name = findtext(element=el, xpath='TargetGroupName', namespace=NS) members = self._ex_get_target_group_members(target_group_arn) return {'id': target_group_arn, 'name': name, 'members': members} def _to_target_group_members(self, data): xpath = 'DescribeTargetHealthResult/TargetHealthDescriptions/member' return [self._to_target_group_member(el) for el in findall(element=data, xpath=xpath, namespace=NS)] def _to_target_group_member(self, el): id = findtext(element=el, xpath='Target/Id', namespace=NS) port = findtext(element=el, xpath='Target/Port', namespace=NS) health = findtext( element=el, xpath='TargetHealth/State', namespace=NS ) return {'id': id, 'port': port, 'health': health} def _ex_get_balancer_memebers(self, balancer): balancer_members = [] for tg in balancer.extra['target_groups']: for tg_member in tg['members']: new_member = Member( tg_member['id'], None, tg_member['port'], balancer=balancer, extra={ 'health': tg_member['health'], 'target_group': tg['name'] } ) balancer_members.append(new_member) return balancer_members def _ex_get_target_group_members(self, target_group_arn): params = { 'Action': 'DescribeTargetHealth', 'TargetGroupArn': target_group_arn } data = self.connection.request(ROOT, params=params).object return self._to_target_group_members(data) def _ex_get_balancer_target_groups(self, balancer): params = { 'Action': 'DescribeTargetGroups', 'LoadBalancerArn': balancer.id } data = self.connection.request(ROOT, params=params).object return self._to_target_groups(data) def _ex_get_balancer_listeners(self, balancer): params = { 'Action': 'DescribeListeners', 'LoadBalancerArn': balancer.id } data = self.connection.request(ROOT, params=params).object return self._to_listeners(data) def _ex_get_rules_for_listener(self, listener_arn): params = { 'Action': 'DescribeRules', 'ListenerArn': listener_arn } data = self.connection.request(ROOT, params=params).object return self._to_rules(data) def _ex_connection_class_kwargs(self): pdriver = super(ApplicationLBDriver, self) kwargs = pdriver._ex_connection_class_kwargs() if hasattr(self, 'token') and self.token is not None: kwargs['token'] = self.token kwargs['signature_version'] = '4' else: kwargs['signature_version'] = self.signature_version return kwargs def _ex_get_balancer_tags(self, balancer): params = { 'Action': 'DescribeTags', 'ResourceArns.member.1': balancer.id } data = self.connection.request(ROOT, params=params).object return self._to_tags(data)
true
true
f712fac6bd1822c194117ca4f70daa44951941ca
23,640
py
Python
ummeli/base/migrations/0025_auto__add_field_userban_is_unbanned.py
praekelt/ummeli
c09731ed9a3a40359e81dcf6ed365797606ae9e2
[ "BSD-3-Clause" ]
null
null
null
ummeli/base/migrations/0025_auto__add_field_userban_is_unbanned.py
praekelt/ummeli
c09731ed9a3a40359e81dcf6ed365797606ae9e2
[ "BSD-3-Clause" ]
null
null
null
ummeli/base/migrations/0025_auto__add_field_userban_is_unbanned.py
praekelt/ummeli
c09731ed9a3a40359e81dcf6ed365797606ae9e2
[ "BSD-3-Clause" ]
null
null
null
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'UserBan.is_unbanned' db.add_column('base_userban', 'is_unbanned', self.gf('django.db.models.fields.BooleanField')(default=False), keep_default=False) def backwards(self, orm): # Deleting field 'UserBan.is_unbanned' db.delete_column('base_userban', 'is_unbanned') models = { 'atlas.city': { 'Meta': {'ordering': "('name',)", 'object_name': 'City'}, 'coordinates': ('atlas.fields.CoordinateField', [], {'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.Country']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'region': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.Region']", 'null': 'True', 'blank': 'True'}) }, 'atlas.country': { 'Meta': {'ordering': "('name',)", 'object_name': 'Country'}, 'border': ('django.contrib.gis.db.models.fields.MultiPolygonField', [], {'null': 'True', 'blank': 'True'}), 'coordinates': ('atlas.fields.CoordinateField', [], {'null': 'True', 'blank': 'True'}), 'country_code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '2', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'atlas.location': { 'Meta': {'object_name': 'Location'}, 'address': ('django.db.models.fields.TextField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'city': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.City']"}), 'coordinates': ('atlas.fields.CoordinateField', [], {'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.Country']"}), 'description': ('django.db.models.fields.TextField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'photo': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['photologue.Photo']", 'null': 'True', 'blank': 'True'}) }, 'atlas.region': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('country', 'code'),)", 'object_name': 'Region'}, 'border': ('django.contrib.gis.db.models.fields.MultiPolygonField', [], {'null': 'True', 'blank': 'True'}), 'code': ('django.db.models.fields.CharField', [], {'max_length': '2', 'db_index': 'True'}), 'coordinates': ('atlas.fields.CoordinateField', [], {'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.Country']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2014, 5, 20, 14, 40, 19, 580727)'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2014, 5, 20, 14, 40, 19, 580636)'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'base.banner': { 'Meta': {'ordering': "('-created',)", 'object_name': 'Banner', '_ormbases': ['jmbo.ModelBase']}, 'banner_type': ('django.db.models.fields.CharField', [], {'default': "'banner'", 'max_length': '10'}), 'modelbase_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['jmbo.ModelBase']", 'unique': 'True', 'primary_key': 'True'}), 'time_off': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'time_on': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '256'}) }, 'base.certificate': { 'Meta': {'object_name': 'Certificate'}, 'duration': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'institution': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '45'}), 'year': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}) }, 'base.curriculumvitae': { 'Meta': {'object_name': 'CurriculumVitae'}, 'about_me': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'address': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'certificates': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['base.Certificate']", 'symmetrical': 'False', 'blank': 'True'}), 'city': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'comment_as_anon': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'connection_requests': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'connection_requests'", 'blank': 'True', 'to': "orm['auth.User']"}), 'date_of_birth': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'highest_grade': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'highest_grade_year': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_complete': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'languages': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['base.Language']", 'symmetrical': 'False', 'blank': 'True'}), 'nr_of_faxes_sent': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'preferred_skill': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'profiles_preferred'", 'null': 'True', 'to': "orm['base.Skill']"}), 'province': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'references': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['base.Reference']", 'symmetrical': 'False', 'blank': 'True'}), 'school': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'show_address': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'show_contact_number': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'skills': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'profiles'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['base.Skill']"}), 'surname': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'telephone_number': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}), 'work_experiences': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['base.WorkExperience']", 'symmetrical': 'False', 'blank': 'True'}) }, 'base.language': { 'Meta': {'object_name': 'Language'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '45'}), 'read_write': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'base.reference': { 'Meta': {'object_name': 'Reference'}, 'contact_no': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'fullname': ('django.db.models.fields.CharField', [], {'max_length': '45'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'relationship': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}) }, 'base.skill': { 'Meta': {'object_name': 'Skill'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'primary': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'skill': ('django.db.models.fields.CharField', [], {'max_length': '45'}) }, 'base.userban': { 'Meta': {'object_name': 'UserBan'}, 'ban_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_unbanned': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'unban_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'base.workexperience': { 'Meta': {'object_name': 'WorkExperience'}, 'company': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'end_year': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'start_year': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '45'}) }, 'category.category': { 'Meta': {'ordering': "('title',)", 'object_name': 'Category'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['category.Category']", 'null': 'True', 'blank': 'True'}), 'sites': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['sites.Site']", 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}), 'subtitle': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'category.tag': { 'Meta': {'ordering': "('title',)", 'object_name': 'Tag'}, 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['category.Category']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'jmbo.modelbase': { 'Meta': {'ordering': "('-created',)", 'object_name': 'ModelBase'}, 'anonymous_comments': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'anonymous_likes': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['category.Category']", 'null': 'True', 'blank': 'True'}), 'class_name': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'comments_closed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'comments_enabled': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']", 'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'blank': 'True'}), 'crop_from': ('django.db.models.fields.CharField', [], {'default': "'center'", 'max_length': '10', 'blank': 'True'}), 'date_taken': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'effect': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'modelbase_related'", 'null': 'True', 'to': "orm['photologue.PhotoEffect']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'likes_closed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'likes_enabled': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'location': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.Location']", 'null': 'True', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'primary_category': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'primary_modelbase_set'", 'null': 'True', 'to': "orm['category.Category']"}), 'publish_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'publishers': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['publisher.Publisher']", 'null': 'True', 'blank': 'True'}), 'retract_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'sites': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sites.Site']", 'null': 'True', 'symmetrical': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}), 'state': ('django.db.models.fields.CharField', [], {'default': "'unpublished'", 'max_length': '32', 'null': 'True', 'blank': 'True'}), 'subtitle': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['category.Tag']", 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'view_count': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, 'photologue.photo': { 'Meta': {'ordering': "['-date_added']", 'object_name': 'Photo'}, 'caption': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'crop_from': ('django.db.models.fields.CharField', [], {'default': "'center'", 'max_length': '10', 'blank': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_taken': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'effect': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'photo_related'", 'null': 'True', 'to': "orm['photologue.PhotoEffect']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'is_public': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'tags': ('photologue.models.TagField', [], {'max_length': '255', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'title_slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50', 'db_index': 'True'}), 'view_count': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, 'photologue.photoeffect': { 'Meta': {'object_name': 'PhotoEffect'}, 'background_color': ('django.db.models.fields.CharField', [], {'default': "'#FFFFFF'", 'max_length': '7'}), 'brightness': ('django.db.models.fields.FloatField', [], {'default': '1.0'}), 'color': ('django.db.models.fields.FloatField', [], {'default': '1.0'}), 'contrast': ('django.db.models.fields.FloatField', [], {'default': '1.0'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'filters': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}), 'reflection_size': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'reflection_strength': ('django.db.models.fields.FloatField', [], {'default': '0.6'}), 'sharpness': ('django.db.models.fields.FloatField', [], {'default': '1.0'}), 'transpose_method': ('django.db.models.fields.CharField', [], {'max_length': '15', 'blank': 'True'}) }, 'publisher.publisher': { 'Meta': {'object_name': 'Publisher'}, 'class_name': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']", 'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '64'}) }, 'secretballot.vote': { 'Meta': {'unique_together': "(('token', 'content_type', 'object_id'),)", 'object_name': 'Vote'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'token': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'vote': ('django.db.models.fields.SmallIntegerField', [], {}) }, 'sites.site': { 'Meta': {'ordering': "('domain',)", 'object_name': 'Site', 'db_table': "'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['base']
84.731183
201
0.554103
import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): db.add_column('base_userban', 'is_unbanned', self.gf('django.db.models.fields.BooleanField')(default=False), keep_default=False) def backwards(self, orm): db.delete_column('base_userban', 'is_unbanned') models = { 'atlas.city': { 'Meta': {'ordering': "('name',)", 'object_name': 'City'}, 'coordinates': ('atlas.fields.CoordinateField', [], {'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.Country']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'region': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.Region']", 'null': 'True', 'blank': 'True'}) }, 'atlas.country': { 'Meta': {'ordering': "('name',)", 'object_name': 'Country'}, 'border': ('django.contrib.gis.db.models.fields.MultiPolygonField', [], {'null': 'True', 'blank': 'True'}), 'coordinates': ('atlas.fields.CoordinateField', [], {'null': 'True', 'blank': 'True'}), 'country_code': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '2', 'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'atlas.location': { 'Meta': {'object_name': 'Location'}, 'address': ('django.db.models.fields.TextField', [], {'max_length': '512', 'null': 'True', 'blank': 'True'}), 'city': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.City']"}), 'coordinates': ('atlas.fields.CoordinateField', [], {'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.Country']"}), 'description': ('django.db.models.fields.TextField', [], {'max_length': '1024', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128', 'db_index': 'True'}), 'photo': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['photologue.Photo']", 'null': 'True', 'blank': 'True'}) }, 'atlas.region': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('country', 'code'),)", 'object_name': 'Region'}, 'border': ('django.contrib.gis.db.models.fields.MultiPolygonField', [], {'null': 'True', 'blank': 'True'}), 'code': ('django.db.models.fields.CharField', [], {'max_length': '2', 'db_index': 'True'}), 'coordinates': ('atlas.fields.CoordinateField', [], {'null': 'True', 'blank': 'True'}), 'country': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.Country']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '128'}) }, 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2014, 5, 20, 14, 40, 19, 580727)'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime(2014, 5, 20, 14, 40, 19, 580636)'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'base.banner': { 'Meta': {'ordering': "('-created',)", 'object_name': 'Banner', '_ormbases': ['jmbo.ModelBase']}, 'banner_type': ('django.db.models.fields.CharField', [], {'default': "'banner'", 'max_length': '10'}), 'modelbase_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['jmbo.ModelBase']", 'unique': 'True', 'primary_key': 'True'}), 'time_off': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'time_on': ('django.db.models.fields.TimeField', [], {'null': 'True', 'blank': 'True'}), 'url': ('django.db.models.fields.CharField', [], {'max_length': '256'}) }, 'base.certificate': { 'Meta': {'object_name': 'Certificate'}, 'duration': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'institution': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '45'}), 'year': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}) }, 'base.curriculumvitae': { 'Meta': {'object_name': 'CurriculumVitae'}, 'about_me': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'address': ('django.db.models.fields.CharField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'certificates': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['base.Certificate']", 'symmetrical': 'False', 'blank': 'True'}), 'city': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'comment_as_anon': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'connection_requests': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "'connection_requests'", 'blank': 'True', 'to': "orm['auth.User']"}), 'date_of_birth': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'email': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'gender': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'highest_grade': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'highest_grade_year': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_complete': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'languages': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['base.Language']", 'symmetrical': 'False', 'blank': 'True'}), 'nr_of_faxes_sent': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'preferred_skill': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'profiles_preferred'", 'null': 'True', 'to': "orm['base.Skill']"}), 'province': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'references': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['base.Reference']", 'symmetrical': 'False', 'blank': 'True'}), 'school': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'show_address': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'show_contact_number': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'skills': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'profiles'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['base.Skill']"}), 'surname': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'telephone_number': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}), 'work_experiences': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['base.WorkExperience']", 'symmetrical': 'False', 'blank': 'True'}) }, 'base.language': { 'Meta': {'object_name': 'Language'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '45'}), 'read_write': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, 'base.reference': { 'Meta': {'object_name': 'Reference'}, 'contact_no': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'fullname': ('django.db.models.fields.CharField', [], {'max_length': '45'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'relationship': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}) }, 'base.skill': { 'Meta': {'object_name': 'Skill'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'primary': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'skill': ('django.db.models.fields.CharField', [], {'max_length': '45'}) }, 'base.userban': { 'Meta': {'object_name': 'UserBan'}, 'ban_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_unbanned': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'unban_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}) }, 'base.workexperience': { 'Meta': {'object_name': 'WorkExperience'}, 'company': ('django.db.models.fields.CharField', [], {'max_length': '45', 'null': 'True', 'blank': 'True'}), 'end_year': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'start_year': ('django.db.models.fields.IntegerField', [], {'default': '0', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '45'}) }, 'category.category': { 'Meta': {'ordering': "('title',)", 'object_name': 'Category'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['category.Category']", 'null': 'True', 'blank': 'True'}), 'sites': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['sites.Site']", 'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}), 'subtitle': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'category.tag': { 'Meta': {'ordering': "('title',)", 'object_name': 'Tag'}, 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['category.Category']", 'null': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'jmbo.modelbase': { 'Meta': {'ordering': "('-created',)", 'object_name': 'ModelBase'}, 'anonymous_comments': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'anonymous_likes': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['category.Category']", 'null': 'True', 'blank': 'True'}), 'class_name': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'comments_closed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'comments_enabled': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']", 'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'blank': 'True'}), 'crop_from': ('django.db.models.fields.CharField', [], {'default': "'center'", 'max_length': '10', 'blank': 'True'}), 'date_taken': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'effect': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'modelbase_related'", 'null': 'True', 'to': "orm['photologue.PhotoEffect']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'likes_closed': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'likes_enabled': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'location': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['atlas.Location']", 'null': 'True', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'primary_category': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'primary_modelbase_set'", 'null': 'True', 'to': "orm['category.Category']"}), 'publish_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'publishers': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['publisher.Publisher']", 'null': 'True', 'blank': 'True'}), 'retract_on': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'sites': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['sites.Site']", 'null': 'True', 'symmetrical': 'False'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '255', 'db_index': 'True'}), 'state': ('django.db.models.fields.CharField', [], {'default': "'unpublished'", 'max_length': '32', 'null': 'True', 'blank': 'True'}), 'subtitle': ('django.db.models.fields.CharField', [], {'default': "''", 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'tags': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'to': "orm['category.Tag']", 'null': 'True', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'view_count': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, 'photologue.photo': { 'Meta': {'ordering': "['-date_added']", 'object_name': 'Photo'}, 'caption': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'crop_from': ('django.db.models.fields.CharField', [], {'default': "'center'", 'max_length': '10', 'blank': 'True'}), 'date_added': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'date_taken': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'effect': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'photo_related'", 'null': 'True', 'to': "orm['photologue.PhotoEffect']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'image': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'blank': 'True'}), 'is_public': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'tags': ('photologue.models.TagField', [], {'max_length': '255', 'blank': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '100'}), 'title_slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '50', 'db_index': 'True'}), 'view_count': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}) }, 'photologue.photoeffect': { 'Meta': {'object_name': 'PhotoEffect'}, 'background_color': ('django.db.models.fields.CharField', [], {'default': "'#FFFFFF'", 'max_length': '7'}), 'brightness': ('django.db.models.fields.FloatField', [], {'default': '1.0'}), 'color': ('django.db.models.fields.FloatField', [], {'default': '1.0'}), 'contrast': ('django.db.models.fields.FloatField', [], {'default': '1.0'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'filters': ('django.db.models.fields.CharField', [], {'max_length': '200', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}), 'reflection_size': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'reflection_strength': ('django.db.models.fields.FloatField', [], {'default': '0.6'}), 'sharpness': ('django.db.models.fields.FloatField', [], {'default': '1.0'}), 'transpose_method': ('django.db.models.fields.CharField', [], {'max_length': '15', 'blank': 'True'}) }, 'publisher.publisher': { 'Meta': {'object_name': 'Publisher'}, 'class_name': ('django.db.models.fields.CharField', [], {'max_length': '32', 'null': 'True'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']", 'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '64'}) }, 'secretballot.vote': { 'Meta': {'unique_together': "(('token', 'content_type', 'object_id'),)", 'object_name': 'Vote'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'token': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'vote': ('django.db.models.fields.SmallIntegerField', [], {}) }, 'sites.site': { 'Meta': {'ordering': "('domain',)", 'object_name': 'Site', 'db_table': "'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['base']
true
true
f712fac84d590819f808ab2c2adec2ef2541b025
2,277
py
Python
test/test_profile_audiences_changes.py
talon-one/talon_one.py
f863bb3c2cc5ddc94d9227adcf14947b2ea7db41
[ "MIT" ]
1
2021-03-05T06:41:26.000Z
2021-03-05T06:41:26.000Z
test/test_profile_audiences_changes.py
talon-one/talon_one.py
f863bb3c2cc5ddc94d9227adcf14947b2ea7db41
[ "MIT" ]
1
2021-09-07T08:56:58.000Z
2021-09-07T08:56:58.000Z
test/test_profile_audiences_changes.py
talon-one/talon_one.py
f863bb3c2cc5ddc94d9227adcf14947b2ea7db41
[ "MIT" ]
1
2019-05-21T10:27:54.000Z
2019-05-21T10:27:54.000Z
# coding: utf-8 """ Talon.One API The Talon.One API is used to manage applications and campaigns, as well as to integrate with your application. The operations in the _Integration API_ section are used to integrate with our platform, while the other operations are used to manage applications and campaigns. ### Where is the API? The API is available at the same hostname as these docs. For example, if you are reading this page at `https://mycompany.talon.one/docs/api/`, the URL for the [updateCustomerProfile][] operation is `https://mycompany.talon.one/v1/customer_profiles/id` [updateCustomerProfile]: #operation--v1-customer_profiles--integrationId--put # noqa: E501 The version of the OpenAPI document: 1.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import datetime import talon_one from talon_one.models.profile_audiences_changes import ProfileAudiencesChanges # noqa: E501 from talon_one.rest import ApiException class TestProfileAudiencesChanges(unittest.TestCase): """ProfileAudiencesChanges unit test stubs""" def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): """Test ProfileAudiencesChanges include_option is a boolean, when False only required params are included, when True both required and optional params are included """ # model = talon_one.models.profile_audiences_changes.ProfileAudiencesChanges() # noqa: E501 if include_optional : return ProfileAudiencesChanges( adds = [ 56 ], deletes = [ 56 ] ) else : return ProfileAudiencesChanges( adds = [ 56 ], deletes = [ 56 ], ) def testProfileAudiencesChanges(self): """Test ProfileAudiencesChanges""" inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
35.578125
647
0.645586
from __future__ import absolute_import import unittest import datetime import talon_one from talon_one.models.profile_audiences_changes import ProfileAudiencesChanges from talon_one.rest import ApiException class TestProfileAudiencesChanges(unittest.TestCase): def setUp(self): pass def tearDown(self): pass def make_instance(self, include_optional): include_optional : return ProfileAudiencesChanges( adds = [ 56 ], deletes = [ 56 ] ) else : return ProfileAudiencesChanges( adds = [ 56 ], deletes = [ 56 ], ) def testProfileAudiencesChanges(self): inst_req_only = self.make_instance(include_optional=False) inst_req_and_optional = self.make_instance(include_optional=True) if __name__ == '__main__': unittest.main()
true
true
f712fc10c849490c50a12ea4f35d86af02b77820
1,407
py
Python
src/subcommands/listers/list_users.py
kevin3/cwl-ica
cf706ea42993d563f364c0847ee4b882f8fe067c
[ "MIT" ]
8
2021-12-08T05:33:58.000Z
2022-03-07T00:40:48.000Z
src/subcommands/listers/list_users.py
kevin3/cwl-ica
cf706ea42993d563f364c0847ee4b882f8fe067c
[ "MIT" ]
34
2021-08-11T03:59:33.000Z
2022-03-10T05:39:26.000Z
src/subcommands/listers/list_users.py
kevin3/cwl-ica
cf706ea42993d563f364c0847ee4b882f8fe067c
[ "MIT" ]
1
2022-01-08T07:34:55.000Z
2022-01-08T07:34:55.000Z
#!/usr/bin/env python3 """ List all users registered in <CWL_ICA_REPO_PATH>/config/user.yaml """ from classes.command import Command from utils.logging import get_logger import pandas as pd from utils.repo import read_yaml, get_user_yaml_path import sys logger = get_logger() class ListUsers(Command): """Usage: cwl-ica [options] list-users help cwl-ica [options] list-users Description: List all registered users in <CWL_ICA_REPO_PATH>/config/user.yaml Example: cwl-ica list-users """ def __init__(self, command_argv): # Collect args from doc strings super().__init__(command_argv) # Check args self.check_args() def __call__(self): """ Just run through this :return: """ # Check project.yaml exists user_yaml_path = get_user_yaml_path() user_list = read_yaml(user_yaml_path)['users'] # Create pandas df of user yaml path user_df = pd.DataFrame(user_list) # Write user to stdout user_df.to_markdown(sys.stdout, index=False) # Add new line print() def check_args(self): """ Check if --tenant-name is defined or CWL_ICA_DEFAULT_TENANT is present Or if --tenant-name is set to 'all' :return: """ # Just make sure the user.yaml path exists _ = get_user_yaml_path()
21.984375
78
0.636105
from classes.command import Command from utils.logging import get_logger import pandas as pd from utils.repo import read_yaml, get_user_yaml_path import sys logger = get_logger() class ListUsers(Command): def __init__(self, command_argv): super().__init__(command_argv) self.check_args() def __call__(self): user_yaml_path = get_user_yaml_path() user_list = read_yaml(user_yaml_path)['users'] user_df = pd.DataFrame(user_list) user_df.to_markdown(sys.stdout, index=False) print() def check_args(self): _ = get_user_yaml_path()
true
true
f712fc37bbc5834d89b087770d9385645d23ac35
287
py
Python
delphi/distributions/__init__.py
pstefanou12/icml-submission
341cc13cbd0a7a3a38c94b1adab80dbe0a98718c
[ "MIT" ]
null
null
null
delphi/distributions/__init__.py
pstefanou12/icml-submission
341cc13cbd0a7a3a38c94b1adab80dbe0a98718c
[ "MIT" ]
null
null
null
delphi/distributions/__init__.py
pstefanou12/icml-submission
341cc13cbd0a7a3a38c94b1adab80dbe0a98718c
[ "MIT" ]
null
null
null
from .censored_normal import CensoredNormal from .censored_multivariate_normal import CensoredMultivariateNormal from .truncated_normal import TruncatedNormal from .truncated_multivariate_normal import TruncatedMultivariateNormal from .truncated_boolean_product import TruncatedBernoulli
57.4
70
0.916376
from .censored_normal import CensoredNormal from .censored_multivariate_normal import CensoredMultivariateNormal from .truncated_normal import TruncatedNormal from .truncated_multivariate_normal import TruncatedMultivariateNormal from .truncated_boolean_product import TruncatedBernoulli
true
true
f712fcb88b0b58b27af1bae0b47800d64b53266b
3,419
py
Python
testing/test_dynamic_function_error_suppression.py
python-discord/flake8-annotations
f96dd508d5b2c0bcaf3019d6dcfe65612e6cef78
[ "MIT" ]
49
2019-08-06T20:54:38.000Z
2020-09-02T10:59:24.000Z
testing/test_dynamic_function_error_suppression.py
python-discord/flake8-annotations
f96dd508d5b2c0bcaf3019d6dcfe65612e6cef78
[ "MIT" ]
73
2019-08-06T18:02:54.000Z
2020-08-31T12:21:39.000Z
testing/test_dynamic_function_error_suppression.py
python-discord/flake8-annotations
f96dd508d5b2c0bcaf3019d6dcfe65612e6cef78
[ "MIT" ]
12
2019-08-08T20:25:59.000Z
2020-09-02T18:17:48.000Z
from typing import Tuple import pytest from flake8_annotations.error_codes import Error from testing.helpers import check_is_empty, check_is_not_empty, check_source from testing.test_cases.dynamic_function_test_cases import ( DynamicallyTypedFunctionTestCase, DynamicallyTypedNestedFunctionTestCase, dynamic_function_test_cases, nested_dynamic_function_test_cases, ) class TestDynamicallyTypedFunctionErrorSuppression: """Test suppression of errors for dynamically typed functions.""" @pytest.fixture( params=dynamic_function_test_cases.items(), ids=dynamic_function_test_cases.keys() ) def yielded_errors( self, request # noqa: ANN001 ) -> Tuple[str, DynamicallyTypedFunctionTestCase, Tuple[Error]]: """ Build a fixture for the errors emitted from parsing the dynamically typed def test code. Fixture provides a tuple of: test case name, its corresponding `DynamicallyTypedFunctionTestCase` instance, and a tuple of the errors yielded by the checker, which should be empty if the test case's `should_yield_error` is `False`. """ test_case_name, test_case = request.param return ( test_case_name, test_case, tuple(check_source(test_case.src, allow_untyped_defs=True)), ) def test_suppressed_dynamic_function_error( self, yielded_errors: Tuple[str, DynamicallyTypedFunctionTestCase, Tuple[Error]] ) -> None: """Test that all errors are suppressed if a function is dynamically typed.""" test_case_name, test_case, errors = yielded_errors failure_msg = f"Check failed for case '{test_case_name}'" if test_case.should_yield_error: check_is_not_empty(errors, msg=failure_msg) else: check_is_empty(errors, msg=failure_msg) class TestDynamicallyTypedNestedFunctionErrorSuppression: """Test suppression of errors for dynamically typed nested functions.""" @pytest.fixture( params=nested_dynamic_function_test_cases.items(), ids=nested_dynamic_function_test_cases.keys(), ) def yielded_errors( self, request # noqa: ANN001 ) -> Tuple[str, DynamicallyTypedNestedFunctionTestCase, Tuple[Error]]: """ Build a fixture for the errors emitted from parsing the dynamically typed def test code. Fixture provides a tuple of: test case name, its corresponding `DynamicallyTypedNestedFunctionTestCase` instance, and a tuple of the errors yielded by the checker, which should be empty if the test case's `should_yield_error` is `False`. """ test_case_name, test_case = request.param return ( test_case_name, test_case, tuple(check_source(test_case.src, allow_untyped_nested=True)), ) def test_suppressed_dynamic_nested_function_error( self, yielded_errors: Tuple[str, DynamicallyTypedNestedFunctionTestCase, Tuple[Error]] ) -> None: """Test that all errors are suppressed if a nested function is dynamically typed.""" test_case_name, test_case, errors = yielded_errors failure_msg = f"Check failed for case '{test_case_name}'" if test_case.should_yield_error: check_is_not_empty(errors, msg=failure_msg) else: check_is_empty(errors, msg=failure_msg)
38.852273
99
0.705762
from typing import Tuple import pytest from flake8_annotations.error_codes import Error from testing.helpers import check_is_empty, check_is_not_empty, check_source from testing.test_cases.dynamic_function_test_cases import ( DynamicallyTypedFunctionTestCase, DynamicallyTypedNestedFunctionTestCase, dynamic_function_test_cases, nested_dynamic_function_test_cases, ) class TestDynamicallyTypedFunctionErrorSuppression: @pytest.fixture( params=dynamic_function_test_cases.items(), ids=dynamic_function_test_cases.keys() ) def yielded_errors( self, request ) -> Tuple[str, DynamicallyTypedFunctionTestCase, Tuple[Error]]: test_case_name, test_case = request.param return ( test_case_name, test_case, tuple(check_source(test_case.src, allow_untyped_defs=True)), ) def test_suppressed_dynamic_function_error( self, yielded_errors: Tuple[str, DynamicallyTypedFunctionTestCase, Tuple[Error]] ) -> None: test_case_name, test_case, errors = yielded_errors failure_msg = f"Check failed for case '{test_case_name}'" if test_case.should_yield_error: check_is_not_empty(errors, msg=failure_msg) else: check_is_empty(errors, msg=failure_msg) class TestDynamicallyTypedNestedFunctionErrorSuppression: @pytest.fixture( params=nested_dynamic_function_test_cases.items(), ids=nested_dynamic_function_test_cases.keys(), ) def yielded_errors( self, request ) -> Tuple[str, DynamicallyTypedNestedFunctionTestCase, Tuple[Error]]: test_case_name, test_case = request.param return ( test_case_name, test_case, tuple(check_source(test_case.src, allow_untyped_nested=True)), ) def test_suppressed_dynamic_nested_function_error( self, yielded_errors: Tuple[str, DynamicallyTypedNestedFunctionTestCase, Tuple[Error]] ) -> None: test_case_name, test_case, errors = yielded_errors failure_msg = f"Check failed for case '{test_case_name}'" if test_case.should_yield_error: check_is_not_empty(errors, msg=failure_msg) else: check_is_empty(errors, msg=failure_msg)
true
true
f712fcca54f7c24c8947bd7ce93370ffecca026f
408
py
Python
tests.py
justin4480/spelling
b209a95aa7d95ec7febd576db03377ee3368e05d
[ "MIT" ]
null
null
null
tests.py
justin4480/spelling
b209a95aa7d95ec7febd576db03377ee3368e05d
[ "MIT" ]
null
null
null
tests.py
justin4480/spelling
b209a95aa7d95ec7febd576db03377ee3368e05d
[ "MIT" ]
null
null
null
from main import Word, Wordgroup print('start') i = 22 wg = Wordgroup() wg.create_wordgroup(f'wordgroup_test{i}') wa = Word() wa.create_word(f'word_test{i}a', wg) wb = Word() wb.create_word(f'word_test{i}b', wg) wg = Wordgroup() wg.load_wordgroup(f'wordgroup_test{i}') wa = Word() wa.load_word(f'word_test{i}a') wb = Word() wb.load_word(f'word_test{i}b') wg.load_words() print(wg.words) print('end')
15.111111
41
0.696078
from main import Word, Wordgroup print('start') i = 22 wg = Wordgroup() wg.create_wordgroup(f'wordgroup_test{i}') wa = Word() wa.create_word(f'word_test{i}a', wg) wb = Word() wb.create_word(f'word_test{i}b', wg) wg = Wordgroup() wg.load_wordgroup(f'wordgroup_test{i}') wa = Word() wa.load_word(f'word_test{i}a') wb = Word() wb.load_word(f'word_test{i}b') wg.load_words() print(wg.words) print('end')
true
true
f712fdb394a818d1ca7adba3026bbe8e490a5839
2,122
py
Python
src/app/test/api/http/unit/handlers/v1/admin_test.py
ExpressHermes/beer-garden
2ea0944d7528a8127bc1b79d16d8fdc668f1c8e4
[ "MIT" ]
230
2018-02-03T01:33:45.000Z
2022-02-20T22:07:25.000Z
src/app/test/api/http/unit/handlers/v1/admin_test.py
ExpressHermes/beer-garden
2ea0944d7528a8127bc1b79d16d8fdc668f1c8e4
[ "MIT" ]
961
2018-02-06T11:22:40.000Z
2022-03-24T15:22:33.000Z
src/app/test/api/http/unit/handlers/v1/admin_test.py
ExpressHermes/beer-garden
2ea0944d7528a8127bc1b79d16d8fdc668f1c8e4
[ "MIT" ]
33
2018-02-04T18:00:07.000Z
2021-12-15T13:07:22.000Z
# -*- coding: utf-8 -*- import unittest from mock import MagicMock, Mock, patch from tornado.gen import Future from .. import TestHandlerBase @unittest.skip("TODO") class AdminAPITest(TestHandlerBase): def setUp(self): self.client_mock = MagicMock(name="client_mock") self.fake_context = MagicMock( __enter__=Mock(return_value=self.client_mock), __exit__=Mock(return_value=False), ) self.future_mock = Future() super(AdminAPITest, self).setUp() @patch("brew_view.handlers.v1.admin.thrift_context") def test_patch(self, context_mock): context_mock.return_value = self.fake_context self.client_mock.rescanSystemDirectory.return_value = self.future_mock self.future_mock.set_result(None) response = self.fetch( "/api/v1/admin/", method="PATCH", body='{"operations": [{"operation": "rescan"}]}', headers={"content-type": "application/json"}, ) self.assertEqual(204, response.code) self.client_mock.rescanSystemDirectory.assert_called_once_with() @patch("brew_view.handlers.v1.admin.thrift_context") def test_patch_exception(self, context_mock): context_mock.return_value = self.fake_context self.client_mock.rescanSystemDirectory.return_value = self.future_mock self.future_mock.set_exception(ValueError()) response = self.fetch( "/api/v1/admin/", method="PATCH", body='{"operations": [{"operation": "rescan"}]}', headers={"content-type": "application/json"}, ) self.assertGreaterEqual(response.code, 500) self.client_mock.rescanSystemDirectory.assert_called_once_with() def test_patch_bad_operation(self): response = self.fetch( "/api/v1/admin/", method="PATCH", body='{"operations": [{"operation": "fake"}]}', headers={"content-type": "application/json"}, ) self.assertGreaterEqual(response.code, 400) self.assertLess(response.code, 500)
34.786885
78
0.638077
import unittest from mock import MagicMock, Mock, patch from tornado.gen import Future from .. import TestHandlerBase @unittest.skip("TODO") class AdminAPITest(TestHandlerBase): def setUp(self): self.client_mock = MagicMock(name="client_mock") self.fake_context = MagicMock( __enter__=Mock(return_value=self.client_mock), __exit__=Mock(return_value=False), ) self.future_mock = Future() super(AdminAPITest, self).setUp() @patch("brew_view.handlers.v1.admin.thrift_context") def test_patch(self, context_mock): context_mock.return_value = self.fake_context self.client_mock.rescanSystemDirectory.return_value = self.future_mock self.future_mock.set_result(None) response = self.fetch( "/api/v1/admin/", method="PATCH", body='{"operations": [{"operation": "rescan"}]}', headers={"content-type": "application/json"}, ) self.assertEqual(204, response.code) self.client_mock.rescanSystemDirectory.assert_called_once_with() @patch("brew_view.handlers.v1.admin.thrift_context") def test_patch_exception(self, context_mock): context_mock.return_value = self.fake_context self.client_mock.rescanSystemDirectory.return_value = self.future_mock self.future_mock.set_exception(ValueError()) response = self.fetch( "/api/v1/admin/", method="PATCH", body='{"operations": [{"operation": "rescan"}]}', headers={"content-type": "application/json"}, ) self.assertGreaterEqual(response.code, 500) self.client_mock.rescanSystemDirectory.assert_called_once_with() def test_patch_bad_operation(self): response = self.fetch( "/api/v1/admin/", method="PATCH", body='{"operations": [{"operation": "fake"}]}', headers={"content-type": "application/json"}, ) self.assertGreaterEqual(response.code, 400) self.assertLess(response.code, 500)
true
true
f712ff3202a32d3e17ff93147d1fcf3e2d1d5750
1,244
py
Python
examples/plotting_utils.py
Broly498/sentinel2-cloud-detector
912880fcd6fed482475b4cd8da07bda17993ebe8
[ "CC0-1.0" ]
null
null
null
examples/plotting_utils.py
Broly498/sentinel2-cloud-detector
912880fcd6fed482475b4cd8da07bda17993ebe8
[ "CC0-1.0" ]
null
null
null
examples/plotting_utils.py
Broly498/sentinel2-cloud-detector
912880fcd6fed482475b4cd8da07bda17993ebe8
[ "CC0-1.0" ]
null
null
null
""" Plotting utilities for example notebooks """ import matplotlib.pyplot as plt import numpy as np def plot_image(image=None, mask=None, ax=None, factor=3.5/255, clip_range=(0, 1), **kwargs): """ Utility function for plotting RGB images and masks. """ if ax is None: _, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 15)) mask_color = [255, 255, 255, 255] if image is None else [255, 255, 0, 100] if image is None: if mask is None: raise ValueError('image or mask should be given') image = np.zeros(mask.shape + (3,), dtype=np.uint8) ax.imshow(np.clip(image * factor, *clip_range), **kwargs) if mask is not None: cloud_image = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8) cloud_image[mask == 1] = np.asarray(mask_color, dtype=np.uint8) ax.imshow(cloud_image) def plot_probabilities(image, proba, factor=3.5/255): """ Utility function for plotting a RGB image and its cloud probability map next to each other. """ plt.figure(figsize=(15, 15)) ax = plt.subplot(1, 2, 1) ax.imshow(np.clip(image * factor, 0, 1)) plt.show ax = plt.subplot(1, 2, 2) ax.imshow(proba, cmap=plt.cm.inferno) plt.show
29.619048
99
0.635048
import matplotlib.pyplot as plt import numpy as np def plot_image(image=None, mask=None, ax=None, factor=3.5/255, clip_range=(0, 1), **kwargs): if ax is None: _, ax = plt.subplots(nrows=1, ncols=1, figsize=(15, 15)) mask_color = [255, 255, 255, 255] if image is None else [255, 255, 0, 100] if image is None: if mask is None: raise ValueError('image or mask should be given') image = np.zeros(mask.shape + (3,), dtype=np.uint8) ax.imshow(np.clip(image * factor, *clip_range), **kwargs) if mask is not None: cloud_image = np.zeros((mask.shape[0], mask.shape[1], 4), dtype=np.uint8) cloud_image[mask == 1] = np.asarray(mask_color, dtype=np.uint8) ax.imshow(cloud_image) def plot_probabilities(image, proba, factor=3.5/255): plt.figure(figsize=(15, 15)) ax = plt.subplot(1, 2, 1) ax.imshow(np.clip(image * factor, 0, 1)) plt.show ax = plt.subplot(1, 2, 2) ax.imshow(proba, cmap=plt.cm.inferno) plt.show
true
true
f712ff51027a96befc2a75d344cf5da30ad5c687
112
py
Python
hello/urls.py
mk-knight23/django-project
ce03d27c0b95eb09d4aa35b298d23409540894ff
[ "MIT" ]
1
2020-12-24T12:36:46.000Z
2020-12-24T12:36:46.000Z
hello/urls.py
mk-knight23/django-project
ce03d27c0b95eb09d4aa35b298d23409540894ff
[ "MIT" ]
null
null
null
hello/urls.py
mk-knight23/django-project
ce03d27c0b95eb09d4aa35b298d23409540894ff
[ "MIT" ]
null
null
null
from django.urls import path from . import views urlpatterns = [ path('', views.home , name="homepage"), ]
16
43
0.669643
from django.urls import path from . import views urlpatterns = [ path('', views.home , name="homepage"), ]
true
true
f712ffe3f187336770e99740630606a865844c02
560
py
Python
team_builder/accounts/urls.py
squadran2003/Social-Team-Builder
08fdab7cf176de0daf38078cd9fcd5f17501cef8
[ "MIT" ]
null
null
null
team_builder/accounts/urls.py
squadran2003/Social-Team-Builder
08fdab7cf176de0daf38078cd9fcd5f17501cef8
[ "MIT" ]
null
null
null
team_builder/accounts/urls.py
squadran2003/Social-Team-Builder
08fdab7cf176de0daf38078cd9fcd5f17501cef8
[ "MIT" ]
null
null
null
from django.urls import path, include from .views import (ProfileView, ApplicantView, loginView, sign_out, SignupView) app_name = 'accounts' urlpatterns = [ path('profile/edit/', ProfileView.as_view(), name='edit_profile'), path('profile/<option>/', ProfileView.as_view(), name='profile'), path('applicant/<int:pk>/', ApplicantView.as_view(), name='applicant'), path('login/', loginView.as_view(), name='login'), path('logout/', sign_out, name='logout'), path('signup/', SignupView.as_view(), name='signup'), ]
31.111111
75
0.658929
from django.urls import path, include from .views import (ProfileView, ApplicantView, loginView, sign_out, SignupView) app_name = 'accounts' urlpatterns = [ path('profile/edit/', ProfileView.as_view(), name='edit_profile'), path('profile/<option>/', ProfileView.as_view(), name='profile'), path('applicant/<int:pk>/', ApplicantView.as_view(), name='applicant'), path('login/', loginView.as_view(), name='login'), path('logout/', sign_out, name='logout'), path('signup/', SignupView.as_view(), name='signup'), ]
true
true
f712ffe6fe5c0a6c8759123f756a187d71de3fdd
8,081
py
Python
homeassistant/components/miflora/sensor.py
switschel/core
0ecca246bdc3028c30bf8ccbf2b4c7f2a8b3f9aa
[ "Apache-2.0" ]
2
2021-01-29T02:52:01.000Z
2021-05-15T04:23:18.000Z
homeassistant/components/miflora/sensor.py
switschel/core
0ecca246bdc3028c30bf8ccbf2b4c7f2a8b3f9aa
[ "Apache-2.0" ]
68
2020-07-23T07:13:53.000Z
2022-03-31T06:01:48.000Z
homeassistant/components/miflora/sensor.py
switschel/core
0ecca246bdc3028c30bf8ccbf2b4c7f2a8b3f9aa
[ "Apache-2.0" ]
7
2021-03-20T12:34:01.000Z
2021-12-02T10:13:52.000Z
"""Support for Xiaomi Mi Flora BLE plant sensor.""" from datetime import timedelta import logging import btlewrap from btlewrap import BluetoothBackendException from miflora import miflora_poller import voluptuous as vol from homeassistant.components.sensor import ( PLATFORM_SCHEMA, STATE_CLASS_MEASUREMENT, SensorEntity, ) from homeassistant.const import ( CONDUCTIVITY, CONF_FORCE_UPDATE, CONF_MAC, CONF_MONITORED_CONDITIONS, CONF_NAME, CONF_SCAN_INTERVAL, DEVICE_CLASS_BATTERY, DEVICE_CLASS_ILLUMINANCE, DEVICE_CLASS_TEMPERATURE, EVENT_HOMEASSISTANT_START, LIGHT_LUX, PERCENTAGE, TEMP_CELSIUS, TEMP_FAHRENHEIT, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv import homeassistant.util.dt as dt_util from homeassistant.util.temperature import celsius_to_fahrenheit try: import bluepy.btle # noqa: F401 pylint: disable=unused-import BACKEND = btlewrap.BluepyBackend except ImportError: BACKEND = btlewrap.GatttoolBackend _LOGGER = logging.getLogger(__name__) CONF_ADAPTER = "adapter" CONF_MEDIAN = "median" CONF_GO_UNAVAILABLE_TIMEOUT = "go_unavailable_timeout" DEFAULT_ADAPTER = "hci0" DEFAULT_FORCE_UPDATE = False DEFAULT_MEDIAN = 3 DEFAULT_NAME = "Mi Flora" DEFAULT_GO_UNAVAILABLE_TIMEOUT = timedelta(seconds=7200) SCAN_INTERVAL = timedelta(seconds=1200) ATTR_LAST_SUCCESSFUL_UPDATE = "last_successful_update" # Sensor types are defined like: Name, units, icon, device_class SENSOR_TYPES = { "temperature": ["Temperature", TEMP_CELSIUS, None, DEVICE_CLASS_TEMPERATURE], "light": ["Light intensity", LIGHT_LUX, None, DEVICE_CLASS_ILLUMINANCE], "moisture": ["Moisture", PERCENTAGE, "mdi:water-percent", None], "conductivity": ["Conductivity", CONDUCTIVITY, "mdi:flash-circle", None], "battery": ["Battery", PERCENTAGE, None, DEVICE_CLASS_BATTERY], } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_MAC): cv.string, vol.Optional(CONF_MONITORED_CONDITIONS, default=list(SENSOR_TYPES)): vol.All( cv.ensure_list, [vol.In(SENSOR_TYPES)] ), vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_MEDIAN, default=DEFAULT_MEDIAN): cv.positive_int, vol.Optional(CONF_FORCE_UPDATE, default=DEFAULT_FORCE_UPDATE): cv.boolean, vol.Optional(CONF_ADAPTER, default=DEFAULT_ADAPTER): cv.string, vol.Optional( CONF_GO_UNAVAILABLE_TIMEOUT, default=DEFAULT_GO_UNAVAILABLE_TIMEOUT ): cv.time_period, } ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Set up the MiFlora sensor.""" backend = BACKEND _LOGGER.debug("Miflora is using %s backend", backend.__name__) cache = config.get(CONF_SCAN_INTERVAL, SCAN_INTERVAL).total_seconds() poller = miflora_poller.MiFloraPoller( config.get(CONF_MAC), cache_timeout=cache, adapter=config.get(CONF_ADAPTER), backend=backend, ) force_update = config.get(CONF_FORCE_UPDATE) median = config.get(CONF_MEDIAN) go_unavailable_timeout = config.get(CONF_GO_UNAVAILABLE_TIMEOUT) devs = [] for parameter in config[CONF_MONITORED_CONDITIONS]: name = SENSOR_TYPES[parameter][0] unit = ( hass.config.units.temperature_unit if parameter == "temperature" else SENSOR_TYPES[parameter][1] ) icon = SENSOR_TYPES[parameter][2] device_class = SENSOR_TYPES[parameter][3] prefix = config.get(CONF_NAME) if prefix: name = f"{prefix} {name}" devs.append( MiFloraSensor( poller, parameter, name, unit, icon, device_class, force_update, median, go_unavailable_timeout, ) ) async_add_entities(devs) class MiFloraSensor(SensorEntity): """Implementing the MiFlora sensor.""" def __init__( self, poller, parameter, name, unit, icon, device_class, force_update, median, go_unavailable_timeout, ): """Initialize the sensor.""" self.poller = poller self.parameter = parameter self._unit = unit self._icon = icon self._name = name self._state = None self._device_class = device_class self.data = [] self._force_update = force_update self.go_unavailable_timeout = go_unavailable_timeout self.last_successful_update = dt_util.utc_from_timestamp(0) # Median is used to filter out outliers. median of 3 will filter # single outliers, while median of 5 will filter double outliers # Use median_count = 1 if no filtering is required. self.median_count = median async def async_added_to_hass(self): """Set initial state.""" @callback def on_startup(_): self.async_schedule_update_ha_state(True) self.hass.bus.async_listen_once(EVENT_HOMEASSISTANT_START, on_startup) @property def name(self): """Return the name of the sensor.""" return self._name @property def native_value(self): """Return the state of the sensor.""" return self._state @property def available(self): """Return True if did update since 2h.""" return self.last_successful_update > ( dt_util.utcnow() - self.go_unavailable_timeout ) @property def extra_state_attributes(self): """Return the state attributes of the device.""" return {ATTR_LAST_SUCCESSFUL_UPDATE: self.last_successful_update} @property def device_class(self): """Return the device class.""" return self._device_class @property def state_class(self): """Return the state class of this entity.""" return STATE_CLASS_MEASUREMENT @property def native_unit_of_measurement(self): """Return the units of measurement.""" return self._unit @property def icon(self): """Return the icon of the sensor.""" return self._icon @property def force_update(self): """Force update.""" return self._force_update def update(self): """ Update current conditions. This uses a rolling median over 3 values to filter out outliers. """ try: _LOGGER.debug("Polling data for %s", self.name) data = self.poller.parameter_value(self.parameter) except (OSError, BluetoothBackendException) as err: _LOGGER.info("Polling error %s: %s", type(err).__name__, err) return if data is not None: _LOGGER.debug("%s = %s", self.name, data) if self._unit == TEMP_FAHRENHEIT: data = celsius_to_fahrenheit(data) self.data.append(data) self.last_successful_update = dt_util.utcnow() else: _LOGGER.info("Did not receive any data from Mi Flora sensor %s", self.name) # Remove old data from median list or set sensor value to None # if no data is available anymore if self.data: self.data = self.data[1:] else: self._state = None return _LOGGER.debug("Data collected: %s", self.data) if len(self.data) > self.median_count: self.data = self.data[1:] if len(self.data) == self.median_count: median = sorted(self.data)[int((self.median_count - 1) / 2)] _LOGGER.debug("Median is: %s", median) self._state = median elif self._state is None: _LOGGER.debug("Set initial state") self._state = self.data[0] else: _LOGGER.debug("Not yet enough data for median calculation")
30.379699
87
0.643361
from datetime import timedelta import logging import btlewrap from btlewrap import BluetoothBackendException from miflora import miflora_poller import voluptuous as vol from homeassistant.components.sensor import ( PLATFORM_SCHEMA, STATE_CLASS_MEASUREMENT, SensorEntity, ) from homeassistant.const import ( CONDUCTIVITY, CONF_FORCE_UPDATE, CONF_MAC, CONF_MONITORED_CONDITIONS, CONF_NAME, CONF_SCAN_INTERVAL, DEVICE_CLASS_BATTERY, DEVICE_CLASS_ILLUMINANCE, DEVICE_CLASS_TEMPERATURE, EVENT_HOMEASSISTANT_START, LIGHT_LUX, PERCENTAGE, TEMP_CELSIUS, TEMP_FAHRENHEIT, ) from homeassistant.core import callback import homeassistant.helpers.config_validation as cv import homeassistant.util.dt as dt_util from homeassistant.util.temperature import celsius_to_fahrenheit try: import bluepy.btle BACKEND = btlewrap.BluepyBackend except ImportError: BACKEND = btlewrap.GatttoolBackend _LOGGER = logging.getLogger(__name__) CONF_ADAPTER = "adapter" CONF_MEDIAN = "median" CONF_GO_UNAVAILABLE_TIMEOUT = "go_unavailable_timeout" DEFAULT_ADAPTER = "hci0" DEFAULT_FORCE_UPDATE = False DEFAULT_MEDIAN = 3 DEFAULT_NAME = "Mi Flora" DEFAULT_GO_UNAVAILABLE_TIMEOUT = timedelta(seconds=7200) SCAN_INTERVAL = timedelta(seconds=1200) ATTR_LAST_SUCCESSFUL_UPDATE = "last_successful_update" SENSOR_TYPES = { "temperature": ["Temperature", TEMP_CELSIUS, None, DEVICE_CLASS_TEMPERATURE], "light": ["Light intensity", LIGHT_LUX, None, DEVICE_CLASS_ILLUMINANCE], "moisture": ["Moisture", PERCENTAGE, "mdi:water-percent", None], "conductivity": ["Conductivity", CONDUCTIVITY, "mdi:flash-circle", None], "battery": ["Battery", PERCENTAGE, None, DEVICE_CLASS_BATTERY], } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Required(CONF_MAC): cv.string, vol.Optional(CONF_MONITORED_CONDITIONS, default=list(SENSOR_TYPES)): vol.All( cv.ensure_list, [vol.In(SENSOR_TYPES)] ), vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_MEDIAN, default=DEFAULT_MEDIAN): cv.positive_int, vol.Optional(CONF_FORCE_UPDATE, default=DEFAULT_FORCE_UPDATE): cv.boolean, vol.Optional(CONF_ADAPTER, default=DEFAULT_ADAPTER): cv.string, vol.Optional( CONF_GO_UNAVAILABLE_TIMEOUT, default=DEFAULT_GO_UNAVAILABLE_TIMEOUT ): cv.time_period, } ) async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): backend = BACKEND _LOGGER.debug("Miflora is using %s backend", backend.__name__) cache = config.get(CONF_SCAN_INTERVAL, SCAN_INTERVAL).total_seconds() poller = miflora_poller.MiFloraPoller( config.get(CONF_MAC), cache_timeout=cache, adapter=config.get(CONF_ADAPTER), backend=backend, ) force_update = config.get(CONF_FORCE_UPDATE) median = config.get(CONF_MEDIAN) go_unavailable_timeout = config.get(CONF_GO_UNAVAILABLE_TIMEOUT) devs = [] for parameter in config[CONF_MONITORED_CONDITIONS]: name = SENSOR_TYPES[parameter][0] unit = ( hass.config.units.temperature_unit if parameter == "temperature" else SENSOR_TYPES[parameter][1] ) icon = SENSOR_TYPES[parameter][2] device_class = SENSOR_TYPES[parameter][3] prefix = config.get(CONF_NAME) if prefix: name = f"{prefix} {name}" devs.append( MiFloraSensor( poller, parameter, name, unit, icon, device_class, force_update, median, go_unavailable_timeout, ) ) async_add_entities(devs) class MiFloraSensor(SensorEntity): def __init__( self, poller, parameter, name, unit, icon, device_class, force_update, median, go_unavailable_timeout, ): self.poller = poller self.parameter = parameter self._unit = unit self._icon = icon self._name = name self._state = None self._device_class = device_class self.data = [] self._force_update = force_update self.go_unavailable_timeout = go_unavailable_timeout self.last_successful_update = dt_util.utc_from_timestamp(0) self.median_count = median async def async_added_to_hass(self): @callback def on_startup(_): self.async_schedule_update_ha_state(True) self.hass.bus.async_listen_once(EVENT_HOMEASSISTANT_START, on_startup) @property def name(self): return self._name @property def native_value(self): return self._state @property def available(self): return self.last_successful_update > ( dt_util.utcnow() - self.go_unavailable_timeout ) @property def extra_state_attributes(self): return {ATTR_LAST_SUCCESSFUL_UPDATE: self.last_successful_update} @property def device_class(self): return self._device_class @property def state_class(self): return STATE_CLASS_MEASUREMENT @property def native_unit_of_measurement(self): return self._unit @property def icon(self): return self._icon @property def force_update(self): return self._force_update def update(self): try: _LOGGER.debug("Polling data for %s", self.name) data = self.poller.parameter_value(self.parameter) except (OSError, BluetoothBackendException) as err: _LOGGER.info("Polling error %s: %s", type(err).__name__, err) return if data is not None: _LOGGER.debug("%s = %s", self.name, data) if self._unit == TEMP_FAHRENHEIT: data = celsius_to_fahrenheit(data) self.data.append(data) self.last_successful_update = dt_util.utcnow() else: _LOGGER.info("Did not receive any data from Mi Flora sensor %s", self.name) if self.data: self.data = self.data[1:] else: self._state = None return _LOGGER.debug("Data collected: %s", self.data) if len(self.data) > self.median_count: self.data = self.data[1:] if len(self.data) == self.median_count: median = sorted(self.data)[int((self.median_count - 1) / 2)] _LOGGER.debug("Median is: %s", median) self._state = median elif self._state is None: _LOGGER.debug("Set initial state") self._state = self.data[0] else: _LOGGER.debug("Not yet enough data for median calculation")
true
true
f712ffebf55ea52b9d968763e92a05b11a563ee3
12,387
py
Python
qa/rpc-tests/util.py
VZUH-dev/VZUH
5c3fcdb7cd439b2537217d5bc797b459a1518270
[ "MIT" ]
null
null
null
qa/rpc-tests/util.py
VZUH-dev/VZUH
5c3fcdb7cd439b2537217d5bc797b459a1518270
[ "MIT" ]
null
null
null
qa/rpc-tests/util.py
VZUH-dev/VZUH
5c3fcdb7cd439b2537217d5bc797b459a1518270
[ "MIT" ]
null
null
null
# Copyright (c) 2014 The Bitcoin Core developers # Copyright (c) 2014-2015 The Dash developers # Copyright (c) 2019 The Vzuh developers # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Helpful routines for regression testing # # Add python-bitcoinrpc to module search path: import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "python-bitcoinrpc")) from decimal import Decimal, ROUND_DOWN import json import random import shutil import subprocess import time import re from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * def p2p_port(n): return 11000 + n + os.getpid()%999 def rpc_port(n): return 12000 + n + os.getpid()%999 def check_json_precision(): """Make sure json library being used does not lose precision converting BTC values""" n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def sync_blocks(rpc_connections): """ Wait until everybody has the same block count """ while True: counts = [ x.getblockcount() for x in rpc_connections ] if counts == [ counts[0] ]*len(counts): break time.sleep(1) def sync_mempools(rpc_connections): """ Wait until everybody has the same transactions in their memory pools """ while True: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(1) bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "vzuh.conf"), 'w') as f: f.write("regtest=1\n"); f.write("rpcuser=rt\n"); f.write("rpcpassword=rt\n"); f.write("port="+str(p2p_port(n))+"\n"); f.write("rpcport="+str(rpc_port(n))+"\n"); return datadir def initialize_chain(test_dir): """ Create (or copy from cache) a 200-block-long chain and 4 wallets. vzuhd and vzuh-cli must be in search path. """ if not os.path.isdir(os.path.join("cache", "node0")): devnull = open("/dev/null", "w+") # Create cache directories, run vzuhd: for i in range(4): datadir=initialize_datadir("cache", i) args = [ os.getenv("BITCOIND", "vzuhd"), "-keypool=1", "-datadir="+datadir, "-discover=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) subprocess.check_call([ os.getenv("BITCOINCLI", "vzuh-cli"), "-datadir="+datadir, "-rpcwait", "getblockcount"], stdout=devnull) devnull.close() rpcs = [] for i in range(4): try: url = "http://rt:rt@127.0.0.1:%d"%(rpc_port(i),) rpcs.append(AuthServiceProxy(url)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) # Create a 200-block-long chain; each of the 4 nodes # gets 25 mature blocks and 25 immature. # blocks are created with timestamps 10 minutes apart, starting # at 1 Jan 2014 block_time = 1388534400 for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].setgenerate(True, 1) block_time += 10*60 # Must sync before next peer starts generating blocks sync_blocks(rpcs) # Shut them down, and clean up cache directories: stop_nodes(rpcs) wait_bitcoinds() for i in range(4): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(4): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) # Overwrite port/rpcport in vzuh.conf def initialize_chain_clean(test_dir, num_nodes): """ Create an empty blockchain and num_nodes wallets. Useful if a test case wants complete control over initialization. """ for i in range(num_nodes): datadir=initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): '''Convert optional IP:port spec to rpcconnect/rpcport args''' if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): # remove IPv6 [...] wrapping rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None): """ Start a vzuhd and return RPC connection to it """ datadir = os.path.join(dirname, "node"+str(i)) args = [ os.getenv("BITCOIND", "vzuhd"), "-datadir="+datadir, "-keypool=1", "-discover=0", "-rest" ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) devnull = open("/dev/null", "w+") subprocess.check_call([ os.getenv("BITCOINCLI", "vzuh-cli"), "-datadir="+datadir] + _rpchost_to_args(rpchost) + ["-rpcwait", "getblockcount"], stdout=devnull) devnull.close() url = "http://rt:rt@%s:%d" % (rpchost or '127.0.0.1', rpc_port(i)) proxy = AuthServiceProxy(url) proxy.url = url # store URL on proxy for info return proxy def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None): """ Start multiple vzuhds, return RPC connections to them """ if extra_args is None: extra_args = [ None for i in range(num_nodes) ] return [ start_node(i, dirname, extra_args[i], rpchost) for i in range(num_nodes) ] def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def stop_node(node, i): node.stop() bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: node.stop() del nodes[:] # Emptying array closes connections as a side effect def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): # Wait for all bitcoinds to cleanly exit for bitcoind in bitcoind_processes.values(): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") # poll until version handshake complete to avoid race conditions # with transaction relaying while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): """ Return index to output of txid with value amount Raises exception if there is none. """ txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): """ Return a random set of unspent txouts that are enough to pay amount_needed """ assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): """ Create change output(s), return them """ outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: # Create an extra change output to break up big inputs change_address = from_node.getnewaddress() # Split change in two, being careful of rounding: outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): """ Create&broadcast a zero-priority transaction. Returns (txid, hex-encoded-txdata) Ensures transaction is zero-priority by first creating a send-to-self, then using it's output """ # Create a send-to-self with confirmed inputs: self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) # Now immediately spend the output to create a 1-input, 1-output # zero-priority transaction: inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random zero-priority transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): """ Create a random transaction. Returns (txid, hex-encoded-transaction-data, fee) """ from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): try: fun(*args, **kwds) except exc: pass except Exception as e: raise AssertionError("Unexpected exception raised: "+type(e).__name__) else: raise AssertionError("No exception raised")
35.800578
104
0.647049
import os import sys sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), "python-bitcoinrpc")) from decimal import Decimal, ROUND_DOWN import json import random import shutil import subprocess import time import re from bitcoinrpc.authproxy import AuthServiceProxy, JSONRPCException from util import * def p2p_port(n): return 11000 + n + os.getpid()%999 def rpc_port(n): return 12000 + n + os.getpid()%999 def check_json_precision(): n = Decimal("20000000.00000003") satoshis = int(json.loads(json.dumps(float(n)))*1.0e8) if satoshis != 2000000000000003: raise RuntimeError("JSON encode/decode loses precision") def sync_blocks(rpc_connections): while True: counts = [ x.getblockcount() for x in rpc_connections ] if counts == [ counts[0] ]*len(counts): break time.sleep(1) def sync_mempools(rpc_connections): while True: pool = set(rpc_connections[0].getrawmempool()) num_match = 1 for i in range(1, len(rpc_connections)): if set(rpc_connections[i].getrawmempool()) == pool: num_match = num_match+1 if num_match == len(rpc_connections): break time.sleep(1) bitcoind_processes = {} def initialize_datadir(dirname, n): datadir = os.path.join(dirname, "node"+str(n)) if not os.path.isdir(datadir): os.makedirs(datadir) with open(os.path.join(datadir, "vzuh.conf"), 'w') as f: f.write("regtest=1\n"); f.write("rpcuser=rt\n"); f.write("rpcpassword=rt\n"); f.write("port="+str(p2p_port(n))+"\n"); f.write("rpcport="+str(rpc_port(n))+"\n"); return datadir def initialize_chain(test_dir): if not os.path.isdir(os.path.join("cache", "node0")): devnull = open("/dev/null", "w+") for i in range(4): datadir=initialize_datadir("cache", i) args = [ os.getenv("BITCOIND", "vzuhd"), "-keypool=1", "-datadir="+datadir, "-discover=0" ] if i > 0: args.append("-connect=127.0.0.1:"+str(p2p_port(0))) bitcoind_processes[i] = subprocess.Popen(args) subprocess.check_call([ os.getenv("BITCOINCLI", "vzuh-cli"), "-datadir="+datadir, "-rpcwait", "getblockcount"], stdout=devnull) devnull.close() rpcs = [] for i in range(4): try: url = "http://rt:rt@127.0.0.1:%d"%(rpc_port(i),) rpcs.append(AuthServiceProxy(url)) except: sys.stderr.write("Error connecting to "+url+"\n") sys.exit(1) block_time = 1388534400 for i in range(2): for peer in range(4): for j in range(25): set_node_times(rpcs, block_time) rpcs[peer].setgenerate(True, 1) block_time += 10*60 sync_blocks(rpcs) stop_nodes(rpcs) wait_bitcoinds() for i in range(4): os.remove(log_filename("cache", i, "debug.log")) os.remove(log_filename("cache", i, "db.log")) os.remove(log_filename("cache", i, "peers.dat")) os.remove(log_filename("cache", i, "fee_estimates.dat")) for i in range(4): from_dir = os.path.join("cache", "node"+str(i)) to_dir = os.path.join(test_dir, "node"+str(i)) shutil.copytree(from_dir, to_dir) initialize_datadir(test_dir, i) def initialize_chain_clean(test_dir, num_nodes): for i in range(num_nodes): datadir=initialize_datadir(test_dir, i) def _rpchost_to_args(rpchost): if rpchost is None: return [] match = re.match('(\[[0-9a-fA-f:]+\]|[^:]+)(?::([0-9]+))?$', rpchost) if not match: raise ValueError('Invalid RPC host spec ' + rpchost) rpcconnect = match.group(1) rpcport = match.group(2) if rpcconnect.startswith('['): rpcconnect = rpcconnect[1:-1] rv = ['-rpcconnect=' + rpcconnect] if rpcport: rv += ['-rpcport=' + rpcport] return rv def start_node(i, dirname, extra_args=None, rpchost=None): datadir = os.path.join(dirname, "node"+str(i)) args = [ os.getenv("BITCOIND", "vzuhd"), "-datadir="+datadir, "-keypool=1", "-discover=0", "-rest" ] if extra_args is not None: args.extend(extra_args) bitcoind_processes[i] = subprocess.Popen(args) devnull = open("/dev/null", "w+") subprocess.check_call([ os.getenv("BITCOINCLI", "vzuh-cli"), "-datadir="+datadir] + _rpchost_to_args(rpchost) + ["-rpcwait", "getblockcount"], stdout=devnull) devnull.close() url = "http://rt:rt@%s:%d" % (rpchost or '127.0.0.1', rpc_port(i)) proxy = AuthServiceProxy(url) proxy.url = url return proxy def start_nodes(num_nodes, dirname, extra_args=None, rpchost=None): if extra_args is None: extra_args = [ None for i in range(num_nodes) ] return [ start_node(i, dirname, extra_args[i], rpchost) for i in range(num_nodes) ] def log_filename(dirname, n_node, logname): return os.path.join(dirname, "node"+str(n_node), "regtest", logname) def stop_node(node, i): node.stop() bitcoind_processes[i].wait() del bitcoind_processes[i] def stop_nodes(nodes): for node in nodes: node.stop() del nodes[:] def set_node_times(nodes, t): for node in nodes: node.setmocktime(t) def wait_bitcoinds(): for bitcoind in bitcoind_processes.values(): bitcoind.wait() bitcoind_processes.clear() def connect_nodes(from_connection, node_num): ip_port = "127.0.0.1:"+str(p2p_port(node_num)) from_connection.addnode(ip_port, "onetry") while any(peer['version'] == 0 for peer in from_connection.getpeerinfo()): time.sleep(0.1) def connect_nodes_bi(nodes, a, b): connect_nodes(nodes[a], b) connect_nodes(nodes[b], a) def find_output(node, txid, amount): txdata = node.getrawtransaction(txid, 1) for i in range(len(txdata["vout"])): if txdata["vout"][i]["value"] == amount: return i raise RuntimeError("find_output txid %s : %s not found"%(txid,str(amount))) def gather_inputs(from_node, amount_needed, confirmations_required=1): assert(confirmations_required >=0) utxo = from_node.listunspent(confirmations_required) random.shuffle(utxo) inputs = [] total_in = Decimal("0.00000000") while total_in < amount_needed and len(utxo) > 0: t = utxo.pop() total_in += t["amount"] inputs.append({ "txid" : t["txid"], "vout" : t["vout"], "address" : t["address"] } ) if total_in < amount_needed: raise RuntimeError("Insufficient funds: need %d, have %d"%(amount_needed, total_in)) return (total_in, inputs) def make_change(from_node, amount_in, amount_out, fee): outputs = {} amount = amount_out+fee change = amount_in - amount if change > amount*2: change_address = from_node.getnewaddress() outputs[change_address] = Decimal(change/2).quantize(Decimal('0.00000001'), rounding=ROUND_DOWN) change = amount_in - amount - outputs[change_address] if change > 0: outputs[from_node.getnewaddress()] = change return outputs def send_zeropri_transaction(from_node, to_node, amount, fee): self_address = from_node.getnewaddress() (total_in, inputs) = gather_inputs(from_node, amount+fee*2) outputs = make_change(from_node, total_in, amount+fee, fee) outputs[self_address] = float(amount+fee) self_rawtx = from_node.createrawtransaction(inputs, outputs) self_signresult = from_node.signrawtransaction(self_rawtx) self_txid = from_node.sendrawtransaction(self_signresult["hex"], True) vout = find_output(from_node, self_txid, amount+fee) inputs = [ { "txid" : self_txid, "vout" : vout } ] outputs = { to_node.getnewaddress() : float(amount) } rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"]) def random_zeropri_transaction(nodes, amount, min_fee, fee_increment, fee_variants): from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (txid, txhex) = send_zeropri_transaction(from_node, to_node, amount, fee) return (txid, txhex, fee) def random_transaction(nodes, amount, min_fee, fee_increment, fee_variants): from_node = random.choice(nodes) to_node = random.choice(nodes) fee = min_fee + fee_increment*random.randint(0,fee_variants) (total_in, inputs) = gather_inputs(from_node, amount+fee) outputs = make_change(from_node, total_in, amount, fee) outputs[to_node.getnewaddress()] = float(amount) rawtx = from_node.createrawtransaction(inputs, outputs) signresult = from_node.signrawtransaction(rawtx) txid = from_node.sendrawtransaction(signresult["hex"], True) return (txid, signresult["hex"], fee) def assert_equal(thing1, thing2): if thing1 != thing2: raise AssertionError("%s != %s"%(str(thing1),str(thing2))) def assert_greater_than(thing1, thing2): if thing1 <= thing2: raise AssertionError("%s <= %s"%(str(thing1),str(thing2))) def assert_raises(exc, fun, *args, **kwds): try: fun(*args, **kwds) except exc: pass except Exception as e: raise AssertionError("Unexpected exception raised: "+type(e).__name__) else: raise AssertionError("No exception raised")
true
true
f7130035aa9cbd6d6b04ef2f46267242342d95e7
1,619
py
Python
examples/adspygoogle/dfp/v201306/get_all_orders.py
cherry-wb/googleads-python-lib
24a1ecb7c1cca5af3624a3b03ebaa7f5147b4a04
[ "Apache-2.0" ]
null
null
null
examples/adspygoogle/dfp/v201306/get_all_orders.py
cherry-wb/googleads-python-lib
24a1ecb7c1cca5af3624a3b03ebaa7f5147b4a04
[ "Apache-2.0" ]
null
null
null
examples/adspygoogle/dfp/v201306/get_all_orders.py
cherry-wb/googleads-python-lib
24a1ecb7c1cca5af3624a3b03ebaa7f5147b4a04
[ "Apache-2.0" ]
2
2020-04-02T19:00:31.000Z
2020-08-06T03:28:38.000Z
#!/usr/bin/python # # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This code example gets all orders. To create orders, run create_orders.py.""" __author__ = 'api.shamjeff@gmail.com (Jeff Sham)' # Locate the client library. If module was installed via "setup.py" script, then # the following two lines are not needed. import os import sys sys.path.insert(0, os.path.join('..', '..', '..', '..')) # Import appropriate classes from the client library. from adspygoogle import DfpClient from adspygoogle.dfp import DfpUtils # Initialize client object. client = DfpClient(path=os.path.join('..', '..', '..', '..')) # Initialize appropriate service. order_service = client.GetService('OrderService', version='v201306') # Get orders by statement. orders = DfpUtils.GetAllEntitiesByStatementWithService(order_service) # Display results. for order in orders: print ('Order with id \'%s\', name \'%s\', and advertiser id \'%s\' was ' 'found.' % (order['id'], order['name'], order['advertiserId'])) print print 'Number of results found: %s' % len(orders)
33.729167
80
0.723286
"""This code example gets all orders. To create orders, run create_orders.py.""" __author__ = 'api.shamjeff@gmail.com (Jeff Sham)' import os import sys sys.path.insert(0, os.path.join('..', '..', '..', '..')) from adspygoogle import DfpClient from adspygoogle.dfp import DfpUtils client = DfpClient(path=os.path.join('..', '..', '..', '..')) order_service = client.GetService('OrderService', version='v201306') orders = DfpUtils.GetAllEntitiesByStatementWithService(order_service) for order in orders: print ('Order with id \'%s\', name \'%s\', and advertiser id \'%s\' was ' 'found.' % (order['id'], order['name'], order['advertiserId'])) print print 'Number of results found: %s' % len(orders)
false
true
f713009dc6d46b1dfeef756a592f007aa58af451
514
py
Python
astroML/utils/exceptions.py
arjunsavel/astroML
361cadc56360ca35c760405a341e35ecab6dd585
[ "BSD-2-Clause" ]
735
2015-01-07T23:55:25.000Z
2022-03-31T15:20:25.000Z
astroML/utils/exceptions.py
awesomemachinelearning/astroML
d378ca41565d1aa39997191d13d46d09d104ff1d
[ "BSD-2-Clause" ]
168
2015-01-06T21:02:41.000Z
2022-03-29T03:15:29.000Z
astroML/utils/exceptions.py
DinoBektesevic/astroML
b4e699bf45a65e233b40d60323c05eafa1d4955e
[ "BSD-2-Clause" ]
278
2015-01-26T00:29:38.000Z
2022-02-25T21:17:50.000Z
""" This module contains errors/exceptions and warnings for astroML. """ from astropy.utils.exceptions import AstropyWarning class AstroMLWarning(AstropyWarning): """ A base warning class from which all AstroML warnings should inherit. This class is subclassed from AstropyWarnings, so warnings inherited by this class is handled by the Astropy logger. """ class AstroMLDeprecationWarning(AstroMLWarning): """ A warning class to indicate a deprecated feature in astroML. """
23.363636
75
0.743191
from astropy.utils.exceptions import AstropyWarning class AstroMLWarning(AstropyWarning): class AstroMLDeprecationWarning(AstroMLWarning):
true
true
f71300d3ab93cd67015041b58c76c4dce981df47
912
py
Python
mysql/tests/common.py
Nevon/integrations-core
8b8284e8ca6c7188eea8548a6c3b809831c885cb
[ "BSD-3-Clause" ]
null
null
null
mysql/tests/common.py
Nevon/integrations-core
8b8284e8ca6c7188eea8548a6c3b809831c885cb
[ "BSD-3-Clause" ]
null
null
null
mysql/tests/common.py
Nevon/integrations-core
8b8284e8ca6c7188eea8548a6c3b809831c885cb
[ "BSD-3-Clause" ]
null
null
null
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import os from sys import maxsize import pytest from pkg_resources import parse_version from datadog_checks.dev import get_docker_hostname HERE = os.path.dirname(os.path.abspath(__file__)) ROOT = os.path.dirname(os.path.dirname(HERE)) TESTS_HELPER_DIR = os.path.join(ROOT, 'datadog_checks_tests_helper') MYSQL_VERSION_IS_LATEST = os.getenv('MYSQL_VERSION', '').endswith('latest') if MYSQL_VERSION_IS_LATEST is False: MYSQL_VERSION_PARSED = parse_version(os.getenv('MYSQL_VERSION', '')) else: MYSQL_VERSION_PARSED = parse_version(str(maxsize)) CHECK_NAME = 'mysql' HOST = get_docker_hostname() PORT = 13306 SLAVE_PORT = 13307 USER = 'dog' PASS = 'dog' requires_static_version = pytest.mark.skipif( MYSQL_VERSION_IS_LATEST, reason='Version `latest` is ever-changing, skipping' )
26.823529
81
0.774123
import os from sys import maxsize import pytest from pkg_resources import parse_version from datadog_checks.dev import get_docker_hostname HERE = os.path.dirname(os.path.abspath(__file__)) ROOT = os.path.dirname(os.path.dirname(HERE)) TESTS_HELPER_DIR = os.path.join(ROOT, 'datadog_checks_tests_helper') MYSQL_VERSION_IS_LATEST = os.getenv('MYSQL_VERSION', '').endswith('latest') if MYSQL_VERSION_IS_LATEST is False: MYSQL_VERSION_PARSED = parse_version(os.getenv('MYSQL_VERSION', '')) else: MYSQL_VERSION_PARSED = parse_version(str(maxsize)) CHECK_NAME = 'mysql' HOST = get_docker_hostname() PORT = 13306 SLAVE_PORT = 13307 USER = 'dog' PASS = 'dog' requires_static_version = pytest.mark.skipif( MYSQL_VERSION_IS_LATEST, reason='Version `latest` is ever-changing, skipping' )
true
true
f71301a2158041bdeea3e6ee12a28171ccdfbfe0
10,841
py
Python
deepforest/preprocess.py
henrykironde/DeepForest
9df98ea30debc8a1dc98edfa45dada063b109e6e
[ "MIT" ]
249
2018-04-03T18:44:51.000Z
2022-03-31T18:01:52.000Z
deepforest/preprocess.py
henrykironde/DeepForest
9df98ea30debc8a1dc98edfa45dada063b109e6e
[ "MIT" ]
280
2018-05-23T14:33:39.000Z
2022-03-31T21:29:38.000Z
deepforest/preprocess.py
henrykironde/DeepForest
9df98ea30debc8a1dc98edfa45dada063b109e6e
[ "MIT" ]
112
2018-05-30T14:52:56.000Z
2022-03-25T10:10:58.000Z
# Deepforest Preprocessing model """The preprocessing module is used to reshape data into format suitable for training or prediction. For example cutting large tiles into smaller images. """ import os import numpy as np import pandas as pd import slidingwindow from PIL import Image import torch import warnings import rasterio def preprocess_image(image, device): """Preprocess a single RGB numpy array as a prediction from channels last, to channels first""" image = torch.tensor(image, device=device).permute(2, 0, 1).unsqueeze(0) image = image / 255 return image def image_name_from_path(image_path): """Convert path to image name for use in indexing.""" image_name = os.path.basename(image_path) image_name = os.path.splitext(image_name)[0] return image_name def compute_windows(numpy_image, patch_size, patch_overlap): """Create a sliding window object from a raster tile. Args: numpy_image (array): Raster object as numpy array to cut into crops Returns: windows (list): a sliding windows object """ if patch_overlap > 1: raise ValueError("Patch overlap {} must be between 0 - 1".format(patch_overlap)) # Generate overlapping sliding windows windows = slidingwindow.generate(numpy_image, slidingwindow.DimOrder.HeightWidthChannel, patch_size, patch_overlap) return (windows) def select_annotations(annotations, windows, index, allow_empty=False): """Select annotations that overlap with selected image crop. Args: image_name (str): Name of the image in the annotations file to lookup. annotations_file: path to annotations file in the format -> image_path, xmin, ymin, xmax, ymax, label windows: A sliding window object (see compute_windows) index: The index in the windows object to use a crop bounds allow_empty (bool): If True, allow window crops that have no annotations to be included Returns: selected_annotations: a pandas dataframe of annotations """ # Window coordinates - with respect to tile window_xmin, window_ymin, w, h = windows[index].getRect() window_xmax = window_xmin + w window_ymax = window_ymin + h # buffer coordinates a bit to grab boxes that might start just against # the image edge. Don't allow boxes that start and end after the offset offset = 40 selected_annotations = annotations[(annotations.xmin > (window_xmin - offset)) & (annotations.xmin < (window_xmax)) & (annotations.xmax > (window_xmin)) & (annotations.ymin > (window_ymin - offset)) & (annotations.xmax < (window_xmax + offset)) & (annotations.ymin < (window_ymax)) & (annotations.ymax > (window_ymin)) & (annotations.ymax < (window_ymax + offset))] # change the image name image_name = os.path.splitext("{}".format(annotations.image_path.unique()[0]))[0] image_basename = os.path.splitext(image_name)[0] selected_annotations.image_path = "{}_{}.png".format(image_basename, index) # If no matching annotations, return a line with the image name, but no # records if selected_annotations.empty: if allow_empty: selected_annotations = pd.DataFrame( ["{}_{}.png".format(image_basename, index)], columns=["image_path"]) selected_annotations["xmin"] = 0 selected_annotations["ymin"] = 0 selected_annotations["xmax"] = 0 selected_annotations["ymax"] = 0 #Dummy label selected_annotations["label"] = annotations.label.unique()[0] else: return None else: # update coordinates with respect to origin selected_annotations.xmax = (selected_annotations.xmin - window_xmin) + ( selected_annotations.xmax - selected_annotations.xmin) selected_annotations.xmin = (selected_annotations.xmin - window_xmin) selected_annotations.ymax = (selected_annotations.ymin - window_ymin) + ( selected_annotations.ymax - selected_annotations.ymin) selected_annotations.ymin = (selected_annotations.ymin - window_ymin) # cut off any annotations over the border. selected_annotations.loc[selected_annotations.xmin < 0, "xmin"] = 0 selected_annotations.loc[selected_annotations.xmax > w, "xmax"] = w selected_annotations.loc[selected_annotations.ymin < 0, "ymin"] = 0 selected_annotations.loc[selected_annotations.ymax > h, "ymax"] = h return selected_annotations def save_crop(base_dir, image_name, index, crop): """Save window crop as image file to be read by PIL. Filename should match the image_name + window index """ # create dir if needed if not os.path.exists(base_dir): os.makedirs(base_dir) im = Image.fromarray(crop) image_basename = os.path.splitext(image_name)[0] filename = "{}/{}_{}.png".format(base_dir, image_basename, index) im.save(filename) return filename def split_raster(annotations_file, path_to_raster=None, numpy_image=None, base_dir=".", patch_size=400, patch_overlap=0.05, allow_empty=False, image_name = None): """Divide a large tile into smaller arrays. Each crop will be saved to file. Args: numpy_image: a numpy object to be used as a raster, usually opened from rasterio.open.read() path_to_raster: (str): Path to a tile that can be read by rasterio on disk annotations_file (str): Path to annotations file (with column names) data in the format -> image_path, xmin, ymin, xmax, ymax, label base_dir (str): Where to save the annotations and image crops relative to current working dir patch_size (int): Maximum dimensions of square window patch_overlap (float): Percent of overlap among windows 0->1 allow_empty: If True, include images with no annotations to be included in the dataset image_name (str): If numpy_image arg is used, what name to give the raster? Returns: A pandas dataframe with annotations file for training. """ # Load raster as image # Load raster as image if (numpy_image is None) & (path_to_raster is None): raise IOError("supply a raster either as a path_to_raster or if ready from existing in memory numpy object, as numpy_image=") if path_to_raster: numpy_image = rasterio.open(path_to_raster).read() numpy_image = np.moveaxis(numpy_image,0,2) else: if image_name is None: raise(IOError("If passing an numpy_image, please also specify a image_name to match the column in the annotation.csv file")) # Check that its 3 band bands = numpy_image.shape[2] if not bands == 3: warnings.warn("Input rasterio had non-3 band shape of {}, ignoring alpha channel".format(numpy_image.shape)) try: numpy_image = numpy_image[:,:,:3].astype("uint8") except: raise IOError("Input file {} has {} bands. DeepForest only accepts 3 band RGB " "rasters in the order (height, width, channels). Selecting the first three bands failed, please reshape manually." "If the image was cropped and saved as a .jpg, " "please ensure that no alpha channel was used.".format( path_to_raster, bands)) # Check that patch size is greater than image size height = numpy_image.shape[0] width = numpy_image.shape[1] if any(np.array([height, width]) < patch_size): raise ValueError("Patch size of {} is larger than the image dimensions {}".format( patch_size, [height, width])) # Compute sliding window index windows = compute_windows(numpy_image, patch_size, patch_overlap) # Get image name for indexing if image_name is None: image_name = os.path.basename(path_to_raster) # Load annotations file and coerce dtype annotations = pd.read_csv(annotations_file) # open annotations file image_annotations = annotations[annotations.image_path == image_name] # Sanity checks if image_annotations.empty: raise ValueError( "No image names match between the file:{} and the image_path: {}. " "Reminder that image paths should be the relative " "path (e.g. 'image_name.tif'), not the full path " "(e.g. path/to/dir/image_name.tif)".format(annotations_file, image_name)) if not all([ x in annotations.columns for x in ["image_path", "xmin", "ymin", "xmax", "ymax", "label"] ]): raise ValueError("Annotations file has {} columns, should have " "format image_path, xmin, ymin, xmax, ymax, label".format( annotations.shape[1])) annotations_files = [] for index, window in enumerate(windows): # Crop image crop = numpy_image[windows[index].indices()] #skip if empty crop if crop.size == 0: continue # Find annotations, image_name is the basename of the path crop_annotations = select_annotations(image_annotations, windows, index, allow_empty) # If empty images not allowed, select annotations returns None if crop_annotations is not None: # save annotations annotations_files.append(crop_annotations) # save image crop save_crop(base_dir, image_name, index, crop) if len(annotations_files) == 0: raise ValueError( "Input file has no overlapping annotations and allow_empty is {}".format( allow_empty)) annotations_files = pd.concat(annotations_files) # Checkpoint csv files, useful for parallelization # Use filename of the raster path to save the annotations image_basename = os.path.splitext(image_name)[0] file_path = image_basename + ".csv" file_path = os.path.join(base_dir, file_path) annotations_files.to_csv(file_path, index=False, header=True) return annotations_files
40.301115
140
0.628079
import os import numpy as np import pandas as pd import slidingwindow from PIL import Image import torch import warnings import rasterio def preprocess_image(image, device): image = torch.tensor(image, device=device).permute(2, 0, 1).unsqueeze(0) image = image / 255 return image def image_name_from_path(image_path): image_name = os.path.basename(image_path) image_name = os.path.splitext(image_name)[0] return image_name def compute_windows(numpy_image, patch_size, patch_overlap): if patch_overlap > 1: raise ValueError("Patch overlap {} must be between 0 - 1".format(patch_overlap)) windows = slidingwindow.generate(numpy_image, slidingwindow.DimOrder.HeightWidthChannel, patch_size, patch_overlap) return (windows) def select_annotations(annotations, windows, index, allow_empty=False): window_xmin, window_ymin, w, h = windows[index].getRect() window_xmax = window_xmin + w window_ymax = window_ymin + h offset = 40 selected_annotations = annotations[(annotations.xmin > (window_xmin - offset)) & (annotations.xmin < (window_xmax)) & (annotations.xmax > (window_xmin)) & (annotations.ymin > (window_ymin - offset)) & (annotations.xmax < (window_xmax + offset)) & (annotations.ymin < (window_ymax)) & (annotations.ymax > (window_ymin)) & (annotations.ymax < (window_ymax + offset))] # change the image name image_name = os.path.splitext("{}".format(annotations.image_path.unique()[0]))[0] image_basename = os.path.splitext(image_name)[0] selected_annotations.image_path = "{}_{}.png".format(image_basename, index) # If no matching annotations, return a line with the image name, but no # records if selected_annotations.empty: if allow_empty: selected_annotations = pd.DataFrame( ["{}_{}.png".format(image_basename, index)], columns=["image_path"]) selected_annotations["xmin"] = 0 selected_annotations["ymin"] = 0 selected_annotations["xmax"] = 0 selected_annotations["ymax"] = 0 #Dummy label selected_annotations["label"] = annotations.label.unique()[0] else: return None else: # update coordinates with respect to origin selected_annotations.xmax = (selected_annotations.xmin - window_xmin) + ( selected_annotations.xmax - selected_annotations.xmin) selected_annotations.xmin = (selected_annotations.xmin - window_xmin) selected_annotations.ymax = (selected_annotations.ymin - window_ymin) + ( selected_annotations.ymax - selected_annotations.ymin) selected_annotations.ymin = (selected_annotations.ymin - window_ymin) # cut off any annotations over the border. selected_annotations.loc[selected_annotations.xmin < 0, "xmin"] = 0 selected_annotations.loc[selected_annotations.xmax > w, "xmax"] = w selected_annotations.loc[selected_annotations.ymin < 0, "ymin"] = 0 selected_annotations.loc[selected_annotations.ymax > h, "ymax"] = h return selected_annotations def save_crop(base_dir, image_name, index, crop): # create dir if needed if not os.path.exists(base_dir): os.makedirs(base_dir) im = Image.fromarray(crop) image_basename = os.path.splitext(image_name)[0] filename = "{}/{}_{}.png".format(base_dir, image_basename, index) im.save(filename) return filename def split_raster(annotations_file, path_to_raster=None, numpy_image=None, base_dir=".", patch_size=400, patch_overlap=0.05, allow_empty=False, image_name = None): # Load raster as image # Load raster as image if (numpy_image is None) & (path_to_raster is None): raise IOError("supply a raster either as a path_to_raster or if ready from existing in memory numpy object, as numpy_image=") if path_to_raster: numpy_image = rasterio.open(path_to_raster).read() numpy_image = np.moveaxis(numpy_image,0,2) else: if image_name is None: raise(IOError("If passing an numpy_image, please also specify a image_name to match the column in the annotation.csv file")) # Check that its 3 band bands = numpy_image.shape[2] if not bands == 3: warnings.warn("Input rasterio had non-3 band shape of {}, ignoring alpha channel".format(numpy_image.shape)) try: numpy_image = numpy_image[:,:,:3].astype("uint8") except: raise IOError("Input file {} has {} bands. DeepForest only accepts 3 band RGB " "rasters in the order (height, width, channels). Selecting the first three bands failed, please reshape manually." "If the image was cropped and saved as a .jpg, " "please ensure that no alpha channel was used.".format( path_to_raster, bands)) # Check that patch size is greater than image size height = numpy_image.shape[0] width = numpy_image.shape[1] if any(np.array([height, width]) < patch_size): raise ValueError("Patch size of {} is larger than the image dimensions {}".format( patch_size, [height, width])) # Compute sliding window index windows = compute_windows(numpy_image, patch_size, patch_overlap) # Get image name for indexing if image_name is None: image_name = os.path.basename(path_to_raster) # Load annotations file and coerce dtype annotations = pd.read_csv(annotations_file) # open annotations file image_annotations = annotations[annotations.image_path == image_name] # Sanity checks if image_annotations.empty: raise ValueError( "No image names match between the file:{} and the image_path: {}. " "Reminder that image paths should be the relative " "path (e.g. 'image_name.tif'), not the full path " "(e.g. path/to/dir/image_name.tif)".format(annotations_file, image_name)) if not all([ x in annotations.columns for x in ["image_path", "xmin", "ymin", "xmax", "ymax", "label"] ]): raise ValueError("Annotations file has {} columns, should have " "format image_path, xmin, ymin, xmax, ymax, label".format( annotations.shape[1])) annotations_files = [] for index, window in enumerate(windows): # Crop image crop = numpy_image[windows[index].indices()] #skip if empty crop if crop.size == 0: continue # Find annotations, image_name is the basename of the path crop_annotations = select_annotations(image_annotations, windows, index, allow_empty) # If empty images not allowed, select annotations returns None if crop_annotations is not None: # save annotations annotations_files.append(crop_annotations) # save image crop save_crop(base_dir, image_name, index, crop) if len(annotations_files) == 0: raise ValueError( "Input file has no overlapping annotations and allow_empty is {}".format( allow_empty)) annotations_files = pd.concat(annotations_files) # Checkpoint csv files, useful for parallelization # Use filename of the raster path to save the annotations image_basename = os.path.splitext(image_name)[0] file_path = image_basename + ".csv" file_path = os.path.join(base_dir, file_path) annotations_files.to_csv(file_path, index=False, header=True) return annotations_files
true
true
f71301afd0525fb53613e57af433339ec0256bce
250
py
Python
05_debugging/bug_06.py
ASU-CompMethodsPhysics-PHY494/PHY494-resources-2020
20e08c20995eab567063b1845487e84c0e690e96
[ "CC-BY-4.0" ]
null
null
null
05_debugging/bug_06.py
ASU-CompMethodsPhysics-PHY494/PHY494-resources-2020
20e08c20995eab567063b1845487e84c0e690e96
[ "CC-BY-4.0" ]
null
null
null
05_debugging/bug_06.py
ASU-CompMethodsPhysics-PHY494/PHY494-resources-2020
20e08c20995eab567063b1845487e84c0e690e96
[ "CC-BY-4.0" ]
null
null
null
# bug 5 # https://asu-compmethodsphysics-phy494.github.io/ASU-PHY494/2019/02/05/05_Debugging/#activity-fix-as-many-bugs-as-possible # Create a list of values -10, -9.8, -9.6, ..., -0.2, 0, 0.2, ..., 10. h = 0.2 x = [-10 + i*h for i in range(100)]
27.777778
123
0.632
nge(100)]
true
true
f713033e7c9b0eb233e59f1ec4f01deff530cf46
9,351
py
Python
csgo/client.py
ValvePython/csgo
ed81efa8c36122e882ffa5247be1b327dbd20850
[ "MIT" ]
108
2016-05-16T20:05:45.000Z
2022-03-31T13:33:52.000Z
csgo/client.py
ValvePython/csgo
ed81efa8c36122e882ffa5247be1b327dbd20850
[ "MIT" ]
50
2016-10-19T20:55:09.000Z
2022-02-22T18:14:21.000Z
csgo/client.py
ValvePython/csgo
ed81efa8c36122e882ffa5247be1b327dbd20850
[ "MIT" ]
21
2017-04-18T20:38:27.000Z
2022-03-11T16:34:59.000Z
""" Only the most essential features to :class:`csgo.client.CSGOClient` are found here. Every other feature is inherited from the :mod:`csgo.features` package and it's submodules. """ import logging import gevent import google.protobuf from steam.core.msg import GCMsgHdrProto from steam.client.gc import GameCoordinator from steam.enums.emsg import EMsg from steam.utils.proto import proto_fill_from_dict from csgo.features import FeatureBase from csgo.enums import EGCBaseClientMsg, GCConnectionStatus, GCClientLauncherType from csgo.msg import get_emsg_enum, find_proto from csgo.protobufs import gcsdk_gcmessages_pb2 as pb_gc from csgo.protobufs import cstrike15_gcmessages_pb2 as pb_gclient class CSGOClient(GameCoordinator, FeatureBase): """ :param steam_client: Instance of the steam client :type steam_client: :class:`steam.client.SteamClient` """ _retry_welcome_loop = None verbose_debug = False #: enable pretty print of messages in debug logging app_id = 730 #: main client app id launcher = GCClientLauncherType.DEFAULT #: launcher type (used for access to PW) See: :class:`csgo.enums.GCClientLauncherType` current_jobid = 0 ready = False #: ``True`` when we have a session with GC connection_status = GCConnectionStatus.NO_SESSION #: See :class:`csgo.enums.GCConnectionStatus` @property def account_id(self): """ Account ID of the logged-in user in the steam client """ return self.steam.steam_id.id @property def steam_id(self): """ :class:`steam.steamid.SteamID` of the logged-in user in the steam client """ return self.steam.steam_id def __init__(self, steam_client): GameCoordinator.__init__(self, steam_client, self.app_id) self._LOG = logging.getLogger(self.__class__.__name__) FeatureBase.__init__(self) self.steam.on('disconnected', self._handle_disconnect) self.steam.on(EMsg.ClientPlayingSessionState, self._handle_play_sess_state) # register GC message handles self.on(EGCBaseClientMsg.EMsgGCClientConnectionStatus, self._handle_conn_status) self.on(EGCBaseClientMsg.EMsgGCClientWelcome, self._handle_client_welcome) def __repr__(self): return "<%s(%s) %s>" % (self.__class__.__name__, repr(self.steam), repr(self.connection_status), ) def _handle_play_sess_state(self, message): if self.ready and message.playing_app != self.app_id: self._set_connection_status(GCConnectionStatus.NO_SESSION) def _handle_disconnect(self): if self._retry_welcome_loop: self._retry_welcome_loop.kill() self._set_connection_status(GCConnectionStatus.NO_SESSION) def _handle_client_welcome(self, message): self._set_connection_status(GCConnectionStatus.HAVE_SESSION) # handle CSGO Welcome submessage = pb_gclient.CMsgCStrike15Welcome() submessage.ParseFromString(message.game_data) if self.verbose_debug: self._LOG.debug("Got CStrike15Welcome:\n%s" % str(submessage)) else: self._LOG.debug("Got CStrike15Welcome") self.emit('csgo_welcome', submessage) def _handle_conn_status(self, message): self._set_connection_status(message.status) def _process_gc_message(self, emsg, header, payload): emsg = get_emsg_enum(emsg) proto = find_proto(emsg) if proto is None: self._LOG.error("Failed to parse: %s" % repr(emsg)) return message = proto() message.ParseFromString(payload) if self.verbose_debug: self._LOG.debug("Incoming: %s\n%s\n---------\n%s" % (repr(emsg), str(header), str(message), )) else: self._LOG.debug("Incoming: %s", repr(emsg)) self.emit(emsg, message) if header.proto.job_id_target != 18446744073709551615: self.emit('job_%d' % header.proto.job_id_target, message) def _set_connection_status(self, status): prev_status = self.connection_status self.connection_status = GCConnectionStatus(status) if self.connection_status != prev_status: self.emit("connection_status", self.connection_status) if self.connection_status == GCConnectionStatus.HAVE_SESSION and not self.ready: self.ready = True self.emit('ready') elif self.connection_status != GCConnectionStatus.HAVE_SESSION and self.ready: self.ready = False self.emit('notready') def wait_msg(self, event, timeout=None, raises=None): """Wait for a message, similiar to :meth:`.wait_event` :param event: event id :type event: :class:`.ECsgoGCMsg` or job id :param timeout: seconds to wait before timeout :type timeout: :class:`int` :param raises: On timeout when ``False`` returns :class:`None`, else raise :class:`gevent.Timeout` :type raises: :class:`bool` :return: returns a message or :class:`None` :rtype: :class:`None`, or `proto message` :raises: :class:`gevent.Timeout` """ resp = self.wait_event(event, timeout, raises) if resp is not None: return resp[0] def send_job(self, *args, **kwargs): """ Send a message as a job Exactly the same as :meth:`send` :return: jobid event identifier :rtype: :class:`str` """ jobid = self.current_jobid = ((self.current_jobid + 1) % 10000) or 1 self.remove_all_listeners('job_%d' % jobid) self._send(*args, jobid=jobid, **kwargs) return "job_%d" % jobid def send(self, emsg, data={}, proto=None): """ Send a message :param emsg: Enum for the message :param data: data for the proto message :type data: :class:`dict` :param proto: (optional) manually specify protobuf, other it's detected based on ``emsg`` """ self._send(emsg, data, proto) def _send(self, emsg, data={}, proto=None, jobid=None): if not isinstance(data, dict): raise ValueError("data kwarg can only be a dict") if proto is None: proto = find_proto(emsg) if proto is None or not issubclass(proto, google.protobuf.message.Message): raise ValueError("Unable to find proto for emsg, or proto kwarg is invalid") message = proto() proto_fill_from_dict(message, data) header = GCMsgHdrProto(emsg) if jobid is not None: header.proto.job_id_source = jobid if self.verbose_debug: str_message = '' str_header = str(header) str_body = str(message) if str_header: str_message += "-- header ---------\n%s\n" % str_header if str_body: str_message += "-- message --------\n%s\n" % str_body self._LOG.debug("Outgoing: %s\n%s" % (repr(emsg), str_message)) else: self._LOG.debug("Outgoing: %s", repr(emsg)) GameCoordinator.send(self, header, message.SerializeToString()) def _knock_on_gc(self): n = 1 while True: if not self.ready: if self.launcher == GCClientLauncherType.PERFECTWORLD: self.send(EGCBaseClientMsg.EMsgGCClientHelloPW, { 'client_launcher': self.launcher, }) else: # GCClientLauncherType.DEFAULT self.send(EGCBaseClientMsg.EMsgGCClientHello) self.wait_event('ready', timeout=3 + (2**n)) n = min(n + 1, 4) else: self.wait_event('notready') n = 1 gevent.sleep(1) def launch(self): """ Launch CSGO and establish connection with the game coordinator ``ready`` event will fire when the session is ready. If the session is lost ``notready`` event will fire. Alternatively, ``connection_status`` event can be monitored for changes. """ if not self.steam.logged_on: self.steam.wait_event('logged_on') if not self._retry_welcome_loop and self.app_id not in self.steam.current_games_played: self.steam.games_played(self.steam.current_games_played + [self.app_id]) self._retry_welcome_loop = gevent.spawn(self._knock_on_gc) def exit(self): """ Close connection to CSGO's game coordinator """ if self._retry_welcome_loop: self._retry_welcome_loop.kill() if self.app_id in self.steam.current_games_played: self.steam.current_games_played.remove(self.app_id) self.steam.games_played(self.steam.current_games_played) self._set_connection_status(GCConnectionStatus.NO_SESSION)
35.555133
121
0.61202
import logging import gevent import google.protobuf from steam.core.msg import GCMsgHdrProto from steam.client.gc import GameCoordinator from steam.enums.emsg import EMsg from steam.utils.proto import proto_fill_from_dict from csgo.features import FeatureBase from csgo.enums import EGCBaseClientMsg, GCConnectionStatus, GCClientLauncherType from csgo.msg import get_emsg_enum, find_proto from csgo.protobufs import gcsdk_gcmessages_pb2 as pb_gc from csgo.protobufs import cstrike15_gcmessages_pb2 as pb_gclient class CSGOClient(GameCoordinator, FeatureBase): _retry_welcome_loop = None verbose_debug = False app_id = 730 launcher = GCClientLauncherType.DEFAULT current_jobid = 0 ready = False connection_status = GCConnectionStatus.NO_SESSION @property def account_id(self): return self.steam.steam_id.id @property def steam_id(self): return self.steam.steam_id def __init__(self, steam_client): GameCoordinator.__init__(self, steam_client, self.app_id) self._LOG = logging.getLogger(self.__class__.__name__) FeatureBase.__init__(self) self.steam.on('disconnected', self._handle_disconnect) self.steam.on(EMsg.ClientPlayingSessionState, self._handle_play_sess_state) self.on(EGCBaseClientMsg.EMsgGCClientConnectionStatus, self._handle_conn_status) self.on(EGCBaseClientMsg.EMsgGCClientWelcome, self._handle_client_welcome) def __repr__(self): return "<%s(%s) %s>" % (self.__class__.__name__, repr(self.steam), repr(self.connection_status), ) def _handle_play_sess_state(self, message): if self.ready and message.playing_app != self.app_id: self._set_connection_status(GCConnectionStatus.NO_SESSION) def _handle_disconnect(self): if self._retry_welcome_loop: self._retry_welcome_loop.kill() self._set_connection_status(GCConnectionStatus.NO_SESSION) def _handle_client_welcome(self, message): self._set_connection_status(GCConnectionStatus.HAVE_SESSION) submessage = pb_gclient.CMsgCStrike15Welcome() submessage.ParseFromString(message.game_data) if self.verbose_debug: self._LOG.debug("Got CStrike15Welcome:\n%s" % str(submessage)) else: self._LOG.debug("Got CStrike15Welcome") self.emit('csgo_welcome', submessage) def _handle_conn_status(self, message): self._set_connection_status(message.status) def _process_gc_message(self, emsg, header, payload): emsg = get_emsg_enum(emsg) proto = find_proto(emsg) if proto is None: self._LOG.error("Failed to parse: %s" % repr(emsg)) return message = proto() message.ParseFromString(payload) if self.verbose_debug: self._LOG.debug("Incoming: %s\n%s\n---------\n%s" % (repr(emsg), str(header), str(message), )) else: self._LOG.debug("Incoming: %s", repr(emsg)) self.emit(emsg, message) if header.proto.job_id_target != 18446744073709551615: self.emit('job_%d' % header.proto.job_id_target, message) def _set_connection_status(self, status): prev_status = self.connection_status self.connection_status = GCConnectionStatus(status) if self.connection_status != prev_status: self.emit("connection_status", self.connection_status) if self.connection_status == GCConnectionStatus.HAVE_SESSION and not self.ready: self.ready = True self.emit('ready') elif self.connection_status != GCConnectionStatus.HAVE_SESSION and self.ready: self.ready = False self.emit('notready') def wait_msg(self, event, timeout=None, raises=None): resp = self.wait_event(event, timeout, raises) if resp is not None: return resp[0] def send_job(self, *args, **kwargs): jobid = self.current_jobid = ((self.current_jobid + 1) % 10000) or 1 self.remove_all_listeners('job_%d' % jobid) self._send(*args, jobid=jobid, **kwargs) return "job_%d" % jobid def send(self, emsg, data={}, proto=None): self._send(emsg, data, proto) def _send(self, emsg, data={}, proto=None, jobid=None): if not isinstance(data, dict): raise ValueError("data kwarg can only be a dict") if proto is None: proto = find_proto(emsg) if proto is None or not issubclass(proto, google.protobuf.message.Message): raise ValueError("Unable to find proto for emsg, or proto kwarg is invalid") message = proto() proto_fill_from_dict(message, data) header = GCMsgHdrProto(emsg) if jobid is not None: header.proto.job_id_source = jobid if self.verbose_debug: str_message = '' str_header = str(header) str_body = str(message) if str_header: str_message += "-- header ---------\n%s\n" % str_header if str_body: str_message += "-- message --------\n%s\n" % str_body self._LOG.debug("Outgoing: %s\n%s" % (repr(emsg), str_message)) else: self._LOG.debug("Outgoing: %s", repr(emsg)) GameCoordinator.send(self, header, message.SerializeToString()) def _knock_on_gc(self): n = 1 while True: if not self.ready: if self.launcher == GCClientLauncherType.PERFECTWORLD: self.send(EGCBaseClientMsg.EMsgGCClientHelloPW, { 'client_launcher': self.launcher, }) else: self.send(EGCBaseClientMsg.EMsgGCClientHello) self.wait_event('ready', timeout=3 + (2**n)) n = min(n + 1, 4) else: self.wait_event('notready') n = 1 gevent.sleep(1) def launch(self): if not self.steam.logged_on: self.steam.wait_event('logged_on') if not self._retry_welcome_loop and self.app_id not in self.steam.current_games_played: self.steam.games_played(self.steam.current_games_played + [self.app_id]) self._retry_welcome_loop = gevent.spawn(self._knock_on_gc) def exit(self): if self._retry_welcome_loop: self._retry_welcome_loop.kill() if self.app_id in self.steam.current_games_played: self.steam.current_games_played.remove(self.app_id) self.steam.games_played(self.steam.current_games_played) self._set_connection_status(GCConnectionStatus.NO_SESSION)
true
true
f7130439941982fc40699d5ed9af64d9a4f823e1
7,358
py
Python
assignment2/cs231n/optim.py
furkannturkmen/CS231n-2021
2c6618d16bfd4e02e0493e8b8a411a6509206bb4
[ "MIT" ]
null
null
null
assignment2/cs231n/optim.py
furkannturkmen/CS231n-2021
2c6618d16bfd4e02e0493e8b8a411a6509206bb4
[ "MIT" ]
null
null
null
assignment2/cs231n/optim.py
furkannturkmen/CS231n-2021
2c6618d16bfd4e02e0493e8b8a411a6509206bb4
[ "MIT" ]
null
null
null
import numpy as np """ This file implements various first-order update rules that are commonly used for training neural networks. Each update rule accepts current weights and the gradient of the loss with respect to those weights and produces the next set of weights. Each update rule has the same interface: def update(w, dw, config=None): Inputs: - w: A numpy array giving the current weights. - dw: A numpy array of the same shape as w giving the gradient of the loss with respect to w. - config: A dictionary containing hyperparameter values such as learning rate, momentum, etc. If the update rule requires caching values over many iterations, then config will also hold these cached values. Returns: - next_w: The next point after the update. - config: The config dictionary to be passed to the next iteration of the update rule. NOTE: For most update rules, the default learning rate will probably not perform well; however the default values of the other hyperparameters should work well for a variety of different problems. For efficiency, update rules may perform in-place updates, mutating w and setting next_w equal to w. """ def sgd(w, dw, config=None): """ Performs vanilla stochastic gradient descent. config format: - learning_rate: Scalar learning rate. """ if config is None: config = {} config.setdefault("learning_rate", 1e-2) w -= config["learning_rate"] * dw return w, config def sgd_momentum(w, dw, config=None): """ Performs stochastic gradient descent with momentum. config format: - learning_rate: Scalar learning rate. - momentum: Scalar between 0 and 1 giving the momentum value. Setting momentum = 0 reduces to sgd. - velocity: A numpy array of the same shape as w and dw used to store a moving average of the gradients. """ if config is None: config = {} config.setdefault("learning_rate", 1e-2) config.setdefault("momentum", 0.9) v = config.get("velocity", np.zeros_like(w)) next_w = None ########################################################################### # TODO: Implement the momentum update formula. Store the updated value in # # the next_w variable. You should also use and update the velocity v. # ########################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** v = v * config["momentum"] - config["learning_rate"] * dw # for example -> momentum = 0.9 lr = 0.1 next_w = w + v """ v = config["momentum"] * v + (1 - config["momentum"]) * dw next_w = w - config["learning_rate"] * v """ # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ########################################################################### # END OF YOUR CODE # ########################################################################### config["velocity"] = v return next_w, config def rmsprop(w, dw, config=None): """ Uses the RMSProp update rule, which uses a moving average of squared gradient values to set adaptive per-parameter learning rates. config format: - learning_rate: Scalar learning rate. - decay_rate: Scalar between 0 and 1 giving the decay rate for the squared gradient cache. - epsilon: Small scalar used for smoothing to avoid dividing by zero. - cache: Moving average of second moments of gradients. """ if config is None: config = {} config.setdefault("learning_rate", 1e-2) config.setdefault("decay_rate", 0.99) config.setdefault("epsilon", 1e-8) config.setdefault("cache", np.zeros_like(w)) next_w = None ########################################################################### # TODO: Implement the RMSprop update formula, storing the next value of w # # in the next_w variable. Don't forget to update cache value stored in # # config['cache']. # ########################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** """ ADAGRAD config["cache"] += dw * dw w = w - config["learning_rate"] * dw / (np.sqrt(config["cache"]) + config["epsilon"]) """ config["cache"] = config["decay_rate"] * config["cache"] + (1 - config["decay_rate"]) * dw * dw next_w = w - config["learning_rate"] * dw / (np.sqrt(config["cache"]) + config["epsilon"]) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ########################################################################### # END OF YOUR CODE # ########################################################################### return next_w, config def adam(w, dw, config=None): """ Uses the Adam update rule, which incorporates moving averages of both the gradient and its square and a bias correction term. config format: - learning_rate: Scalar learning rate. - beta1: Decay rate for moving average of first moment of gradient. - beta2: Decay rate for moving average of second moment of gradient. - epsilon: Small scalar used for smoothing to avoid dividing by zero. - m: Moving average of gradient. - v: Moving average of squared gradient. - t: Iteration number. """ if config is None: config = {} config.setdefault("learning_rate", 1e-3) config.setdefault("beta1", 0.9) config.setdefault("beta2", 0.999) config.setdefault("epsilon", 1e-8) config.setdefault("m", np.zeros_like(w)) config.setdefault("v", np.zeros_like(w)) config.setdefault("t", 0) next_w = None ########################################################################### # TODO: Implement the Adam update formula, storing the next value of w in # # the next_w variable. Don't forget to update the m, v, and t variables # # stored in config. # # # # NOTE: In order to match the reference output, please modify t _before_ # # using it in any calculations. # ########################################################################### # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** config["t"] += 1 # Momentum config["m"] = config["beta1"] * config["m"] + (1 - config["beta1"]) * dw m_unbias = config["m"] / (1 - config["beta1"] ** config["t"]) # RMSProp / ADAGRAD config["v"] = config["beta2"] * config["v"] + (1 - config["beta2"]) * dw ** 2 v_unbias = config["v"] / (1 - config["beta2"] ** config["t"]) next_w = w - config["learning_rate"] * m_unbias / (np.sqrt(v_unbias) + config["epsilon"]) # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ########################################################################### # END OF YOUR CODE # ########################################################################### return next_w, config
39.98913
102
0.534792
import numpy as np def sgd(w, dw, config=None): if config is None: config = {} config.setdefault("learning_rate", 1e-2) w -= config["learning_rate"] * dw return w, config def sgd_momentum(w, dw, config=None): if config is None: config = {} config.setdefault("learning_rate", 1e-2) config.setdefault("momentum", 0.9) v = config.get("velocity", np.zeros_like(w)) next_w = None
true
true