hexsha
stringlengths
40
40
size
int64
10
805k
ext
stringclasses
6 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
4
176
max_stars_repo_name
stringlengths
7
114
max_stars_repo_head_hexsha
stringlengths
40
40
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
4
176
max_issues_repo_name
stringlengths
7
114
max_issues_repo_head_hexsha
stringlengths
40
40
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
48.5k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
4
176
max_forks_repo_name
stringlengths
7
114
max_forks_repo_head_hexsha
stringlengths
40
40
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
10
805k
avg_line_length
float64
5.53
11k
max_line_length
int64
10
129k
alphanum_fraction
float64
0.13
0.93
content_no_comment
stringlengths
0
449k
is_comment_constant_removed
bool
2 classes
is_sharp_comment_removed
bool
1 class
f70f4f9a2f8e77773f4d700170933be3c3cb6593
1,970
py
Python
python_modules/dagster/dagster/core/execution/context/step.py
jake-billings/dagster
7a1548a1f246c48189f3d8109e831b744bceb7d4
[ "Apache-2.0" ]
1
2019-07-15T17:34:04.000Z
2019-07-15T17:34:04.000Z
python_modules/dagster/dagster/core/execution/context/step.py
jake-billings/dagster
7a1548a1f246c48189f3d8109e831b744bceb7d4
[ "Apache-2.0" ]
null
null
null
python_modules/dagster/dagster/core/execution/context/step.py
jake-billings/dagster
7a1548a1f246c48189f3d8109e831b744bceb7d4
[ "Apache-2.0" ]
null
null
null
from dagster import check from .system import SystemStepExecutionContext class StepExecutionContext(object): __slots__ = ['_system_step_execution_context', '_legacy_context'] def __init__(self, system_step_execution_context): self._system_step_execution_context = check.inst_param( system_step_execution_context, 'system_step_execution_context', SystemStepExecutionContext, ) @property def file_manager(self): return self._system_step_execution_context.file_manager @property def resources(self): return self._system_step_execution_context.resources @property def run_id(self): return self._system_step_execution_context.run_id @property def environment_dict(self): return self._system_step_execution_context.environment_dict @property def pipeline_def(self): return self._system_step_execution_context.pipeline_def @property def mode_def(self): return self._system_step_execution_context.mode_def @property def log(self): return self._system_step_execution_context.log @property def solid_handle(self): return self._system_step_execution_context.solid_handle @property def solid(self): return self._system_step_execution_context.pipeline_def.get_solid(self.solid_handle) @property def solid_def(self): return self._system_step_execution_context.pipeline_def.get_solid( self.solid_handle ).definition def has_tag(self, key): return self._system_step_execution_context.has_tag(key) def get_tag(self, key): return self._system_step_execution_context.get_tag(key) def get_system_context(self): ''' This allows advanced users (e.g. framework authors) to punch through to the underlying system context. ''' return self._system_step_execution_context
28.142857
92
0.716751
from dagster import check from .system import SystemStepExecutionContext class StepExecutionContext(object): __slots__ = ['_system_step_execution_context', '_legacy_context'] def __init__(self, system_step_execution_context): self._system_step_execution_context = check.inst_param( system_step_execution_context, 'system_step_execution_context', SystemStepExecutionContext, ) @property def file_manager(self): return self._system_step_execution_context.file_manager @property def resources(self): return self._system_step_execution_context.resources @property def run_id(self): return self._system_step_execution_context.run_id @property def environment_dict(self): return self._system_step_execution_context.environment_dict @property def pipeline_def(self): return self._system_step_execution_context.pipeline_def @property def mode_def(self): return self._system_step_execution_context.mode_def @property def log(self): return self._system_step_execution_context.log @property def solid_handle(self): return self._system_step_execution_context.solid_handle @property def solid(self): return self._system_step_execution_context.pipeline_def.get_solid(self.solid_handle) @property def solid_def(self): return self._system_step_execution_context.pipeline_def.get_solid( self.solid_handle ).definition def has_tag(self, key): return self._system_step_execution_context.has_tag(key) def get_tag(self, key): return self._system_step_execution_context.get_tag(key) def get_system_context(self): return self._system_step_execution_context
true
true
f70f4fab1f7787b020a92ba4a182e8dd17836149
746
py
Python
setup.py
yanoshi/yootto
27b48777d922de53d98a05011864804bf6c74883
[ "MIT" ]
5
2021-01-11T10:59:39.000Z
2021-03-22T07:07:45.000Z
setup.py
yanoshi/yootto
27b48777d922de53d98a05011864804bf6c74883
[ "MIT" ]
4
2021-01-11T07:03:50.000Z
2021-08-13T18:13:16.000Z
setup.py
yanoshi/yootto
27b48777d922de53d98a05011864804bf6c74883
[ "MIT" ]
null
null
null
from setuptools import setup, find_packages with open('requirements.txt') as requirements_file: install_requirements = requirements_file.read().splitlines() setup( name="yootto", version="0.1.5", description="yootto(ヨーッと) is tiny YouTube Music unofficial uploader", author="yanoshi", author_email="", url="https://github.com/yanoshi/yootto", packages=find_packages(), install_requires=install_requirements, python_requires='>3.6', entry_points={ "console_scripts": [ "yootto=yootto.core:main", ] }, classifiers=[ "Programming Language :: Python :: 3.6", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ] )
29.84
73
0.647453
from setuptools import setup, find_packages with open('requirements.txt') as requirements_file: install_requirements = requirements_file.read().splitlines() setup( name="yootto", version="0.1.5", description="yootto(ヨーッと) is tiny YouTube Music unofficial uploader", author="yanoshi", author_email="", url="https://github.com/yanoshi/yootto", packages=find_packages(), install_requires=install_requirements, python_requires='>3.6', entry_points={ "console_scripts": [ "yootto=yootto.core:main", ] }, classifiers=[ "Programming Language :: Python :: 3.6", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ] )
true
true
f70f5032fb844be87e596edfc4407fe50215388c
14,322
py
Python
synapse/events/utils.py
ricco386/synapse
0d464935f1771d966ab388d803349c7a2bf45ad9
[ "Apache-2.0" ]
null
null
null
synapse/events/utils.py
ricco386/synapse
0d464935f1771d966ab388d803349c7a2bf45ad9
[ "Apache-2.0" ]
null
null
null
synapse/events/utils.py
ricco386/synapse
0d464935f1771d966ab388d803349c7a2bf45ad9
[ "Apache-2.0" ]
2
2020-03-03T18:34:52.000Z
2022-03-31T11:06:18.000Z
# -*- coding: utf-8 -*- # Copyright 2014-2016 OpenMarket Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import collections import re from typing import Mapping, Union from six import string_types from frozendict import frozendict from twisted.internet import defer from synapse.api.constants import EventTypes, RelationTypes from synapse.util.async_helpers import yieldable_gather_results from . import EventBase # Split strings on "." but not "\." This uses a negative lookbehind assertion for '\' # (?<!stuff) matches if the current position in the string is not preceded # by a match for 'stuff'. # TODO: This is fast, but fails to handle "foo\\.bar" which should be treated as # the literal fields "foo\" and "bar" but will instead be treated as "foo\\.bar" SPLIT_FIELD_REGEX = re.compile(r"(?<!\\)\.") def prune_event(event): """ Returns a pruned version of the given event, which removes all keys we don't know about or think could potentially be dodgy. This is used when we "redact" an event. We want to remove all fields that the user has specified, but we do want to keep necessary information like type, state_key etc. Args: event (FrozenEvent) Returns: FrozenEvent """ pruned_event_dict = prune_event_dict(event.get_dict()) from . import event_type_from_format_version pruned_event = event_type_from_format_version(event.format_version)( pruned_event_dict, event.internal_metadata.get_dict() ) # Mark the event as redacted pruned_event.internal_metadata.redacted = True return pruned_event def prune_event_dict(event_dict): """Redacts the event_dict in the same way as `prune_event`, except it operates on dicts rather than event objects Args: event_dict (dict) Returns: dict: A copy of the pruned event dict """ allowed_keys = [ "event_id", "sender", "room_id", "hashes", "signatures", "content", "type", "state_key", "depth", "prev_events", "prev_state", "auth_events", "origin", "origin_server_ts", "membership", ] event_type = event_dict["type"] new_content = {} def add_fields(*fields): for field in fields: if field in event_dict["content"]: new_content[field] = event_dict["content"][field] if event_type == EventTypes.Member: add_fields("membership") elif event_type == EventTypes.Create: add_fields("creator") elif event_type == EventTypes.JoinRules: add_fields("join_rule") elif event_type == EventTypes.PowerLevels: add_fields( "users", "users_default", "events", "events_default", "state_default", "ban", "kick", "redact", ) elif event_type == EventTypes.Aliases: add_fields("aliases") elif event_type == EventTypes.RoomHistoryVisibility: add_fields("history_visibility") allowed_fields = {k: v for k, v in event_dict.items() if k in allowed_keys} allowed_fields["content"] = new_content unsigned = {} allowed_fields["unsigned"] = unsigned event_unsigned = event_dict.get("unsigned", {}) if "age_ts" in event_unsigned: unsigned["age_ts"] = event_unsigned["age_ts"] if "replaces_state" in event_unsigned: unsigned["replaces_state"] = event_unsigned["replaces_state"] return allowed_fields def _copy_field(src, dst, field): """Copy the field in 'src' to 'dst'. For example, if src={"foo":{"bar":5}} and dst={}, and field=["foo","bar"] then dst={"foo":{"bar":5}}. Args: src(dict): The dict to read from. dst(dict): The dict to modify. field(list<str>): List of keys to drill down to in 'src'. """ if len(field) == 0: # this should be impossible return if len(field) == 1: # common case e.g. 'origin_server_ts' if field[0] in src: dst[field[0]] = src[field[0]] return # Else is a nested field e.g. 'content.body' # Pop the last field as that's the key to move across and we need the # parent dict in order to access the data. Drill down to the right dict. key_to_move = field.pop(-1) sub_dict = src for sub_field in field: # e.g. sub_field => "content" if sub_field in sub_dict and type(sub_dict[sub_field]) in [dict, frozendict]: sub_dict = sub_dict[sub_field] else: return if key_to_move not in sub_dict: return # Insert the key into the output dictionary, creating nested objects # as required. We couldn't do this any earlier or else we'd need to delete # the empty objects if the key didn't exist. sub_out_dict = dst for sub_field in field: sub_out_dict = sub_out_dict.setdefault(sub_field, {}) sub_out_dict[key_to_move] = sub_dict[key_to_move] def only_fields(dictionary, fields): """Return a new dict with only the fields in 'dictionary' which are present in 'fields'. If there are no event fields specified then all fields are included. The entries may include '.' charaters to indicate sub-fields. So ['content.body'] will include the 'body' field of the 'content' object. A literal '.' character in a field name may be escaped using a '\'. Args: dictionary(dict): The dictionary to read from. fields(list<str>): A list of fields to copy over. Only shallow refs are taken. Returns: dict: A new dictionary with only the given fields. If fields was empty, the same dictionary is returned. """ if len(fields) == 0: return dictionary # for each field, convert it: # ["content.body.thing\.with\.dots"] => [["content", "body", "thing\.with\.dots"]] split_fields = [SPLIT_FIELD_REGEX.split(f) for f in fields] # for each element of the output array of arrays: # remove escaping so we can use the right key names. split_fields[:] = [ [f.replace(r"\.", r".") for f in field_array] for field_array in split_fields ] output = {} for field_array in split_fields: _copy_field(dictionary, output, field_array) return output def format_event_raw(d): return d def format_event_for_client_v1(d): d = format_event_for_client_v2(d) sender = d.get("sender") if sender is not None: d["user_id"] = sender copy_keys = ( "age", "redacted_because", "replaces_state", "prev_content", "invite_room_state", ) for key in copy_keys: if key in d["unsigned"]: d[key] = d["unsigned"][key] return d def format_event_for_client_v2(d): drop_keys = ( "auth_events", "prev_events", "hashes", "signatures", "depth", "origin", "prev_state", ) for key in drop_keys: d.pop(key, None) return d def format_event_for_client_v2_without_room_id(d): d = format_event_for_client_v2(d) d.pop("room_id", None) return d def serialize_event( e, time_now_ms, as_client_event=True, event_format=format_event_for_client_v1, token_id=None, only_event_fields=None, is_invite=False, ): """Serialize event for clients Args: e (EventBase) time_now_ms (int) as_client_event (bool) event_format token_id only_event_fields is_invite (bool): Whether this is an invite that is being sent to the invitee Returns: dict """ # FIXME(erikj): To handle the case of presence events and the like if not isinstance(e, EventBase): return e time_now_ms = int(time_now_ms) # Should this strip out None's? d = {k: v for k, v in e.get_dict().items()} d["event_id"] = e.event_id if "age_ts" in d["unsigned"]: d["unsigned"]["age"] = time_now_ms - d["unsigned"]["age_ts"] del d["unsigned"]["age_ts"] if "redacted_because" in e.unsigned: d["unsigned"]["redacted_because"] = serialize_event( e.unsigned["redacted_because"], time_now_ms, event_format=event_format ) if token_id is not None: if token_id == getattr(e.internal_metadata, "token_id", None): txn_id = getattr(e.internal_metadata, "txn_id", None) if txn_id is not None: d["unsigned"]["transaction_id"] = txn_id # If this is an invite for somebody else, then we don't care about the # invite_room_state as that's meant solely for the invitee. Other clients # will already have the state since they're in the room. if not is_invite: d["unsigned"].pop("invite_room_state", None) if as_client_event: d = event_format(d) if only_event_fields: if not isinstance(only_event_fields, list) or not all( isinstance(f, string_types) for f in only_event_fields ): raise TypeError("only_event_fields must be a list of strings") d = only_fields(d, only_event_fields) return d class EventClientSerializer(object): """Serializes events that are to be sent to clients. This is used for bundling extra information with any events to be sent to clients. """ def __init__(self, hs): self.store = hs.get_datastore() self.experimental_msc1849_support_enabled = ( hs.config.experimental_msc1849_support_enabled ) @defer.inlineCallbacks def serialize_event(self, event, time_now, bundle_aggregations=True, **kwargs): """Serializes a single event. Args: event (EventBase) time_now (int): The current time in milliseconds bundle_aggregations (bool): Whether to bundle in related events **kwargs: Arguments to pass to `serialize_event` Returns: Deferred[dict]: The serialized event """ # To handle the case of presence events and the like if not isinstance(event, EventBase): return event event_id = event.event_id serialized_event = serialize_event(event, time_now, **kwargs) # If MSC1849 is enabled then we need to look if there are any relations # we need to bundle in with the event. # Do not bundle relations if the event has been redacted if not event.internal_metadata.is_redacted() and ( self.experimental_msc1849_support_enabled and bundle_aggregations ): annotations = yield self.store.get_aggregation_groups_for_event(event_id) references = yield self.store.get_relations_for_event( event_id, RelationTypes.REFERENCE, direction="f" ) if annotations.chunk: r = serialized_event["unsigned"].setdefault("m.relations", {}) r[RelationTypes.ANNOTATION] = annotations.to_dict() if references.chunk: r = serialized_event["unsigned"].setdefault("m.relations", {}) r[RelationTypes.REFERENCE] = references.to_dict() edit = None if event.type == EventTypes.Message: edit = yield self.store.get_applicable_edit(event_id) if edit: # If there is an edit replace the content, preserving existing # relations. relations = event.content.get("m.relates_to") serialized_event["content"] = edit.content.get("m.new_content", {}) if relations: serialized_event["content"]["m.relates_to"] = relations else: serialized_event["content"].pop("m.relates_to", None) r = serialized_event["unsigned"].setdefault("m.relations", {}) r[RelationTypes.REPLACE] = { "event_id": edit.event_id, "origin_server_ts": edit.origin_server_ts, "sender": edit.sender, } return serialized_event def serialize_events(self, events, time_now, **kwargs): """Serializes multiple events. Args: event (iter[EventBase]) time_now (int): The current time in milliseconds **kwargs: Arguments to pass to `serialize_event` Returns: Deferred[list[dict]]: The list of serialized events """ return yieldable_gather_results( self.serialize_event, events, time_now=time_now, **kwargs ) def copy_power_levels_contents( old_power_levels: Mapping[str, Union[int, Mapping[str, int]]] ): """Copy the content of a power_levels event, unfreezing frozendicts along the way Raises: TypeError if the input does not look like a valid power levels event content """ if not isinstance(old_power_levels, collections.Mapping): raise TypeError("Not a valid power-levels content: %r" % (old_power_levels,)) power_levels = {} for k, v in old_power_levels.items(): if isinstance(v, int): power_levels[k] = v continue if isinstance(v, collections.Mapping): power_levels[k] = h = {} for k1, v1 in v.items(): # we should only have one level of nesting if not isinstance(v1, int): raise TypeError( "Invalid power_levels value for %s.%s: %r" % (k, k1, v1) ) h[k1] = v1 continue raise TypeError("Invalid power_levels value for %s: %r" % (k, v)) return power_levels
31.134783
86
0.624633
import collections import re from typing import Mapping, Union from six import string_types from frozendict import frozendict from twisted.internet import defer from synapse.api.constants import EventTypes, RelationTypes from synapse.util.async_helpers import yieldable_gather_results from . import EventBase SPLIT_FIELD_REGEX = re.compile(r"(?<!\\)\.") def prune_event(event): pruned_event_dict = prune_event_dict(event.get_dict()) from . import event_type_from_format_version pruned_event = event_type_from_format_version(event.format_version)( pruned_event_dict, event.internal_metadata.get_dict() ) pruned_event.internal_metadata.redacted = True return pruned_event def prune_event_dict(event_dict): allowed_keys = [ "event_id", "sender", "room_id", "hashes", "signatures", "content", "type", "state_key", "depth", "prev_events", "prev_state", "auth_events", "origin", "origin_server_ts", "membership", ] event_type = event_dict["type"] new_content = {} def add_fields(*fields): for field in fields: if field in event_dict["content"]: new_content[field] = event_dict["content"][field] if event_type == EventTypes.Member: add_fields("membership") elif event_type == EventTypes.Create: add_fields("creator") elif event_type == EventTypes.JoinRules: add_fields("join_rule") elif event_type == EventTypes.PowerLevels: add_fields( "users", "users_default", "events", "events_default", "state_default", "ban", "kick", "redact", ) elif event_type == EventTypes.Aliases: add_fields("aliases") elif event_type == EventTypes.RoomHistoryVisibility: add_fields("history_visibility") allowed_fields = {k: v for k, v in event_dict.items() if k in allowed_keys} allowed_fields["content"] = new_content unsigned = {} allowed_fields["unsigned"] = unsigned event_unsigned = event_dict.get("unsigned", {}) if "age_ts" in event_unsigned: unsigned["age_ts"] = event_unsigned["age_ts"] if "replaces_state" in event_unsigned: unsigned["replaces_state"] = event_unsigned["replaces_state"] return allowed_fields def _copy_field(src, dst, field): if len(field) == 0: return if len(field) == 1: if field[0] in src: dst[field[0]] = src[field[0]] return # parent dict in order to access the data. Drill down to the right dict. key_to_move = field.pop(-1) sub_dict = src for sub_field in field: # e.g. sub_field => "content" if sub_field in sub_dict and type(sub_dict[sub_field]) in [dict, frozendict]: sub_dict = sub_dict[sub_field] else: return if key_to_move not in sub_dict: return # Insert the key into the output dictionary, creating nested objects # as required. We couldn't do this any earlier or else we'd need to delete # the empty objects if the key didn't exist. sub_out_dict = dst for sub_field in field: sub_out_dict = sub_out_dict.setdefault(sub_field, {}) sub_out_dict[key_to_move] = sub_dict[key_to_move] def only_fields(dictionary, fields): if len(fields) == 0: return dictionary split_fields = [SPLIT_FIELD_REGEX.split(f) for f in fields] split_fields[:] = [ [f.replace(r"\.", r".") for f in field_array] for field_array in split_fields ] output = {} for field_array in split_fields: _copy_field(dictionary, output, field_array) return output def format_event_raw(d): return d def format_event_for_client_v1(d): d = format_event_for_client_v2(d) sender = d.get("sender") if sender is not None: d["user_id"] = sender copy_keys = ( "age", "redacted_because", "replaces_state", "prev_content", "invite_room_state", ) for key in copy_keys: if key in d["unsigned"]: d[key] = d["unsigned"][key] return d def format_event_for_client_v2(d): drop_keys = ( "auth_events", "prev_events", "hashes", "signatures", "depth", "origin", "prev_state", ) for key in drop_keys: d.pop(key, None) return d def format_event_for_client_v2_without_room_id(d): d = format_event_for_client_v2(d) d.pop("room_id", None) return d def serialize_event( e, time_now_ms, as_client_event=True, event_format=format_event_for_client_v1, token_id=None, only_event_fields=None, is_invite=False, ): if not isinstance(e, EventBase): return e time_now_ms = int(time_now_ms) d = {k: v for k, v in e.get_dict().items()} d["event_id"] = e.event_id if "age_ts" in d["unsigned"]: d["unsigned"]["age"] = time_now_ms - d["unsigned"]["age_ts"] del d["unsigned"]["age_ts"] if "redacted_because" in e.unsigned: d["unsigned"]["redacted_because"] = serialize_event( e.unsigned["redacted_because"], time_now_ms, event_format=event_format ) if token_id is not None: if token_id == getattr(e.internal_metadata, "token_id", None): txn_id = getattr(e.internal_metadata, "txn_id", None) if txn_id is not None: d["unsigned"]["transaction_id"] = txn_id # If this is an invite for somebody else, then we don't care about the # will already have the state since they're in the room. if not is_invite: d["unsigned"].pop("invite_room_state", None) if as_client_event: d = event_format(d) if only_event_fields: if not isinstance(only_event_fields, list) or not all( isinstance(f, string_types) for f in only_event_fields ): raise TypeError("only_event_fields must be a list of strings") d = only_fields(d, only_event_fields) return d class EventClientSerializer(object): def __init__(self, hs): self.store = hs.get_datastore() self.experimental_msc1849_support_enabled = ( hs.config.experimental_msc1849_support_enabled ) @defer.inlineCallbacks def serialize_event(self, event, time_now, bundle_aggregations=True, **kwargs): if not isinstance(event, EventBase): return event event_id = event.event_id serialized_event = serialize_event(event, time_now, **kwargs) if not event.internal_metadata.is_redacted() and ( self.experimental_msc1849_support_enabled and bundle_aggregations ): annotations = yield self.store.get_aggregation_groups_for_event(event_id) references = yield self.store.get_relations_for_event( event_id, RelationTypes.REFERENCE, direction="f" ) if annotations.chunk: r = serialized_event["unsigned"].setdefault("m.relations", {}) r[RelationTypes.ANNOTATION] = annotations.to_dict() if references.chunk: r = serialized_event["unsigned"].setdefault("m.relations", {}) r[RelationTypes.REFERENCE] = references.to_dict() edit = None if event.type == EventTypes.Message: edit = yield self.store.get_applicable_edit(event_id) if edit: relations = event.content.get("m.relates_to") serialized_event["content"] = edit.content.get("m.new_content", {}) if relations: serialized_event["content"]["m.relates_to"] = relations else: serialized_event["content"].pop("m.relates_to", None) r = serialized_event["unsigned"].setdefault("m.relations", {}) r[RelationTypes.REPLACE] = { "event_id": edit.event_id, "origin_server_ts": edit.origin_server_ts, "sender": edit.sender, } return serialized_event def serialize_events(self, events, time_now, **kwargs): return yieldable_gather_results( self.serialize_event, events, time_now=time_now, **kwargs ) def copy_power_levels_contents( old_power_levels: Mapping[str, Union[int, Mapping[str, int]]] ): if not isinstance(old_power_levels, collections.Mapping): raise TypeError("Not a valid power-levels content: %r" % (old_power_levels,)) power_levels = {} for k, v in old_power_levels.items(): if isinstance(v, int): power_levels[k] = v continue if isinstance(v, collections.Mapping): power_levels[k] = h = {} for k1, v1 in v.items(): if not isinstance(v1, int): raise TypeError( "Invalid power_levels value for %s.%s: %r" % (k, k1, v1) ) h[k1] = v1 continue raise TypeError("Invalid power_levels value for %s: %r" % (k, v)) return power_levels
true
true
f70f504cbb9797914e75e4bb397d591ff5e8ca28
3,224
py
Python
src/sentry/tagstore/v2/models/grouptagvalue.py
apragacz/sf-sentry
2fdd6c1195c29a1d401d1cd538c22ea68556699a
[ "BSD-3-Clause" ]
1
2018-03-05T15:40:12.000Z
2018-03-05T15:40:12.000Z
src/sentry/tagstore/v2/models/grouptagvalue.py
pkaminski/sentry
27e948283e27d93ca5192ca7b580830e092c25c7
[ "BSD-3-Clause" ]
1
2018-08-22T16:49:48.000Z
2018-08-22T16:49:48.000Z
src/sentry/tagstore/v2/models/grouptagvalue.py
pkaminski/sentry
27e948283e27d93ca5192ca7b580830e092c25c7
[ "BSD-3-Clause" ]
1
2018-07-02T09:46:44.000Z
2018-07-02T09:46:44.000Z
""" sentry.tagstore.v2.models.grouptagvalue ~~~~~~~~~~~~~~~~~~~~~~~~~~~ :copyright: (c) 2010-2017 by the Sentry Team, see AUTHORS for more details. :license: BSD, see LICENSE for more details. """ from __future__ import absolute_import import six from django.db import models, router, transaction, DataError from django.utils import timezone from sentry.api.serializers import Serializer, register from sentry.db.models import ( Model, BoundedPositiveIntegerField, BaseManager, FlexibleForeignKey, sane_repr ) class GroupTagValue(Model): """ Stores the total number of messages seen by a group matching the given filter. """ __core__ = False project_id = BoundedPositiveIntegerField(db_index=True) group_id = BoundedPositiveIntegerField(db_index=True) times_seen = BoundedPositiveIntegerField(default=0) _key = FlexibleForeignKey('tagstore.TagKey', db_column='key_id') _value = FlexibleForeignKey('tagstore.TagValue', db_column='value_id') last_seen = models.DateTimeField( default=timezone.now, db_index=True, null=True) first_seen = models.DateTimeField( default=timezone.now, db_index=True, null=True) objects = BaseManager() class Meta: app_label = 'tagstore' unique_together = (('project_id', 'group_id', '_key', '_value'), ) index_together = (('project_id', '_key', '_value', 'last_seen'), ) __repr__ = sane_repr('project_id', 'group_id', '_key', '_value') @property def key(self): return self._key.key @property def value(self): return self._value.value def save(self, *args, **kwargs): if not self.first_seen: self.first_seen = self.last_seen super(GroupTagValue, self).save(*args, **kwargs) def merge_counts(self, new_group): try: with transaction.atomic(using=router.db_for_write(GroupTagValue)): new_obj = GroupTagValue.objects.get( group_id=new_group.id, _key_id=self._key_id, _value_id=self._value_id, ) new_obj.update( first_seen=min(new_obj.first_seen, self.first_seen), last_seen=max(new_obj.last_seen, self.last_seen), times_seen=new_obj.times_seen + self.times_seen, ) except DataError: # it's possible to hit an out of range value for counters pass @register(GroupTagValue) class GroupTagValueSerializer(Serializer): def get_attrs(self, item_list, user): from sentry import tagstore result = {} for item in item_list: result[item] = { 'name': tagstore.get_tag_value_label(item.key, item.value), } return result def serialize(self, obj, attrs, user): from sentry import tagstore return { 'id': six.text_type(obj.id), 'name': attrs['name'], 'key': tagstore.get_standardized_key(obj.key), 'value': obj.value, 'count': obj.times_seen, 'lastSeen': obj.last_seen, 'firstSeen': obj.first_seen, }
31.300971
82
0.623759
from __future__ import absolute_import import six from django.db import models, router, transaction, DataError from django.utils import timezone from sentry.api.serializers import Serializer, register from sentry.db.models import ( Model, BoundedPositiveIntegerField, BaseManager, FlexibleForeignKey, sane_repr ) class GroupTagValue(Model): __core__ = False project_id = BoundedPositiveIntegerField(db_index=True) group_id = BoundedPositiveIntegerField(db_index=True) times_seen = BoundedPositiveIntegerField(default=0) _key = FlexibleForeignKey('tagstore.TagKey', db_column='key_id') _value = FlexibleForeignKey('tagstore.TagValue', db_column='value_id') last_seen = models.DateTimeField( default=timezone.now, db_index=True, null=True) first_seen = models.DateTimeField( default=timezone.now, db_index=True, null=True) objects = BaseManager() class Meta: app_label = 'tagstore' unique_together = (('project_id', 'group_id', '_key', '_value'), ) index_together = (('project_id', '_key', '_value', 'last_seen'), ) __repr__ = sane_repr('project_id', 'group_id', '_key', '_value') @property def key(self): return self._key.key @property def value(self): return self._value.value def save(self, *args, **kwargs): if not self.first_seen: self.first_seen = self.last_seen super(GroupTagValue, self).save(*args, **kwargs) def merge_counts(self, new_group): try: with transaction.atomic(using=router.db_for_write(GroupTagValue)): new_obj = GroupTagValue.objects.get( group_id=new_group.id, _key_id=self._key_id, _value_id=self._value_id, ) new_obj.update( first_seen=min(new_obj.first_seen, self.first_seen), last_seen=max(new_obj.last_seen, self.last_seen), times_seen=new_obj.times_seen + self.times_seen, ) except DataError: pass @register(GroupTagValue) class GroupTagValueSerializer(Serializer): def get_attrs(self, item_list, user): from sentry import tagstore result = {} for item in item_list: result[item] = { 'name': tagstore.get_tag_value_label(item.key, item.value), } return result def serialize(self, obj, attrs, user): from sentry import tagstore return { 'id': six.text_type(obj.id), 'name': attrs['name'], 'key': tagstore.get_standardized_key(obj.key), 'value': obj.value, 'count': obj.times_seen, 'lastSeen': obj.last_seen, 'firstSeen': obj.first_seen, }
true
true
f70f507eef49a7c8fbcf5752023ba89d96e7f5af
30,399
py
Python
robotframework-ls/src/robotframework_ls/impl/libspec_manager.py
emanlove/robotframework-lsp
b0d8862d24e3bc1b72d8ce9412a671571520e7d9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
robotframework-ls/src/robotframework_ls/impl/libspec_manager.py
emanlove/robotframework-lsp
b0d8862d24e3bc1b72d8ce9412a671571520e7d9
[ "ECL-2.0", "Apache-2.0" ]
1
2021-09-30T15:40:29.000Z
2021-09-30T15:40:29.000Z
robotframework-ls/src/robotframework_ls/impl/libspec_manager.py
emanlove/robotframework-lsp
b0d8862d24e3bc1b72d8ce9412a671571520e7d9
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
import os import sys from robotframework_ls.constants import NULL from robocode_ls_core.robotframework_log import get_logger log = get_logger(__name__) def _normfile(filename): return os.path.abspath(os.path.normpath(os.path.normcase(filename))) def _get_libspec_mutex_name(libspec_filename): from robocode_ls_core.system_mutex import generate_mutex_name libspec_filename = _norm_filename(libspec_filename) basename = os.path.basename(libspec_filename) name = os.path.splitext(basename)[0] return generate_mutex_name(libspec_filename, prefix="%s_" % (name,)) def _get_additional_info_filename(spec_filename): additional_info_filename = os.path.join(spec_filename + ".m") return additional_info_filename def _load_library_doc_and_mtime(spec_filename, obtain_mutex=True): """ :param obtain_mutex: Should be False if this is part of a bigger operation that already has the spec_filename mutex. """ from robotframework_ls.impl import robot_specbuilder from robocode_ls_core.system_mutex import timed_acquire_mutex if obtain_mutex: ctx = timed_acquire_mutex(_get_libspec_mutex_name(spec_filename)) else: ctx = NULL with ctx: # We must load it with a mutex to avoid conflicts between generating/reading. builder = robot_specbuilder.SpecDocBuilder() try: mtime = os.path.getmtime(spec_filename) libdoc = builder.build(spec_filename) return libdoc, mtime except Exception: log.exception("Error when loading spec info from: %s", spec_filename) return None def _load_lib_info(spec_filename, can_regenerate): libdoc_and_mtime = _load_library_doc_and_mtime(spec_filename) if libdoc_and_mtime is None: return None libdoc, mtime = libdoc_and_mtime return _LibInfo(libdoc, mtime, spec_filename, can_regenerate) _IS_BUILTIN = "is_builtin" _SOURCE_TO_MTIME = "source_to_mtime" _UNABLE_TO_LOAD = "unable_to_load" def _create_updated_source_to_mtime(library_doc): sources = set() source = library_doc.source if source is not None: sources.add(source) for keyword in library_doc.keywords: source = keyword.source if source is not None: sources.add(source) source_to_mtime = {} for source in sources: try: source = _normfile(source) source_to_mtime[source] = os.path.getmtime(source) except Exception: log.exception("Unable to load source for file: %s", source) return source_to_mtime def _create_additional_info(spec_filename, is_builtin, obtain_mutex=True): try: additional_info = {_IS_BUILTIN: is_builtin} if is_builtin: # For builtins we don't have to check the mtime # (on a new version we update the folder). return additional_info library_doc_and_mtime = _load_library_doc_and_mtime( spec_filename, obtain_mutex=obtain_mutex ) if library_doc_and_mtime is None: additional_info[_UNABLE_TO_LOAD] = True return additional_info library_doc = library_doc_and_mtime[0] additional_info[_SOURCE_TO_MTIME] = _create_updated_source_to_mtime(library_doc) return additional_info except: log.exception( "Error creating additional info for spec filename: %s", spec_filename ) return {} def _load_spec_filename_additional_info(spec_filename): """ Loads additional information given a spec filename. """ import json try: additional_info_filename = _get_additional_info_filename(spec_filename) with open(additional_info_filename, "r") as stream: source_to_mtime = json.load(stream) return source_to_mtime except: log.exception("Unable to load source mtimes from: %s", additional_info_filename) return {} def _dump_spec_filename_additional_info(spec_filename, is_builtin, obtain_mutex=True): """ Creates a filename with additional information not directly available in the spec. """ import json source_to_mtime = _create_additional_info( spec_filename, is_builtin, obtain_mutex=obtain_mutex ) additional_info_filename = _get_additional_info_filename(spec_filename) with open(additional_info_filename, "w") as stream: json.dump(source_to_mtime, stream, indent=2, sort_keys=True) class _LibInfo(object): __slots__ = [ "library_doc", "mtime", "_spec_filename", "_additional_info", "_invalid", "_can_regenerate", ] def __init__(self, library_doc, mtime, spec_filename, can_regenerate): """ :param library_doc: :param mtime: :param spec_filename: :param bool can_regenerate: False means that the information from this file can't really be regenerated (i.e.: this is a spec file from a library or created by the user). """ assert library_doc assert mtime assert spec_filename self.library_doc = library_doc self.mtime = mtime self._can_regenerate = can_regenerate self._spec_filename = spec_filename self._additional_info = None self._invalid = False def verify_sources_sync(self): """ :return bool: True if everything is ok and this library info can be used. Otherwise, the spec file and the _LibInfo must be recreated. """ if not self._can_regenerate: # This means that this info was generated by a library or the user # himself, thus, we can't regenerate it. return True if self._invalid: # Once invalid, always invalid. return False additional_info = self._additional_info if additional_info is None: additional_info = _load_spec_filename_additional_info(self._spec_filename) if additional_info.get(_IS_BUILTIN, False): return True source_to_mtime = additional_info.get(_SOURCE_TO_MTIME) if source_to_mtime is None: # Nothing to validate... return True updated_source_to_mtime = _create_updated_source_to_mtime(self.library_doc) if source_to_mtime != updated_source_to_mtime: log.info( "Library %s is invalid. Current source to mtime:\n%s\nChanged from:\n%s" % (self.library_doc.name, source_to_mtime, updated_source_to_mtime) ) self._invalid = True return False return True def _norm_filename(path): return os.path.normcase(os.path.realpath(os.path.abspath(path))) class _FolderInfo(object): def __init__(self, folder_path, recursive): self.folder_path = folder_path self.recursive = recursive self.libspec_filename_to_info = {} self._watch = NULL def start_watch(self, observer, notifier): if self._watch is NULL: if not os.path.isdir(self.folder_path): if not os.path.exists(self.folder_path): log.info( "Trying to track changes in path which does not exist: %s", self.folder_path, ) else: log.info( "Trying to track changes in path which is not a folder: %s", self.folder_path, ) return log.info("Tracking folder for changes: %s", self.folder_path) from robocode_ls_core.watchdog_wrapper import PathInfo folder_path = self.folder_path self._watch = observer.notify_on_extensions_change( [PathInfo(folder_path, recursive=self.recursive)], ["libspec"], notifier.on_change, (self._on_change_spec,), ) def _on_change_spec(self, spec_file): spec_file = _norm_filename(spec_file) # Just add/remove that specific spec file from the tracked list. libspec_filename_to_info = self.libspec_filename_to_info.copy() if os.path.exists(spec_file): libspec_filename_to_info[spec_file] = None else: libspec_filename_to_info.pop(spec_file, None) self.libspec_filename_to_info = libspec_filename_to_info def synchronize(self): try: self.libspec_filename_to_info = self._collect_libspec_info( [self.folder_path], self.libspec_filename_to_info, recursive=self.recursive, ) except Exception: log.exception("Error when synchronizing: %s", self.folder_path) def dispose(self): watch = self._watch self._watch = NULL watch.stop_tracking() self.libspec_filename_to_info = {} def _collect_libspec_info(self, folders, old_libspec_filename_to_info, recursive): seen_libspec_files = set() if recursive: for folder in folders: if os.path.isdir(folder): for root, _dirs, files in os.walk(folder): for filename in files: if filename.lower().endswith(".libspec"): seen_libspec_files.add(os.path.join(root, filename)) else: for folder in folders: if os.path.isdir(folder): for filename in os.listdir(folder): if filename.lower().endswith(".libspec"): seen_libspec_files.add(os.path.join(folder, filename)) new_libspec_filename_to_info = {} for filename in seen_libspec_files: filename = _norm_filename(filename) info = old_libspec_filename_to_info.get(filename) if info is not None: try: curr_mtime = os.path.getmtime(filename) except: # it was deleted in the meanwhile... continue else: if info.mtime != curr_mtime: # The spec filename mtime changed, so, set to None # to reload it. info = None new_libspec_filename_to_info[filename] = info return new_libspec_filename_to_info class LibspecManager(object): """ Used to manage the libspec files. .libspec files are searched in the following directories: - PYTHONPATH folders (not recursive) - Workspace folders (recursive -- notifications from the LSP) - ${user}.robotframework-ls/specs/${python_hash} (not recursive) It searches for .libspec files in the folders tracked and provides the keywords that are available from those (properly caching data as needed). """ @classmethod def get_internal_libspec_dir(cls): from robotframework_ls import robot_config home = robot_config.get_robotframework_ls_home() pyexe = sys.executable if not isinstance(pyexe, bytes): pyexe = pyexe.encode("utf-8") import hashlib digest = hashlib.sha256(pyexe).hexdigest()[:8] try: import robot v = str(robot.get_version()) except: v = "unknown" # Note: _v1: information on the mtime of the libspec sources now available. return os.path.join(home, "specs", "%s_%s" % (digest, v)) @classmethod def get_internal_builtins_libspec_dir(cls, internal_libspec_dir=None): return os.path.join( internal_libspec_dir or cls.get_internal_libspec_dir(), "builtins" ) def __init__(self, builtin_libspec_dir=None, user_libspec_dir=None): """ :param __internal_libspec_dir__: Only to be used in tests (to regenerate the builtins)! """ from robocode_ls_core import watchdog_wrapper from concurrent import futures from multiprocessing import cpu_count self._thread_pool = futures.ThreadPoolExecutor( max_workers=(cpu_count() * 1.2) + 1 ) self._observer = watchdog_wrapper.create_observer() self._spec_changes_notifier = watchdog_wrapper.create_notifier( self._on_spec_file_changed, timeout=0.5 ) self._libspec_dir = self.get_internal_libspec_dir() self._user_libspec_dir = user_libspec_dir or os.path.join( self._libspec_dir, "user" ) self._builtins_libspec_dir = ( builtin_libspec_dir or self.get_internal_builtins_libspec_dir(self._libspec_dir) ) log.debug("User libspec dir: %s", self._user_libspec_dir) log.debug("Builtins libspec dir: %s", self._builtins_libspec_dir) try: os.makedirs(self._user_libspec_dir) except: # Ignore exception if it's already created. pass try: os.makedirs(self._builtins_libspec_dir) except: # Ignore exception if it's already created. pass # Spec info found in the workspace self._workspace_folder_uri_to_folder_info = {} self._additional_pythonpath_folder_to_folder_info = {} # Spec info found in the pythonpath pythonpath_folder_to_folder_info = {} for path in sys.path: if path and os.path.isdir(path): pythonpath_folder_to_folder_info[path] = _FolderInfo( path, recursive=False ) self._pythonpath_folder_to_folder_info = pythonpath_folder_to_folder_info # Spec info found in internal dirs (autogenerated) self._internal_folder_to_folder_info = { self._user_libspec_dir: _FolderInfo( self._user_libspec_dir, recursive=False ), self._builtins_libspec_dir: _FolderInfo( self._builtins_libspec_dir, recursive=False ), } # Must be set from the outside world when needed. self.config = None self._synchronize() self._gen_builtin_libraries() @property def config(self): return self._config @config.setter def config(self, config): from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_PYTHONPATH self._config = config existing_entries = set(self._additional_pythonpath_folder_to_folder_info.keys()) if config is not None: pythonpath_entries = set( config.get_setting(OPTION_ROBOT_PYTHONPATH, list, []) ) for new_pythonpath_entry in pythonpath_entries: if new_pythonpath_entry not in existing_entries: self.add_additional_pythonpath_folder(new_pythonpath_entry) for old_entry in existing_entries: if old_entry not in pythonpath_entries: self.remove_additional_pythonpath_folder(old_entry) self.synchronize_additional_pythonpath_folders() @property def user_libspec_dir(self): return self._user_libspec_dir def _on_spec_file_changed(self, spec_file, target): log.debug("File change detected: %s", spec_file) target(spec_file) def add_workspace_folder(self, folder_uri): from robocode_ls_core import uris if folder_uri not in self._workspace_folder_uri_to_folder_info: log.debug("Added workspace folder: %s", folder_uri) cp = self._workspace_folder_uri_to_folder_info.copy() folder_info = cp[folder_uri] = _FolderInfo( uris.to_fs_path(folder_uri), recursive=True ) self._workspace_folder_uri_to_folder_info = cp folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() else: log.debug("Workspace folder already added: %s", folder_uri) def remove_workspace_folder(self, folder_uri): if folder_uri in self._workspace_folder_uri_to_folder_info: log.debug("Removed workspace folder: %s", folder_uri) cp = self._workspace_folder_uri_to_folder_info.copy() folder_info = cp.pop(folder_uri, NULL) folder_info.dispose() self._workspace_folder_uri_to_folder_info = cp else: log.debug("Workspace folder already removed: %s", folder_uri) def add_additional_pythonpath_folder(self, folder_path): if folder_path not in self._additional_pythonpath_folder_to_folder_info: log.debug("Added additional pythonpath folder: %s", folder_path) cp = self._additional_pythonpath_folder_to_folder_info.copy() folder_info = cp[folder_path] = _FolderInfo(folder_path, recursive=True) self._additional_pythonpath_folder_to_folder_info = cp folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() else: log.debug("Additional pythonpath folder already added: %s", folder_path) def remove_additional_pythonpath_folder(self, folder_path): if folder_path in self._additional_pythonpath_folder_to_folder_info: log.debug("Removed additional pythonpath folder: %s", folder_path) cp = self._additional_pythonpath_folder_to_folder_info.copy() folder_info = cp.pop(folder_path, NULL) folder_info.dispose() self._additional_pythonpath_folder_to_folder_info = cp else: log.debug("Additional pythonpath folder already removed: %s", folder_path) def _gen_builtin_libraries(self): """ Generates .libspec files for the libraries builtin (if needed). """ import time try: from robotframework_ls.impl import robot_constants from robocode_ls_core.system_mutex import timed_acquire_mutex from robocode_ls_core.system_mutex import generate_mutex_name initial_time = time.time() wait_for = [] with timed_acquire_mutex( generate_mutex_name( _norm_filename(self._builtins_libspec_dir), prefix="gen_builtins_" ), timeout=100, ): for libname in robot_constants.STDLIBS: library_info = self.get_library_info(libname, create=False) if library_info is None: wait_for.append( self._thread_pool.submit( self._create_libspec, libname, is_builtin=True ) ) for future in wait_for: future.result() if wait_for: log.debug( "Total time to generate builtins: %.2fs" % (time.time() - initial_time) ) self.synchronize_internal_libspec_folders() except: log.exception("Error creating builtin libraries.") def synchronize_workspace_folders(self): for folder_info in self._workspace_folder_uri_to_folder_info.values(): folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() def synchronize_pythonpath_folders(self): for folder_info in self._pythonpath_folder_to_folder_info.values(): folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() def synchronize_additional_pythonpath_folders(self): for folder_info in self._additional_pythonpath_folder_to_folder_info.values(): folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() def synchronize_internal_libspec_folders(self): for folder_info in self._internal_folder_to_folder_info.values(): folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() def _synchronize(self): """ Updates the internal caches related to the tracked .libspec files found. This can be a slow call as it may traverse the whole workspace folders hierarchy, so, it should be used only during startup to fill the initial info. """ self.synchronize_workspace_folders() self.synchronize_pythonpath_folders() self.synchronize_additional_pythonpath_folders() self.synchronize_internal_libspec_folders() def _iter_lib_info(self): """ :rtype: generator(_LibInfo) """ # Note: the iteration order is important (first ones are visited earlier # and have higher priority). iter_in = [] for (_uri, info) in self._workspace_folder_uri_to_folder_info.items(): iter_in.append((info.libspec_filename_to_info, False)) for (_uri, info) in self._pythonpath_folder_to_folder_info.items(): iter_in.append((info.libspec_filename_to_info, False)) for (_uri, info) in self._additional_pythonpath_folder_to_folder_info.items(): iter_in.append((info.libspec_filename_to_info, False)) for (_uri, info) in self._internal_folder_to_folder_info.items(): iter_in.append((info.libspec_filename_to_info, True)) for filename_to_info, can_regenerate in iter_in: for spec_filename, info in list(filename_to_info.items()): if info is None: info = filename_to_info[spec_filename] = _load_lib_info( spec_filename, can_regenerate ) # Note: we could end up yielding a library with the same name # multiple times due to its scope. It's up to the caller to # validate that. # Note: we also check if there are keywords available... in # some cases we may create libraries for namespace packages # (i.e.: empty folders) which don't really have anything -- in # this case, this isn't a valid library. if ( info is not None and info.library_doc is not None and info.library_doc.keywords ): yield info def get_library_names(self): return sorted( set(lib_info.library_doc.name for lib_info in self._iter_lib_info()) ) def _create_libspec( self, libname, env=None, log_time=True, cwd=None, additional_path=None, is_builtin=False, ): """ :param str libname: :raise Exception: if unable to create the library. """ import time from robotframework_ls.impl import robot_constants from robocode_ls_core.subprocess_wrapper import subprocess from robocode_ls_core.system_mutex import timed_acquire_mutex curtime = time.time() try: try: call = [sys.executable] call.extend("-m robot.libdoc --format XML:HTML".split()) if additional_path: if os.path.exists(additional_path): call.extend(["-P", additional_path]) additional_pythonpath_entries = list( self._additional_pythonpath_folder_to_folder_info.keys() ) for entry in list(additional_pythonpath_entries): if os.path.exists(entry): call.extend(["-P", entry]) call.append(libname) libspec_dir = self._user_libspec_dir if libname in robot_constants.STDLIBS: libspec_dir = self._builtins_libspec_dir libspec_filename = os.path.join(libspec_dir, libname + ".libspec") with timed_acquire_mutex( _get_libspec_mutex_name(libspec_filename) ): # Could fail. call.append(libspec_filename) mtime = -1 try: mtime = os.path.getmtime(libspec_filename) except: pass log.debug( "Generating libspec for: %s.\nCwd:%s\nCommand line:\n%s", libname, cwd, " ".join(call), ) try: try: # Note: stdout is always subprocess.PIPE in this call. subprocess.check_output( call, stderr=subprocess.STDOUT, stdin=subprocess.PIPE, env=env, cwd=cwd, ) except OSError as e: log.exception("Error calling: %s", call) # We may have something as: Ignore OSError: [WinError 6] The handle is invalid, # give the result based on whether the file changed on disk. try: if mtime != os.path.getmtime(libspec_filename): _dump_spec_filename_additional_info( libspec_filename, is_builtin=is_builtin, obtain_mutex=False, ) return True except: pass log.debug("Not retrying after OSError failure.") return False except subprocess.CalledProcessError as e: log.exception( "Error creating libspec: %s. Output:\n%s", libname, e.output ) return False _dump_spec_filename_additional_info( libspec_filename, is_builtin=is_builtin, obtain_mutex=False ) return True except Exception: log.exception("Error creating libspec: %s", libname) return False finally: if log_time: delta = time.time() - curtime log.debug("Took: %.2fs to generate info for: %s" % (delta, libname)) def dispose(self): self._observer.dispose() self._spec_changes_notifier.dispose() def _do_create_libspec_on_get(self, libname, current_doc_uri): from robocode_ls_core import uris additional_path = None abspath = None cwd = None if current_doc_uri is not None: cwd = os.path.dirname(uris.to_fs_path(current_doc_uri)) if not cwd or not os.path.isdir(cwd): cwd = None if os.path.isabs(libname): abspath = libname elif current_doc_uri is not None: # relative path: let's make it absolute fs_path = os.path.dirname(uris.to_fs_path(current_doc_uri)) abspath = os.path.abspath(os.path.join(fs_path, libname)) if abspath: additional_path = os.path.dirname(abspath) libname = os.path.basename(libname) if libname.lower().endswith((".py", ".class", ".java")): libname = os.path.splitext(libname)[0] if self._create_libspec(libname, additional_path=additional_path, cwd=cwd): self.synchronize_internal_libspec_folders() return True return False def get_library_info(self, libname, create=True, current_doc_uri=None): """ :param libname: It may be a library name, a relative path to a .py file or an absolute path to a .py file. :rtype: LibraryDoc """ libname_lower = libname.lower() if libname_lower.endswith((".py", ".class", ".java")): libname_lower = os.path.splitext(libname)[0] if "/" in libname_lower or "\\" in libname_lower: libname_lower = os.path.basename(libname_lower) for lib_info in self._iter_lib_info(): library_doc = lib_info.library_doc if library_doc.name and library_doc.name.lower() == libname_lower: if not lib_info.verify_sources_sync(): if create: # Found but it's not in sync. Try to regenerate (don't proceed # because we don't want to match a lower priority item, so, # regenerate and get from the cache without creating). self._do_create_libspec_on_get(libname, current_doc_uri) # Note: get even if it if was not created (we may match # a lower priority library). return self.get_library_info( libname, create=False, current_doc_uri=current_doc_uri ) else: # Not in sync and it should not be created, just skip it. continue else: return library_doc if create: if self._do_create_libspec_on_get(libname, current_doc_uri): return self.get_library_info( libname, create=False, current_doc_uri=current_doc_uri ) log.debug("Unable to find library named: %s", libname) return None
37.437192
107
0.596467
import os import sys from robotframework_ls.constants import NULL from robocode_ls_core.robotframework_log import get_logger log = get_logger(__name__) def _normfile(filename): return os.path.abspath(os.path.normpath(os.path.normcase(filename))) def _get_libspec_mutex_name(libspec_filename): from robocode_ls_core.system_mutex import generate_mutex_name libspec_filename = _norm_filename(libspec_filename) basename = os.path.basename(libspec_filename) name = os.path.splitext(basename)[0] return generate_mutex_name(libspec_filename, prefix="%s_" % (name,)) def _get_additional_info_filename(spec_filename): additional_info_filename = os.path.join(spec_filename + ".m") return additional_info_filename def _load_library_doc_and_mtime(spec_filename, obtain_mutex=True): from robotframework_ls.impl import robot_specbuilder from robocode_ls_core.system_mutex import timed_acquire_mutex if obtain_mutex: ctx = timed_acquire_mutex(_get_libspec_mutex_name(spec_filename)) else: ctx = NULL with ctx: builder = robot_specbuilder.SpecDocBuilder() try: mtime = os.path.getmtime(spec_filename) libdoc = builder.build(spec_filename) return libdoc, mtime except Exception: log.exception("Error when loading spec info from: %s", spec_filename) return None def _load_lib_info(spec_filename, can_regenerate): libdoc_and_mtime = _load_library_doc_and_mtime(spec_filename) if libdoc_and_mtime is None: return None libdoc, mtime = libdoc_and_mtime return _LibInfo(libdoc, mtime, spec_filename, can_regenerate) _IS_BUILTIN = "is_builtin" _SOURCE_TO_MTIME = "source_to_mtime" _UNABLE_TO_LOAD = "unable_to_load" def _create_updated_source_to_mtime(library_doc): sources = set() source = library_doc.source if source is not None: sources.add(source) for keyword in library_doc.keywords: source = keyword.source if source is not None: sources.add(source) source_to_mtime = {} for source in sources: try: source = _normfile(source) source_to_mtime[source] = os.path.getmtime(source) except Exception: log.exception("Unable to load source for file: %s", source) return source_to_mtime def _create_additional_info(spec_filename, is_builtin, obtain_mutex=True): try: additional_info = {_IS_BUILTIN: is_builtin} if is_builtin: # (on a new version we update the folder). return additional_info library_doc_and_mtime = _load_library_doc_and_mtime( spec_filename, obtain_mutex=obtain_mutex ) if library_doc_and_mtime is None: additional_info[_UNABLE_TO_LOAD] = True return additional_info library_doc = library_doc_and_mtime[0] additional_info[_SOURCE_TO_MTIME] = _create_updated_source_to_mtime(library_doc) return additional_info except: log.exception( "Error creating additional info for spec filename: %s", spec_filename ) return {} def _load_spec_filename_additional_info(spec_filename): import json try: additional_info_filename = _get_additional_info_filename(spec_filename) with open(additional_info_filename, "r") as stream: source_to_mtime = json.load(stream) return source_to_mtime except: log.exception("Unable to load source mtimes from: %s", additional_info_filename) return {} def _dump_spec_filename_additional_info(spec_filename, is_builtin, obtain_mutex=True): import json source_to_mtime = _create_additional_info( spec_filename, is_builtin, obtain_mutex=obtain_mutex ) additional_info_filename = _get_additional_info_filename(spec_filename) with open(additional_info_filename, "w") as stream: json.dump(source_to_mtime, stream, indent=2, sort_keys=True) class _LibInfo(object): __slots__ = [ "library_doc", "mtime", "_spec_filename", "_additional_info", "_invalid", "_can_regenerate", ] def __init__(self, library_doc, mtime, spec_filename, can_regenerate): assert library_doc assert mtime assert spec_filename self.library_doc = library_doc self.mtime = mtime self._can_regenerate = can_regenerate self._spec_filename = spec_filename self._additional_info = None self._invalid = False def verify_sources_sync(self): if not self._can_regenerate: # This means that this info was generated by a library or the user # himself, thus, we can't regenerate it. return True if self._invalid: return False additional_info = self._additional_info if additional_info is None: additional_info = _load_spec_filename_additional_info(self._spec_filename) if additional_info.get(_IS_BUILTIN, False): return True source_to_mtime = additional_info.get(_SOURCE_TO_MTIME) if source_to_mtime is None: return True updated_source_to_mtime = _create_updated_source_to_mtime(self.library_doc) if source_to_mtime != updated_source_to_mtime: log.info( "Library %s is invalid. Current source to mtime:\n%s\nChanged from:\n%s" % (self.library_doc.name, source_to_mtime, updated_source_to_mtime) ) self._invalid = True return False return True def _norm_filename(path): return os.path.normcase(os.path.realpath(os.path.abspath(path))) class _FolderInfo(object): def __init__(self, folder_path, recursive): self.folder_path = folder_path self.recursive = recursive self.libspec_filename_to_info = {} self._watch = NULL def start_watch(self, observer, notifier): if self._watch is NULL: if not os.path.isdir(self.folder_path): if not os.path.exists(self.folder_path): log.info( "Trying to track changes in path which does not exist: %s", self.folder_path, ) else: log.info( "Trying to track changes in path which is not a folder: %s", self.folder_path, ) return log.info("Tracking folder for changes: %s", self.folder_path) from robocode_ls_core.watchdog_wrapper import PathInfo folder_path = self.folder_path self._watch = observer.notify_on_extensions_change( [PathInfo(folder_path, recursive=self.recursive)], ["libspec"], notifier.on_change, (self._on_change_spec,), ) def _on_change_spec(self, spec_file): spec_file = _norm_filename(spec_file) libspec_filename_to_info = self.libspec_filename_to_info.copy() if os.path.exists(spec_file): libspec_filename_to_info[spec_file] = None else: libspec_filename_to_info.pop(spec_file, None) self.libspec_filename_to_info = libspec_filename_to_info def synchronize(self): try: self.libspec_filename_to_info = self._collect_libspec_info( [self.folder_path], self.libspec_filename_to_info, recursive=self.recursive, ) except Exception: log.exception("Error when synchronizing: %s", self.folder_path) def dispose(self): watch = self._watch self._watch = NULL watch.stop_tracking() self.libspec_filename_to_info = {} def _collect_libspec_info(self, folders, old_libspec_filename_to_info, recursive): seen_libspec_files = set() if recursive: for folder in folders: if os.path.isdir(folder): for root, _dirs, files in os.walk(folder): for filename in files: if filename.lower().endswith(".libspec"): seen_libspec_files.add(os.path.join(root, filename)) else: for folder in folders: if os.path.isdir(folder): for filename in os.listdir(folder): if filename.lower().endswith(".libspec"): seen_libspec_files.add(os.path.join(folder, filename)) new_libspec_filename_to_info = {} for filename in seen_libspec_files: filename = _norm_filename(filename) info = old_libspec_filename_to_info.get(filename) if info is not None: try: curr_mtime = os.path.getmtime(filename) except: continue else: if info.mtime != curr_mtime: info = None new_libspec_filename_to_info[filename] = info return new_libspec_filename_to_info class LibspecManager(object): @classmethod def get_internal_libspec_dir(cls): from robotframework_ls import robot_config home = robot_config.get_robotframework_ls_home() pyexe = sys.executable if not isinstance(pyexe, bytes): pyexe = pyexe.encode("utf-8") import hashlib digest = hashlib.sha256(pyexe).hexdigest()[:8] try: import robot v = str(robot.get_version()) except: v = "unknown" return os.path.join(home, "specs", "%s_%s" % (digest, v)) @classmethod def get_internal_builtins_libspec_dir(cls, internal_libspec_dir=None): return os.path.join( internal_libspec_dir or cls.get_internal_libspec_dir(), "builtins" ) def __init__(self, builtin_libspec_dir=None, user_libspec_dir=None): from robocode_ls_core import watchdog_wrapper from concurrent import futures from multiprocessing import cpu_count self._thread_pool = futures.ThreadPoolExecutor( max_workers=(cpu_count() * 1.2) + 1 ) self._observer = watchdog_wrapper.create_observer() self._spec_changes_notifier = watchdog_wrapper.create_notifier( self._on_spec_file_changed, timeout=0.5 ) self._libspec_dir = self.get_internal_libspec_dir() self._user_libspec_dir = user_libspec_dir or os.path.join( self._libspec_dir, "user" ) self._builtins_libspec_dir = ( builtin_libspec_dir or self.get_internal_builtins_libspec_dir(self._libspec_dir) ) log.debug("User libspec dir: %s", self._user_libspec_dir) log.debug("Builtins libspec dir: %s", self._builtins_libspec_dir) try: os.makedirs(self._user_libspec_dir) except: pass try: os.makedirs(self._builtins_libspec_dir) except: # Ignore exception if it's already created. pass self._workspace_folder_uri_to_folder_info = {} self._additional_pythonpath_folder_to_folder_info = {} pythonpath_folder_to_folder_info = {} for path in sys.path: if path and os.path.isdir(path): pythonpath_folder_to_folder_info[path] = _FolderInfo( path, recursive=False ) self._pythonpath_folder_to_folder_info = pythonpath_folder_to_folder_info self._internal_folder_to_folder_info = { self._user_libspec_dir: _FolderInfo( self._user_libspec_dir, recursive=False ), self._builtins_libspec_dir: _FolderInfo( self._builtins_libspec_dir, recursive=False ), } self.config = None self._synchronize() self._gen_builtin_libraries() @property def config(self): return self._config @config.setter def config(self, config): from robotframework_ls.impl.robot_lsp_constants import OPTION_ROBOT_PYTHONPATH self._config = config existing_entries = set(self._additional_pythonpath_folder_to_folder_info.keys()) if config is not None: pythonpath_entries = set( config.get_setting(OPTION_ROBOT_PYTHONPATH, list, []) ) for new_pythonpath_entry in pythonpath_entries: if new_pythonpath_entry not in existing_entries: self.add_additional_pythonpath_folder(new_pythonpath_entry) for old_entry in existing_entries: if old_entry not in pythonpath_entries: self.remove_additional_pythonpath_folder(old_entry) self.synchronize_additional_pythonpath_folders() @property def user_libspec_dir(self): return self._user_libspec_dir def _on_spec_file_changed(self, spec_file, target): log.debug("File change detected: %s", spec_file) target(spec_file) def add_workspace_folder(self, folder_uri): from robocode_ls_core import uris if folder_uri not in self._workspace_folder_uri_to_folder_info: log.debug("Added workspace folder: %s", folder_uri) cp = self._workspace_folder_uri_to_folder_info.copy() folder_info = cp[folder_uri] = _FolderInfo( uris.to_fs_path(folder_uri), recursive=True ) self._workspace_folder_uri_to_folder_info = cp folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() else: log.debug("Workspace folder already added: %s", folder_uri) def remove_workspace_folder(self, folder_uri): if folder_uri in self._workspace_folder_uri_to_folder_info: log.debug("Removed workspace folder: %s", folder_uri) cp = self._workspace_folder_uri_to_folder_info.copy() folder_info = cp.pop(folder_uri, NULL) folder_info.dispose() self._workspace_folder_uri_to_folder_info = cp else: log.debug("Workspace folder already removed: %s", folder_uri) def add_additional_pythonpath_folder(self, folder_path): if folder_path not in self._additional_pythonpath_folder_to_folder_info: log.debug("Added additional pythonpath folder: %s", folder_path) cp = self._additional_pythonpath_folder_to_folder_info.copy() folder_info = cp[folder_path] = _FolderInfo(folder_path, recursive=True) self._additional_pythonpath_folder_to_folder_info = cp folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() else: log.debug("Additional pythonpath folder already added: %s", folder_path) def remove_additional_pythonpath_folder(self, folder_path): if folder_path in self._additional_pythonpath_folder_to_folder_info: log.debug("Removed additional pythonpath folder: %s", folder_path) cp = self._additional_pythonpath_folder_to_folder_info.copy() folder_info = cp.pop(folder_path, NULL) folder_info.dispose() self._additional_pythonpath_folder_to_folder_info = cp else: log.debug("Additional pythonpath folder already removed: %s", folder_path) def _gen_builtin_libraries(self): import time try: from robotframework_ls.impl import robot_constants from robocode_ls_core.system_mutex import timed_acquire_mutex from robocode_ls_core.system_mutex import generate_mutex_name initial_time = time.time() wait_for = [] with timed_acquire_mutex( generate_mutex_name( _norm_filename(self._builtins_libspec_dir), prefix="gen_builtins_" ), timeout=100, ): for libname in robot_constants.STDLIBS: library_info = self.get_library_info(libname, create=False) if library_info is None: wait_for.append( self._thread_pool.submit( self._create_libspec, libname, is_builtin=True ) ) for future in wait_for: future.result() if wait_for: log.debug( "Total time to generate builtins: %.2fs" % (time.time() - initial_time) ) self.synchronize_internal_libspec_folders() except: log.exception("Error creating builtin libraries.") def synchronize_workspace_folders(self): for folder_info in self._workspace_folder_uri_to_folder_info.values(): folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() def synchronize_pythonpath_folders(self): for folder_info in self._pythonpath_folder_to_folder_info.values(): folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() def synchronize_additional_pythonpath_folders(self): for folder_info in self._additional_pythonpath_folder_to_folder_info.values(): folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() def synchronize_internal_libspec_folders(self): for folder_info in self._internal_folder_to_folder_info.values(): folder_info.start_watch(self._observer, self._spec_changes_notifier) folder_info.synchronize() def _synchronize(self): self.synchronize_workspace_folders() self.synchronize_pythonpath_folders() self.synchronize_additional_pythonpath_folders() self.synchronize_internal_libspec_folders() def _iter_lib_info(self): iter_in = [] for (_uri, info) in self._workspace_folder_uri_to_folder_info.items(): iter_in.append((info.libspec_filename_to_info, False)) for (_uri, info) in self._pythonpath_folder_to_folder_info.items(): iter_in.append((info.libspec_filename_to_info, False)) for (_uri, info) in self._additional_pythonpath_folder_to_folder_info.items(): iter_in.append((info.libspec_filename_to_info, False)) for (_uri, info) in self._internal_folder_to_folder_info.items(): iter_in.append((info.libspec_filename_to_info, True)) for filename_to_info, can_regenerate in iter_in: for spec_filename, info in list(filename_to_info.items()): if info is None: info = filename_to_info[spec_filename] = _load_lib_info( spec_filename, can_regenerate ) # validate that. # Note: we also check if there are keywords available... in # some cases we may create libraries for namespace packages # (i.e.: empty folders) which don't really have anything -- in if ( info is not None and info.library_doc is not None and info.library_doc.keywords ): yield info def get_library_names(self): return sorted( set(lib_info.library_doc.name for lib_info in self._iter_lib_info()) ) def _create_libspec( self, libname, env=None, log_time=True, cwd=None, additional_path=None, is_builtin=False, ): import time from robotframework_ls.impl import robot_constants from robocode_ls_core.subprocess_wrapper import subprocess from robocode_ls_core.system_mutex import timed_acquire_mutex curtime = time.time() try: try: call = [sys.executable] call.extend("-m robot.libdoc --format XML:HTML".split()) if additional_path: if os.path.exists(additional_path): call.extend(["-P", additional_path]) additional_pythonpath_entries = list( self._additional_pythonpath_folder_to_folder_info.keys() ) for entry in list(additional_pythonpath_entries): if os.path.exists(entry): call.extend(["-P", entry]) call.append(libname) libspec_dir = self._user_libspec_dir if libname in robot_constants.STDLIBS: libspec_dir = self._builtins_libspec_dir libspec_filename = os.path.join(libspec_dir, libname + ".libspec") with timed_acquire_mutex( _get_libspec_mutex_name(libspec_filename) ): # Could fail. call.append(libspec_filename) mtime = -1 try: mtime = os.path.getmtime(libspec_filename) except: pass log.debug( "Generating libspec for: %s.\nCwd:%s\nCommand line:\n%s", libname, cwd, " ".join(call), ) try: try: # Note: stdout is always subprocess.PIPE in this call. subprocess.check_output( call, stderr=subprocess.STDOUT, stdin=subprocess.PIPE, env=env, cwd=cwd, ) except OSError as e: log.exception("Error calling: %s", call) # We may have something as: Ignore OSError: [WinError 6] The handle is invalid, # give the result based on whether the file changed on disk. try: if mtime != os.path.getmtime(libspec_filename): _dump_spec_filename_additional_info( libspec_filename, is_builtin=is_builtin, obtain_mutex=False, ) return True except: pass log.debug("Not retrying after OSError failure.") return False except subprocess.CalledProcessError as e: log.exception( "Error creating libspec: %s. Output:\n%s", libname, e.output ) return False _dump_spec_filename_additional_info( libspec_filename, is_builtin=is_builtin, obtain_mutex=False ) return True except Exception: log.exception("Error creating libspec: %s", libname) return False finally: if log_time: delta = time.time() - curtime log.debug("Took: %.2fs to generate info for: %s" % (delta, libname)) def dispose(self): self._observer.dispose() self._spec_changes_notifier.dispose() def _do_create_libspec_on_get(self, libname, current_doc_uri): from robocode_ls_core import uris additional_path = None abspath = None cwd = None if current_doc_uri is not None: cwd = os.path.dirname(uris.to_fs_path(current_doc_uri)) if not cwd or not os.path.isdir(cwd): cwd = None if os.path.isabs(libname): abspath = libname elif current_doc_uri is not None: # relative path: let's make it absolute fs_path = os.path.dirname(uris.to_fs_path(current_doc_uri)) abspath = os.path.abspath(os.path.join(fs_path, libname)) if abspath: additional_path = os.path.dirname(abspath) libname = os.path.basename(libname) if libname.lower().endswith((".py", ".class", ".java")): libname = os.path.splitext(libname)[0] if self._create_libspec(libname, additional_path=additional_path, cwd=cwd): self.synchronize_internal_libspec_folders() return True return False def get_library_info(self, libname, create=True, current_doc_uri=None): libname_lower = libname.lower() if libname_lower.endswith((".py", ".class", ".java")): libname_lower = os.path.splitext(libname)[0] if "/" in libname_lower or "\\" in libname_lower: libname_lower = os.path.basename(libname_lower) for lib_info in self._iter_lib_info(): library_doc = lib_info.library_doc if library_doc.name and library_doc.name.lower() == libname_lower: if not lib_info.verify_sources_sync(): if create: # regenerate and get from the cache without creating). self._do_create_libspec_on_get(libname, current_doc_uri) # Note: get even if it if was not created (we may match # a lower priority library). return self.get_library_info( libname, create=False, current_doc_uri=current_doc_uri ) else: # Not in sync and it should not be created, just skip it. continue else: return library_doc if create: if self._do_create_libspec_on_get(libname, current_doc_uri): return self.get_library_info( libname, create=False, current_doc_uri=current_doc_uri ) log.debug("Unable to find library named: %s", libname) return None
true
true
f70f508210f2ed61f04a9924a27265ba20a3c8c0
965
py
Python
019_removeNthNodeFromListEnd.py
stuti-rastogi/leetcode-python-solutions
73593fe642a06a83cde974ba5e6de3a7b396ec84
[ "MIT" ]
4
2018-07-24T08:36:42.000Z
2019-08-25T17:48:47.000Z
019_removeNthNodeFromListEnd.py
stuti-rastogi/leetcodesolutions
73593fe642a06a83cde974ba5e6de3a7b396ec84
[ "MIT" ]
null
null
null
019_removeNthNodeFromListEnd.py
stuti-rastogi/leetcodesolutions
73593fe642a06a83cde974ba5e6de3a7b396ec84
[ "MIT" ]
null
null
null
# Definition for singly-linked list. # class ListNode: # def __init__(self, val=0, next=None): # self.val = val # self.next = next class Solution: def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode: if not head or not head.next: return None # make this stop at n+1th index, if head is 0 first = head count = 0 while first and count <= n: first = first.next count += 1 # move both first and second # they have n node between them # when first becomes None (beyond n of list), second is one node behind nth node from end second = head while first: first = first.next second = second.next # count == n+1 means exitted naturally if second == head and count != n+1: head = second.next else: second.next = second.next.next return head
29.242424
97
0.554404
class Solution: def removeNthFromEnd(self, head: ListNode, n: int) -> ListNode: if not head or not head.next: return None first = head count = 0 while first and count <= n: first = first.next count += 1 second = head while first: first = first.next second = second.next if second == head and count != n+1: head = second.next else: second.next = second.next.next return head
true
true
f70f51695161b773142bb7af5d30320d1eec9d9a
85
py
Python
api/tacticalrmm/apiv3/apps.py
infinite8co/tacticalrmm
bd7ce5417ec672552ec3cba325318795ccde972e
[ "MIT" ]
903
2019-10-22T22:56:42.000Z
2022-03-18T14:15:54.000Z
api/tacticalrmm/apiv3/apps.py
infinite8co/tacticalrmm
bd7ce5417ec672552ec3cba325318795ccde972e
[ "MIT" ]
720
2019-12-07T08:11:26.000Z
2022-03-17T21:47:04.000Z
api/tacticalrmm/apiv3/apps.py
infinite8co/tacticalrmm
bd7ce5417ec672552ec3cba325318795ccde972e
[ "MIT" ]
231
2020-02-11T14:14:21.000Z
2022-03-16T21:23:10.000Z
from django.apps import AppConfig class Apiv3Config(AppConfig): name = "apiv3"
14.166667
33
0.741176
from django.apps import AppConfig class Apiv3Config(AppConfig): name = "apiv3"
true
true
f70f520361f1a11ee403835f6c6ca6e6e2b12a75
1,452
py
Python
samples/generated_samples/logging_v2_generated_config_service_v2_update_settings_sync.py
MtkN1/google-cloud-logging-patch
05a2f747ad9b233fa3b9890c7369a50d86cabba6
[ "Apache-2.0" ]
null
null
null
samples/generated_samples/logging_v2_generated_config_service_v2_update_settings_sync.py
MtkN1/google-cloud-logging-patch
05a2f747ad9b233fa3b9890c7369a50d86cabba6
[ "Apache-2.0" ]
null
null
null
samples/generated_samples/logging_v2_generated_config_service_v2_update_settings_sync.py
MtkN1/google-cloud-logging-patch
05a2f747ad9b233fa3b9890c7369a50d86cabba6
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Generated code. DO NOT EDIT! # # Snippet for UpdateSettings # NOTE: This snippet has been automatically generated for illustrative purposes only. # It may require modifications to work in your environment. # To install the latest published package dependency, execute the following: # python3 -m pip install google-cloud-logging # [START logging_v2_generated_ConfigServiceV2_UpdateSettings_sync] from google.cloud import logging_v2 def sample_update_settings(): # Create a client client = logging_v2.ConfigServiceV2Client() # Initialize request argument(s) request = logging_v2.UpdateSettingsRequest( name="name_value", ) # Make the request response = client.update_settings(request=request) # Handle the response print(response) # [END logging_v2_generated_ConfigServiceV2_UpdateSettings_sync]
31.565217
85
0.759642
from google.cloud import logging_v2 def sample_update_settings(): client = logging_v2.ConfigServiceV2Client() request = logging_v2.UpdateSettingsRequest( name="name_value", ) response = client.update_settings(request=request) print(response)
true
true
f70f5392d9696765d55f2f1e0e641681b6ef353f
16,489
py
Python
geoviews/operation/projection.py
GonzalezDiazJ/pyviz_geoviews_clone
cac9afd1bc0d25313c84ea617300bbe40207d044
[ "BSD-3-Clause" ]
null
null
null
geoviews/operation/projection.py
GonzalezDiazJ/pyviz_geoviews_clone
cac9afd1bc0d25313c84ea617300bbe40207d044
[ "BSD-3-Clause" ]
null
null
null
geoviews/operation/projection.py
GonzalezDiazJ/pyviz_geoviews_clone
cac9afd1bc0d25313c84ea617300bbe40207d044
[ "BSD-3-Clause" ]
null
null
null
import param import numpy as np from cartopy import crs as ccrs from cartopy.img_transform import warp_array, _determine_bounds from holoviews.core.util import cartesian_product, get_param_values from holoviews.operation import Operation from shapely.geometry import Polygon, LineString, MultiPolygon, MultiLineString from ..element import (Image, Shape, Polygons, Path, Points, Contours, RGB, Graph, Nodes, EdgePaths, QuadMesh, VectorField, HexTiles, Labels) from ..util import ( project_extents, geom_to_array, wrap_path_data, is_multi_geometry, polygon_to_geom, path_to_geom ) class _project_operation(Operation): """ Baseclass for projection operations, projecting elements from their source coordinate reference system to the supplied projection. """ projection = param.ClassSelector(default=ccrs.GOOGLE_MERCATOR, class_=ccrs.Projection, instantiate=False, doc=""" Projection the shape type is projected to.""") # Defines the types of elements supported by the operation supported_types = [] def _process(self, element, key=None): return element.map(self._process_element, self.supported_types) class project_path(_project_operation): """ Projects Polygons and Path Elements from their source coordinate reference system to the supplied projection. """ supported_types = [Polygons, Path, Contours, EdgePaths] def _project_path(self, element, path, data, boundary, geom_type, multi_type): """ Handle case of continuously varying path """ xdim, ydim = path.kdims[:2] xs, ys = (path.dimension_values(i) for i in range(2)) if not len(xs): return [] proj_arr = self.p.projection.quick_vertices_transform( np.column_stack([xs, ys]), element.crs) if proj_arr is None: vertices = np.column_stack([xs, ys]) if hasattr(element.crs, '_bbox_and_offset'): vertices = wrap_path_data(vertices, element.crs, element.crs) path = geom_type(vertices) if boundary: path = path.intersection(boundary) if not path: return [] proj = self.p.projection.project_geometry(path, element.crs) proj_arr = geom_to_array(proj) data[xdim.name] = proj_arr[:, 0] data[ydim.name] = proj_arr[:, 1] return [data] def _project_contour(self, element, contour, data, boundary, geom_type, multi_type): """ Handle case of iso-contour """ xdim, ydim = contour.kdims[:2] data = {k: vals[0] for k, vals in data.items()} # Wrap longitudes vertices = contour.array([0, 1]) if hasattr(element.crs, '_bbox_and_offset'): vertices = wrap_path_data(vertices, element.crs, element.crs) element = type(element)([vertices]) to_geom = polygon_to_geom if isinstance(element, Polygon) else path_to_geom # Clip path to projection boundaries geoms = [] for g in to_geom(element, multi=False, skip_invalid=False): if np.isinf(np.array(g.array_interface_base['data'])).sum(): # Skip if infinity in path continue try: # Compute boundary intersections if boundary: g = g.intersection(boundary) except: continue if is_multi_geometry(g): for p in g: try: geoms.append(geom_type(p)) except: continue else: geoms.append(g) # Project geometry projected = [] for g in geoms: proj = self.p.projection.project_geometry(g, contour.crs) proj = proj if is_multi_geometry(proj) else [proj] for geom in proj: vertices = np.array(geom.array_interface_base['data']).reshape(-1, 2) xs, ys = vertices.T if len(xs): projected.append(dict(data, **{xdim.name: xs, ydim.name: ys})) return projected def _project_geodataframe(self, element): geoms = element.split(datatype='geom') projected = [self.p.projection.project_geometry(geom, element.crs) for geom in geoms] new_data = element.data.copy() new_data['geometry'] = projected return element.clone(new_data, crs=self.p.projection) def _process_element(self, element): if not len(element): return element.clone(crs=self.p.projection) elif element.interface.datatype == 'geodataframe': return self._project_geodataframe(element) boundary = element.crs.project_geometry(Polygon(self.p.projection.boundary), self.p.projection) if isinstance(element, Polygons): multi_type, geom_type = MultiPolygon, Polygon else: multi_type, geom_type = MultiLineString, LineString projected = [] paths = element.split() for path in paths: data = {vd.name: path.dimension_values(vd, expanded=False) for vd in path.vdims} if any(len(vals) > 1 for vals in data.values()): projected += self._project_path(element, path, data, boundary, geom_type, multi_type) else: projected += self._project_contour(element, path, data, boundary, geom_type, multi_type) if len(paths) and len(projected) == 0: self.warning('While projecting a %s element from a %s coordinate ' 'reference system (crs) to a %s projection none of ' 'the projected paths were contained within the bounds ' 'specified by the projection. Ensure you have specified ' 'the correct coordinate system for your data.' % (type(element).__name__, type(element.crs).__name__, type(self.p.projection).__name__)) return element.clone(projected, crs=self.p.projection) class project_shape(_project_operation): """ Projects Shape Element from the source coordinate reference system to the supplied projection. """ supported_types = [Shape] def _process_element(self, element): if not len(element): return element.clone(crs=self.p.projection) geom = element.geom() vertices = geom_to_array(geom) if isinstance(geom, (MultiPolygon, Polygon)): obj = Polygons([vertices]) else: obj = Path([vertices]) geom = project_path(obj, projection=self.p.projection).geom() return element.clone(geom, crs=self.p.projection) class project_points(_project_operation): supported_types = [Points, Nodes, VectorField, HexTiles, Labels] def _process_element(self, element): if not len(element): return element.clone(crs=self.p.projection) xdim, ydim = element.dimensions()[:2] xs, ys = (element.dimension_values(i) for i in range(2)) coordinates = self.p.projection.transform_points(element.crs, xs, ys) mask = np.isfinite(coordinates[:, 0]) new_data = {k: v[mask] for k, v in element.columns().items()} new_data[xdim.name] = coordinates[mask, 0] new_data[ydim.name] = coordinates[mask, 1] datatype = [element.interface.datatype]+element.datatype if len(new_data[xdim.name]) == 0: self.warning('While projecting a %s element from a %s coordinate ' 'reference system (crs) to a %s projection none of ' 'the projected paths were contained within the bounds ' 'specified by the projection. Ensure you have specified ' 'the correct coordinate system for your data.' % (type(element).__name__, type(element.crs).__name__, type(self.p.projection).__name__)) return element.clone(new_data, crs=self.p.projection, datatype=datatype) class project_graph(_project_operation): supported_types = [Graph] def _process_element(self, element): nodes = project_points(element.nodes, projection=self.projection) data = (element.data, nodes) if element._edgepaths: data = data + (project_path(element.edgepaths, projection=self.projection),) return element.clone(data, crs=self.projection) class project_quadmesh(_project_operation): supported_types = [QuadMesh] def _process_element(self, element): proj = self.p.projection irregular = any(element.interface.irregular(element, kd) for kd in element.kdims) zs = element.dimension_values(2, flat=False) if irregular: X, Y = [np.asarray(element.interface.coords(element, kd, expanded=True)) for kd in element.kdims] else: X = element.dimension_values(0, expanded=True) Y = element.dimension_values(1, expanded=True) zs = zs.T coords = proj.transform_points(element.crs, X, Y) PX, PY = coords[..., 0], coords[..., 1] # Mask quads which are wrapping around the x-axis wrap_proj_types = (ccrs._RectangularProjection, ccrs._WarpedRectangularProjection, ccrs.InterruptedGoodeHomolosine, ccrs.Mercator) if isinstance(proj, wrap_proj_types): with np.errstate(invalid='ignore'): edge_lengths = np.hypot( np.diff(PX , axis=1), np.diff(PY, axis=1) ) to_mask = ( (edge_lengths >= abs(proj.x_limits[1] - proj.x_limits[0]) / 2) | np.isnan(edge_lengths) ) if np.any(to_mask): mask = np.zeros(zs.shape, dtype=np.bool) mask[:, 1:][to_mask] = True mask[:, 2:][to_mask[:, :-1]] = True mask[:, :-1][to_mask] = True mask[:, :-2][to_mask[:, 1:]] = True mask[1:, 1:][to_mask[:-1]] = True mask[1:, :-1][to_mask[:-1]] = True mask[:-1, 1:][to_mask[1:]] = True mask[:-1, :-1][to_mask[1:]] = True zs[mask] = np.NaN params = get_param_values(element) if PX.ndim < 2: PX = PX.reshape(zs.shape) if PY.ndim < 2: PY = PY.reshape(zs.shape) return QuadMesh((PX, PY, zs), crs=self.projection, **params) class project_image(_project_operation): """ Projects an geoviews Image to the specified projection, returning a regular HoloViews Image type. Works by regridding the data along projected bounds. Only supports rectangular projections. """ fast = param.Boolean(default=False, doc=""" Whether to enable fast reprojection with (much) better performance but poorer handling in polar regions.""") width = param.Integer(default=None, doc=""" Width of the reprojectd Image""") height = param.Integer(default=None, doc=""" Height of the reprojected Image""") link_inputs = param.Boolean(default=True, doc=""" By default, the link_inputs parameter is set to True so that when applying project_image, backends that support linked streams update RangeXY streams on the inputs of the operation.""") supported_types = [Image] def _process(self, img, key=None): if self.p.fast: return self._fast_process(img, key) proj = self.p.projection if proj == img.crs: return img x0, x1 = img.range(0) y0, y1 = img.range(1) xn, yn = img.interface.shape(img, gridded=True)[:2] px0, py0, px1, py1 = project_extents((x0, y0, x1, y1), img.crs, proj) src_ext, trgt_ext = (x0, x1, y0, y1), (px0, px1, py0, py1) arrays = [] for vd in img.vdims: arr = img.dimension_values(vd, flat=False) if arr.size: projected, extents = warp_array(arr, proj, img.crs, (xn, yn), src_ext, trgt_ext) else: projected, extents = arr, trgt_ext arrays.append(projected) projected = np.dstack(arrays) if len(arrays) > 1 else arrays[0] data = np.flipud(projected) bounds = (extents[0], extents[2], extents[1], extents[3]) return img.clone(data, bounds=bounds, kdims=img.kdims, vdims=img.vdims, crs=proj, xdensity=None, ydensity=None) def _fast_process(self, element, key=None): # Project coordinates proj = self.p.projection if proj == element.crs: return element h, w = element.interface.shape(element, gridded=True)[:2] xs = element.dimension_values(0) ys = element.dimension_values(1) if isinstance(element, RGB): rgb = element.rgb array = np.dstack([np.flipud(rgb.dimension_values(d, flat=False)) for d in rgb.vdims]) else: array = element.dimension_values(2, flat=False) (x0, y0, x1, y1) = element.bounds.lbrt() width = int(w) if self.p.width is None else self.p.width height = int(h) if self.p.height is None else self.p.height bounds = _determine_bounds(xs, ys, element.crs) yb = bounds['y'] resampled = [] xvalues = [] for xb in bounds['x']: px0, py0, px1, py1 = project_extents((xb[0], yb[0], xb[1], yb[1]), element.crs, proj) if len(bounds['x']) > 1: xfraction = (xb[1]-xb[0])/(x1-x0) fraction_width = int(width*xfraction) else: fraction_width = width xs = np.linspace(px0, px1, fraction_width) ys = np.linspace(py0, py1, height) cxs, cys = cartesian_product([xs, ys]) pxs, pys, _ = element.crs.transform_points(proj, np.asarray(cxs), np.asarray(cys)).T icxs = (((pxs-x0) / (x1-x0)) * w).astype(int) icys = (((pys-y0) / (y1-y0)) * h).astype(int) xvalues.append(xs) icxs[icxs<0] = 0 icys[icys<0] = 0 icxs[icxs>=w] = w-1 icys[icys>=h] = h-1 resampled_arr = array[icys, icxs] if isinstance(element, RGB): nvdims = len(element.vdims) resampled_arr = resampled_arr.reshape((fraction_width, height, nvdims)).transpose([1, 0, 2]) else: resampled_arr = resampled_arr.reshape((fraction_width, height)).T resampled.append(resampled_arr) xs = np.concatenate(xvalues[::-1]) resampled = np.hstack(resampled[::-1]) datatypes = [element.interface.datatype, 'xarray', 'grid'] data = (xs, ys) for i in range(len(element.vdims)): if resampled.ndim > 2: data = data + (resampled[::-1, :, i],) else: data = data + (resampled,) return element.clone(data, crs=proj, bounds=None, datatype=datatypes) class project(Operation): """ Projects GeoViews Element types to the specified projection. """ projection = param.ClassSelector(default=ccrs.GOOGLE_MERCATOR, class_=ccrs.Projection, instantiate=False, doc=""" Projection the image type is projected to.""") _operations = [project_path, project_image, project_shape, project_graph, project_quadmesh, project_points] def _process(self, element, key=None): for op in self._operations: element = element.map(op.instance(projection=self.p.projection), op.supported_types) return element
39.73253
108
0.572321
import param import numpy as np from cartopy import crs as ccrs from cartopy.img_transform import warp_array, _determine_bounds from holoviews.core.util import cartesian_product, get_param_values from holoviews.operation import Operation from shapely.geometry import Polygon, LineString, MultiPolygon, MultiLineString from ..element import (Image, Shape, Polygons, Path, Points, Contours, RGB, Graph, Nodes, EdgePaths, QuadMesh, VectorField, HexTiles, Labels) from ..util import ( project_extents, geom_to_array, wrap_path_data, is_multi_geometry, polygon_to_geom, path_to_geom ) class _project_operation(Operation): projection = param.ClassSelector(default=ccrs.GOOGLE_MERCATOR, class_=ccrs.Projection, instantiate=False, doc=""" Projection the shape type is projected to.""") supported_types = [] def _process(self, element, key=None): return element.map(self._process_element, self.supported_types) class project_path(_project_operation): supported_types = [Polygons, Path, Contours, EdgePaths] def _project_path(self, element, path, data, boundary, geom_type, multi_type): xdim, ydim = path.kdims[:2] xs, ys = (path.dimension_values(i) for i in range(2)) if not len(xs): return [] proj_arr = self.p.projection.quick_vertices_transform( np.column_stack([xs, ys]), element.crs) if proj_arr is None: vertices = np.column_stack([xs, ys]) if hasattr(element.crs, '_bbox_and_offset'): vertices = wrap_path_data(vertices, element.crs, element.crs) path = geom_type(vertices) if boundary: path = path.intersection(boundary) if not path: return [] proj = self.p.projection.project_geometry(path, element.crs) proj_arr = geom_to_array(proj) data[xdim.name] = proj_arr[:, 0] data[ydim.name] = proj_arr[:, 1] return [data] def _project_contour(self, element, contour, data, boundary, geom_type, multi_type): xdim, ydim = contour.kdims[:2] data = {k: vals[0] for k, vals in data.items()} vertices = contour.array([0, 1]) if hasattr(element.crs, '_bbox_and_offset'): vertices = wrap_path_data(vertices, element.crs, element.crs) element = type(element)([vertices]) to_geom = polygon_to_geom if isinstance(element, Polygon) else path_to_geom geoms = [] for g in to_geom(element, multi=False, skip_invalid=False): if np.isinf(np.array(g.array_interface_base['data'])).sum(): continue try: if boundary: g = g.intersection(boundary) except: continue if is_multi_geometry(g): for p in g: try: geoms.append(geom_type(p)) except: continue else: geoms.append(g) projected = [] for g in geoms: proj = self.p.projection.project_geometry(g, contour.crs) proj = proj if is_multi_geometry(proj) else [proj] for geom in proj: vertices = np.array(geom.array_interface_base['data']).reshape(-1, 2) xs, ys = vertices.T if len(xs): projected.append(dict(data, **{xdim.name: xs, ydim.name: ys})) return projected def _project_geodataframe(self, element): geoms = element.split(datatype='geom') projected = [self.p.projection.project_geometry(geom, element.crs) for geom in geoms] new_data = element.data.copy() new_data['geometry'] = projected return element.clone(new_data, crs=self.p.projection) def _process_element(self, element): if not len(element): return element.clone(crs=self.p.projection) elif element.interface.datatype == 'geodataframe': return self._project_geodataframe(element) boundary = element.crs.project_geometry(Polygon(self.p.projection.boundary), self.p.projection) if isinstance(element, Polygons): multi_type, geom_type = MultiPolygon, Polygon else: multi_type, geom_type = MultiLineString, LineString projected = [] paths = element.split() for path in paths: data = {vd.name: path.dimension_values(vd, expanded=False) for vd in path.vdims} if any(len(vals) > 1 for vals in data.values()): projected += self._project_path(element, path, data, boundary, geom_type, multi_type) else: projected += self._project_contour(element, path, data, boundary, geom_type, multi_type) if len(paths) and len(projected) == 0: self.warning('While projecting a %s element from a %s coordinate ' 'reference system (crs) to a %s projection none of ' 'the projected paths were contained within the bounds ' 'specified by the projection. Ensure you have specified ' 'the correct coordinate system for your data.' % (type(element).__name__, type(element.crs).__name__, type(self.p.projection).__name__)) return element.clone(projected, crs=self.p.projection) class project_shape(_project_operation): supported_types = [Shape] def _process_element(self, element): if not len(element): return element.clone(crs=self.p.projection) geom = element.geom() vertices = geom_to_array(geom) if isinstance(geom, (MultiPolygon, Polygon)): obj = Polygons([vertices]) else: obj = Path([vertices]) geom = project_path(obj, projection=self.p.projection).geom() return element.clone(geom, crs=self.p.projection) class project_points(_project_operation): supported_types = [Points, Nodes, VectorField, HexTiles, Labels] def _process_element(self, element): if not len(element): return element.clone(crs=self.p.projection) xdim, ydim = element.dimensions()[:2] xs, ys = (element.dimension_values(i) for i in range(2)) coordinates = self.p.projection.transform_points(element.crs, xs, ys) mask = np.isfinite(coordinates[:, 0]) new_data = {k: v[mask] for k, v in element.columns().items()} new_data[xdim.name] = coordinates[mask, 0] new_data[ydim.name] = coordinates[mask, 1] datatype = [element.interface.datatype]+element.datatype if len(new_data[xdim.name]) == 0: self.warning('While projecting a %s element from a %s coordinate ' 'reference system (crs) to a %s projection none of ' 'the projected paths were contained within the bounds ' 'specified by the projection. Ensure you have specified ' 'the correct coordinate system for your data.' % (type(element).__name__, type(element.crs).__name__, type(self.p.projection).__name__)) return element.clone(new_data, crs=self.p.projection, datatype=datatype) class project_graph(_project_operation): supported_types = [Graph] def _process_element(self, element): nodes = project_points(element.nodes, projection=self.projection) data = (element.data, nodes) if element._edgepaths: data = data + (project_path(element.edgepaths, projection=self.projection),) return element.clone(data, crs=self.projection) class project_quadmesh(_project_operation): supported_types = [QuadMesh] def _process_element(self, element): proj = self.p.projection irregular = any(element.interface.irregular(element, kd) for kd in element.kdims) zs = element.dimension_values(2, flat=False) if irregular: X, Y = [np.asarray(element.interface.coords(element, kd, expanded=True)) for kd in element.kdims] else: X = element.dimension_values(0, expanded=True) Y = element.dimension_values(1, expanded=True) zs = zs.T coords = proj.transform_points(element.crs, X, Y) PX, PY = coords[..., 0], coords[..., 1] wrap_proj_types = (ccrs._RectangularProjection, ccrs._WarpedRectangularProjection, ccrs.InterruptedGoodeHomolosine, ccrs.Mercator) if isinstance(proj, wrap_proj_types): with np.errstate(invalid='ignore'): edge_lengths = np.hypot( np.diff(PX , axis=1), np.diff(PY, axis=1) ) to_mask = ( (edge_lengths >= abs(proj.x_limits[1] - proj.x_limits[0]) / 2) | np.isnan(edge_lengths) ) if np.any(to_mask): mask = np.zeros(zs.shape, dtype=np.bool) mask[:, 1:][to_mask] = True mask[:, 2:][to_mask[:, :-1]] = True mask[:, :-1][to_mask] = True mask[:, :-2][to_mask[:, 1:]] = True mask[1:, 1:][to_mask[:-1]] = True mask[1:, :-1][to_mask[:-1]] = True mask[:-1, 1:][to_mask[1:]] = True mask[:-1, :-1][to_mask[1:]] = True zs[mask] = np.NaN params = get_param_values(element) if PX.ndim < 2: PX = PX.reshape(zs.shape) if PY.ndim < 2: PY = PY.reshape(zs.shape) return QuadMesh((PX, PY, zs), crs=self.projection, **params) class project_image(_project_operation): fast = param.Boolean(default=False, doc=""" Whether to enable fast reprojection with (much) better performance but poorer handling in polar regions.""") width = param.Integer(default=None, doc=""" Width of the reprojectd Image""") height = param.Integer(default=None, doc=""" Height of the reprojected Image""") link_inputs = param.Boolean(default=True, doc=""" By default, the link_inputs parameter is set to True so that when applying project_image, backends that support linked streams update RangeXY streams on the inputs of the operation.""") supported_types = [Image] def _process(self, img, key=None): if self.p.fast: return self._fast_process(img, key) proj = self.p.projection if proj == img.crs: return img x0, x1 = img.range(0) y0, y1 = img.range(1) xn, yn = img.interface.shape(img, gridded=True)[:2] px0, py0, px1, py1 = project_extents((x0, y0, x1, y1), img.crs, proj) src_ext, trgt_ext = (x0, x1, y0, y1), (px0, px1, py0, py1) arrays = [] for vd in img.vdims: arr = img.dimension_values(vd, flat=False) if arr.size: projected, extents = warp_array(arr, proj, img.crs, (xn, yn), src_ext, trgt_ext) else: projected, extents = arr, trgt_ext arrays.append(projected) projected = np.dstack(arrays) if len(arrays) > 1 else arrays[0] data = np.flipud(projected) bounds = (extents[0], extents[2], extents[1], extents[3]) return img.clone(data, bounds=bounds, kdims=img.kdims, vdims=img.vdims, crs=proj, xdensity=None, ydensity=None) def _fast_process(self, element, key=None): proj = self.p.projection if proj == element.crs: return element h, w = element.interface.shape(element, gridded=True)[:2] xs = element.dimension_values(0) ys = element.dimension_values(1) if isinstance(element, RGB): rgb = element.rgb array = np.dstack([np.flipud(rgb.dimension_values(d, flat=False)) for d in rgb.vdims]) else: array = element.dimension_values(2, flat=False) (x0, y0, x1, y1) = element.bounds.lbrt() width = int(w) if self.p.width is None else self.p.width height = int(h) if self.p.height is None else self.p.height bounds = _determine_bounds(xs, ys, element.crs) yb = bounds['y'] resampled = [] xvalues = [] for xb in bounds['x']: px0, py0, px1, py1 = project_extents((xb[0], yb[0], xb[1], yb[1]), element.crs, proj) if len(bounds['x']) > 1: xfraction = (xb[1]-xb[0])/(x1-x0) fraction_width = int(width*xfraction) else: fraction_width = width xs = np.linspace(px0, px1, fraction_width) ys = np.linspace(py0, py1, height) cxs, cys = cartesian_product([xs, ys]) pxs, pys, _ = element.crs.transform_points(proj, np.asarray(cxs), np.asarray(cys)).T icxs = (((pxs-x0) / (x1-x0)) * w).astype(int) icys = (((pys-y0) / (y1-y0)) * h).astype(int) xvalues.append(xs) icxs[icxs<0] = 0 icys[icys<0] = 0 icxs[icxs>=w] = w-1 icys[icys>=h] = h-1 resampled_arr = array[icys, icxs] if isinstance(element, RGB): nvdims = len(element.vdims) resampled_arr = resampled_arr.reshape((fraction_width, height, nvdims)).transpose([1, 0, 2]) else: resampled_arr = resampled_arr.reshape((fraction_width, height)).T resampled.append(resampled_arr) xs = np.concatenate(xvalues[::-1]) resampled = np.hstack(resampled[::-1]) datatypes = [element.interface.datatype, 'xarray', 'grid'] data = (xs, ys) for i in range(len(element.vdims)): if resampled.ndim > 2: data = data + (resampled[::-1, :, i],) else: data = data + (resampled,) return element.clone(data, crs=proj, bounds=None, datatype=datatypes) class project(Operation): projection = param.ClassSelector(default=ccrs.GOOGLE_MERCATOR, class_=ccrs.Projection, instantiate=False, doc=""" Projection the image type is projected to.""") _operations = [project_path, project_image, project_shape, project_graph, project_quadmesh, project_points] def _process(self, element, key=None): for op in self._operations: element = element.map(op.instance(projection=self.p.projection), op.supported_types) return element
true
true
f70f53d11f6bad5ff3c69ec373295103fd57b32c
1,832
py
Python
end_to_end_tests/golden-record/my_test_api_client/api/default/get_common_parameters.py
kmray/openapi-python-client
19dd9d8c2407e9f01d73bdb833d8dedf428d897c
[ "MIT" ]
172
2020-02-15T20:14:16.000Z
2021-06-09T07:09:15.000Z
end_to_end_tests/golden-record/my_test_api_client/api/default/get_common_parameters.py
kmray/openapi-python-client
19dd9d8c2407e9f01d73bdb833d8dedf428d897c
[ "MIT" ]
410
2020-02-15T19:39:29.000Z
2021-06-09T19:28:57.000Z
end_to_end_tests/golden-record/my_test_api_client/api/default/get_common_parameters.py
kmray/openapi-python-client
19dd9d8c2407e9f01d73bdb833d8dedf428d897c
[ "MIT" ]
38
2020-04-12T09:36:27.000Z
2021-06-11T08:57:07.000Z
from typing import Any, Dict, Union import httpx from ...client import Client from ...types import UNSET, Response, Unset def _get_kwargs( *, client: Client, common: Union[Unset, None, str] = UNSET, ) -> Dict[str, Any]: url = "{}/common_parameters".format(client.base_url) headers: Dict[str, Any] = client.get_headers() cookies: Dict[str, Any] = client.get_cookies() params: Dict[str, Any] = { "common": common, } params = {k: v for k, v in params.items() if v is not UNSET and v is not None} return { "url": url, "headers": headers, "cookies": cookies, "timeout": client.get_timeout(), "params": params, } def _build_response(*, response: httpx.Response) -> Response[Any]: return Response( status_code=response.status_code, content=response.content, headers=response.headers, parsed=None, ) def sync_detailed( *, client: Client, common: Union[Unset, None, str] = UNSET, ) -> Response[Any]: """ Args: common (Union[Unset, None, str]): Returns: Response[Any] """ kwargs = _get_kwargs( client=client, common=common, ) response = httpx.get( verify=client.verify_ssl, **kwargs, ) return _build_response(response=response) async def asyncio_detailed( *, client: Client, common: Union[Unset, None, str] = UNSET, ) -> Response[Any]: """ Args: common (Union[Unset, None, str]): Returns: Response[Any] """ kwargs = _get_kwargs( client=client, common=common, ) async with httpx.AsyncClient(verify=client.verify_ssl) as _client: response = await _client.get(**kwargs) return _build_response(response=response)
20.355556
82
0.593341
from typing import Any, Dict, Union import httpx from ...client import Client from ...types import UNSET, Response, Unset def _get_kwargs( *, client: Client, common: Union[Unset, None, str] = UNSET, ) -> Dict[str, Any]: url = "{}/common_parameters".format(client.base_url) headers: Dict[str, Any] = client.get_headers() cookies: Dict[str, Any] = client.get_cookies() params: Dict[str, Any] = { "common": common, } params = {k: v for k, v in params.items() if v is not UNSET and v is not None} return { "url": url, "headers": headers, "cookies": cookies, "timeout": client.get_timeout(), "params": params, } def _build_response(*, response: httpx.Response) -> Response[Any]: return Response( status_code=response.status_code, content=response.content, headers=response.headers, parsed=None, ) def sync_detailed( *, client: Client, common: Union[Unset, None, str] = UNSET, ) -> Response[Any]: kwargs = _get_kwargs( client=client, common=common, ) response = httpx.get( verify=client.verify_ssl, **kwargs, ) return _build_response(response=response) async def asyncio_detailed( *, client: Client, common: Union[Unset, None, str] = UNSET, ) -> Response[Any]: kwargs = _get_kwargs( client=client, common=common, ) async with httpx.AsyncClient(verify=client.verify_ssl) as _client: response = await _client.get(**kwargs) return _build_response(response=response)
true
true
f70f54a84673a8794196351079055e57ac2e5bdf
3,370
py
Python
tests/conftest.py
ilko222/test_python
e77c3979bd9cef425716b8f26d2cdd4491b7ae17
[ "MIT" ]
null
null
null
tests/conftest.py
ilko222/test_python
e77c3979bd9cef425716b8f26d2cdd4491b7ae17
[ "MIT" ]
null
null
null
tests/conftest.py
ilko222/test_python
e77c3979bd9cef425716b8f26d2cdd4491b7ae17
[ "MIT" ]
null
null
null
import pytest import allure from _pytest.nodes import Item from _pytest.runner import CallInfo from selene.core.exceptions import TimeoutException from selene.support.shared import browser @pytest.fixture(scope='function', autouse=True) def browser_management(): """ Here, before yield, goes all "setup" code for each test case aka "before test function" hook """ # def attach_snapshots_on_failure(error: TimeoutException) -> Exception: # """ # An example of selene hook_wait_failure that attaches snapshots to failed test step. # It is actually not needed and optional, # because in the pytest_runtest_makereport hook below # we attach screenshots to the test body itself, # that is more handy during analysis of test report # # but if you need it, you can enable it by uncommenting # together with the following ``browser.config.hook_wait_failure =`` line;) # # otherwise, you can remove it # """ # last_screenshot = browser.config.last_screenshot # if last_screenshot: # allure.attach.file(source=last_screenshot, # name='screenshot on failure', # attachment_type=allure.attachment_type.PNG) # # last_page_source = browser.config.last_page_source # if last_page_source: # allure.attach.file(source=last_page_source, # name='page source on failure', # attachment_type=allure.attachment_type.HTML) # return error # browser.config.hook_wait_failure = attach_snapshots_on_failure browser.config.timeout = 3 # todo: add your before setup here... yield """ Here, after yield, goes all "tear down" code for each test case aka "after test function" hook """ # todo: add your after setup here... browser.quit() prev_test_screenshot = None prev_test_page_source = None @pytest.hookimpl(tryfirst=True, hookwrapper=True) def pytest_runtest_setup(item): yield global prev_test_screenshot prev_test_screenshot = browser.config.last_screenshot global prev_test_page_source prev_test_page_source = browser.config.last_page_source @pytest.hookimpl(tryfirst=True, hookwrapper=True) def pytest_runtest_makereport(item: Item, call: CallInfo): """ Attach snapshots on test failure """ # All code prior to yield statement would be ran prior # to any other of the same fixtures defined outcome = yield # Run all other pytest_runtest_makereport non wrapped hooks result = outcome.get_result() if result.when == "call" and result.failed: last_screenshot = browser.config.last_screenshot if last_screenshot and not last_screenshot == prev_test_screenshot: allure.attach.file(source=last_screenshot, name='screenshot', attachment_type=allure.attachment_type.PNG) last_page_source = browser.config.last_page_source if last_page_source and not last_page_source == prev_test_page_source: allure.attach.file(source=last_page_source, name='page source', attachment_type=allure.attachment_type.HTML)
34.040404
93
0.660831
import pytest import allure from _pytest.nodes import Item from _pytest.runner import CallInfo from selene.core.exceptions import TimeoutException from selene.support.shared import browser @pytest.fixture(scope='function', autouse=True) def browser_management(): # An example of selene hook_wait_failure that attaches snapshots to failed test step. # It is actually not needed and optional, # because in the pytest_runtest_makereport hook below # we attach screenshots to the test body itself, # that is more handy during analysis of test report # # but if you need it, you can enable it by uncommenting # together with the following ``browser.config.hook_wait_failure =`` line;) # # otherwise, you can remove it # """ browser.config.timeout = 3 yield browser.quit() prev_test_screenshot = None prev_test_page_source = None @pytest.hookimpl(tryfirst=True, hookwrapper=True) def pytest_runtest_setup(item): yield global prev_test_screenshot prev_test_screenshot = browser.config.last_screenshot global prev_test_page_source prev_test_page_source = browser.config.last_page_source @pytest.hookimpl(tryfirst=True, hookwrapper=True) def pytest_runtest_makereport(item: Item, call: CallInfo): outcome = yield result = outcome.get_result() if result.when == "call" and result.failed: last_screenshot = browser.config.last_screenshot if last_screenshot and not last_screenshot == prev_test_screenshot: allure.attach.file(source=last_screenshot, name='screenshot', attachment_type=allure.attachment_type.PNG) last_page_source = browser.config.last_page_source if last_page_source and not last_page_source == prev_test_page_source: allure.attach.file(source=last_page_source, name='page source', attachment_type=allure.attachment_type.HTML)
true
true
f70f54d4dd5967223a8d1a1372d9ffeaa51b56df
5,539
py
Python
public_talks/2016_02_26_columbia/get_tweets.py
kylepjohnson/ipython_notebooks
7f77ec06a70169cc479a6f912b4888789bf28ac4
[ "MIT" ]
9
2016-08-10T09:03:09.000Z
2021-01-06T21:34:20.000Z
public_talks/2016_02_26_columbia/get_tweets.py
kylepjohnson/ipython
7f77ec06a70169cc479a6f912b4888789bf28ac4
[ "MIT" ]
null
null
null
public_talks/2016_02_26_columbia/get_tweets.py
kylepjohnson/ipython
7f77ec06a70169cc479a6f912b4888789bf28ac4
[ "MIT" ]
3
2018-10-07T01:56:22.000Z
2021-01-06T21:33:28.000Z
#!/usr/bin/python # -*- coding: utf_8 -*- """Access and query Twitter's API with the simplistic twitter package (`pip install twitter`). """ from __future__ import print_function from __future__ import unicode_literals import csv import os import time from twitter import OAuth from twitter import Twitter def setup_twitter(config_file='config.py'): """Setup auth keys and session with Twitter client.""" config = {} execfile(config_file, config) twitter_obj = Twitter(auth=OAuth(config["access_key"], config["access_secret"], config["consumer_key"], config["consumer_secret"])) return twitter_obj def search_twitter(twitter_session, query, count=100, status='popular'): """Submit query to Twitter API via twitter package.""" status_options = ['mixed', 'recent', 'popular'] assert status in status_options, "'status' must be in {}.".format(status_options) query = twitter_session.search.tweets(q=query, lang='en', result=status, count=count, retry=True) return query def parse_twitter_response(twitter_response, min_rts=500, strip_non_ascii=True): """Extract requested variables from Twitter API response. Yield each tweet one at a time with a generator. Available keys: [u'contributors', u'truncated', u'text', u'is_quote_status', u'in_reply_to_status_id', u'id', u'favorite_count', u'source', u'retweeted', u'coordinates', u'entities', u'in_reply_to_screen_name', u'in_reply_to_user_id', u'retweet_count', u'id_str', u'favorited', u'retweeted_status', u'user', u'geo', u'in_reply_to_user_id_str', u'possibly_sensitive', u'lang', u'created_at', u'in_reply_to_status_id_str', u'place', u'metadata'] """ for result in twitter_response['statuses']: tweet_datetime = result['created_at'] text = result['text'].encode('utf_8') if strip_non_ascii: text = ''.join([i if ord(i) < 128 else ' ' for i in text]) # Strip 'RT ' from head of retweets, redundant if text.startswith('RT '): text = text[3:] # Ch newlines to spaces text = ''.join([' ' if c == '\n' else c for c in text]) rt_count = result['retweet_count'] yield {'_tweet_datetime': tweet_datetime, '_text': text, '_rt_count': rt_count} def search_parse_write_tweets(query_str, total_to_fetch, status, minimum_rts, low_rt_threshold): twitter = setup_twitter() query_response = search_twitter(twitter_session=twitter, query=query_disjunction, count=TWEETS_TO_FETCH, status=status) print("Search complete ({} seconds)".format(query_response["search_metadata"]["completed_in"])) tweets_data = parse_twitter_response(query_response, min_rts=minimum_rts) # yields generator fieldnames = [] if not fieldnames: for row in tweets_data: fieldnames = row.keys() fieldnames_len = len(row.keys()) break # Set up csv writers file1 = 'tweets/tweets_popular.csv' f1_write_header = False if not os.path.isfile(file1): f1_write_header = True csv_popular_open = open(file1, 'ab') csv_popular_writer = csv.DictWriter(csv_popular_open, delimiter=b'|', fieldnames=fieldnames) if f1_write_header: csv_popular_writer.writeheader() file2 = 'tweets/tweets_not_popular.csv' f2_write_header = False if not os.path.isfile(file2): f2_write_header = True csv_not_popular_open = open(file2, 'ab') csv_not_popular_writer = csv.DictWriter(csv_not_popular_open, delimiter=b'|', fieldnames=fieldnames) if f2_write_header: csv_not_popular_writer.writeheader() # Loop thru generator of dicts, write row to right file for tweet_data in tweets_data: if tweet_data['rt_count'] >= minimum_rts: if len(tweet_data.keys()) == fieldnames_len: csv_popular_writer.writerow(tweet_data) elif tweet_data['rt_count'] <= low_rt_threshold: if len(tweet_data.keys()) == fieldnames_len: csv_not_popular_writer.writerow(tweet_data) if __name__ == '__main__': TWEETS_TO_FETCH = 1000 query_string = 'the a u i me she you he they for rt at tweet'.split(' ') query_disjunction = ' OR '.join(query_string) #status = 'popular' # ['mixed', 'recent', 'popular'] minimum_rts = 500 low_rt_threshold = 10 while True: time.sleep(60) search_parse_write_tweets(query_str=query_disjunction, total_to_fetch=TWEETS_TO_FETCH, status='popular', minimum_rts=minimum_rts, low_rt_threshold=low_rt_threshold) search_parse_write_tweets(query_str=query_disjunction, total_to_fetch=TWEETS_TO_FETCH, status='mixed', minimum_rts=minimum_rts, low_rt_threshold=low_rt_threshold)
36.682119
104
0.596498
from __future__ import print_function from __future__ import unicode_literals import csv import os import time from twitter import OAuth from twitter import Twitter def setup_twitter(config_file='config.py'): config = {} execfile(config_file, config) twitter_obj = Twitter(auth=OAuth(config["access_key"], config["access_secret"], config["consumer_key"], config["consumer_secret"])) return twitter_obj def search_twitter(twitter_session, query, count=100, status='popular'): status_options = ['mixed', 'recent', 'popular'] assert status in status_options, "'status' must be in {}.".format(status_options) query = twitter_session.search.tweets(q=query, lang='en', result=status, count=count, retry=True) return query def parse_twitter_response(twitter_response, min_rts=500, strip_non_ascii=True): for result in twitter_response['statuses']: tweet_datetime = result['created_at'] text = result['text'].encode('utf_8') if strip_non_ascii: text = ''.join([i if ord(i) < 128 else ' ' for i in text]) if text.startswith('RT '): text = text[3:] text = ''.join([' ' if c == '\n' else c for c in text]) rt_count = result['retweet_count'] yield {'_tweet_datetime': tweet_datetime, '_text': text, '_rt_count': rt_count} def search_parse_write_tweets(query_str, total_to_fetch, status, minimum_rts, low_rt_threshold): twitter = setup_twitter() query_response = search_twitter(twitter_session=twitter, query=query_disjunction, count=TWEETS_TO_FETCH, status=status) print("Search complete ({} seconds)".format(query_response["search_metadata"]["completed_in"])) tweets_data = parse_twitter_response(query_response, min_rts=minimum_rts) fieldnames = [] if not fieldnames: for row in tweets_data: fieldnames = row.keys() fieldnames_len = len(row.keys()) break file1 = 'tweets/tweets_popular.csv' f1_write_header = False if not os.path.isfile(file1): f1_write_header = True csv_popular_open = open(file1, 'ab') csv_popular_writer = csv.DictWriter(csv_popular_open, delimiter=b'|', fieldnames=fieldnames) if f1_write_header: csv_popular_writer.writeheader() file2 = 'tweets/tweets_not_popular.csv' f2_write_header = False if not os.path.isfile(file2): f2_write_header = True csv_not_popular_open = open(file2, 'ab') csv_not_popular_writer = csv.DictWriter(csv_not_popular_open, delimiter=b'|', fieldnames=fieldnames) if f2_write_header: csv_not_popular_writer.writeheader() for tweet_data in tweets_data: if tweet_data['rt_count'] >= minimum_rts: if len(tweet_data.keys()) == fieldnames_len: csv_popular_writer.writerow(tweet_data) elif tweet_data['rt_count'] <= low_rt_threshold: if len(tweet_data.keys()) == fieldnames_len: csv_not_popular_writer.writerow(tweet_data) if __name__ == '__main__': TWEETS_TO_FETCH = 1000 query_string = 'the a u i me she you he they for rt at tweet'.split(' ') query_disjunction = ' OR '.join(query_string) t_threshold = 10 while True: time.sleep(60) search_parse_write_tweets(query_str=query_disjunction, total_to_fetch=TWEETS_TO_FETCH, status='popular', minimum_rts=minimum_rts, low_rt_threshold=low_rt_threshold) search_parse_write_tweets(query_str=query_disjunction, total_to_fetch=TWEETS_TO_FETCH, status='mixed', minimum_rts=minimum_rts, low_rt_threshold=low_rt_threshold)
true
true
f70f54f0630586e54171415610e5bf23d7c87168
26,276
py
Python
q2_feature_table/plugin_setup.py
cguccione/q2-feature-table
90b75bb4848371bd640fe7c4baf14bc448d597c9
[ "BSD-3-Clause" ]
null
null
null
q2_feature_table/plugin_setup.py
cguccione/q2-feature-table
90b75bb4848371bd640fe7c4baf14bc448d597c9
[ "BSD-3-Clause" ]
null
null
null
q2_feature_table/plugin_setup.py
cguccione/q2-feature-table
90b75bb4848371bd640fe7c4baf14bc448d597c9
[ "BSD-3-Clause" ]
null
null
null
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- from qiime2.plugin import (Plugin, Int, Float, Range, Metadata, Str, Bool, Choices, MetadataColumn, Categorical, List, Citations, TypeMatch, TypeMap) import q2_feature_table from q2_types.feature_table import ( FeatureTable, Frequency, RelativeFrequency, PresenceAbsence, Composition) from q2_types.feature_data import ( FeatureData, Sequence, Taxonomy, AlignedSequence) from .examples import (feature_table_merge_example, feature_table_merge_three_tables_example) citations = Citations.load('citations.bib', package='q2_feature_table') plugin = Plugin( name='feature-table', version=q2_feature_table.__version__, website='https://github.com/qiime2/q2-feature-table', package='q2_feature_table', short_description=('Plugin for working with sample by feature tables.'), description=('This is a QIIME 2 plugin supporting operations on sample ' 'by feature tables, such as filtering, merging, and ' 'transforming tables.') ) plugin.methods.register_function( function=q2_feature_table.rarefy, inputs={'table': FeatureTable[Frequency]}, parameters={'sampling_depth': Int % Range(1, None), 'with_replacement': Bool}, outputs=[('rarefied_table', FeatureTable[Frequency])], input_descriptions={'table': 'The feature table to be rarefied.'}, parameter_descriptions={ 'sampling_depth': ('The total frequency that each sample should be ' 'rarefied to. Samples where the sum of frequencies ' 'is less than the sampling depth will be not be ' 'included in the resulting table unless ' 'subsampling is performed with replacement.'), 'with_replacement': ('Rarefy with replacement by sampling from the ' 'multinomial distribution instead of rarefying ' 'without replacement.') }, output_descriptions={ 'rarefied_table': 'The resulting rarefied feature table.' }, name='Rarefy table', description=("Subsample frequencies from all samples so that the sum of " "frequencies in each sample is equal to sampling-depth."), citations=[citations['Weiss2017']] ) plugin.methods.register_function( function=q2_feature_table.subsample, inputs={'table': FeatureTable[Frequency]}, parameters={'subsampling_depth': Int % Range(1, None), 'axis': Str % Choices(['sample', 'feature'])}, outputs=[('sampled_table', FeatureTable[Frequency])], input_descriptions={'table': 'The feature table to be sampled.'}, parameter_descriptions={ 'subsampling_depth': ('The total number of samples or features to be ' 'randomly sampled. Samples or features that are ' 'reduced to a zero sum will not be included in ' 'the resulting table.'), 'axis': ('The axis to sample over. If "sample" then samples will be ' 'randomly selected to be retained. If "feature" then ' 'a random set of features will be selected to be retained.') }, output_descriptions={ 'sampled_table': 'The resulting subsampled feature table.' }, name='Subsample table', description=("Randomly pick samples or features, without replacement, " "from the table.") ) plugin.methods.register_function( function=q2_feature_table.presence_absence, inputs={'table': FeatureTable[Frequency | RelativeFrequency]}, parameters={}, outputs=[('presence_absence_table', FeatureTable[PresenceAbsence])], input_descriptions={ 'table': ('The feature table to be converted into presence/absence ' 'abundances.') }, parameter_descriptions={}, output_descriptions={ 'presence_absence_table': ('The resulting presence/absence feature ' 'table.') }, name="Convert to presence/absence", description="Convert frequencies to binary values indicating presence or " "absence of a feature in a sample." ) plugin.methods.register_function( function=q2_feature_table.relative_frequency, inputs={'table': FeatureTable[Frequency]}, parameters={}, outputs=[ ('relative_frequency_table', FeatureTable[RelativeFrequency])], input_descriptions={ 'table': 'The feature table to be converted into relative frequencies.' }, parameter_descriptions={}, output_descriptions={ 'relative_frequency_table': ('The resulting relative frequency ' 'feature table.') }, name="Convert to relative frequencies", description="Convert frequencies to relative frequencies by dividing each " "frequency in a sample by the sum of frequencies in that " "sample." ) plugin.methods.register_function( function=q2_feature_table.transpose, inputs={'table': FeatureTable[Frequency]}, parameters={}, outputs=[('transposed_feature_table', FeatureTable[Frequency])], input_descriptions={ 'table': 'The feature table to be transposed.' }, parameter_descriptions={}, output_descriptions={ 'transposed_feature_table': ('The resulting transposed feature table.') }, name='Transpose a feature table.', description='Transpose the rows and columns ' '(typically samples and features) of a feature table.' ) plugin.methods.register_function( function=q2_feature_table.group, inputs={'table': FeatureTable[Frequency]}, parameters={ 'mode': Str % Choices({'sum', 'median-ceiling', 'mean-ceiling'}), 'metadata': MetadataColumn[Categorical], 'axis': Str % Choices({'sample', 'feature'}) }, outputs=[ ('grouped_table', FeatureTable[Frequency]) ], input_descriptions={ 'table': 'The table to group samples or features on.' }, parameter_descriptions={ 'mode': 'How to combine samples or features within a group. `sum` ' 'will sum the frequencies across all samples or features ' 'within a group; `mean-ceiling` will take the ceiling of the ' 'mean of these frequencies; `median-ceiling` will take the ' 'ceiling of the median of these frequencies.', 'metadata': 'A column defining the groups. Each unique value will ' 'become a new ID for the table on the given `axis`.', 'axis': 'Along which axis to group. Each ID in the given axis must ' 'exist in `metadata`.' }, output_descriptions={ 'grouped_table': 'A table that has been grouped along the given ' '`axis`. IDs on that axis are replaced by values in ' 'the `metadata` column.' }, name="Group samples or features by a metadata column", description="Group samples or features in a feature table using metadata " "to define the mapping of IDs to a group." ) i_table, p_overlap_method, o_table = TypeMap({ (FeatureTable[Frequency], Str % Choices(sorted(q2_feature_table.overlap_methods()))): FeatureTable[Frequency], (FeatureTable[RelativeFrequency], # We don't want to allow summing of RelativeFrequency tables, so remove # that option from the overlap methods Str % Choices(sorted(q2_feature_table.overlap_methods() - {'sum'}))): FeatureTable[RelativeFrequency] }) plugin.methods.register_function( function=q2_feature_table.merge, inputs={'tables': List[i_table]}, parameters={ 'overlap_method': p_overlap_method }, outputs=[ ('merged_table', o_table)], input_descriptions={ 'tables': 'The collection of feature tables to be merged.', }, parameter_descriptions={ 'overlap_method': 'Method for handling overlapping ids.', }, output_descriptions={ 'merged_table': ('The resulting merged feature table.'), }, name="Combine multiple tables", description="Combines feature tables using the `overlap_method` provided.", examples={'basic': feature_table_merge_example, 'three_tables': feature_table_merge_three_tables_example}, ) plugin.methods.register_function( function=q2_feature_table.merge_seqs, inputs={'data': List[FeatureData[Sequence]]}, parameters={}, outputs=[ ('merged_data', FeatureData[Sequence])], input_descriptions={ 'data': 'The collection of feature sequences to be merged.', }, parameter_descriptions={}, output_descriptions={ 'merged_data': ('The resulting collection of feature sequences ' 'containing all feature sequences provided.') }, name="Combine collections of feature sequences", description="Combines feature data objects which may or may not " "contain data for the same features. If different feature " "data is present for the same feature id in the inputs, " "the data from the first will be propagated to the result." ) plugin.methods.register_function( function=q2_feature_table.merge_taxa, inputs={'data': List[FeatureData[Taxonomy]]}, parameters={}, outputs=[ ('merged_data', FeatureData[Taxonomy])], input_descriptions={ 'data': 'The collection of feature taxonomies to be merged.', }, parameter_descriptions={}, output_descriptions={ 'merged_data': ('The resulting collection of feature taxonomies ' 'containing all feature taxonomies provided.') }, name="Combine collections of feature taxonomies", description="Combines a pair of feature data objects which may or may not " "contain data for the same features. If different feature " "data is present for the same feature id in the inputs, " "the data from the first will be propagated to the result." ) T1 = TypeMatch([Frequency, RelativeFrequency, PresenceAbsence, Composition]) plugin.methods.register_function( function=q2_feature_table.rename_ids, inputs={ 'table': FeatureTable[T1], }, parameters={ 'metadata': MetadataColumn[Categorical], 'strict': Bool, 'axis': Str % Choices({'sample', 'feature'}) }, outputs=[ ('renamed_table', FeatureTable[T1]) ], input_descriptions={ 'table': 'The table to be renamed', }, parameter_descriptions={ 'metadata': 'A metadata column defining the new ids. Each original id ' 'must map to a new unique id. If strict mode is used, ' 'then every id in the original table must have a new id.', 'strict': 'Whether the naming needs to be strict (each id in ' 'the table must have a new id). Otherwise, only the ' 'ids described in `metadata` will be renamed and ' 'the others will keep their original id names.', 'axis': 'Along which axis to rename the ids.', }, output_descriptions={ 'renamed_table': 'A table which has new ids, where the ids are ' 'replaced by values in the `metadata` column.', }, name='Renames sample or feature ids in a table', description='Renames the sample or feature ids in a feature table using ' 'metadata to define the new ids.', ) # TODO: constrain min/max frequency when optional is handled by typemap plugin.methods.register_function( function=q2_feature_table.filter_samples, inputs={'table': FeatureTable[T1]}, parameters={'min_frequency': Int, 'max_frequency': Int, 'min_features': Int, 'max_features': Int, 'metadata': Metadata, 'where': Str, 'exclude_ids': Bool, 'filter_empty_features': Bool}, outputs=[('filtered_table', FeatureTable[T1])], input_descriptions={ 'table': 'The feature table from which samples should be filtered.' }, parameter_descriptions={ 'min_frequency': ('The minimum total frequency that a sample must ' 'have to be retained.'), 'max_frequency': ('The maximum total frequency that a sample can ' 'have to be retained. If no value is provided ' 'this will default to infinity (i.e., no maximum ' 'frequency filter will be applied).'), 'min_features': ('The minimum number of features that a sample must ' 'have to be retained.'), 'max_features': ('The maximum number of features that a sample can ' 'have to be retained. If no value is provided ' 'this will default to infinity (i.e., no maximum ' 'feature filter will be applied).'), 'metadata': 'Sample metadata used with `where` parameter when ' 'selecting samples to retain, or with `exclude_ids` ' 'when selecting samples to discard.', 'where': 'SQLite WHERE clause specifying sample metadata criteria ' 'that must be met to be included in the filtered feature ' 'table. If not provided, all samples in `metadata` that are ' 'also in the feature table will be retained.', 'exclude_ids': 'If true, the samples selected by `metadata` or ' '`where` parameters will be excluded from the filtered ' 'table instead of being retained.', 'filter_empty_features': 'If true, features which are not present in ' 'any retained samples are dropped.', }, output_descriptions={ 'filtered_table': 'The resulting feature table filtered by sample.' }, name="Filter samples from table", description="Filter samples from table based on frequency and/or " "metadata. Any features with a frequency of zero after sample " "filtering will also be removed. See the filtering tutorial " "on https://docs.qiime2.org for additional details." ) plugin.methods.register_function( function=q2_feature_table.filter_features_conditionally, inputs={'table': FeatureTable[T1]}, parameters={'prevalence': Float % Range(0, 1), 'abundance': Float % Range(0, 1) }, outputs=[('filtered_table', FeatureTable[T1])], input_descriptions={ 'table': 'The feature table from which features should be filtered.' }, parameter_descriptions={ 'abundance': ('The minimum relative abundance for a feature to be ' 'retained.'), 'prevalence': ('The minimum portion of samples that a feature ' 'must have a relative abundance of at least ' '`abundance` to be retained.') }, output_descriptions={ 'filtered_table': 'The resulting feature table filtered by feature.' }, name="Filter features from a table based on abundance and prevalence", description=("Filter features based on the relative abundance in a " "certain portion of samples (i.e., features must have a " "relative abundance of at least `abundance` in at least " "`prevalence` number of samples). Any samples with a " "frequency of zero after feature filtering will also be " "removed.") ) plugin.methods.register_function( function=q2_feature_table.filter_features, inputs={'table': FeatureTable[Frequency]}, parameters={'min_frequency': Int, 'max_frequency': Int, 'min_samples': Int, 'max_samples': Int, 'metadata': Metadata, 'where': Str, 'exclude_ids': Bool, 'filter_empty_samples': Bool}, outputs=[('filtered_table', FeatureTable[Frequency])], input_descriptions={ 'table': 'The feature table from which features should be filtered.' }, parameter_descriptions={ 'min_frequency': ('The minimum total frequency that a feature must ' 'have to be retained.'), 'max_frequency': ('The maximum total frequency that a feature can ' 'have to be retained. If no value is provided ' 'this will default to infinity (i.e., no maximum ' 'frequency filter will be applied).'), 'min_samples': ('The minimum number of samples that a feature must ' 'be observed in to be retained.'), 'max_samples': ('The maximum number of samples that a feature can ' 'be observed in to be retained. If no value is ' 'provided this will default to infinity (i.e., no ' 'maximum sample filter will be applied).'), 'metadata': 'Feature metadata used with `where` parameter when ' 'selecting features to retain, or with `exclude_ids` ' 'when selecting features to discard.', 'where': 'SQLite WHERE clause specifying feature metadata criteria ' 'that must be met to be included in the filtered feature ' 'table. If not provided, all features in `metadata` that are ' 'also in the feature table will be retained.', 'exclude_ids': 'If true, the features selected by `metadata` or ' '`where` parameters will be excluded from the filtered ' 'table instead of being retained.', 'filter_empty_samples': 'If true, drop any samples where none of the ' 'retained features are present.', }, output_descriptions={ 'filtered_table': 'The resulting feature table filtered by feature.' }, name="Filter features from table", description="Filter features from table based on frequency and/or " "metadata. Any samples with a frequency of zero after feature " "filtering will also be removed. See the filtering tutorial " "on https://docs.qiime2.org for additional details." ) T2 = TypeMatch([Sequence, AlignedSequence]) plugin.methods.register_function( function=q2_feature_table.filter_seqs, inputs={ 'data': FeatureData[T2], 'table': FeatureTable[Frequency], }, parameters={ 'metadata': Metadata, 'where': Str, 'exclude_ids': Bool }, outputs=[('filtered_data', FeatureData[T2])], input_descriptions={ 'data': 'The sequences from which features should be filtered.', 'table': 'Table containing feature ids used for id-based filtering.' }, parameter_descriptions={ 'metadata': 'Feature metadata used for id-based filtering, with ' '`where` parameter when selecting features to retain, or ' 'with `exclude_ids` when selecting features to discard.', 'where': 'SQLite WHERE clause specifying feature metadata criteria ' 'that must be met to be included in the filtered feature ' 'table. If not provided, all features in `metadata` that are ' 'also in the sequences will be retained.', 'exclude_ids': 'If true, the features selected by the `metadata` ' '(with or without the `where` parameter) or `table` ' 'parameter will be excluded from the filtered ' 'sequences instead of being retained.' }, output_descriptions={ 'filtered_data': 'The resulting filtered sequences.' }, name="Filter features from sequences", description="Filter features from sequences based on a feature table or " "metadata. See the filtering tutorial on " "https://docs.qiime2.org for additional details. This method " "can filter based on ids in a table or a metadata file, but " "not both (i.e., the table and metadata options are mutually " "exclusive)." ) plugin.visualizers.register_function( function=q2_feature_table.summarize, inputs={'table': FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]}, parameters={'sample_metadata': Metadata}, input_descriptions={'table': 'The feature table to be summarized.'}, parameter_descriptions={'sample_metadata': 'The sample metadata.'}, name="Summarize table", description="Generate visual and tabular summaries of a feature table." ) plugin.visualizers.register_function( function=q2_feature_table.tabulate_seqs, inputs={'data': FeatureData[Sequence | AlignedSequence]}, parameters={}, input_descriptions={'data': 'The feature sequences to be tabulated.'}, parameter_descriptions={}, name='View sequence associated with each feature', description="Generate tabular view of feature identifier to sequence " "mapping, including links to BLAST each sequence against " "the NCBI nt database.", citations=[citations['NCBI'], citations['NCBI-BLAST']] ) plugin.visualizers.register_function( function=q2_feature_table.core_features, inputs={ 'table': FeatureTable[Frequency] }, parameters={ 'min_fraction': Float % Range(0.0, 1.0, inclusive_start=False), 'max_fraction': Float % Range(0.0, 1.0, inclusive_end=True), 'steps': Int % Range(2, None) }, name='Identify core features in table', description=('Identify "core" features, which are features observed in a ' 'user-defined fraction of the samples. Since the core ' 'features are a function of the fraction of samples that the ' 'feature must be observed in to be considered core, this is ' 'computed over a range of fractions defined by the ' '`min_fraction`, `max_fraction`, and `steps` parameters.'), input_descriptions={ 'table': 'The feature table to use in core features calculations.' }, parameter_descriptions={ 'min_fraction': 'The minimum fraction of samples that a feature must ' 'be observed in for that feature to be considered a ' 'core feature.', 'max_fraction': 'The maximum fraction of samples that a feature must ' 'be observed in for that feature to be considered a ' 'core feature.', 'steps': 'The number of steps to take between `min_fraction` and ' '`max_fraction` for core features calculations. This ' 'parameter has no effect if `min_fraction` and ' '`max_fraction` are the same value.' } ) plugin.visualizers.register_function( function=q2_feature_table.heatmap, inputs={ 'table': FeatureTable[Frequency] }, parameters={ 'sample_metadata': MetadataColumn[Categorical], 'feature_metadata': MetadataColumn[Categorical], 'normalize': Bool, 'title': Str, 'metric': Str % Choices(q2_feature_table.heatmap_choices['metric']), 'method': Str % Choices(q2_feature_table.heatmap_choices['method']), 'cluster': Str % Choices(q2_feature_table.heatmap_choices['cluster']), 'color_scheme': Str % Choices( q2_feature_table.heatmap_choices['color_scheme']), }, name='Generate a heatmap representation of a feature table', description='Generate a heatmap representation of a feature table with ' 'optional clustering on both the sample and feature axes.\n\n' 'Tip: To generate a heatmap containing taxonomic annotations, ' 'use `qiime taxa collapse` to collapse the feature table at ' 'the desired taxonomic level.', input_descriptions={ 'table': 'The feature table to visualize.' }, parameter_descriptions={ 'sample_metadata': 'Annotate the sample IDs with these sample ' 'metadata values. When metadata is present and ' '`cluster`=\'feature\', samples will be sorted by ' 'the metadata values.', 'feature_metadata': 'Annotate the feature IDs with these feature ' 'metadata values. When metadata is present and ' '`cluster`=\'sample\', features will be sorted by ' 'the metadata values.', 'normalize': 'Normalize the feature table by adding a psuedocount ' 'of 1 and then taking the log10 of the table.', 'title': 'Optional custom plot title.', 'metric': 'Metrics exposed by seaborn (see http://seaborn.pydata.org/' 'generated/seaborn.clustermap.html#seaborn.clustermap for ' 'more detail).', 'method': 'Clustering methods exposed by seaborn (see http://seaborn.' 'pydata.org/generated/seaborn.clustermap.html#seaborn.clust' 'ermap for more detail).', 'cluster': 'Specify which axes to cluster.', 'color_scheme': 'The matplotlib colorscheme to generate the heatmap ' 'with.', }, citations=[citations['Hunter2007Matplotlib']] )
45.460208
79
0.614439
from qiime2.plugin import (Plugin, Int, Float, Range, Metadata, Str, Bool, Choices, MetadataColumn, Categorical, List, Citations, TypeMatch, TypeMap) import q2_feature_table from q2_types.feature_table import ( FeatureTable, Frequency, RelativeFrequency, PresenceAbsence, Composition) from q2_types.feature_data import ( FeatureData, Sequence, Taxonomy, AlignedSequence) from .examples import (feature_table_merge_example, feature_table_merge_three_tables_example) citations = Citations.load('citations.bib', package='q2_feature_table') plugin = Plugin( name='feature-table', version=q2_feature_table.__version__, website='https://github.com/qiime2/q2-feature-table', package='q2_feature_table', short_description=('Plugin for working with sample by feature tables.'), description=('This is a QIIME 2 plugin supporting operations on sample ' 'by feature tables, such as filtering, merging, and ' 'transforming tables.') ) plugin.methods.register_function( function=q2_feature_table.rarefy, inputs={'table': FeatureTable[Frequency]}, parameters={'sampling_depth': Int % Range(1, None), 'with_replacement': Bool}, outputs=[('rarefied_table', FeatureTable[Frequency])], input_descriptions={'table': 'The feature table to be rarefied.'}, parameter_descriptions={ 'sampling_depth': ('The total frequency that each sample should be ' 'rarefied to. Samples where the sum of frequencies ' 'is less than the sampling depth will be not be ' 'included in the resulting table unless ' 'subsampling is performed with replacement.'), 'with_replacement': ('Rarefy with replacement by sampling from the ' 'multinomial distribution instead of rarefying ' 'without replacement.') }, output_descriptions={ 'rarefied_table': 'The resulting rarefied feature table.' }, name='Rarefy table', description=("Subsample frequencies from all samples so that the sum of " "frequencies in each sample is equal to sampling-depth."), citations=[citations['Weiss2017']] ) plugin.methods.register_function( function=q2_feature_table.subsample, inputs={'table': FeatureTable[Frequency]}, parameters={'subsampling_depth': Int % Range(1, None), 'axis': Str % Choices(['sample', 'feature'])}, outputs=[('sampled_table', FeatureTable[Frequency])], input_descriptions={'table': 'The feature table to be sampled.'}, parameter_descriptions={ 'subsampling_depth': ('The total number of samples or features to be ' 'randomly sampled. Samples or features that are ' 'reduced to a zero sum will not be included in ' 'the resulting table.'), 'axis': ('The axis to sample over. If "sample" then samples will be ' 'randomly selected to be retained. If "feature" then ' 'a random set of features will be selected to be retained.') }, output_descriptions={ 'sampled_table': 'The resulting subsampled feature table.' }, name='Subsample table', description=("Randomly pick samples or features, without replacement, " "from the table.") ) plugin.methods.register_function( function=q2_feature_table.presence_absence, inputs={'table': FeatureTable[Frequency | RelativeFrequency]}, parameters={}, outputs=[('presence_absence_table', FeatureTable[PresenceAbsence])], input_descriptions={ 'table': ('The feature table to be converted into presence/absence ' 'abundances.') }, parameter_descriptions={}, output_descriptions={ 'presence_absence_table': ('The resulting presence/absence feature ' 'table.') }, name="Convert to presence/absence", description="Convert frequencies to binary values indicating presence or " "absence of a feature in a sample." ) plugin.methods.register_function( function=q2_feature_table.relative_frequency, inputs={'table': FeatureTable[Frequency]}, parameters={}, outputs=[ ('relative_frequency_table', FeatureTable[RelativeFrequency])], input_descriptions={ 'table': 'The feature table to be converted into relative frequencies.' }, parameter_descriptions={}, output_descriptions={ 'relative_frequency_table': ('The resulting relative frequency ' 'feature table.') }, name="Convert to relative frequencies", description="Convert frequencies to relative frequencies by dividing each " "frequency in a sample by the sum of frequencies in that " "sample." ) plugin.methods.register_function( function=q2_feature_table.transpose, inputs={'table': FeatureTable[Frequency]}, parameters={}, outputs=[('transposed_feature_table', FeatureTable[Frequency])], input_descriptions={ 'table': 'The feature table to be transposed.' }, parameter_descriptions={}, output_descriptions={ 'transposed_feature_table': ('The resulting transposed feature table.') }, name='Transpose a feature table.', description='Transpose the rows and columns ' '(typically samples and features) of a feature table.' ) plugin.methods.register_function( function=q2_feature_table.group, inputs={'table': FeatureTable[Frequency]}, parameters={ 'mode': Str % Choices({'sum', 'median-ceiling', 'mean-ceiling'}), 'metadata': MetadataColumn[Categorical], 'axis': Str % Choices({'sample', 'feature'}) }, outputs=[ ('grouped_table', FeatureTable[Frequency]) ], input_descriptions={ 'table': 'The table to group samples or features on.' }, parameter_descriptions={ 'mode': 'How to combine samples or features within a group. `sum` ' 'will sum the frequencies across all samples or features ' 'within a group; `mean-ceiling` will take the ceiling of the ' 'mean of these frequencies; `median-ceiling` will take the ' 'ceiling of the median of these frequencies.', 'metadata': 'A column defining the groups. Each unique value will ' 'become a new ID for the table on the given `axis`.', 'axis': 'Along which axis to group. Each ID in the given axis must ' 'exist in `metadata`.' }, output_descriptions={ 'grouped_table': 'A table that has been grouped along the given ' '`axis`. IDs on that axis are replaced by values in ' 'the `metadata` column.' }, name="Group samples or features by a metadata column", description="Group samples or features in a feature table using metadata " "to define the mapping of IDs to a group." ) i_table, p_overlap_method, o_table = TypeMap({ (FeatureTable[Frequency], Str % Choices(sorted(q2_feature_table.overlap_methods()))): FeatureTable[Frequency], (FeatureTable[RelativeFrequency], # that option from the overlap methods Str % Choices(sorted(q2_feature_table.overlap_methods() - {'sum'}))): FeatureTable[RelativeFrequency] }) plugin.methods.register_function( function=q2_feature_table.merge, inputs={'tables': List[i_table]}, parameters={ 'overlap_method': p_overlap_method }, outputs=[ ('merged_table', o_table)], input_descriptions={ 'tables': 'The collection of feature tables to be merged.', }, parameter_descriptions={ 'overlap_method': 'Method for handling overlapping ids.', }, output_descriptions={ 'merged_table': ('The resulting merged feature table.'), }, name="Combine multiple tables", description="Combines feature tables using the `overlap_method` provided.", examples={'basic': feature_table_merge_example, 'three_tables': feature_table_merge_three_tables_example}, ) plugin.methods.register_function( function=q2_feature_table.merge_seqs, inputs={'data': List[FeatureData[Sequence]]}, parameters={}, outputs=[ ('merged_data', FeatureData[Sequence])], input_descriptions={ 'data': 'The collection of feature sequences to be merged.', }, parameter_descriptions={}, output_descriptions={ 'merged_data': ('The resulting collection of feature sequences ' 'containing all feature sequences provided.') }, name="Combine collections of feature sequences", description="Combines feature data objects which may or may not " "contain data for the same features. If different feature " "data is present for the same feature id in the inputs, " "the data from the first will be propagated to the result." ) plugin.methods.register_function( function=q2_feature_table.merge_taxa, inputs={'data': List[FeatureData[Taxonomy]]}, parameters={}, outputs=[ ('merged_data', FeatureData[Taxonomy])], input_descriptions={ 'data': 'The collection of feature taxonomies to be merged.', }, parameter_descriptions={}, output_descriptions={ 'merged_data': ('The resulting collection of feature taxonomies ' 'containing all feature taxonomies provided.') }, name="Combine collections of feature taxonomies", description="Combines a pair of feature data objects which may or may not " "contain data for the same features. If different feature " "data is present for the same feature id in the inputs, " "the data from the first will be propagated to the result." ) T1 = TypeMatch([Frequency, RelativeFrequency, PresenceAbsence, Composition]) plugin.methods.register_function( function=q2_feature_table.rename_ids, inputs={ 'table': FeatureTable[T1], }, parameters={ 'metadata': MetadataColumn[Categorical], 'strict': Bool, 'axis': Str % Choices({'sample', 'feature'}) }, outputs=[ ('renamed_table', FeatureTable[T1]) ], input_descriptions={ 'table': 'The table to be renamed', }, parameter_descriptions={ 'metadata': 'A metadata column defining the new ids. Each original id ' 'must map to a new unique id. If strict mode is used, ' 'then every id in the original table must have a new id.', 'strict': 'Whether the naming needs to be strict (each id in ' 'the table must have a new id). Otherwise, only the ' 'ids described in `metadata` will be renamed and ' 'the others will keep their original id names.', 'axis': 'Along which axis to rename the ids.', }, output_descriptions={ 'renamed_table': 'A table which has new ids, where the ids are ' 'replaced by values in the `metadata` column.', }, name='Renames sample or feature ids in a table', description='Renames the sample or feature ids in a feature table using ' 'metadata to define the new ids.', ) # TODO: constrain min/max frequency when optional is handled by typemap plugin.methods.register_function( function=q2_feature_table.filter_samples, inputs={'table': FeatureTable[T1]}, parameters={'min_frequency': Int, 'max_frequency': Int, 'min_features': Int, 'max_features': Int, 'metadata': Metadata, 'where': Str, 'exclude_ids': Bool, 'filter_empty_features': Bool}, outputs=[('filtered_table', FeatureTable[T1])], input_descriptions={ 'table': 'The feature table from which samples should be filtered.' }, parameter_descriptions={ 'min_frequency': ('The minimum total frequency that a sample must ' 'have to be retained.'), 'max_frequency': ('The maximum total frequency that a sample can ' 'have to be retained. If no value is provided ' 'this will default to infinity (i.e., no maximum ' 'frequency filter will be applied).'), 'min_features': ('The minimum number of features that a sample must ' 'have to be retained.'), 'max_features': ('The maximum number of features that a sample can ' 'have to be retained. If no value is provided ' 'this will default to infinity (i.e., no maximum ' 'feature filter will be applied).'), 'metadata': 'Sample metadata used with `where` parameter when ' 'selecting samples to retain, or with `exclude_ids` ' 'when selecting samples to discard.', 'where': 'SQLite WHERE clause specifying sample metadata criteria ' 'that must be met to be included in the filtered feature ' 'table. If not provided, all samples in `metadata` that are ' 'also in the feature table will be retained.', 'exclude_ids': 'If true, the samples selected by `metadata` or ' '`where` parameters will be excluded from the filtered ' 'table instead of being retained.', 'filter_empty_features': 'If true, features which are not present in ' 'any retained samples are dropped.', }, output_descriptions={ 'filtered_table': 'The resulting feature table filtered by sample.' }, name="Filter samples from table", description="Filter samples from table based on frequency and/or " "metadata. Any features with a frequency of zero after sample " "filtering will also be removed. See the filtering tutorial " "on https://docs.qiime2.org for additional details." ) plugin.methods.register_function( function=q2_feature_table.filter_features_conditionally, inputs={'table': FeatureTable[T1]}, parameters={'prevalence': Float % Range(0, 1), 'abundance': Float % Range(0, 1) }, outputs=[('filtered_table', FeatureTable[T1])], input_descriptions={ 'table': 'The feature table from which features should be filtered.' }, parameter_descriptions={ 'abundance': ('The minimum relative abundance for a feature to be ' 'retained.'), 'prevalence': ('The minimum portion of samples that a feature ' 'must have a relative abundance of at least ' '`abundance` to be retained.') }, output_descriptions={ 'filtered_table': 'The resulting feature table filtered by feature.' }, name="Filter features from a table based on abundance and prevalence", description=("Filter features based on the relative abundance in a " "certain portion of samples (i.e., features must have a " "relative abundance of at least `abundance` in at least " "`prevalence` number of samples). Any samples with a " "frequency of zero after feature filtering will also be " "removed.") ) plugin.methods.register_function( function=q2_feature_table.filter_features, inputs={'table': FeatureTable[Frequency]}, parameters={'min_frequency': Int, 'max_frequency': Int, 'min_samples': Int, 'max_samples': Int, 'metadata': Metadata, 'where': Str, 'exclude_ids': Bool, 'filter_empty_samples': Bool}, outputs=[('filtered_table', FeatureTable[Frequency])], input_descriptions={ 'table': 'The feature table from which features should be filtered.' }, parameter_descriptions={ 'min_frequency': ('The minimum total frequency that a feature must ' 'have to be retained.'), 'max_frequency': ('The maximum total frequency that a feature can ' 'have to be retained. If no value is provided ' 'this will default to infinity (i.e., no maximum ' 'frequency filter will be applied).'), 'min_samples': ('The minimum number of samples that a feature must ' 'be observed in to be retained.'), 'max_samples': ('The maximum number of samples that a feature can ' 'be observed in to be retained. If no value is ' 'provided this will default to infinity (i.e., no ' 'maximum sample filter will be applied).'), 'metadata': 'Feature metadata used with `where` parameter when ' 'selecting features to retain, or with `exclude_ids` ' 'when selecting features to discard.', 'where': 'SQLite WHERE clause specifying feature metadata criteria ' 'that must be met to be included in the filtered feature ' 'table. If not provided, all features in `metadata` that are ' 'also in the feature table will be retained.', 'exclude_ids': 'If true, the features selected by `metadata` or ' '`where` parameters will be excluded from the filtered ' 'table instead of being retained.', 'filter_empty_samples': 'If true, drop any samples where none of the ' 'retained features are present.', }, output_descriptions={ 'filtered_table': 'The resulting feature table filtered by feature.' }, name="Filter features from table", description="Filter features from table based on frequency and/or " "metadata. Any samples with a frequency of zero after feature " "filtering will also be removed. See the filtering tutorial " "on https://docs.qiime2.org for additional details." ) T2 = TypeMatch([Sequence, AlignedSequence]) plugin.methods.register_function( function=q2_feature_table.filter_seqs, inputs={ 'data': FeatureData[T2], 'table': FeatureTable[Frequency], }, parameters={ 'metadata': Metadata, 'where': Str, 'exclude_ids': Bool }, outputs=[('filtered_data', FeatureData[T2])], input_descriptions={ 'data': 'The sequences from which features should be filtered.', 'table': 'Table containing feature ids used for id-based filtering.' }, parameter_descriptions={ 'metadata': 'Feature metadata used for id-based filtering, with ' '`where` parameter when selecting features to retain, or ' 'with `exclude_ids` when selecting features to discard.', 'where': 'SQLite WHERE clause specifying feature metadata criteria ' 'that must be met to be included in the filtered feature ' 'table. If not provided, all features in `metadata` that are ' 'also in the sequences will be retained.', 'exclude_ids': 'If true, the features selected by the `metadata` ' '(with or without the `where` parameter) or `table` ' 'parameter will be excluded from the filtered ' 'sequences instead of being retained.' }, output_descriptions={ 'filtered_data': 'The resulting filtered sequences.' }, name="Filter features from sequences", description="Filter features from sequences based on a feature table or " "metadata. See the filtering tutorial on " "https://docs.qiime2.org for additional details. This method " "can filter based on ids in a table or a metadata file, but " "not both (i.e., the table and metadata options are mutually " "exclusive)." ) plugin.visualizers.register_function( function=q2_feature_table.summarize, inputs={'table': FeatureTable[Frequency | RelativeFrequency | PresenceAbsence]}, parameters={'sample_metadata': Metadata}, input_descriptions={'table': 'The feature table to be summarized.'}, parameter_descriptions={'sample_metadata': 'The sample metadata.'}, name="Summarize table", description="Generate visual and tabular summaries of a feature table." ) plugin.visualizers.register_function( function=q2_feature_table.tabulate_seqs, inputs={'data': FeatureData[Sequence | AlignedSequence]}, parameters={}, input_descriptions={'data': 'The feature sequences to be tabulated.'}, parameter_descriptions={}, name='View sequence associated with each feature', description="Generate tabular view of feature identifier to sequence " "mapping, including links to BLAST each sequence against " "the NCBI nt database.", citations=[citations['NCBI'], citations['NCBI-BLAST']] ) plugin.visualizers.register_function( function=q2_feature_table.core_features, inputs={ 'table': FeatureTable[Frequency] }, parameters={ 'min_fraction': Float % Range(0.0, 1.0, inclusive_start=False), 'max_fraction': Float % Range(0.0, 1.0, inclusive_end=True), 'steps': Int % Range(2, None) }, name='Identify core features in table', description=('Identify "core" features, which are features observed in a ' 'user-defined fraction of the samples. Since the core ' 'features are a function of the fraction of samples that the ' 'feature must be observed in to be considered core, this is ' 'computed over a range of fractions defined by the ' '`min_fraction`, `max_fraction`, and `steps` parameters.'), input_descriptions={ 'table': 'The feature table to use in core features calculations.' }, parameter_descriptions={ 'min_fraction': 'The minimum fraction of samples that a feature must ' 'be observed in for that feature to be considered a ' 'core feature.', 'max_fraction': 'The maximum fraction of samples that a feature must ' 'be observed in for that feature to be considered a ' 'core feature.', 'steps': 'The number of steps to take between `min_fraction` and ' '`max_fraction` for core features calculations. This ' 'parameter has no effect if `min_fraction` and ' '`max_fraction` are the same value.' } ) plugin.visualizers.register_function( function=q2_feature_table.heatmap, inputs={ 'table': FeatureTable[Frequency] }, parameters={ 'sample_metadata': MetadataColumn[Categorical], 'feature_metadata': MetadataColumn[Categorical], 'normalize': Bool, 'title': Str, 'metric': Str % Choices(q2_feature_table.heatmap_choices['metric']), 'method': Str % Choices(q2_feature_table.heatmap_choices['method']), 'cluster': Str % Choices(q2_feature_table.heatmap_choices['cluster']), 'color_scheme': Str % Choices( q2_feature_table.heatmap_choices['color_scheme']), }, name='Generate a heatmap representation of a feature table', description='Generate a heatmap representation of a feature table with ' 'optional clustering on both the sample and feature axes.\n\n' 'Tip: To generate a heatmap containing taxonomic annotations, ' 'use `qiime taxa collapse` to collapse the feature table at ' 'the desired taxonomic level.', input_descriptions={ 'table': 'The feature table to visualize.' }, parameter_descriptions={ 'sample_metadata': 'Annotate the sample IDs with these sample ' 'metadata values. When metadata is present and ' '`cluster`=\'feature\', samples will be sorted by ' 'the metadata values.', 'feature_metadata': 'Annotate the feature IDs with these feature ' 'metadata values. When metadata is present and ' '`cluster`=\'sample\', features will be sorted by ' 'the metadata values.', 'normalize': 'Normalize the feature table by adding a psuedocount ' 'of 1 and then taking the log10 of the table.', 'title': 'Optional custom plot title.', 'metric': 'Metrics exposed by seaborn (see http://seaborn.pydata.org/' 'generated/seaborn.clustermap.html 'more detail).', 'method': 'Clustering methods exposed by seaborn (see http://seaborn.' 'pydata.org/generated/seaborn.clustermap.html 'ermap for more detail).', 'cluster': 'Specify which axes to cluster.', 'color_scheme': 'The matplotlib colorscheme to generate the heatmap ' 'with.', }, citations=[citations['Hunter2007Matplotlib']] )
true
true
f70f557616fe80f5978c4f28c24fbbe3bf2fa1a3
2,795
py
Python
resampling/foundations_for_inference/gender_discrimination.py
necromuralist/resampling
0b48a51cb5f8e21a3f52508ecc74f12fa03d9b25
[ "MIT" ]
null
null
null
resampling/foundations_for_inference/gender_discrimination.py
necromuralist/resampling
0b48a51cb5f8e21a3f52508ecc74f12fa03d9b25
[ "MIT" ]
null
null
null
resampling/foundations_for_inference/gender_discrimination.py
necromuralist/resampling
0b48a51cb5f8e21a3f52508ecc74f12fa03d9b25
[ "MIT" ]
null
null
null
# pandas standard library import sys # third-party import pandas import matplotlib import matplotlib.pyplot as plot matplotlib.style.use('ggplot') GENDER_COUNT = 24 MALES_PROMOTED = 21 FEMALES_PROMOTED = 14 GENDER_DIFFERENCE = MALES_PROMOTED - FEMALES_PROMOTED FEMALES_NOT_PROMOTED = GENDER_COUNT - FEMALES_PROMOTED MALES_NOT_PROMOTED = GENDER_COUNT - MALES_PROMOTED experiment_data = pandas.DataFrame({"Promoted": [MALES_PROMOTED, FEMALES_PROMOTED], "Not Promoted": [MALES_NOT_PROMOTED, FEMALES_NOT_PROMOTED]}, index='male female'.split(), columns=["Promoted", "Not Promoted"]) experiment_frame = experiment_data.copy() experiment_frame['Total'] = sum((experiment_frame[column] for column in experiment_frame.columns)) last_row = pandas.DataFrame(experiment_frame.sum()).transpose() last_row.index = pandas.Index(['Total']) experiment_frame = pandas.concat((experiment_frame, last_row)) class IndentOutput(object): """Fake file output for csv-writing """ @classmethod def write(cls, line): """Write line to stdout with three spaces prepended""" sys.stdout.write(" {0}".format(line)) print('.. csv-table:: Experiment Outcome') print(' :header: ,{0}\n'.format(','.join(experiment_frame.columns))) experiment_frame.to_csv(IndentOutput, header=False) print('.. csv-table:: Experiment proportions') print(' :header: ,{0}\n'.format(','.join(experiment_frame.columns))) totals = pandas.Series([GENDER_COUNT, GENDER_COUNT, GENDER_COUNT * 2], index='male female Total'.split()) total_frame = pandas.DataFrame({'Promoted': totals, "Not Promoted": totals, "Total": totals}) proportions = experiment_frame/total_frame proportions.to_csv(IndentOutput, header=False, columns=['Promoted', 'Not Promoted', 'Total'], float_format="%.3f") path = 'figures/gender_experiment_bar.svg' figure = plot.figure() axe = figure.gca() experiment_data.plot(kind='bar', ax=axe) figure.savefig(path) print('.. image:: {0}'.format(path)) print(" \\frac{{{0}}}{{{2}}}- \\frac{{{1}}}{{{2}}}&=\\frac{{{3}}}{{{2}}}\\\\".format(MALES_PROMOTED, FEMALES_PROMOTED, GENDER_COUNT, GENDER_DIFFERENCE)) print(" &\\approx {:.3f}\\\\".format(GENDER_DIFFERENCE/GENDER_COUNT))
39.928571
102
0.572093
import sys import pandas import matplotlib import matplotlib.pyplot as plot matplotlib.style.use('ggplot') GENDER_COUNT = 24 MALES_PROMOTED = 21 FEMALES_PROMOTED = 14 GENDER_DIFFERENCE = MALES_PROMOTED - FEMALES_PROMOTED FEMALES_NOT_PROMOTED = GENDER_COUNT - FEMALES_PROMOTED MALES_NOT_PROMOTED = GENDER_COUNT - MALES_PROMOTED experiment_data = pandas.DataFrame({"Promoted": [MALES_PROMOTED, FEMALES_PROMOTED], "Not Promoted": [MALES_NOT_PROMOTED, FEMALES_NOT_PROMOTED]}, index='male female'.split(), columns=["Promoted", "Not Promoted"]) experiment_frame = experiment_data.copy() experiment_frame['Total'] = sum((experiment_frame[column] for column in experiment_frame.columns)) last_row = pandas.DataFrame(experiment_frame.sum()).transpose() last_row.index = pandas.Index(['Total']) experiment_frame = pandas.concat((experiment_frame, last_row)) class IndentOutput(object): @classmethod def write(cls, line): sys.stdout.write(" {0}".format(line)) print('.. csv-table:: Experiment Outcome') print(' :header: ,{0}\n'.format(','.join(experiment_frame.columns))) experiment_frame.to_csv(IndentOutput, header=False) print('.. csv-table:: Experiment proportions') print(' :header: ,{0}\n'.format(','.join(experiment_frame.columns))) totals = pandas.Series([GENDER_COUNT, GENDER_COUNT, GENDER_COUNT * 2], index='male female Total'.split()) total_frame = pandas.DataFrame({'Promoted': totals, "Not Promoted": totals, "Total": totals}) proportions = experiment_frame/total_frame proportions.to_csv(IndentOutput, header=False, columns=['Promoted', 'Not Promoted', 'Total'], float_format="%.3f") path = 'figures/gender_experiment_bar.svg' figure = plot.figure() axe = figure.gca() experiment_data.plot(kind='bar', ax=axe) figure.savefig(path) print('.. image:: {0}'.format(path)) print(" \\frac{{{0}}}{{{2}}}- \\frac{{{1}}}{{{2}}}&=\\frac{{{3}}}{{{2}}}\\\\".format(MALES_PROMOTED, FEMALES_PROMOTED, GENDER_COUNT, GENDER_DIFFERENCE)) print(" &\\approx {:.3f}\\\\".format(GENDER_DIFFERENCE/GENDER_COUNT))
true
true
f70f56d578d8a75e9fea3ab56d50aba5f5fd47bd
10,462
py
Python
utils/manipulator.py
hugeinteger/InterFaceGAN
59e75c0b4dcdbcea693b31ff11cf239c39e14ed1
[ "MIT" ]
null
null
null
utils/manipulator.py
hugeinteger/InterFaceGAN
59e75c0b4dcdbcea693b31ff11cf239c39e14ed1
[ "MIT" ]
null
null
null
utils/manipulator.py
hugeinteger/InterFaceGAN
59e75c0b4dcdbcea693b31ff11cf239c39e14ed1
[ "MIT" ]
null
null
null
# python3.7 """Utility functions for latent codes manipulation.""" import numpy as np from sklearn import svm from .logger import setup_logger __all__ = ['train_boundary', 'project_boundary', 'linear_interpolate'] def train_boundary(latent_codes, scores, chosen_num_or_ratio=0.02, split_ratio=0.7, invalid_value=None, logger=None): """Trains boundary in latent space with offline predicted attribute scores. Given a collection of latent codes and the attribute scores predicted from the corresponding images, this function will train a linear SVM by treating it as a bi-classification problem. Basically, the samples with highest attribute scores are treated as positive samples, while those with lowest scores as negative. For now, the latent code can ONLY be with 1 dimension. NOTE: The returned boundary is with shape (1, latent_space_dim), and also normalized with unit norm. Args: latent_codes: Input latent codes as training data. scores: Input attribute scores used to generate training labels. chosen_num_or_ratio: How many samples will be chosen as positive (negative) samples. If this field lies in range (0, 0.5], `chosen_num_or_ratio * latent_codes_num` will be used. Otherwise, `min(chosen_num_or_ratio, 0.5 * latent_codes_num)` will be used. (default: 0.02) split_ratio: Ratio to split training and validation sets. (default: 0.7) invalid_value: This field is used to filter out data. (default: None) logger: Logger for recording log messages. If set as `None`, a default logger, which prints messages from all levels to screen, will be created. (default: None) Returns: A decision boundary with type `numpy.ndarray`. Raises: ValueError: If the input `latent_codes` or `scores` are with invalid format. """ if not logger: logger = setup_logger(work_dir='', logger_name='train_boundary') if (not isinstance(latent_codes, np.ndarray) or not len(latent_codes.shape) == 2): raise ValueError(f'Input `latent_codes` should be with type' f'`numpy.ndarray`, and shape [num_samples, ' f'latent_space_dim]!') num_samples = latent_codes.shape[0] latent_space_dim = latent_codes.shape[1] if (not isinstance(scores, np.ndarray) or not len(scores.shape) == 2 or not scores.shape[0] == num_samples or not scores.shape[1] == 1): raise ValueError(f'Input `scores` should be with type `numpy.ndarray`, and ' f'shape [num_samples, 1], where `num_samples` should be ' f'exactly same as that of input `latent_codes`!') if chosen_num_or_ratio <= 0: raise ValueError(f'Input `chosen_num_or_ratio` should be positive, ' f'but {chosen_num_or_ratio} received!') logger.info(f'Filtering training data.') if invalid_value is not None: latent_codes = latent_codes[scores != invalid_value] scores = scores[scores != invalid_value] logger.info(f'Sorting scores to get positive and negative samples.') sorted_idx = np.argsort(scores, axis=0)[::-1, 0] latent_codes = latent_codes[sorted_idx] scores = scores[sorted_idx] num_samples = latent_codes.shape[0] if 0 < chosen_num_or_ratio <= 1: chosen_num = int(num_samples * chosen_num_or_ratio) else: chosen_num = chosen_num_or_ratio chosen_num = min(chosen_num, num_samples // 2) logger.info(f'Spliting training and validation sets:') train_num = int(chosen_num * split_ratio) val_num = chosen_num - train_num # Positive samples. positive_idx = np.arange(chosen_num) np.random.shuffle(positive_idx) positive_train = latent_codes[:chosen_num][positive_idx[:train_num]] positive_val = latent_codes[:chosen_num][positive_idx[train_num:]] # Negative samples. negative_idx = np.arange(chosen_num) np.random.shuffle(negative_idx) negative_train = latent_codes[-chosen_num:][negative_idx[:train_num]] negative_val = latent_codes[-chosen_num:][negative_idx[train_num:]] # Training set. train_data = np.concatenate([positive_train, negative_train], axis=0) train_label = np.concatenate([np.ones(train_num, dtype=np.int), np.zeros(train_num, dtype=np.int)], axis=0) logger.info(f' Training: {train_num} positive, {train_num} negative.') # Validation set. val_data = np.concatenate([positive_val, negative_val], axis=0) val_label = np.concatenate([np.ones(val_num, dtype=np.int), np.zeros(val_num, dtype=np.int)], axis=0) logger.info(f' Validation: {val_num} positive, {val_num} negative.') # Remaining set. remaining_num = num_samples - chosen_num * 2 remaining_data = latent_codes[chosen_num:-chosen_num] remaining_scores = scores[chosen_num:-chosen_num] decision_value = (scores[0] + scores[-1]) / 2 remaining_label = np.ones(remaining_num, dtype=np.int) remaining_label[remaining_scores.ravel() < decision_value] = 0 remaining_positive_num = np.sum(remaining_label == 1) remaining_negative_num = np.sum(remaining_label == 0) logger.info(f' Remaining: {remaining_positive_num} positive, ' f'{remaining_negative_num} negative.') logger.info(f'Training boundary.') clf = svm.SVC(kernel='linear') classifier = clf.fit(train_data, train_label) logger.info(f'Finish training.') if val_num: val_prediction = classifier.predict(val_data) correct_num = np.sum(val_label == val_prediction) logger.info(f'Accuracy for validation set: ' f'{correct_num} / {val_num * 2} = ' f'{correct_num / (val_num * 2):.6f}') if remaining_num: remaining_prediction = classifier.predict(remaining_data) correct_num = np.sum(remaining_label == remaining_prediction) logger.info(f'Accuracy for remaining set: ' f'{correct_num} / {remaining_num} = ' f'{correct_num / remaining_num:.6f}') a = classifier.coef_.reshape(1, latent_space_dim).astype(np.float32) return a / np.linalg.norm(a) def project_boundary(primal, *args): """Projects the primal boundary onto condition boundaries. The function is used for conditional manipulation, where the projected vector will be subscribed from the normal direction of the original boundary. Here, all input boundaries are supposed to have already been normalized to unit norm, and with same shape [1, latent_space_dim]. NOTE: For now, at most two condition boundaries are supported. Args: primal: The primal boundary. *args: Other boundaries as conditions. Returns: A projected boundary (also normalized to unit norm), which is orthogonal to all condition boundaries. Raises: NotImplementedError: If there are more than two condition boundaries. """ if len(args) > 2: raise NotImplementedError(f'This function supports projecting with at most ' f'two conditions.') assert len(primal.shape) == 2 and primal.shape[0] == 1 if not args: return primal if len(args) == 1: cond = args[0] assert (len(cond.shape) == 2 and cond.shape[0] == 1 and cond.shape[1] == primal.shape[1]) new = primal - primal.dot(cond.T) * cond return new / np.linalg.norm(new) if len(args) == 2: cond_1 = args[0] cond_2 = args[1] assert (len(cond_1.shape) == 2 and cond_1.shape[0] == 1 and cond_1.shape[1] == primal.shape[1]) assert (len(cond_2.shape) == 2 and cond_2.shape[0] == 1 and cond_2.shape[1] == primal.shape[1]) primal_cond_1 = primal.dot(cond_1.T) primal_cond_2 = primal.dot(cond_2.T) cond_1_cond_2 = cond_1.dot(cond_2.T) alpha = (primal_cond_1 - primal_cond_2 * cond_1_cond_2) / ( 1 - cond_1_cond_2 ** 2 + 1e-8) beta = (primal_cond_2 - primal_cond_1 * cond_1_cond_2) / ( 1 - cond_1_cond_2 ** 2 + 1e-8) new = primal - alpha * cond_1 - beta * cond_2 return new / np.linalg.norm(new) raise NotImplementedError def linear_interpolate(latent_code, boundary, start_distance=-3.0, end_distance=3.0, steps=10): """Manipulates the given latent code with respect to a particular boundary. Basically, this function takes a latent code and a boundary as inputs, and outputs a collection of manipulated latent codes. For example, let `steps` to be 10, then the input `latent_code` is with shape [1, latent_space_dim], input `boundary` is with shape [1, latent_space_dim] and unit norm, the output is with shape [10, latent_space_dim]. The first output latent code is `start_distance` away from the given `boundary`, while the last output latent code is `end_distance` away from the given `boundary`. Remaining latent codes are linearly interpolated. Input `latent_code` can also be with shape [1, num_layers, latent_space_dim] to support W+ space in Style GAN. In this case, all features in W+ space will be manipulated same as each other. Accordingly, the output will be with shape [10, num_layers, latent_space_dim]. NOTE: Distance is sign sensitive. Args: latent_code: The input latent code for manipulation. boundary: The semantic boundary as reference. start_distance: The distance to the boundary where the manipulation starts. (default: -3.0) end_distance: The distance to the boundary where the manipulation ends. (default: 3.0) steps: Number of steps to move the latent code from start position to end position. (default: 10) """ assert (latent_code.shape[0] == 1 and boundary.shape[0] == 1 and len(boundary.shape) == 2 and boundary.shape[1] == latent_code.shape[-1]) linspace = np.linspace(start_distance, end_distance, steps) if len(latent_code.shape) == 2: linspace = linspace - latent_code.dot(boundary.T) linspace = linspace.reshape(-1, 1).astype(np.float32) return latent_code + linspace * boundary if len(latent_code.shape) == 3: linspace = linspace.reshape(-1, 1, 1).astype(np.float32) return latent_code + linspace * boundary.reshape(1, 1, -1) raise ValueError(f'Input `latent_code` should be with shape ' f'[1, latent_space_dim] or [1, N, latent_space_dim] for ' f'W+ space in Style GAN!\n' f'But {latent_code.shape} is received.')
42.877049
80
0.688014
import numpy as np from sklearn import svm from .logger import setup_logger __all__ = ['train_boundary', 'project_boundary', 'linear_interpolate'] def train_boundary(latent_codes, scores, chosen_num_or_ratio=0.02, split_ratio=0.7, invalid_value=None, logger=None): if not logger: logger = setup_logger(work_dir='', logger_name='train_boundary') if (not isinstance(latent_codes, np.ndarray) or not len(latent_codes.shape) == 2): raise ValueError(f'Input `latent_codes` should be with type' f'`numpy.ndarray`, and shape [num_samples, ' f'latent_space_dim]!') num_samples = latent_codes.shape[0] latent_space_dim = latent_codes.shape[1] if (not isinstance(scores, np.ndarray) or not len(scores.shape) == 2 or not scores.shape[0] == num_samples or not scores.shape[1] == 1): raise ValueError(f'Input `scores` should be with type `numpy.ndarray`, and ' f'shape [num_samples, 1], where `num_samples` should be ' f'exactly same as that of input `latent_codes`!') if chosen_num_or_ratio <= 0: raise ValueError(f'Input `chosen_num_or_ratio` should be positive, ' f'but {chosen_num_or_ratio} received!') logger.info(f'Filtering training data.') if invalid_value is not None: latent_codes = latent_codes[scores != invalid_value] scores = scores[scores != invalid_value] logger.info(f'Sorting scores to get positive and negative samples.') sorted_idx = np.argsort(scores, axis=0)[::-1, 0] latent_codes = latent_codes[sorted_idx] scores = scores[sorted_idx] num_samples = latent_codes.shape[0] if 0 < chosen_num_or_ratio <= 1: chosen_num = int(num_samples * chosen_num_or_ratio) else: chosen_num = chosen_num_or_ratio chosen_num = min(chosen_num, num_samples // 2) logger.info(f'Spliting training and validation sets:') train_num = int(chosen_num * split_ratio) val_num = chosen_num - train_num positive_idx = np.arange(chosen_num) np.random.shuffle(positive_idx) positive_train = latent_codes[:chosen_num][positive_idx[:train_num]] positive_val = latent_codes[:chosen_num][positive_idx[train_num:]] negative_idx = np.arange(chosen_num) np.random.shuffle(negative_idx) negative_train = latent_codes[-chosen_num:][negative_idx[:train_num]] negative_val = latent_codes[-chosen_num:][negative_idx[train_num:]] train_data = np.concatenate([positive_train, negative_train], axis=0) train_label = np.concatenate([np.ones(train_num, dtype=np.int), np.zeros(train_num, dtype=np.int)], axis=0) logger.info(f' Training: {train_num} positive, {train_num} negative.') val_data = np.concatenate([positive_val, negative_val], axis=0) val_label = np.concatenate([np.ones(val_num, dtype=np.int), np.zeros(val_num, dtype=np.int)], axis=0) logger.info(f' Validation: {val_num} positive, {val_num} negative.') remaining_num = num_samples - chosen_num * 2 remaining_data = latent_codes[chosen_num:-chosen_num] remaining_scores = scores[chosen_num:-chosen_num] decision_value = (scores[0] + scores[-1]) / 2 remaining_label = np.ones(remaining_num, dtype=np.int) remaining_label[remaining_scores.ravel() < decision_value] = 0 remaining_positive_num = np.sum(remaining_label == 1) remaining_negative_num = np.sum(remaining_label == 0) logger.info(f' Remaining: {remaining_positive_num} positive, ' f'{remaining_negative_num} negative.') logger.info(f'Training boundary.') clf = svm.SVC(kernel='linear') classifier = clf.fit(train_data, train_label) logger.info(f'Finish training.') if val_num: val_prediction = classifier.predict(val_data) correct_num = np.sum(val_label == val_prediction) logger.info(f'Accuracy for validation set: ' f'{correct_num} / {val_num * 2} = ' f'{correct_num / (val_num * 2):.6f}') if remaining_num: remaining_prediction = classifier.predict(remaining_data) correct_num = np.sum(remaining_label == remaining_prediction) logger.info(f'Accuracy for remaining set: ' f'{correct_num} / {remaining_num} = ' f'{correct_num / remaining_num:.6f}') a = classifier.coef_.reshape(1, latent_space_dim).astype(np.float32) return a / np.linalg.norm(a) def project_boundary(primal, *args): if len(args) > 2: raise NotImplementedError(f'This function supports projecting with at most ' f'two conditions.') assert len(primal.shape) == 2 and primal.shape[0] == 1 if not args: return primal if len(args) == 1: cond = args[0] assert (len(cond.shape) == 2 and cond.shape[0] == 1 and cond.shape[1] == primal.shape[1]) new = primal - primal.dot(cond.T) * cond return new / np.linalg.norm(new) if len(args) == 2: cond_1 = args[0] cond_2 = args[1] assert (len(cond_1.shape) == 2 and cond_1.shape[0] == 1 and cond_1.shape[1] == primal.shape[1]) assert (len(cond_2.shape) == 2 and cond_2.shape[0] == 1 and cond_2.shape[1] == primal.shape[1]) primal_cond_1 = primal.dot(cond_1.T) primal_cond_2 = primal.dot(cond_2.T) cond_1_cond_2 = cond_1.dot(cond_2.T) alpha = (primal_cond_1 - primal_cond_2 * cond_1_cond_2) / ( 1 - cond_1_cond_2 ** 2 + 1e-8) beta = (primal_cond_2 - primal_cond_1 * cond_1_cond_2) / ( 1 - cond_1_cond_2 ** 2 + 1e-8) new = primal - alpha * cond_1 - beta * cond_2 return new / np.linalg.norm(new) raise NotImplementedError def linear_interpolate(latent_code, boundary, start_distance=-3.0, end_distance=3.0, steps=10): assert (latent_code.shape[0] == 1 and boundary.shape[0] == 1 and len(boundary.shape) == 2 and boundary.shape[1] == latent_code.shape[-1]) linspace = np.linspace(start_distance, end_distance, steps) if len(latent_code.shape) == 2: linspace = linspace - latent_code.dot(boundary.T) linspace = linspace.reshape(-1, 1).astype(np.float32) return latent_code + linspace * boundary if len(latent_code.shape) == 3: linspace = linspace.reshape(-1, 1, 1).astype(np.float32) return latent_code + linspace * boundary.reshape(1, 1, -1) raise ValueError(f'Input `latent_code` should be with shape ' f'[1, latent_space_dim] or [1, N, latent_space_dim] for ' f'W+ space in Style GAN!\n' f'But {latent_code.shape} is received.')
true
true
f70f5789ebf11040a90ecc0c05c6851ad4bc8bd0
1,240
py
Python
setup.py
sliderSun/scrapy-djangoitem
f68e60806d6d0175b88943adcac78e002f17a43c
[ "BSD-3-Clause" ]
509
2015-08-11T23:04:42.000Z
2022-02-16T01:33:55.000Z
setup.py
sliderSun/scrapy-djangoitem
f68e60806d6d0175b88943adcac78e002f17a43c
[ "BSD-3-Clause" ]
19
2015-08-06T04:06:28.000Z
2021-09-28T00:38:50.000Z
setup.py
sliderSun/scrapy-djangoitem
f68e60806d6d0175b88943adcac78e002f17a43c
[ "BSD-3-Clause" ]
107
2015-09-03T20:21:56.000Z
2021-09-28T14:20:49.000Z
from setuptools import setup, find_packages setup( name='scrapy-djangoitem', version='1.1.1', url='https://github.com/scrapy-plugins/scrapy-djangoitem', description='Scrapy extension to write scraped items using Django models', long_description=open('README.rst').read(), author='Scrapy developers', license='BSD', packages=find_packages(exclude=('tests', 'tests.*')), include_package_data=True, zip_safe=False, classifiers=[ 'Framework :: Scrapy', 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Utilities', 'Framework :: Django', 'Framework :: Scrapy', ], install_requires=['six'], requires=['scrapy (>=0.24.5)', 'django'], )
34.444444
78
0.607258
from setuptools import setup, find_packages setup( name='scrapy-djangoitem', version='1.1.1', url='https://github.com/scrapy-plugins/scrapy-djangoitem', description='Scrapy extension to write scraped items using Django models', long_description=open('README.rst').read(), author='Scrapy developers', license='BSD', packages=find_packages(exclude=('tests', 'tests.*')), include_package_data=True, zip_safe=False, classifiers=[ 'Framework :: Scrapy', 'Development Status :: 5 - Production/Stable', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Topic :: Utilities', 'Framework :: Django', 'Framework :: Scrapy', ], install_requires=['six'], requires=['scrapy (>=0.24.5)', 'django'], )
true
true
f70f59f0cd48a2f126ee48d3a32435225abc914a
1,310
py
Python
tests/subtractions/test_utils.py
ReeceHoffmann/virtool
f9befad060fe16fa29fb80124e674ac5a9c4f538
[ "MIT" ]
39
2016-10-31T23:28:59.000Z
2022-01-15T00:00:42.000Z
tests/subtractions/test_utils.py
ReeceHoffmann/virtool
f9befad060fe16fa29fb80124e674ac5a9c4f538
[ "MIT" ]
1,690
2017-02-07T23:39:48.000Z
2022-03-31T22:30:44.000Z
tests/subtractions/test_utils.py
ReeceHoffmann/virtool
f9befad060fe16fa29fb80124e674ac5a9c4f538
[ "MIT" ]
25
2017-02-08T18:25:31.000Z
2021-09-20T22:55:25.000Z
import os import pytest from virtool.subtractions.utils import ( check_subtraction_file_type, get_subtraction_files, join_subtraction_path, rename_bowtie_files, ) def test_join_subtraction_path(tmp_path, config): assert join_subtraction_path(config, "bar") == tmp_path / "subtractions" / "bar" async def test_get_subtraction_files(snapshot, pg, test_subtraction_files): assert await get_subtraction_files(pg, "foo") == snapshot def test_rename_bowtie_files(tmp_path): test_dir = tmp_path / "subtractions" test_dir.mkdir() test_dir.joinpath("reference.1.bt2").write_text("Bowtie2 file") test_dir.joinpath("reference.2.bt2").write_text("Bowtie2 file") test_dir.joinpath("reference.3.bt2").write_text("Bowtie2 file") rename_bowtie_files(test_dir) assert set(os.listdir(test_dir)) == { "subtraction.1.bt2", "subtraction.2.bt2", "subtraction.3.bt2", } @pytest.mark.parametrize("file_type", ["fasta", "bowtie2"]) def test_check_subtraction_file_type(file_type): if file_type == "fasta": result = check_subtraction_file_type("subtraction.fa.gz") assert result == "fasta" if file_type == "bowtie2": result = check_subtraction_file_type("subtraction.1.bt2") assert result == "bowtie2"
27.87234
84
0.710687
import os import pytest from virtool.subtractions.utils import ( check_subtraction_file_type, get_subtraction_files, join_subtraction_path, rename_bowtie_files, ) def test_join_subtraction_path(tmp_path, config): assert join_subtraction_path(config, "bar") == tmp_path / "subtractions" / "bar" async def test_get_subtraction_files(snapshot, pg, test_subtraction_files): assert await get_subtraction_files(pg, "foo") == snapshot def test_rename_bowtie_files(tmp_path): test_dir = tmp_path / "subtractions" test_dir.mkdir() test_dir.joinpath("reference.1.bt2").write_text("Bowtie2 file") test_dir.joinpath("reference.2.bt2").write_text("Bowtie2 file") test_dir.joinpath("reference.3.bt2").write_text("Bowtie2 file") rename_bowtie_files(test_dir) assert set(os.listdir(test_dir)) == { "subtraction.1.bt2", "subtraction.2.bt2", "subtraction.3.bt2", } @pytest.mark.parametrize("file_type", ["fasta", "bowtie2"]) def test_check_subtraction_file_type(file_type): if file_type == "fasta": result = check_subtraction_file_type("subtraction.fa.gz") assert result == "fasta" if file_type == "bowtie2": result = check_subtraction_file_type("subtraction.1.bt2") assert result == "bowtie2"
true
true
f70f5aa44820a47f32419ad9f28bef8a4d2813ba
23,039
py
Python
reVX/least_cost_xmission/least_cost_xmission.py
NREL/reVX
4d62eb2c003c3b53b959f7a58bdc342d18098884
[ "BSD-3-Clause" ]
7
2020-04-06T00:29:55.000Z
2022-01-23T20:00:14.000Z
reVX/least_cost_xmission/least_cost_xmission.py
NREL/reVX
4d62eb2c003c3b53b959f7a58bdc342d18098884
[ "BSD-3-Clause" ]
67
2020-02-28T20:15:35.000Z
2022-03-31T21:34:52.000Z
reVX/least_cost_xmission/least_cost_xmission.py
NREL/reVX
4d62eb2c003c3b53b959f7a58bdc342d18098884
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Module to compute least cost xmission paths, distances, and costs one or more SC points """ from concurrent.futures import as_completed import geopandas as gpd import json import logging import numpy as np import os import pandas as pd from pyproj.crs import CRS import rasterio from scipy.spatial import cKDTree from shapely.geometry import Point import time from reV.handlers.exclusions import ExclusionLayers from reV.supply_curve.points import SupplyCurveExtent from rex.utilities.execution import SpawnProcessPool from rex.utilities.loggers import log_mem from reVX.least_cost_xmission.config import (TRANS_LINE_CAT, LOAD_CENTER_CAT, SINK_CAT, SUBSTATION_CAT) from reVX.least_cost_xmission.least_cost_paths import LeastCostPaths from reVX.least_cost_xmission.trans_cap_costs import TransCapCosts logger = logging.getLogger(__name__) class LeastCostXmission(LeastCostPaths): """ Compute Least Cost tie-line paths and full transmission cap cost for all possible connections to all supply curve points - """ REQUIRED_LAYRES = ['transmission_barrier', 'ISO_regions'] def __init__(self, cost_fpath, features_fpath, resolution=128, xmission_config=None): """ Parameters ---------- cost_fpath : str Path to h5 file with cost rasters and other required layers features_fpath : str Path to geopackage with transmission features resolution : int, optional SC point resolution, by default 128 xmission_config : str | dict | XmissionConfig, optional Path to Xmission config .json, dictionary of Xmission config .jsons, or preloaded XmissionConfig objects, by default None """ self._check_layers(cost_fpath) self._config = TransCapCosts._parse_config( xmission_config=xmission_config) (self._sc_points, self._features, self._sub_lines_mapping, self._shape) =\ self._map_to_costs(cost_fpath, features_fpath, resolution=resolution) self._cost_fpath = cost_fpath self._tree = None self._sink_coords = None self._min_line_len = (resolution * 0.09) / 2 logger.debug('{} initialized'.format(self)) def __repr__(self): msg = ("{} to be computed for {} sc_points and {} features" .format(self.__class__.__name__, len(self.sc_points), len(self.features))) return msg @property def sc_points(self): """ Table of supply curve points Returns ------- gpd.GeoDataFrame """ return self._sc_points @property def features(self): """ Table of features to compute paths for Returns ------- pandas.DataFrame """ return self._features @property def sub_lines_mapping(self): """ Series mapping substations to the transmission lines connected to each substation Returns ------- pandas.Series """ return self._sub_lines_mapping @property def sink_coords(self): """ Inf sink coordinates (row, col) Returns ------- ndarray """ if self._sink_coords is None: mask = self.features['category'] == SINK_CAT self._sink_coords = self.features.loc[mask, ['row', 'col']].values return self._sink_coords @property def sink_tree(self): """ cKDTree for infinite sinks Returns ------- cKDTree """ if self._tree is None: self._tree = cKDTree(self.sink_coords) return self._tree @staticmethod def _load_trans_feats(features_fpath): """ Load existing transmission features from disk. Substations will be loaded from cache file if it exists Parameters ---------- features_fpath : str Path to geopackage with trans features Returns ------- features : gpd.GeoDataFrame DataFrame of transmission features sub_line_map : pandas.Series Mapping of sub-station trans_gid to connected tranmission line trans_gids """ logger.debug('Loading transmission features') features = gpd.read_file(features_fpath) features = features.drop(columns=['bgid', 'egid', 'cap_left'], errors='ignore') mapping = {'gid': 'trans_gid', 'trans_gids': 'trans_line_gids'} features = features.rename(columns=mapping) features['min_volts'] = 0 features['max_volts'] = 0 # Transmission lines mask = features['category'] == TRANS_LINE_CAT voltage = features.loc[mask, 'voltage'].values features.loc[mask, 'min_volts'] = voltage features.loc[mask, 'max_volts'] = voltage # Load Center and Sinks mask = features['category'].isin([LOAD_CENTER_CAT, SINK_CAT]) features.loc[mask, 'min_volts'] = 1 features.loc[mask, 'max_volts'] = 9999 sub_lines_map = {} mask = features['category'] == SUBSTATION_CAT bad_subs = np.zeros(len(features), dtype=bool) for idx, row in features.loc[mask].iterrows(): gid = row['trans_gid'] lines = row['trans_line_gids'] if isinstance(lines, str): lines = json.loads(lines) sub_lines_map[gid] = lines lines_mask = features['trans_gid'].isin(lines) voltage = features.loc[lines_mask, 'voltage'].values if np.max(voltage) >= 69: features.loc[idx, 'min_volts'] = np.min(voltage) features.loc[idx, 'max_volts'] = np.max(voltage) else: bad_subs[idx] = True if any(bad_subs): msg = ("The following sub-stations do not have the minimum " "required voltage of 69 kV and will be dropped:\n{}" .format(features.loc[bad_subs, 'trans_gid'])) logger.warning(msg) features = features.loc[~bad_subs].reset_index(drop=True) return features, pd.Series(sub_lines_map) @staticmethod def _create_sc_points(cost_fpath, resolution=128): """ Load SC points, covert row/col to array wide, and determine x/y for reV projection Parameters ---------- cost_fpath : str Path to h5 file with cost rasters and other required layers resolution : int, optional SC point resolution, by default 128 Returns sc_points : gpd.GeoDataFrame SC points """ logger.debug('Loading Supply Curve Points') sce = SupplyCurveExtent(cost_fpath, resolution=resolution) sc_points = sce.points.rename(columns={'row_ind': 'sc_row_ind', 'col_ind': 'sc_col_ind'}) shape = sce.excl_shape sc_points['sc_point_gid'] = sc_points.index.values row = np.round(sc_points['sc_row_ind'] * resolution + resolution / 2) row = np.where(row >= shape[0], shape[0] - 1, row) sc_points['row'] = row.astype(int) col = np.round(sc_points['sc_col_ind'] * resolution + resolution / 2) col = np.where(col >= shape[1], shape[1] - 1, col) sc_points['col'] = col.astype(int) return sc_points @staticmethod def _get_feature_cost_indices(features, crs, transform, shape): """ Map features to cost row, col indicies using rasterio transform Parameters ---------- features : gpd.GeoDataFrame GeoDataFrame of features to map to cost raster crs : pyproj.crs.CRS CRS of cost raster transform : raster.Affine Transform of cost raster shape : tuple Cost raster shape Returns ------- row : ndarray Vector of row indicies for each feature col : ndarray Vector of col indicies for each features mask : ndarray Boolean mask of features with indicies outside of cost raster """ row, col, mask = super(LeastCostXmission, LeastCostXmission)._get_feature_cost_indices( features, crs, transform, shape) t_lines = features['category'] == TRANS_LINE_CAT mask |= t_lines row[t_lines] = np.where(row[t_lines] >= 0, row[t_lines], 0) row[t_lines] = np.where(row[t_lines] < shape[0], row[t_lines], shape[0] - 1) col[t_lines] = np.where(col[t_lines] >= 0, col[t_lines], 0) col[t_lines] = np.where(col[t_lines] < shape[1], col[t_lines], shape[1] - 1) return row, col, mask @classmethod def _map_to_costs(cls, cost_fpath, features_fpath, resolution=128): """ Map supply curve points and transmission features to cost array pixel indices Parameters ---------- cost_fpath : str Path to h5 file with cost rasters and other required layers features_fpath : str Path to geopackage with transmission features resolution : int, optional SC point resolution, by default 128 Returns ------- sc_point : gpd.GeoDataFrame Table of supply curve points to connect to tranmission features : gpd.GeoDataFrame Table of transmission features sub_lines_map : pandas.Series Series mapping substations to the transmission lines connected to each substation """ with ExclusionLayers(cost_fpath) as f: crs = CRS.from_string(f.crs) transform = rasterio.Affine(*f.profile['transform']) shape = f.shape regions = f['ISO_regions'] features, sub_lines_map = cls._load_trans_feats(features_fpath) row, col, mask = cls._get_feature_cost_indices(features, crs, transform, shape) if any(~mask): msg = ("The following features are outside of the cost exclusion " "domain and will be dropped:\n{}" .format(features.loc[~mask, 'trans_gid'])) logger.warning(msg) row = row[mask] col = col[mask] features = features.loc[mask].reset_index(drop=True) features['row'] = row features['col'] = col features['region'] = regions[row, col] logger.debug('Converting SC points to GeoDataFrame') sc_points = cls._create_sc_points(cost_fpath, resolution=resolution) x, y = rasterio.transform.xy(transform, sc_points['row'].values, sc_points['col'].values) geo = [Point(xy) for xy in zip(x, y)] sc_points = gpd.GeoDataFrame(sc_points, crs=features.crs, geometry=geo) return sc_points, features, sub_lines_map, shape def _clip_to_sc_point(self, sc_point, tie_line_voltage, nn_sinks=2, clipping_buffer=1.05): """ Clip costs raster to AOI around SC point, and get substations, load centers, and sinks within the clipped region. Parameters ---------- sc_point : gpd.GeoSeries SC point to clip raster around nn_sinks : int, optional Number of nearest neighbor sinks to clip to clipping_buffer : float, optional Buffer to increase clipping radius by, by default 1.05 Returns ------- radius : int Clipping radius in cost raster pixels x_feats : pd.DataFrame Substatations, load centers, sinks, and nearest points on t-lines to SC point """ logger.debug('Clipping features to sc_point {}'.format(sc_point.name)) if len(self.sink_coords) > 2: row, col = sc_point[['row', 'col']].values _, pos = self.sink_tree.query([row, col], k=nn_sinks) radius = np.abs(self.sink_coords[pos] - np.array([row, col])).max() radius = int(np.ceil(radius * clipping_buffer)) logger.debug('Radius to {} nearest sink is: {}' .format(nn_sinks, radius)) row_min = max(row - radius, 0) row_max = min(row + radius, self._shape[0]) col_min = max(col - radius, 0) col_max = min(col + radius, self._shape[1]) logger.debug('Extracting all transmission features in the row ' 'slice {}:{} and column slice {}:{}' .format(row_min, row_max, col_min, col_max)) # Clip transmission features mask = self.features['row'] >= row_min mask &= self.features['row'] < row_max mask &= self.features['col'] >= col_min mask &= self.features['col'] < col_max sc_features = self.features.loc[mask].copy(deep=True) logger.debug('{} transmission features found in clipped area with ' 'radius {}' .format(len(sc_features), radius)) else: radius = None sc_features = self.features.copy(deep=True) mask = self.features['max_volts'] >= tie_line_voltage sc_features = sc_features.loc[mask].copy(deep=True) logger.debug('{} transmission features found in clipped area with ' 'minimum max voltage of {}' .format(len(sc_features), tie_line_voltage)) # Find t-lines connected to substations within clip logger.debug('Collecting transmission lines connected to substations') mask = sc_features['category'] == SUBSTATION_CAT if mask.any(): trans_gids = sc_features.loc[mask, 'trans_gid'].values trans_gids = \ np.concatenate(self.sub_lines_mapping.loc[trans_gids].values) trans_gids = np.unique(trans_gids) line_mask = self.features['trans_gid'].isin(trans_gids) trans_lines = self.features.loc[line_mask].copy(deep=True) line_mask = trans_lines['trans_gid'].isin(sc_features['trans_gid']) trans_lines = trans_lines.loc[~line_mask] logger.debug('Adding all {} transmission lines connected to ' 'substations with minimum max voltage of {}' .format(len(trans_lines), tie_line_voltage)) sc_features = sc_features.append(trans_lines) return sc_features, radius def process_sc_points(self, capacity_class, sc_point_gids=None, nn_sinks=2, clipping_buffer=1.05, barrier_mult=100, max_workers=None): """ Compute Least Cost Tranmission for desired sc_points Parameters ---------- capacity_class : str | int Capacity class of transmission features to connect supply curve points to sc_point_gids : list, optional List of sc_point_gids to connect to, by default None nn_sinks : int, optional Number of nearest neighbor sinks to use for clipping radius calculation, by default 2 clipping_buffer : float, optional Buffer to expand clipping radius by, by default 1.05 barrier_mult : int, optional Tranmission barrier multiplier, used when computing the least cost tie-line path, by default 100 max_workers : int, optional Number of workers to use for processing, if 1 run in serial, if None use all available cores, by default None Returns ------- least_costs : pandas.DataFrame Least cost connections between all supply curve points and the transmission features with the given capacity class that are within "nn_sink" nearest infinite sinks """ max_workers = os.cpu_count() if max_workers is None else max_workers if sc_point_gids is None: sc_point_gids = self.sc_points['sc_point_gid'].values tie_line_voltage = self._config.capacity_to_kv(capacity_class) least_costs = [] if max_workers > 1: logger.info('Computing Least Cost Transmission for SC points in ' 'parallel on {} workers'.format(max_workers)) loggers = [__name__, 'reV', 'reVX'] with SpawnProcessPool(max_workers=max_workers, loggers=loggers) as exe: futures = [] for _, sc_point in self.sc_points.iterrows(): gid = sc_point['sc_point_gid'] if gid in sc_point_gids: sc_features, radius = self._clip_to_sc_point( sc_point, tie_line_voltage, nn_sinks=nn_sinks, clipping_buffer=clipping_buffer) future = exe.submit(TransCapCosts.run, self._cost_fpath, sc_point.copy(deep=True), sc_features, capacity_class, radius=radius, xmission_config=self._config, barrier_mult=barrier_mult, min_line_length=self._min_line_len) futures.append(future) for i, future in enumerate(as_completed(futures)): sc_costs = future.result() if sc_costs is not None: least_costs.append(sc_costs) logger.debug('SC point {} of {} complete!' .format(i + 1, len(futures))) log_mem(logger) else: logger.info('Computing Least Cost Transmission for SC points in ' 'serial') i = 1 for _, sc_point in self.sc_points.iterrows(): gid = sc_point['sc_point_gid'] if gid in sc_point_gids: sc_features, radius = self._clip_to_sc_point( sc_point, tie_line_voltage, nn_sinks=nn_sinks, clipping_buffer=clipping_buffer) sc_costs = TransCapCosts.run( self._cost_fpath, sc_point.copy(deep=True), sc_features, capacity_class, radius=radius, xmission_config=self._config, barrier_mult=barrier_mult, min_line_length=self._min_line_len) if sc_costs is not None: least_costs.append(sc_costs) logger.debug('SC point {} of {} complete!' .format(i, len(sc_point_gids))) log_mem(logger) i += 1 least_costs = pd.concat(least_costs).sort_values(['sc_point_gid', 'trans_gid']) capacity_class = self._config._parse_cap_class(capacity_class) least_costs['max_cap'] = self._config['power_classes'][capacity_class] lcp_frac = (len(least_costs['sc_point_gid'].unique()) / len(sc_point_gids) * 100) logger.info('{:.4f}% of requested sc point gids were succesfully ' 'mapped to transmission features'.format(lcp_frac)) return least_costs.reset_index(drop=True) @classmethod def run(cls, cost_fpath, features_fpath, capacity_class, resolution=128, xmission_config=None, sc_point_gids=None, nn_sinks=2, clipping_buffer=1.05, barrier_mult=100, max_workers=None): """ Find Least Cost Tranmission connections between desired sc_points to given tranmission features for desired capacity class Parameters ---------- cost_fpath : str Path to h5 file with cost rasters and other required layers features_fpath : str Path to geopackage with transmission features capacity_class : str | int Capacity class of transmission features to connect supply curve points to resolution : int, optional SC point resolution, by default 128 xmission_config : str | dict | XmissionConfig, optional Path to Xmission config .json, dictionary of Xmission config .jsons, or preloaded XmissionConfig objects, by default None sc_point_gids : list, optional List of sc_point_gids to connect to, by default None nn_sinks : int, optional Number of nearest neighbor sinks to use for clipping radius calculation, by default 2 clipping_buffer : float, optional Buffer to expand clipping radius by, by default 1.05 barrier_mult : int, optional Tranmission barrier multiplier, used when computing the least cost tie-line path, by default 100 max_workers : int, optional Number of workers to use for processing, if 1 run in serial, if None use all available cores, by default None Returns ------- least_costs : pandas.DataFrame Least cost connections between all supply curve points and the transmission features with the given capacity class that are within "nn_sink" nearest infinite sinks """ ts = time.time() lcx = cls(cost_fpath, features_fpath, resolution=resolution, xmission_config=xmission_config) least_costs = lcx.process_sc_points(capacity_class, sc_point_gids=sc_point_gids, nn_sinks=nn_sinks, clipping_buffer=clipping_buffer, barrier_mult=barrier_mult, max_workers=max_workers) logger.info('{} connections were made to {} SC points in {:.4f} ' 'minutes' .format(len(least_costs), len(least_costs['sc_point_gid'].unique()), (time.time() - ts) / 60)) return least_costs
39.11545
79
0.570164
from concurrent.futures import as_completed import geopandas as gpd import json import logging import numpy as np import os import pandas as pd from pyproj.crs import CRS import rasterio from scipy.spatial import cKDTree from shapely.geometry import Point import time from reV.handlers.exclusions import ExclusionLayers from reV.supply_curve.points import SupplyCurveExtent from rex.utilities.execution import SpawnProcessPool from rex.utilities.loggers import log_mem from reVX.least_cost_xmission.config import (TRANS_LINE_CAT, LOAD_CENTER_CAT, SINK_CAT, SUBSTATION_CAT) from reVX.least_cost_xmission.least_cost_paths import LeastCostPaths from reVX.least_cost_xmission.trans_cap_costs import TransCapCosts logger = logging.getLogger(__name__) class LeastCostXmission(LeastCostPaths): REQUIRED_LAYRES = ['transmission_barrier', 'ISO_regions'] def __init__(self, cost_fpath, features_fpath, resolution=128, xmission_config=None): self._check_layers(cost_fpath) self._config = TransCapCosts._parse_config( xmission_config=xmission_config) (self._sc_points, self._features, self._sub_lines_mapping, self._shape) =\ self._map_to_costs(cost_fpath, features_fpath, resolution=resolution) self._cost_fpath = cost_fpath self._tree = None self._sink_coords = None self._min_line_len = (resolution * 0.09) / 2 logger.debug('{} initialized'.format(self)) def __repr__(self): msg = ("{} to be computed for {} sc_points and {} features" .format(self.__class__.__name__, len(self.sc_points), len(self.features))) return msg @property def sc_points(self): return self._sc_points @property def features(self): return self._features @property def sub_lines_mapping(self): return self._sub_lines_mapping @property def sink_coords(self): if self._sink_coords is None: mask = self.features['category'] == SINK_CAT self._sink_coords = self.features.loc[mask, ['row', 'col']].values return self._sink_coords @property def sink_tree(self): if self._tree is None: self._tree = cKDTree(self.sink_coords) return self._tree @staticmethod def _load_trans_feats(features_fpath): logger.debug('Loading transmission features') features = gpd.read_file(features_fpath) features = features.drop(columns=['bgid', 'egid', 'cap_left'], errors='ignore') mapping = {'gid': 'trans_gid', 'trans_gids': 'trans_line_gids'} features = features.rename(columns=mapping) features['min_volts'] = 0 features['max_volts'] = 0 mask = features['category'] == TRANS_LINE_CAT voltage = features.loc[mask, 'voltage'].values features.loc[mask, 'min_volts'] = voltage features.loc[mask, 'max_volts'] = voltage mask = features['category'].isin([LOAD_CENTER_CAT, SINK_CAT]) features.loc[mask, 'min_volts'] = 1 features.loc[mask, 'max_volts'] = 9999 sub_lines_map = {} mask = features['category'] == SUBSTATION_CAT bad_subs = np.zeros(len(features), dtype=bool) for idx, row in features.loc[mask].iterrows(): gid = row['trans_gid'] lines = row['trans_line_gids'] if isinstance(lines, str): lines = json.loads(lines) sub_lines_map[gid] = lines lines_mask = features['trans_gid'].isin(lines) voltage = features.loc[lines_mask, 'voltage'].values if np.max(voltage) >= 69: features.loc[idx, 'min_volts'] = np.min(voltage) features.loc[idx, 'max_volts'] = np.max(voltage) else: bad_subs[idx] = True if any(bad_subs): msg = ("The following sub-stations do not have the minimum " "required voltage of 69 kV and will be dropped:\n{}" .format(features.loc[bad_subs, 'trans_gid'])) logger.warning(msg) features = features.loc[~bad_subs].reset_index(drop=True) return features, pd.Series(sub_lines_map) @staticmethod def _create_sc_points(cost_fpath, resolution=128): logger.debug('Loading Supply Curve Points') sce = SupplyCurveExtent(cost_fpath, resolution=resolution) sc_points = sce.points.rename(columns={'row_ind': 'sc_row_ind', 'col_ind': 'sc_col_ind'}) shape = sce.excl_shape sc_points['sc_point_gid'] = sc_points.index.values row = np.round(sc_points['sc_row_ind'] * resolution + resolution / 2) row = np.where(row >= shape[0], shape[0] - 1, row) sc_points['row'] = row.astype(int) col = np.round(sc_points['sc_col_ind'] * resolution + resolution / 2) col = np.where(col >= shape[1], shape[1] - 1, col) sc_points['col'] = col.astype(int) return sc_points @staticmethod def _get_feature_cost_indices(features, crs, transform, shape): row, col, mask = super(LeastCostXmission, LeastCostXmission)._get_feature_cost_indices( features, crs, transform, shape) t_lines = features['category'] == TRANS_LINE_CAT mask |= t_lines row[t_lines] = np.where(row[t_lines] >= 0, row[t_lines], 0) row[t_lines] = np.where(row[t_lines] < shape[0], row[t_lines], shape[0] - 1) col[t_lines] = np.where(col[t_lines] >= 0, col[t_lines], 0) col[t_lines] = np.where(col[t_lines] < shape[1], col[t_lines], shape[1] - 1) return row, col, mask @classmethod def _map_to_costs(cls, cost_fpath, features_fpath, resolution=128): with ExclusionLayers(cost_fpath) as f: crs = CRS.from_string(f.crs) transform = rasterio.Affine(*f.profile['transform']) shape = f.shape regions = f['ISO_regions'] features, sub_lines_map = cls._load_trans_feats(features_fpath) row, col, mask = cls._get_feature_cost_indices(features, crs, transform, shape) if any(~mask): msg = ("The following features are outside of the cost exclusion " "domain and will be dropped:\n{}" .format(features.loc[~mask, 'trans_gid'])) logger.warning(msg) row = row[mask] col = col[mask] features = features.loc[mask].reset_index(drop=True) features['row'] = row features['col'] = col features['region'] = regions[row, col] logger.debug('Converting SC points to GeoDataFrame') sc_points = cls._create_sc_points(cost_fpath, resolution=resolution) x, y = rasterio.transform.xy(transform, sc_points['row'].values, sc_points['col'].values) geo = [Point(xy) for xy in zip(x, y)] sc_points = gpd.GeoDataFrame(sc_points, crs=features.crs, geometry=geo) return sc_points, features, sub_lines_map, shape def _clip_to_sc_point(self, sc_point, tie_line_voltage, nn_sinks=2, clipping_buffer=1.05): logger.debug('Clipping features to sc_point {}'.format(sc_point.name)) if len(self.sink_coords) > 2: row, col = sc_point[['row', 'col']].values _, pos = self.sink_tree.query([row, col], k=nn_sinks) radius = np.abs(self.sink_coords[pos] - np.array([row, col])).max() radius = int(np.ceil(radius * clipping_buffer)) logger.debug('Radius to {} nearest sink is: {}' .format(nn_sinks, radius)) row_min = max(row - radius, 0) row_max = min(row + radius, self._shape[0]) col_min = max(col - radius, 0) col_max = min(col + radius, self._shape[1]) logger.debug('Extracting all transmission features in the row ' 'slice {}:{} and column slice {}:{}' .format(row_min, row_max, col_min, col_max)) mask = self.features['row'] >= row_min mask &= self.features['row'] < row_max mask &= self.features['col'] >= col_min mask &= self.features['col'] < col_max sc_features = self.features.loc[mask].copy(deep=True) logger.debug('{} transmission features found in clipped area with ' 'radius {}' .format(len(sc_features), radius)) else: radius = None sc_features = self.features.copy(deep=True) mask = self.features['max_volts'] >= tie_line_voltage sc_features = sc_features.loc[mask].copy(deep=True) logger.debug('{} transmission features found in clipped area with ' 'minimum max voltage of {}' .format(len(sc_features), tie_line_voltage)) logger.debug('Collecting transmission lines connected to substations') mask = sc_features['category'] == SUBSTATION_CAT if mask.any(): trans_gids = sc_features.loc[mask, 'trans_gid'].values trans_gids = \ np.concatenate(self.sub_lines_mapping.loc[trans_gids].values) trans_gids = np.unique(trans_gids) line_mask = self.features['trans_gid'].isin(trans_gids) trans_lines = self.features.loc[line_mask].copy(deep=True) line_mask = trans_lines['trans_gid'].isin(sc_features['trans_gid']) trans_lines = trans_lines.loc[~line_mask] logger.debug('Adding all {} transmission lines connected to ' 'substations with minimum max voltage of {}' .format(len(trans_lines), tie_line_voltage)) sc_features = sc_features.append(trans_lines) return sc_features, radius def process_sc_points(self, capacity_class, sc_point_gids=None, nn_sinks=2, clipping_buffer=1.05, barrier_mult=100, max_workers=None): max_workers = os.cpu_count() if max_workers is None else max_workers if sc_point_gids is None: sc_point_gids = self.sc_points['sc_point_gid'].values tie_line_voltage = self._config.capacity_to_kv(capacity_class) least_costs = [] if max_workers > 1: logger.info('Computing Least Cost Transmission for SC points in ' 'parallel on {} workers'.format(max_workers)) loggers = [__name__, 'reV', 'reVX'] with SpawnProcessPool(max_workers=max_workers, loggers=loggers) as exe: futures = [] for _, sc_point in self.sc_points.iterrows(): gid = sc_point['sc_point_gid'] if gid in sc_point_gids: sc_features, radius = self._clip_to_sc_point( sc_point, tie_line_voltage, nn_sinks=nn_sinks, clipping_buffer=clipping_buffer) future = exe.submit(TransCapCosts.run, self._cost_fpath, sc_point.copy(deep=True), sc_features, capacity_class, radius=radius, xmission_config=self._config, barrier_mult=barrier_mult, min_line_length=self._min_line_len) futures.append(future) for i, future in enumerate(as_completed(futures)): sc_costs = future.result() if sc_costs is not None: least_costs.append(sc_costs) logger.debug('SC point {} of {} complete!' .format(i + 1, len(futures))) log_mem(logger) else: logger.info('Computing Least Cost Transmission for SC points in ' 'serial') i = 1 for _, sc_point in self.sc_points.iterrows(): gid = sc_point['sc_point_gid'] if gid in sc_point_gids: sc_features, radius = self._clip_to_sc_point( sc_point, tie_line_voltage, nn_sinks=nn_sinks, clipping_buffer=clipping_buffer) sc_costs = TransCapCosts.run( self._cost_fpath, sc_point.copy(deep=True), sc_features, capacity_class, radius=radius, xmission_config=self._config, barrier_mult=barrier_mult, min_line_length=self._min_line_len) if sc_costs is not None: least_costs.append(sc_costs) logger.debug('SC point {} of {} complete!' .format(i, len(sc_point_gids))) log_mem(logger) i += 1 least_costs = pd.concat(least_costs).sort_values(['sc_point_gid', 'trans_gid']) capacity_class = self._config._parse_cap_class(capacity_class) least_costs['max_cap'] = self._config['power_classes'][capacity_class] lcp_frac = (len(least_costs['sc_point_gid'].unique()) / len(sc_point_gids) * 100) logger.info('{:.4f}% of requested sc point gids were succesfully ' 'mapped to transmission features'.format(lcp_frac)) return least_costs.reset_index(drop=True) @classmethod def run(cls, cost_fpath, features_fpath, capacity_class, resolution=128, xmission_config=None, sc_point_gids=None, nn_sinks=2, clipping_buffer=1.05, barrier_mult=100, max_workers=None): ts = time.time() lcx = cls(cost_fpath, features_fpath, resolution=resolution, xmission_config=xmission_config) least_costs = lcx.process_sc_points(capacity_class, sc_point_gids=sc_point_gids, nn_sinks=nn_sinks, clipping_buffer=clipping_buffer, barrier_mult=barrier_mult, max_workers=max_workers) logger.info('{} connections were made to {} SC points in {:.4f} ' 'minutes' .format(len(least_costs), len(least_costs['sc_point_gid'].unique()), (time.time() - ts) / 60)) return least_costs
true
true
f70f5b4ab3752fa1ced9abdd8789bbb663073dde
5,427
py
Python
site-packages/oslo_service/_options.py
hariza17/freezer_libraries
e0bd890eba5e7438976fb3b4d66c41c128bab790
[ "PSF-2.0" ]
null
null
null
site-packages/oslo_service/_options.py
hariza17/freezer_libraries
e0bd890eba5e7438976fb3b4d66c41c128bab790
[ "PSF-2.0" ]
null
null
null
site-packages/oslo_service/_options.py
hariza17/freezer_libraries
e0bd890eba5e7438976fb3b4d66c41c128bab790
[ "PSF-2.0" ]
null
null
null
# Copyright 2015 Mirantis Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_config import cfg help_for_backdoor_port = ( "Acceptable values are 0, <port>, and <start>:<end>, where 0 results " "in listening on a random tcp port number; <port> results in listening " "on the specified port number (and not enabling backdoor if that port " "is in use); and <start>:<end> results in listening on the smallest " "unused port number within the specified range of port numbers. The " "chosen port is displayed in the service's log file.") eventlet_backdoor_opts = [ cfg.StrOpt('backdoor_port', help="Enable eventlet backdoor. %s" % help_for_backdoor_port), cfg.StrOpt('backdoor_socket', help="Enable eventlet backdoor, using the provided path" " as a unix socket that can receive connections. This" " option is mutually exclusive with 'backdoor_port' in" " that only one should be provided. If both are provided" " then the existence of this option overrides the usage of" " that option.") ] periodic_opts = [ cfg.BoolOpt('run_external_periodic_tasks', default=True, help='Some periodic tasks can be run in a separate process. ' 'Should we run them here?'), ] service_opts = [ cfg.BoolOpt('log_options', default=True, help='Enables or disables logging values of all registered ' 'options when starting a service (at DEBUG level).'), cfg.IntOpt('graceful_shutdown_timeout', default=60, help='Specify a timeout after which a gracefully shutdown ' 'server will exit. Zero value means endless wait.'), ] wsgi_opts = [ cfg.StrOpt('api_paste_config', default="api-paste.ini", help='File name for the paste.deploy config for api service'), cfg.StrOpt('wsgi_log_format', default='%(client_ip)s "%(request_line)s" status: ' '%(status_code)s len: %(body_length)s time:' ' %(wall_seconds).7f', help='A python format string that is used as the template to ' 'generate log lines. The following values can be' 'formatted into it: client_ip, date_time, request_line, ' 'status_code, body_length, wall_seconds.'), cfg.IntOpt('tcp_keepidle', default=600, help="Sets the value of TCP_KEEPIDLE in seconds for each " "server socket. Not supported on OS X."), cfg.IntOpt('wsgi_default_pool_size', default=100, help="Size of the pool of greenthreads used by wsgi"), cfg.IntOpt('max_header_line', default=16384, help="Maximum line size of message headers to be accepted. " "max_header_line may need to be increased when using " "large tokens (typically those generated when keystone " "is configured to use PKI tokens with big service " "catalogs)."), cfg.BoolOpt('wsgi_keep_alive', default=True, help="If False, closes the client socket connection " "explicitly."), cfg.IntOpt('client_socket_timeout', default=900, help="Timeout for client connections' socket operations. " "If an incoming connection is idle for this number of " "seconds it will be closed. A value of '0' means " "wait forever."), ] ssl_opts = [ cfg.StrOpt('ca_file', help="CA certificate file to use to verify " "connecting clients.", deprecated_group='DEFAULT', deprecated_name='ssl_ca_file'), cfg.StrOpt('cert_file', help="Certificate file to use when starting " "the server securely.", deprecated_group='DEFAULT', deprecated_name='ssl_cert_file'), cfg.StrOpt('key_file', help="Private key file to use when starting " "the server securely.", deprecated_group='DEFAULT', deprecated_name='ssl_key_file'), cfg.StrOpt('version', help='SSL version to use (valid only if SSL enabled). ' 'Valid values are TLSv1 and SSLv23. SSLv2, SSLv3, ' 'TLSv1_1, and TLSv1_2 may be available on some ' 'distributions.' ), cfg.StrOpt('ciphers', help='Sets the list of available ciphers. value should be a ' 'string in the OpenSSL cipher list format.' ), ]
45.605042
79
0.585775
from oslo_config import cfg help_for_backdoor_port = ( "Acceptable values are 0, <port>, and <start>:<end>, where 0 results " "in listening on a random tcp port number; <port> results in listening " "on the specified port number (and not enabling backdoor if that port " "is in use); and <start>:<end> results in listening on the smallest " "unused port number within the specified range of port numbers. The " "chosen port is displayed in the service's log file.") eventlet_backdoor_opts = [ cfg.StrOpt('backdoor_port', help="Enable eventlet backdoor. %s" % help_for_backdoor_port), cfg.StrOpt('backdoor_socket', help="Enable eventlet backdoor, using the provided path" " as a unix socket that can receive connections. This" " option is mutually exclusive with 'backdoor_port' in" " that only one should be provided. If both are provided" " then the existence of this option overrides the usage of" " that option.") ] periodic_opts = [ cfg.BoolOpt('run_external_periodic_tasks', default=True, help='Some periodic tasks can be run in a separate process. ' 'Should we run them here?'), ] service_opts = [ cfg.BoolOpt('log_options', default=True, help='Enables or disables logging values of all registered ' 'options when starting a service (at DEBUG level).'), cfg.IntOpt('graceful_shutdown_timeout', default=60, help='Specify a timeout after which a gracefully shutdown ' 'server will exit. Zero value means endless wait.'), ] wsgi_opts = [ cfg.StrOpt('api_paste_config', default="api-paste.ini", help='File name for the paste.deploy config for api service'), cfg.StrOpt('wsgi_log_format', default='%(client_ip)s "%(request_line)s" status: ' '%(status_code)s len: %(body_length)s time:' ' %(wall_seconds).7f', help='A python format string that is used as the template to ' 'generate log lines. The following values can be' 'formatted into it: client_ip, date_time, request_line, ' 'status_code, body_length, wall_seconds.'), cfg.IntOpt('tcp_keepidle', default=600, help="Sets the value of TCP_KEEPIDLE in seconds for each " "server socket. Not supported on OS X."), cfg.IntOpt('wsgi_default_pool_size', default=100, help="Size of the pool of greenthreads used by wsgi"), cfg.IntOpt('max_header_line', default=16384, help="Maximum line size of message headers to be accepted. " "max_header_line may need to be increased when using " "large tokens (typically those generated when keystone " "is configured to use PKI tokens with big service " "catalogs)."), cfg.BoolOpt('wsgi_keep_alive', default=True, help="If False, closes the client socket connection " "explicitly."), cfg.IntOpt('client_socket_timeout', default=900, help="Timeout for client connections' socket operations. " "If an incoming connection is idle for this number of " "seconds it will be closed. A value of '0' means " "wait forever."), ] ssl_opts = [ cfg.StrOpt('ca_file', help="CA certificate file to use to verify " "connecting clients.", deprecated_group='DEFAULT', deprecated_name='ssl_ca_file'), cfg.StrOpt('cert_file', help="Certificate file to use when starting " "the server securely.", deprecated_group='DEFAULT', deprecated_name='ssl_cert_file'), cfg.StrOpt('key_file', help="Private key file to use when starting " "the server securely.", deprecated_group='DEFAULT', deprecated_name='ssl_key_file'), cfg.StrOpt('version', help='SSL version to use (valid only if SSL enabled). ' 'Valid values are TLSv1 and SSLv23. SSLv2, SSLv3, ' 'TLSv1_1, and TLSv1_2 may be available on some ' 'distributions.' ), cfg.StrOpt('ciphers', help='Sets the list of available ciphers. value should be a ' 'string in the OpenSSL cipher list format.' ), ]
true
true
f70f5cd57a1fd153f57517e918891d2f039f7ddc
425
py
Python
interpriters/__init__.py
yakumo-saki/smart_to_zabbix
04dd1debe0c831b4ec94962884543c989ad57730
[ "MIT" ]
null
null
null
interpriters/__init__.py
yakumo-saki/smart_to_zabbix
04dd1debe0c831b4ec94962884543c989ad57730
[ "MIT" ]
23
2021-08-30T14:59:27.000Z
2021-11-05T16:51:08.000Z
interpriters/__init__.py
yakumo-saki/smart_to_zabbix
04dd1debe0c831b4ec94962884543c989ad57730
[ "MIT" ]
null
null
null
from interpriters.smart.IntelX25Interpriter import IntelX25Interpriter from interpriters.smart.SmartBasicInterpriter import SmartBasicInterpriter from interpriters.smart.SanDiskInterpriter import SmartSanDiskInterpriter from interpriters.nvme.NvmeBasicInterpriter import NvmeBasicInterpriter SPECIAL_INTERPRITERS = [SmartSanDiskInterpriter(), IntelX25Interpriter()] BASIC = [SmartBasicInterpriter(), NvmeBasicInterpriter()]
53.125
74
0.884706
from interpriters.smart.IntelX25Interpriter import IntelX25Interpriter from interpriters.smart.SmartBasicInterpriter import SmartBasicInterpriter from interpriters.smart.SanDiskInterpriter import SmartSanDiskInterpriter from interpriters.nvme.NvmeBasicInterpriter import NvmeBasicInterpriter SPECIAL_INTERPRITERS = [SmartSanDiskInterpriter(), IntelX25Interpriter()] BASIC = [SmartBasicInterpriter(), NvmeBasicInterpriter()]
true
true
f70f5e7eb40489e986f62438a0124259082259d8
24,487
py
Python
morgana/GUIs/fluo.py
Nikoula86/organoidSegment
b5d00256c15302ccd76b8b7a412852750476504b
[ "MIT" ]
8
2021-09-08T10:49:53.000Z
2022-02-25T13:28:03.000Z
morgana/GUIs/fluo.py
Nikoula86/organoidSegment
b5d00256c15302ccd76b8b7a412852750476504b
[ "MIT" ]
null
null
null
morgana/GUIs/fluo.py
Nikoula86/organoidSegment
b5d00256c15302ccd76b8b7a412852750476504b
[ "MIT" ]
1
2021-11-24T08:10:41.000Z
2021-11-24T08:10:41.000Z
from PyQt5.QtWidgets import (QApplication, QComboBox, QGridLayout, QGroupBox, QLabel, QPushButton, QFileDialog, QMessageBox, QWidget, QSizePolicy, QCheckBox) from matplotlib.backends.backend_qt5agg import FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar import numpy as np import warnings, os, time from skimage.io import imsave import scipy.ndimage as ndi from matplotlib.figure import Figure from scipy.interpolate import interp1d import matplotlib as mpl warnings.filterwarnings("ignore") from matplotlib import rc rc('font', size=12) rc('font', family='Arial') # rc('font', serif='Times') rc('pdf', fonttype=42) # rc('text', usetex=True) class profileAP_condMode(QWidget): def __init__(self, data_all, channel, colors, profileType='APprofile', parent=None, ylabel='Intensity (a.u.)'): super(profileAP_condMode, self).__init__(parent) self.data_all = data_all self.channel = channel self.colors = colors self.profileType = profileType self.ylabel = ylabel self.make() def make(self): self.figure = Figure(figsize=(4, 2.5), dpi=100) self.canvas = FigureCanvas(self.figure) self.canvas.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.figure.clear() ax = self.figure.add_subplot(111) self.figure.subplots_adjust(top=0.95,right=0.95,left=0.2,bottom=0.25) ax.set_xlabel(self.profileType) ax.ticklabel_format(axis="x", style="sci", scilimits=(2,2)) ax.set_ylabel(self.ylabel) ax.ticklabel_format(axis="y", style="sci", scilimits=(0,2)) # ax.axis('off') self.canvas.draw() self.YnormBtn = QComboBox() self.YnormBtn.addItem('No normalization') self.YnormBtn.addItem('Global percentile') self.YnormBtn.addItem('Group percentile') self.YnormBtn.addItem('Folder percentile') self.YnormBtn.addItem('Manual') self.XnormBtn = QCheckBox('') self.XnormBtn.setChecked(False) self.XnormBtn.stateChanged.connect(self.onCheckingXnormBtn) self.bckgBtn = QComboBox() self.bckgBtn.addItem('None') self.bckgBtn.addItem('Background') self.bckgBtn.addItem('Minimum') self.orientationBtn = QComboBox() self.orientationBtn.addItem('Signal based') self.orientationBtn.addItem('NO') self.alignmentBtn = QComboBox() self.alignmentBtn.addItem('Left') self.alignmentBtn.addItem('Right') self.alignmentBtn.addItem('Center') self.groupSelection = self.makeGroupSelectionBtns() self.applyBtn = QPushButton('Apply Settings') self.applyBtn.clicked.connect(self.remakePlot) lay = QGridLayout(self) lay.setSpacing(10) lay.addWidget(NavigationToolbar(self.canvas, self),0,0,1,2) lay.addWidget(self.canvas,1,0,1,2) lay.addWidget(QLabel('Background subtraction type:'),2,0,1,1) lay.addWidget(self.bckgBtn,2,1,1,1) lay.addWidget(QLabel('Y axis normalization:'),4,0,1,1) lay.addWidget(self.YnormBtn,4,1,1,1) lay.addWidget(QLabel('X axis normalization:'),5,0,1,1) lay.addWidget(self.XnormBtn,5,1,1,1) lay.addWidget(QLabel('A-P orientation correction:'),6,0,1,1) lay.addWidget(self.orientationBtn,6,1,1,1) lay.addWidget(QLabel('Alignment:'),7,0,1,1) lay.addWidget(self.alignmentBtn,7,1,1,1) lay.addWidget(self.groupSelection,8,0,1,2) lay.addWidget(self.applyBtn,9,0,1,2) self.remakePlot() self.setWindowTitle('Channel') QApplication.setStyle('Fusion') def onCheckingXnormBtn(self): if self.XnormBtn.isChecked(): self.alignmentBtn.setEnabled(False) else: self.alignmentBtn.setEnabled(True) def makeGroupSelectionBtns(self): group = QGroupBox("Groups to plot") self.groupPlotBtn = [] for i in range(len(self.data_all)): self.groupPlotBtn.append(QCheckBox('Group '+str(i))) self.groupPlotBtn[-1].setChecked(True) self.legendBtn = QCheckBox('Legend') self.legendBtn.setChecked(False) self.rawBtn = QCheckBox('Plot raw data') self.rawBtn.setChecked(True) lay = QGridLayout() for i in range(len(self.data_all)): lay.addWidget(self.groupPlotBtn[i],i,0,1,1) lay.addWidget(self.legendBtn,0,1,1,1) lay.addWidget(self.rawBtn,1,1,1,1) group.setLayout(lay) return group def remakePlot(self): self.figure.clear() ax = self.figure.add_subplot(111) self.figure.subplots_adjust(top=0.95,right=0.95,left=0.2,bottom=0.25) ax.set_xlabel(self.profileType) ax.ticklabel_format(axis="x", style="sci", scilimits=(2,2)) ax.set_ylabel(self.ylabel) ax.ticklabel_format(axis="y", style="sci", scilimits=(0,2)) # ax.axis('off') n_groups = len(self.data_all) n_folders = [len(self.data_all[group_idx]) for group_idx in range(n_groups)] n_gastr = [[len(self.data_all[group_idx][folder_idx]['input_file']) for folder_idx in range(n_folders[group_idx])] for group_idx in range(n_groups)] # rearrange dataset profiles_all = [[[0 for k in range(n_gastr[i][j])] for j in range(n_folders[i])] for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profiles_all[i][j][k] = np.array(self.data_all[i][j][self.profileType][k][self.channel]) # subtract background or not if self.bckgBtn.currentText() == 'Background': profiles_all[i][j][k] -= self.data_all[i][j]['Background'][k][self.channel] if self.bckgBtn.currentText() == 'Minimum': profiles_all[i][j][k] -= np.min(profiles_all[i][j][k]) # normalize fluorescence intensity accordingly if self.YnormBtn.currentText() == 'Global percentile': flat = [] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat.append(l) percs = np.percentile(np.array(flat),(.3,99.7)) for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[0])/(percs[1]-percs[0]),0,1.) elif self.YnormBtn.currentText() == 'Group percentile': flat = [[]for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat[i].append(l) percs = [np.percentile(np.array(f),(.3,99.7)) for f in flat] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): # print(percs[i]) profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[i][0])/(percs[i][1]-percs[i][0]),0,1.) elif self.YnormBtn.currentText() == 'Folder percentile': flat = [[[] for j in range(n_folders[i])] for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat[i][j].append(l) percs = [[np.percentile(np.array(f),(.3,99.7)) for f in ff] for ff in flat] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): # print(percs[i][j]) profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[i][j][0])/(percs[i][j][1]-percs[i][j][0]),0,1.) # normalize AP axis if necessary if self.XnormBtn.isChecked(): for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = profiles_all[i][j][k] x = np.linspace(0,1,len(profile)) fun = interp1d(x,profile) new_x = np.linspace(0,1,101) profiles_all[i][j][k] = fun(new_x) # compute length of longest gastruloid max_length = [] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): max_length.append(len(profiles_all[i][j][k])) max_length = np.max(max_length) # orient plots according to setting if self.orientationBtn.currentText() == 'Signal based': for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): y = np.array(profiles_all[i][j][k])[~np.isnan(profiles_all[i][j][k])] n_p = len(y) if np.sum(y[:int(n_p/2)])>np.sum(y[int(n_p-n_p/2):]): profiles_all[i][j][k] = profiles_all[i][j][k][::-1] # pad array to the right or left for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): w = max_length-len(profiles_all[i][j][k]) if self.alignmentBtn.currentText() == 'Left': pad_width = (0,w) if self.alignmentBtn.currentText() == 'Right': pad_width = (w,0) elif self.alignmentBtn.currentText() == 'Center': if 2*int(w/2)==w: pad_width = (int(w/2),int(w/2)) else: pad_width = (int(w/2)+1,int(w/2)) profiles_all[i][j][k] = np.pad(profiles_all[i][j][k],pad_width,mode='constant',constant_values=np.nan) ### make plot lines = [] for i in range(n_groups): # plot this group only if the button is checked if self.groupPlotBtn[i].isChecked(): ydata_group = [] for j in range(n_folders[i]): for k in range(n_gastr[i][j]): ydata_group.append(profiles_all[i][j][k]) # plot the raw data if the button is checked if self.rawBtn.isChecked(): ax.plot(ydata_group[-1],'-', lw=.5, c=self.colors[i], alpha = 0.2) # compute and plot mean and std max_length = np.max([len(d) for d in ydata_group]) _mean = np.zeros(max_length) _std = np.zeros(max_length) for j in range(max_length): datapoint = [] for data in ydata_group: datapoint.append(data[j]) _mean[j] = np.nanmean(datapoint) _std[j] = np.nanstd(datapoint) line = ax.plot(_mean,'-',lw=1,c=self.colors[i],label='Mean')[0] ax.fill_between(range(len(_mean)),_mean-_std,_mean+_std,facecolor=self.colors[i],alpha=.2, linewidth=0.,label='Std') lines.append(line) # adjust axes lims ax.set_ylim(0,None) ax.set_xlim(0,None) if self.XnormBtn.isChecked(): ax.set_xlim(0,100) if self.YnormBtn.currentText() != 'No normalization': ax.set_ylim(0,1) # add legend if self.legendBtn.isChecked(): l = ax.legend(lines,['Group '+str(i+1) for i in range(len(self.groupPlotBtn)) if self.groupPlotBtn[i].isChecked()]) l.get_frame().set_linewidth(0.0) self.canvas.draw() class profileAP_tlMode(QWidget): ############# # TO BE IMPLEMENTED!!! ############# def __init__(self, data_all, channel, colors, profileType='APprofile', parent=None): super(profileAP_tlMode, self).__init__(parent) self.data_all = data_all self.n_groups = len(data_all) self.channel = channel self.colors = colors self.profileType = profileType self.make() def make(self): self.figure = Figure(figsize=(4, 2.5), dpi=100) self.canvas = FigureCanvas(self.figure) self.canvas.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.figure.clear() ax = self.figure.add_subplot(111) self.figure.subplots_adjust(top=0.95,right=0.95,left=0.2,bottom=0.25) ax.set_xlabel(self.profileType) ax.ticklabel_format(axis="x", style="sci", scilimits=(2,2)) ax.set_ylabel('Time') ax.ticklabel_format(axis="y", style="sci", scilimits=(0,2)) # ax.axis('off') self.canvas.draw() ############################################### settings_group = QGroupBox('Plot settings') self.YnormBtn = QComboBox() self.YnormBtn.addItem('No normalization') self.YnormBtn.addItem('Global percentile') self.YnormBtn.addItem('Group percentile') self.YnormBtn.addItem('Folder percentile') self.YnormBtn.addItem('Manual') self.XnormBtn = QCheckBox('') self.XnormBtn.setChecked(False) self.XnormBtn.stateChanged.connect(self.onCheckingXnormBtn) self.bckgBtn = QComboBox() self.bckgBtn.addItem('None') self.bckgBtn.addItem('Background') self.bckgBtn.addItem('Minimum') self.orientationBtn = QComboBox() self.orientationBtn.addItem('Signal based') self.orientationBtn.addItem('NO') self.alignmentBtn = QComboBox() self.alignmentBtn.addItem('Left') self.alignmentBtn.addItem('Right') self.alignmentBtn.addItem('Center') self.aspectRatioBtn = QCheckBox('') self.aspectRatioBtn.setChecked(True) self.groupPlotBtn = QComboBox() for i in range(len(self.data_all)): self.groupPlotBtn.addItem('Group '+str(i+1)) lay = QGridLayout(self) lay.addWidget(QLabel('Background subtraction:'),2,0,1,1) lay.addWidget(self.bckgBtn,2,1,1,1) lay.addWidget(QLabel('Y axis normalization:'),4,0,1,1) lay.addWidget(self.YnormBtn,4,1,1,1) lay.addWidget(QLabel('X axis normalization:'),5,0,1,1) lay.addWidget(self.XnormBtn,5,1,1,1) lay.addWidget(QLabel('A-P orientation correction:'),6,0,1,1) lay.addWidget(self.orientationBtn,6,1,1,1) lay.addWidget(QLabel('Alignment:'),7,0,1,1) lay.addWidget(self.alignmentBtn,7,1,1,1) lay.addWidget(QLabel('Set axes aspect ratio to equal:'),8,0,1,1) lay.addWidget(self.aspectRatioBtn,8,1,1,1) lay.addWidget(QLabel('Current group:'),9,0,1,1) lay.addWidget(self.groupPlotBtn,9,1,1,2) settings_group.setLayout(lay) ####################### self.applyBtn = QPushButton('Apply Settings') self.applyBtn.clicked.connect(self.remakePlot) self.saveBtn = QPushButton('Save Tif image') self.saveBtn.clicked.connect(self.save_tif) lay = QGridLayout(self) lay.setSpacing(10) lay.addWidget(NavigationToolbar(self.canvas, self),0,0,1,2) lay.addWidget(self.canvas,1,0,1,2) lay.addWidget(settings_group,2,0,1,2) lay.addWidget(self.applyBtn,3,0,1,2) lay.addWidget(self.saveBtn,4,0,1,2) self.remakePlot() self.setWindowTitle('Channel') QApplication.setStyle('Macintosh') def onCheckingXnormBtn(self): if self.XnormBtn.isChecked(): self.alignmentBtn.setEnabled(False) else: self.alignmentBtn.setEnabled(True) def remakePlot(self): n_groups = len(self.data_all) n_folders = [len(self.data_all[group_idx]) for group_idx in range(n_groups)] n_gastr = [[len(self.data_all[group_idx][folder_idx]['input_file']) for folder_idx in range(n_folders[group_idx])] for group_idx in range(n_groups)] # rearrange dataset profiles_all = [[[0 for k in range(n_gastr[i][j])] for j in range(n_folders[i])] for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profiles_all[i][j][k] = np.array(self.data_all[i][j][self.profileType][k][self.channel]) # subtract background or not if self.bckgBtn.currentText() == 'Background': profiles_all[i][j][k] -= self.data_all[i][j]['Background'][k][self.channel] if self.bckgBtn.currentText() == 'Minimum': profiles_all[i][j][k] -= np.min(profiles_all[i][j][k]) # normalize fluorescence intensity accordingly percs = [None,None] if self.YnormBtn.currentText() == 'Global percentile': flat = [] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat.append(l) percs = np.percentile(np.array(flat),(.3,99.7)) for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[0])/(percs[1]-percs[0]),0,1.) elif self.YnormBtn.currentText() == 'Group percentile': flat = [[]for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat[i].append(l) percs = [np.percentile(np.array(f),(.3,99.7)) for f in flat] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): # print(percs[i]) profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[i][0])/(percs[i][1]-percs[i][0]),0,1.) elif self.YnormBtn.currentText() == 'Folder percentile': flat = [[[] for j in range(n_folders[i])] for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat[i][j].append(l) percs = [[np.percentile(np.array(f),(.3,99.7)) for f in ff] for ff in flat] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): # print(percs[i][j]) profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[i][j][0])/(percs[i][j][1]-percs[i][j][0]),0,1.) self.percs = percs # normalize AP axis if necessary if self.XnormBtn.isChecked(): for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = profiles_all[i][j][k] x = np.linspace(0,1,len(profile)) fun = interp1d(x,profile) new_x = np.linspace(0,1,101) profiles_all[i][j][k] = fun(new_x) # compute length of longest gastruloid max_length = [] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): max_length.append(len(profiles_all[i][j][k])) max_length = np.max(max_length) # orient plots according to setting if self.orientationBtn.currentText() == 'Signal based': for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): y = np.array(profiles_all[i][j][k])[~np.isnan(profiles_all[i][j][k])] n_p = len(y) if np.sum(y[:int(n_p/2)])>np.sum(y[int(n_p-n_p/2):]): profiles_all[i][j][k] = profiles_all[i][j][k][::-1] # pad array to the right or left for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): w = max_length-len(profiles_all[i][j][k]) if self.alignmentBtn.currentText() == 'Left': pad_width = (0,w) if self.alignmentBtn.currentText() == 'Right': pad_width = (w,0) elif self.alignmentBtn.currentText() == 'Center': if 2*int(w/2)==w: pad_width = (int(w/2),int(w/2)) else: pad_width = (int(w/2)+1,int(w/2)) profiles_all[i][j][k] = np.pad(profiles_all[i][j][k],pad_width,mode='constant',constant_values=np.nan) ### make plot # lines = [] self.figure.clear() ax = self.figure.add_subplot(111) self.figure.subplots_adjust(top=0.95,right=0.95,left=0.2,bottom=0.25) ax.set_xlabel(self.profileType) ax.ticklabel_format(axis="x", style="sci", scilimits=(2,2)) ax.set_ylabel('Time') ax.ticklabel_format(axis="y", style="sci", scilimits=(0,2)) # ax.axis('off') # plot the selected group only i = self.groupPlotBtn.currentIndex() # compute and plot mean and std of the selected group # prepare blank image max_t = np.max([n_gastr[i][j] for j in range(n_folders[i])]) max_l = np.max([len(profiles_all[i][j][k]) for j in range(n_folders[i]) for k in range(n_gastr[i][j])]) data_mean = np.zeros((max_t,max_l)) data_count = np.zeros((max_t,max_l)) for j in range(n_folders[i]): for k in range(n_gastr[i][j]): data = np.nan_to_num(profiles_all[i][j][k]) data_mean[k,:] += data data_count[k,:] += data!=0 # plot the raw data if the button is checked # if self.rawBtn.isChecked(): # ax.plot(data_group[-1],'-', lw=.5, c=self.colors[i], alpha = 0.2) data_mean = data_mean.astype(np.float)/data_count.astype(np.float) data_mean = np.nan_to_num(data_mean) aspect = 'auto' if self.aspectRatioBtn.isChecked(): aspect = 'equal' ax.imshow(data_mean, aspect=aspect) ax.set_title('Group '+str(i+1)) self.tif_data = data_mean self.canvas.draw() def save_tif(self): name,_ = QFileDialog.getSaveFileName(self, 'Save Overview File') if name != '': ### check file extension: allow to save in other formats, but bias towards tif if os.path.splitext(name)[-1]!='.tif': buttonReply = QMessageBox.question(self,'File format warning!','File format not recommended. Do you want to save the image as tif?') if buttonReply == QMessageBox.Yes: name = os.path.splitext(name)[0]+'.tif' # convert the image into int16 with the right brightness and contrast if self.percs[0]!=None: self.tif_data = (2**16-1)*(self.tif_data-self.percs[0])/(self.percs[1]-self.percs[0]) imsave(name+'', self.tif_data.astype(np.uint16))
43.883513
156
0.548822
from PyQt5.QtWidgets import (QApplication, QComboBox, QGridLayout, QGroupBox, QLabel, QPushButton, QFileDialog, QMessageBox, QWidget, QSizePolicy, QCheckBox) from matplotlib.backends.backend_qt5agg import FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar import numpy as np import warnings, os, time from skimage.io import imsave import scipy.ndimage as ndi from matplotlib.figure import Figure from scipy.interpolate import interp1d import matplotlib as mpl warnings.filterwarnings("ignore") from matplotlib import rc rc('font', size=12) rc('font', family='Arial') rc('pdf', fonttype=42) class profileAP_condMode(QWidget): def __init__(self, data_all, channel, colors, profileType='APprofile', parent=None, ylabel='Intensity (a.u.)'): super(profileAP_condMode, self).__init__(parent) self.data_all = data_all self.channel = channel self.colors = colors self.profileType = profileType self.ylabel = ylabel self.make() def make(self): self.figure = Figure(figsize=(4, 2.5), dpi=100) self.canvas = FigureCanvas(self.figure) self.canvas.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.figure.clear() ax = self.figure.add_subplot(111) self.figure.subplots_adjust(top=0.95,right=0.95,left=0.2,bottom=0.25) ax.set_xlabel(self.profileType) ax.ticklabel_format(axis="x", style="sci", scilimits=(2,2)) ax.set_ylabel(self.ylabel) ax.ticklabel_format(axis="y", style="sci", scilimits=(0,2)) self.canvas.draw() self.YnormBtn = QComboBox() self.YnormBtn.addItem('No normalization') self.YnormBtn.addItem('Global percentile') self.YnormBtn.addItem('Group percentile') self.YnormBtn.addItem('Folder percentile') self.YnormBtn.addItem('Manual') self.XnormBtn = QCheckBox('') self.XnormBtn.setChecked(False) self.XnormBtn.stateChanged.connect(self.onCheckingXnormBtn) self.bckgBtn = QComboBox() self.bckgBtn.addItem('None') self.bckgBtn.addItem('Background') self.bckgBtn.addItem('Minimum') self.orientationBtn = QComboBox() self.orientationBtn.addItem('Signal based') self.orientationBtn.addItem('NO') self.alignmentBtn = QComboBox() self.alignmentBtn.addItem('Left') self.alignmentBtn.addItem('Right') self.alignmentBtn.addItem('Center') self.groupSelection = self.makeGroupSelectionBtns() self.applyBtn = QPushButton('Apply Settings') self.applyBtn.clicked.connect(self.remakePlot) lay = QGridLayout(self) lay.setSpacing(10) lay.addWidget(NavigationToolbar(self.canvas, self),0,0,1,2) lay.addWidget(self.canvas,1,0,1,2) lay.addWidget(QLabel('Background subtraction type:'),2,0,1,1) lay.addWidget(self.bckgBtn,2,1,1,1) lay.addWidget(QLabel('Y axis normalization:'),4,0,1,1) lay.addWidget(self.YnormBtn,4,1,1,1) lay.addWidget(QLabel('X axis normalization:'),5,0,1,1) lay.addWidget(self.XnormBtn,5,1,1,1) lay.addWidget(QLabel('A-P orientation correction:'),6,0,1,1) lay.addWidget(self.orientationBtn,6,1,1,1) lay.addWidget(QLabel('Alignment:'),7,0,1,1) lay.addWidget(self.alignmentBtn,7,1,1,1) lay.addWidget(self.groupSelection,8,0,1,2) lay.addWidget(self.applyBtn,9,0,1,2) self.remakePlot() self.setWindowTitle('Channel') QApplication.setStyle('Fusion') def onCheckingXnormBtn(self): if self.XnormBtn.isChecked(): self.alignmentBtn.setEnabled(False) else: self.alignmentBtn.setEnabled(True) def makeGroupSelectionBtns(self): group = QGroupBox("Groups to plot") self.groupPlotBtn = [] for i in range(len(self.data_all)): self.groupPlotBtn.append(QCheckBox('Group '+str(i))) self.groupPlotBtn[-1].setChecked(True) self.legendBtn = QCheckBox('Legend') self.legendBtn.setChecked(False) self.rawBtn = QCheckBox('Plot raw data') self.rawBtn.setChecked(True) lay = QGridLayout() for i in range(len(self.data_all)): lay.addWidget(self.groupPlotBtn[i],i,0,1,1) lay.addWidget(self.legendBtn,0,1,1,1) lay.addWidget(self.rawBtn,1,1,1,1) group.setLayout(lay) return group def remakePlot(self): self.figure.clear() ax = self.figure.add_subplot(111) self.figure.subplots_adjust(top=0.95,right=0.95,left=0.2,bottom=0.25) ax.set_xlabel(self.profileType) ax.ticklabel_format(axis="x", style="sci", scilimits=(2,2)) ax.set_ylabel(self.ylabel) ax.ticklabel_format(axis="y", style="sci", scilimits=(0,2)) n_groups = len(self.data_all) n_folders = [len(self.data_all[group_idx]) for group_idx in range(n_groups)] n_gastr = [[len(self.data_all[group_idx][folder_idx]['input_file']) for folder_idx in range(n_folders[group_idx])] for group_idx in range(n_groups)] profiles_all = [[[0 for k in range(n_gastr[i][j])] for j in range(n_folders[i])] for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profiles_all[i][j][k] = np.array(self.data_all[i][j][self.profileType][k][self.channel]) if self.bckgBtn.currentText() == 'Background': profiles_all[i][j][k] -= self.data_all[i][j]['Background'][k][self.channel] if self.bckgBtn.currentText() == 'Minimum': profiles_all[i][j][k] -= np.min(profiles_all[i][j][k]) if self.YnormBtn.currentText() == 'Global percentile': flat = [] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat.append(l) percs = np.percentile(np.array(flat),(.3,99.7)) for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[0])/(percs[1]-percs[0]),0,1.) elif self.YnormBtn.currentText() == 'Group percentile': flat = [[]for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat[i].append(l) percs = [np.percentile(np.array(f),(.3,99.7)) for f in flat] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[i][0])/(percs[i][1]-percs[i][0]),0,1.) elif self.YnormBtn.currentText() == 'Folder percentile': flat = [[[] for j in range(n_folders[i])] for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat[i][j].append(l) percs = [[np.percentile(np.array(f),(.3,99.7)) for f in ff] for ff in flat] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[i][j][0])/(percs[i][j][1]-percs[i][j][0]),0,1.) if self.XnormBtn.isChecked(): for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = profiles_all[i][j][k] x = np.linspace(0,1,len(profile)) fun = interp1d(x,profile) new_x = np.linspace(0,1,101) profiles_all[i][j][k] = fun(new_x) max_length = [] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): max_length.append(len(profiles_all[i][j][k])) max_length = np.max(max_length) if self.orientationBtn.currentText() == 'Signal based': for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): y = np.array(profiles_all[i][j][k])[~np.isnan(profiles_all[i][j][k])] n_p = len(y) if np.sum(y[:int(n_p/2)])>np.sum(y[int(n_p-n_p/2):]): profiles_all[i][j][k] = profiles_all[i][j][k][::-1] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): w = max_length-len(profiles_all[i][j][k]) if self.alignmentBtn.currentText() == 'Left': pad_width = (0,w) if self.alignmentBtn.currentText() == 'Right': pad_width = (w,0) elif self.alignmentBtn.currentText() == 'Center': if 2*int(w/2)==w: pad_width = (int(w/2),int(w/2)) else: pad_width = (int(w/2)+1,int(w/2)) profiles_all[i][j][k] = np.pad(profiles_all[i][j][k],pad_width,mode='constant',constant_values=np.nan) for i in range(n_groups): if self.groupPlotBtn[i].isChecked(): ydata_group = [] for j in range(n_folders[i]): for k in range(n_gastr[i][j]): ydata_group.append(profiles_all[i][j][k]) if self.rawBtn.isChecked(): ax.plot(ydata_group[-1],'-', lw=.5, c=self.colors[i], alpha = 0.2) max_length = np.max([len(d) for d in ydata_group]) _mean = np.zeros(max_length) _std = np.zeros(max_length) for j in range(max_length): datapoint = [] for data in ydata_group: datapoint.append(data[j]) _mean[j] = np.nanmean(datapoint) _std[j] = np.nanstd(datapoint) line = ax.plot(_mean,'-',lw=1,c=self.colors[i],label='Mean')[0] ax.fill_between(range(len(_mean)),_mean-_std,_mean+_std,facecolor=self.colors[i],alpha=.2, linewidth=0.,label='Std') lines.append(line) ax.set_ylim(0,None) ax.set_xlim(0,None) if self.XnormBtn.isChecked(): ax.set_xlim(0,100) if self.YnormBtn.currentText() != 'No normalization': ax.set_ylim(0,1) if self.legendBtn.isChecked(): l = ax.legend(lines,['Group '+str(i+1) for i in range(len(self.groupPlotBtn)) if self.groupPlotBtn[i].isChecked()]) l.get_frame().set_linewidth(0.0) self.canvas.draw() class profileAP_tlMode(QWidget): self.data_all = data_all self.n_groups = len(data_all) self.channel = channel self.colors = colors self.profileType = profileType self.make() def make(self): self.figure = Figure(figsize=(4, 2.5), dpi=100) self.canvas = FigureCanvas(self.figure) self.canvas.setSizePolicy(QSizePolicy.Expanding, QSizePolicy.Expanding) self.figure.clear() ax = self.figure.add_subplot(111) self.figure.subplots_adjust(top=0.95,right=0.95,left=0.2,bottom=0.25) ax.set_xlabel(self.profileType) ax.ticklabel_format(axis="x", style="sci", scilimits=(2,2)) ax.set_ylabel('Time') ax.ticklabel_format(axis="y", style="sci", scilimits=(0,2)) self.canvas.draw() for i in range(len(self.data_all)): self.groupPlotBtn.addItem('Group '+str(i+1)) lay = QGridLayout(self) lay.addWidget(QLabel('Background subtraction:'),2,0,1,1) lay.addWidget(self.bckgBtn,2,1,1,1) lay.addWidget(QLabel('Y axis normalization:'),4,0,1,1) lay.addWidget(self.YnormBtn,4,1,1,1) lay.addWidget(QLabel('X axis normalization:'),5,0,1,1) lay.addWidget(self.XnormBtn,5,1,1,1) lay.addWidget(QLabel('A-P orientation correction:'),6,0,1,1) lay.addWidget(self.orientationBtn,6,1,1,1) lay.addWidget(QLabel('Alignment:'),7,0,1,1) lay.addWidget(self.alignmentBtn,7,1,1,1) lay.addWidget(QLabel('Set axes aspect ratio to equal:'),8,0,1,1) lay.addWidget(self.aspectRatioBtn,8,1,1,1) lay.addWidget(QLabel('Current group:'),9,0,1,1) lay.addWidget(self.groupPlotBtn,9,1,1,2) settings_group.setLayout(lay) lay.setSpacing(10) lay.addWidget(NavigationToolbar(self.canvas, self),0,0,1,2) lay.addWidget(self.canvas,1,0,1,2) lay.addWidget(settings_group,2,0,1,2) lay.addWidget(self.applyBtn,3,0,1,2) lay.addWidget(self.saveBtn,4,0,1,2) self.remakePlot() self.setWindowTitle('Channel') QApplication.setStyle('Macintosh') def onCheckingXnormBtn(self): if self.XnormBtn.isChecked(): self.alignmentBtn.setEnabled(False) else: self.alignmentBtn.setEnabled(True) def remakePlot(self): n_groups = len(self.data_all) n_folders = [len(self.data_all[group_idx]) for group_idx in range(n_groups)] n_gastr = [[len(self.data_all[group_idx][folder_idx]['input_file']) for folder_idx in range(n_folders[group_idx])] for group_idx in range(n_groups)] profiles_all = [[[0 for k in range(n_gastr[i][j])] for j in range(n_folders[i])] for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profiles_all[i][j][k] = np.array(self.data_all[i][j][self.profileType][k][self.channel]) if self.bckgBtn.currentText() == 'Background': profiles_all[i][j][k] -= self.data_all[i][j]['Background'][k][self.channel] if self.bckgBtn.currentText() == 'Minimum': profiles_all[i][j][k] -= np.min(profiles_all[i][j][k]) percs = [None,None] if self.YnormBtn.currentText() == 'Global percentile': flat = [] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat.append(l) percs = np.percentile(np.array(flat),(.3,99.7)) for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[0])/(percs[1]-percs[0]),0,1.) elif self.YnormBtn.currentText() == 'Group percentile': flat = [[]for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat[i].append(l) percs = [np.percentile(np.array(f),(.3,99.7)) for f in flat] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[i][0])/(percs[i][1]-percs[i][0]),0,1.) elif self.YnormBtn.currentText() == 'Folder percentile': flat = [[[] for j in range(n_folders[i])] for i in range(n_groups)] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): for l in profiles_all[i][j][k]: flat[i][j].append(l) percs = [[np.percentile(np.array(f),(.3,99.7)) for f in ff] for ff in flat] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = np.array(profiles_all[i][j][k]) profiles_all[i][j][k] = np.clip((profile-percs[i][j][0])/(percs[i][j][1]-percs[i][j][0]),0,1.) self.percs = percs if self.XnormBtn.isChecked(): for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): profile = profiles_all[i][j][k] x = np.linspace(0,1,len(profile)) fun = interp1d(x,profile) new_x = np.linspace(0,1,101) profiles_all[i][j][k] = fun(new_x) max_length = [] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): max_length.append(len(profiles_all[i][j][k])) max_length = np.max(max_length) if self.orientationBtn.currentText() == 'Signal based': for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): y = np.array(profiles_all[i][j][k])[~np.isnan(profiles_all[i][j][k])] n_p = len(y) if np.sum(y[:int(n_p/2)])>np.sum(y[int(n_p-n_p/2):]): profiles_all[i][j][k] = profiles_all[i][j][k][::-1] for i in range(n_groups): for j in range(n_folders[i]): for k in range(n_gastr[i][j]): w = max_length-len(profiles_all[i][j][k]) if self.alignmentBtn.currentText() == 'Left': pad_width = (0,w) if self.alignmentBtn.currentText() == 'Right': pad_width = (w,0) elif self.alignmentBtn.currentText() == 'Center': if 2*int(w/2)==w: pad_width = (int(w/2),int(w/2)) else: pad_width = (int(w/2)+1,int(w/2)) profiles_all[i][j][k] = np.pad(profiles_all[i][j][k],pad_width,mode='constant',constant_values=np.nan) figure.clear() ax = self.figure.add_subplot(111) self.figure.subplots_adjust(top=0.95,right=0.95,left=0.2,bottom=0.25) ax.set_xlabel(self.profileType) ax.ticklabel_format(axis="x", style="sci", scilimits=(2,2)) ax.set_ylabel('Time') ax.ticklabel_format(axis="y", style="sci", scilimits=(0,2)) i = self.groupPlotBtn.currentIndex() max_t = np.max([n_gastr[i][j] for j in range(n_folders[i])]) max_l = np.max([len(profiles_all[i][j][k]) for j in range(n_folders[i]) for k in range(n_gastr[i][j])]) data_mean = np.zeros((max_t,max_l)) data_count = np.zeros((max_t,max_l)) for j in range(n_folders[i]): for k in range(n_gastr[i][j]): data = np.nan_to_num(profiles_all[i][j][k]) data_mean[k,:] += data data_count[k,:] += data!=0 data_mean = data_mean.astype(np.float)/data_count.astype(np.float) data_mean = np.nan_to_num(data_mean) aspect = 'auto' if self.aspectRatioBtn.isChecked(): aspect = 'equal' ax.imshow(data_mean, aspect=aspect) ax.set_title('Group '+str(i+1)) self.tif_data = data_mean self.canvas.draw() def save_tif(self): name,_ = QFileDialog.getSaveFileName(self, 'Save Overview File') if name != '': mended. Do you want to save the image as tif?') if buttonReply == QMessageBox.Yes: name = os.path.splitext(name)[0]+'.tif' if self.percs[0]!=None: self.tif_data = (2**16-1)*(self.tif_data-self.percs[0])/(self.percs[1]-self.percs[0]) imsave(name+'', self.tif_data.astype(np.uint16))
true
true
f70f5ed7f55124b815811b8e5f3e9fd3b4c6d9bc
28
py
Python
rpxdock/rosetta/__init__.py
willsheffler/tcdock
c7b8614221f4a94750054bfe5dfb12298e8d05b8
[ "Apache-2.0" ]
6
2020-09-08T09:31:52.000Z
2022-03-29T09:53:30.000Z
rpxdock/rosetta/__init__.py
willsheffler/tcdock
c7b8614221f4a94750054bfe5dfb12298e8d05b8
[ "Apache-2.0" ]
9
2020-04-13T21:11:50.000Z
2022-03-09T00:57:37.000Z
rpxdock/rosetta/__init__.py
willsheffler/tcdock
c7b8614221f4a94750054bfe5dfb12298e8d05b8
[ "Apache-2.0" ]
3
2020-04-13T20:04:20.000Z
2021-12-16T22:43:50.000Z
from .rosetta_util import *
14
27
0.785714
from .rosetta_util import *
true
true
f70f5fe84e1700532cb04c37da25039ecfc01520
1,202
py
Python
tests/test_graph.py
shawnbrown/toron
3a89273b5afbda17baf973f654a0947f6667ef4e
[ "Apache-2.0" ]
1
2015-08-15T18:28:16.000Z
2015-08-15T18:28:16.000Z
tests/test_graph.py
shawnbrown/gpn
70b9933277a66e884cced3f5fbc795e0e0cd2b9f
[ "Apache-2.0" ]
null
null
null
tests/test_graph.py
shawnbrown/gpn
70b9933277a66e884cced3f5fbc795e0e0cd2b9f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- try: from StringIO import StringIO except ImportError: from io import StringIO # New stdlib location in 3.0 from . import _unittest as unittest from .common import TempDirTestCase from toron.graph import Graph from toron._gpn_node import Node from toron import IN_MEMORY class TestInstantiation(TempDirTestCase): def setUp(self): self.addCleanup(self.cleanup_temp_files) def test_from_collection(self): old_boundary = Node(mode=IN_MEMORY, name='old_boundary') new_boundary = Node(mode=IN_MEMORY, name='new_boundary') collection = [old_boundary, new_boundary] graph = Graph(nodes=collection) # Load nodes from list. node_names = set(graph.nodes.keys()) self.assertSetEqual(set(['old_boundary', 'new_boundary']), node_names) def test_from_cwd(self): old_boundary = Node('old_boundary.node') new_boundary = Node('new_boundary.node') graph = Graph(path='.') # Load node files in current directory. node_names = set(graph.nodes.keys()) self.assertSetEqual(set(['old_boundary', 'new_boundary']), node_names) if __name__ == '__main__': unittest.main()
30.820513
78
0.694676
try: from StringIO import StringIO except ImportError: from io import StringIO from . import _unittest as unittest from .common import TempDirTestCase from toron.graph import Graph from toron._gpn_node import Node from toron import IN_MEMORY class TestInstantiation(TempDirTestCase): def setUp(self): self.addCleanup(self.cleanup_temp_files) def test_from_collection(self): old_boundary = Node(mode=IN_MEMORY, name='old_boundary') new_boundary = Node(mode=IN_MEMORY, name='new_boundary') collection = [old_boundary, new_boundary] graph = Graph(nodes=collection) node_names = set(graph.nodes.keys()) self.assertSetEqual(set(['old_boundary', 'new_boundary']), node_names) def test_from_cwd(self): old_boundary = Node('old_boundary.node') new_boundary = Node('new_boundary.node') graph = Graph(path='.') node_names = set(graph.nodes.keys()) self.assertSetEqual(set(['old_boundary', 'new_boundary']), node_names) if __name__ == '__main__': unittest.main()
true
true
f70f60c0f5ef6d0d238412ab8c0bcbba577b180c
3,261
py
Python
tensorflow/python/kernel_tests/softplus_op_test.py
AlexChrisF/udacity
b7f85a74058fc63ccb7601c418450ab934ef5953
[ "Apache-2.0" ]
65
2016-09-26T01:30:40.000Z
2021-08-11T17:00:41.000Z
tensorflow/python/kernel_tests/softplus_op_test.py
AlexChrisF/udacity
b7f85a74058fc63ccb7601c418450ab934ef5953
[ "Apache-2.0" ]
7
2017-07-13T09:40:59.000Z
2019-04-08T22:46:51.000Z
tensorflow/python/kernel_tests/softplus_op_test.py
AlexChrisF/udacity
b7f85a74058fc63ccb7601c418450ab934ef5953
[ "Apache-2.0" ]
38
2017-04-28T04:15:48.000Z
2019-09-28T05:11:46.000Z
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Softplus and SoftplusGrad.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import nn_ops import tensorflow.python.ops.nn_grad # pylint: disable=unused-import from tensorflow.python.platform import test class SoftplusTest(test.TestCase): def _npSoftplus(self, np_features): np_features = np.asarray(np_features) zero = np.asarray(0).astype(np_features.dtype) return np.logaddexp(zero, np_features) def _testSoftplus(self, np_features, use_gpu=False): np_softplus = self._npSoftplus(np_features) with self.test_session(use_gpu=use_gpu): softplus = nn_ops.softplus(np_features) tf_softplus = softplus.eval() self.assertAllCloseAccordingToType(np_softplus, tf_softplus) self.assertTrue(np.all(tf_softplus > 0)) self.assertShapeEqual(np_softplus, softplus) def testNumbers(self): for t in [np.float16, np.float32, np.float64]: self._testSoftplus( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), use_gpu=False) self._testSoftplus( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), use_gpu=True) log_eps = np.log(np.finfo(t).eps) one = t(1) ten = t(10) self._testSoftplus( [ log_eps, log_eps - one, log_eps + one, log_eps - ten, log_eps + ten, -log_eps, -log_eps - one, -log_eps + one, -log_eps - ten, -log_eps + ten ], use_gpu=False) self._testSoftplus( [ log_eps, log_eps - one, log_eps + one, log_eps - ten, log_eps + ten - log_eps, -log_eps - one, -log_eps + one, -log_eps - ten, -log_eps + ten ], use_gpu=True) def testGradient(self): with self.test_session(): x = constant_op.constant( [-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9], shape=[2, 5], name="x") y = nn_ops.softplus(x, name="softplus") x_init = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float32, order="F") err = gradient_checker.compute_gradient_error( x, [2, 5], y, [2, 5], x_init_value=x_init) print("softplus (float) gradient err = ", err) self.assertLess(err, 1e-4) if __name__ == "__main__": test.main()
35.835165
80
0.623735
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import constant_op from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import nn_ops import tensorflow.python.ops.nn_grad from tensorflow.python.platform import test class SoftplusTest(test.TestCase): def _npSoftplus(self, np_features): np_features = np.asarray(np_features) zero = np.asarray(0).astype(np_features.dtype) return np.logaddexp(zero, np_features) def _testSoftplus(self, np_features, use_gpu=False): np_softplus = self._npSoftplus(np_features) with self.test_session(use_gpu=use_gpu): softplus = nn_ops.softplus(np_features) tf_softplus = softplus.eval() self.assertAllCloseAccordingToType(np_softplus, tf_softplus) self.assertTrue(np.all(tf_softplus > 0)) self.assertShapeEqual(np_softplus, softplus) def testNumbers(self): for t in [np.float16, np.float32, np.float64]: self._testSoftplus( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), use_gpu=False) self._testSoftplus( np.array([[-9, 7, -5, 3, -1], [1, -3, 5, -7, 9]]).astype(t), use_gpu=True) log_eps = np.log(np.finfo(t).eps) one = t(1) ten = t(10) self._testSoftplus( [ log_eps, log_eps - one, log_eps + one, log_eps - ten, log_eps + ten, -log_eps, -log_eps - one, -log_eps + one, -log_eps - ten, -log_eps + ten ], use_gpu=False) self._testSoftplus( [ log_eps, log_eps - one, log_eps + one, log_eps - ten, log_eps + ten - log_eps, -log_eps - one, -log_eps + one, -log_eps - ten, -log_eps + ten ], use_gpu=True) def testGradient(self): with self.test_session(): x = constant_op.constant( [-0.9, -0.7, -0.5, -0.3, -0.1, 0.1, 0.3, 0.5, 0.7, 0.9], shape=[2, 5], name="x") y = nn_ops.softplus(x, name="softplus") x_init = np.asarray( [[-0.9, -0.7, -0.5, -0.3, -0.1], [0.1, 0.3, 0.5, 0.7, 0.9]], dtype=np.float32, order="F") err = gradient_checker.compute_gradient_error( x, [2, 5], y, [2, 5], x_init_value=x_init) print("softplus (float) gradient err = ", err) self.assertLess(err, 1e-4) if __name__ == "__main__": test.main()
true
true
f70f620578b48f44b3909f01dd65ebfbea4e404e
1,774
py
Python
rezip.py
costerwi/rezip
c5386b96d8ed81a91b191b019ba48cf8377be578
[ "Apache-2.0" ]
35
2016-09-03T12:15:15.000Z
2022-03-14T11:04:33.000Z
rezip.py
costerwi/rezip
c5386b96d8ed81a91b191b019ba48cf8377be578
[ "Apache-2.0" ]
4
2017-02-08T07:25:42.000Z
2019-06-07T01:58:27.000Z
rezip.py
costerwi/rezip
c5386b96d8ed81a91b191b019ba48cf8377be578
[ "Apache-2.0" ]
7
2017-01-25T13:48:12.000Z
2020-09-19T23:35:44.000Z
#!/usr/bin/env python """Read zip format file from stdin and write new zip to stdout. With the --store option the output will be an uncompressed zip. Uncompressed files are stored more efficiently in Git. https://github.com/costerwi/rezip """ import sys import io from zipfile import * import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--store", help="Store data to stdout zip without compression", action="store_true") parser.add_argument("-d", "--deterministic", help="Remove any file metadata in order to obtain a deterministic "\ "zip file. This is usefull in order to make sure that e.g. the "\ "modification date of the zipped files is irrelevant.", action="store_true") args = parser.parse_args() if args.store: compression = ZIP_STORED else: compression = ZIP_DEFLATED if not hasattr(sys.stdout, 'buffer'): raise RuntimeError('Sorry, Python3 is required.') # Use BytesIO objects as random access source and destination files with io.BytesIO(sys.stdin.buffer.read()) as source, io.BytesIO() as dest: # Read and re-zip the file in memory with ZipFile(source, 'r') as source_zip, ZipFile(dest, 'w') as dest_zip: for info in source_zip.infolist(): # Iterate over each file in zip if args.deterministic: newinfo = ZipInfo(info.filename) newinfo.create_system = 0 # everything else is fixed else: newinfo = info dest_zip.writestr(newinfo, source_zip.read(info), compression) dest_zip.comment = source_zip.comment # Copy the comment if any # Write the dest file as binary to stdout dest.seek(0) sys.stdout.buffer.write(dest.read())
35.48
78
0.683202
import sys import io from zipfile import * import argparse parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--store", help="Store data to stdout zip without compression", action="store_true") parser.add_argument("-d", "--deterministic", help="Remove any file metadata in order to obtain a deterministic "\ "zip file. This is usefull in order to make sure that e.g. the "\ "modification date of the zipped files is irrelevant.", action="store_true") args = parser.parse_args() if args.store: compression = ZIP_STORED else: compression = ZIP_DEFLATED if not hasattr(sys.stdout, 'buffer'): raise RuntimeError('Sorry, Python3 is required.') with io.BytesIO(sys.stdin.buffer.read()) as source, io.BytesIO() as dest: with ZipFile(source, 'r') as source_zip, ZipFile(dest, 'w') as dest_zip: for info in source_zip.infolist(): if args.deterministic: newinfo = ZipInfo(info.filename) newinfo.create_system = 0 else: newinfo = info dest_zip.writestr(newinfo, source_zip.read(info), compression) dest_zip.comment = source_zip.comment dest.seek(0) sys.stdout.buffer.write(dest.read())
true
true
f70f62b25660fe1a403bdc5ec0c24fed82b48c60
1,202
py
Python
domonic/webapi/dragndrop.py
byteface/domonic
971c2ae6ce2253e302873d40fd5b6e46a8f9ca95
[ "MIT" ]
94
2020-07-12T12:02:07.000Z
2022-03-25T03:04:57.000Z
domonic/webapi/dragndrop.py
byteface/domonic
971c2ae6ce2253e302873d40fd5b6e46a8f9ca95
[ "MIT" ]
41
2021-06-02T10:51:58.000Z
2022-02-21T09:58:43.000Z
domonic/webapi/dragndrop.py
byteface/domonic
971c2ae6ce2253e302873d40fd5b6e46a8f9ca95
[ "MIT" ]
17
2021-06-10T00:34:27.000Z
2022-02-21T09:47:30.000Z
""" domonic.webapi.dragndrop ==================================== https://developer.mozilla.org/en-US/docs/Web/API/HTML_Drag_and_Drop_API """ from domonic.events import DragEvent class DataTransfer: def __init__(self): self.data = {} self.types = [] self.files = [] self.items = [] self.dropEffect = "" self.effectAllowed = "" def clearData(self, type): self.data[type] = "" self.types.remove(type) def getData(self, type): return self.data[type] def setData(self, type, data): self.data[type] = data self.types.append(type) def setDragImage(self, image, x, y): pass def addElement(self, element): self.items.append(element) # def addFile(self, file): # self.files.append(file) # class DataTransferItem: # def __init__(self, type, data): # self.type = type # self.data = data # def getAsString(self): # return self.data # def getAsFile(self): # return self.data # def getAsFileSystemHandle(self): # return self.data # def webkitGetAsEntry(self): # return self.data
20.724138
75
0.56406
from domonic.events import DragEvent class DataTransfer: def __init__(self): self.data = {} self.types = [] self.files = [] self.items = [] self.dropEffect = "" self.effectAllowed = "" def clearData(self, type): self.data[type] = "" self.types.remove(type) def getData(self, type): return self.data[type] def setData(self, type, data): self.data[type] = data self.types.append(type) def setDragImage(self, image, x, y): pass def addElement(self, element): self.items.append(element)
true
true
f70f62fe541c2c1b6d4e273273e528bf2f968458
3,533
py
Python
gfwanalysis/routes/api/v1/whrc_biomass_router.py
archelogos/gfw-umd-gee
b1f5492f798a775eee24517bccbc10da513663f6
[ "MIT" ]
5
2017-11-01T21:13:19.000Z
2022-03-03T09:26:19.000Z
gfwanalysis/routes/api/v1/whrc_biomass_router.py
gfw-api/gfw-umd-gee
b1f5492f798a775eee24517bccbc10da513663f6
[ "MIT" ]
11
2018-01-22T09:05:23.000Z
2019-09-20T11:55:57.000Z
gfwanalysis/routes/api/v1/whrc_biomass_router.py
gfw-api/gfw-umd-gee
b1f5492f798a775eee24517bccbc10da513663f6
[ "MIT" ]
3
2020-07-10T13:30:58.000Z
2020-10-14T07:43:12.000Z
"""API ROUTER""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from flask import jsonify, Blueprint from gfwanalysis.errors import WHRCBiomassError from gfwanalysis.middleware import get_geo_by_hash, get_geo_by_use, get_geo_by_wdpa, \ get_geo_by_national, get_geo_by_subnational, get_geo_by_regional from gfwanalysis.routes.api import error, set_params from gfwanalysis.serializers import serialize_whrc_biomass from gfwanalysis.services.analysis.whrc_biomass_service import WHRCBiomassService from gfwanalysis.validators import validate_geostore whrc_biomass_endpoints_v1 = Blueprint('whrc_biomass', __name__) def analyze(geojson, area_ha): """Analyze WHRC Biomass""" logging.info('[ROUTER]: WHRC Getting biomass') if not geojson: return error(status=400, detail='A Geojson argument is required') threshold, start, end, table = set_params() logging.info(f'[ROUTER]: whrc biomass params {threshold}, {start}, {end}') try: data = WHRCBiomassService.analyze( geojson=geojson, threshold=threshold) except WHRCBiomassError as e: logging.error('[ROUTER]: ' + e.message) return error(status=500, detail=e.message) except Exception as e: logging.error('[ROUTER]: ' + str(e)) return error(status=500, detail='Generic Error') data['area_ha'] = area_ha data['biomass_density'] = data['biomass'] / data['tree_cover'] if data['tree_cover'] > 0 else 0 # logging.info(f"[Router WHRC Biomass] - response from service: biomass density {data.get('biomass_density')}") # logging.info(f"[Router WHRC Biomass] - response from service: biomass {data.get('biomass')}") return jsonify(data=serialize_whrc_biomass(data, 'whrc-biomass')), 200 @whrc_biomass_endpoints_v1.route('/', strict_slashes=False, methods=['GET', 'POST']) @validate_geostore @get_geo_by_hash def get_by_geostore(geojson, area_ha): """By Geostore Endpoint""" logging.info('[ROUTER]: Getting biomass by geostore') return analyze(geojson, area_ha) @whrc_biomass_endpoints_v1.route('/use/<name>/<id>', strict_slashes=False, methods=['GET']) @get_geo_by_use def get_by_use(name, id, geojson, area_ha): """Use Endpoint""" logging.info('[ROUTER]: Getting biomass by use') return analyze(geojson, area_ha) @whrc_biomass_endpoints_v1.route('/wdpa/<id>', strict_slashes=False, methods=['GET']) @get_geo_by_wdpa def get_by_wdpa(id, geojson, area_ha): """Wdpa Endpoint""" logging.info('[ROUTER]: Getting biomass by wdpa') return analyze(geojson, area_ha) @whrc_biomass_endpoints_v1.route('/admin/<iso>', strict_slashes=False, methods=['GET']) @get_geo_by_national def get_by_national(iso, geojson, area_ha): """National Endpoint""" logging.info('[ROUTER]: Getting biomass loss by iso') return analyze(geojson, area_ha) @whrc_biomass_endpoints_v1.route('/admin/<iso>/<id1>', strict_slashes=False, methods=['GET']) @get_geo_by_subnational def get_by_subnational(iso, id1, geojson, area_ha): """Subnational Endpoint""" logging.info('[ROUTER]: Getting biomass loss by admin1') return analyze(geojson, area_ha) @whrc_biomass_endpoints_v1.route('/admin/<iso>/<id1>/<id2>', strict_slashes=False, methods=['GET']) @get_geo_by_regional def get_by_regional(iso, id1, id2, geojson, area_ha): """Subnational Endpoint""" logging.info('[ROUTER]: Getting biomass loss by admin2 ') return analyze(geojson, area_ha)
37.585106
115
0.731956
from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging from flask import jsonify, Blueprint from gfwanalysis.errors import WHRCBiomassError from gfwanalysis.middleware import get_geo_by_hash, get_geo_by_use, get_geo_by_wdpa, \ get_geo_by_national, get_geo_by_subnational, get_geo_by_regional from gfwanalysis.routes.api import error, set_params from gfwanalysis.serializers import serialize_whrc_biomass from gfwanalysis.services.analysis.whrc_biomass_service import WHRCBiomassService from gfwanalysis.validators import validate_geostore whrc_biomass_endpoints_v1 = Blueprint('whrc_biomass', __name__) def analyze(geojson, area_ha): logging.info('[ROUTER]: WHRC Getting biomass') if not geojson: return error(status=400, detail='A Geojson argument is required') threshold, start, end, table = set_params() logging.info(f'[ROUTER]: whrc biomass params {threshold}, {start}, {end}') try: data = WHRCBiomassService.analyze( geojson=geojson, threshold=threshold) except WHRCBiomassError as e: logging.error('[ROUTER]: ' + e.message) return error(status=500, detail=e.message) except Exception as e: logging.error('[ROUTER]: ' + str(e)) return error(status=500, detail='Generic Error') data['area_ha'] = area_ha data['biomass_density'] = data['biomass'] / data['tree_cover'] if data['tree_cover'] > 0 else 0 return jsonify(data=serialize_whrc_biomass(data, 'whrc-biomass')), 200 @whrc_biomass_endpoints_v1.route('/', strict_slashes=False, methods=['GET', 'POST']) @validate_geostore @get_geo_by_hash def get_by_geostore(geojson, area_ha): logging.info('[ROUTER]: Getting biomass by geostore') return analyze(geojson, area_ha) @whrc_biomass_endpoints_v1.route('/use/<name>/<id>', strict_slashes=False, methods=['GET']) @get_geo_by_use def get_by_use(name, id, geojson, area_ha): logging.info('[ROUTER]: Getting biomass by use') return analyze(geojson, area_ha) @whrc_biomass_endpoints_v1.route('/wdpa/<id>', strict_slashes=False, methods=['GET']) @get_geo_by_wdpa def get_by_wdpa(id, geojson, area_ha): logging.info('[ROUTER]: Getting biomass by wdpa') return analyze(geojson, area_ha) @whrc_biomass_endpoints_v1.route('/admin/<iso>', strict_slashes=False, methods=['GET']) @get_geo_by_national def get_by_national(iso, geojson, area_ha): logging.info('[ROUTER]: Getting biomass loss by iso') return analyze(geojson, area_ha) @whrc_biomass_endpoints_v1.route('/admin/<iso>/<id1>', strict_slashes=False, methods=['GET']) @get_geo_by_subnational def get_by_subnational(iso, id1, geojson, area_ha): logging.info('[ROUTER]: Getting biomass loss by admin1') return analyze(geojson, area_ha) @whrc_biomass_endpoints_v1.route('/admin/<iso>/<id1>/<id2>', strict_slashes=False, methods=['GET']) @get_geo_by_regional def get_by_regional(iso, id1, id2, geojson, area_ha): logging.info('[ROUTER]: Getting biomass loss by admin2 ') return analyze(geojson, area_ha)
true
true
f70f63a933620850da4b7b78a47ed2fd877b2fba
9,951
py
Python
BayCatEncoder/code.py
libinruan/hierarchical_bayesian_target_encoder
7510028a8ad1dea308802c4ca3d3a05533a9c89b
[ "MIT" ]
1
2021-11-28T19:05:55.000Z
2021-11-28T19:05:55.000Z
BayCatEncoder/code.py
libinruan/hierarchical_bayesian_target_encoder
7510028a8ad1dea308802c4ca3d3a05533a9c89b
[ "MIT" ]
null
null
null
BayCatEncoder/code.py
libinruan/hierarchical_bayesian_target_encoder
7510028a8ad1dea308802c4ca3d3a05533a9c89b
[ "MIT" ]
1
2021-11-28T19:07:01.000Z
2021-11-28T19:07:01.000Z
#%% import numpy as np import pandas as pd import time from sklearn.base import BaseEstimator, TransformerMixin from collections import defaultdict from sklearn.model_selection import KFold, StratifiedKFold class Timer: def __enter__(self): self.start=time.time() return self def __exit__(self, *args): self.end=time.time() self.hour, temp = divmod((self.end - self.start), 3600) self.min, self.second = divmod(temp, 60) self.hour, self.min, self.second = int(self.hour), int(self.min), round(self.second, 2) return self class BayCatEncoder(BaseEstimator, TransformerMixin): def __init__(self, group_cols, target_col='target', N_min=1, # the higher, the more regularization is introduced into the update. CV=True, n_fold=5, verbosity=True, delimiter='.', drop_original=False, drop_intermediate=False, random_seed=2020): self.group_cols = [group_cols] if isinstance(group_cols, str) else group_cols # List of column names combination: e.g. ['n1.n2.n4', 'n3.n4', 'n2']. self.target_col = target_col # String: 'target' by default. self.stats = defaultdict(dict) # key: column names combination; value: corresponding info about n, N, and computed code. self.N_min = N_min # regularization control self.drop_original = drop_original # toggle key for whether to drop original column name(s) or not. self.CV = CV # Bool self.n_fold = n_fold self.drop_intermediate = drop_intermediate self.delimiter = delimiter self.verbosity = verbosity # Bool self.seed = random_seed self.set_original_col = set() def fit(self, X, y): self.col_subsets = self._generate_subsets(self.group_cols) df = pd.concat([X.copy(), y.copy()], axis=1) assert(isinstance(self.target_col, str)) df.columns = X.columns.tolist() + [self.target_col] assert(self._check_col_consistency(X)) if not self.CV: self._single_fit(df) else: self._cv_fit(df) return self def _single_fit(self, df): size_col_subsets = len(self.col_subsets) count_subset = 0 print(f'start bayesian target encoding on cross features in the following order: {self.col_subsets}') for subset in self.col_subsets: count_subset += 1 with Timer() as t: if self.verbosity: print(f'{subset} - Order {count_subset}/{size_col_subsets}') df_stat, stat, cross_features = self._update(df, subset) features_encoded = cross_features + '_code' self.stats[cross_features] = pd.merge( stat, df_stat.groupby(subset)[features_encoded].mean(), left_index=True, right_index=True) if self.verbosity: print(f'time elapsed: {t.hour} hours {t.min} mins {t.second} seconds') return self def _cv_fit(self, df): kf = StratifiedKFold(n_splits = self.n_fold, shuffle = True, random_state=self.seed) size_col_subsets = len(self.col_subsets) count_subset = 0 for subset in self.col_subsets: count_subset += 1 with Timer() as t: for i, (tr_idx, val_idx) in enumerate(kf.split(df.drop(self.target_col, axis=1), df[self.target_col])): if self.verbosity: print(f'{subset} - Order {count_subset}/{size_col_subsets} - Round {i+1}/{self.n_fold}') df_tr, df_val = df.iloc[tr_idx].copy(), df.iloc[val_idx].copy() # Vital for avoid "A value is trying to be set on a copy of a slice from a DataFrame." warning. df_stat, stat, cross_features = self._update(df_tr, subset) features_encoded = cross_features + '_code' df.loc[df.index[val_idx], features_encoded] = pd.merge( df_val[subset], df_stat.groupby(subset)[features_encoded].mean(), left_on=subset, right_index=True, how='left' )[features_encoded].copy() \ .fillna(df[self.target_col].mean()) self.stats[cross_features] = df.groupby(subset)[features_encoded].mean().to_frame() if self.verbosity: print(f'time elapsed: {t.hour} hours {t.min} mins {t.second} seconds') return self def _update(self, df, subset): self.global_prior_mean = df[self.target_col].mean() if len(subset) == 1: self.set_original_col.add(*subset) upper_level_cols = 'global' if not upper_level_cols + '_prior_mean' in df.columns: df.loc[:, upper_level_cols + '_prior_mean'] = self.global_prior_mean else: upper_level_cols = self.delimiter.join(subset[:-1]) # e.g. the n1.n2 subset's upper level feature is `n1`. if not upper_level_cols + '_prior_mean' in df.columns: df.loc[:, upper_level_cols + '_prior_mean'] = pd.merge( df[subset[:-1]], self.stats[upper_level_cols][upper_level_cols + '_code'], left_on=subset[:-1], right_index=True, how='left' )[upper_level_cols + '_code'].copy() stat = df.groupby(subset).agg( n=(self.target_col, 'sum'), N=(self.target_col, 'count'), prior_mean=(upper_level_cols + '_prior_mean', 'mean') ) # Calculate posterior mean df_stat = pd.merge(df[subset], stat, left_on=subset, right_index=True, how='left') df_stat['n'].mask(df_stat['n'].isnull(), df_stat['prior_mean'], inplace=True) df_stat['N'].fillna(1., inplace=True) df_stat.loc[:, 'N_prior'] = df_stat['N'].map(lambda x: max(self.N_min - x, 0)) df_stat.loc[:, 'alpha_prior'] = df_stat['prior_mean'] * df_stat['N_prior'] df_stat.loc[:, 'beta_prior'] = (1. - df_stat['prior_mean']) * df_stat['N_prior'] # Large N -> zero N_prior -> zero alpha_prior and zero beta_prior -> if n is zero as well -> alpha prior, beta prior both zero -> alpha zero -> posterior mean = zero as well. if len(subset) == 1: cross_features = subset[0] else: cross_features = self.delimiter.join(subset) df_stat.loc[:, cross_features + '_code'] = df_stat.apply(self._stat_mean, axis=1) # core # TEST set!! return df_stat, stat, cross_features def _generate_subsets(self, groups, delimiter='.'): subsets = defaultdict(list) for g in groups: chain = g.split(delimiter) for i in range(len(chain)): if chain[i] and not chain[:i+1] in subsets[i]: subsets[i].append(chain[:i+1]) ret = [] for _, v in subsets.items(): if not v in ret: ret.extend(v) return ret def _stat_mean(self, X): df = X.copy() alpha = df['alpha_prior'] + df['n'] beta = df['beta_prior'] + df['N'] - df['n'] return alpha / (alpha + beta) def _check_col_consistency(self, df): """Check whether columns specified in `self.group_cols` are all included in `df`. """ s = set() for col_subset in self.col_subsets: s |= set(col_subset) for col in s: if not col in df.columns: return False return True def transform(self, X): assert(self._check_col_consistency(X)) for subset in self.col_subsets: key = '.'.join(subset) X = pd.merge( X, self.stats[key][key + '_code'], left_on=subset, right_index=True, how='left') if len(subset) == 1: X[key + '_code'].fillna(self.global_prior_mean, inplace=True) else: parent_key = '.'.join(subset[:-1]) + '_code' X[key + '_code'].fillna(X[parent_key].mask(X[parent_key] > self.global_prior_mean, self.global_prior_mean), inplace=True) if self.drop_original: for col in self.set_original_col: X.drop(col, axis=1, inplace=True) X.rename(columns={col+'_code': col}, inplace=True) if self.drop_intermediate: for col in X.columns: if col.endswith('_code') and not col.strip('_code') in self.group_cols: X.drop(col, axis=1, inplace=True) return X #%% if __name__ == '__main__': np.random.seed(1) k = 15 n1 = np.random.choice(['a','b'], k) n2 = np.random.choice(['c','d'], k) n3 = np.random.choice(['e','f'], k) target = np.random.randint(0, 2, size=k) train = pd.DataFrame( {'n1': n1, 'n2': n2, 'n3':n3, 'target': target}, columns=['n1', 'n2', 'n3', 'target'] ) train.columns = ['n1','n2','n3', 'target'] train k = 6 n4 = np.random.choice(['a','b'], k) n5 = np.random.choice(['c','d'], k) n6 = np.random.choice(['e','f'], k) test = pd.DataFrame({'n4': n4, 'n2': n5, 'n3':n6}) test.columns = ['n1','n2','n3'] test te = BayCatEncoder( 'n1.n2.n3', #['n1.n2.n3', 'n2.n3', 'n3'], target_col='target', drop_original=False, drop_intermediate=False, CV=False ) \ .fit(train.drop('target', axis=1), train.target) # te.transform(test) te.transform(test) # %%
44.226667
274
0.553613
import numpy as np import pandas as pd import time from sklearn.base import BaseEstimator, TransformerMixin from collections import defaultdict from sklearn.model_selection import KFold, StratifiedKFold class Timer: def __enter__(self): self.start=time.time() return self def __exit__(self, *args): self.end=time.time() self.hour, temp = divmod((self.end - self.start), 3600) self.min, self.second = divmod(temp, 60) self.hour, self.min, self.second = int(self.hour), int(self.min), round(self.second, 2) return self class BayCatEncoder(BaseEstimator, TransformerMixin): def __init__(self, group_cols, target_col='target', N_min=1, CV=True, n_fold=5, verbosity=True, delimiter='.', drop_original=False, drop_intermediate=False, random_seed=2020): self.group_cols = [group_cols] if isinstance(group_cols, str) else group_cols self.target_col = target_col self.stats = defaultdict(dict) self.N_min = N_min self.drop_original = drop_original self.CV = CV self.n_fold = n_fold self.drop_intermediate = drop_intermediate self.delimiter = delimiter self.verbosity = verbosity self.seed = random_seed self.set_original_col = set() def fit(self, X, y): self.col_subsets = self._generate_subsets(self.group_cols) df = pd.concat([X.copy(), y.copy()], axis=1) assert(isinstance(self.target_col, str)) df.columns = X.columns.tolist() + [self.target_col] assert(self._check_col_consistency(X)) if not self.CV: self._single_fit(df) else: self._cv_fit(df) return self def _single_fit(self, df): size_col_subsets = len(self.col_subsets) count_subset = 0 print(f'start bayesian target encoding on cross features in the following order: {self.col_subsets}') for subset in self.col_subsets: count_subset += 1 with Timer() as t: if self.verbosity: print(f'{subset} - Order {count_subset}/{size_col_subsets}') df_stat, stat, cross_features = self._update(df, subset) features_encoded = cross_features + '_code' self.stats[cross_features] = pd.merge( stat, df_stat.groupby(subset)[features_encoded].mean(), left_index=True, right_index=True) if self.verbosity: print(f'time elapsed: {t.hour} hours {t.min} mins {t.second} seconds') return self def _cv_fit(self, df): kf = StratifiedKFold(n_splits = self.n_fold, shuffle = True, random_state=self.seed) size_col_subsets = len(self.col_subsets) count_subset = 0 for subset in self.col_subsets: count_subset += 1 with Timer() as t: for i, (tr_idx, val_idx) in enumerate(kf.split(df.drop(self.target_col, axis=1), df[self.target_col])): if self.verbosity: print(f'{subset} - Order {count_subset}/{size_col_subsets} - Round {i+1}/{self.n_fold}') df_tr, df_val = df.iloc[tr_idx].copy(), df.iloc[val_idx].copy() df_stat, stat, cross_features = self._update(df_tr, subset) features_encoded = cross_features + '_code' df.loc[df.index[val_idx], features_encoded] = pd.merge( df_val[subset], df_stat.groupby(subset)[features_encoded].mean(), left_on=subset, right_index=True, how='left' )[features_encoded].copy() \ .fillna(df[self.target_col].mean()) self.stats[cross_features] = df.groupby(subset)[features_encoded].mean().to_frame() if self.verbosity: print(f'time elapsed: {t.hour} hours {t.min} mins {t.second} seconds') return self def _update(self, df, subset): self.global_prior_mean = df[self.target_col].mean() if len(subset) == 1: self.set_original_col.add(*subset) upper_level_cols = 'global' if not upper_level_cols + '_prior_mean' in df.columns: df.loc[:, upper_level_cols + '_prior_mean'] = self.global_prior_mean else: upper_level_cols = self.delimiter.join(subset[:-1]) if not upper_level_cols + '_prior_mean' in df.columns: df.loc[:, upper_level_cols + '_prior_mean'] = pd.merge( df[subset[:-1]], self.stats[upper_level_cols][upper_level_cols + '_code'], left_on=subset[:-1], right_index=True, how='left' )[upper_level_cols + '_code'].copy() stat = df.groupby(subset).agg( n=(self.target_col, 'sum'), N=(self.target_col, 'count'), prior_mean=(upper_level_cols + '_prior_mean', 'mean') ) # Calculate posterior mean df_stat = pd.merge(df[subset], stat, left_on=subset, right_index=True, how='left') df_stat['n'].mask(df_stat['n'].isnull(), df_stat['prior_mean'], inplace=True) df_stat['N'].fillna(1., inplace=True) df_stat.loc[:, 'N_prior'] = df_stat['N'].map(lambda x: max(self.N_min - x, 0)) df_stat.loc[:, 'alpha_prior'] = df_stat['prior_mean'] * df_stat['N_prior'] df_stat.loc[:, 'beta_prior'] = (1. - df_stat['prior_mean']) * df_stat['N_prior'] # Large N -> zero N_prior -> zero alpha_prior and zero beta_prior -> if n is zero as well -> alpha prior, beta prior both zero -> alpha zero -> posterior mean = zero as well. if len(subset) == 1: cross_features = subset[0] else: cross_features = self.delimiter.join(subset) df_stat.loc[:, cross_features + '_code'] = df_stat.apply(self._stat_mean, axis=1) # core # TEST set!! return df_stat, stat, cross_features def _generate_subsets(self, groups, delimiter='.'): subsets = defaultdict(list) for g in groups: chain = g.split(delimiter) for i in range(len(chain)): if chain[i] and not chain[:i+1] in subsets[i]: subsets[i].append(chain[:i+1]) ret = [] for _, v in subsets.items(): if not v in ret: ret.extend(v) return ret def _stat_mean(self, X): df = X.copy() alpha = df['alpha_prior'] + df['n'] beta = df['beta_prior'] + df['N'] - df['n'] return alpha / (alpha + beta) def _check_col_consistency(self, df): s = set() for col_subset in self.col_subsets: s |= set(col_subset) for col in s: if not col in df.columns: return False return True def transform(self, X): assert(self._check_col_consistency(X)) for subset in self.col_subsets: key = '.'.join(subset) X = pd.merge( X, self.stats[key][key + '_code'], left_on=subset, right_index=True, how='left') if len(subset) == 1: X[key + '_code'].fillna(self.global_prior_mean, inplace=True) else: parent_key = '.'.join(subset[:-1]) + '_code' X[key + '_code'].fillna(X[parent_key].mask(X[parent_key] > self.global_prior_mean, self.global_prior_mean), inplace=True) if self.drop_original: for col in self.set_original_col: X.drop(col, axis=1, inplace=True) X.rename(columns={col+'_code': col}, inplace=True) if self.drop_intermediate: for col in X.columns: if col.endswith('_code') and not col.strip('_code') in self.group_cols: X.drop(col, axis=1, inplace=True) return X #%% if __name__ == '__main__': np.random.seed(1) k = 15 n1 = np.random.choice(['a','b'], k) n2 = np.random.choice(['c','d'], k) n3 = np.random.choice(['e','f'], k) target = np.random.randint(0, 2, size=k) train = pd.DataFrame( {'n1': n1, 'n2': n2, 'n3':n3, 'target': target}, columns=['n1', 'n2', 'n3', 'target'] ) train.columns = ['n1','n2','n3', 'target'] train k = 6 n4 = np.random.choice(['a','b'], k) n5 = np.random.choice(['c','d'], k) n6 = np.random.choice(['e','f'], k) test = pd.DataFrame({'n4': n4, 'n2': n5, 'n3':n6}) test.columns = ['n1','n2','n3'] test te = BayCatEncoder( 'n1.n2.n3', #['n1.n2.n3', 'n2.n3', 'n3'], target_col='target', drop_original=False, drop_intermediate=False, CV=False ) \ .fit(train.drop('target', axis=1), train.target) # te.transform(test) te.transform(test) # %%
true
true
f70f64b1c0e459c2b611f15e5ff01ad74993ec1e
1,318
py
Python
commands/ports.py
retr0-13/routeros-scanner
9a834d3459aa4621db33dab32a50d6c297bda059
[ "MIT" ]
1
2022-03-17T00:19:41.000Z
2022-03-17T00:19:41.000Z
commands/ports.py
retr0-13/routeros-scanner
9a834d3459aa4621db33dab32a50d6c297bda059
[ "MIT" ]
null
null
null
commands/ports.py
retr0-13/routeros-scanner
9a834d3459aa4621db33dab32a50d6c297bda059
[ "MIT" ]
1
2022-03-22T10:47:12.000Z
2022-03-22T10:47:12.000Z
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. from commands.basecommand import BaseCommand class Ports(BaseCommand): def __init__(self): self.__name__ = 'Ports' def run_ssh(self, sshc): res = self._ssh_data_with_header(sshc, '/ip service print detail') sus_dns, recommendation = self.check_results_ssh(res) return {'raw_data': res, 'suspicious': sus_dns, 'recommendation': recommendation} def check_results_ssh(self, res): sus_ports = [] recommendation = [] def_ports = {'telnet': 23, 'ftp': 21, 'www': 80, 'ssh': 22, 'www-ssl': 443, 'api': 8728, 'winbox': 8291, 'api-ssl': 8729} for item in res: service = item['name'] if def_ports[service] != int(item['port']): sus_ports.append(f'The port for {service}, has changed from {def_ports[service]} to {item["port"]} - ' f'severity: low') if (service == 'ssh') and (int(item['port']) == 22): recommendation.append('The port for ssh protocol is as ssh default port (22)- Mikrotik company ' 'recommended to change it') return sus_ports, recommendation
28.652174
118
0.560698
from commands.basecommand import BaseCommand class Ports(BaseCommand): def __init__(self): self.__name__ = 'Ports' def run_ssh(self, sshc): res = self._ssh_data_with_header(sshc, '/ip service print detail') sus_dns, recommendation = self.check_results_ssh(res) return {'raw_data': res, 'suspicious': sus_dns, 'recommendation': recommendation} def check_results_ssh(self, res): sus_ports = [] recommendation = [] def_ports = {'telnet': 23, 'ftp': 21, 'www': 80, 'ssh': 22, 'www-ssl': 443, 'api': 8728, 'winbox': 8291, 'api-ssl': 8729} for item in res: service = item['name'] if def_ports[service] != int(item['port']): sus_ports.append(f'The port for {service}, has changed from {def_ports[service]} to {item["port"]} - ' f'severity: low') if (service == 'ssh') and (int(item['port']) == 22): recommendation.append('The port for ssh protocol is as ssh default port (22)- Mikrotik company ' 'recommended to change it') return sus_ports, recommendation
true
true
f70f675e28b12cb449e04ec8328c32afe56f38dc
1,876
py
Python
exercicios_resolvidos3/exercicios3/capitulo 09/exercicio-09-35.py
tiagosm1/Python_Nilo_Ney
b5380dcc8fcf64e9c047ebc353585caba3d7b397
[ "MIT" ]
null
null
null
exercicios_resolvidos3/exercicios3/capitulo 09/exercicio-09-35.py
tiagosm1/Python_Nilo_Ney
b5380dcc8fcf64e9c047ebc353585caba3d7b397
[ "MIT" ]
null
null
null
exercicios_resolvidos3/exercicios3/capitulo 09/exercicio-09-35.py
tiagosm1/Python_Nilo_Ney
b5380dcc8fcf64e9c047ebc353585caba3d7b397
[ "MIT" ]
null
null
null
############################################################################## # Parte do livro Introdução à Programação com Python # Autor: Nilo Ney Coutinho Menezes # Editora Novatec (c) 2010-2020 # Primeira edição - Novembro/2010 - ISBN 978-85-7522-250-8 # Segunda edição - Junho/2014 - ISBN 978-85-7522-408-3 # Terceira Edição - Janeiro/2019 - ISBN 978-85-7522-718-3 # # Site: https://python.nilo.pro.br/ # # Arquivo: exercicios3\capitulo 09\exercicio-09-35.py ############################################################################## import sys import os import os.path # este módulo ajuda com a conversão de nomes de arquivos para links # válidos em HTML import urllib.request mascara_do_estilo = "'margin: 5px 0px 5px %dpx;'" def gera_estilo(nível): return mascara_do_estilo % (nível * 20) def gera_listagem(página, diretório): nraiz = os.path.abspath(diretório).count(os.sep) for raiz, diretórios, arquivos in os.walk(diretório): nível = raiz.count(os.sep) - nraiz página.write(f"<p style={gera_estilo(nível)}>{raiz}</p>") estilo = gera_estilo(nível+1) for a in arquivos: caminho_completo = os.path.join(raiz, a) tamanho = os.path.getsize(caminho_completo) link = urllib.request.pathname2url(caminho_completo) página.write(f"<p style={estilo}><a href='{link}'>{a}</a> ({tamanho} bytes)</p>") if len(sys.argv) < 2: print("Digite o nome do diretório para coletar os arquivos!") sys.exit(1) diretório = sys.argv[1] página = open("arquivos.html", "w", encoding="utf-8") página.write(""" <!DOCTYPE html> <html lang="pt-BR"> <head> <meta charset="utf-8"> <title>Arquivos</title> </head> <body> """) página.write(f"Arquivos encontrados a partir do diretório: {diretório}") gera_listagem(página, diretório) página.write(""" </body> </html> """) página.close()
29.3125
94
0.623134
true
true
f70f67632a3e49c17b9d54c76405c03ad7b33836
2,341
py
Python
bomber.py
SashaSarzh/InstagramDirectBomber
050f601860d6d1bd094cd209fba86a8f02ffc2b0
[ "Unlicense" ]
5
2020-10-13T13:16:43.000Z
2021-12-10T08:20:44.000Z
bomber.py
SashaSarzh/InstagramDirectBomber
050f601860d6d1bd094cd209fba86a8f02ffc2b0
[ "Unlicense" ]
1
2021-12-10T09:05:56.000Z
2021-12-10T09:05:56.000Z
bomber.py
SashaSarzh/InstagramDirectBomber
050f601860d6d1bd094cd209fba86a8f02ffc2b0
[ "Unlicense" ]
3
2020-10-13T16:03:57.000Z
2021-12-28T06:34:35.000Z
from InstagramAPI import InstagramAPI from colorama import Fore, Back, Style import getpass import sys import webbrowser import time import requests import json print(Fore.GREEN + """ ░░███╗░░███╗░░██╗░██████╗████████╗░░██╗██╗██████╗░░█████╗░███╗░░░███╗██████╗░██████╗░██████╗░ ░████║░░████╗░██║██╔════╝╚══██╔══╝░██╔╝██║██╔══██╗██╔══██╗████╗░████║██╔══██╗╚════██╗██╔══██╗ ██╔██║░░██╔██╗██║╚█████╗░░░░██║░░░██╔╝░██║██████╦╝██║░░██║██╔████╔██║██████╦╝░█████╔╝██████╔╝ ╚═╝██║░░██║╚████║░╚═══██╗░░░██║░░░███████║██╔══██╗██║░░██║██║╚██╔╝██║██╔══██╗░╚═══██╗██╔══██╗ ███████╗██║░╚███║██████╔╝░░░██║░░░╚════██║██████╦╝╚█████╔╝██║░╚═╝░██║██████╦╝██████╔╝██║░░██║ ╚══════╝╚═╝░░╚══╝╚═════╝░░░░╚═╝░░░░░░░░╚═╝╚═════╝░░╚════╝░╚═╝░░░░░╚═╝╚═════╝░╚═════╝░╚═╝░░╚═╝ Author: @SashaSarzh """ + Style.RESET_ALL) nostop = 0 accounts = input("Input here list of your account(If haven't type Enter): ") if not accounts: username = input("Your Login: ") password = getpass.getpass() api = InstagramAPI(username, password) api.login() istimes = 0 else: f = open(accounts, 'r') NumberOfLine = 0 for line in f: NumberOfLine += 1 username, password = line.split(':') print ("Login found: ", username) api = InstagramAPI(username, password) api.login() istimes = 0 user = input("Victims nickname: ") url = "https://www.instagram.com/web/search/topsearch/?context=blended&query="+user+"&rank_token=0.3953592318270893&count=1" response = requests.get(url) respJSON = response.json() user_id = str( respJSON['users'][0].get("user").get("pk") ) while True: if user == "niggvard" or user == "jidkiypuk2": print("No no no") sys.exit() else: break message = input("Text of message: ") if istimes == 0: times = int(input("How many messages you want send: ")) elif istimes == 1: times = NumberOfLine print("You will use bomber ", times,"times ", user_id, "with message: ", message, ".") ask = input("Do you want continue[y/n]: ") if ask == 'y': print('Starting..') elif ask == 'n': print('Stopping..') sys.exit() else: print('Stopping') sys.exit() while times > nostop: nostop = nostop + 1 api.sendMessage(user_id,message) print(nostop, ">> Send", user, ": ", message)
28.204819
125
0.470739
from InstagramAPI import InstagramAPI from colorama import Fore, Back, Style import getpass import sys import webbrowser import time import requests import json print(Fore.GREEN + """ ░░███╗░░███╗░░██╗░██████╗████████╗░░██╗██╗██████╗░░█████╗░███╗░░░███╗██████╗░██████╗░██████╗░ ░████║░░████╗░██║██╔════╝╚══██╔══╝░██╔╝██║██╔══██╗██╔══██╗████╗░████║██╔══██╗╚════██╗██╔══██╗ ██╔██║░░██╔██╗██║╚█████╗░░░░██║░░░██╔╝░██║██████╦╝██║░░██║██╔████╔██║██████╦╝░█████╔╝██████╔╝ ╚═╝██║░░██║╚████║░╚═══██╗░░░██║░░░███████║██╔══██╗██║░░██║██║╚██╔╝██║██╔══██╗░╚═══██╗██╔══██╗ ███████╗██║░╚███║██████╔╝░░░██║░░░╚════██║██████╦╝╚█████╔╝██║░╚═╝░██║██████╦╝██████╔╝██║░░██║ ╚══════╝╚═╝░░╚══╝╚═════╝░░░░╚═╝░░░░░░░░╚═╝╚═════╝░░╚════╝░╚═╝░░░░░╚═╝╚═════╝░╚═════╝░╚═╝░░╚═╝ Author: @SashaSarzh """ + Style.RESET_ALL) nostop = 0 accounts = input("Input here list of your account(If haven't type Enter): ") if not accounts: username = input("Your Login: ") password = getpass.getpass() api = InstagramAPI(username, password) api.login() istimes = 0 else: f = open(accounts, 'r') NumberOfLine = 0 for line in f: NumberOfLine += 1 username, password = line.split(':') print ("Login found: ", username) api = InstagramAPI(username, password) api.login() istimes = 0 user = input("Victims nickname: ") url = "https://www.instagram.com/web/search/topsearch/?context=blended&query="+user+"&rank_token=0.3953592318270893&count=1" response = requests.get(url) respJSON = response.json() user_id = str( respJSON['users'][0].get("user").get("pk") ) while True: if user == "niggvard" or user == "jidkiypuk2": print("No no no") sys.exit() else: break message = input("Text of message: ") if istimes == 0: times = int(input("How many messages you want send: ")) elif istimes == 1: times = NumberOfLine print("You will use bomber ", times,"times ", user_id, "with message: ", message, ".") ask = input("Do you want continue[y/n]: ") if ask == 'y': print('Starting..') elif ask == 'n': print('Stopping..') sys.exit() else: print('Stopping') sys.exit() while times > nostop: nostop = nostop + 1 api.sendMessage(user_id,message) print(nostop, ">> Send", user, ": ", message)
true
true
f70f68ac77916fe59476135cbaa77a1fc88fd642
17,623
py
Python
exports_and_stats.py
UB-Dortmund/mms
39dbb4bee68ee951ee0a5324c684b86a76d0ab6d
[ "Unlicense" ]
null
null
null
exports_and_stats.py
UB-Dortmund/mms
39dbb4bee68ee951ee0a5324c684b86a76d0ab6d
[ "Unlicense" ]
null
null
null
exports_and_stats.py
UB-Dortmund/mms
39dbb4bee68ee951ee0a5324c684b86a76d0ab6d
[ "Unlicense" ]
null
null
null
# The MIT License # # Copyright 2015-2017 University Library Bochum <bibliogaphie-ub@rub.de> and UB Dortmund <api.ub@tu-dortmund.de>. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from __future__ import (absolute_import, division, print_function, unicode_literals) import logging import re from logging.handlers import RotatingFileHandler from bs4 import BeautifulSoup import requests import simplejson as json from flask import Flask, request, jsonify, url_for from flask import make_response from flask_cors import CORS from flask_swagger import swagger from flask_wtf.csrf import CSRFProtect from forms.forms import * import persistence from utils.solr_handler import Solr try: import local_stats_secrets as secrets except ImportError: import stats_secrets as secrets class ReverseProxied(object): def __init__(self, app): self.app = app def __call__(self, environ, start_response): script_name = environ.get('HTTP_X_SCRIPT_NAME', '') if script_name: environ['SCRIPT_NAME'] = script_name path_info = environ['PATH_INFO'] if path_info.startswith(script_name): environ['PATH_INFO'] = path_info[len(script_name):] scheme = environ.get('HTTP_X_SCHEME', '') if scheme: environ['wsgi.url_scheme'] = scheme return self.app(environ, start_response) app = Flask(__name__) CORS(app) if secrets.DIFFERENT_PROXY_PATH: app.wsgi_app = ReverseProxied(app.wsgi_app) app.debug = secrets.DEBUG app.secret_key = secrets.DEBUG_KEY app.config['DEBUG_TB_INTERCEPT_REDIRECTS '] = False csrf = CSRFProtect(app) log_formatter = logging.Formatter("[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s") handler = RotatingFileHandler(secrets.LOGFILE, maxBytes=10000, backupCount=1) handler.setLevel(logging.INFO) handler.setFormatter(log_formatter) app.logger.addHandler(handler) log = logging.getLogger('werkzeug') log.setLevel(logging.DEBUG) log.addHandler(handler) # ---------- EXPORT ---------- @app.route('/export/openapc/<year>', methods=['GET']) @csrf.exempt def export_openapc(year=''): ''' Getting a bibliography swagger_from_file: api_doc/export_openapc.yml ''' if theme(request.access_route) == 'dortmund': affiliation = 'tudo' affiliation_str = 'TU Dortmund' elif theme(request.access_route) == 'bochum': affiliation = 'rubi' affiliation_str = 'Ruhr-Universität Bochum' else: affiliation = '' affiliation_str = '' if affiliation: csv = '"institution";"period";"euro";"doi";"is_hybrid";"publisher";"journal_full_title";"issn";"url";"local_id"\n' oa_solr = Solr(host=secrets.SOLR_HOST, port=secrets.SOLR_PORT, application=secrets.SOLR_APP, core='hb2', handler='query', query='oa_funds:true', facet='false', rows=100000, fquery=['%s:true' % affiliation, 'fdate:%s' % year]) oa_solr.request() results = oa_solr.results if len(results) > 0: for record in results: thedata = json.loads(record.get('wtf_json')) doi = record.get('doi')[0] is_hybrid = False if record.get('is_hybrid'): is_hybrid = record.get('is_hybrid') publisher = '' journal_title = '' issn = '' url = '' if not doi: journal_title = '' if record.get('is_part_of_id'): if record.get('is_part_of_id')[0]: host = persistence.get_work(record.get('is_part_of_id')[0]) if host: record = json.loads(host.get('wtf_json')) # print(json.dumps(record, indent=4)) journal_title = record.get('title') if record.get('fsubseries'): journal_title = record.get('fsubseries') publisher = '' if record.get('publisher'): publisher = record.get('publisher') issn = '' if record.get('ISSN'): for entry in record.get('ISSN'): if entry: issn = entry break url = '' if thedata.get('uri'): for uri in thedata.get('uri'): url = uri break csv += '"%s";%s;%s;"%s";"%s";"%s";"%s";"%s";"%s";"%s"\n' % ( affiliation_str, year, 0.00, doi, is_hybrid, publisher, journal_title, issn, url, record.get('id') ) resp = make_response(csv, 200) resp.headers['Content-Type'] = 'text/csv; charset=utf-8' return resp else: return make_response('No results', 404) else: return make_response('No affiliation parameter set. Please contact the administrator!', 400) @app.route('/export/oa_report/<year>', methods=['GET']) @csrf.exempt def export_oa_report(year=''): ''' Getting a bibliography swagger_from_file: api_doc/export_oa_report.yml ''' pubtype = request.args.get('pubtype', 'ArticleJournal') if theme(request.access_route) == 'dortmund': affiliation = 'tudo' affiliation_str = 'TU Dortmund' elif theme(request.access_route) == 'bochum': affiliation = 'rubi' affiliation_str = 'Ruhr-Universität Bochum' else: affiliation = '' affiliation_str = '' if affiliation: csv = '"AU";"TI";"SO";"DT";"RP";"EM";"OI";"PU";"ISSN";"E-ISSN";"DOI";"OA";"RP TUDO";"Fak"\n' # TODO search for all publications of the given year oa_solr = Solr(host=secrets.SOLR_HOST, port=secrets.SOLR_PORT, application=secrets.SOLR_APP, core='hb2', handler='query', query='*:*', facet='false', rows=100000, fquery=['%s:true' % affiliation, 'fdate:%s' % year, 'pubtype:%s' % pubtype]) oa_solr.request() results = oa_solr.results if results: for record in results: thedata = json.loads(record.get('wtf_json')) author = '' corresponding_author = '' corresponding_affiliation = '' faks = '' for person in thedata.get('person'): if 'aut' in person.get('role'): author += person.get('name') + ';' if person.get('corresponding_author'): corresponding_author = person.get('name') if person.get('tudo'): corresponding_affiliation = True if person.get('gnd'): tudo = persistence.get_person(person.get('gnd')) # print(person.get('gnd')) if tudo: if tudo.get('affiliation_id'): faks = '' for entry in tudo.get('affiliation_id'): affil = persistence.get_orga(entry) fak = '' if affil: has_parent = False fak = affil.get('pref_label') if affil.get('parent_id'): has_parent = True fak = '%s / %s' % (affil.get('parent_label'), affil.get('pref_label')) while has_parent: affil = persistence.get_orga(affil.get('parent_id')) if affil.get('parent_id'): has_parent = True fak = '%s / %s' % (affil.get('parent_label'), affil.get('pref_label')) else: has_parent = False else: fak = 'LinkError: Person %s' % person.get('gnd') faks += fak + ';' faks = faks[:-1] author = author[:-1] publisher = '' journal_title = '' issn = '' journal_title = '' if record.get('is_part_of_id'): if record.get('is_part_of_id')[0]: host = persistence.get_work(record.get('is_part_of_id')[0]) if host: record = json.loads(host.get('wtf_json')) # print(json.dumps(record, indent=4)) journal_title = record.get('title') if record.get('fsubseries'): journal_title = record.get('fsubseries') publisher = '' if record.get('publisher'): publisher = record.get('publisher') issn = '' if record.get('ISSN'): for entry in record.get('ISSN'): if entry: issn = entry break csv += '"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s"\n' % ( author, thedata.get('title'), journal_title, 'article', corresponding_author, '', '', publisher, issn, '', thedata.get('DOI')[0], thedata.get('oa_funded'), corresponding_affiliation, faks, ) resp = make_response(csv, 200) resp.headers['Content-Type'] = 'text/csv; charset=utf-8' return resp else: return make_response('No affiliation parameter set. Please contact the administrator!', 400) # ---------- STATISTICS ---------- # ---------- REST ---------- @app.route("/export/spec") def spec(): swag = swagger(app, from_file_keyword='swagger_from_file') swag['info']['version'] = secrets.SWAGGER_API_VERSION swag['info']['title'] = secrets.SWAGGER_TITLE swag['info']['description'] = secrets.SWAGGER_DESCRIPTION swag['schemes'] = secrets.SWAGGER_SCHEMES swag['host'] = secrets.SWAGGER_HOST swag['basePath'] = secrets.SWAGGER_BASEPATH swag['tags'] = [ { 'name': 'monitoring', 'description': 'Methods for monitoring the service' }, { 'name': 'export', 'description': 'Special data views as exports' }, { 'name': 'statistics', 'description': 'Statistics' }, ] return jsonify(swag) @app.route('/export/_ping') @csrf.exempt def _ping(): """ Ping the service swagger_from_file: bibliography_doc/_ping.yml """ try: if 'failed' in json.dumps(dependencies_health(), indent=4): return make_response('One or more dependencies unavailable!', 500) else: return make_response('pong', 200) except Exception: return make_response('One or more dependencies unavailable!', 500) @app.route('/export/_health') @csrf.exempt def _health(): """ Showing the health of the service an its dependencies swagger_from_file: bibliography_doc/_health.yml """ health_json = { "name": "hb2_flask", "timestamp": timestamp(), "dependencies": dependencies_health() } json_string = json.dumps(health_json, indent=4) status = 200 if 'failed' in json_string: status = 500 response = make_response(json_string, status) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Content-type'] = 'application/json' return response def dependencies_health(): dependencies = [] # health of Solr cores try: status = requests.get( 'http://%s:%s/%s/hb2/admin/ping?wt=json' % (secrets.SOLR_HOST, secrets.SOLR_PORT, secrets.SOLR_APP), headers={'Accept': 'application/json'}).json().get('status').lower() except requests.exceptions.ConnectionError: status = 'failed' dependencies.append({ 'service': 'Solr Core "hb2"', 'status': status, 'description': 'Storage for bibliographic data', 'external': False }) try: status = requests.get( 'http://%s:%s/%s/hb2_users/admin/ping?wt=json' % (secrets.SOLR_HOST, secrets.SOLR_PORT, secrets.SOLR_APP), headers={'Accept': 'application/json'}).json().get('status').lower() except requests.exceptions.ConnectionError: status = 'failed' dependencies.append({ 'service': 'Solr Core "hb2_users"', 'status': status, 'description': 'Storage for registered users', 'external': False }) try: status = requests.get( 'http://%s:%s/%s/group/admin/ping?wt=json' % (secrets.SOLR_HOST, secrets.SOLR_PORT, secrets.SOLR_APP), headers={'Accept': 'application/json'}).json().get('status').lower() except requests.exceptions.ConnectionError: status = 'failed' dependencies.append({ 'service': 'Solr Core "group', 'status': status, 'description': 'Storage for working groups or projects data', 'external': False }) try: status = requests.get( 'http://%s:%s/%s/organisation/admin/ping?wt=json' % (secrets.SOLR_HOST, secrets.SOLR_PORT, secrets.SOLR_APP), headers={'Accept': 'application/json'}).json().get('status').lower() except requests.exceptions.ConnectionError: status = 'failed' dependencies.append({ 'service': 'Solr Core "organisation', 'status': status, 'description': 'Storage for organisations data', 'external': False }) try: status = requests.get( 'http://%s:%s/%s/person/admin/ping?wt=json' % (secrets.SOLR_HOST, secrets.SOLR_PORT, secrets.SOLR_APP), headers={'Accept': 'application/json'}).json().get('status').lower() except requests.exceptions.ConnectionError: status = 'failed' dependencies.append({ 'service': 'Solr Core "person', 'status': status, 'description': 'Storage for persons data', 'external': False }) return dependencies # ---------- MAIN ---------- def str2bool(v): if str(v).lower() in ("yes", "true", "True", "t", "1"): return True else: return False def theme(ip): # logging.info('IPs: %s' % len(ip)) # logging.info('IPs: %s' % ip) site = 'dortmund' try: idx = len(ip)-2 except Exception: idx = ip[0] if ip[idx].startswith('134.147'): site = 'bochum' elif ip[idx].startswith('129.217'): site = 'dortmund' return site def cleanhtml(raw_html): cleanr = re.compile('<.*?>') cleantext = re.sub(cleanr, '', raw_html) return cleantext if __name__ == '__main__': app.run(port=secrets.APP_PORT)
35.74645
130
0.511037
from __future__ import (absolute_import, division, print_function, unicode_literals) import logging import re from logging.handlers import RotatingFileHandler from bs4 import BeautifulSoup import requests import simplejson as json from flask import Flask, request, jsonify, url_for from flask import make_response from flask_cors import CORS from flask_swagger import swagger from flask_wtf.csrf import CSRFProtect from forms.forms import * import persistence from utils.solr_handler import Solr try: import local_stats_secrets as secrets except ImportError: import stats_secrets as secrets class ReverseProxied(object): def __init__(self, app): self.app = app def __call__(self, environ, start_response): script_name = environ.get('HTTP_X_SCRIPT_NAME', '') if script_name: environ['SCRIPT_NAME'] = script_name path_info = environ['PATH_INFO'] if path_info.startswith(script_name): environ['PATH_INFO'] = path_info[len(script_name):] scheme = environ.get('HTTP_X_SCHEME', '') if scheme: environ['wsgi.url_scheme'] = scheme return self.app(environ, start_response) app = Flask(__name__) CORS(app) if secrets.DIFFERENT_PROXY_PATH: app.wsgi_app = ReverseProxied(app.wsgi_app) app.debug = secrets.DEBUG app.secret_key = secrets.DEBUG_KEY app.config['DEBUG_TB_INTERCEPT_REDIRECTS '] = False csrf = CSRFProtect(app) log_formatter = logging.Formatter("[%(asctime)s] {%(pathname)s:%(lineno)d} %(levelname)s - %(message)s") handler = RotatingFileHandler(secrets.LOGFILE, maxBytes=10000, backupCount=1) handler.setLevel(logging.INFO) handler.setFormatter(log_formatter) app.logger.addHandler(handler) log = logging.getLogger('werkzeug') log.setLevel(logging.DEBUG) log.addHandler(handler) @app.route('/export/openapc/<year>', methods=['GET']) @csrf.exempt def export_openapc(year=''): if theme(request.access_route) == 'dortmund': affiliation = 'tudo' affiliation_str = 'TU Dortmund' elif theme(request.access_route) == 'bochum': affiliation = 'rubi' affiliation_str = 'Ruhr-Universität Bochum' else: affiliation = '' affiliation_str = '' if affiliation: csv = '"institution";"period";"euro";"doi";"is_hybrid";"publisher";"journal_full_title";"issn";"url";"local_id"\n' oa_solr = Solr(host=secrets.SOLR_HOST, port=secrets.SOLR_PORT, application=secrets.SOLR_APP, core='hb2', handler='query', query='oa_funds:true', facet='false', rows=100000, fquery=['%s:true' % affiliation, 'fdate:%s' % year]) oa_solr.request() results = oa_solr.results if len(results) > 0: for record in results: thedata = json.loads(record.get('wtf_json')) doi = record.get('doi')[0] is_hybrid = False if record.get('is_hybrid'): is_hybrid = record.get('is_hybrid') publisher = '' journal_title = '' issn = '' url = '' if not doi: journal_title = '' if record.get('is_part_of_id'): if record.get('is_part_of_id')[0]: host = persistence.get_work(record.get('is_part_of_id')[0]) if host: record = json.loads(host.get('wtf_json')) journal_title = record.get('title') if record.get('fsubseries'): journal_title = record.get('fsubseries') publisher = '' if record.get('publisher'): publisher = record.get('publisher') issn = '' if record.get('ISSN'): for entry in record.get('ISSN'): if entry: issn = entry break url = '' if thedata.get('uri'): for uri in thedata.get('uri'): url = uri break csv += '"%s";%s;%s;"%s";"%s";"%s";"%s";"%s";"%s";"%s"\n' % ( affiliation_str, year, 0.00, doi, is_hybrid, publisher, journal_title, issn, url, record.get('id') ) resp = make_response(csv, 200) resp.headers['Content-Type'] = 'text/csv; charset=utf-8' return resp else: return make_response('No results', 404) else: return make_response('No affiliation parameter set. Please contact the administrator!', 400) @app.route('/export/oa_report/<year>', methods=['GET']) @csrf.exempt def export_oa_report(year=''): pubtype = request.args.get('pubtype', 'ArticleJournal') if theme(request.access_route) == 'dortmund': affiliation = 'tudo' affiliation_str = 'TU Dortmund' elif theme(request.access_route) == 'bochum': affiliation = 'rubi' affiliation_str = 'Ruhr-Universität Bochum' else: affiliation = '' affiliation_str = '' if affiliation: csv = '"AU";"TI";"SO";"DT";"RP";"EM";"OI";"PU";"ISSN";"E-ISSN";"DOI";"OA";"RP TUDO";"Fak"\n' oa_solr = Solr(host=secrets.SOLR_HOST, port=secrets.SOLR_PORT, application=secrets.SOLR_APP, core='hb2', handler='query', query='*:*', facet='false', rows=100000, fquery=['%s:true' % affiliation, 'fdate:%s' % year, 'pubtype:%s' % pubtype]) oa_solr.request() results = oa_solr.results if results: for record in results: thedata = json.loads(record.get('wtf_json')) author = '' corresponding_author = '' corresponding_affiliation = '' faks = '' for person in thedata.get('person'): if 'aut' in person.get('role'): author += person.get('name') + ';' if person.get('corresponding_author'): corresponding_author = person.get('name') if person.get('tudo'): corresponding_affiliation = True if person.get('gnd'): tudo = persistence.get_person(person.get('gnd')) if tudo: if tudo.get('affiliation_id'): faks = '' for entry in tudo.get('affiliation_id'): affil = persistence.get_orga(entry) fak = '' if affil: has_parent = False fak = affil.get('pref_label') if affil.get('parent_id'): has_parent = True fak = '%s / %s' % (affil.get('parent_label'), affil.get('pref_label')) while has_parent: affil = persistence.get_orga(affil.get('parent_id')) if affil.get('parent_id'): has_parent = True fak = '%s / %s' % (affil.get('parent_label'), affil.get('pref_label')) else: has_parent = False else: fak = 'LinkError: Person %s' % person.get('gnd') faks += fak + ';' faks = faks[:-1] author = author[:-1] publisher = '' journal_title = '' issn = '' journal_title = '' if record.get('is_part_of_id'): if record.get('is_part_of_id')[0]: host = persistence.get_work(record.get('is_part_of_id')[0]) if host: record = json.loads(host.get('wtf_json')) journal_title = record.get('title') if record.get('fsubseries'): journal_title = record.get('fsubseries') publisher = '' if record.get('publisher'): publisher = record.get('publisher') issn = '' if record.get('ISSN'): for entry in record.get('ISSN'): if entry: issn = entry break csv += '"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s";"%s"\n' % ( author, thedata.get('title'), journal_title, 'article', corresponding_author, '', '', publisher, issn, '', thedata.get('DOI')[0], thedata.get('oa_funded'), corresponding_affiliation, faks, ) resp = make_response(csv, 200) resp.headers['Content-Type'] = 'text/csv; charset=utf-8' return resp else: return make_response('No affiliation parameter set. Please contact the administrator!', 400) @app.route("/export/spec") def spec(): swag = swagger(app, from_file_keyword='swagger_from_file') swag['info']['version'] = secrets.SWAGGER_API_VERSION swag['info']['title'] = secrets.SWAGGER_TITLE swag['info']['description'] = secrets.SWAGGER_DESCRIPTION swag['schemes'] = secrets.SWAGGER_SCHEMES swag['host'] = secrets.SWAGGER_HOST swag['basePath'] = secrets.SWAGGER_BASEPATH swag['tags'] = [ { 'name': 'monitoring', 'description': 'Methods for monitoring the service' }, { 'name': 'export', 'description': 'Special data views as exports' }, { 'name': 'statistics', 'description': 'Statistics' }, ] return jsonify(swag) @app.route('/export/_ping') @csrf.exempt def _ping(): try: if 'failed' in json.dumps(dependencies_health(), indent=4): return make_response('One or more dependencies unavailable!', 500) else: return make_response('pong', 200) except Exception: return make_response('One or more dependencies unavailable!', 500) @app.route('/export/_health') @csrf.exempt def _health(): health_json = { "name": "hb2_flask", "timestamp": timestamp(), "dependencies": dependencies_health() } json_string = json.dumps(health_json, indent=4) status = 200 if 'failed' in json_string: status = 500 response = make_response(json_string, status) response.headers['Access-Control-Allow-Origin'] = '*' response.headers['Content-type'] = 'application/json' return response def dependencies_health(): dependencies = [] try: status = requests.get( 'http://%s:%s/%s/hb2/admin/ping?wt=json' % (secrets.SOLR_HOST, secrets.SOLR_PORT, secrets.SOLR_APP), headers={'Accept': 'application/json'}).json().get('status').lower() except requests.exceptions.ConnectionError: status = 'failed' dependencies.append({ 'service': 'Solr Core "hb2"', 'status': status, 'description': 'Storage for bibliographic data', 'external': False }) try: status = requests.get( 'http://%s:%s/%s/hb2_users/admin/ping?wt=json' % (secrets.SOLR_HOST, secrets.SOLR_PORT, secrets.SOLR_APP), headers={'Accept': 'application/json'}).json().get('status').lower() except requests.exceptions.ConnectionError: status = 'failed' dependencies.append({ 'service': 'Solr Core "hb2_users"', 'status': status, 'description': 'Storage for registered users', 'external': False }) try: status = requests.get( 'http://%s:%s/%s/group/admin/ping?wt=json' % (secrets.SOLR_HOST, secrets.SOLR_PORT, secrets.SOLR_APP), headers={'Accept': 'application/json'}).json().get('status').lower() except requests.exceptions.ConnectionError: status = 'failed' dependencies.append({ 'service': 'Solr Core "group', 'status': status, 'description': 'Storage for working groups or projects data', 'external': False }) try: status = requests.get( 'http://%s:%s/%s/organisation/admin/ping?wt=json' % (secrets.SOLR_HOST, secrets.SOLR_PORT, secrets.SOLR_APP), headers={'Accept': 'application/json'}).json().get('status').lower() except requests.exceptions.ConnectionError: status = 'failed' dependencies.append({ 'service': 'Solr Core "organisation', 'status': status, 'description': 'Storage for organisations data', 'external': False }) try: status = requests.get( 'http://%s:%s/%s/person/admin/ping?wt=json' % (secrets.SOLR_HOST, secrets.SOLR_PORT, secrets.SOLR_APP), headers={'Accept': 'application/json'}).json().get('status').lower() except requests.exceptions.ConnectionError: status = 'failed' dependencies.append({ 'service': 'Solr Core "person', 'status': status, 'description': 'Storage for persons data', 'external': False }) return dependencies # ---------- MAIN ---------- def str2bool(v): if str(v).lower() in ("yes", "true", "True", "t", "1"): return True else: return False def theme(ip): # logging.info('IPs: %s' % len(ip)) # logging.info('IPs: %s' % ip) site = 'dortmund' try: idx = len(ip)-2 except Exception: idx = ip[0] if ip[idx].startswith('134.147'): site = 'bochum' elif ip[idx].startswith('129.217'): site = 'dortmund' return site def cleanhtml(raw_html): cleanr = re.compile('<.*?>') cleantext = re.sub(cleanr, '', raw_html) return cleantext if __name__ == '__main__': app.run(port=secrets.APP_PORT)
true
true
f70f69db064aa00e8a22d18234f4e4bfb925c067
5,053
py
Python
tools/harness-automation/autothreadharness/harness_controller.py
ltaoti/openthread
b24192267d56c9a175739d8b2a285bc4b701deaf
[ "BSD-3-Clause" ]
3
2018-06-20T11:13:33.000Z
2020-12-08T15:15:10.000Z
tools/harness-automation/autothreadharness/harness_controller.py
ltaoti/openthread
b24192267d56c9a175739d8b2a285bc4b701deaf
[ "BSD-3-Clause" ]
2
2017-03-23T07:47:54.000Z
2017-08-21T03:12:31.000Z
tools/harness-automation/autothreadharness/harness_controller.py
ltaoti/openthread
b24192267d56c9a175739d8b2a285bc4b701deaf
[ "BSD-3-Clause" ]
3
2017-08-29T01:31:57.000Z
2020-05-07T22:56:52.000Z
#!/usr/bin/env python # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import ConfigParser import logging import os import subprocess import time from autothreadharness import settings logger = logging.getLogger(__name__) HARNESS_SVN_VERSION_R44 = 1471 """int: this is the first published release that miniweb was removed from Harness""" def _try_kill(proc): logger.info('Try kill process') times = 1 while proc.poll() is None: proc.kill() time.sleep(5) if proc.poll() is not None: logger.info('Process has been killed') break logger.info('Trial %d failed', times) times += 1 if times > 3: raise SystemExit() class HarnessController(object): """Harness service control This controls harness service, including the harness back-end and front-end. """ harness = None """harness back-end""" miniweb = None """harness front-end""" def __init__(self, result_dir=None): self.result_dir = result_dir self.harness_file = '' harness_info = ConfigParser.ConfigParser() harness_info.read('%s\\info.ini' % settings.HARNESS_HOME) self.version = harness_info.getint('Thread_Harness_Info', 'SVN') def start(self): logger.info('Starting harness service') if self.harness: logger.warning('Harness already started') else: env = dict(os.environ, PYTHONPATH='%s\\Thread_Harness;%s\\ThirdParty\\hsdk-python\\src' % (settings.HARNESS_HOME, settings.HARNESS_HOME)) self.harness_file = '%s\\harness-%s.log' % (self.result_dir, time.strftime('%Y%m%d%H%M%S')) with open(self.harness_file, 'w') as harness_out: self.harness = subprocess.Popen([settings.HARNESS_HOME + '\\Python27\\python.exe', settings.HARNESS_HOME + '\\Thread_Harness\\Run.py'], cwd=settings.HARNESS_HOME, stdout=harness_out, stderr=harness_out, env=env) time.sleep(2) if self.version >= HARNESS_SVN_VERSION_R44: return if self.miniweb: logger.warning('Miniweb already started') else: with open('%s\\miniweb-%s.log' % (self.result_dir, time.strftime('%Y%m%d%H%M%S')), 'w') as miniweb_out: self.miniweb = subprocess.Popen([settings.HARNESS_HOME + '\\MiniWeb\\miniweb.exe'], stdout=miniweb_out, stderr=miniweb_out, cwd=settings.HARNESS_HOME + '\\MiniWeb') def stop(self): logger.info('Stopping harness service') if self.harness: _try_kill(self.harness) self.harness = None else: logger.warning('Harness not started yet') if self.version >= HARNESS_SVN_VERSION_R44: return if self.miniweb: _try_kill(self.miniweb) self.miniweb = None else: logger.warning('Miniweb not started yet') def tail(self): with open(self.harness_file) as harness_out: harness_out.seek(-100, 2) return ''.join(harness_out.readlines()) def __del__(self): self.stop()
36.883212
115
0.622798
import ConfigParser import logging import os import subprocess import time from autothreadharness import settings logger = logging.getLogger(__name__) HARNESS_SVN_VERSION_R44 = 1471 def _try_kill(proc): logger.info('Try kill process') times = 1 while proc.poll() is None: proc.kill() time.sleep(5) if proc.poll() is not None: logger.info('Process has been killed') break logger.info('Trial %d failed', times) times += 1 if times > 3: raise SystemExit() class HarnessController(object): harness = None miniweb = None def __init__(self, result_dir=None): self.result_dir = result_dir self.harness_file = '' harness_info = ConfigParser.ConfigParser() harness_info.read('%s\\info.ini' % settings.HARNESS_HOME) self.version = harness_info.getint('Thread_Harness_Info', 'SVN') def start(self): logger.info('Starting harness service') if self.harness: logger.warning('Harness already started') else: env = dict(os.environ, PYTHONPATH='%s\\Thread_Harness;%s\\ThirdParty\\hsdk-python\\src' % (settings.HARNESS_HOME, settings.HARNESS_HOME)) self.harness_file = '%s\\harness-%s.log' % (self.result_dir, time.strftime('%Y%m%d%H%M%S')) with open(self.harness_file, 'w') as harness_out: self.harness = subprocess.Popen([settings.HARNESS_HOME + '\\Python27\\python.exe', settings.HARNESS_HOME + '\\Thread_Harness\\Run.py'], cwd=settings.HARNESS_HOME, stdout=harness_out, stderr=harness_out, env=env) time.sleep(2) if self.version >= HARNESS_SVN_VERSION_R44: return if self.miniweb: logger.warning('Miniweb already started') else: with open('%s\\miniweb-%s.log' % (self.result_dir, time.strftime('%Y%m%d%H%M%S')), 'w') as miniweb_out: self.miniweb = subprocess.Popen([settings.HARNESS_HOME + '\\MiniWeb\\miniweb.exe'], stdout=miniweb_out, stderr=miniweb_out, cwd=settings.HARNESS_HOME + '\\MiniWeb') def stop(self): logger.info('Stopping harness service') if self.harness: _try_kill(self.harness) self.harness = None else: logger.warning('Harness not started yet') if self.version >= HARNESS_SVN_VERSION_R44: return if self.miniweb: _try_kill(self.miniweb) self.miniweb = None else: logger.warning('Miniweb not started yet') def tail(self): with open(self.harness_file) as harness_out: harness_out.seek(-100, 2) return ''.join(harness_out.readlines()) def __del__(self): self.stop()
true
true
f70f6bcb10f8446af8069e8b93a6ae0bef8dac89
4,415
py
Python
dragonchain/lib/dao/smart_contract_dao.py
cheeseandcereal/dragonchain
34d34e344b887c2a0eeb591ede2015cc2506a323
[ "Apache-2.0" ]
null
null
null
dragonchain/lib/dao/smart_contract_dao.py
cheeseandcereal/dragonchain
34d34e344b887c2a0eeb591ede2015cc2506a323
[ "Apache-2.0" ]
null
null
null
dragonchain/lib/dao/smart_contract_dao.py
cheeseandcereal/dragonchain
34d34e344b887c2a0eeb591ede2015cc2506a323
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Dragonchain, Inc. # Licensed under the Apache License, Version 2.0 (the "Apache License") # with the following modification; you may not use this file except in # compliance with the Apache License and the following modification to it: # Section 6. Trademarks. is deleted and replaced with: # 6. Trademarks. This License does not grant permission to use the trade # names, trademarks, service marks, or product names of the Licensor # and its affiliates, except as required to comply with Section 4(c) of # the License and to reproduce the content of the NOTICE file. # You may obtain a copy of the Apache License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the Apache License with the above modification is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the Apache License for the specific # language governing permissions and limitations under the Apache License. from typing import List, Optional, Dict from dragonchain import logger from dragonchain import exceptions from dragonchain.lib.dto import smart_contract_model from dragonchain.lib.interfaces import storage from dragonchain.lib.database import redisearch from dragonchain.lib import faas # Constants FOLDER = "SMARTCONTRACT" _log = logger.get_logger() def get_contract_id_by_txn_type(txn_type: str) -> str: results = redisearch.search( index=redisearch.Indexes.smartcontract.value, query_str=f"@sc_name:{{{redisearch.get_escaped_redisearch_string(txn_type)}}}", only_id=True ).docs if results: return results[0].id raise exceptions.NotFound(f"Smart contract {txn_type} could not be found.") def get_contract_by_txn_type(txn_type: str) -> smart_contract_model.SmartContractModel: """Searches for a contract by txn_type""" return smart_contract_model.new_from_at_rest(storage.get_json_from_object(f"{FOLDER}/{get_contract_id_by_txn_type(txn_type)}/metadata.json")) def list_all_contract_ids() -> List[str]: query_result = redisearch.search(index=redisearch.Indexes.smartcontract.value, query_str="*", limit=10000, only_id=True) contract_ids = [] for index in query_result.docs: contract_ids.append(index.id) return contract_ids def get_serial_contracts() -> List[smart_contract_model.SmartContractModel]: """ Searches for serial contracts Please note this function fetches all smart contract metadata from storage each time it is run, so should be used sparingly """ # First check and remove bad contracts or this function could fail remove_bad_contracts() serial_contracts = [] for sc_id in list_all_contract_ids(): sc_model = get_contract_by_id(sc_id) if sc_model.execution_order == "serial": serial_contracts.append(sc_model) return serial_contracts def remove_bad_contracts() -> None: """Remove contract(s) from the index if its metadata doesn't exist""" for sc_id in list_all_contract_ids(): try: get_contract_by_id(sc_id) except exceptions.NotFound: redisearch.delete_document(index=redisearch.Indexes.smartcontract.value, doc_name=sc_id) def add_smart_contract_index(contract: smart_contract_model.SmartContractModel) -> None: """Add the index for a smart contract""" redisearch.put_document(redisearch.Indexes.smartcontract.value, contract.id, {"sc_name": contract.txn_type}, upsert=True) def remove_smart_contract_index(contract_id: str) -> None: """Remove the index for a smart contract""" redisearch.delete_document(redisearch.Indexes.smartcontract.value, contract_id) def get_contract_by_id(contract_id: str) -> smart_contract_model.SmartContractModel: """Searches for a contract by contract_id""" return smart_contract_model.new_from_at_rest(storage.get_json_from_object(f"{FOLDER}/{contract_id}/metadata.json")) def contract_does_exist(contract_id: str) -> bool: """Checks if a contract exists or not""" return storage.does_object_exist(f"{FOLDER}/{contract_id}/metadata.json") def get_contract_logs(contract_id, since: Optional[str], tail: Optional[int]) -> List[Dict[str, str]]: """Returns a list of smart contract logs from openfaas""" return faas.get_logs(contract_id, since, tail)
43.284314
146
0.755379
from typing import List, Optional, Dict from dragonchain import logger from dragonchain import exceptions from dragonchain.lib.dto import smart_contract_model from dragonchain.lib.interfaces import storage from dragonchain.lib.database import redisearch from dragonchain.lib import faas FOLDER = "SMARTCONTRACT" _log = logger.get_logger() def get_contract_id_by_txn_type(txn_type: str) -> str: results = redisearch.search( index=redisearch.Indexes.smartcontract.value, query_str=f"@sc_name:{{{redisearch.get_escaped_redisearch_string(txn_type)}}}", only_id=True ).docs if results: return results[0].id raise exceptions.NotFound(f"Smart contract {txn_type} could not be found.") def get_contract_by_txn_type(txn_type: str) -> smart_contract_model.SmartContractModel: return smart_contract_model.new_from_at_rest(storage.get_json_from_object(f"{FOLDER}/{get_contract_id_by_txn_type(txn_type)}/metadata.json")) def list_all_contract_ids() -> List[str]: query_result = redisearch.search(index=redisearch.Indexes.smartcontract.value, query_str="*", limit=10000, only_id=True) contract_ids = [] for index in query_result.docs: contract_ids.append(index.id) return contract_ids def get_serial_contracts() -> List[smart_contract_model.SmartContractModel]: remove_bad_contracts() serial_contracts = [] for sc_id in list_all_contract_ids(): sc_model = get_contract_by_id(sc_id) if sc_model.execution_order == "serial": serial_contracts.append(sc_model) return serial_contracts def remove_bad_contracts() -> None: for sc_id in list_all_contract_ids(): try: get_contract_by_id(sc_id) except exceptions.NotFound: redisearch.delete_document(index=redisearch.Indexes.smartcontract.value, doc_name=sc_id) def add_smart_contract_index(contract: smart_contract_model.SmartContractModel) -> None: redisearch.put_document(redisearch.Indexes.smartcontract.value, contract.id, {"sc_name": contract.txn_type}, upsert=True) def remove_smart_contract_index(contract_id: str) -> None: redisearch.delete_document(redisearch.Indexes.smartcontract.value, contract_id) def get_contract_by_id(contract_id: str) -> smart_contract_model.SmartContractModel: return smart_contract_model.new_from_at_rest(storage.get_json_from_object(f"{FOLDER}/{contract_id}/metadata.json")) def contract_does_exist(contract_id: str) -> bool: return storage.does_object_exist(f"{FOLDER}/{contract_id}/metadata.json") def get_contract_logs(contract_id, since: Optional[str], tail: Optional[int]) -> List[Dict[str, str]]: return faas.get_logs(contract_id, since, tail)
true
true
f70f6c1aeecb37a118fbcfe765ce6106f98b5a2d
3,643
py
Python
paddle_quantum/QAOA/example/main.py
xinwang1/Quantum
0f56e36e9e6111547547ae1b6cd5df307b41c1ac
[ "Apache-2.0" ]
null
null
null
paddle_quantum/QAOA/example/main.py
xinwang1/Quantum
0f56e36e9e6111547547ae1b6cd5df307b41c1ac
[ "Apache-2.0" ]
null
null
null
paddle_quantum/QAOA/example/main.py
xinwang1/Quantum
0f56e36e9e6111547547ae1b6cd5df307b41c1ac
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2020 Institute for Quantum Computing, Baidu Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ main """ from paddle import fluid import os import numpy as np import matplotlib.pyplot as plt import networkx as nx from paddle_quantum.utils import pauli_str_to_matrix from paddle_quantum.QAOA.Paddle_QAOA import Paddle_QAOA from paddle_quantum.QAOA.QAOA_Prefunc import generate_graph, H_generator def main(N=4): # number of qubits or number of nodes in the graph N = 4 classical_graph, classical_graph_adjacency = generate_graph(N, GRAPHMETHOD=1) print(classical_graph_adjacency) # Convert the Hamiltonian's list form to matrix form H_matrix = pauli_str_to_matrix(H_generator(N, classical_graph_adjacency), N) H_diag = np.diag(H_matrix).real H_max = np.max(H_diag) H_min = np.min(H_diag) print(H_diag) print('H_max:', H_max, ' H_min:', H_min) pos = nx.circular_layout(classical_graph) nx.draw(classical_graph, pos, width=4, with_labels=True, font_weight='bold') plt.show() classical_graph, classical_graph_adjacency = generate_graph(N, 1) opt_cir = Paddle_QAOA(classical_graph_adjacency, N=4, P=4, METHOD=1, ITR=120, LR=0.1) # Load the data of QAOA x1 = np.load('./output/summary_data.npz') H_min = np.ones([len(x1['iter'])]) * H_min # Plot loss loss_QAOA, = plt.plot(x1['iter'], x1['energy'], alpha=0.7, marker='', linestyle="--", linewidth=2, color='m') benchmark, = plt.plot(x1['iter'], H_min, alpha=0.7, marker='', linestyle=":", linewidth=2, color='b') plt.xlabel('Number of iteration') plt.ylabel('Performance of the loss function for QAOA') plt.legend(handles=[ loss_QAOA, benchmark ], labels=[ r'Loss function $\left\langle {\psi \left( {\bf{\theta }} \right)} ' r'\right|H\left| {\psi \left( {\bf{\theta }} \right)} \right\rangle $', 'The benchmark result', ], loc='best') # Show the plot plt.show() with fluid.dygraph.guard(): # Measure the output state of the QAOA circuit for 1024 shots by default prob_measure = opt_cir.measure(plot=True) # Find the max value in measured probability of bitstrings max_prob = max(prob_measure.values()) # Find the bitstring with max probability solution_list = [result[0] for result in prob_measure.items() if result[1] == max_prob] print("The output bitstring:", solution_list) # Draw the graph representing the first bitstring in the solution_list to the MaxCut-like problem head_bitstring = solution_list[0] node_cut = ["blue" if head_bitstring[node] == "1" else "red" for node in classical_graph] edge_cut = [ "solid" if head_bitstring[node_row] == head_bitstring[node_col] else "dashed" for node_row, node_col in classical_graph.edges() ] nx.draw( classical_graph, pos, node_color=node_cut, style=edge_cut, width=4, with_labels=True, font_weight="bold", ) plt.show() if __name__ == "__main__": main()
32.526786
113
0.681581
from paddle import fluid import os import numpy as np import matplotlib.pyplot as plt import networkx as nx from paddle_quantum.utils import pauli_str_to_matrix from paddle_quantum.QAOA.Paddle_QAOA import Paddle_QAOA from paddle_quantum.QAOA.QAOA_Prefunc import generate_graph, H_generator def main(N=4): N = 4 classical_graph, classical_graph_adjacency = generate_graph(N, GRAPHMETHOD=1) print(classical_graph_adjacency) H_matrix = pauli_str_to_matrix(H_generator(N, classical_graph_adjacency), N) H_diag = np.diag(H_matrix).real H_max = np.max(H_diag) H_min = np.min(H_diag) print(H_diag) print('H_max:', H_max, ' H_min:', H_min) pos = nx.circular_layout(classical_graph) nx.draw(classical_graph, pos, width=4, with_labels=True, font_weight='bold') plt.show() classical_graph, classical_graph_adjacency = generate_graph(N, 1) opt_cir = Paddle_QAOA(classical_graph_adjacency, N=4, P=4, METHOD=1, ITR=120, LR=0.1) # Load the data of QAOA x1 = np.load('./output/summary_data.npz') H_min = np.ones([len(x1['iter'])]) * H_min # Plot loss loss_QAOA, = plt.plot(x1['iter'], x1['energy'], alpha=0.7, marker='', linestyle="--", linewidth=2, color='m') benchmark, = plt.plot(x1['iter'], H_min, alpha=0.7, marker='', linestyle=":", linewidth=2, color='b') plt.xlabel('Number of iteration') plt.ylabel('Performance of the loss function for QAOA') plt.legend(handles=[ loss_QAOA, benchmark ], labels=[ r'Loss function $\left\langle {\psi \left( {\bf{\theta }} \right)} ' r'\right|H\left| {\psi \left( {\bf{\theta }} \right)} \right\rangle $', 'The benchmark result', ], loc='best') # Show the plot plt.show() with fluid.dygraph.guard(): # Measure the output state of the QAOA circuit for 1024 shots by default prob_measure = opt_cir.measure(plot=True) # Find the max value in measured probability of bitstrings max_prob = max(prob_measure.values()) # Find the bitstring with max probability solution_list = [result[0] for result in prob_measure.items() if result[1] == max_prob] print("The output bitstring:", solution_list) # Draw the graph representing the first bitstring in the solution_list to the MaxCut-like problem head_bitstring = solution_list[0] node_cut = ["blue" if head_bitstring[node] == "1" else "red" for node in classical_graph] edge_cut = [ "solid" if head_bitstring[node_row] == head_bitstring[node_col] else "dashed" for node_row, node_col in classical_graph.edges() ] nx.draw( classical_graph, pos, node_color=node_cut, style=edge_cut, width=4, with_labels=True, font_weight="bold", ) plt.show() if __name__ == "__main__": main()
true
true
f70f6c2e837dc663e4225ba197c388dee678dd48
624
py
Python
Algorithms/0091_Decode_Ways/Python/Decode_Ways_Solution_1.py
lht19900714/Leetcode_Solutions
dac7a038329a5c1f8a78e86cc6f49116b963f1fb
[ "MIT" ]
null
null
null
Algorithms/0091_Decode_Ways/Python/Decode_Ways_Solution_1.py
lht19900714/Leetcode_Solutions
dac7a038329a5c1f8a78e86cc6f49116b963f1fb
[ "MIT" ]
null
null
null
Algorithms/0091_Decode_Ways/Python/Decode_Ways_Solution_1.py
lht19900714/Leetcode_Solutions
dac7a038329a5c1f8a78e86cc6f49116b963f1fb
[ "MIT" ]
null
null
null
# Space: O(n) # Time: O(n) class Solution: def numDecodings(self, s: str) -> int: if len(s) == 0: return 0 self.cache = {} self.cache[''] = 1 def recursive(string): if string in self.cache: return self.cache[string] if string[0] == '0': return 0 if len(string) == 1: return 1 temp_res = recursive(string[1:]) prefix = int(string[:2]) if 0 < prefix <= 26: temp_res += recursive(string[2:]) self.cache[string] = temp_res return temp_res return recursive(s)
19.5
62
0.491987
class Solution: def numDecodings(self, s: str) -> int: if len(s) == 0: return 0 self.cache = {} self.cache[''] = 1 def recursive(string): if string in self.cache: return self.cache[string] if string[0] == '0': return 0 if len(string) == 1: return 1 temp_res = recursive(string[1:]) prefix = int(string[:2]) if 0 < prefix <= 26: temp_res += recursive(string[2:]) self.cache[string] = temp_res return temp_res return recursive(s)
true
true
f70f6d36aba38dbe1415ec7683f3960500689480
968
py
Python
tempest/api/compute/security_groups/base.py
KiranPawar72/tempest
1fef3dd92b083055793065dd0693454735ec2c01
[ "Apache-2.0" ]
3
2016-07-15T12:27:23.000Z
2021-04-23T04:41:10.000Z
tempest/api/compute/security_groups/base.py
LIS/lis-tempest
8e6403b2d6de81c5d18ed867b4977385c8278b75
[ "Apache-2.0" ]
null
null
null
tempest/api/compute/security_groups/base.py
LIS/lis-tempest
8e6403b2d6de81c5d18ed867b4977385c8278b75
[ "Apache-2.0" ]
12
2016-07-14T18:13:05.000Z
2017-07-08T18:45:42.000Z
# Copyright 2012 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from tempest.api.compute import base class BaseSecurityGroupsTest(base.BaseV2ComputeTest): @classmethod def setup_credentials(cls): # A network and a subnet will be created for these tests cls.set_network_resources(network=True, subnet=True) super(BaseSecurityGroupsTest, cls).setup_credentials()
37.230769
78
0.737603
from tempest.api.compute import base class BaseSecurityGroupsTest(base.BaseV2ComputeTest): @classmethod def setup_credentials(cls): cls.set_network_resources(network=True, subnet=True) super(BaseSecurityGroupsTest, cls).setup_credentials()
true
true
f70f6ea82999764663604c0defd9f8fd956a3e54
43
py
Python
embedvideos/__init__.py
vkaracic/EmbedVideosXBlock
e0cd04b41d655d8e8e69c6c9c4c0a41c22600965
[ "MIT" ]
null
null
null
embedvideos/__init__.py
vkaracic/EmbedVideosXBlock
e0cd04b41d655d8e8e69c6c9c4c0a41c22600965
[ "MIT" ]
null
null
null
embedvideos/__init__.py
vkaracic/EmbedVideosXBlock
e0cd04b41d655d8e8e69c6c9c4c0a41c22600965
[ "MIT" ]
null
null
null
from .embedvideos import EmbedVideosXBlock
21.5
42
0.883721
from .embedvideos import EmbedVideosXBlock
true
true
f70f70495df42bcff3545d60f74aba312be6b44a
228
py
Python
vininfo/__init__.py
ghilesmeddour/vininfo
63cbf7dcdd9d106fb9c9a56d5c4f11c3dd794b1d
[ "BSD-3-Clause" ]
60
2018-07-28T14:53:57.000Z
2022-02-22T12:11:24.000Z
vininfo/__init__.py
ghilesmeddour/vininfo
63cbf7dcdd9d106fb9c9a56d5c4f11c3dd794b1d
[ "BSD-3-Clause" ]
16
2018-07-30T08:57:08.000Z
2021-12-25T09:20:03.000Z
vininfo/__init__.py
ghilesmeddour/vininfo
63cbf7dcdd9d106fb9c9a56d5c4f11c3dd794b1d
[ "BSD-3-Clause" ]
29
2018-07-30T08:36:07.000Z
2022-03-09T12:02:06.000Z
from .toolbox import Vin from .exceptions import ValidationError, VininfoException VERSION = (1, 6, 0) """Application version number tuple.""" VERSION_STR = '.'.join(map(str, VERSION)) """Application version number string."""
25.333333
57
0.736842
from .toolbox import Vin from .exceptions import ValidationError, VininfoException VERSION = (1, 6, 0) VERSION_STR = '.'.join(map(str, VERSION))
true
true
f70f70dc9554cc5a86433d7d1c74bb4e02d3ad76
46,498
py
Python
gbxml/gbxml.py
building-energy/gbxml
039edf6e33cccbb76dcda5fbb871aeb950ad0a87
[ "MIT" ]
5
2020-04-24T15:59:45.000Z
2022-02-23T14:40:14.000Z
gbxml/gbxml.py
building-energy/gbxml
039edf6e33cccbb76dcda5fbb871aeb950ad0a87
[ "MIT" ]
2
2021-07-05T12:09:09.000Z
2022-02-05T07:05:59.000Z
gbxml/gbxml.py
building-energy/gbxml
039edf6e33cccbb76dcda5fbb871aeb950ad0a87
[ "MIT" ]
1
2020-04-24T15:59:48.000Z
2020-04-24T15:59:48.000Z
# -*- coding: utf-8 -*- from lxml import etree import pkgutil from io import BytesIO from . import xml_functions, construction_functions, layer_functions from . import surface_functions, space_functions, building_functions from . import opening_functions, zone_functions class Gbxml(): "A class that represents a gbXML file and the gbXML schema" def __init__(self, gbxml_fp=None, gbxsd_fp=None): """Initialises a new Gbxml instance Arguments: gbxml_fp (str): filepath to a gbXML file. This is read in as an lxml._ElementTree object. If not supplied then a new lxml._ElementTree object with only a root element is created. gbxsd_fp (str): filepath to a gbXML schema file. If not supplied then a default gbXMl schema file is used. """ if gbxml_fp: self._ElementTree=etree.parse(gbxml_fp) else: st = pkgutil.get_data(__package__, 'blank.xml') self._ElementTree=etree.parse(BytesIO(st)) if gbxsd_fp: self._ElementTree_gbxsd=etree.parse(gbxml_fp) else: st = pkgutil.get_data(__package__, 'GreenBuildingXML_Ver6.01.xsd') self._ElementTree_gbxsd=etree.parse(BytesIO(st)) self.ns={'gbxml':'http://www.gbxml.org/schema'} # general query methods def get_ids(self, tag=None): """Returns the id attributes of elements :param tag: an element tag to filter on :type tag: str, optional :return: a list of element ids :rtype: list """ if tag is None: tag='*' element=self._ElementTree.getroot() return xml_functions.get_ids(element,tag) def get_xmlstring(self,id=None): """Returns a string of an xml element :param id: an element id to filter on :type id: str, optional :return: a string of xml contents :rtype: str """ element=self._ElementTree.getroot() if not id is None: st='//gbxml:*[@id="%s"]' % id element=element.xpath(st,namespaces=self.ns)[0] return xml_functions.get_xmlstring(element) def get_attributes(self,id): """Returns the attributes of an element :param id: an element id :type id: str :return: the attributes of the element :rtype: dict """ st='//gbxml:*[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_attributes(element) def get_child_tags(self,id): """Returns the child tags of an element :param id: an element id :type id: str :return: a list of the tags of the child elements :rtype: list """ st='//gbxml:*[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_child_tags(element) def get_child_tag_text(self,id,child_tag): """Returns the text of child elements :param id: an element id :type id: str :param child_tag: a tag of a child element :type child_tag: str :return: a list of the text of child elements with the child_tag tag :rtype: list """ st='//gbxml:*[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_child_tag_text(element,child_tag) def get_child_tag_attributes(self,id,child_tag): """Returns the attributes of child elements :param id: an element id :type id: str :param child_tag: a tag of a child element :type child_tag: str :return: a list of the attributes of each child element with the child_tag tag :rtype: list """ st='//gbxml:*[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_child_tag_attributes(element,child_tag) def get_children_list(self,id): """Returns a list of dicts representing each child element :param id: an element id :type id: str :return: a list of dicts {'tag':(str),'text':(str),'attributes':(dict)} :rtype: list """ st='//gbxml:*[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_children_list(element) # campus query methods def get_campus_location_tags(self,id): """Returns the child tags of the Location element of a campus :param id: a Campus element id :type id: str :return: a list of the tags of the Location element :rtype: list """ st='./gbxml:Campus[@id="%s"]/gbxml:Location' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_child_tags(element) def get_campus_location_tag_text(self,id,child_tag): """Returns the text of Location child elements of a campus :param id: a Campus element id :type id: str :param child_tag: a tag of a child element of the Location element :type child_tag: str :return: a list of the text of child elements of the Location element with the child_tag tag :rtype: list """ st='./gbxml:Campus[@id="%s"]/gbxml:Location' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_child_tag_text(element,child_tag) # building query methods def get_building_space_ids(self,id): """Returns the ids of all spaces in a building :param id: a Building element id :type id: str :return: a list of Space ids :rtype: list """ # get element from id st='./gbxml:Campus/gbxml:Building[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get space ids return building_functions.get_space_ids(element) def get_building_surface_ids(self,id): """Returns the ids of all surfaces in a building :param id: a Building element id :type id: str :return: a list of Surface ids :rtype: list """ # get element from id st='./gbxml:Campus/gbxml:Building[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get surface ids return building_functions.get_surface_ids(element) # space query methods def get_space_surface_ids(self,id): """Returns the ids of all surfaces adjacent to a space :param id: a Space element id :type id: str :return: a list of surface ids :rtype: list """ # get element from id st='./gbxml:Campus/gbxml:Building/gbxml:Space[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get surface ids return space_functions.get_surface_ids(element) # construction query methods def get_construction_layer_ids(self,id): """Returns the layer ids of a construction :param id: a Construction element id :type id: str :return: a list of layer ids :rtype: list """ # get element from id st='./gbxml:Construction[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get layer ids return construction_functions.get_layer_ids(element) def get_construction_material_ids(self,id): """Returns the material ids of a construction :param id: a Construction element id :type id: str :return: a list of material ids :rtype: list """ # get element from id st='./gbxml:Construction[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get material ids return construction_functions.get_material_ids(element) # layer query methods def get_layer_material_ids(self,id): """Returns the material ids of a construction :param id: a Layer element id :type id: str :return: a list of material ids :rtype: list """ # get element from id st='./gbxml:Layer[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get layer ids return layer_functions.get_material_ids(element) # surface query methods def get_surface_inner_space_id(self,id): """Returns the inner space id of a surface :param id: a Surface element id :type id: str :return: the inner Space id :rtype: str or None """ # get element from id st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get inner space id return surface_functions.get_inner_space_id(element) def get_surface_outer_space_id(self,id): """Returns the outer space id of a surface :param id: a Surface element id :type id: str :return: the outer Space id :rtype: str or None """ # get element from id st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get outer space id return surface_functions.get_outer_space_id(element) def get_surface_azimuth(self,id): """Returns the azimuth of a surface :param id: a Surface element id :type id: str :return: the azimuth value :rtype: float or None """ # get element from id st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get azimuth return surface_functions.get_azimuth(element) def get_surface_tilt(self,id): """Returns the tilt of a surface :param id: a Surface element id :type id: str :return: the tilt value :rtype: float or None """ # get element from id st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get tilt return surface_functions.get_tilt(element) def get_surface_coordinates(self,id): """Returns the coordinates of a surface :param id: a Surface element id :type id: str :return: a list of coordinate tuples (x,y,z) :rtype: list (of tuples) """ # get element from id st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get coordinates return surface_functions.get_coordinates(element) def get_surface_area(self,id): """Returns the area of a surface This is calculated using the surface coordiantes and includes the area of any openings. :param id: a Surface element id :type id: str :return: the area value :rtype: float or None """ # get element from id st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get area return surface_functions.get_area(element) def get_surface_opening_ids(self,id): """Returns the opening ids of a surface :param id: a Surface element id :type id: str :return: a list of Opening ids :rtype: list """ # get element from id st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get opening ids return surface_functions.get_opening_ids(element) # opening query methods def get_opening_surface_id(self,id): """Returns the parent surface id of an opening :param id: a Opening element id :type id: str :return: a Surface id :rtype: str """ # get element from id st='./gbxml:Campus/gbxml:Surface/gbxml:Opening[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get surface id return opening_functions.get_surface_id(element) def get_opening_coordinates(self,id): """Returns the coordinates of an opening :param id: a Opening element id :type id: str :return: a list of coordinate tuples (x,y,z) :rtype: list (of tuples) """ # get element from id st='./gbxml:Campus/gbxml:Surface/gbxml:Opening[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get coordinates return opening_functions.get_coordinates(element) def get_opening_area(self,id): """Returns the area of an opening :param id: a Opening element id :type id: str :return: the area value :rtype: float or None """ # get element from id st='./gbxml:Campus/gbxml:Surface/gbxml:Opening[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get area return opening_functions.get_area(element) # zone query methods def get_zone_space_ids(self,id): """Returns the ids of all spaces in a zone :param id: a Zone element id :type id: str :return: a list of Space ids :rtype: list """ # get element from id st='./gbxml:Zone[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] # get space ids return zone_functions.get_space_ids(element) ## OUTPUT # # # def __xmlstring(self,element=None): # """Returns a string of an xml element # # Arguments: # - element (lxml.etree._Element): default is root node # # """ # if element is None: element=self.root() # return etree.tostring(element,pretty_print=True).decode() # # # def xpath(self,element,st_xpath): # """Returns the result of an xpath operation on the gbXML file # # Arguments # - st_xpath (str): the xpath string # - element (lxml.etree._Element): the element for the xpath operation. The # default is the root element # # """ # return element.xpath(st_xpath,namespaces=self.ns) # # # def write(self,fp): # """Writes the gbXML file to disc # # Arguments: # fp (str): the filepath # """ # st=etree.tostring(self.root(),xml_declaration=True) # with open(fp,'wb') as f: # f.write(st) # ## VALIDATION # # def validate(self): # """Validates the gbXMl file using the schema # # Returns True if the gbXML file is valid, otherwise False # # """ # xmlschema = etree.XMLSchema(self.gbxsd._ElementTree) # result=xmlschema.validate(self._ElementTree) # return result # ## EDITING # # def add_element(self,parent_element,label,text=None,**kwargs): # """Adds an element to the gbXML # # Returns the newly created element # # Arguments: # - parent_element (lxml._Element or str): the parent element that the # new element is added to. This can be either a lxml._Element object # or a string with the element id. # - label (str): the label or tag of the new element # - text (str): the text of the new element # - **kwargs (keywords): the attributes of the new element # # """ # if isinstance(parent_element,str): # parent_element=self.element(parent_element) # e=etree.SubElement(parent_element,'{%s}%s' % (self.ns['gbxml'],label)) # if text: e.text=text # if kwargs: # for k,v in kwargs.items(): # e.set(k,v) # return e # # def set_attribute(self,element,key,value): # """Sets the attribute of an element # # Returns the modified element # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - key (str): the name of the attribute # - value (str): the value of the attribute # # """ # if isinstance(element,str): # element=self.element(element) # element.set(key,value) # return element # # # def set_element_id(self,element,new_id): # """Sets a new id attribute for an element and updates all links # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - new_id (str): # # Return value: # - new_id (str) # # """ # #check if new_id already exists # l=self.elements() # ids=[x.get('id') for x in l if x.get('id')] # if new_id in ids: # raise ValueError('new_id %s already exists' % new_id) # # #get element # if isinstance(element,str): # element=self.element(element) # # #get old id # old_id=element.get('id') # # #set new id # element.set('id',new_id) # # #find all elements with attribute labelRefId=old_id # label=self.label(element) # prefix=label[0].lower()+label[1:] # st='.//gbxml:*[@%sIdRef="%s"]' % (prefix,old_id) # l=self.xpath(self.root(),st) # # #update with id # for e in l: # e.set('%sIdRef' % prefix,new_id) # #return new id # return new_id # # # def set_text(self,element,text): # """Sets the text of an element # # Returns the modified element # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - text (str): the text # # """ # if isinstance(element,str): # element=self.element(element) # element.text=text # return element # # # def remove_element(self,element): # """Removes an element # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # """ # if isinstance(element,str): # element=self.element(element) # # #remove links to element # id=element.get('id') # label=self.label(element) # prefix=label[0].lower()+label[1:] # st='.//gbxml:*[@%sIdRef="%s"]' % (prefix,id) # l=self.xpath(self.root(),st) # for x in l: # self.remove_attribute(x,'%sIdRef' % prefix) # # #remove element # parent=element.getparent() # parent.remove(element) # # # def remove_attribute(self,element,key): # """Removes an element # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - key (str): The name of the attribute to delete # # """ # if isinstance(element,str): # element=self.element(element) # element.attrib.pop(key) # # # def remove_text(self,element): # pass # # # ## QUERYING # # def elements(self,label='*'): # """Returns the elements of the gbXML file # # Arguments: # - label (str): the label of the elements # # """ # st='//gbxml:%s' % label # return self.xpath(self.root(),st) # # # def root(self): # "Returns the root element" # return self._ElementTree.getroot() # # # def element(self,id,label='*'): # """Returns an element from the gbXML file # # Arguments: # - id (str): the id of the element # - label (str): the label of the element # # """ # st='//gbxml:%s[@id="%s"]' % (label,id) # try: # return self.xpath(self.root(),st)[0] # except IndexError: # raise KeyError('there is no element with an id of %s' % id) # # # def label(self,element): # """Returns the label of an element # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # """ # if isinstance(element,str): # element=self.element(element) # return element.tag.split('}')[1] # # # def attributes(self,element): # """Returns the attributes of an element # # Return value is a dictionary # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # """ # if isinstance(element,str): # element=self.element(element) # return dict(element.attrib) # # # def text(self,element): # """Returns the text of an element, or None # # Return value is a string # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # """ # if isinstance(element,str): # element=self.element(element) # return element.text # # # def text_value(self,element): # """Returns the text value of an element, i.e the text converted # according to its schema data type # # Return value is an object with data type dependent on the schema # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # """ # # #JUST RETURNS STRINGS AT PRESENT - TO DO # # if isinstance(element,str): # element=self.element(element) # text=element.text # return text # # # def child_elements(self,element,label='*'): # """Returns the child elements of an element # # Return value is a list of elements # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - label (str): the label of the element # """ # if isinstance(element,str): # element=self.element(element) # st='./gbxml:%s' % label # return self.xpath(element,st) # # # def descendent_elements(self,element,label='*'): # """Returns the descendent elements of an element # # Return value is a list of elements # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - label (str): the label of the element # """ # if isinstance(element,str): # element=self.element(element) # st='.//gbxml:%s' % label # return self.xpath(element,st) # # ## CONSTRUCTION FUNCTIONS # # def construction_layers(self,construction_element): # "Returns the layer elements of a construction" # if isinstance(construction_element,str): # construction_element=self.element(construction_element,label='Construction') # layerId_elements=self.child_elements(construction_element,'LayerId') # layer_elements=[self.element(layerId_element.get('layerIdRef'),'Layer') # for layerId_element in layerId_elements] # return layer_elements # # def construction_materials(self,construction_element): # "Returns the layer elements of a construction" # if isinstance(construction_element,str): # construction_element=self.element(construction_element,label='Construction') # layer_elements=self.construction_layers(construction_element) # material_elements=[] # for layer_element in layer_elements: # material_elements+=self.layer_materials(layer_element) # return material_elements # # ## LAYER FUNCTIONS # # def layer_materials(self,layer_element): # "Returns the layer elements of a construction" # if isinstance(layer_element,str): # layer_element=self.element(layer_element,label='Layer') # materialId_elements=self.child_elements(layer_element,'MaterialId') # material_elements=[self.element(materialId_element.get('materialIdRef'),'Material') # for materialId_element in materialId_elements] # return material_elements # # # ## OPENING FUNCTIONS # # def opening_coordinates(self,opening_element): # """Returns a list of coordinate tuples # # Arguments: # - opening_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - coordinates (list): a list where each item is a tuple of (x,y,z) coordinates. # i.e. [(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),...] # or None # # """ # if isinstance(opening_element,str): # opening_element=self.element(opening_element,label='Opening') # l=[] # st='./gbxml:PlanarGeometry/gbxml:PolyLoop/gbxml:CartesianPoint' # cartesian_points=self.xpath(opening_element,st) # for cartesian_point in cartesian_points: # st='./gbxml:Coordinate' # coordinates=self.xpath(cartesian_point,st) # t=(float(self.text_value(coordinates[0])), # float(self.text_value(coordinates[1])), # float(self.text_value(coordinates[2]))) # l.append(t) # return l # ## SURFACE FUNCTIONS # # def surface_azimuth(self,surface_element): # """Returns the azimuth of a surface # # Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - azimuth (float) or None # # """ # if isinstance(surface_element,str): # surface_element=self.element(surface_element,label='Surface') # l=self.xpath(surface_element,'./gbxml:RectangularGeometry/gbxml:Azimuth') # if len(l)>0: # azimuth=l[0] # return float(self.text_value(azimuth)) # # # def surface_coordinates(self,surface_element): # """Returns a list of coordinate tuples # # Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - coordinates (list): a list where each item is a tuple of (x,y,z) coordinates. # i.e. [(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),...] # or None # # """ # if isinstance(surface_element,str): # surface_element=self.element(surface_element,label='Surface') # l=[] # st='./gbxml:PlanarGeometry/gbxml:PolyLoop/gbxml:CartesianPoint' # cartesian_points=self.xpath(surface_element,st) # for cartesian_point in cartesian_points: # st='./gbxml:Coordinate' # coordinates=self.xpath(cartesian_point,st) # t=(float(self.text_value(coordinates[0])), # float(self.text_value(coordinates[1])), # float(self.text_value(coordinates[2]))) # l.append(t) # return l # # # def surface_inner_space(self,surface_element): # """Returns the inner Space element of a Surface, or None # # Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - space (lxml._Element) or None # # """ # if isinstance(surface_element,str): # surface_element=self.element(surface_element,label='Surface') # adjacentSpaceIds=self.child_elements(surface_element,label='AdjacentSpaceId') # if len(adjacentSpaceIds)>0: # adjacentSpaceId=adjacentSpaceIds[0] # spaceIdRef=adjacentSpaceId.get('spaceIdRef') # return self.element(spaceIdRef) # # # def surface_outer_space(self,surface_element): # """Returns the outer Space element of a Surface, or None # # Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - space (lxml._Element) or None # # """ # if isinstance(surface_element,str): # surface_element=self.element(surface_element,label='Surface') # adjacentSpaceIds=self.child_elements(surface_element,label='AdjacentSpaceId') # if len(adjacentSpaceIds)>1: # adjacentSpaceId=adjacentSpaceIds[1] # spaceIdRef=adjacentSpaceId.get('spaceIdRef') # return self.element(spaceIdRef) # # # def surface_tilt(self,surface_element): # """Returns the tilt of a surface # # Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - tilt (float) or None # # """ # if isinstance(surface_element,str): # surface_element=self.element(surface_element,label='Surface') # l=self.xpath(surface_element,'./gbxml:RectangularGeometry/gbxml:Tilt') # if len(l)>0: # tilt=l[0] # return float(self.text_value(tilt)) # # def surface_construction(self,surface_element): # "Returns the construction element of a surface" # if isinstance(surface_element,str): # surface_element=self.element(surface_element,label='Surface') # construction_id=surface_element.get('constructionIdRef') # construction_element=self.element(construction_id,'Construction') # return construction_element # # def surface_layers(self,surface_element): # "Returns the layer elements of a surface" # if isinstance(surface_element,str): # surface_element=self.element(surface_element,label='Surface') # construction_element=self.surface_construction(surface_element) # layer_elements=self.construction_layers(construction_element) # return layer_elements # # def surface_materials(self,surface_element): # "Returns the layer elements of a surface" # if isinstance(surface_element,str): # surface_element=self.element(surface_element,label='Surface') # construction_element=self.surface_construction(surface_element) # material_elements=self.construction_materials(construction_element) # return material_elements # # # # # # # # # # ### SPACE FUNCTIONS ## ## def set_space_id(self,space_element,id): ## """Sets a new id attribute for a Space element and updates all links ## ## ## """ ## if isinstance(space_element,str): ## space_element=self.element(space_element) ## #get old id ## old_id=space_element.get('id') ## #set new id ## space_element.set('id',id) ## #find all elements with attribute spaceRefId=old_id ## st='.//gbxml:*[@spaceIdRef="%s"]' % old_id ## l=self.xpath(self.root(),st) ## #update with id ## for e in l: ## e.set('spaceIdRef',id) ## #return new id ## return id # # ## WINDOWTYPE FUNCTIONS # # def windowType_materials(self,windowType_element): # """Returns the Glaze and Gap elements of a windowType in order # # Arguments: # - windowType_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - glaze_and_gap_elements (list) # # """ # l=[] # if isinstance(windowType_element,str): # windowType_element=self.element(windowType_element,label='WindowType') # l=self.child_elements(windowType_element) # return [x for x in l if self.label(x) in ['Glaze','Gap']] # # ## ZONE FUNCTIONS # # def add_zone(self,zone_id,space_ids): # """Adds a zone element and the IdRef links to it. # # Arguments: # - zone_id (str): the id of the new zone # - space_ids (str or list): the ids of the spaces that link to the zone # """ # #adds element # parent=self.root() # e=self.add_element(parent,'Zone') # self.set_attribute(e,'id',zone_id) # #adds links # if isinstance(space_ids,str): # space_ids=[space_ids] # for space_id in space_ids: # space=self.element(space_id,'Space') # self.set_attribute(space,'zoneIdRef',zone_id) # #returns the new zone element # return e # # # def remove_zone(self,zone_element): # """Removes a Zone element and all IdRef links to the zone. # # Arguments: # - zone_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # """ # #find id # if isinstance(zone_element,str): # id=zone_element # else: # id=zone_element.get('id') # #find all elements with attribute zoneRefId=id # st='.//gbxml:*[@zoneIdRef="%s"]' % id # l=self.xpath(self.root(),st) # #removes all attributes zoneRefId=id # for x in l: # self.remove_attribute(x,'zoneIdRef') # #remove node # self.remove_element(zone_element) # # # # # # LAYERS # # # ## OUTPUT # #def xpath(element,st_xpath): # """Returns the result of an xpath operation on the gbXML file # # Arguments # - st_xpath (str): the xpath string # - element (lxml.etree._Element): the element for the xpath operation. The # default is the root element # # """ # return element.xpath(st_xpath,namespaces=ns) # ## QUERYING # #def get_child(element,id=None,label='*'): # """Returns the child of an element # # Arguments: # - id (str): the id of the element # - label (str): the label of the element # # """ # if id is None: # return get_children(element,label)[0] # else: # st='./gbxml:%s[@id="%s"]' % (label,id) # return xpath(element,st)[0] # # #def get_child_text(element,label='*',dtype=None): # "Returns the first child text value, or None" # children=get_children(element,label) # if children: # if dtype is None: # return children[0].text # else: # return dtype(children[0].text) # else: # return None # #def get_children(element,label='*'): # """Returns the child elements of an element # # Return value is a list of elements # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - label (str): the label of the element # """ # st='./gbxml:%s' % label # return xpath(element,st) # #def get_descendents(element,label='*'): # """Returns the descendent elements of an element # # Return value is a list of elements # # Arguments: # - element (lxml._Element): This a lxml._Element object # - label (str): the label of the element # """ # st='.//gbxml:%s' % label # return xpath(element,st) # #def get_element(element,id,label='*'): # """Returns an element from the gbXML file # """ # st='//gbxml:%s[@id="%s"]' % (label,id) # return xpath(element.getroottree(),st)[0] # # ## CONSTRUCTION FUNCTIONS # #def construction_layers(construction_element): # "Returns the layer elements of a construction" # layerId_elements=get_children(construction_element,'LayerId') # layer_elements=[get_layer(layerId_element, # layerId_element.get('layerIdRef')) # for layerId_element in layerId_elements] # return layer_elements # #def construction_materials(construction_element): # "Returns the layer elements of a construction" # layer_elements=construction_layers(construction_element) # material_elements=[] # for layer_element in layer_elements: # material_elements+=layer_materials(layer_element) # return material_elements # # ## LAYER FUNCTIONS # #def get_layer(element,id): # root=element.getroottree() # result=xpath(root,'./gbxml:Layer[@id="%s"]' % id) # return result[0] # #def layer_materials(layer_element): # "Returns the layer elements of a construction" # materialId_elements=get_children(layer_element,'MaterialId') # material_elements=[get_element(materialId_element, # materialId_element.get('materialIdRef'), # 'Material') # for materialId_element in materialId_elements] # return material_elements # ## MATERIAL FUNCTIONS # #def get_material(element,id): # root=element.getroottree() # result=xpath(root,'./gbxml:Material[@id="%s"]' % id) # return result[0] # # ## SURFACE FUNCTION # #def get_surface_coordinates(surface_element): # """Returns a list of coordinate tuples # # Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # # Return value: # - coordinates (list): a list where each item is a tuple of (x,y,z) coordinates. # i.e. [(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),...] # or None # # """ # l=[] # st='./gbxml:PlanarGeometry/gbxml:PolyLoop/gbxml:CartesianPoint' # cartesian_points=xpath(surface_element,st) # for cartesian_point in cartesian_points: # st='./gbxml:Coordinate' # coordinates=xpath(cartesian_point,st) # t=(float(coordinates[0].text), # float(coordinates[1].text), # float(coordinates[2].text)) # l.append(t) # return l # #def get_surface_inner_space(surface_element): # """Returns the inner Space element of a Surface, or None # """ # adjacentSpaceIds=get_children(surface_element,label='AdjacentSpaceId') # if len(adjacentSpaceIds)>0: # adjacentSpaceId=adjacentSpaceIds[0] # spaceIdRef=adjacentSpaceId.get('spaceIdRef') # return get_element(surface_element,spaceIdRef) # #def get_surface_outer_space(surface_element): # """Returns the outer Space element of a Surface, or None # """ # adjacentSpaceIds=get_children(surface_element,label='AdjacentSpaceId') # if len(adjacentSpaceIds)>1: # adjacentSpaceId=adjacentSpaceIds[1] # spaceIdRef=adjacentSpaceId.get('spaceIdRef') # return get_element(surface_element,spaceIdRef) # # # # # # # # ## def child_node_text(self,id,label='*'): ## """Returns a dictionary listing any child nodes which have text ## ## Return values is {tag:text} ## ## """ ## e=self._element(id,label) ## d={} ## for e1 in e: ## if e1.text: ## label=e1.tag.split('}')[1] ## d[label]=e1.text ## return d ## ## ## def child_node_values(self,id,label='*'): ## """Returns a dictionary listing any child nodes which have text ## ## Node text values are converted from strings into their datatype ## i.e. the text from an 'Area' node is converted into a float ## ## Return values is {label:value} ## ## """ ## d=self.xml.child_node_text(id=id,label=label) ## d1={} ## for k,v in d.items(): ## xml_type=self.xsd.element_type(k) ## #print(xml_type) ## if xml_type=='xsd:string': ## value=v ## elif xml_type=='xsd:decimal': ## value=float(v) ## else: ## raise Exception(xml_type) ## d1[k]=value ## return d1 ## ## ## ## def node_attributes(self,id,label='*'): ## "Returns the attribute dict of node with id 'id'" ## e=self._element(id,label) ## return dict(e.attrib) ## ## ## def node_ids(self,label='*'): ## """Returns the ids of all nodes ## ## Arguments: ## label (str): the node tag to filter on ## ## """ ## #filter by label ## st='//a:%s' % (label) ## l=self._ElementTree.getroot().xpath(st,namespaces=self.ns) ## return [x.get('id') for x in l] ## ## ## def parent_object(self,id,label='*'): ## """Returns the parent of an element ## ## Return value is a dictionary {'id':value,'label':value} ## ## """ ## e=self._element(id,label) ## parent=e.getparent() ## return {'id':self._id(parent), ## 'label':self._label(parent)} ## ## ## ## ## ## def surface_adjacent_objects(self,id): ## """Returns the objects adjacent to the surface ## ## Return value is a 2 item list of dictionaries [{'id':value,'label':value}] ## ## """ ## label='Surface' ## e=self._element(id,label) ## st='./a:AdjacentSpaceId/@spaceIdRef' ## l=e.xpath(st,namespaces=self.ns) ## l=l+[None]*(2-len(l)) ## surfaceType=e.get('surfaceType') ## d=\ ## {'InteriorWall':None, ## 'ExteriorWall':{'id':'Climate1','label':'Climate'}, ## 'Roof':{'id':'Climate1','label':'Climate'}, ## 'InteriorFloor':None, ## 'ExposedFloor':{'id':'Climate1','label':'Climate'}, ## 'Shade':{'id':'Climate1','label':'Climate'}, ## 'UndergroundWall':{'id':'Ground1','label':'Ground'}, ## 'UndergroundSlab':{'id':'Ground1','label':'Ground'}, ## 'Ceiling':None, ## 'Air':None, ## 'UndergroundCeiling':{'id':'Ground1','label':'Ground'}, ## 'RaisedFloor':{'id':'Climate1','label':'Climate'}, ## 'SlabOnGrade':{'id':'Ground1','label':'Ground'}, ## 'FreestandingColumn':None, ## 'EmbeddedColumn':None ## } ## l1=[] ## for x in l: ## if not x is None: ## l1.append({'id':x,'label':'Space'}) ## else: ## l1.append(d[surfaceType]) ## return l1 ## ## ## def surface_building_ids(self,id): ## """Returns a list of building ids that the surface belongs to ## """ ## l=self.surface_adjacent_objects(id) ## l=[self.parent_object(x['id'])['id'] for x in l if x['label']=='Space'] ## return l ## ## ## # ## def elements(xml, tag='*'): ## """Returns a list of lxml elements, filtered by tag ## ## Arguments: ## xml (lxml.etree._ElementTree): the gbXML instance ## tag (str): the tag name, not including the namespace ## ## """ ## st='//a:%s' % (tag) ## #print(st) ## return xml.getroot().xpath(st,namespaces=ns) # #
31.652825
93
0.549486
from lxml import etree import pkgutil from io import BytesIO from . import xml_functions, construction_functions, layer_functions from . import surface_functions, space_functions, building_functions from . import opening_functions, zone_functions class Gbxml(): def __init__(self, gbxml_fp=None, gbxsd_fp=None): if gbxml_fp: self._ElementTree=etree.parse(gbxml_fp) else: st = pkgutil.get_data(__package__, 'blank.xml') self._ElementTree=etree.parse(BytesIO(st)) if gbxsd_fp: self._ElementTree_gbxsd=etree.parse(gbxml_fp) else: st = pkgutil.get_data(__package__, 'GreenBuildingXML_Ver6.01.xsd') self._ElementTree_gbxsd=etree.parse(BytesIO(st)) self.ns={'gbxml':'http://www.gbxml.org/schema'} def get_ids(self, tag=None): if tag is None: tag='*' element=self._ElementTree.getroot() return xml_functions.get_ids(element,tag) def get_xmlstring(self,id=None): element=self._ElementTree.getroot() if not id is None: st='//gbxml:*[@id="%s"]' % id element=element.xpath(st,namespaces=self.ns)[0] return xml_functions.get_xmlstring(element) def get_attributes(self,id): st='//gbxml:*[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_attributes(element) def get_child_tags(self,id): st='//gbxml:*[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_child_tags(element) def get_child_tag_text(self,id,child_tag): st='//gbxml:*[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_child_tag_text(element,child_tag) def get_child_tag_attributes(self,id,child_tag): st='//gbxml:*[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_child_tag_attributes(element,child_tag) def get_children_list(self,id): st='//gbxml:*[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_children_list(element) def get_campus_location_tags(self,id): st='./gbxml:Campus[@id="%s"]/gbxml:Location' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_child_tags(element) def get_campus_location_tag_text(self,id,child_tag): st='./gbxml:Campus[@id="%s"]/gbxml:Location' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return xml_functions.get_child_tag_text(element,child_tag) def get_building_space_ids(self,id): st='./gbxml:Campus/gbxml:Building[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return building_functions.get_space_ids(element) def get_building_surface_ids(self,id): st='./gbxml:Campus/gbxml:Building[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return building_functions.get_surface_ids(element) def get_space_surface_ids(self,id): st='./gbxml:Campus/gbxml:Building/gbxml:Space[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return space_functions.get_surface_ids(element) def get_construction_layer_ids(self,id): st='./gbxml:Construction[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return construction_functions.get_layer_ids(element) def get_construction_material_ids(self,id): st='./gbxml:Construction[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return construction_functions.get_material_ids(element) def get_layer_material_ids(self,id): st='./gbxml:Layer[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return layer_functions.get_material_ids(element) def get_surface_inner_space_id(self,id): st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return surface_functions.get_inner_space_id(element) def get_surface_outer_space_id(self,id): st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return surface_functions.get_outer_space_id(element) def get_surface_azimuth(self,id): st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return surface_functions.get_azimuth(element) def get_surface_tilt(self,id): st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return surface_functions.get_tilt(element) def get_surface_coordinates(self,id): st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return surface_functions.get_coordinates(element) def get_surface_area(self,id): st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return surface_functions.get_area(element) def get_surface_opening_ids(self,id): st='./gbxml:Campus/gbxml:Surface[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return surface_functions.get_opening_ids(element) def get_opening_surface_id(self,id): st='./gbxml:Campus/gbxml:Surface/gbxml:Opening[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return opening_functions.get_surface_id(element) def get_opening_coordinates(self,id): st='./gbxml:Campus/gbxml:Surface/gbxml:Opening[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return opening_functions.get_coordinates(element) def get_opening_area(self,id): st='./gbxml:Campus/gbxml:Surface/gbxml:Opening[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return opening_functions.get_area(element) def get_zone_space_ids(self,id): st='./gbxml:Zone[@id="%s"]' % id element=self._ElementTree.getroot().xpath(st,namespaces=self.ns)[0] return zone_functions.get_space_ids(element) # Arguments: # - element (lxml.etree._Element): default is root node # # """ # # Arguments # - st_xpath (str): the xpath string # - element (lxml.etree._Element): the element for the xpath operation. The # default is the root element # # """ # # Arguments: # fp (str): the filepath # """ # Returns True if the gbXML file is valid, otherwise False # # """ # Returns the newly created element # # Arguments: # - parent_element (lxml._Element or str): the parent element that the # new element is added to. This can be either a lxml._Element object # or a string with the element id. # - label (str): the label or tag of the new element # - text (str): the text of the new element # - **kwargs (keywords): the attributes of the new element # # """ # # Returns the modified element # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - key (str): the name of the attribute # - value (str): the value of the attribute # # """ # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - new_id (str): # # Return value: # - new_id (str) # # """ or str): This a lxml._Element object # or a string with the element id. # - text (str): the text # # """ # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # """ ments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - key (str): The name of the attribute to delete # # """ # Arguments: # - label (str): the label of the elements # # """ # # Arguments: # - id (str): the id of the element # - label (str): the label of the element # # """ # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # """ # # Return value is a dictionary # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # """ # # Return value is a string # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # """ # according to its schema data type # # Return value is an object with data type dependent on the schema # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # """ e is a list of elements # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - label (str): the label of the element # """ # # Return value is a list of elements # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - label (str): the label of the element # """ guments: # - opening_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - coordinates (list): a list where each item is a tuple of (x,y,z) coordinates. # i.e. [(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),...] # or None # # """ Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - azimuth (float) or None # # """ # # Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - coordinates (list): a list where each item is a tuple of (x,y,z) coordinates. # i.e. [(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),...] # or None # # """ # # Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - space (lxml._Element) or None # # """ # # Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - space (lxml._Element) or None # # """ # # Arguments: # - surface_element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # # Return value: # - tilt (float) or None # # """ # Arguments: # - id (str): the id of the element # - label (str): the label of the element # # """ # # Return value is a list of elements # # Arguments: # - element (lxml._Element or str): This a lxml._Element object # or a string with the element id. # - label (str): the label of the element # """ # # Return value is a list of elements # # Arguments: # - element (lxml._Element): This a lxml._Element object # - label (str): the label of the element # """ # """ face_element (lxml._Element or str): This a lxml._Element object # # Return value: # - coordinates (list): a list where each item is a tuple of (x,y,z) coordinates. # i.e. [(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),...] # or None # # """ # """ # """
true
true
f70f71544831b4d1ffff7c6948b00d3bdd751afe
38,151
py
Python
google/net/proto2/python/internal/python_message.py
vladushakov987/appengine_python3
0dd481c73e2537a50ee10f1b79cd65938087e555
[ "Apache-2.0" ]
null
null
null
google/net/proto2/python/internal/python_message.py
vladushakov987/appengine_python3
0dd481c73e2537a50ee10f1b79cd65938087e555
[ "Apache-2.0" ]
null
null
null
google/net/proto2/python/internal/python_message.py
vladushakov987/appengine_python3
0dd481c73e2537a50ee10f1b79cd65938087e555
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # # Copyright 2007 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """Contains a metaclass and helper functions used to create protocol message classes from Descriptor objects at runtime. Recall that a metaclass is the "type" of a class. (A class is to a metaclass what an instance is to a class.) In this case, we use the GeneratedProtocolMessageType metaclass to inject all the useful functionality into the classes output by the protocol compiler at compile-time. The upshot of all this is that the real implementation details for ALL pure-Python protocol buffers are *here in this file*. """ from __future__ import absolute_import from future import standard_library standard_library.install_aliases() from builtins import str from builtins import range from builtins import object import sys import six from six.moves import range if sys.version_info[0] < 3: try: from io import StringIO as BytesIO except ImportError: from io import StringIO as BytesIO import six.moves.copyreg as copyreg else: from io import BytesIO import copyreg import struct import weakref from google.net.proto2.python.internal import containers from google.net.proto2.python.internal import decoder from google.net.proto2.python.internal import encoder from google.net.proto2.python.internal import enum_type_wrapper from google.net.proto2.python.internal import message_listener as message_listener_mod from google.net.proto2.python.internal import type_checkers from google.net.proto2.python.internal import wire_format from google.net.proto2.python.public import descriptor as descriptor_mod from google.net.proto2.python.public import message as message_mod from google.net.proto2.python.public import text_format _FieldDescriptor = descriptor_mod.FieldDescriptor def NewMessage(bases, descriptor, dictionary): _AddClassAttributesForNestedExtensions(descriptor, dictionary) _AddSlots(descriptor, dictionary) return bases def InitMessage(descriptor, cls): cls._decoders_by_tag = {} cls._extensions_by_name = {} cls._extensions_by_number = {} if (descriptor.has_options and descriptor.GetOptions().message_set_wire_format): cls._decoders_by_tag[decoder.MESSAGE_SET_ITEM_TAG] = ( decoder.MessageSetItemDecoder(cls._extensions_by_number), None) for field in descriptor.fields: _AttachFieldHelpers(cls, field) _AddEnumValues(descriptor, cls) _AddInitMethod(descriptor, cls) _AddPropertiesForFields(descriptor, cls) _AddPropertiesForExtensions(descriptor, cls) _AddStaticMethods(cls) _AddMessageMethods(descriptor, cls) _AddPrivateHelperMethods(descriptor, cls) copyreg.pickle(cls, lambda obj: (cls, (), obj.__getstate__())) def _PropertyName(proto_field_name): """Returns the name of the public property attribute which clients can use to get and (in some cases) set the value of a protocol message field. Args: proto_field_name: The protocol message field name, exactly as it appears (or would appear) in a .proto file. """ return proto_field_name def _VerifyExtensionHandle(message, extension_handle): """Verify that the given extension handle is valid.""" if not isinstance(extension_handle, _FieldDescriptor): raise KeyError('HasExtension() expects an extension handle, got: %s' % extension_handle) if not extension_handle.is_extension: raise KeyError('"%s" is not an extension.' % extension_handle.full_name) if not extension_handle.containing_type: raise KeyError('"%s" is missing a containing_type.' % extension_handle.full_name) if extension_handle.containing_type is not message.DESCRIPTOR: raise KeyError('Extension "%s" extends message type "%s", but this ' 'message is of type "%s".' % (extension_handle.full_name, extension_handle.containing_type.full_name, message.DESCRIPTOR.full_name)) def _AddSlots(message_descriptor, dictionary): """Adds a __slots__ entry to dictionary, containing the names of all valid attributes for this message type. Args: message_descriptor: A Descriptor instance describing this message type. dictionary: Class dictionary to which we'll add a '__slots__' entry. """ dictionary['__slots__'] = ['_cached_byte_size', '_cached_byte_size_dirty', '_fields', '_unknown_fields', '_is_present_in_parent', '_listener', '_listener_for_children', '__weakref__', '_oneofs'] def _IsMessageSetExtension(field): return (field.is_extension and field.containing_type.has_options and field.containing_type.GetOptions().message_set_wire_format and field.type == _FieldDescriptor.TYPE_MESSAGE and field.message_type == field.extension_scope and field.label == _FieldDescriptor.LABEL_OPTIONAL) def _AttachFieldHelpers(cls, field_descriptor): is_repeated = (field_descriptor.label == _FieldDescriptor.LABEL_REPEATED) is_packed = (field_descriptor.has_options and field_descriptor.GetOptions().packed) if _IsMessageSetExtension(field_descriptor): field_encoder = encoder.MessageSetItemEncoder(field_descriptor.number) sizer = encoder.MessageSetItemSizer(field_descriptor.number) else: field_encoder = type_checkers.TYPE_TO_ENCODER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed) sizer = type_checkers.TYPE_TO_SIZER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed) field_descriptor._encoder = field_encoder field_descriptor._sizer = sizer field_descriptor._default_constructor = _DefaultValueConstructorForField( field_descriptor) def AddDecoder(wiretype, is_packed): tag_bytes = encoder.TagBytes(field_descriptor.number, wiretype) cls._decoders_by_tag[tag_bytes] = ( type_checkers.TYPE_TO_DECODER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed, field_descriptor, field_descriptor._default_constructor), field_descriptor if field_descriptor.containing_oneof is not None else None) AddDecoder(type_checkers.FIELD_TYPE_TO_WIRE_TYPE[field_descriptor.type], False) if is_repeated and wire_format.IsTypePackable(field_descriptor.type): AddDecoder(wire_format.WIRETYPE_LENGTH_DELIMITED, True) def _AddClassAttributesForNestedExtensions(descriptor, dictionary): extension_dict = descriptor.extensions_by_name for extension_name, extension_field in six.iteritems(extension_dict): assert extension_name not in dictionary dictionary[extension_name] = extension_field def _AddEnumValues(descriptor, cls): """Sets class-level attributes for all enum fields defined in this message. Also exporting a class-level object that can name enum values. Args: descriptor: Descriptor object for this message type. cls: Class we're constructing for this message type. """ for enum_type in descriptor.enum_types: setattr(cls, enum_type.name, enum_type_wrapper.EnumTypeWrapper(enum_type)) for enum_value in enum_type.values: setattr(cls, enum_value.name, enum_value.number) def _DefaultValueConstructorForField(field): """Returns a function which returns a default value for a field. Args: field: FieldDescriptor object for this field. The returned function has one argument: message: Message instance containing this field, or a weakref proxy of same. That function in turn returns a default value for this field. The default value may refer back to |message| via a weak reference. """ if field.label == _FieldDescriptor.LABEL_REPEATED: if field.has_default_value and field.default_value != []: raise ValueError('Repeated field default value not empty list: %s' % ( field.default_value)) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: message_type = field.message_type def MakeRepeatedMessageDefault(message): return containers.RepeatedCompositeFieldContainer( message._listener_for_children, field.message_type) return MakeRepeatedMessageDefault else: type_checker = type_checkers.GetTypeChecker(field) def MakeRepeatedScalarDefault(message): return containers.RepeatedScalarFieldContainer( message._listener_for_children, type_checker) return MakeRepeatedScalarDefault if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: message_type = field.message_type def MakeSubMessageDefault(message): result = message_type._concrete_class() result._SetListener(message._listener_for_children) return result return MakeSubMessageDefault def MakeScalarDefault(message): return field.default_value return MakeScalarDefault def _ReraiseTypeErrorWithFieldName(message_name, field_name): """Re-raise the currently-handled TypeError with the field name added.""" exc = sys.exc_info()[1] if len(exc.args) == 1 and type(exc) is TypeError: exc = TypeError('%s for field %s.%s' % (str(exc), message_name, field_name)) six.reraise(type(exc), exc, sys.exc_info()[2]) def _AddInitMethod(message_descriptor, cls): """Adds an __init__ method to cls.""" fields = message_descriptor.fields def init(self, **kwargs): self._cached_byte_size = 0 self._cached_byte_size_dirty = len(kwargs) > 0 self._fields = {} self._oneofs = {} self._unknown_fields = () self._is_present_in_parent = False self._listener = message_listener_mod.NullMessageListener() self._listener_for_children = _Listener(self) for field_name, field_value in six.iteritems(kwargs): field = _GetFieldByName(message_descriptor, field_name) if field is None: raise TypeError("%s() got an unexpected keyword argument '%s'" % (message_descriptor.name, field_name)) if field.label == _FieldDescriptor.LABEL_REPEATED: copy = field._default_constructor(self) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: for val in field_value: copy.add().MergeFrom(val) else: copy.extend(field_value) self._fields[field] = copy elif field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: copy = field._default_constructor(self) try: copy.MergeFrom(field_value) except TypeError: _ReraiseTypeErrorWithFieldName(message_descriptor.name, field_name) self._fields[field] = copy else: try: setattr(self, field_name, field_value) except TypeError: _ReraiseTypeErrorWithFieldName(message_descriptor.name, field_name) init.__module__ = None init.__doc__ = None cls.__init__ = init def _GetFieldByName(message_descriptor, field_name): """Returns a field descriptor by field name. Args: message_descriptor: A Descriptor describing all fields in message. field_name: The name of the field to retrieve. Returns: The field descriptor associated with the field name. """ try: return message_descriptor.fields_by_name[field_name] except KeyError: raise ValueError('Protocol message has no "%s" field.' % field_name) def _AddPropertiesForFields(descriptor, cls): """Adds properties for all fields in this protocol message type.""" for field in descriptor.fields: _AddPropertiesForField(field, cls) if descriptor.is_extendable: cls.Extensions = property(lambda self: _ExtensionDict(self)) def _AddPropertiesForField(field, cls): """Adds a public property for a protocol message field. Clients can use this property to get and (in the case of non-repeated scalar fields) directly set the value of a protocol message field. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ assert _FieldDescriptor.MAX_CPPTYPE == 10 constant_name = field.name.upper() + "_FIELD_NUMBER" setattr(cls, constant_name, field.number) if field.label == _FieldDescriptor.LABEL_REPEATED: _AddPropertiesForRepeatedField(field, cls) elif field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: _AddPropertiesForNonRepeatedCompositeField(field, cls) else: _AddPropertiesForNonRepeatedScalarField(field, cls) def _AddPropertiesForRepeatedField(field, cls): """Adds a public property for a "repeated" protocol message field. Clients can use this property to get the value of the field, which will be either a _RepeatedScalarFieldContainer or _RepeatedCompositeFieldContainer (see below). Note that when clients add values to these containers, we perform type-checking in the case of repeated scalar fields, and we also set any necessary "has" bits as a side-effect. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ proto_field_name = field.name property_name = _PropertyName(proto_field_name) def getter(self): field_value = self._fields.get(field) if field_value is None: field_value = field._default_constructor(self) field_value = self._fields.setdefault(field, field_value) return field_value getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def setter(self, new_value): raise AttributeError('Assignment not allowed to repeated field ' '"%s" in protocol message object.' % proto_field_name) doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForNonRepeatedScalarField(field, cls): """Adds a public property for a nonrepeated, scalar protocol message field. Clients can use this property to get and directly set the value of the field. Note that when the client sets the value of a field by using this property, all necessary "has" bits are set as a side-effect, and we also perform type-checking. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ proto_field_name = field.name property_name = _PropertyName(proto_field_name) type_checker = type_checkers.GetTypeChecker(field) default_value = field.default_value valid_values = set() def getter(self): return self._fields.get(field, default_value) getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def field_setter(self, new_value): self._fields[field] = type_checker.CheckValue(new_value) if not self._cached_byte_size_dirty: self._Modified() if field.containing_oneof is not None: def setter(self, new_value): field_setter(self, new_value) self._UpdateOneofState(field) else: setter = field_setter setter.__module__ = None setter.__doc__ = 'Setter for %s.' % proto_field_name doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForNonRepeatedCompositeField(field, cls): """Adds a public property for a nonrepeated, composite protocol message field. A composite field is a "group" or "message" field. Clients can use this property to get the value of the field, but cannot assign to the property directly. Args: field: A FieldDescriptor for this field. cls: The class we're constructing. """ proto_field_name = field.name property_name = _PropertyName(proto_field_name) message_type = field.message_type def getter(self): field_value = self._fields.get(field) if field_value is None: field_value = message_type._concrete_class() field_value._SetListener( _OneofListener(self, field) if field.containing_oneof is not None else self._listener_for_children) field_value = self._fields.setdefault(field, field_value) return field_value getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def setter(self, new_value): raise AttributeError('Assignment not allowed to composite field ' '"%s" in protocol message object.' % proto_field_name) doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForExtensions(descriptor, cls): """Adds properties for all fields in this protocol message type.""" extension_dict = descriptor.extensions_by_name for extension_name, extension_field in six.iteritems(extension_dict): constant_name = extension_name.upper() + "_FIELD_NUMBER" setattr(cls, constant_name, extension_field.number) def _AddStaticMethods(cls): def RegisterExtension(extension_handle): extension_handle.containing_type = cls.DESCRIPTOR _AttachFieldHelpers(cls, extension_handle) actual_handle = cls._extensions_by_number.setdefault( extension_handle.number, extension_handle) if actual_handle is not extension_handle: raise AssertionError( 'Extensions "%s" and "%s" both try to extend message type "%s" with ' 'field number %d.' % (extension_handle.full_name, actual_handle.full_name, cls.DESCRIPTOR.full_name, extension_handle.number)) cls._extensions_by_name[extension_handle.full_name] = extension_handle handle = extension_handle if _IsMessageSetExtension(handle): cls._extensions_by_name[ extension_handle.message_type.full_name] = extension_handle cls.RegisterExtension = staticmethod(RegisterExtension) def FromString(s): message = cls() message.MergeFromString(s) return message cls.FromString = staticmethod(FromString) def _IsPresent(item): """Given a (FieldDescriptor, value) tuple from _fields, return true if the value should be included in the list returned by ListFields().""" if item[0].label == _FieldDescriptor.LABEL_REPEATED: return bool(item[1]) elif item[0].cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: return item[1]._is_present_in_parent else: return True def _AddListFieldsMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def ListFields(self): all_fields = [item for item in six.iteritems(self._fields) if _IsPresent(item)] all_fields.sort(key = lambda item: item[0].number) return all_fields cls.ListFields = ListFields def _AddHasFieldMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" singular_fields = {} for field in message_descriptor.fields: if field.label != _FieldDescriptor.LABEL_REPEATED: singular_fields[field.name] = field for field in message_descriptor.oneofs: singular_fields[field.name] = field def HasField(self, field_name): try: field = singular_fields[field_name] except KeyError: raise ValueError( 'Protocol message has no singular "%s" field.' % field_name) if isinstance(field, descriptor_mod.OneofDescriptor): try: return HasField(self, self._oneofs[field].name) except KeyError: return False else: if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: value = self._fields.get(field) return value is not None and value._is_present_in_parent else: return field in self._fields cls.HasField = HasField def _AddClearFieldMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def ClearField(self, field_name): try: field = message_descriptor.fields_by_name[field_name] except KeyError: try: field = message_descriptor.oneofs_by_name[field_name] if field in self._oneofs: field = self._oneofs[field] else: return except KeyError: raise ValueError('Protocol message has no "%s" field.' % field_name) if field in self._fields: del self._fields[field] if self._oneofs.get(field.containing_oneof, None) is field: del self._oneofs[field.containing_oneof] self._Modified() cls.ClearField = ClearField def _AddClearExtensionMethod(cls): """Helper for _AddMessageMethods().""" def ClearExtension(self, extension_handle): _VerifyExtensionHandle(self, extension_handle) if extension_handle in self._fields: del self._fields[extension_handle] self._Modified() cls.ClearExtension = ClearExtension def _AddClearMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def Clear(self): self._fields = {} self._unknown_fields = () self._oneofs = {} self._Modified() cls.Clear = Clear def _AddHasExtensionMethod(cls): """Helper for _AddMessageMethods().""" def HasExtension(self, extension_handle): _VerifyExtensionHandle(self, extension_handle) if extension_handle.label == _FieldDescriptor.LABEL_REPEATED: raise KeyError('"%s" is repeated.' % extension_handle.full_name) if extension_handle.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: value = self._fields.get(extension_handle) return value is not None and value._is_present_in_parent else: return extension_handle in self._fields cls.HasExtension = HasExtension def _AddEqualsMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def __eq__(self, other): if (not isinstance(other, message_mod.Message) or other.DESCRIPTOR != self.DESCRIPTOR): return False if self is other: return True if not self.ListFields() == other.ListFields(): return False unknown_fields = list(self._unknown_fields) unknown_fields.sort() other_unknown_fields = list(other._unknown_fields) other_unknown_fields.sort() return unknown_fields == other_unknown_fields cls.__eq__ = __eq__ def _AddStrMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def __str__(self): return text_format.MessageToString(self) cls.__str__ = __str__ def _AddUnicodeMethod(unused_message_descriptor, cls): """Helper for _AddMessageMethods().""" def __unicode__(self): return text_format.MessageToString(self, as_utf8=True).decode('utf-8') cls.__unicode__ = __unicode__ def _AddSetListenerMethod(cls): """Helper for _AddMessageMethods().""" def SetListener(self, listener): if listener is None: self._listener = message_listener_mod.NullMessageListener() else: self._listener = listener cls._SetListener = SetListener def _BytesForNonRepeatedElement(value, field_number, field_type): """Returns the number of bytes needed to serialize a non-repeated element. The returned byte count includes space for tag information and any other additional space associated with serializing value. Args: value: Value we're serializing. field_number: Field number of this value. (Since the field number is stored as part of a varint-encoded tag, this has an impact on the total bytes required to serialize the value). field_type: The type of the field. One of the TYPE_* constants within FieldDescriptor. """ try: fn = type_checkers.TYPE_TO_BYTE_SIZE_FN[field_type] return fn(field_number, value) except KeyError: raise message_mod.EncodeError('Unrecognized field type: %d' % field_type) def _AddByteSizeMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def ByteSize(self): if not self._cached_byte_size_dirty: return self._cached_byte_size size = 0 for field_descriptor, field_value in self.ListFields(): size += field_descriptor._sizer(field_value) for tag_bytes, value_bytes in self._unknown_fields: size += len(tag_bytes) + len(value_bytes) self._cached_byte_size = size self._cached_byte_size_dirty = False self._listener_for_children.dirty = False return size cls.ByteSize = ByteSize def _AddSerializeToStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def SerializeToString(self): errors = [] if not self.IsInitialized(): raise message_mod.EncodeError( 'Message %s is missing required fields: %s' % ( self.DESCRIPTOR.full_name, ','.join(self.FindInitializationErrors()))) return self.SerializePartialToString() cls.SerializeToString = SerializeToString def _AddSerializePartialToStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def SerializePartialToString(self): out = BytesIO() self._InternalSerialize(out.write) return out.getvalue() cls.SerializePartialToString = SerializePartialToString def InternalSerialize(self, write_bytes): for field_descriptor, field_value in self.ListFields(): field_descriptor._encoder(write_bytes, field_value) for tag_bytes, value_bytes in self._unknown_fields: write_bytes(tag_bytes) write_bytes(value_bytes) cls._InternalSerialize = InternalSerialize def _AddMergeFromStringMethod(message_descriptor, cls): """Helper for _AddMessageMethods().""" def MergeFromString(self, serialized): length = len(serialized) try: if self._InternalParse(serialized, 0, length) != length: raise message_mod.DecodeError('Unexpected end-group tag.') except (IndexError, TypeError): raise message_mod.DecodeError('Truncated message.') except struct.error as e: raise message_mod.DecodeError(e) return length cls.MergeFromString = MergeFromString local_ReadTag = decoder.ReadTag local_SkipField = decoder.SkipField decoders_by_tag = cls._decoders_by_tag def InternalParse(self, buffer, pos, end): self._Modified() field_dict = self._fields unknown_field_list = self._unknown_fields while pos != end: (tag_bytes, new_pos) = local_ReadTag(buffer, pos) field_decoder, field_desc = decoders_by_tag.get(tag_bytes, (None, None)) if field_decoder is None: value_start_pos = new_pos new_pos = local_SkipField(buffer, new_pos, end, tag_bytes) if new_pos == -1: return pos if not unknown_field_list: unknown_field_list = self._unknown_fields = [] unknown_field_list.append((tag_bytes, buffer[value_start_pos:new_pos])) pos = new_pos else: pos = field_decoder(buffer, new_pos, end, self, field_dict) if field_desc: self._UpdateOneofState(field_desc) return pos cls._InternalParse = InternalParse def _AddIsInitializedMethod(message_descriptor, cls): """Adds the IsInitialized and FindInitializationError methods to the protocol message class.""" required_fields = [field for field in message_descriptor.fields if field.label == _FieldDescriptor.LABEL_REQUIRED] def IsInitialized(self, errors=None): """Checks if all required fields of a message are set. Args: errors: A list which, if provided, will be populated with the field paths of all missing required fields. Returns: True iff the specified message has all required fields set. """ for field in required_fields: if (field not in self._fields or (field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE and not self._fields[field]._is_present_in_parent)): if errors is not None: errors.extend(self.FindInitializationErrors()) return False for field, value in list(self._fields.items()): if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if field.label == _FieldDescriptor.LABEL_REPEATED: for element in value: if not element.IsInitialized(): if errors is not None: errors.extend(self.FindInitializationErrors()) return False elif value._is_present_in_parent and not value.IsInitialized(): if errors is not None: errors.extend(self.FindInitializationErrors()) return False return True cls.IsInitialized = IsInitialized def FindInitializationErrors(self): """Finds required fields which are not initialized. Returns: A list of strings. Each string is a path to an uninitialized field from the top-level message, e.g. "foo.bar[5].baz". """ errors = [] for field in required_fields: if not self.HasField(field.name): errors.append(field.name) for field, value in self.ListFields(): if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if field.is_extension: name = "(%s)" % field.full_name else: name = field.name if field.label == _FieldDescriptor.LABEL_REPEATED: for i in range(len(value)): element = value[i] prefix = "%s[%d]." % (name, i) sub_errors = element.FindInitializationErrors() errors += [ prefix + error for error in sub_errors ] else: prefix = name + "." sub_errors = value.FindInitializationErrors() errors += [ prefix + error for error in sub_errors ] return errors cls.FindInitializationErrors = FindInitializationErrors def _AddMergeFromMethod(cls): LABEL_REPEATED = _FieldDescriptor.LABEL_REPEATED CPPTYPE_MESSAGE = _FieldDescriptor.CPPTYPE_MESSAGE def MergeFrom(self, msg): if not isinstance(msg, cls): raise TypeError( "Parameter to MergeFrom() must be instance of same class: " "expected %s got %s." % (cls.__name__, type(msg).__name__)) assert msg is not self self._Modified() fields = self._fields for field, value in six.iteritems(msg._fields): if field.label == LABEL_REPEATED: field_value = fields.get(field) if field_value is None: field_value = field._default_constructor(self) fields[field] = field_value field_value.MergeFrom(value) elif field.cpp_type == CPPTYPE_MESSAGE: if value._is_present_in_parent: field_value = fields.get(field) if field_value is None: field_value = field._default_constructor(self) fields[field] = field_value field_value.MergeFrom(value) else: self._fields[field] = value if msg._unknown_fields: if not self._unknown_fields: self._unknown_fields = [] self._unknown_fields.extend(msg._unknown_fields) cls.MergeFrom = MergeFrom def _AddWhichOneofMethod(message_descriptor, cls): def WhichOneof(self, oneof_name): """Returns the name of the currently set field inside a oneof, or None.""" try: field = message_descriptor.oneofs_by_name[oneof_name] except KeyError: raise ValueError( 'Protocol message has no oneof "%s" field.' % oneof_name) nested_field = self._oneofs.get(field, None) if nested_field is not None and self.HasField(nested_field.name): return nested_field.name else: return None cls.WhichOneof = WhichOneof def _AddMessageMethods(message_descriptor, cls): """Adds implementations of all Message methods to cls.""" _AddListFieldsMethod(message_descriptor, cls) _AddHasFieldMethod(message_descriptor, cls) _AddClearFieldMethod(message_descriptor, cls) if message_descriptor.is_extendable: _AddClearExtensionMethod(cls) _AddHasExtensionMethod(cls) _AddClearMethod(message_descriptor, cls) _AddEqualsMethod(message_descriptor, cls) _AddStrMethod(message_descriptor, cls) _AddUnicodeMethod(message_descriptor, cls) _AddSetListenerMethod(cls) _AddByteSizeMethod(message_descriptor, cls) _AddSerializeToStringMethod(message_descriptor, cls) _AddSerializePartialToStringMethod(message_descriptor, cls) _AddMergeFromStringMethod(message_descriptor, cls) _AddIsInitializedMethod(message_descriptor, cls) _AddMergeFromMethod(cls) _AddWhichOneofMethod(message_descriptor, cls) def _AddPrivateHelperMethods(message_descriptor, cls): """Adds implementation of private helper methods to cls.""" def Modified(self): """Sets the _cached_byte_size_dirty bit to true, and propagates this to our listener iff this was a state change. """ if not self._cached_byte_size_dirty: self._cached_byte_size_dirty = True self._listener_for_children.dirty = True self._is_present_in_parent = True self._listener.Modified() def _UpdateOneofState(self, field): """Sets field as the active field in its containing oneof. Will also delete currently active field in the oneof, if it is different from the argument. Does not mark the message as modified. """ other_field = self._oneofs.setdefault(field.containing_oneof, field) if other_field is not field: del self._fields[other_field] self._oneofs[field.containing_oneof] = field cls._Modified = Modified cls.SetInParent = Modified cls._UpdateOneofState = _UpdateOneofState class _Listener(object): """MessageListener implementation that a parent message registers with its child message. In order to support semantics like: foo.bar.baz.qux = 23 assert foo.HasField('bar') ...child objects must have back references to their parents. This helper class is at the heart of this support. """ def __init__(self, parent_message): """Args: parent_message: The message whose _Modified() method we should call when we receive Modified() messages. """ if isinstance(parent_message, weakref.ProxyType): self._parent_message_weakref = parent_message else: self._parent_message_weakref = weakref.proxy(parent_message) self.dirty = False def Modified(self): if self.dirty: return try: self._parent_message_weakref._Modified() except ReferenceError: pass class _OneofListener(_Listener): """Special listener implementation for setting composite oneof fields.""" def __init__(self, parent_message, field): """Args: parent_message: The message whose _Modified() method we should call when we receive Modified() messages. field: The descriptor of the field being set in the parent message. """ super(_OneofListener, self).__init__(parent_message) self._field = field def Modified(self): """Also updates the state of the containing oneof in the parent message.""" try: self._parent_message_weakref._UpdateOneofState(self._field) super(_OneofListener, self).Modified() except ReferenceError: pass class _ExtensionDict(object): """Dict-like container for supporting an indexable "Extensions" field on proto instances. Note that in all cases we expect extension handles to be FieldDescriptors. """ def __init__(self, extended_message): """extended_message: Message instance for which we are the Extensions dict. """ self._extended_message = extended_message def __getitem__(self, extension_handle): """Returns the current value of the given extension handle.""" _VerifyExtensionHandle(self._extended_message, extension_handle) result = self._extended_message._fields.get(extension_handle) if result is not None: return result if extension_handle.label == _FieldDescriptor.LABEL_REPEATED: result = extension_handle._default_constructor(self._extended_message) elif extension_handle.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: result = extension_handle.message_type._concrete_class() try: result._SetListener(self._extended_message._listener_for_children) except ReferenceError: pass else: return extension_handle.default_value result = self._extended_message._fields.setdefault( extension_handle, result) return result def __eq__(self, other): if not isinstance(other, self.__class__): return False my_fields = self._extended_message.ListFields() other_fields = other._extended_message.ListFields() my_fields = [ field for field in my_fields if field.is_extension ] other_fields = [ field for field in other_fields if field.is_extension ] return my_fields == other_fields def __ne__(self, other): return not self == other def __hash__(self): raise TypeError('unhashable object') def __setitem__(self, extension_handle, value): """If extension_handle specifies a non-repeated, scalar extension field, sets the value of that field. """ _VerifyExtensionHandle(self._extended_message, extension_handle) if (extension_handle.label == _FieldDescriptor.LABEL_REPEATED or extension_handle.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE): raise TypeError( 'Cannot assign to extension "%s" because it is a repeated or ' 'composite type.' % extension_handle.full_name) type_checker = type_checkers.GetTypeChecker( extension_handle) self._extended_message._fields[extension_handle] = ( type_checker.CheckValue(value)) self._extended_message._Modified() def _FindExtensionByName(self, name): """Tries to find a known extension with the specified name. Args: name: Extension full name. Returns: Extension field descriptor. """ return self._extended_message._extensions_by_name.get(name, None)
30.182753
86
0.720925
from __future__ import absolute_import from future import standard_library standard_library.install_aliases() from builtins import str from builtins import range from builtins import object import sys import six from six.moves import range if sys.version_info[0] < 3: try: from io import StringIO as BytesIO except ImportError: from io import StringIO as BytesIO import six.moves.copyreg as copyreg else: from io import BytesIO import copyreg import struct import weakref from google.net.proto2.python.internal import containers from google.net.proto2.python.internal import decoder from google.net.proto2.python.internal import encoder from google.net.proto2.python.internal import enum_type_wrapper from google.net.proto2.python.internal import message_listener as message_listener_mod from google.net.proto2.python.internal import type_checkers from google.net.proto2.python.internal import wire_format from google.net.proto2.python.public import descriptor as descriptor_mod from google.net.proto2.python.public import message as message_mod from google.net.proto2.python.public import text_format _FieldDescriptor = descriptor_mod.FieldDescriptor def NewMessage(bases, descriptor, dictionary): _AddClassAttributesForNestedExtensions(descriptor, dictionary) _AddSlots(descriptor, dictionary) return bases def InitMessage(descriptor, cls): cls._decoders_by_tag = {} cls._extensions_by_name = {} cls._extensions_by_number = {} if (descriptor.has_options and descriptor.GetOptions().message_set_wire_format): cls._decoders_by_tag[decoder.MESSAGE_SET_ITEM_TAG] = ( decoder.MessageSetItemDecoder(cls._extensions_by_number), None) for field in descriptor.fields: _AttachFieldHelpers(cls, field) _AddEnumValues(descriptor, cls) _AddInitMethod(descriptor, cls) _AddPropertiesForFields(descriptor, cls) _AddPropertiesForExtensions(descriptor, cls) _AddStaticMethods(cls) _AddMessageMethods(descriptor, cls) _AddPrivateHelperMethods(descriptor, cls) copyreg.pickle(cls, lambda obj: (cls, (), obj.__getstate__())) def _PropertyName(proto_field_name): return proto_field_name def _VerifyExtensionHandle(message, extension_handle): if not isinstance(extension_handle, _FieldDescriptor): raise KeyError('HasExtension() expects an extension handle, got: %s' % extension_handle) if not extension_handle.is_extension: raise KeyError('"%s" is not an extension.' % extension_handle.full_name) if not extension_handle.containing_type: raise KeyError('"%s" is missing a containing_type.' % extension_handle.full_name) if extension_handle.containing_type is not message.DESCRIPTOR: raise KeyError('Extension "%s" extends message type "%s", but this ' 'message is of type "%s".' % (extension_handle.full_name, extension_handle.containing_type.full_name, message.DESCRIPTOR.full_name)) def _AddSlots(message_descriptor, dictionary): dictionary['__slots__'] = ['_cached_byte_size', '_cached_byte_size_dirty', '_fields', '_unknown_fields', '_is_present_in_parent', '_listener', '_listener_for_children', '__weakref__', '_oneofs'] def _IsMessageSetExtension(field): return (field.is_extension and field.containing_type.has_options and field.containing_type.GetOptions().message_set_wire_format and field.type == _FieldDescriptor.TYPE_MESSAGE and field.message_type == field.extension_scope and field.label == _FieldDescriptor.LABEL_OPTIONAL) def _AttachFieldHelpers(cls, field_descriptor): is_repeated = (field_descriptor.label == _FieldDescriptor.LABEL_REPEATED) is_packed = (field_descriptor.has_options and field_descriptor.GetOptions().packed) if _IsMessageSetExtension(field_descriptor): field_encoder = encoder.MessageSetItemEncoder(field_descriptor.number) sizer = encoder.MessageSetItemSizer(field_descriptor.number) else: field_encoder = type_checkers.TYPE_TO_ENCODER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed) sizer = type_checkers.TYPE_TO_SIZER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed) field_descriptor._encoder = field_encoder field_descriptor._sizer = sizer field_descriptor._default_constructor = _DefaultValueConstructorForField( field_descriptor) def AddDecoder(wiretype, is_packed): tag_bytes = encoder.TagBytes(field_descriptor.number, wiretype) cls._decoders_by_tag[tag_bytes] = ( type_checkers.TYPE_TO_DECODER[field_descriptor.type]( field_descriptor.number, is_repeated, is_packed, field_descriptor, field_descriptor._default_constructor), field_descriptor if field_descriptor.containing_oneof is not None else None) AddDecoder(type_checkers.FIELD_TYPE_TO_WIRE_TYPE[field_descriptor.type], False) if is_repeated and wire_format.IsTypePackable(field_descriptor.type): AddDecoder(wire_format.WIRETYPE_LENGTH_DELIMITED, True) def _AddClassAttributesForNestedExtensions(descriptor, dictionary): extension_dict = descriptor.extensions_by_name for extension_name, extension_field in six.iteritems(extension_dict): assert extension_name not in dictionary dictionary[extension_name] = extension_field def _AddEnumValues(descriptor, cls): for enum_type in descriptor.enum_types: setattr(cls, enum_type.name, enum_type_wrapper.EnumTypeWrapper(enum_type)) for enum_value in enum_type.values: setattr(cls, enum_value.name, enum_value.number) def _DefaultValueConstructorForField(field): if field.label == _FieldDescriptor.LABEL_REPEATED: if field.has_default_value and field.default_value != []: raise ValueError('Repeated field default value not empty list: %s' % ( field.default_value)) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: message_type = field.message_type def MakeRepeatedMessageDefault(message): return containers.RepeatedCompositeFieldContainer( message._listener_for_children, field.message_type) return MakeRepeatedMessageDefault else: type_checker = type_checkers.GetTypeChecker(field) def MakeRepeatedScalarDefault(message): return containers.RepeatedScalarFieldContainer( message._listener_for_children, type_checker) return MakeRepeatedScalarDefault if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: message_type = field.message_type def MakeSubMessageDefault(message): result = message_type._concrete_class() result._SetListener(message._listener_for_children) return result return MakeSubMessageDefault def MakeScalarDefault(message): return field.default_value return MakeScalarDefault def _ReraiseTypeErrorWithFieldName(message_name, field_name): exc = sys.exc_info()[1] if len(exc.args) == 1 and type(exc) is TypeError: exc = TypeError('%s for field %s.%s' % (str(exc), message_name, field_name)) six.reraise(type(exc), exc, sys.exc_info()[2]) def _AddInitMethod(message_descriptor, cls): fields = message_descriptor.fields def init(self, **kwargs): self._cached_byte_size = 0 self._cached_byte_size_dirty = len(kwargs) > 0 self._fields = {} self._oneofs = {} self._unknown_fields = () self._is_present_in_parent = False self._listener = message_listener_mod.NullMessageListener() self._listener_for_children = _Listener(self) for field_name, field_value in six.iteritems(kwargs): field = _GetFieldByName(message_descriptor, field_name) if field is None: raise TypeError("%s() got an unexpected keyword argument '%s'" % (message_descriptor.name, field_name)) if field.label == _FieldDescriptor.LABEL_REPEATED: copy = field._default_constructor(self) if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: for val in field_value: copy.add().MergeFrom(val) else: copy.extend(field_value) self._fields[field] = copy elif field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: copy = field._default_constructor(self) try: copy.MergeFrom(field_value) except TypeError: _ReraiseTypeErrorWithFieldName(message_descriptor.name, field_name) self._fields[field] = copy else: try: setattr(self, field_name, field_value) except TypeError: _ReraiseTypeErrorWithFieldName(message_descriptor.name, field_name) init.__module__ = None init.__doc__ = None cls.__init__ = init def _GetFieldByName(message_descriptor, field_name): try: return message_descriptor.fields_by_name[field_name] except KeyError: raise ValueError('Protocol message has no "%s" field.' % field_name) def _AddPropertiesForFields(descriptor, cls): for field in descriptor.fields: _AddPropertiesForField(field, cls) if descriptor.is_extendable: cls.Extensions = property(lambda self: _ExtensionDict(self)) def _AddPropertiesForField(field, cls): assert _FieldDescriptor.MAX_CPPTYPE == 10 constant_name = field.name.upper() + "_FIELD_NUMBER" setattr(cls, constant_name, field.number) if field.label == _FieldDescriptor.LABEL_REPEATED: _AddPropertiesForRepeatedField(field, cls) elif field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: _AddPropertiesForNonRepeatedCompositeField(field, cls) else: _AddPropertiesForNonRepeatedScalarField(field, cls) def _AddPropertiesForRepeatedField(field, cls): proto_field_name = field.name property_name = _PropertyName(proto_field_name) def getter(self): field_value = self._fields.get(field) if field_value is None: field_value = field._default_constructor(self) field_value = self._fields.setdefault(field, field_value) return field_value getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def setter(self, new_value): raise AttributeError('Assignment not allowed to repeated field ' '"%s" in protocol message object.' % proto_field_name) doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForNonRepeatedScalarField(field, cls): proto_field_name = field.name property_name = _PropertyName(proto_field_name) type_checker = type_checkers.GetTypeChecker(field) default_value = field.default_value valid_values = set() def getter(self): return self._fields.get(field, default_value) getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def field_setter(self, new_value): self._fields[field] = type_checker.CheckValue(new_value) if not self._cached_byte_size_dirty: self._Modified() if field.containing_oneof is not None: def setter(self, new_value): field_setter(self, new_value) self._UpdateOneofState(field) else: setter = field_setter setter.__module__ = None setter.__doc__ = 'Setter for %s.' % proto_field_name doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForNonRepeatedCompositeField(field, cls): proto_field_name = field.name property_name = _PropertyName(proto_field_name) message_type = field.message_type def getter(self): field_value = self._fields.get(field) if field_value is None: field_value = message_type._concrete_class() field_value._SetListener( _OneofListener(self, field) if field.containing_oneof is not None else self._listener_for_children) field_value = self._fields.setdefault(field, field_value) return field_value getter.__module__ = None getter.__doc__ = 'Getter for %s.' % proto_field_name def setter(self, new_value): raise AttributeError('Assignment not allowed to composite field ' '"%s" in protocol message object.' % proto_field_name) doc = 'Magic attribute generated for "%s" proto field.' % proto_field_name setattr(cls, property_name, property(getter, setter, doc=doc)) def _AddPropertiesForExtensions(descriptor, cls): extension_dict = descriptor.extensions_by_name for extension_name, extension_field in six.iteritems(extension_dict): constant_name = extension_name.upper() + "_FIELD_NUMBER" setattr(cls, constant_name, extension_field.number) def _AddStaticMethods(cls): def RegisterExtension(extension_handle): extension_handle.containing_type = cls.DESCRIPTOR _AttachFieldHelpers(cls, extension_handle) actual_handle = cls._extensions_by_number.setdefault( extension_handle.number, extension_handle) if actual_handle is not extension_handle: raise AssertionError( 'Extensions "%s" and "%s" both try to extend message type "%s" with ' 'field number %d.' % (extension_handle.full_name, actual_handle.full_name, cls.DESCRIPTOR.full_name, extension_handle.number)) cls._extensions_by_name[extension_handle.full_name] = extension_handle handle = extension_handle if _IsMessageSetExtension(handle): cls._extensions_by_name[ extension_handle.message_type.full_name] = extension_handle cls.RegisterExtension = staticmethod(RegisterExtension) def FromString(s): message = cls() message.MergeFromString(s) return message cls.FromString = staticmethod(FromString) def _IsPresent(item): if item[0].label == _FieldDescriptor.LABEL_REPEATED: return bool(item[1]) elif item[0].cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: return item[1]._is_present_in_parent else: return True def _AddListFieldsMethod(message_descriptor, cls): def ListFields(self): all_fields = [item for item in six.iteritems(self._fields) if _IsPresent(item)] all_fields.sort(key = lambda item: item[0].number) return all_fields cls.ListFields = ListFields def _AddHasFieldMethod(message_descriptor, cls): singular_fields = {} for field in message_descriptor.fields: if field.label != _FieldDescriptor.LABEL_REPEATED: singular_fields[field.name] = field for field in message_descriptor.oneofs: singular_fields[field.name] = field def HasField(self, field_name): try: field = singular_fields[field_name] except KeyError: raise ValueError( 'Protocol message has no singular "%s" field.' % field_name) if isinstance(field, descriptor_mod.OneofDescriptor): try: return HasField(self, self._oneofs[field].name) except KeyError: return False else: if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: value = self._fields.get(field) return value is not None and value._is_present_in_parent else: return field in self._fields cls.HasField = HasField def _AddClearFieldMethod(message_descriptor, cls): def ClearField(self, field_name): try: field = message_descriptor.fields_by_name[field_name] except KeyError: try: field = message_descriptor.oneofs_by_name[field_name] if field in self._oneofs: field = self._oneofs[field] else: return except KeyError: raise ValueError('Protocol message has no "%s" field.' % field_name) if field in self._fields: del self._fields[field] if self._oneofs.get(field.containing_oneof, None) is field: del self._oneofs[field.containing_oneof] self._Modified() cls.ClearField = ClearField def _AddClearExtensionMethod(cls): def ClearExtension(self, extension_handle): _VerifyExtensionHandle(self, extension_handle) if extension_handle in self._fields: del self._fields[extension_handle] self._Modified() cls.ClearExtension = ClearExtension def _AddClearMethod(message_descriptor, cls): def Clear(self): self._fields = {} self._unknown_fields = () self._oneofs = {} self._Modified() cls.Clear = Clear def _AddHasExtensionMethod(cls): def HasExtension(self, extension_handle): _VerifyExtensionHandle(self, extension_handle) if extension_handle.label == _FieldDescriptor.LABEL_REPEATED: raise KeyError('"%s" is repeated.' % extension_handle.full_name) if extension_handle.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: value = self._fields.get(extension_handle) return value is not None and value._is_present_in_parent else: return extension_handle in self._fields cls.HasExtension = HasExtension def _AddEqualsMethod(message_descriptor, cls): def __eq__(self, other): if (not isinstance(other, message_mod.Message) or other.DESCRIPTOR != self.DESCRIPTOR): return False if self is other: return True if not self.ListFields() == other.ListFields(): return False unknown_fields = list(self._unknown_fields) unknown_fields.sort() other_unknown_fields = list(other._unknown_fields) other_unknown_fields.sort() return unknown_fields == other_unknown_fields cls.__eq__ = __eq__ def _AddStrMethod(message_descriptor, cls): def __str__(self): return text_format.MessageToString(self) cls.__str__ = __str__ def _AddUnicodeMethod(unused_message_descriptor, cls): def __unicode__(self): return text_format.MessageToString(self, as_utf8=True).decode('utf-8') cls.__unicode__ = __unicode__ def _AddSetListenerMethod(cls): def SetListener(self, listener): if listener is None: self._listener = message_listener_mod.NullMessageListener() else: self._listener = listener cls._SetListener = SetListener def _BytesForNonRepeatedElement(value, field_number, field_type): try: fn = type_checkers.TYPE_TO_BYTE_SIZE_FN[field_type] return fn(field_number, value) except KeyError: raise message_mod.EncodeError('Unrecognized field type: %d' % field_type) def _AddByteSizeMethod(message_descriptor, cls): def ByteSize(self): if not self._cached_byte_size_dirty: return self._cached_byte_size size = 0 for field_descriptor, field_value in self.ListFields(): size += field_descriptor._sizer(field_value) for tag_bytes, value_bytes in self._unknown_fields: size += len(tag_bytes) + len(value_bytes) self._cached_byte_size = size self._cached_byte_size_dirty = False self._listener_for_children.dirty = False return size cls.ByteSize = ByteSize def _AddSerializeToStringMethod(message_descriptor, cls): def SerializeToString(self): errors = [] if not self.IsInitialized(): raise message_mod.EncodeError( 'Message %s is missing required fields: %s' % ( self.DESCRIPTOR.full_name, ','.join(self.FindInitializationErrors()))) return self.SerializePartialToString() cls.SerializeToString = SerializeToString def _AddSerializePartialToStringMethod(message_descriptor, cls): def SerializePartialToString(self): out = BytesIO() self._InternalSerialize(out.write) return out.getvalue() cls.SerializePartialToString = SerializePartialToString def InternalSerialize(self, write_bytes): for field_descriptor, field_value in self.ListFields(): field_descriptor._encoder(write_bytes, field_value) for tag_bytes, value_bytes in self._unknown_fields: write_bytes(tag_bytes) write_bytes(value_bytes) cls._InternalSerialize = InternalSerialize def _AddMergeFromStringMethod(message_descriptor, cls): def MergeFromString(self, serialized): length = len(serialized) try: if self._InternalParse(serialized, 0, length) != length: raise message_mod.DecodeError('Unexpected end-group tag.') except (IndexError, TypeError): raise message_mod.DecodeError('Truncated message.') except struct.error as e: raise message_mod.DecodeError(e) return length cls.MergeFromString = MergeFromString local_ReadTag = decoder.ReadTag local_SkipField = decoder.SkipField decoders_by_tag = cls._decoders_by_tag def InternalParse(self, buffer, pos, end): self._Modified() field_dict = self._fields unknown_field_list = self._unknown_fields while pos != end: (tag_bytes, new_pos) = local_ReadTag(buffer, pos) field_decoder, field_desc = decoders_by_tag.get(tag_bytes, (None, None)) if field_decoder is None: value_start_pos = new_pos new_pos = local_SkipField(buffer, new_pos, end, tag_bytes) if new_pos == -1: return pos if not unknown_field_list: unknown_field_list = self._unknown_fields = [] unknown_field_list.append((tag_bytes, buffer[value_start_pos:new_pos])) pos = new_pos else: pos = field_decoder(buffer, new_pos, end, self, field_dict) if field_desc: self._UpdateOneofState(field_desc) return pos cls._InternalParse = InternalParse def _AddIsInitializedMethod(message_descriptor, cls): required_fields = [field for field in message_descriptor.fields if field.label == _FieldDescriptor.LABEL_REQUIRED] def IsInitialized(self, errors=None): for field in required_fields: if (field not in self._fields or (field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE and not self._fields[field]._is_present_in_parent)): if errors is not None: errors.extend(self.FindInitializationErrors()) return False for field, value in list(self._fields.items()): if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if field.label == _FieldDescriptor.LABEL_REPEATED: for element in value: if not element.IsInitialized(): if errors is not None: errors.extend(self.FindInitializationErrors()) return False elif value._is_present_in_parent and not value.IsInitialized(): if errors is not None: errors.extend(self.FindInitializationErrors()) return False return True cls.IsInitialized = IsInitialized def FindInitializationErrors(self): errors = [] for field in required_fields: if not self.HasField(field.name): errors.append(field.name) for field, value in self.ListFields(): if field.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: if field.is_extension: name = "(%s)" % field.full_name else: name = field.name if field.label == _FieldDescriptor.LABEL_REPEATED: for i in range(len(value)): element = value[i] prefix = "%s[%d]." % (name, i) sub_errors = element.FindInitializationErrors() errors += [ prefix + error for error in sub_errors ] else: prefix = name + "." sub_errors = value.FindInitializationErrors() errors += [ prefix + error for error in sub_errors ] return errors cls.FindInitializationErrors = FindInitializationErrors def _AddMergeFromMethod(cls): LABEL_REPEATED = _FieldDescriptor.LABEL_REPEATED CPPTYPE_MESSAGE = _FieldDescriptor.CPPTYPE_MESSAGE def MergeFrom(self, msg): if not isinstance(msg, cls): raise TypeError( "Parameter to MergeFrom() must be instance of same class: " "expected %s got %s." % (cls.__name__, type(msg).__name__)) assert msg is not self self._Modified() fields = self._fields for field, value in six.iteritems(msg._fields): if field.label == LABEL_REPEATED: field_value = fields.get(field) if field_value is None: field_value = field._default_constructor(self) fields[field] = field_value field_value.MergeFrom(value) elif field.cpp_type == CPPTYPE_MESSAGE: if value._is_present_in_parent: field_value = fields.get(field) if field_value is None: field_value = field._default_constructor(self) fields[field] = field_value field_value.MergeFrom(value) else: self._fields[field] = value if msg._unknown_fields: if not self._unknown_fields: self._unknown_fields = [] self._unknown_fields.extend(msg._unknown_fields) cls.MergeFrom = MergeFrom def _AddWhichOneofMethod(message_descriptor, cls): def WhichOneof(self, oneof_name): try: field = message_descriptor.oneofs_by_name[oneof_name] except KeyError: raise ValueError( 'Protocol message has no oneof "%s" field.' % oneof_name) nested_field = self._oneofs.get(field, None) if nested_field is not None and self.HasField(nested_field.name): return nested_field.name else: return None cls.WhichOneof = WhichOneof def _AddMessageMethods(message_descriptor, cls): _AddListFieldsMethod(message_descriptor, cls) _AddHasFieldMethod(message_descriptor, cls) _AddClearFieldMethod(message_descriptor, cls) if message_descriptor.is_extendable: _AddClearExtensionMethod(cls) _AddHasExtensionMethod(cls) _AddClearMethod(message_descriptor, cls) _AddEqualsMethod(message_descriptor, cls) _AddStrMethod(message_descriptor, cls) _AddUnicodeMethod(message_descriptor, cls) _AddSetListenerMethod(cls) _AddByteSizeMethod(message_descriptor, cls) _AddSerializeToStringMethod(message_descriptor, cls) _AddSerializePartialToStringMethod(message_descriptor, cls) _AddMergeFromStringMethod(message_descriptor, cls) _AddIsInitializedMethod(message_descriptor, cls) _AddMergeFromMethod(cls) _AddWhichOneofMethod(message_descriptor, cls) def _AddPrivateHelperMethods(message_descriptor, cls): def Modified(self): if not self._cached_byte_size_dirty: self._cached_byte_size_dirty = True self._listener_for_children.dirty = True self._is_present_in_parent = True self._listener.Modified() def _UpdateOneofState(self, field): other_field = self._oneofs.setdefault(field.containing_oneof, field) if other_field is not field: del self._fields[other_field] self._oneofs[field.containing_oneof] = field cls._Modified = Modified cls.SetInParent = Modified cls._UpdateOneofState = _UpdateOneofState class _Listener(object): def __init__(self, parent_message): if isinstance(parent_message, weakref.ProxyType): self._parent_message_weakref = parent_message else: self._parent_message_weakref = weakref.proxy(parent_message) self.dirty = False def Modified(self): if self.dirty: return try: self._parent_message_weakref._Modified() except ReferenceError: pass class _OneofListener(_Listener): def __init__(self, parent_message, field): super(_OneofListener, self).__init__(parent_message) self._field = field def Modified(self): try: self._parent_message_weakref._UpdateOneofState(self._field) super(_OneofListener, self).Modified() except ReferenceError: pass class _ExtensionDict(object): def __init__(self, extended_message): self._extended_message = extended_message def __getitem__(self, extension_handle): _VerifyExtensionHandle(self._extended_message, extension_handle) result = self._extended_message._fields.get(extension_handle) if result is not None: return result if extension_handle.label == _FieldDescriptor.LABEL_REPEATED: result = extension_handle._default_constructor(self._extended_message) elif extension_handle.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE: result = extension_handle.message_type._concrete_class() try: result._SetListener(self._extended_message._listener_for_children) except ReferenceError: pass else: return extension_handle.default_value result = self._extended_message._fields.setdefault( extension_handle, result) return result def __eq__(self, other): if not isinstance(other, self.__class__): return False my_fields = self._extended_message.ListFields() other_fields = other._extended_message.ListFields() my_fields = [ field for field in my_fields if field.is_extension ] other_fields = [ field for field in other_fields if field.is_extension ] return my_fields == other_fields def __ne__(self, other): return not self == other def __hash__(self): raise TypeError('unhashable object') def __setitem__(self, extension_handle, value): _VerifyExtensionHandle(self._extended_message, extension_handle) if (extension_handle.label == _FieldDescriptor.LABEL_REPEATED or extension_handle.cpp_type == _FieldDescriptor.CPPTYPE_MESSAGE): raise TypeError( 'Cannot assign to extension "%s" because it is a repeated or ' 'composite type.' % extension_handle.full_name) type_checker = type_checkers.GetTypeChecker( extension_handle) self._extended_message._fields[extension_handle] = ( type_checker.CheckValue(value)) self._extended_message._Modified() def _FindExtensionByName(self, name): return self._extended_message._extensions_by_name.get(name, None)
true
true
f70f7266246a72a1f47bb872e52660dc84524048
167
py
Python
REL/ner/__init__.py
theblackcat102/REL
9daaf924d3b7ee75ba0738fd218ddbaeab989bd8
[ "MIT" ]
210
2020-02-27T14:10:57.000Z
2022-03-30T01:32:52.000Z
REL/ner/__init__.py
theblackcat102/REL
9daaf924d3b7ee75ba0738fd218ddbaeab989bd8
[ "MIT" ]
69
2020-03-06T09:58:43.000Z
2022-03-31T16:24:35.000Z
REL/ner/__init__.py
cnnlabs/REL
7e680a13fb26cb23d9ba9ea45efd01cb4c6c7871
[ "MIT" ]
57
2020-02-28T15:52:33.000Z
2022-03-16T11:28:19.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from REL.ner.base import NERBase, Span from REL.ner.flair_wrapper import load_flair_ner from REL.ner.ngram import Cmns
23.857143
48
0.748503
from REL.ner.base import NERBase, Span from REL.ner.flair_wrapper import load_flair_ner from REL.ner.ngram import Cmns
true
true
f70f729a2c7bd23c7413efdf4accb9acf8f8503f
411
py
Python
main.py
deadaf/tickets-bot
1f72668a6843cb67daa77e911057775f9d9a37f1
[ "MIT" ]
5
2021-02-05T05:50:29.000Z
2021-08-17T16:09:59.000Z
main.py
deadaf/tickets-bot
1f72668a6843cb67daa77e911057775f9d9a37f1
[ "MIT" ]
null
null
null
main.py
deadaf/tickets-bot
1f72668a6843cb67daa77e911057775f9d9a37f1
[ "MIT" ]
3
2021-03-20T13:01:16.000Z
2022-03-05T12:38:24.000Z
import discord from discord.ext import commands from discord.ext.commands import has_permissions, MissingPermissions import json import asyncio bot = commands.Bot(command_prefix=".") bot.remove_command("help") @bot.event async def on_ready(): print("Bot running with:") print("Username: ", bot.user.name) print("User ID: ", bot.user.id) bot.load_extension('cogs.tickets') bot.run("TOKEN")
19.571429
68
0.729927
import discord from discord.ext import commands from discord.ext.commands import has_permissions, MissingPermissions import json import asyncio bot = commands.Bot(command_prefix=".") bot.remove_command("help") @bot.event async def on_ready(): print("Bot running with:") print("Username: ", bot.user.name) print("User ID: ", bot.user.id) bot.load_extension('cogs.tickets') bot.run("TOKEN")
true
true
f70f73cdbebb8824480c01d15f16886fcde78be7
914
py
Python
corehq/motech/dhis2/migrations/0006_sqldhis2connection.py
dimagilg/commcare-hq
ea1786238eae556bb7f1cbd8d2460171af1b619c
[ "BSD-3-Clause" ]
471
2015-01-10T02:55:01.000Z
2022-03-29T18:07:18.000Z
corehq/motech/dhis2/migrations/0006_sqldhis2connection.py
dimagilg/commcare-hq
ea1786238eae556bb7f1cbd8d2460171af1b619c
[ "BSD-3-Clause" ]
14,354
2015-01-01T07:38:23.000Z
2022-03-31T20:55:14.000Z
corehq/motech/dhis2/migrations/0006_sqldhis2connection.py
dimagilg/commcare-hq
ea1786238eae556bb7f1cbd8d2460171af1b619c
[ "BSD-3-Clause" ]
175
2015-01-06T07:16:47.000Z
2022-03-29T13:27:01.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.26 on 2020-01-14 21:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('dhis2', '0005_delete_jsonapilog'), ] operations = [ migrations.CreateModel( name='SQLDhis2Connection', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('domain', models.CharField(max_length=255, unique=True)), ('server_url', models.CharField(max_length=255, null=True)), ('username', models.CharField(max_length=255)), ('password', models.CharField(max_length=255, null=True)), ('skip_cert_verify', models.BooleanField(default=False)), ], ), ]
31.517241
114
0.601751
from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ('dhis2', '0005_delete_jsonapilog'), ] operations = [ migrations.CreateModel( name='SQLDhis2Connection', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('domain', models.CharField(max_length=255, unique=True)), ('server_url', models.CharField(max_length=255, null=True)), ('username', models.CharField(max_length=255)), ('password', models.CharField(max_length=255, null=True)), ('skip_cert_verify', models.BooleanField(default=False)), ], ), ]
true
true
f70f74b17c66f2afe1b4d538e6f2c4b8da58986d
37,822
py
Python
src/pip/_internal/index/package_finder.py
Shivansh-007/pip
0c284520c6d068cb25ac89d9dbee0456c2eba23a
[ "MIT" ]
1
2022-03-14T20:15:00.000Z
2022-03-14T20:15:00.000Z
src/pip/_internal/index/package_finder.py
Shivansh-007/pip
0c284520c6d068cb25ac89d9dbee0456c2eba23a
[ "MIT" ]
1
2022-01-27T19:09:25.000Z
2022-01-27T19:09:25.000Z
src/pip/_internal/index/package_finder.py
Shivansh-007/pip
0c284520c6d068cb25ac89d9dbee0456c2eba23a
[ "MIT" ]
1
2021-09-27T11:14:58.000Z
2021-09-27T11:14:58.000Z
"""Routines related to PyPI, indexes""" # The following comment should be removed at some point in the future. # mypy: strict-optional=False import enum import functools import itertools import logging import re from typing import FrozenSet, Iterable, List, Optional, Set, Tuple, Union from pip._vendor.packaging import specifiers from pip._vendor.packaging.tags import Tag from pip._vendor.packaging.utils import canonicalize_name from pip._vendor.packaging.version import _BaseVersion from pip._vendor.packaging.version import parse as parse_version from pip._internal.exceptions import ( BestVersionAlreadyInstalled, DistributionNotFound, InvalidWheelFilename, UnsupportedWheel, ) from pip._internal.index.collector import LinkCollector, parse_links from pip._internal.models.candidate import InstallationCandidate from pip._internal.models.format_control import FormatControl from pip._internal.models.link import Link from pip._internal.models.search_scope import SearchScope from pip._internal.models.selection_prefs import SelectionPreferences from pip._internal.models.target_python import TargetPython from pip._internal.models.wheel import Wheel from pip._internal.req import InstallRequirement from pip._internal.utils._log import getLogger from pip._internal.utils.filetypes import WHEEL_EXTENSION from pip._internal.utils.hashes import Hashes from pip._internal.utils.logging import indent_log from pip._internal.utils.misc import build_netloc from pip._internal.utils.packaging import check_requires_python from pip._internal.utils.unpacking import SUPPORTED_EXTENSIONS __all__ = ["FormatControl", "BestCandidateResult", "PackageFinder"] logger = getLogger(__name__) BuildTag = Union[Tuple[()], Tuple[int, str]] CandidateSortingKey = Tuple[int, int, int, _BaseVersion, Optional[int], BuildTag] def _check_link_requires_python( link: Link, version_info: Tuple[int, int, int], ignore_requires_python: bool = False, ) -> bool: """ Return whether the given Python version is compatible with a link's "Requires-Python" value. :param version_info: A 3-tuple of ints representing the Python major-minor-micro version to check. :param ignore_requires_python: Whether to ignore the "Requires-Python" value if the given Python version isn't compatible. """ try: is_compatible = check_requires_python( link.requires_python, version_info=version_info, ) except specifiers.InvalidSpecifier: logger.debug( "Ignoring invalid Requires-Python (%r) for link: %s", link.requires_python, link, ) else: if not is_compatible: version = ".".join(map(str, version_info)) if not ignore_requires_python: logger.verbose( "Link requires a different Python (%s not in: %r): %s", version, link.requires_python, link, ) return False logger.debug( "Ignoring failed Requires-Python check (%s not in: %r) for link: %s", version, link.requires_python, link, ) return True class LinkType(enum.Enum): candidate = enum.auto() different_project = enum.auto() yanked = enum.auto() format_unsupported = enum.auto() format_invalid = enum.auto() platform_mismatch = enum.auto() requires_python_mismatch = enum.auto() class LinkEvaluator: """ Responsible for evaluating links for a particular project. """ _py_version_re = re.compile(r"-py([123]\.?[0-9]?)$") # Don't include an allow_yanked default value to make sure each call # site considers whether yanked releases are allowed. This also causes # that decision to be made explicit in the calling code, which helps # people when reading the code. def __init__( self, project_name: str, canonical_name: str, formats: FrozenSet[str], target_python: TargetPython, allow_yanked: bool, ignore_requires_python: Optional[bool] = None, ) -> None: """ :param project_name: The user supplied package name. :param canonical_name: The canonical package name. :param formats: The formats allowed for this package. Should be a set with 'binary' or 'source' or both in it. :param target_python: The target Python interpreter to use when evaluating link compatibility. This is used, for example, to check wheel compatibility, as well as when checking the Python version, e.g. the Python version embedded in a link filename (or egg fragment) and against an HTML link's optional PEP 503 "data-requires-python" attribute. :param allow_yanked: Whether files marked as yanked (in the sense of PEP 592) are permitted to be candidates for install. :param ignore_requires_python: Whether to ignore incompatible PEP 503 "data-requires-python" values in HTML links. Defaults to False. """ if ignore_requires_python is None: ignore_requires_python = False self._allow_yanked = allow_yanked self._canonical_name = canonical_name self._ignore_requires_python = ignore_requires_python self._formats = formats self._target_python = target_python self.project_name = project_name def evaluate_link(self, link: Link) -> Tuple[LinkType, str]: """ Determine whether a link is a candidate for installation. :return: A tuple (result, detail), where *result* is an enum representing whether the evaluation found a candidate, or the reason why one is not found. If a candidate is found, *detail* will be the candidate's version string; if one is not found, it contains the reason the link fails to qualify. """ version = None if link.is_yanked and not self._allow_yanked: reason = link.yanked_reason or "<none given>" return (LinkType.yanked, f"yanked for reason: {reason}") if link.egg_fragment: egg_info = link.egg_fragment ext = link.ext else: egg_info, ext = link.splitext() if not ext: return (LinkType.format_unsupported, "not a file") if ext not in SUPPORTED_EXTENSIONS: return ( LinkType.format_unsupported, f"unsupported archive format: {ext}", ) if "binary" not in self._formats and ext == WHEEL_EXTENSION: reason = f"No binaries permitted for {self.project_name}" return (LinkType.format_unsupported, reason) if "macosx10" in link.path and ext == ".zip": return (LinkType.format_unsupported, "macosx10 one") if ext == WHEEL_EXTENSION: try: wheel = Wheel(link.filename) except InvalidWheelFilename: return ( LinkType.format_invalid, "invalid wheel filename", ) if canonicalize_name(wheel.name) != self._canonical_name: reason = f"wrong project name (not {self.project_name})" return (LinkType.different_project, reason) supported_tags = self._target_python.get_tags() if not wheel.supported(supported_tags): # Include the wheel's tags in the reason string to # simplify troubleshooting compatibility issues. file_tags = ", ".join(wheel.get_formatted_file_tags()) reason = ( f"none of the wheel's tags ({file_tags}) are compatible " f"(run pip debug --verbose to show compatible tags)" ) return (LinkType.platform_mismatch, reason) version = wheel.version # This should be up by the self.ok_binary check, but see issue 2700. if "source" not in self._formats and ext != WHEEL_EXTENSION: reason = f"No sources permitted for {self.project_name}" return (LinkType.format_unsupported, reason) if not version: version = _extract_version_from_fragment( egg_info, self._canonical_name, ) if not version: reason = f"Missing project version for {self.project_name}" return (LinkType.format_invalid, reason) match = self._py_version_re.search(version) if match: version = version[: match.start()] py_version = match.group(1) if py_version != self._target_python.py_version: return ( LinkType.platform_mismatch, "Python version is incorrect", ) supports_python = _check_link_requires_python( link, version_info=self._target_python.py_version_info, ignore_requires_python=self._ignore_requires_python, ) if not supports_python: reason = f"{version} Requires-Python {link.requires_python}" return (LinkType.requires_python_mismatch, reason) logger.debug("Found link %s, version: %s", link, version) return (LinkType.candidate, version) def filter_unallowed_hashes( candidates: List[InstallationCandidate], hashes: Hashes, project_name: str, ) -> List[InstallationCandidate]: """ Filter out candidates whose hashes aren't allowed, and return a new list of candidates. If at least one candidate has an allowed hash, then all candidates with either an allowed hash or no hash specified are returned. Otherwise, the given candidates are returned. Including the candidates with no hash specified when there is a match allows a warning to be logged if there is a more preferred candidate with no hash specified. Returning all candidates in the case of no matches lets pip report the hash of the candidate that would otherwise have been installed (e.g. permitting the user to more easily update their requirements file with the desired hash). """ if not hashes: logger.debug( "Given no hashes to check %s links for project %r: " "discarding no candidates", len(candidates), project_name, ) # Make sure we're not returning back the given value. return list(candidates) matches_or_no_digest = [] # Collect the non-matches for logging purposes. non_matches = [] match_count = 0 for candidate in candidates: link = candidate.link if not link.has_hash: pass elif link.is_hash_allowed(hashes=hashes): match_count += 1 else: non_matches.append(candidate) continue matches_or_no_digest.append(candidate) if match_count: filtered = matches_or_no_digest else: # Make sure we're not returning back the given value. filtered = list(candidates) if len(filtered) == len(candidates): discard_message = "discarding no candidates" else: discard_message = "discarding {} non-matches:\n {}".format( len(non_matches), "\n ".join(str(candidate.link) for candidate in non_matches), ) logger.debug( "Checked %s links for project %r against %s hashes " "(%s matches, %s no digest): %s", len(candidates), project_name, hashes.digest_count, match_count, len(matches_or_no_digest) - match_count, discard_message, ) return filtered class CandidatePreferences: """ Encapsulates some of the preferences for filtering and sorting InstallationCandidate objects. """ def __init__( self, prefer_binary: bool = False, allow_all_prereleases: bool = False, ) -> None: """ :param allow_all_prereleases: Whether to allow all pre-releases. """ self.allow_all_prereleases = allow_all_prereleases self.prefer_binary = prefer_binary class BestCandidateResult: """A collection of candidates, returned by `PackageFinder.find_best_candidate`. This class is only intended to be instantiated by CandidateEvaluator's `compute_best_candidate()` method. """ def __init__( self, candidates: List[InstallationCandidate], applicable_candidates: List[InstallationCandidate], best_candidate: Optional[InstallationCandidate], ) -> None: """ :param candidates: A sequence of all available candidates found. :param applicable_candidates: The applicable candidates. :param best_candidate: The most preferred candidate found, or None if no applicable candidates were found. """ assert set(applicable_candidates) <= set(candidates) if best_candidate is None: assert not applicable_candidates else: assert best_candidate in applicable_candidates self._applicable_candidates = applicable_candidates self._candidates = candidates self.best_candidate = best_candidate def iter_all(self) -> Iterable[InstallationCandidate]: """Iterate through all candidates.""" return iter(self._candidates) def iter_applicable(self) -> Iterable[InstallationCandidate]: """Iterate through the applicable candidates.""" return iter(self._applicable_candidates) class CandidateEvaluator: """ Responsible for filtering and sorting candidates for installation based on what tags are valid. """ @classmethod def create( cls, project_name: str, target_python: Optional[TargetPython] = None, prefer_binary: bool = False, allow_all_prereleases: bool = False, specifier: Optional[specifiers.BaseSpecifier] = None, hashes: Optional[Hashes] = None, ) -> "CandidateEvaluator": """Create a CandidateEvaluator object. :param target_python: The target Python interpreter to use when checking compatibility. If None (the default), a TargetPython object will be constructed from the running Python. :param specifier: An optional object implementing `filter` (e.g. `packaging.specifiers.SpecifierSet`) to filter applicable versions. :param hashes: An optional collection of allowed hashes. """ if target_python is None: target_python = TargetPython() if specifier is None: specifier = specifiers.SpecifierSet() supported_tags = target_python.get_tags() return cls( project_name=project_name, supported_tags=supported_tags, specifier=specifier, prefer_binary=prefer_binary, allow_all_prereleases=allow_all_prereleases, hashes=hashes, ) def __init__( self, project_name: str, supported_tags: List[Tag], specifier: specifiers.BaseSpecifier, prefer_binary: bool = False, allow_all_prereleases: bool = False, hashes: Optional[Hashes] = None, ) -> None: """ :param supported_tags: The PEP 425 tags supported by the target Python in order of preference (most preferred first). """ self._allow_all_prereleases = allow_all_prereleases self._hashes = hashes self._prefer_binary = prefer_binary self._project_name = project_name self._specifier = specifier self._supported_tags = supported_tags # Since the index of the tag in the _supported_tags list is used # as a priority, precompute a map from tag to index/priority to be # used in wheel.find_most_preferred_tag. self._wheel_tag_preferences = { tag: idx for idx, tag in enumerate(supported_tags) } def get_applicable_candidates( self, candidates: List[InstallationCandidate], ) -> List[InstallationCandidate]: """ Return the applicable candidates from a list of candidates. """ # Using None infers from the specifier instead. allow_prereleases = self._allow_all_prereleases or None specifier = self._specifier versions = { str(v) for v in specifier.filter( # We turn the version object into a str here because otherwise # when we're debundled but setuptools isn't, Python will see # packaging.version.Version and # pkg_resources._vendor.packaging.version.Version as different # types. This way we'll use a str as a common data interchange # format. If we stop using the pkg_resources provided specifier # and start using our own, we can drop the cast to str(). (str(c.version) for c in candidates), prereleases=allow_prereleases, ) } # Again, converting version to str to deal with debundling. applicable_candidates = [c for c in candidates if str(c.version) in versions] filtered_applicable_candidates = filter_unallowed_hashes( candidates=applicable_candidates, hashes=self._hashes, project_name=self._project_name, ) return sorted(filtered_applicable_candidates, key=self._sort_key) def _sort_key(self, candidate: InstallationCandidate) -> CandidateSortingKey: """ Function to pass as the `key` argument to a call to sorted() to sort InstallationCandidates by preference. Returns a tuple such that tuples sorting as greater using Python's default comparison operator are more preferred. The preference is as follows: First and foremost, candidates with allowed (matching) hashes are always preferred over candidates without matching hashes. This is because e.g. if the only candidate with an allowed hash is yanked, we still want to use that candidate. Second, excepting hash considerations, candidates that have been yanked (in the sense of PEP 592) are always less preferred than candidates that haven't been yanked. Then: If not finding wheels, they are sorted by version only. If finding wheels, then the sort order is by version, then: 1. existing installs 2. wheels ordered via Wheel.support_index_min(self._supported_tags) 3. source archives If prefer_binary was set, then all wheels are sorted above sources. Note: it was considered to embed this logic into the Link comparison operators, but then different sdist links with the same version, would have to be considered equal """ valid_tags = self._supported_tags support_num = len(valid_tags) build_tag: BuildTag = () binary_preference = 0 link = candidate.link if link.is_wheel: # can raise InvalidWheelFilename wheel = Wheel(link.filename) try: pri = -( wheel.find_most_preferred_tag( valid_tags, self._wheel_tag_preferences ) ) except ValueError: raise UnsupportedWheel( "{} is not a supported wheel for this platform. It " "can't be sorted.".format(wheel.filename) ) if self._prefer_binary: binary_preference = 1 if wheel.build_tag is not None: match = re.match(r"^(\d+)(.*)$", wheel.build_tag) build_tag_groups = match.groups() build_tag = (int(build_tag_groups[0]), build_tag_groups[1]) else: # sdist pri = -(support_num) has_allowed_hash = int(link.is_hash_allowed(self._hashes)) yank_value = -1 * int(link.is_yanked) # -1 for yanked. return ( has_allowed_hash, yank_value, binary_preference, candidate.version, pri, build_tag, ) def sort_best_candidate( self, candidates: List[InstallationCandidate], ) -> Optional[InstallationCandidate]: """ Return the best candidate per the instance's sort order, or None if no candidate is acceptable. """ if not candidates: return None best_candidate = max(candidates, key=self._sort_key) return best_candidate def compute_best_candidate( self, candidates: List[InstallationCandidate], ) -> BestCandidateResult: """ Compute and return a `BestCandidateResult` instance. """ applicable_candidates = self.get_applicable_candidates(candidates) best_candidate = self.sort_best_candidate(applicable_candidates) return BestCandidateResult( candidates, applicable_candidates=applicable_candidates, best_candidate=best_candidate, ) class PackageFinder: """This finds packages. This is meant to match easy_install's technique for looking for packages, by reading pages and looking for appropriate links. """ def __init__( self, link_collector: LinkCollector, target_python: TargetPython, allow_yanked: bool, use_deprecated_html5lib: bool, format_control: Optional[FormatControl] = None, candidate_prefs: Optional[CandidatePreferences] = None, ignore_requires_python: Optional[bool] = None, ) -> None: """ This constructor is primarily meant to be used by the create() class method and from tests. :param format_control: A FormatControl object, used to control the selection of source packages / binary packages when consulting the index and links. :param candidate_prefs: Options to use when creating a CandidateEvaluator object. """ if candidate_prefs is None: candidate_prefs = CandidatePreferences() format_control = format_control or FormatControl(set(), set()) self._allow_yanked = allow_yanked self._candidate_prefs = candidate_prefs self._ignore_requires_python = ignore_requires_python self._link_collector = link_collector self._target_python = target_python self._use_deprecated_html5lib = use_deprecated_html5lib self.format_control = format_control # These are boring links that have already been logged somehow. self._logged_links: Set[Tuple[Link, LinkType, str]] = set() # Don't include an allow_yanked default value to make sure each call # site considers whether yanked releases are allowed. This also causes # that decision to be made explicit in the calling code, which helps # people when reading the code. @classmethod def create( cls, link_collector: LinkCollector, selection_prefs: SelectionPreferences, target_python: Optional[TargetPython] = None, *, use_deprecated_html5lib: bool, ) -> "PackageFinder": """Create a PackageFinder. :param selection_prefs: The candidate selection preferences, as a SelectionPreferences object. :param target_python: The target Python interpreter to use when checking compatibility. If None (the default), a TargetPython object will be constructed from the running Python. """ if target_python is None: target_python = TargetPython() candidate_prefs = CandidatePreferences( prefer_binary=selection_prefs.prefer_binary, allow_all_prereleases=selection_prefs.allow_all_prereleases, ) return cls( candidate_prefs=candidate_prefs, link_collector=link_collector, target_python=target_python, allow_yanked=selection_prefs.allow_yanked, format_control=selection_prefs.format_control, ignore_requires_python=selection_prefs.ignore_requires_python, use_deprecated_html5lib=use_deprecated_html5lib, ) @property def target_python(self) -> TargetPython: return self._target_python @property def search_scope(self) -> SearchScope: return self._link_collector.search_scope @search_scope.setter def search_scope(self, search_scope: SearchScope) -> None: self._link_collector.search_scope = search_scope @property def find_links(self) -> List[str]: return self._link_collector.find_links @property def index_urls(self) -> List[str]: return self.search_scope.index_urls @property def trusted_hosts(self) -> Iterable[str]: for host_port in self._link_collector.session.pip_trusted_origins: yield build_netloc(*host_port) @property def allow_all_prereleases(self) -> bool: return self._candidate_prefs.allow_all_prereleases def set_allow_all_prereleases(self) -> None: self._candidate_prefs.allow_all_prereleases = True @property def prefer_binary(self) -> bool: return self._candidate_prefs.prefer_binary def set_prefer_binary(self) -> None: self._candidate_prefs.prefer_binary = True def requires_python_skipped_reasons(self) -> List[str]: reasons = { detail for _, result, detail in self._logged_links if result == LinkType.requires_python_mismatch } return sorted(reasons) def make_link_evaluator(self, project_name: str) -> LinkEvaluator: canonical_name = canonicalize_name(project_name) formats = self.format_control.get_allowed_formats(canonical_name) return LinkEvaluator( project_name=project_name, canonical_name=canonical_name, formats=formats, target_python=self._target_python, allow_yanked=self._allow_yanked, ignore_requires_python=self._ignore_requires_python, ) def _sort_links(self, links: Iterable[Link]) -> List[Link]: """ Returns elements of links in order, non-egg links first, egg links second, while eliminating duplicates """ eggs, no_eggs = [], [] seen: Set[Link] = set() for link in links: if link not in seen: seen.add(link) if link.egg_fragment: eggs.append(link) else: no_eggs.append(link) return no_eggs + eggs def _log_skipped_link(self, link: Link, result: LinkType, detail: str) -> None: entry = (link, result, detail) if entry not in self._logged_links: # Put the link at the end so the reason is more visible and because # the link string is usually very long. logger.debug("Skipping link: %s: %s", detail, link) self._logged_links.add(entry) def get_install_candidate( self, link_evaluator: LinkEvaluator, link: Link ) -> Optional[InstallationCandidate]: """ If the link is a candidate for install, convert it to an InstallationCandidate and return it. Otherwise, return None. """ result, detail = link_evaluator.evaluate_link(link) if result != LinkType.candidate: self._log_skipped_link(link, result, detail) return None return InstallationCandidate( name=link_evaluator.project_name, link=link, version=detail, ) def evaluate_links( self, link_evaluator: LinkEvaluator, links: Iterable[Link] ) -> List[InstallationCandidate]: """ Convert links that are candidates to InstallationCandidate objects. """ candidates = [] for link in self._sort_links(links): candidate = self.get_install_candidate(link_evaluator, link) if candidate is not None: candidates.append(candidate) return candidates def process_project_url( self, project_url: Link, link_evaluator: LinkEvaluator ) -> List[InstallationCandidate]: logger.debug( "Fetching project page and analyzing links: %s", project_url, ) html_page = self._link_collector.fetch_page(project_url) if html_page is None: return [] page_links = list(parse_links(html_page, self._use_deprecated_html5lib)) with indent_log(): package_links = self.evaluate_links( link_evaluator, links=page_links, ) return package_links @functools.lru_cache(maxsize=None) def find_all_candidates(self, project_name: str) -> List[InstallationCandidate]: """Find all available InstallationCandidate for project_name This checks index_urls and find_links. All versions found are returned as an InstallationCandidate list. See LinkEvaluator.evaluate_link() for details on which files are accepted. """ link_evaluator = self.make_link_evaluator(project_name) collected_sources = self._link_collector.collect_sources( project_name=project_name, candidates_from_page=functools.partial( self.process_project_url, link_evaluator=link_evaluator, ), ) page_candidates_it = itertools.chain.from_iterable( source.page_candidates() for sources in collected_sources for source in sources if source is not None ) page_candidates = list(page_candidates_it) file_links_it = itertools.chain.from_iterable( source.file_links() for sources in collected_sources for source in sources if source is not None ) file_candidates = self.evaluate_links( link_evaluator, sorted(file_links_it, reverse=True), ) if logger.isEnabledFor(logging.DEBUG) and file_candidates: paths = [] for candidate in file_candidates: assert candidate.link.url # we need to have a URL try: paths.append(candidate.link.file_path) except Exception: paths.append(candidate.link.url) # it's not a local file logger.debug("Local files found: %s", ", ".join(paths)) # This is an intentional priority ordering return file_candidates + page_candidates def make_candidate_evaluator( self, project_name: str, specifier: Optional[specifiers.BaseSpecifier] = None, hashes: Optional[Hashes] = None, ) -> CandidateEvaluator: """Create a CandidateEvaluator object to use.""" candidate_prefs = self._candidate_prefs return CandidateEvaluator.create( project_name=project_name, target_python=self._target_python, prefer_binary=candidate_prefs.prefer_binary, allow_all_prereleases=candidate_prefs.allow_all_prereleases, specifier=specifier, hashes=hashes, ) @functools.lru_cache(maxsize=None) def find_best_candidate( self, project_name: str, specifier: Optional[specifiers.BaseSpecifier] = None, hashes: Optional[Hashes] = None, ) -> BestCandidateResult: """Find matches for the given project and specifier. :param specifier: An optional object implementing `filter` (e.g. `packaging.specifiers.SpecifierSet`) to filter applicable versions. :return: A `BestCandidateResult` instance. """ candidates = self.find_all_candidates(project_name) candidate_evaluator = self.make_candidate_evaluator( project_name=project_name, specifier=specifier, hashes=hashes, ) return candidate_evaluator.compute_best_candidate(candidates) def find_requirement( self, req: InstallRequirement, upgrade: bool ) -> Optional[InstallationCandidate]: """Try to find a Link matching req Expects req, an InstallRequirement and upgrade, a boolean Returns a InstallationCandidate if found, Raises DistributionNotFound or BestVersionAlreadyInstalled otherwise """ hashes = req.hashes(trust_internet=False) best_candidate_result = self.find_best_candidate( req.name, specifier=req.specifier, hashes=hashes, ) best_candidate = best_candidate_result.best_candidate installed_version: Optional[_BaseVersion] = None if req.satisfied_by is not None: installed_version = req.satisfied_by.version def _format_versions(cand_iter: Iterable[InstallationCandidate]) -> str: # This repeated parse_version and str() conversion is needed to # handle different vendoring sources from pip and pkg_resources. # If we stop using the pkg_resources provided specifier and start # using our own, we can drop the cast to str(). return ( ", ".join( sorted( {str(c.version) for c in cand_iter}, key=parse_version, ) ) or "none" ) if installed_version is None and best_candidate is None: logger.critical( "Could not find a version that satisfies the requirement %s " "(from versions: %s)", req, _format_versions(best_candidate_result.iter_all()), ) raise DistributionNotFound( "No matching distribution found for {}".format(req) ) best_installed = False if installed_version and ( best_candidate is None or best_candidate.version <= installed_version ): best_installed = True if not upgrade and installed_version is not None: if best_installed: logger.debug( "Existing installed version (%s) is most up-to-date and " "satisfies requirement", installed_version, ) else: logger.debug( "Existing installed version (%s) satisfies requirement " "(most up-to-date version is %s)", installed_version, best_candidate.version, ) return None if best_installed: # We have an existing version, and its the best version logger.debug( "Installed version (%s) is most up-to-date (past versions: %s)", installed_version, _format_versions(best_candidate_result.iter_applicable()), ) raise BestVersionAlreadyInstalled logger.debug( "Using version %s (newest of versions: %s)", best_candidate.version, _format_versions(best_candidate_result.iter_applicable()), ) return best_candidate def _find_name_version_sep(fragment: str, canonical_name: str) -> int: """Find the separator's index based on the package's canonical name. :param fragment: A <package>+<version> filename "fragment" (stem) or egg fragment. :param canonical_name: The package's canonical name. This function is needed since the canonicalized name does not necessarily have the same length as the egg info's name part. An example:: >>> fragment = 'foo__bar-1.0' >>> canonical_name = 'foo-bar' >>> _find_name_version_sep(fragment, canonical_name) 8 """ # Project name and version must be separated by one single dash. Find all # occurrences of dashes; if the string in front of it matches the canonical # name, this is the one separating the name and version parts. for i, c in enumerate(fragment): if c != "-": continue if canonicalize_name(fragment[:i]) == canonical_name: return i raise ValueError(f"{fragment} does not match {canonical_name}") def _extract_version_from_fragment(fragment: str, canonical_name: str) -> Optional[str]: """Parse the version string from a <package>+<version> filename "fragment" (stem) or egg fragment. :param fragment: The string to parse. E.g. foo-2.1 :param canonical_name: The canonicalized name of the package this belongs to. """ try: version_start = _find_name_version_sep(fragment, canonical_name) + 1 except ValueError: return None version = fragment[version_start:] if not version: return None return version
36.684772
88
0.631749
import enum import functools import itertools import logging import re from typing import FrozenSet, Iterable, List, Optional, Set, Tuple, Union from pip._vendor.packaging import specifiers from pip._vendor.packaging.tags import Tag from pip._vendor.packaging.utils import canonicalize_name from pip._vendor.packaging.version import _BaseVersion from pip._vendor.packaging.version import parse as parse_version from pip._internal.exceptions import ( BestVersionAlreadyInstalled, DistributionNotFound, InvalidWheelFilename, UnsupportedWheel, ) from pip._internal.index.collector import LinkCollector, parse_links from pip._internal.models.candidate import InstallationCandidate from pip._internal.models.format_control import FormatControl from pip._internal.models.link import Link from pip._internal.models.search_scope import SearchScope from pip._internal.models.selection_prefs import SelectionPreferences from pip._internal.models.target_python import TargetPython from pip._internal.models.wheel import Wheel from pip._internal.req import InstallRequirement from pip._internal.utils._log import getLogger from pip._internal.utils.filetypes import WHEEL_EXTENSION from pip._internal.utils.hashes import Hashes from pip._internal.utils.logging import indent_log from pip._internal.utils.misc import build_netloc from pip._internal.utils.packaging import check_requires_python from pip._internal.utils.unpacking import SUPPORTED_EXTENSIONS __all__ = ["FormatControl", "BestCandidateResult", "PackageFinder"] logger = getLogger(__name__) BuildTag = Union[Tuple[()], Tuple[int, str]] CandidateSortingKey = Tuple[int, int, int, _BaseVersion, Optional[int], BuildTag] def _check_link_requires_python( link: Link, version_info: Tuple[int, int, int], ignore_requires_python: bool = False, ) -> bool: try: is_compatible = check_requires_python( link.requires_python, version_info=version_info, ) except specifiers.InvalidSpecifier: logger.debug( "Ignoring invalid Requires-Python (%r) for link: %s", link.requires_python, link, ) else: if not is_compatible: version = ".".join(map(str, version_info)) if not ignore_requires_python: logger.verbose( "Link requires a different Python (%s not in: %r): %s", version, link.requires_python, link, ) return False logger.debug( "Ignoring failed Requires-Python check (%s not in: %r) for link: %s", version, link.requires_python, link, ) return True class LinkType(enum.Enum): candidate = enum.auto() different_project = enum.auto() yanked = enum.auto() format_unsupported = enum.auto() format_invalid = enum.auto() platform_mismatch = enum.auto() requires_python_mismatch = enum.auto() class LinkEvaluator: _py_version_re = re.compile(r"-py([123]\.?[0-9]?)$") # site considers whether yanked releases are allowed. This also causes # that decision to be made explicit in the calling code, which helps # people when reading the code. def __init__( self, project_name: str, canonical_name: str, formats: FrozenSet[str], target_python: TargetPython, allow_yanked: bool, ignore_requires_python: Optional[bool] = None, ) -> None: if ignore_requires_python is None: ignore_requires_python = False self._allow_yanked = allow_yanked self._canonical_name = canonical_name self._ignore_requires_python = ignore_requires_python self._formats = formats self._target_python = target_python self.project_name = project_name def evaluate_link(self, link: Link) -> Tuple[LinkType, str]: version = None if link.is_yanked and not self._allow_yanked: reason = link.yanked_reason or "<none given>" return (LinkType.yanked, f"yanked for reason: {reason}") if link.egg_fragment: egg_info = link.egg_fragment ext = link.ext else: egg_info, ext = link.splitext() if not ext: return (LinkType.format_unsupported, "not a file") if ext not in SUPPORTED_EXTENSIONS: return ( LinkType.format_unsupported, f"unsupported archive format: {ext}", ) if "binary" not in self._formats and ext == WHEEL_EXTENSION: reason = f"No binaries permitted for {self.project_name}" return (LinkType.format_unsupported, reason) if "macosx10" in link.path and ext == ".zip": return (LinkType.format_unsupported, "macosx10 one") if ext == WHEEL_EXTENSION: try: wheel = Wheel(link.filename) except InvalidWheelFilename: return ( LinkType.format_invalid, "invalid wheel filename", ) if canonicalize_name(wheel.name) != self._canonical_name: reason = f"wrong project name (not {self.project_name})" return (LinkType.different_project, reason) supported_tags = self._target_python.get_tags() if not wheel.supported(supported_tags): # Include the wheel's tags in the reason string to file_tags = ", ".join(wheel.get_formatted_file_tags()) reason = ( f"none of the wheel's tags ({file_tags}) are compatible " f"(run pip debug --verbose to show compatible tags)" ) return (LinkType.platform_mismatch, reason) version = wheel.version # This should be up by the self.ok_binary check, but see issue 2700. if "source" not in self._formats and ext != WHEEL_EXTENSION: reason = f"No sources permitted for {self.project_name}" return (LinkType.format_unsupported, reason) if not version: version = _extract_version_from_fragment( egg_info, self._canonical_name, ) if not version: reason = f"Missing project version for {self.project_name}" return (LinkType.format_invalid, reason) match = self._py_version_re.search(version) if match: version = version[: match.start()] py_version = match.group(1) if py_version != self._target_python.py_version: return ( LinkType.platform_mismatch, "Python version is incorrect", ) supports_python = _check_link_requires_python( link, version_info=self._target_python.py_version_info, ignore_requires_python=self._ignore_requires_python, ) if not supports_python: reason = f"{version} Requires-Python {link.requires_python}" return (LinkType.requires_python_mismatch, reason) logger.debug("Found link %s, version: %s", link, version) return (LinkType.candidate, version) def filter_unallowed_hashes( candidates: List[InstallationCandidate], hashes: Hashes, project_name: str, ) -> List[InstallationCandidate]: if not hashes: logger.debug( "Given no hashes to check %s links for project %r: " "discarding no candidates", len(candidates), project_name, ) # Make sure we're not returning back the given value. return list(candidates) matches_or_no_digest = [] non_matches = [] match_count = 0 for candidate in candidates: link = candidate.link if not link.has_hash: pass elif link.is_hash_allowed(hashes=hashes): match_count += 1 else: non_matches.append(candidate) continue matches_or_no_digest.append(candidate) if match_count: filtered = matches_or_no_digest else: filtered = list(candidates) if len(filtered) == len(candidates): discard_message = "discarding no candidates" else: discard_message = "discarding {} non-matches:\n {}".format( len(non_matches), "\n ".join(str(candidate.link) for candidate in non_matches), ) logger.debug( "Checked %s links for project %r against %s hashes " "(%s matches, %s no digest): %s", len(candidates), project_name, hashes.digest_count, match_count, len(matches_or_no_digest) - match_count, discard_message, ) return filtered class CandidatePreferences: def __init__( self, prefer_binary: bool = False, allow_all_prereleases: bool = False, ) -> None: self.allow_all_prereleases = allow_all_prereleases self.prefer_binary = prefer_binary class BestCandidateResult: def __init__( self, candidates: List[InstallationCandidate], applicable_candidates: List[InstallationCandidate], best_candidate: Optional[InstallationCandidate], ) -> None: assert set(applicable_candidates) <= set(candidates) if best_candidate is None: assert not applicable_candidates else: assert best_candidate in applicable_candidates self._applicable_candidates = applicable_candidates self._candidates = candidates self.best_candidate = best_candidate def iter_all(self) -> Iterable[InstallationCandidate]: return iter(self._candidates) def iter_applicable(self) -> Iterable[InstallationCandidate]: return iter(self._applicable_candidates) class CandidateEvaluator: @classmethod def create( cls, project_name: str, target_python: Optional[TargetPython] = None, prefer_binary: bool = False, allow_all_prereleases: bool = False, specifier: Optional[specifiers.BaseSpecifier] = None, hashes: Optional[Hashes] = None, ) -> "CandidateEvaluator": if target_python is None: target_python = TargetPython() if specifier is None: specifier = specifiers.SpecifierSet() supported_tags = target_python.get_tags() return cls( project_name=project_name, supported_tags=supported_tags, specifier=specifier, prefer_binary=prefer_binary, allow_all_prereleases=allow_all_prereleases, hashes=hashes, ) def __init__( self, project_name: str, supported_tags: List[Tag], specifier: specifiers.BaseSpecifier, prefer_binary: bool = False, allow_all_prereleases: bool = False, hashes: Optional[Hashes] = None, ) -> None: self._allow_all_prereleases = allow_all_prereleases self._hashes = hashes self._prefer_binary = prefer_binary self._project_name = project_name self._specifier = specifier self._supported_tags = supported_tags # Since the index of the tag in the _supported_tags list is used # as a priority, precompute a map from tag to index/priority to be # used in wheel.find_most_preferred_tag. self._wheel_tag_preferences = { tag: idx for idx, tag in enumerate(supported_tags) } def get_applicable_candidates( self, candidates: List[InstallationCandidate], ) -> List[InstallationCandidate]: # Using None infers from the specifier instead. allow_prereleases = self._allow_all_prereleases or None specifier = self._specifier versions = { str(v) for v in specifier.filter( # We turn the version object into a str here because otherwise # when we're debundled but setuptools isn't, Python will see # packaging.version.Version and # pkg_resources._vendor.packaging.version.Version as different # types. This way we'll use a str as a common data interchange (str(c.version) for c in candidates), prereleases=allow_prereleases, ) } applicable_candidates = [c for c in candidates if str(c.version) in versions] filtered_applicable_candidates = filter_unallowed_hashes( candidates=applicable_candidates, hashes=self._hashes, project_name=self._project_name, ) return sorted(filtered_applicable_candidates, key=self._sort_key) def _sort_key(self, candidate: InstallationCandidate) -> CandidateSortingKey: valid_tags = self._supported_tags support_num = len(valid_tags) build_tag: BuildTag = () binary_preference = 0 link = candidate.link if link.is_wheel: wheel = Wheel(link.filename) try: pri = -( wheel.find_most_preferred_tag( valid_tags, self._wheel_tag_preferences ) ) except ValueError: raise UnsupportedWheel( "{} is not a supported wheel for this platform. It " "can't be sorted.".format(wheel.filename) ) if self._prefer_binary: binary_preference = 1 if wheel.build_tag is not None: match = re.match(r"^(\d+)(.*)$", wheel.build_tag) build_tag_groups = match.groups() build_tag = (int(build_tag_groups[0]), build_tag_groups[1]) else: # sdist pri = -(support_num) has_allowed_hash = int(link.is_hash_allowed(self._hashes)) yank_value = -1 * int(link.is_yanked) # -1 for yanked. return ( has_allowed_hash, yank_value, binary_preference, candidate.version, pri, build_tag, ) def sort_best_candidate( self, candidates: List[InstallationCandidate], ) -> Optional[InstallationCandidate]: if not candidates: return None best_candidate = max(candidates, key=self._sort_key) return best_candidate def compute_best_candidate( self, candidates: List[InstallationCandidate], ) -> BestCandidateResult: applicable_candidates = self.get_applicable_candidates(candidates) best_candidate = self.sort_best_candidate(applicable_candidates) return BestCandidateResult( candidates, applicable_candidates=applicable_candidates, best_candidate=best_candidate, ) class PackageFinder: def __init__( self, link_collector: LinkCollector, target_python: TargetPython, allow_yanked: bool, use_deprecated_html5lib: bool, format_control: Optional[FormatControl] = None, candidate_prefs: Optional[CandidatePreferences] = None, ignore_requires_python: Optional[bool] = None, ) -> None: if candidate_prefs is None: candidate_prefs = CandidatePreferences() format_control = format_control or FormatControl(set(), set()) self._allow_yanked = allow_yanked self._candidate_prefs = candidate_prefs self._ignore_requires_python = ignore_requires_python self._link_collector = link_collector self._target_python = target_python self._use_deprecated_html5lib = use_deprecated_html5lib self.format_control = format_control # These are boring links that have already been logged somehow. self._logged_links: Set[Tuple[Link, LinkType, str]] = set() # Don't include an allow_yanked default value to make sure each call @classmethod def create( cls, link_collector: LinkCollector, selection_prefs: SelectionPreferences, target_python: Optional[TargetPython] = None, *, use_deprecated_html5lib: bool, ) -> "PackageFinder": if target_python is None: target_python = TargetPython() candidate_prefs = CandidatePreferences( prefer_binary=selection_prefs.prefer_binary, allow_all_prereleases=selection_prefs.allow_all_prereleases, ) return cls( candidate_prefs=candidate_prefs, link_collector=link_collector, target_python=target_python, allow_yanked=selection_prefs.allow_yanked, format_control=selection_prefs.format_control, ignore_requires_python=selection_prefs.ignore_requires_python, use_deprecated_html5lib=use_deprecated_html5lib, ) @property def target_python(self) -> TargetPython: return self._target_python @property def search_scope(self) -> SearchScope: return self._link_collector.search_scope @search_scope.setter def search_scope(self, search_scope: SearchScope) -> None: self._link_collector.search_scope = search_scope @property def find_links(self) -> List[str]: return self._link_collector.find_links @property def index_urls(self) -> List[str]: return self.search_scope.index_urls @property def trusted_hosts(self) -> Iterable[str]: for host_port in self._link_collector.session.pip_trusted_origins: yield build_netloc(*host_port) @property def allow_all_prereleases(self) -> bool: return self._candidate_prefs.allow_all_prereleases def set_allow_all_prereleases(self) -> None: self._candidate_prefs.allow_all_prereleases = True @property def prefer_binary(self) -> bool: return self._candidate_prefs.prefer_binary def set_prefer_binary(self) -> None: self._candidate_prefs.prefer_binary = True def requires_python_skipped_reasons(self) -> List[str]: reasons = { detail for _, result, detail in self._logged_links if result == LinkType.requires_python_mismatch } return sorted(reasons) def make_link_evaluator(self, project_name: str) -> LinkEvaluator: canonical_name = canonicalize_name(project_name) formats = self.format_control.get_allowed_formats(canonical_name) return LinkEvaluator( project_name=project_name, canonical_name=canonical_name, formats=formats, target_python=self._target_python, allow_yanked=self._allow_yanked, ignore_requires_python=self._ignore_requires_python, ) def _sort_links(self, links: Iterable[Link]) -> List[Link]: eggs, no_eggs = [], [] seen: Set[Link] = set() for link in links: if link not in seen: seen.add(link) if link.egg_fragment: eggs.append(link) else: no_eggs.append(link) return no_eggs + eggs def _log_skipped_link(self, link: Link, result: LinkType, detail: str) -> None: entry = (link, result, detail) if entry not in self._logged_links: logger.debug("Skipping link: %s: %s", detail, link) self._logged_links.add(entry) def get_install_candidate( self, link_evaluator: LinkEvaluator, link: Link ) -> Optional[InstallationCandidate]: result, detail = link_evaluator.evaluate_link(link) if result != LinkType.candidate: self._log_skipped_link(link, result, detail) return None return InstallationCandidate( name=link_evaluator.project_name, link=link, version=detail, ) def evaluate_links( self, link_evaluator: LinkEvaluator, links: Iterable[Link] ) -> List[InstallationCandidate]: candidates = [] for link in self._sort_links(links): candidate = self.get_install_candidate(link_evaluator, link) if candidate is not None: candidates.append(candidate) return candidates def process_project_url( self, project_url: Link, link_evaluator: LinkEvaluator ) -> List[InstallationCandidate]: logger.debug( "Fetching project page and analyzing links: %s", project_url, ) html_page = self._link_collector.fetch_page(project_url) if html_page is None: return [] page_links = list(parse_links(html_page, self._use_deprecated_html5lib)) with indent_log(): package_links = self.evaluate_links( link_evaluator, links=page_links, ) return package_links @functools.lru_cache(maxsize=None) def find_all_candidates(self, project_name: str) -> List[InstallationCandidate]: link_evaluator = self.make_link_evaluator(project_name) collected_sources = self._link_collector.collect_sources( project_name=project_name, candidates_from_page=functools.partial( self.process_project_url, link_evaluator=link_evaluator, ), ) page_candidates_it = itertools.chain.from_iterable( source.page_candidates() for sources in collected_sources for source in sources if source is not None ) page_candidates = list(page_candidates_it) file_links_it = itertools.chain.from_iterable( source.file_links() for sources in collected_sources for source in sources if source is not None ) file_candidates = self.evaluate_links( link_evaluator, sorted(file_links_it, reverse=True), ) if logger.isEnabledFor(logging.DEBUG) and file_candidates: paths = [] for candidate in file_candidates: assert candidate.link.url try: paths.append(candidate.link.file_path) except Exception: paths.append(candidate.link.url) logger.debug("Local files found: %s", ", ".join(paths)) # This is an intentional priority ordering return file_candidates + page_candidates def make_candidate_evaluator( self, project_name: str, specifier: Optional[specifiers.BaseSpecifier] = None, hashes: Optional[Hashes] = None, ) -> CandidateEvaluator: candidate_prefs = self._candidate_prefs return CandidateEvaluator.create( project_name=project_name, target_python=self._target_python, prefer_binary=candidate_prefs.prefer_binary, allow_all_prereleases=candidate_prefs.allow_all_prereleases, specifier=specifier, hashes=hashes, ) @functools.lru_cache(maxsize=None) def find_best_candidate( self, project_name: str, specifier: Optional[specifiers.BaseSpecifier] = None, hashes: Optional[Hashes] = None, ) -> BestCandidateResult: candidates = self.find_all_candidates(project_name) candidate_evaluator = self.make_candidate_evaluator( project_name=project_name, specifier=specifier, hashes=hashes, ) return candidate_evaluator.compute_best_candidate(candidates) def find_requirement( self, req: InstallRequirement, upgrade: bool ) -> Optional[InstallationCandidate]: hashes = req.hashes(trust_internet=False) best_candidate_result = self.find_best_candidate( req.name, specifier=req.specifier, hashes=hashes, ) best_candidate = best_candidate_result.best_candidate installed_version: Optional[_BaseVersion] = None if req.satisfied_by is not None: installed_version = req.satisfied_by.version def _format_versions(cand_iter: Iterable[InstallationCandidate]) -> str: # This repeated parse_version and str() conversion is needed to # handle different vendoring sources from pip and pkg_resources. # If we stop using the pkg_resources provided specifier and start # using our own, we can drop the cast to str(). return ( ", ".join( sorted( {str(c.version) for c in cand_iter}, key=parse_version, ) ) or "none" ) if installed_version is None and best_candidate is None: logger.critical( "Could not find a version that satisfies the requirement %s " "(from versions: %s)", req, _format_versions(best_candidate_result.iter_all()), ) raise DistributionNotFound( "No matching distribution found for {}".format(req) ) best_installed = False if installed_version and ( best_candidate is None or best_candidate.version <= installed_version ): best_installed = True if not upgrade and installed_version is not None: if best_installed: logger.debug( "Existing installed version (%s) is most up-to-date and " "satisfies requirement", installed_version, ) else: logger.debug( "Existing installed version (%s) satisfies requirement " "(most up-to-date version is %s)", installed_version, best_candidate.version, ) return None if best_installed: # We have an existing version, and its the best version logger.debug( "Installed version (%s) is most up-to-date (past versions: %s)", installed_version, _format_versions(best_candidate_result.iter_applicable()), ) raise BestVersionAlreadyInstalled logger.debug( "Using version %s (newest of versions: %s)", best_candidate.version, _format_versions(best_candidate_result.iter_applicable()), ) return best_candidate def _find_name_version_sep(fragment: str, canonical_name: str) -> int: # Project name and version must be separated by one single dash. Find all # occurrences of dashes; if the string in front of it matches the canonical # name, this is the one separating the name and version parts. for i, c in enumerate(fragment): if c != "-": continue if canonicalize_name(fragment[:i]) == canonical_name: return i raise ValueError(f"{fragment} does not match {canonical_name}") def _extract_version_from_fragment(fragment: str, canonical_name: str) -> Optional[str]: try: version_start = _find_name_version_sep(fragment, canonical_name) + 1 except ValueError: return None version = fragment[version_start:] if not version: return None return version
true
true
f70f74c49693a3c8825166a36842545400ad789b
2,992
py
Python
algorithms/anchor_detector.py
songheony/AAA-multi
80a988d8d312664d8ca19dee82c844183cf4f55d
[ "MIT" ]
null
null
null
algorithms/anchor_detector.py
songheony/AAA-multi
80a988d8d312664d8ca19dee82c844183cf4f55d
[ "MIT" ]
null
null
null
algorithms/anchor_detector.py
songheony/AAA-multi
80a988d8d312664d8ca19dee82c844183cf4f55d
[ "MIT" ]
1
2021-03-01T06:58:15.000Z
2021-03-01T06:58:15.000Z
from .aaa_util import eval_results, get_summary, convert_df class AnchorDetector: def __init__(self, offline): self.offline = offline def initialize(self, seq_info): self.seq_info = seq_info self.previous_offline = None def fixed_detect(self, frame_idx, duration): feedback_length = duration if (frame_idx + 1) % duration == 0: is_anchor, feedback = ( True, self._get_feedback(frame_idx - duration + 1, frame_idx), ) else: is_anchor, feedback = False, None return is_anchor, feedback, feedback_length def stable_detect(self, seq_info, frame_idx, duration, threshold): if frame_idx + 1 > duration: current_offline = self._get_feedback(frame_idx - duration + 1, frame_idx) if self.previous_offline is not None and current_offline is not None: overlap_previous = self.previous_offline[ self.previous_offline[:, 0] > 1 ] overlap_previous[:, 0] -= 1 overlap_previous = convert_df(overlap_previous, is_offline=True) overlap_current = current_offline[current_offline[:, 0] < duration] overlap_current = convert_df(overlap_current, is_offline=True) feedback_length = duration else: current_offline = self._get_feedback(0, frame_idx) if self.previous_offline is not None and current_offline is not None: overlap_previous = convert_df(self.previous_offline, is_offline=True) overlap_current = current_offline[current_offline[:, 0] <= frame_idx] overlap_current = convert_df(overlap_current, is_offline=True) feedback_length = frame_idx + 1 if self.previous_offline is not None and current_offline is not None: prev_acc, prev_ana, _ = eval_results( seq_info, overlap_previous, overlap_current ) prev_sum = get_summary(prev_acc, prev_ana) curr_acc, curr_ana, _ = eval_results( seq_info, overlap_current, overlap_previous ) curr_sum = get_summary(curr_acc, curr_ana) mean_mota = (prev_sum[3] + curr_sum[3]) / 2 if mean_mota >= threshold: is_anchor = True feedback = current_offline else: is_anchor = False feedback = None # print(f"Frame {frame_idx}, MOTA {mean_mota}") else: is_anchor = False feedback = None self.previous_offline = current_offline return is_anchor, feedback, feedback_length def _get_feedback(self, start_frame, end_frame): try: feedback = self.offline.track(start_frame, end_frame) except (RuntimeError, ValueError): feedback = None return feedback
35.2
85
0.60127
from .aaa_util import eval_results, get_summary, convert_df class AnchorDetector: def __init__(self, offline): self.offline = offline def initialize(self, seq_info): self.seq_info = seq_info self.previous_offline = None def fixed_detect(self, frame_idx, duration): feedback_length = duration if (frame_idx + 1) % duration == 0: is_anchor, feedback = ( True, self._get_feedback(frame_idx - duration + 1, frame_idx), ) else: is_anchor, feedback = False, None return is_anchor, feedback, feedback_length def stable_detect(self, seq_info, frame_idx, duration, threshold): if frame_idx + 1 > duration: current_offline = self._get_feedback(frame_idx - duration + 1, frame_idx) if self.previous_offline is not None and current_offline is not None: overlap_previous = self.previous_offline[ self.previous_offline[:, 0] > 1 ] overlap_previous[:, 0] -= 1 overlap_previous = convert_df(overlap_previous, is_offline=True) overlap_current = current_offline[current_offline[:, 0] < duration] overlap_current = convert_df(overlap_current, is_offline=True) feedback_length = duration else: current_offline = self._get_feedback(0, frame_idx) if self.previous_offline is not None and current_offline is not None: overlap_previous = convert_df(self.previous_offline, is_offline=True) overlap_current = current_offline[current_offline[:, 0] <= frame_idx] overlap_current = convert_df(overlap_current, is_offline=True) feedback_length = frame_idx + 1 if self.previous_offline is not None and current_offline is not None: prev_acc, prev_ana, _ = eval_results( seq_info, overlap_previous, overlap_current ) prev_sum = get_summary(prev_acc, prev_ana) curr_acc, curr_ana, _ = eval_results( seq_info, overlap_current, overlap_previous ) curr_sum = get_summary(curr_acc, curr_ana) mean_mota = (prev_sum[3] + curr_sum[3]) / 2 if mean_mota >= threshold: is_anchor = True feedback = current_offline else: is_anchor = False feedback = None else: is_anchor = False feedback = None self.previous_offline = current_offline return is_anchor, feedback, feedback_length def _get_feedback(self, start_frame, end_frame): try: feedback = self.offline.track(start_frame, end_frame) except (RuntimeError, ValueError): feedback = None return feedback
true
true
f70f74dd4d6743c0e5a61696e8f4284ad3a589ae
300
py
Python
maxsmi/tests/test_maxsmi.py
t-kimber/maxsmi
d7d52a9ba95efb6b4219928425bb5de965c4b3b5
[ "MIT" ]
1
2021-01-22T17:56:54.000Z
2021-01-22T17:56:54.000Z
maxsmi/tests/test_maxsmi.py
t-kimber/maxsmi
d7d52a9ba95efb6b4219928425bb5de965c4b3b5
[ "MIT" ]
12
2020-10-16T10:13:56.000Z
2021-04-14T07:25:05.000Z
maxsmi/tests/test_maxsmi.py
t-kimber/maxsmi
d7d52a9ba95efb6b4219928425bb5de965c4b3b5
[ "MIT" ]
null
null
null
""" Unit and regression test for the maxsmi package. """ # Import package, test suite, and other packages as needed # import maxsmi # import pytest import sys def test_maxsmi_imported(): """Sample test, will always pass so long as import statement worked""" assert "maxsmi" in sys.modules
21.428571
74
0.73
import sys def test_maxsmi_imported(): assert "maxsmi" in sys.modules
true
true
f70f75b56fefe5b1ddf643a702b9df5d8dde9dd9
1,130
py
Python
catalyst/assets/__init__.py
guilhermeprokisch/catalyst
21e096b261912d9e905584178d6ee626072c23cb
[ "Apache-2.0" ]
null
null
null
catalyst/assets/__init__.py
guilhermeprokisch/catalyst
21e096b261912d9e905584178d6ee626072c23cb
[ "Apache-2.0" ]
null
null
null
catalyst/assets/__init__.py
guilhermeprokisch/catalyst
21e096b261912d9e905584178d6ee626072c23cb
[ "Apache-2.0" ]
null
null
null
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ._assets import ( Asset, Equity, Future, make_asset_array, CACHE_FILE_TEMPLATE ) from .assets import ( AssetFinder, AssetConvertible, PricingDataAssociable, ) from .asset_db_schema import ASSET_DB_VERSION from .asset_writer import AssetDBWriter __all__ = [ 'ASSET_DB_VERSION', 'Asset', 'AssetDBWriter', 'Equity', 'Future', 'AssetFinder', 'AssetConvertible', 'PricingDataAssociable', 'make_asset_array', 'CACHE_FILE_TEMPLATE' ]
26.27907
75
0.69646
from ._assets import ( Asset, Equity, Future, make_asset_array, CACHE_FILE_TEMPLATE ) from .assets import ( AssetFinder, AssetConvertible, PricingDataAssociable, ) from .asset_db_schema import ASSET_DB_VERSION from .asset_writer import AssetDBWriter __all__ = [ 'ASSET_DB_VERSION', 'Asset', 'AssetDBWriter', 'Equity', 'Future', 'AssetFinder', 'AssetConvertible', 'PricingDataAssociable', 'make_asset_array', 'CACHE_FILE_TEMPLATE' ]
true
true
f70f76797352e63f38e9029343013e191ad89605
3,744
py
Python
ansible/plugins/action/sros.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
1
2022-01-25T22:52:58.000Z
2022-01-25T22:52:58.000Z
ansible/plugins/action/sros.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
ansible/plugins/action/sros.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
# # (c) 2016 Red Hat Inc. # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # from __future__ import (absolute_import, division, print_function) __metaclass__ = type import sys import copy from ansible import constants as C from ansible.plugins.action.normal import ActionModule as _ActionModule from ansible.module_utils.sros import sros_argument_spec from ansible.module_utils.basic import AnsibleFallbackNotFound from ansible.module_utils.six import iteritems try: from __main__ import display except ImportError: from ansible.utils.display import Display display = Display() class ActionModule(_ActionModule): def run(self, tmp=None, task_vars=None): if self._play_context.connection != 'local': return dict( failed=True, msg='invalid connection specified, expected connection=local, ' 'got %s' % self._play_context.connection ) provider = self.load_provider() pc = copy.deepcopy(self._play_context) pc.connection = 'network_cli' pc.network_os = 'sros' pc.remote_addr = provider['host'] or self._play_context.remote_addr pc.port = int(provider['port'] or self._play_context.port or 22) pc.remote_user = provider['username'] or self._play_context.connection_user pc.password = provider['password'] or self._play_context.password pc.private_key_file = provider['ssh_keyfile'] or self._play_context.private_key_file pc.timeout = int(provider['timeout'] or C.PERSISTENT_COMMAND_TIMEOUT) display.vvv('using connection plugin %s' % pc.connection, pc.remote_addr) connection = self._shared_loader_obj.connection_loader.get('persistent', pc, sys.stdin) socket_path = connection.run() display.vvvv('socket_path: %s' % socket_path, pc.remote_addr) if not socket_path: return {'failed': True, 'msg': 'unable to open shell. Please see: ' + 'https://docs.ansible.com/ansible/network_debug_troubleshooting.html#unable-to-open-shell'} task_vars['ansible_socket'] = socket_path result = super(ActionModule, self).run(tmp, task_vars) return result def load_provider(self): provider = self._task.args.get('provider', {}) for key, value in iteritems(sros_argument_spec): if key != 'provider' and key not in provider: if key in self._task.args: provider[key] = self._task.args[key] elif 'fallback' in value: provider[key] = self._fallback(value['fallback']) elif key not in provider: provider[key] = None return provider def _fallback(self, fallback): strategy = fallback[0] args = [] kwargs = {} for item in fallback[1:]: if isinstance(item, dict): kwargs = item else: args = item try: return strategy(*args, **kwargs) except AnsibleFallbackNotFound: pass
36.705882
118
0.654647
from __future__ import (absolute_import, division, print_function) __metaclass__ = type import sys import copy from ansible import constants as C from ansible.plugins.action.normal import ActionModule as _ActionModule from ansible.module_utils.sros import sros_argument_spec from ansible.module_utils.basic import AnsibleFallbackNotFound from ansible.module_utils.six import iteritems try: from __main__ import display except ImportError: from ansible.utils.display import Display display = Display() class ActionModule(_ActionModule): def run(self, tmp=None, task_vars=None): if self._play_context.connection != 'local': return dict( failed=True, msg='invalid connection specified, expected connection=local, ' 'got %s' % self._play_context.connection ) provider = self.load_provider() pc = copy.deepcopy(self._play_context) pc.connection = 'network_cli' pc.network_os = 'sros' pc.remote_addr = provider['host'] or self._play_context.remote_addr pc.port = int(provider['port'] or self._play_context.port or 22) pc.remote_user = provider['username'] or self._play_context.connection_user pc.password = provider['password'] or self._play_context.password pc.private_key_file = provider['ssh_keyfile'] or self._play_context.private_key_file pc.timeout = int(provider['timeout'] or C.PERSISTENT_COMMAND_TIMEOUT) display.vvv('using connection plugin %s' % pc.connection, pc.remote_addr) connection = self._shared_loader_obj.connection_loader.get('persistent', pc, sys.stdin) socket_path = connection.run() display.vvvv('socket_path: %s' % socket_path, pc.remote_addr) if not socket_path: return {'failed': True, 'msg': 'unable to open shell. Please see: ' + 'https://docs.ansible.com/ansible/network_debug_troubleshooting.html#unable-to-open-shell'} task_vars['ansible_socket'] = socket_path result = super(ActionModule, self).run(tmp, task_vars) return result def load_provider(self): provider = self._task.args.get('provider', {}) for key, value in iteritems(sros_argument_spec): if key != 'provider' and key not in provider: if key in self._task.args: provider[key] = self._task.args[key] elif 'fallback' in value: provider[key] = self._fallback(value['fallback']) elif key not in provider: provider[key] = None return provider def _fallback(self, fallback): strategy = fallback[0] args = [] kwargs = {} for item in fallback[1:]: if isinstance(item, dict): kwargs = item else: args = item try: return strategy(*args, **kwargs) except AnsibleFallbackNotFound: pass
true
true
f70f78983d59b550f32fb5bc0b61b997923e1baf
11,459
py
Python
graphsense/model/entity_tags.py
iknaio/graphsense-python
b61c66b6ec0bb9720036ae61777e90ce63a971cc
[ "MIT" ]
null
null
null
graphsense/model/entity_tags.py
iknaio/graphsense-python
b61c66b6ec0bb9720036ae61777e90ce63a971cc
[ "MIT" ]
1
2022-02-24T11:21:49.000Z
2022-02-24T11:21:49.000Z
graphsense/model/entity_tags.py
INTERPOL-Innovation-Centre/GraphSense-Maltego-transform
2a9b352289ab64903a7012c5d84cb4c6d8172ade
[ "MIT" ]
null
null
null
""" GraphSense API GraphSense API # noqa: E501 The version of the OpenAPI document: 0.5.1 Generated by: https://openapi-generator.tech """ import re # noqa: F401 import sys # noqa: F401 from graphsense.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from graphsense.exceptions import ApiAttributeError def lazy_import(): from graphsense.model.entity_tag import EntityTag globals()['EntityTag'] = EntityTag class EntityTags(ModelNormal): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. attribute_map (dict): The key is attribute name and the value is json key in definition. discriminator_value_class_map (dict): A dict to go from the discriminator variable value to the discriminator class name. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { } validations = { } @cached_property def additional_properties_type(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded """ lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) # noqa: E501 _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ lazy_import() return { 'entity_tags': ([EntityTag],), # noqa: E501 'next_page': (str,), # noqa: E501 } @cached_property def discriminator(): return None attribute_map = { 'entity_tags': 'entity_tags', # noqa: E501 'next_page': 'next_page', # noqa: E501 } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, entity_tags, *args, **kwargs): # noqa: E501 """EntityTags - a model defined in OpenAPI Args: entity_tags ([EntityTag]): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) next_page (str): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.entity_tags = entity_tags for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, entity_tags, *args, **kwargs): # noqa: E501 """EntityTags - a model defined in OpenAPI Args: entity_tags ([EntityTag]): Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) next_page (str): [optional] # noqa: E501 """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.entity_tags = entity_tags for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: # discard variable. continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
42.128676
121
0.569421
import re import sys from graphsense.model_utils import ( ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) from ..model_utils import OpenApiModel from graphsense.exceptions import ApiAttributeError def lazy_import(): from graphsense.model.entity_tag import EntityTag globals()['EntityTag'] = EntityTag class EntityTags(ModelNormal): allowed_values = { } validations = { } @cached_property def additional_properties_type(): lazy_import() return (bool, date, datetime, dict, float, int, list, str, none_type,) _nullable = False @cached_property def openapi_types(): lazy_import() return { 'entity_tags': ([EntityTag],), 'next_page': (str,), } @cached_property def discriminator(): return None attribute_map = { 'entity_tags': 'entity_tags', 'next_page': 'next_page', } read_only_vars = { } _composed_schemas = {} @classmethod @convert_js_args_to_python_args def _from_openapi_data(cls, entity_tags, *args, **kwargs): _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) self = super(OpenApiModel, cls).__new__(cls) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.entity_tags = entity_tags for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: continue setattr(self, var_name, var_value) return self required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, entity_tags, *args, **kwargs): _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.entity_tags = entity_tags for var_name, var_value in kwargs.items(): if var_name not in self.attribute_map and \ self._configuration is not None and \ self._configuration.discard_unknown_keys and \ self.additional_properties_type is None: continue setattr(self, var_name, var_value) if var_name in self.read_only_vars: raise ApiAttributeError(f"`{var_name}` is a read-only attribute. Use `from_openapi_data` to instantiate " f"class with read only attributes.")
true
true
f70f79489ce5d6799a41c07cf1757179521b1ce4
2,632
py
Python
the_mechanic_backend/apps/stock/migrations/0003_sparecustomer_spareorder_sparesold.py
muthukumar4999/the-mechanic-backend
1e31affddf60d2de72445a85dd2055bdeba6f670
[ "MIT" ]
null
null
null
the_mechanic_backend/apps/stock/migrations/0003_sparecustomer_spareorder_sparesold.py
muthukumar4999/the-mechanic-backend
1e31affddf60d2de72445a85dd2055bdeba6f670
[ "MIT" ]
5
2020-06-05T22:30:20.000Z
2021-09-08T01:12:27.000Z
the_mechanic_backend/apps/stock/migrations/0003_sparecustomer_spareorder_sparesold.py
muthukumar4999/the-mechanic-backend
1e31affddf60d2de72445a85dd2055bdeba6f670
[ "MIT" ]
null
null
null
# Generated by Django 2.1.5 on 2019-03-31 18:24 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('stock', '0002_spare_store'), ] operations = [ migrations.CreateModel( name='SpareCustomer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('email', models.CharField(max_length=100)), ('phone_number', models.CharField(max_length=10)), ('address', models.TextField()), ], ), migrations.CreateModel( name='SpareOrder', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('order_id', models.CharField(max_length=20)), ('order_type', models.CharField(choices=[('IN_SOURCE', 'IN_SOURCE'), ('OUT_SOURCE', 'OUT_SOURCE')], max_length=20)), ('total', models.DecimalField(decimal_places=2, max_digits=10)), ('order_date', models.DateTimeField(auto_now=True)), ('customer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='stock.SpareCustomer')), ('sold_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ('store', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='accounts.Store')), ], ), migrations.CreateModel( name='SpareSold', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('spare_count', models.IntegerField()), ('spare_name', models.CharField(max_length=100)), ('spare_price', models.DecimalField(decimal_places=2, max_digits=10)), ('spare_price_type', models.CharField(choices=[('MRP', 'MRP'), ('MECHANIC', 'MECHANIC'), ('WHOLESALER', 'WHOLESALER'), ('CUSTOMER', 'CUSTOMER')], max_length=20)), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='stock.SpareOrder')), ('spare', models.ForeignKey(on_delete=models.SET('deleted'), to='stock.Spare')), ], ), ]
49.660377
178
0.602204
from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('stock', '0002_spare_store'), ] operations = [ migrations.CreateModel( name='SpareCustomer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100)), ('email', models.CharField(max_length=100)), ('phone_number', models.CharField(max_length=10)), ('address', models.TextField()), ], ), migrations.CreateModel( name='SpareOrder', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('order_id', models.CharField(max_length=20)), ('order_type', models.CharField(choices=[('IN_SOURCE', 'IN_SOURCE'), ('OUT_SOURCE', 'OUT_SOURCE')], max_length=20)), ('total', models.DecimalField(decimal_places=2, max_digits=10)), ('order_date', models.DateTimeField(auto_now=True)), ('customer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='stock.SpareCustomer')), ('sold_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL)), ('store', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='accounts.Store')), ], ), migrations.CreateModel( name='SpareSold', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('spare_count', models.IntegerField()), ('spare_name', models.CharField(max_length=100)), ('spare_price', models.DecimalField(decimal_places=2, max_digits=10)), ('spare_price_type', models.CharField(choices=[('MRP', 'MRP'), ('MECHANIC', 'MECHANIC'), ('WHOLESALER', 'WHOLESALER'), ('CUSTOMER', 'CUSTOMER')], max_length=20)), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='stock.SpareOrder')), ('spare', models.ForeignKey(on_delete=models.SET('deleted'), to='stock.Spare')), ], ), ]
true
true
f70f797573bfd52476fcff70d64ce151275711dc
3,122
py
Python
meteors.py
Stafferson/YandexLycP2
f5c50cc89ca6716612f0b91f2e22315c414d5541
[ "MIT" ]
null
null
null
meteors.py
Stafferson/YandexLycP2
f5c50cc89ca6716612f0b91f2e22315c414d5541
[ "MIT" ]
null
null
null
meteors.py
Stafferson/YandexLycP2
f5c50cc89ca6716612f0b91f2e22315c414d5541
[ "MIT" ]
null
null
null
import os import sys import random import pygame def load_image(name, colorkey=None): # not sure if this method is needed fullname = os.path.join('data', name) # если файл не существует, то выходим if not os.path.isfile(fullname): print(f"Файл с изображением '{fullname}' не найден") sys.exit() image = pygame.image.load(fullname) # we can just use this one, cuz we know that pics are ok return image enemies = pygame.sprite.Group() bullets = pygame.sprite.Group() class Meteor(pygame.sprite.Sprite): def __init__(self): super().__init__() self.frames = [] self.cut_sheet(load_image("meteors1.png"), 5, 1) self.cur_frame = 0 self.image = self.frames[self.cur_frame] self.count = 0 self.mask = pygame.mask.from_surface(self.image) self.rect.x = random.randrange(width) self.rect.y = -1 * self.image.get_height() while pygame.sprite.spritecollideany(self, enemies, pygame.sprite.collide_mask) or\ self.rect.x < 0 or self.rect.right > width: self.rect.x = random.randrange(width) self.life = 1 def cut_sheet(self, sheet, columns, rows): self.rect = pygame.Rect(0, 0, sheet.get_width() // columns, sheet.get_height() // rows) for j in range(rows): for i in range(columns): frame_location = (self.rect.w * i, self.rect.h * j) self.frames.append(sheet.subsurface(pygame.Rect( frame_location, self.rect.size))) def update(self): if pygame.sprite.spritecollideany(self, bullets, pygame.sprite.collide_mask): self.life -= 1 if self.life > 0 and self.rect.y <= height: self.rect = self.rect.move(0, 1) self.count += 1 if self.count % 7 == 0: self.cur_frame = (self.cur_frame + 1) % len(self.frames) self.image = self.frames[self.cur_frame] else: self.kill() def except_hook(cls, exception, traceback): sys.__excepthook__(cls, exception, traceback) if __name__ == '__main__': pygame.init() size = width, height = 500, 700 # other parameters may be set in the main game screen = pygame.display.set_mode(size) clock = pygame.time.Clock() fps = 60 MYEVENTTYPE = pygame.USEREVENT + 1 pygame.time.set_timer(MYEVENTTYPE, 3000) for _ in range(random.randrange(1, 4)): enemies.add(Meteor()) running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == MYEVENTTYPE: # every 3000 frames new enemies are created for _ in range(random.randrange(1, 4)): enemies.add(Meteor()) screen.fill(pygame.Color('blue')) # in the main game, there will be a background(animated?) enemies.draw(screen) enemies.update() clock.tick(fps) pygame.display.flip() pygame.quit() sys.excepthook = except_hook
35.078652
100
0.601217
import os import sys import random import pygame def load_image(name, colorkey=None): fullname = os.path.join('data', name) if not os.path.isfile(fullname): print(f"Файл с изображением '{fullname}' не найден") sys.exit() image = pygame.image.load(fullname) return image enemies = pygame.sprite.Group() bullets = pygame.sprite.Group() class Meteor(pygame.sprite.Sprite): def __init__(self): super().__init__() self.frames = [] self.cut_sheet(load_image("meteors1.png"), 5, 1) self.cur_frame = 0 self.image = self.frames[self.cur_frame] self.count = 0 self.mask = pygame.mask.from_surface(self.image) self.rect.x = random.randrange(width) self.rect.y = -1 * self.image.get_height() while pygame.sprite.spritecollideany(self, enemies, pygame.sprite.collide_mask) or\ self.rect.x < 0 or self.rect.right > width: self.rect.x = random.randrange(width) self.life = 1 def cut_sheet(self, sheet, columns, rows): self.rect = pygame.Rect(0, 0, sheet.get_width() // columns, sheet.get_height() // rows) for j in range(rows): for i in range(columns): frame_location = (self.rect.w * i, self.rect.h * j) self.frames.append(sheet.subsurface(pygame.Rect( frame_location, self.rect.size))) def update(self): if pygame.sprite.spritecollideany(self, bullets, pygame.sprite.collide_mask): self.life -= 1 if self.life > 0 and self.rect.y <= height: self.rect = self.rect.move(0, 1) self.count += 1 if self.count % 7 == 0: self.cur_frame = (self.cur_frame + 1) % len(self.frames) self.image = self.frames[self.cur_frame] else: self.kill() def except_hook(cls, exception, traceback): sys.__excepthook__(cls, exception, traceback) if __name__ == '__main__': pygame.init() size = width, height = 500, 700 screen = pygame.display.set_mode(size) clock = pygame.time.Clock() fps = 60 MYEVENTTYPE = pygame.USEREVENT + 1 pygame.time.set_timer(MYEVENTTYPE, 3000) for _ in range(random.randrange(1, 4)): enemies.add(Meteor()) running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False if event.type == MYEVENTTYPE: for _ in range(random.randrange(1, 4)): enemies.add(Meteor()) screen.fill(pygame.Color('blue')) enemies.draw(screen) enemies.update() clock.tick(fps) pygame.display.flip() pygame.quit() sys.excepthook = except_hook
true
true
f70f79ef125a14fdd24574d066c3d6d527e43b4f
330
py
Python
flask_app/__init__.py
maawoo/S1GRASS-Webapp
b34335f2aaa64dff075b955b98ad01f062ba9891
[ "Unlicense" ]
null
null
null
flask_app/__init__.py
maawoo/S1GRASS-Webapp
b34335f2aaa64dff075b955b98ad01f062ba9891
[ "Unlicense" ]
1
2020-09-10T12:18:37.000Z
2020-09-10T12:18:37.000Z
flask_app/__init__.py
maawoo/S1GRASS-Webapp
b34335f2aaa64dff075b955b98ad01f062ba9891
[ "Unlicense" ]
2
2020-09-09T13:37:45.000Z
2021-04-23T18:57:24.000Z
from config import Config from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_bootstrap import Bootstrap app = Flask(__name__) app.config.from_object(Config) db = SQLAlchemy(app) migrate = Migrate(app, db) bootstrap = Bootstrap(app) from flask_app import routes, models
22
39
0.818182
from config import Config from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_bootstrap import Bootstrap app = Flask(__name__) app.config.from_object(Config) db = SQLAlchemy(app) migrate = Migrate(app, db) bootstrap = Bootstrap(app) from flask_app import routes, models
true
true
f70f7a2b99b2903b8866d778aaaf850f6f9f1fa1
6,688
py
Python
gammapy/utils/testing.py
Rishank2610/gammapy
3cd64fdb2c53c8e5c697a9b85ef8d0486bff0b76
[ "BSD-3-Clause" ]
1
2017-11-22T17:07:56.000Z
2017-11-22T17:07:56.000Z
gammapy/utils/testing.py
Rishank2610/gammapy
3cd64fdb2c53c8e5c697a9b85ef8d0486bff0b76
[ "BSD-3-Clause" ]
null
null
null
gammapy/utils/testing.py
Rishank2610/gammapy
3cd64fdb2c53c8e5c697a9b85ef8d0486bff0b76
[ "BSD-3-Clause" ]
1
2019-09-04T14:03:33.000Z
2019-09-04T14:03:33.000Z
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Utilities for testing""" import os import sys from numpy.testing import assert_allclose import astropy.units as u from astropy.coordinates import SkyCoord from astropy.time import Time __all__ = [ "requires_dependency", "requires_data", "mpl_plot_check", "assert_quantity_allclose", "assert_skycoord_allclose", "assert_time_allclose", "Checker", ] # Cache for `requires_dependency` _requires_dependency_cache = {} def requires_dependency(name): """Decorator to declare required dependencies for tests. Examples -------- :: from gammapy.utils.testing import requires_dependency @requires_dependency('scipy') def test_using_scipy(): import scipy ... """ import pytest if name in _requires_dependency_cache: skip_it = _requires_dependency_cache[name] else: try: __import__(name) skip_it = False except ImportError: skip_it = True _requires_dependency_cache[name] = skip_it reason = f"Missing dependency: {name}" return pytest.mark.skipif(skip_it, reason=reason) def has_data(name): """Is a certain set of data available?""" if name == "gammapy-extra": return "GAMMAPY_EXTRA" in os.environ elif name == "gammapy-data": return "GAMMAPY_DATA" in os.environ elif name == "gamma-cat": return "GAMMA_CAT" in os.environ elif name == "fermi-lat": return "GAMMAPY_FERMI_LAT_DATA" in os.environ else: raise ValueError(f"Invalid name: {name}") def requires_data(name="gammapy-data"): """Decorator to declare required data for tests. Examples -------- :: from gammapy.utils.testing import requires_data @requires_data() def test_using_data_files(): filename = "$GAMMAPY_DATA/..." ... """ import pytest if not isinstance(name, str): raise TypeError( "You must call @requires_data with a name (str). " "Usually this: @requires_data()" ) skip_it = not has_data(name) reason = f"Missing data: {name}" return pytest.mark.skipif(skip_it, reason=reason) def run_cli(cli, args, exit_code=0): """Run Click command line tool. Thin wrapper around `click.testing.CliRunner` that prints info to stderr if the command fails. Parameters ---------- cli : click.Command Click command args : list of str Argument list exit_code : int Expected exit code of the command Returns ------- result : `click.testing.Result` Result """ from click.testing import CliRunner result = CliRunner().invoke(cli, args, catch_exceptions=False) if result.exit_code != exit_code: sys.stderr.write("Exit code mismatch!\n") sys.stderr.write("Output:\n") sys.stderr.write(result.output) return result def assert_skycoord_allclose(actual, desired): """Assert all-close for `astropy.coordinates.SkyCoord` objects. - Frames can be different, aren't checked at the moment. """ assert isinstance(actual, SkyCoord) assert isinstance(desired, SkyCoord) assert_allclose(actual.data.lon.deg, desired.data.lon.deg) assert_allclose(actual.data.lat.deg, desired.data.lat.deg) def assert_time_allclose(actual, desired, atol=1e-3): """Assert all-close for `astropy.time.Time` objects. atol is absolute tolerance in seconds. """ assert isinstance(actual, Time) assert isinstance(desired, Time) assert actual.scale == desired.scale assert actual.format == desired.format dt = actual - desired assert_allclose(dt.sec, 0, rtol=0, atol=atol) def assert_quantity_allclose(actual, desired, rtol=1.0e-7, atol=None, **kwargs): """Assert all-close for `astropy.units.Quantity` objects. Requires that ``unit`` is identical, not just that quantities are allclose taking different units into account. We prefer this kind of assert for testing, since units should only change on purpose, so this tests more behaviour. """ # TODO: change this later to explicitly check units are the same! # assert actual.unit == desired.unit args = _unquantify_allclose_arguments(actual, desired, rtol, atol) assert_allclose(*args, **kwargs) def _unquantify_allclose_arguments(actual, desired, rtol, atol): actual = u.Quantity(actual, subok=True, copy=False) desired = u.Quantity(desired, subok=True, copy=False) try: desired = desired.to(actual.unit) except u.UnitsError: raise u.UnitsError( "Units for 'desired' ({}) and 'actual' ({}) " "are not convertible".format(desired.unit, actual.unit) ) if atol is None: # by default, we assume an absolute tolerance of 0 atol = u.Quantity(0) else: atol = u.Quantity(atol, subok=True, copy=False) try: atol = atol.to(actual.unit) except u.UnitsError: raise u.UnitsError( "Units for 'atol' ({}) and 'actual' ({}) " "are not convertible".format(atol.unit, actual.unit) ) rtol = u.Quantity(rtol, subok=True, copy=False) try: rtol = rtol.to(u.dimensionless_unscaled) except Exception: raise u.UnitsError("`rtol` should be dimensionless") return actual.value, desired.value, rtol.value, atol.value def mpl_plot_check(): """Matplotlib plotting test context manager. It create a new figure on __enter__ and calls savefig for the current figure in __exit__. This will trigger a render of the Figure, which can sometimes raise errors if there is a problem. This is writing to an in-memory byte buffer, i.e. is faster than writing to disk. """ from io import BytesIO import matplotlib.pyplot as plt class MPLPlotCheck: def __enter__(self): plt.figure() def __exit__(self, type, value, traceback): plt.savefig(BytesIO(), format="png") plt.close() return MPLPlotCheck() class Checker: """Base class for checker classes in Gammapy.""" def run(self, checks="all"): if checks == "all": checks = self.CHECKS.keys() unknown_checks = sorted(set(checks).difference(self.CHECKS.keys())) if unknown_checks: raise ValueError(f"Unknown checks: {unknown_checks!r}") for check in checks: method = getattr(self, self.CHECKS[check]) yield from method()
27.866667
80
0.643541
import os import sys from numpy.testing import assert_allclose import astropy.units as u from astropy.coordinates import SkyCoord from astropy.time import Time __all__ = [ "requires_dependency", "requires_data", "mpl_plot_check", "assert_quantity_allclose", "assert_skycoord_allclose", "assert_time_allclose", "Checker", ] _requires_dependency_cache = {} def requires_dependency(name): import pytest if name in _requires_dependency_cache: skip_it = _requires_dependency_cache[name] else: try: __import__(name) skip_it = False except ImportError: skip_it = True _requires_dependency_cache[name] = skip_it reason = f"Missing dependency: {name}" return pytest.mark.skipif(skip_it, reason=reason) def has_data(name): if name == "gammapy-extra": return "GAMMAPY_EXTRA" in os.environ elif name == "gammapy-data": return "GAMMAPY_DATA" in os.environ elif name == "gamma-cat": return "GAMMA_CAT" in os.environ elif name == "fermi-lat": return "GAMMAPY_FERMI_LAT_DATA" in os.environ else: raise ValueError(f"Invalid name: {name}") def requires_data(name="gammapy-data"): import pytest if not isinstance(name, str): raise TypeError( "You must call @requires_data with a name (str). " "Usually this: @requires_data()" ) skip_it = not has_data(name) reason = f"Missing data: {name}" return pytest.mark.skipif(skip_it, reason=reason) def run_cli(cli, args, exit_code=0): from click.testing import CliRunner result = CliRunner().invoke(cli, args, catch_exceptions=False) if result.exit_code != exit_code: sys.stderr.write("Exit code mismatch!\n") sys.stderr.write("Output:\n") sys.stderr.write(result.output) return result def assert_skycoord_allclose(actual, desired): assert isinstance(actual, SkyCoord) assert isinstance(desired, SkyCoord) assert_allclose(actual.data.lon.deg, desired.data.lon.deg) assert_allclose(actual.data.lat.deg, desired.data.lat.deg) def assert_time_allclose(actual, desired, atol=1e-3): assert isinstance(actual, Time) assert isinstance(desired, Time) assert actual.scale == desired.scale assert actual.format == desired.format dt = actual - desired assert_allclose(dt.sec, 0, rtol=0, atol=atol) def assert_quantity_allclose(actual, desired, rtol=1.0e-7, atol=None, **kwargs): args = _unquantify_allclose_arguments(actual, desired, rtol, atol) assert_allclose(*args, **kwargs) def _unquantify_allclose_arguments(actual, desired, rtol, atol): actual = u.Quantity(actual, subok=True, copy=False) desired = u.Quantity(desired, subok=True, copy=False) try: desired = desired.to(actual.unit) except u.UnitsError: raise u.UnitsError( "Units for 'desired' ({}) and 'actual' ({}) " "are not convertible".format(desired.unit, actual.unit) ) if atol is None: atol = u.Quantity(0) else: atol = u.Quantity(atol, subok=True, copy=False) try: atol = atol.to(actual.unit) except u.UnitsError: raise u.UnitsError( "Units for 'atol' ({}) and 'actual' ({}) " "are not convertible".format(atol.unit, actual.unit) ) rtol = u.Quantity(rtol, subok=True, copy=False) try: rtol = rtol.to(u.dimensionless_unscaled) except Exception: raise u.UnitsError("`rtol` should be dimensionless") return actual.value, desired.value, rtol.value, atol.value def mpl_plot_check(): from io import BytesIO import matplotlib.pyplot as plt class MPLPlotCheck: def __enter__(self): plt.figure() def __exit__(self, type, value, traceback): plt.savefig(BytesIO(), format="png") plt.close() return MPLPlotCheck() class Checker: def run(self, checks="all"): if checks == "all": checks = self.CHECKS.keys() unknown_checks = sorted(set(checks).difference(self.CHECKS.keys())) if unknown_checks: raise ValueError(f"Unknown checks: {unknown_checks!r}") for check in checks: method = getattr(self, self.CHECKS[check]) yield from method()
true
true
f70f7a739c8358bfeaf9b03fd0832dae1581d974
1,088
py
Python
src/snlayers/snconv1d.py
Zihang97/PAGAN
9233fc54ecf49d6a82bb0794333d61f707439a68
[ "MIT" ]
29
2019-11-04T12:46:17.000Z
2022-02-19T10:06:16.000Z
src/snlayers/snconv1d.py
Zihang97/PAGAN
9233fc54ecf49d6a82bb0794333d61f707439a68
[ "MIT" ]
2
2020-07-05T04:15:57.000Z
2021-04-10T03:45:09.000Z
src/snlayers/snconv1d.py
Zihang97/PAGAN
9233fc54ecf49d6a82bb0794333d61f707439a68
[ "MIT" ]
9
2020-05-04T01:23:37.000Z
2021-07-13T06:47:02.000Z
# coding=utf-8 import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules import conv from torch.nn.modules.utils import _single from ..functions.max_sv import max_singular_value class SNConv1d(conv._ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): kernel_size = _single(kernel_size) stride = _single(stride) padding = _single(padding) dilation = _single(dilation) super(SNConv1d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _single(0), groups, bias) self.register_buffer('u', torch.Tensor(1, out_channels).normal_()) @property def W_(self): w_mat = self.weight.view(self.weight.size(0), -1) sigma, _u = max_singular_value(w_mat, self.u) self.u.copy_(_u) return self.weight / sigma def forward(self, input): return F.conv1d(input, self.W_, self.bias, self.stride, self.padding, self.dilation, self.groups)
36.266667
117
0.682904
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules import conv from torch.nn.modules.utils import _single from ..functions.max_sv import max_singular_value class SNConv1d(conv._ConvNd): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): kernel_size = _single(kernel_size) stride = _single(stride) padding = _single(padding) dilation = _single(dilation) super(SNConv1d, self).__init__( in_channels, out_channels, kernel_size, stride, padding, dilation, False, _single(0), groups, bias) self.register_buffer('u', torch.Tensor(1, out_channels).normal_()) @property def W_(self): w_mat = self.weight.view(self.weight.size(0), -1) sigma, _u = max_singular_value(w_mat, self.u) self.u.copy_(_u) return self.weight / sigma def forward(self, input): return F.conv1d(input, self.W_, self.bias, self.stride, self.padding, self.dilation, self.groups)
true
true
f70f7a9a71e9c09452054da1066ca9dc4f363773
678
py
Python
tf_agents/agents/sac/__init__.py
FlorisHoogenboom/agents
2cd5a61e1838b52012271f1fb8617c29a55279a9
[ "Apache-2.0" ]
16
2020-09-23T06:21:49.000Z
2022-03-28T05:45:04.000Z
tf_agents/agents/sac/__init__.py
FlorisHoogenboom/agents
2cd5a61e1838b52012271f1fb8617c29a55279a9
[ "Apache-2.0" ]
13
2019-06-18T03:36:39.000Z
2019-08-28T18:30:29.000Z
tf_agents/agents/sac/__init__.py
FlorisHoogenboom/agents
2cd5a61e1838b52012271f1fb8617c29a55279a9
[ "Apache-2.0" ]
6
2020-10-09T06:33:23.000Z
2022-02-03T16:16:36.000Z
# coding=utf-8 # Copyright 2018 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A Soft Actor Critic agent.""" from tf_agents.agents.sac import sac_agent
37.666667
74
0.759587
from tf_agents.agents.sac import sac_agent
true
true
f70f7ac9a07e731a63b7367bb5601c7b352c07cb
6,766
py
Python
src/classifiers.py
samirsahoo007/Naive-Bayes-and-Decision-Tree-Classifiers
619c5c0b17438d1014f7ca7e4ce13cc44c45de3c
[ "MIT" ]
1
2020-11-17T16:09:13.000Z
2020-11-17T16:09:13.000Z
src/classifiers.py
samirsahoo007/Naive-Bayes-and-Decision-Tree-Classifiers
619c5c0b17438d1014f7ca7e4ce13cc44c45de3c
[ "MIT" ]
null
null
null
src/classifiers.py
samirsahoo007/Naive-Bayes-and-Decision-Tree-Classifiers
619c5c0b17438d1014f7ca7e4ce13cc44c45de3c
[ "MIT" ]
4
2019-07-05T02:03:02.000Z
2022-01-21T22:12:16.000Z
# -*- coding: utf-8 -*- # """*********************************************************************************************""" # FileName [ classifiers.py ] # Synopsis [ 'Naive Bayes' and 'Decision Tree' training, testing, and tunning functions ] # Author [ Ting-Wei Liu (Andi611) ] # Copyright [ Copyleft(c), NTUEE, NTU, Taiwan ] """*********************************************************************************************""" ############### # IMPORTATION # ############### import numpy as np from sklearn.naive_bayes import GaussianNB from sklearn.naive_bayes import MultinomialNB from sklearn.naive_bayes import ComplementNB from sklearn.naive_bayes import BernoulliNB from sklearn.model_selection import cross_val_score from sklearn import metrics from sklearn import tree ############ # CONSTANT # ############ N_FOLD = 10 DEPTHS = np.arange(1, 64) ALPHAS = np.arange(0.001, 1.0, 0.001) ALPHAS_MUSHROOM = np.arange(0.0001, 1.0, 0.0001) BEST_DISTRIBUTION = 'Multinominal' ############### # NAIVE BAYES # ############### class naive_bayes_runner(object): def __init__(self, MODEL, train_x, train_y, test_x, test_y): #---data---# self.train_x = train_x self.train_y = train_y self.test_x = test_x self.test_y = test_y #---model---# self.cross_validate = False self.MODEL = MODEL if self.MODEL == 'NEWS': self.models = { 'Guassian' : GaussianNB(), 'Multinominal' : MultinomialNB(alpha=0.065), 'Complement' : ComplementNB(alpha=0.136), 'Bernoulli' : BernoulliNB(alpha=0.002) } if self.MODEL == 'MUSHROOM': ALPHAS = ALPHAS_MUSHROOM self.models = { 'Guassian' : GaussianNB(), 'Multinominal' : MultinomialNB(alpha=0.0001), 'Complement' : ComplementNB(alpha=0.0001), 'Bernoulli' : BernoulliNB(alpha=0.0001) } if self.MODEL == 'INCOME': self.cross_validate = True self.models = { 'Guassian' : GaussianNB(), 'Multinominal' : MultinomialNB(alpha=0.959), 'Complement' : ComplementNB(alpha=0.16), 'Bernoulli' : BernoulliNB(alpha=0.001) } def _fit_and_evaluate(self, model): model_fit = model.fit(self.train_x, self.train_y) pred_y = model_fit.predict(self.test_x) acc = metrics.accuracy_score(self.test_y, pred_y) return acc, pred_y def search_alpha(self): try: from tqdm import tqdm except: raise ImportError('Failed to import tqdm, use the following command to install: pip3 install tqdm') for distribution, model in self.models.items(): best_acc = 0.0 best_alpha = 0.001 if distribution != 'Guassian': print('>> [Naive Bayes Runner] Searching for best alpha value, distribution:', distribution) for alpha in tqdm(ALPHAS): model.set_params(alpha=alpha) if self.cross_validate: scores = cross_val_score(model, self.train_x, self.train_y, cv=N_FOLD, scoring='accuracy') acc = scores.mean() else: acc, _ = self._fit_and_evaluate(model) if acc > best_acc: best_acc = acc best_alpha = alpha print('>> [Naive Bayes Runner] '+ distribution + ' - Best Alpha Value:', best_alpha) def run_best_all(self): for distribution, model in self.models.items(): if self.cross_validate: scores = cross_val_score(model, self.train_x, self.train_y, cv=N_FOLD, scoring='accuracy') acc = scores.mean() else: acc, _ = self._fit_and_evaluate(model) print('>> [Naive Bayes Runner] '+ distribution + ' - Accuracy:', acc) def run_best(self): if self.cross_validate: scores = cross_val_score(self.models[BEST_DISTRIBUTION], self.train_x, self.train_y, cv=N_FOLD, scoring='accuracy') acc = scores.mean() model_fit = self.models[BEST_DISTRIBUTION].fit(self.train_x, self.train_y) pred_y = model_fit.predict(self.test_x) else: acc, pred_y = self._fit_and_evaluate(self.models[BEST_DISTRIBUTION]) print('>> [Naive Bayes Runner] '+ BEST_DISTRIBUTION + ' - Accuracy:', acc) return pred_y ################# # DECISION TREE # ################# class decision_tree_runner(object): def __init__(self, MODEL, train_x, train_y, test_x, test_y): #---data---# self.train_x = train_x self.train_y = train_y self.test_x = test_x self.test_y = test_y #---model---# self.cross_validate = False self.MODEL = MODEL if self.MODEL == 'NEWS': self.model = tree.DecisionTreeClassifier(criterion='gini', splitter='random', max_depth=47, random_state=1337) elif self.MODEL == 'MUSHROOM': self.model = tree.DecisionTreeClassifier(criterion='gini', splitter='random', max_depth=7, random_state=1337) elif self.MODEL == 'INCOME': self.cross_validate = True self.model = tree.DecisionTreeClassifier(criterion='entropy', min_impurity_decrease=2e-4, max_depth=15, random_state=1337) def _fit_and_evaluate(self): model_fit = self.model.fit(self.train_x, self.train_y) pred_y = model_fit.predict(self.test_x) acc = metrics.accuracy_score(self.test_y, pred_y) return acc, pred_y def search_max_depth(self): try: from tqdm import tqdm except: raise ImportError('Failed to import tqdm, use the following command to install: $ pip3 install tqdm') best_acc = 0.0 best_depth = 1 print('>> [Naive Bayes Runner] Searching for best max depth value...') for depth in tqdm(DEPTHS): self.model.set_params(max_depth=depth) if self.cross_validate: scores = cross_val_score(self.model, self.train_x, self.train_y, cv=N_FOLD, scoring='accuracy') acc = scores.mean() else: acc, _ = self._fit_and_evaluate() if acc > best_acc: best_acc = acc best_depth = depth print('>> [Decision Tree Runner] - Best Dpeth Value:', best_depth) def visualize(self): try: import graphviz except: raise ImportError('Failed to import graphviz, use the following command to install: $ pip3 install graphviz, and $ sudo apt-get install graphviz') model_fit = self.model.fit(self.train_x, self.train_y) dot_data = tree.export_graphviz(model_fit, out_file=None, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph.format = 'png' graph.render('../image/TREE_' + self.MODEL) print('>> [Decision Tree Runner] - Tree visualization complete.') def run_best(self): if self.cross_validate: scores = cross_val_score(self.model, self.train_x, self.train_y, cv=N_FOLD, scoring='accuracy') acc = scores.mean() model_fit = self.model.fit(self.train_x, self.train_y) pred_y = model_fit.predict(self.test_x) else: acc, pred_y = self._fit_and_evaluate() print('>> [Decision Tree Runner] - Accuracy:', acc) return pred_y
31.915094
149
0.649571
n.model_selection import cross_val_score from sklearn import metrics from sklearn import tree DISTRIBUTION = 'Multinominal' cross_validate = False self.MODEL = MODEL if self.MODEL == 'NEWS': self.models = { 'Guassian' : GaussianNB(), 'Multinominal' : MultinomialNB(alpha=0.065), 'Complement' : ComplementNB(alpha=0.136), 'Bernoulli' : BernoulliNB(alpha=0.002) } if self.MODEL == 'MUSHROOM': ALPHAS = ALPHAS_MUSHROOM self.models = { 'Guassian' : GaussianNB(), 'Multinominal' : MultinomialNB(alpha=0.0001), 'Complement' : ComplementNB(alpha=0.0001), 'Bernoulli' : BernoulliNB(alpha=0.0001) } if self.MODEL == 'INCOME': self.cross_validate = True self.models = { 'Guassian' : GaussianNB(), 'Multinominal' : MultinomialNB(alpha=0.959), 'Complement' : ComplementNB(alpha=0.16), 'Bernoulli' : BernoulliNB(alpha=0.001) } def _fit_and_evaluate(self, model): model_fit = model.fit(self.train_x, self.train_y) pred_y = model_fit.predict(self.test_x) acc = metrics.accuracy_score(self.test_y, pred_y) return acc, pred_y def search_alpha(self): try: from tqdm import tqdm except: raise ImportError('Failed to import tqdm, use the following command to install: pip3 install tqdm') for distribution, model in self.models.items(): best_acc = 0.0 best_alpha = 0.001 if distribution != 'Guassian': print('>> [Naive Bayes Runner] Searching for best alpha value, distribution:', distribution) for alpha in tqdm(ALPHAS): model.set_params(alpha=alpha) if self.cross_validate: scores = cross_val_score(model, self.train_x, self.train_y, cv=N_FOLD, scoring='accuracy') acc = scores.mean() else: acc, _ = self._fit_and_evaluate(model) if acc > best_acc: best_acc = acc best_alpha = alpha print('>> [Naive Bayes Runner] '+ distribution + ' - Best Alpha Value:', best_alpha) def run_best_all(self): for distribution, model in self.models.items(): if self.cross_validate: scores = cross_val_score(model, self.train_x, self.train_y, cv=N_FOLD, scoring='accuracy') acc = scores.mean() else: acc, _ = self._fit_and_evaluate(model) print('>> [Naive Bayes Runner] '+ distribution + ' - Accuracy:', acc) def run_best(self): if self.cross_validate: scores = cross_val_score(self.models[BEST_DISTRIBUTION], self.train_x, self.train_y, cv=N_FOLD, scoring='accuracy') acc = scores.mean() model_fit = self.models[BEST_DISTRIBUTION].fit(self.train_x, self.train_y) pred_y = model_fit.predict(self.test_x) else: acc, pred_y = self._fit_and_evaluate(self.models[BEST_DISTRIBUTION]) print('>> [Naive Bayes Runner] '+ BEST_DISTRIBUTION + ' - Accuracy:', acc) return pred_y L == 'NEWS': self.model = tree.DecisionTreeClassifier(criterion='gini', splitter='random', max_depth=47, random_state=1337) elif self.MODEL == 'MUSHROOM': self.model = tree.DecisionTreeClassifier(criterion='gini', splitter='random', max_depth=7, random_state=1337) elif self.MODEL == 'INCOME': self.cross_validate = True self.model = tree.DecisionTreeClassifier(criterion='entropy', min_impurity_decrease=2e-4, max_depth=15, random_state=1337) def _fit_and_evaluate(self): model_fit = self.model.fit(self.train_x, self.train_y) pred_y = model_fit.predict(self.test_x) acc = metrics.accuracy_score(self.test_y, pred_y) return acc, pred_y def search_max_depth(self): try: from tqdm import tqdm except: raise ImportError('Failed to import tqdm, use the following command to install: $ pip3 install tqdm') best_acc = 0.0 best_depth = 1 print('>> [Naive Bayes Runner] Searching for best max depth value...') for depth in tqdm(DEPTHS): self.model.set_params(max_depth=depth) if self.cross_validate: scores = cross_val_score(self.model, self.train_x, self.train_y, cv=N_FOLD, scoring='accuracy') acc = scores.mean() else: acc, _ = self._fit_and_evaluate() if acc > best_acc: best_acc = acc best_depth = depth print('>> [Decision Tree Runner] - Best Dpeth Value:', best_depth) def visualize(self): try: import graphviz except: raise ImportError('Failed to import graphviz, use the following command to install: $ pip3 install graphviz, and $ sudo apt-get install graphviz') model_fit = self.model.fit(self.train_x, self.train_y) dot_data = tree.export_graphviz(model_fit, out_file=None, filled=True, rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph.format = 'png' graph.render('../image/TREE_' + self.MODEL) print('>> [Decision Tree Runner] - Tree visualization complete.') def run_best(self): if self.cross_validate: scores = cross_val_score(self.model, self.train_x, self.train_y, cv=N_FOLD, scoring='accuracy') acc = scores.mean() model_fit = self.model.fit(self.train_x, self.train_y) pred_y = model_fit.predict(self.test_x) else: acc, pred_y = self._fit_and_evaluate() print('>> [Decision Tree Runner] - Accuracy:', acc) return pred_y
true
true
f70f7cdaa34aef41cecf2fa32f6c3bc75d3c6636
19
py
Python
xontrib/avox_poetry/__init__.py
jnoortheen/xontrib-avox-poetry
aef6fd087108ec66c53e473d9492ae99c357a00e
[ "MIT" ]
3
2021-02-21T05:46:52.000Z
2021-12-01T16:07:31.000Z
xontrib/avox_poetry/__init__.py
jnoortheen/xontrib-avox-poetry
aef6fd087108ec66c53e473d9492ae99c357a00e
[ "MIT" ]
3
2021-03-03T22:49:35.000Z
2022-03-17T15:40:19.000Z
xontrib/avox_poetry/__init__.py
jnoortheen/xontrib-avox-poetry
aef6fd087108ec66c53e473d9492ae99c357a00e
[ "MIT" ]
1
2022-03-20T18:20:54.000Z
2022-03-20T18:20:54.000Z
from . import venv
9.5
18
0.736842
from . import venv
true
true
f70f7e6d8c477abc39ccd009b82ebc37062afbec
561
py
Python
Curve/Parms.py
olesmith/SmtC
dfae5097f02192b60aae05b9d02404fcfe893be3
[ "CC0-1.0" ]
null
null
null
Curve/Parms.py
olesmith/SmtC
dfae5097f02192b60aae05b9d02404fcfe893be3
[ "CC0-1.0" ]
null
null
null
Curve/Parms.py
olesmith/SmtC
dfae5097f02192b60aae05b9d02404fcfe893be3
[ "CC0-1.0" ]
null
null
null
class Curve_Parms(): def Curve_Parms_Paths(self): return [str(self.a),str(self.b),str(self.c),str(self.NFrames)] def Curve_Parms_Path(self): return "/".join( self.Curve_Parms_Paths() ) def Curve_Parms_FileName(self,cname,fname,ext="svg"): fnames=self.Curve_Parms_Paths() n=fnames.pop() paths=[self.BasePath,self.Name] fnames=[ fname,]+fnames+[ n+"."+ext ] fname="-".join(fnames) paths.append( "-".join(fnames) ) return "/".join(paths)
22.44
71
0.561497
class Curve_Parms(): def Curve_Parms_Paths(self): return [str(self.a),str(self.b),str(self.c),str(self.NFrames)] def Curve_Parms_Path(self): return "/".join( self.Curve_Parms_Paths() ) def Curve_Parms_FileName(self,cname,fname,ext="svg"): fnames=self.Curve_Parms_Paths() n=fnames.pop() paths=[self.BasePath,self.Name] fnames=[ fname,]+fnames+[ n+"."+ext ] fname="-".join(fnames) paths.append( "-".join(fnames) ) return "/".join(paths)
true
true
f70f7e730fa4c4fa5d6d670b19ebb19549c82ecc
79,847
py
Python
src/opserver/test/test_analytics_uve.py
codilime/contrail-controller-arch
e87a974950fc1bbdc2b834212dbdfee5e94008de
[ "Apache-2.0" ]
null
null
null
src/opserver/test/test_analytics_uve.py
codilime/contrail-controller-arch
e87a974950fc1bbdc2b834212dbdfee5e94008de
[ "Apache-2.0" ]
null
null
null
src/opserver/test/test_analytics_uve.py
codilime/contrail-controller-arch
e87a974950fc1bbdc2b834212dbdfee5e94008de
[ "Apache-2.0" ]
1
2020-07-04T12:08:02.000Z
2020-07-04T12:08:02.000Z
#!/usr/bin/env python # # Copyright (c) 2013 Juniper Networks, Inc. All rights reserved. # # # analytics_uvetest.py # # UVE and Alarm tests # import os import sys import threading threading._DummyThread._Thread__stop = lambda x: 42 import signal import gevent from gevent import monkey monkey.patch_all() import unittest import testtools import fixtures import socket from utils.util import obj_to_dict, find_buildroot from utils.analytics_fixture import AnalyticsFixture from utils.generator_fixture import GeneratorFixture from mockredis import mockredis from mockzoo import mockzoo import logging import time from opserver.sandesh.viz.constants import * from opserver.sandesh.viz.constants import _OBJECT_TABLES from sandesh_common.vns.ttypes import Module from sandesh_common.vns.constants import ModuleNames import platform logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') builddir = find_buildroot(os.getcwd()) class AnalyticsUveTest(testtools.TestCase, fixtures.TestWithFixtures): @classmethod def setUpClass(cls): if (os.getenv('LD_LIBRARY_PATH', '').find('build/lib') < 0): if (os.getenv('DYLD_LIBRARY_PATH', '').find('build/lib') < 0): assert(False) cls.redis_port = AnalyticsUveTest.get_free_port() mockredis.start_redis(cls.redis_port) @classmethod def tearDownClass(cls): mockredis.stop_redis(cls.redis_port) #@unittest.skip('Skipping non-cassandra test with vizd') def test_00_nocassandra(self): ''' This test starts redis,vizd,opserver and qed Then it checks that the collector UVE (via redis) can be accessed from opserver. ''' logging.info("%%% test_00_nocassandra %%%") vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, self.__class__.redis_port, 0)) assert vizd_obj.verify_on_setup() return True # end test_00_nocassandra #@unittest.skip('Skipping VM UVE test') def test_01_vm_uve(self): ''' This test starts redis, vizd, opserver, qed, and a python generator that simulates vrouter and sends UveVirtualMachineAgentTrace messages. Then it checks that the VM UVE (via redis) can be accessed from opserver. ''' logging.info("%%% test_01_vm_uve %%%") vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, self.__class__.redis_port, 0)) assert vizd_obj.verify_on_setup() collectors = [vizd_obj.get_collector()] generator_obj = self.useFixture( GeneratorFixture("contrail-vrouter-agent", collectors, logging, vizd_obj.get_opserver_port())) assert generator_obj.verify_on_setup() generator_obj.send_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) assert generator_obj.verify_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) # Delete the VM UVE and verify that the deleted flag is set # in the UVE cache generator_obj.delete_vm_uve('abcd') assert generator_obj.verify_vm_uve_cache(vm_id='abcd', delete=True) # Add the VM UVE with the same vm_id and verify that the deleted flag # is cleared in the UVE cache generator_obj.send_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) assert generator_obj.verify_vm_uve_cache(vm_id='abcd') assert generator_obj.verify_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) # Generate VM with vm_id containing XML control character generator_obj.send_vm_uve(vm_id='<abcd&>', num_vm_ifs=2, msg_count=2) assert generator_obj.verify_vm_uve(vm_id='<abcd&>', num_vm_ifs=2, msg_count=2) return True # end test_01_vm_uve #@unittest.skip('Skipping VM UVE test') def test_02_vm_uve_with_password(self): ''' This test starts redis, vizd, opserver, qed, and a python generator that simulates vrouter and sends UveVirtualMachineAgentTrace messages. Then it checks that the VM UVE (via redis) can be accessed from opserver. ''' logging.info("%%% test_02_vm_uve_with_password %%%") vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, redis_password='contrail')) assert vizd_obj.verify_on_setup() collectors = [vizd_obj.get_collector()] generator_obj = self.useFixture( GeneratorFixture("contrail-vrouter-agent", collectors, logging, vizd_obj.get_opserver_port())) assert generator_obj.verify_on_setup() generator_obj.send_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) assert generator_obj.verify_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) return True # end test_02_vm_uve_with_password #@unittest.skip('verify redis-uve restart') def test_03_redis_uve_restart(self): logging.info('%%% test_03_redis_uve_restart %%%') vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, start_kafka = True)) assert vizd_obj.verify_on_setup() collectors = [vizd_obj.get_collector()] alarm_gen1 = self.useFixture( GeneratorFixture('vrouter-agent', collectors, logging, None, hostname=socket.gethostname())) alarm_gen1.verify_on_setup() # send vrouter UVE without build_info !!! # check for PartialSysinfo alarm alarm_gen1.send_vrouterinfo("myvrouter1") assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute")) self.verify_uve_resync(vizd_obj) # Alarm should return after redis restart assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute")) # should there be a return True here? # end test_03_redis_uve_restart #@unittest.skip('verify redis-uve restart') def test_04_redis_uve_restart_with_password(self): logging.info('%%% test_03_redis_uve_restart_with_password %%%') vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, redis_password='contrail')) self.verify_uve_resync(vizd_obj) return True # end test_04_redis_uve_restart def verify_uve_resync(self, vizd_obj): assert vizd_obj.verify_on_setup() assert vizd_obj.verify_collector_redis_uve_connection( vizd_obj.collectors[0]) assert vizd_obj.verify_opserver_redis_uve_connection( vizd_obj.opserver) # verify redis-uve list host = socket.gethostname() gen_list = [host+':Analytics:contrail-collector:0', host+':Analytics:contrail-query-engine:0', host+':Analytics:contrail-analytics-api:0'] assert vizd_obj.verify_generator_uve_list(gen_list) # stop redis-uve vizd_obj.redis_uves[0].stop() assert vizd_obj.verify_collector_redis_uve_connection( vizd_obj.collectors[0], False) assert vizd_obj.verify_opserver_redis_uve_connection( vizd_obj.opserver, False) # start redis-uve and verify that contrail-collector and Opserver are # connected to the redis-uve vizd_obj.redis_uves[0].start() assert vizd_obj.verify_collector_redis_uve_connection( vizd_obj.collectors[0]) assert vizd_obj.verify_opserver_redis_uve_connection( vizd_obj.opserver) # verify that UVEs are resynced with redis-uve assert vizd_obj.verify_generator_uve_list(gen_list) #@unittest.skip('Skipping contrail-collector HA test') def test_05_collector_ha(self): logging.info('%%% test_05_collector_ha %%%') vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, collector_ha_test=True)) assert vizd_obj.verify_on_setup() # OpServer, AlarmGen and QE are started with collectors[0] as # primary and collectors[1] as secondary exp_genlist = ['contrail-collector', 'contrail-analytics-api', 'contrail-query-engine'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[0], exp_genlist) # start the contrail-vrouter-agent with collectors[1] as primary and # collectors[0] as secondary collectors = [vizd_obj.collectors[1].get_addr(), vizd_obj.collectors[0].get_addr()] vr_agent = self.useFixture( GeneratorFixture("contrail-vrouter-agent", collectors, logging, vizd_obj.get_opserver_port())) assert vr_agent.verify_on_setup() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[1], exp_genlist) # stop collectors[0] and verify that OpServer, AlarmGen and QE switch # from primary to secondary collector vizd_obj.collectors[0].stop() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent', 'contrail-analytics-api', 'contrail-query-engine'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[1], exp_genlist) # start collectors[0] vizd_obj.collectors[0].start() exp_genlist = ['contrail-collector'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[0], exp_genlist) # verify that the old UVEs are flushed from redis when collector restarts exp_genlist = [vizd_obj.collectors[0].get_generator_id()] assert vizd_obj.verify_generator_list_in_redis(\ vizd_obj.collectors[0].get_redis_uve(), exp_genlist) # stop collectors[1] and verify that OpServer, AlarmGen and QE switch # from secondary to primary and contrail-vrouter-agent from primary to # secondary vizd_obj.collectors[1].stop() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent', 'contrail-analytics-api', 'contrail-query-engine'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[0], exp_genlist) # verify the generator list in redis exp_genlist = [vizd_obj.collectors[0].get_generator_id(), vr_agent.get_generator_id(), vizd_obj.opserver.get_generator_id(), vizd_obj.query_engine.get_generator_id()] assert vizd_obj.verify_generator_list_in_redis(\ vizd_obj.collectors[0].get_redis_uve(), exp_genlist) # stop QE vizd_obj.query_engine.stop() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent', 'contrail-analytics-api'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[0], exp_genlist) # verify the generator list in redis exp_genlist = [vizd_obj.collectors[0].get_generator_id(), vizd_obj.opserver.get_generator_id(), vr_agent.get_generator_id()] assert vizd_obj.verify_generator_list_in_redis(\ vizd_obj.collectors[0].get_redis_uve(), exp_genlist) # start a python generator and QE with collectors[1] as the primary and # collectors[0] as the secondary. On generator startup, verify # that they connect to the secondary collector, if the # connection to the primary fails vr2_collectors = [vizd_obj.collectors[1].get_addr(), vizd_obj.collectors[0].get_addr()] vr2_agent = self.useFixture( GeneratorFixture("contrail-snmp-collector", collectors, logging, vizd_obj.get_opserver_port())) assert vr2_agent.verify_on_setup() vizd_obj.query_engine.set_primary_collector( vizd_obj.collectors[1].get_addr()) vizd_obj.query_engine.set_secondary_collector( vizd_obj.collectors[0].get_addr()) vizd_obj.query_engine.start() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent', 'contrail-analytics-api', 'contrail-snmp-collector', 'contrail-query-engine'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[0], exp_genlist) # stop the collectors[0] - both collectors[0] and collectors[1] are down # send the VM UVE and verify that the VM UVE is synced after connection # to the collector vizd_obj.collectors[0].stop() # Make sure the connection to the collector is teared down before # sending the VM UVE while True: if vr_agent.verify_on_setup() is False: break vr_agent.send_vm_uve(vm_id='abcd-1234-efgh-5678', num_vm_ifs=5, msg_count=5) vizd_obj.collectors[1].start() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent', 'contrail-analytics-api', 'contrail-snmp-collector', 'contrail-query-engine'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[1], exp_genlist) assert vr_agent.verify_vm_uve(vm_id='abcd-1234-efgh-5678', num_vm_ifs=5, msg_count=5) # end test_05_collector_ha #@unittest.skip('Skipping AlarmGen basic test') def test_06_alarmgen_basic(self): ''' This test starts the analytics processes. It enables partition 0 on alarmgen, and confirms that it got enabled ''' logging.info("%%% test_06_alarmgen_basic %%%") if AnalyticsUveTest._check_skip_kafka() is True: return True vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, self.__class__.redis_port, 0, start_kafka = True)) assert vizd_obj.verify_on_setup() assert(vizd_obj.verify_uvetable_alarm("ObjectCollectorInfo", "ObjectCollectorInfo:" + socket.gethostname(), "process-status")) # setup generator for sending Vrouter build_info collector = vizd_obj.collectors[0].get_addr() alarm_gen1 = self.useFixture( GeneratorFixture('vrouter-agent', [collector], logging, None, hostname=socket.gethostname())) alarm_gen1.verify_on_setup() # send vrouter UVE without build_info !!! # check for PartialSysinfo alarm alarm_gen1.send_vrouterinfo("myvrouter1") assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute", rules=[{"and_list": [{ "condition": { "operation": "==", "operand1": "ObjectVRouter.build_info", "operand2": { "json_value": "null" } }, "match": [{"json_operand1_value": "null"}] }]}] )) # Now try to clear the alarm by sending build_info alarm_gen1.send_vrouterinfo("myvrouter1", b_info = True) assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute", is_set = False)) # send vrouter UVE without build_info !!! # check for PartialSysinfo alarm alarm_gen1.send_vrouterinfo("myvrouter1", deleted = True) alarm_gen1.send_vrouterinfo("myvrouter1") assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute")) # Now try to clear the alarm by deleting the UVE alarm_gen1.send_vrouterinfo("myvrouter1", deleted = True) assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute", is_set = False)) alarm_gen2 = self.useFixture( GeneratorFixture('vrouter-agent', [collector], logging, None, hostname=socket.gethostname(), inst = "1")) alarm_gen2.verify_on_setup() # send vrouter UVE without build_info !!! # check for PartialSysinfo alarm alarm_gen2.send_vrouterinfo("myvrouter2") assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter2", "partial-sysinfo-compute")) # Now try to clear the alarm by disconnecting the generator alarm_gen2._sandesh_instance._client._connection.set_admin_state(\ down=True) assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter2", "partial-sysinfo-compute", is_set = False)) # send vrouter UVE of myvrouter without build_info again !!! # check for PartialSysinfo alarm alarm_gen1.send_vrouterinfo("myvrouter1") assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute")) # Verify that we can give up partition ownership assert(vizd_obj.set_alarmgen_partition(0,0) == 'true') assert(vizd_obj.verify_alarmgen_partition(0,'false')) # Give up the other partitions assert(vizd_obj.set_alarmgen_partition(1,0) == 'true') assert(vizd_obj.set_alarmgen_partition(2,0) == 'true') assert(vizd_obj.set_alarmgen_partition(3,0) == 'true') # Confirm that alarms are all gone assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", None, None)) # Get the partitions again assert(vizd_obj.set_alarmgen_partition(0,1) == 'true') assert(vizd_obj.set_alarmgen_partition(1,1) == 'true') assert(vizd_obj.set_alarmgen_partition(2,1) == 'true') assert(vizd_obj.set_alarmgen_partition(3,1) == 'true') assert(vizd_obj.verify_alarmgen_partition(0,'true')) # The PartialSysinfo alarm om myvrouter should return assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute")) return True # end test_06_alarmgen_basic #@unittest.skip('Skipping Alarm test') def test_07_alarm(self): ''' This test starts redis, collectors, analytics-api and python generators that simulates alarm generator. This test sends alarms from alarm generators and verifies the retrieval of alarms from analytics-api. ''' logging.info('%%% test_07_alarm %%%') if AnalyticsUveTest._check_skip_kafka() is True: return True # collector_ha_test flag is set to True, because we wanna test # retrieval of alarms across multiple redis servers. vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, collector_ha_test=True, start_kafka = True)) assert vizd_obj.verify_on_setup() # create alarm-generator and attach it to the first collector. collectors = [vizd_obj.collectors[0].get_addr(), vizd_obj.collectors[1].get_addr()] alarm_gen1 = self.useFixture( GeneratorFixture('contrail-alarm-gen', [collectors[0]], logging, None, hostname=socket.gethostname()+'_1')) alarm_gen1.verify_on_setup() # send process state alarm for analytics-node alarms = alarm_gen1.create_process_state_alarm( 'contrail-query-engine') alarm_gen1.send_alarm(socket.gethostname()+'_1', alarms, COLLECTOR_INFO_TABLE) analytics_tbl = _OBJECT_TABLES[COLLECTOR_INFO_TABLE].log_query_name # send proces state alarm for control-node alarms = alarm_gen1.create_process_state_alarm('contrail-dns') alarm_gen1.send_alarm('<&'+socket.gethostname()+'_1>', alarms, BGP_ROUTER_TABLE) control_tbl = _OBJECT_TABLES[BGP_ROUTER_TABLE].log_query_name # create another alarm-generator and attach it to the second collector. alarm_gen2 = self.useFixture( GeneratorFixture('contrail-alarm-gen', [collectors[1]], logging, None, hostname=socket.gethostname()+'_2')) alarm_gen2.verify_on_setup() # send process state alarm for analytics-node alarms = alarm_gen2.create_process_state_alarm( 'contrail-topology') alarm_gen2.send_alarm(socket.gethostname()+'_2', alarms, COLLECTOR_INFO_TABLE) keys = [socket.gethostname()+'_1', socket.gethostname()+'_2'] assert(vizd_obj.verify_alarm_list_include(analytics_tbl, expected_alarms=keys)) assert(vizd_obj.verify_alarm(analytics_tbl, keys[0], obj_to_dict( alarm_gen1.alarms[COLLECTOR_INFO_TABLE][keys[0]].data))) assert(vizd_obj.verify_alarm(analytics_tbl, keys[1], obj_to_dict( alarm_gen2.alarms[COLLECTOR_INFO_TABLE][keys[1]].data))) keys = ['<&'+socket.gethostname()+'_1>'] assert(vizd_obj.verify_alarm_list_include(control_tbl, expected_alarms=keys)) assert(vizd_obj.verify_alarm(control_tbl, keys[0], obj_to_dict( alarm_gen1.alarms[BGP_ROUTER_TABLE][keys[0]].data))) # delete analytics-node alarm generated by alarm_gen2 alarm_gen2.delete_alarm(socket.gethostname()+'_2', COLLECTOR_INFO_TABLE) # verify analytics-node alarms keys = [socket.gethostname()+'_1'] assert(vizd_obj.verify_alarm_list_include(analytics_tbl, expected_alarms=keys)) ukeys = [socket.gethostname()+'_2'] assert(vizd_obj.verify_alarm_list_exclude(analytics_tbl, unexpected_alms=ukeys)) assert(vizd_obj.verify_alarm(analytics_tbl, keys[0], obj_to_dict( alarm_gen1.alarms[COLLECTOR_INFO_TABLE][keys[0]].data))) assert(vizd_obj.verify_alarm(analytics_tbl, ukeys[0], {})) # Disconnect alarm_gen1 from Collector and verify that all # alarms generated by alarm_gen1 is removed by the Collector. alarm_gen1.disconnect_from_collector() ukeys = [socket.gethostname()+'_1'] assert(vizd_obj.verify_alarm_list_exclude(analytics_tbl, unexpected_alms=ukeys)) assert(vizd_obj.verify_alarm(analytics_tbl, ukeys[0], {})) ukeys = ['<&'+socket.gethostname()+'_1'] assert(vizd_obj.verify_alarm_list_exclude(control_tbl, unexpected_alms=ukeys)) assert(vizd_obj.verify_alarm(control_tbl, ukeys[0], {})) # update analytics-node alarm in disconnect state alarms = alarm_gen1.create_process_state_alarm( 'contrail-snmp-collector') alarm_gen1.send_alarm(socket.gethostname()+'_1', alarms, COLLECTOR_INFO_TABLE) # Connect alarm_gen1 to Collector and verify that all # alarms generated by alarm_gen1 is synced with Collector. alarm_gen1.connect_to_collector() keys = [socket.gethostname()+'_1'] assert(vizd_obj.verify_alarm_list_include(analytics_tbl, expected_alarms=keys)) assert(vizd_obj.verify_alarm(analytics_tbl, keys[0], obj_to_dict( alarm_gen1.alarms[COLLECTOR_INFO_TABLE][keys[0]].data))) keys = ['<&'+socket.gethostname()+'_1>'] assert(vizd_obj.verify_alarm_list_include(control_tbl, expected_alarms=keys)) assert(vizd_obj.verify_alarm(control_tbl, keys[0], obj_to_dict( alarm_gen1.alarms[BGP_ROUTER_TABLE][keys[0]].data))) # end test_07_alarm #@unittest.skip('Skipping UVE/Alarm Filter test') def test_08_uve_alarm_filter(self): ''' This test verifies the filter options kfilt, sfilt, mfilt and cfilt in the UVE/Alarm GET and POST methods. ''' logging.info('%%% test_08_uve_alarm_filter %%%') if AnalyticsUveTest._check_skip_kafka() is True: return True vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, collector_ha_test=True, start_kafka = True)) assert vizd_obj.verify_on_setup() collectors = [vizd_obj.collectors[0].get_addr(), vizd_obj.collectors[1].get_addr()] api_server_name = socket.gethostname()+'_1' api_server = self.useFixture( GeneratorFixture('contrail-api', [collectors[0]], logging, None, node_type='Config', hostname=api_server_name)) vr_agent_name = socket.gethostname()+'_2' vr_agent = self.useFixture( GeneratorFixture('contrail-vrouter-agent', [collectors[1]], logging, None, node_type='Compute', hostname=vr_agent_name)) alarm_gen1_name = socket.gethostname()+'_1' alarm_gen1 = self.useFixture( GeneratorFixture('contrail-alarm-gen', [collectors[0]], logging, None, node_type='Analytics', hostname=alarm_gen1_name)) alarm_gen2_name = socket.gethostname()+'_3' alarm_gen2 = self.useFixture( GeneratorFixture('contrail-alarm-gen', [collectors[1]], logging, None, node_type='Analytics', hostname=alarm_gen2_name)) api_server.verify_on_setup() vr_agent.verify_on_setup() alarm_gen1.verify_on_setup() alarm_gen2.verify_on_setup() vn_list = ['default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&'] # generate UVEs for the filter test api_server.send_vn_config_uve(name=vn_list[0], partial_conn_nw=[vn_list[1]], num_acl_rules=2) api_server.send_vn_config_uve(name=vn_list[1], num_acl_rules=3) vr_agent.send_vn_agent_uve(name=vn_list[1], num_acl_rules=3, ipkts=2, ibytes=1024) vr_agent.send_vn_agent_uve(name=vn_list[2], ipkts=4, ibytes=128) vr_agent.send_vn_agent_uve(name=vn_list[3], ipkts=8, ibytes=256) # generate Alarms for the filter test alarms = alarm_gen1.create_alarm('InPktsThreshold') alarms += alarm_gen1.create_alarm('InBytesThreshold', ack=True) alarm_gen1.send_alarm(vn_list[1], alarms, VN_TABLE) alarms = alarm_gen2.create_alarm('ConfigNotPresent', ack=False) alarm_gen2.send_alarm(vn_list[2], alarms, VN_TABLE) alarms = alarm_gen2.create_alarm('ConfigNotPresent', ack=False) alarm_gen2.send_alarm(vn_list[3], alarms, VN_TABLE) filt_test = [ # no filter { 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'get_alarms': { 'virtual-network': [ { 'name' : 'default-domain:project1:vn2', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name' : 'default-domain:project2:vn1', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name' : 'default-domain:project2:vn1&', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, ] }, 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, # kfilt { 'kfilt': ['*'], 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': ['default-domain:project1:*', 'default-domain:project2:*'], 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': ['default-domain:project1:vn1', 'default-domain:project2:*'], 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': [ 'default-domain:project2:*', 'invalid-vn:*' ], 'get_alarms': { 'virtual-network': [ { 'name' : 'default-domain:project2:vn1', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name' : 'default-domain:project2:vn1&', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, ] }, 'uve_list_get': [ 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1&', 'invalid-vn' ], 'uve_list_get': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': ['invalid-vn'], 'uve_list_get': [], 'uve_get_post': {'value': []}, }, # sfilt { 'sfilt': socket.gethostname()+'_1', 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } } ] }, }, { 'sfilt': socket.gethostname()+'_3', 'uve_list_get': [ 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project2:vn1', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'sfilt': 'invalid_source', 'uve_list_get': [], 'uve_get_post': {'value': []}, }, # mfilt { 'mfilt': 'Config:contrail-api:0', 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 } } } ] }, }, { 'mfilt': 'Analytics:contrail-alarm-gen:0', 'uve_list_get': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'mfilt': 'Analytics:contrail-invalid:0', 'uve_list_get': [], 'uve_get_post': {'value': []}, }, # cfilt { 'cfilt': ['UveVirtualNetworkAgent'], 'uve_list_get': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 } } } ] }, }, { 'cfilt': [ 'UveVirtualNetworkAgent:total_acl_rules', 'UveVirtualNetworkConfig:partially_connected_networks' ], 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ] } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'total_acl_rules': 3 } } } ] }, }, { 'cfilt': [ 'UveVirtualNetworkConfig:invalid', 'UveVirtualNetworkAgent:in_tpkts', 'UVEAlarms:alarms' ], 'uve_list_get': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'cfilt': [ 'UveVirtualNetworkAgent:invalid', 'UVEAlarms:invalid_alarms', 'invalid' ], 'uve_list_get': [], 'uve_get_post': {'value': []}, }, # ackfilt { 'ackfilt': True, 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, } } ] }, }, { 'ackfilt': False, 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'get_alarms': { 'virtual-network': [ { 'name' : 'default-domain:project1:vn2', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, ] } } }, { 'name' : 'default-domain:project2:vn1', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name' : 'default-domain:project2:vn1&', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, ] }, 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, # kfilt + sfilt { 'kfilt': [ 'default-domain:project1:*', 'default-domain:project2:vn1', 'default-domain:invalid' ], 'sfilt': socket.gethostname()+'_2', 'uve_list_get': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 } } } ] }, }, # kfilt + sfilt + ackfilt { 'kfilt': [ 'default-domain:project1:vn1', 'default-domain:project2:*', 'default-domain:invalid' ], 'sfilt': socket.gethostname()+'_2', 'ackfilt': True, 'uve_list_get': [ 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 } } } ] }, }, # kfilt + sfilt + cfilt { 'kfilt': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1' ], 'sfilt': socket.gethostname()+'_1', 'cfilt': [ 'UveVirtualNetworkAgent', 'UVEAlarms', 'UveVirtualNetworkConfig:Invalid' ], 'uve_list_get': [ 'default-domain:project1:vn2' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } } ] }, }, # kfilt + mfilt + cfilt { 'kfilt': ['*'], 'mfilt': 'Config:contrail-api:0', 'cfilt': [ 'UveVirtualNetworkAgent', 'UVEAlarms:alarms' ], 'uve_list_get': [], 'uve_get_post': {'value': []}, }, # kfilt + sfilt + mfilt + cfilt { 'kfilt': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:*' ], 'sfilt': socket.gethostname()+'_1', 'mfilt': 'Config:contrail-api:0', 'cfilt': [ 'UveVirtualNetworkConfig:partially_connected_networks', 'UveVirtualNetworkConfig:total_acl_rules', 'UVEAlarms' ], 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, } } ] }, }, { 'kfilt': [ 'default-domain:project1:*', 'default-domain:project2:vn1', 'default-domain:project2:invalid' ], 'sfilt': socket.gethostname()+'_3', 'mfilt': 'Analytics:contrail-alarm-gen:0', 'cfilt': [ 'UveVirtualNetworkConfig', 'UVEAlarms:alarms', 'UveVirtualNetworkAgent' ], 'uve_list_get': [ 'default-domain:project2:vn1' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project2:vn1', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, # kfilt + sfilt + mfilt + cfilt + ackfilt { 'kfilt': [ 'default-domain:project1:*', 'default-domain:project2:vn1&', 'default-domain:project2:invalid' ], 'sfilt': socket.gethostname()+'_3', 'mfilt': 'Analytics:contrail-alarm-gen:0', 'cfilt': [ 'UveVirtualNetworkConfig', 'UVEAlarms:alarms', 'UveVirtualNetworkAgent' ], 'ackfilt': True, 'uve_list_get': [ 'default-domain:project2:vn1&' ], 'uve_get_post': {'value': []}, } ] vn_table = _OBJECT_TABLES[VN_TABLE].log_query_name for i in range(len(filt_test)): filters = dict(kfilt=filt_test[i].get('kfilt'), sfilt=filt_test[i].get('sfilt'), mfilt=filt_test[i].get('mfilt'), cfilt=filt_test[i].get('cfilt'), ackfilt=filt_test[i].get('ackfilt')) assert(vizd_obj.verify_uve_list(vn_table, filts=filters, exp_uve_list=filt_test[i]['uve_list_get'])) assert(vizd_obj.verify_multi_uve_get(vn_table, filts=filters, exp_uves=filt_test[i]['uve_get_post'])) assert(vizd_obj.verify_uve_post(vn_table, filts=filters, exp_uves=filt_test[i]['uve_get_post'])) if 'get_alarms' in filt_test[i]: filters['tablefilt'] = 'virtual-network' assert(vizd_obj.verify_get_alarms(vn_table, filts=filters, exp_uves=filt_test[i]['get_alarms'])) # end test_08_uve_alarm_filter @staticmethod def get_free_port(): cs = socket.socket(socket.AF_INET, socket.SOCK_STREAM) cs.bind(("", 0)) cport = cs.getsockname()[1] cs.close() return cport @staticmethod def _check_skip_kafka(): (PLATFORM, VERSION, EXTRA) = platform.linux_distribution() if PLATFORM.lower() == 'ubuntu': if VERSION.find('12.') == 0: return True if PLATFORM.lower() == 'centos': if VERSION.find('6.') == 0: return True return False def _term_handler(*_): raise IntSignal() if __name__ == '__main__': gevent.signal(signal.SIGINT,_term_handler) unittest.main(catchbreak=True)
42.471809
85
0.36218
import os import sys import threading threading._DummyThread._Thread__stop = lambda x: 42 import signal import gevent from gevent import monkey monkey.patch_all() import unittest import testtools import fixtures import socket from utils.util import obj_to_dict, find_buildroot from utils.analytics_fixture import AnalyticsFixture from utils.generator_fixture import GeneratorFixture from mockredis import mockredis from mockzoo import mockzoo import logging import time from opserver.sandesh.viz.constants import * from opserver.sandesh.viz.constants import _OBJECT_TABLES from sandesh_common.vns.ttypes import Module from sandesh_common.vns.constants import ModuleNames import platform logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') builddir = find_buildroot(os.getcwd()) class AnalyticsUveTest(testtools.TestCase, fixtures.TestWithFixtures): @classmethod def setUpClass(cls): if (os.getenv('LD_LIBRARY_PATH', '').find('build/lib') < 0): if (os.getenv('DYLD_LIBRARY_PATH', '').find('build/lib') < 0): assert(False) cls.redis_port = AnalyticsUveTest.get_free_port() mockredis.start_redis(cls.redis_port) @classmethod def tearDownClass(cls): mockredis.stop_redis(cls.redis_port) def test_00_nocassandra(self): logging.info("%%% test_00_nocassandra %%%") vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, self.__class__.redis_port, 0)) assert vizd_obj.verify_on_setup() return True def test_01_vm_uve(self): logging.info("%%% test_01_vm_uve %%%") vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, self.__class__.redis_port, 0)) assert vizd_obj.verify_on_setup() collectors = [vizd_obj.get_collector()] generator_obj = self.useFixture( GeneratorFixture("contrail-vrouter-agent", collectors, logging, vizd_obj.get_opserver_port())) assert generator_obj.verify_on_setup() generator_obj.send_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) assert generator_obj.verify_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) generator_obj.delete_vm_uve('abcd') assert generator_obj.verify_vm_uve_cache(vm_id='abcd', delete=True) generator_obj.send_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) assert generator_obj.verify_vm_uve_cache(vm_id='abcd') assert generator_obj.verify_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) generator_obj.send_vm_uve(vm_id='<abcd&>', num_vm_ifs=2, msg_count=2) assert generator_obj.verify_vm_uve(vm_id='<abcd&>', num_vm_ifs=2, msg_count=2) return True def test_02_vm_uve_with_password(self): logging.info("%%% test_02_vm_uve_with_password %%%") vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, redis_password='contrail')) assert vizd_obj.verify_on_setup() collectors = [vizd_obj.get_collector()] generator_obj = self.useFixture( GeneratorFixture("contrail-vrouter-agent", collectors, logging, vizd_obj.get_opserver_port())) assert generator_obj.verify_on_setup() generator_obj.send_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) assert generator_obj.verify_vm_uve(vm_id='abcd', num_vm_ifs=5, msg_count=5) return True def test_03_redis_uve_restart(self): logging.info('%%% test_03_redis_uve_restart %%%') vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, start_kafka = True)) assert vizd_obj.verify_on_setup() collectors = [vizd_obj.get_collector()] alarm_gen1 = self.useFixture( GeneratorFixture('vrouter-agent', collectors, logging, None, hostname=socket.gethostname())) alarm_gen1.verify_on_setup() alarm_gen1.send_vrouterinfo("myvrouter1") assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute")) self.verify_uve_resync(vizd_obj) assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute")) def test_04_redis_uve_restart_with_password(self): logging.info('%%% test_03_redis_uve_restart_with_password %%%') vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, redis_password='contrail')) self.verify_uve_resync(vizd_obj) return True def verify_uve_resync(self, vizd_obj): assert vizd_obj.verify_on_setup() assert vizd_obj.verify_collector_redis_uve_connection( vizd_obj.collectors[0]) assert vizd_obj.verify_opserver_redis_uve_connection( vizd_obj.opserver) host = socket.gethostname() gen_list = [host+':Analytics:contrail-collector:0', host+':Analytics:contrail-query-engine:0', host+':Analytics:contrail-analytics-api:0'] assert vizd_obj.verify_generator_uve_list(gen_list) vizd_obj.redis_uves[0].stop() assert vizd_obj.verify_collector_redis_uve_connection( vizd_obj.collectors[0], False) assert vizd_obj.verify_opserver_redis_uve_connection( vizd_obj.opserver, False) vizd_obj.redis_uves[0].start() assert vizd_obj.verify_collector_redis_uve_connection( vizd_obj.collectors[0]) assert vizd_obj.verify_opserver_redis_uve_connection( vizd_obj.opserver) assert vizd_obj.verify_generator_uve_list(gen_list) def test_05_collector_ha(self): logging.info('%%% test_05_collector_ha %%%') vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, collector_ha_test=True)) assert vizd_obj.verify_on_setup() exp_genlist = ['contrail-collector', 'contrail-analytics-api', 'contrail-query-engine'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[0], exp_genlist) collectors = [vizd_obj.collectors[1].get_addr(), vizd_obj.collectors[0].get_addr()] vr_agent = self.useFixture( GeneratorFixture("contrail-vrouter-agent", collectors, logging, vizd_obj.get_opserver_port())) assert vr_agent.verify_on_setup() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[1], exp_genlist) vizd_obj.collectors[0].stop() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent', 'contrail-analytics-api', 'contrail-query-engine'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[1], exp_genlist) vizd_obj.collectors[0].start() exp_genlist = ['contrail-collector'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[0], exp_genlist) exp_genlist = [vizd_obj.collectors[0].get_generator_id()] assert vizd_obj.verify_generator_list_in_redis(\ vizd_obj.collectors[0].get_redis_uve(), exp_genlist) vizd_obj.collectors[1].stop() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent', 'contrail-analytics-api', 'contrail-query-engine'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[0], exp_genlist) exp_genlist = [vizd_obj.collectors[0].get_generator_id(), vr_agent.get_generator_id(), vizd_obj.opserver.get_generator_id(), vizd_obj.query_engine.get_generator_id()] assert vizd_obj.verify_generator_list_in_redis(\ vizd_obj.collectors[0].get_redis_uve(), exp_genlist) vizd_obj.query_engine.stop() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent', 'contrail-analytics-api'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[0], exp_genlist) exp_genlist = [vizd_obj.collectors[0].get_generator_id(), vizd_obj.opserver.get_generator_id(), vr_agent.get_generator_id()] assert vizd_obj.verify_generator_list_in_redis(\ vizd_obj.collectors[0].get_redis_uve(), exp_genlist) vr2_collectors = [vizd_obj.collectors[1].get_addr(), vizd_obj.collectors[0].get_addr()] vr2_agent = self.useFixture( GeneratorFixture("contrail-snmp-collector", collectors, logging, vizd_obj.get_opserver_port())) assert vr2_agent.verify_on_setup() vizd_obj.query_engine.set_primary_collector( vizd_obj.collectors[1].get_addr()) vizd_obj.query_engine.set_secondary_collector( vizd_obj.collectors[0].get_addr()) vizd_obj.query_engine.start() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent', 'contrail-analytics-api', 'contrail-snmp-collector', 'contrail-query-engine'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[0], exp_genlist) vizd_obj.collectors[0].stop() while True: if vr_agent.verify_on_setup() is False: break vr_agent.send_vm_uve(vm_id='abcd-1234-efgh-5678', num_vm_ifs=5, msg_count=5) vizd_obj.collectors[1].start() exp_genlist = ['contrail-collector', 'contrail-vrouter-agent', 'contrail-analytics-api', 'contrail-snmp-collector', 'contrail-query-engine'] assert vizd_obj.verify_generator_list(vizd_obj.collectors[1], exp_genlist) assert vr_agent.verify_vm_uve(vm_id='abcd-1234-efgh-5678', num_vm_ifs=5, msg_count=5) def test_06_alarmgen_basic(self): logging.info("%%% test_06_alarmgen_basic %%%") if AnalyticsUveTest._check_skip_kafka() is True: return True vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, self.__class__.redis_port, 0, start_kafka = True)) assert vizd_obj.verify_on_setup() assert(vizd_obj.verify_uvetable_alarm("ObjectCollectorInfo", "ObjectCollectorInfo:" + socket.gethostname(), "process-status")) collector = vizd_obj.collectors[0].get_addr() alarm_gen1 = self.useFixture( GeneratorFixture('vrouter-agent', [collector], logging, None, hostname=socket.gethostname())) alarm_gen1.verify_on_setup() alarm_gen1.send_vrouterinfo("myvrouter1") assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute", rules=[{"and_list": [{ "condition": { "operation": "==", "operand1": "ObjectVRouter.build_info", "operand2": { "json_value": "null" } }, "match": [{"json_operand1_value": "null"}] }]}] )) alarm_gen1.send_vrouterinfo("myvrouter1", b_info = True) assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute", is_set = False)) alarm_gen1.send_vrouterinfo("myvrouter1", deleted = True) alarm_gen1.send_vrouterinfo("myvrouter1") assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute")) alarm_gen1.send_vrouterinfo("myvrouter1", deleted = True) assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute", is_set = False)) alarm_gen2 = self.useFixture( GeneratorFixture('vrouter-agent', [collector], logging, None, hostname=socket.gethostname(), inst = "1")) alarm_gen2.verify_on_setup() alarm_gen2.send_vrouterinfo("myvrouter2") assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter2", "partial-sysinfo-compute")) alarm_gen2._sandesh_instance._client._connection.set_admin_state(\ down=True) assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter2", "partial-sysinfo-compute", is_set = False)) alarm_gen1.send_vrouterinfo("myvrouter1") assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute")) assert(vizd_obj.set_alarmgen_partition(0,0) == 'true') assert(vizd_obj.verify_alarmgen_partition(0,'false')) assert(vizd_obj.set_alarmgen_partition(1,0) == 'true') assert(vizd_obj.set_alarmgen_partition(2,0) == 'true') assert(vizd_obj.set_alarmgen_partition(3,0) == 'true') assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", None, None)) assert(vizd_obj.set_alarmgen_partition(0,1) == 'true') assert(vizd_obj.set_alarmgen_partition(1,1) == 'true') assert(vizd_obj.set_alarmgen_partition(2,1) == 'true') assert(vizd_obj.set_alarmgen_partition(3,1) == 'true') assert(vizd_obj.verify_alarmgen_partition(0,'true')) assert(vizd_obj.verify_uvetable_alarm("ObjectVRouter", "ObjectVRouter:myvrouter1", "partial-sysinfo-compute")) return True def test_07_alarm(self): logging.info('%%% test_07_alarm %%%') if AnalyticsUveTest._check_skip_kafka() is True: return True vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, collector_ha_test=True, start_kafka = True)) assert vizd_obj.verify_on_setup() collectors = [vizd_obj.collectors[0].get_addr(), vizd_obj.collectors[1].get_addr()] alarm_gen1 = self.useFixture( GeneratorFixture('contrail-alarm-gen', [collectors[0]], logging, None, hostname=socket.gethostname()+'_1')) alarm_gen1.verify_on_setup() alarms = alarm_gen1.create_process_state_alarm( 'contrail-query-engine') alarm_gen1.send_alarm(socket.gethostname()+'_1', alarms, COLLECTOR_INFO_TABLE) analytics_tbl = _OBJECT_TABLES[COLLECTOR_INFO_TABLE].log_query_name alarms = alarm_gen1.create_process_state_alarm('contrail-dns') alarm_gen1.send_alarm('<&'+socket.gethostname()+'_1>', alarms, BGP_ROUTER_TABLE) control_tbl = _OBJECT_TABLES[BGP_ROUTER_TABLE].log_query_name alarm_gen2 = self.useFixture( GeneratorFixture('contrail-alarm-gen', [collectors[1]], logging, None, hostname=socket.gethostname()+'_2')) alarm_gen2.verify_on_setup() alarms = alarm_gen2.create_process_state_alarm( 'contrail-topology') alarm_gen2.send_alarm(socket.gethostname()+'_2', alarms, COLLECTOR_INFO_TABLE) keys = [socket.gethostname()+'_1', socket.gethostname()+'_2'] assert(vizd_obj.verify_alarm_list_include(analytics_tbl, expected_alarms=keys)) assert(vizd_obj.verify_alarm(analytics_tbl, keys[0], obj_to_dict( alarm_gen1.alarms[COLLECTOR_INFO_TABLE][keys[0]].data))) assert(vizd_obj.verify_alarm(analytics_tbl, keys[1], obj_to_dict( alarm_gen2.alarms[COLLECTOR_INFO_TABLE][keys[1]].data))) keys = ['<&'+socket.gethostname()+'_1>'] assert(vizd_obj.verify_alarm_list_include(control_tbl, expected_alarms=keys)) assert(vizd_obj.verify_alarm(control_tbl, keys[0], obj_to_dict( alarm_gen1.alarms[BGP_ROUTER_TABLE][keys[0]].data))) alarm_gen2.delete_alarm(socket.gethostname()+'_2', COLLECTOR_INFO_TABLE) keys = [socket.gethostname()+'_1'] assert(vizd_obj.verify_alarm_list_include(analytics_tbl, expected_alarms=keys)) ukeys = [socket.gethostname()+'_2'] assert(vizd_obj.verify_alarm_list_exclude(analytics_tbl, unexpected_alms=ukeys)) assert(vizd_obj.verify_alarm(analytics_tbl, keys[0], obj_to_dict( alarm_gen1.alarms[COLLECTOR_INFO_TABLE][keys[0]].data))) assert(vizd_obj.verify_alarm(analytics_tbl, ukeys[0], {})) alarm_gen1.disconnect_from_collector() ukeys = [socket.gethostname()+'_1'] assert(vizd_obj.verify_alarm_list_exclude(analytics_tbl, unexpected_alms=ukeys)) assert(vizd_obj.verify_alarm(analytics_tbl, ukeys[0], {})) ukeys = ['<&'+socket.gethostname()+'_1'] assert(vizd_obj.verify_alarm_list_exclude(control_tbl, unexpected_alms=ukeys)) assert(vizd_obj.verify_alarm(control_tbl, ukeys[0], {})) alarms = alarm_gen1.create_process_state_alarm( 'contrail-snmp-collector') alarm_gen1.send_alarm(socket.gethostname()+'_1', alarms, COLLECTOR_INFO_TABLE) alarm_gen1.connect_to_collector() keys = [socket.gethostname()+'_1'] assert(vizd_obj.verify_alarm_list_include(analytics_tbl, expected_alarms=keys)) assert(vizd_obj.verify_alarm(analytics_tbl, keys[0], obj_to_dict( alarm_gen1.alarms[COLLECTOR_INFO_TABLE][keys[0]].data))) keys = ['<&'+socket.gethostname()+'_1>'] assert(vizd_obj.verify_alarm_list_include(control_tbl, expected_alarms=keys)) assert(vizd_obj.verify_alarm(control_tbl, keys[0], obj_to_dict( alarm_gen1.alarms[BGP_ROUTER_TABLE][keys[0]].data))) def test_08_uve_alarm_filter(self): logging.info('%%% test_08_uve_alarm_filter %%%') if AnalyticsUveTest._check_skip_kafka() is True: return True vizd_obj = self.useFixture( AnalyticsFixture(logging, builddir, -1, 0, collector_ha_test=True, start_kafka = True)) assert vizd_obj.verify_on_setup() collectors = [vizd_obj.collectors[0].get_addr(), vizd_obj.collectors[1].get_addr()] api_server_name = socket.gethostname()+'_1' api_server = self.useFixture( GeneratorFixture('contrail-api', [collectors[0]], logging, None, node_type='Config', hostname=api_server_name)) vr_agent_name = socket.gethostname()+'_2' vr_agent = self.useFixture( GeneratorFixture('contrail-vrouter-agent', [collectors[1]], logging, None, node_type='Compute', hostname=vr_agent_name)) alarm_gen1_name = socket.gethostname()+'_1' alarm_gen1 = self.useFixture( GeneratorFixture('contrail-alarm-gen', [collectors[0]], logging, None, node_type='Analytics', hostname=alarm_gen1_name)) alarm_gen2_name = socket.gethostname()+'_3' alarm_gen2 = self.useFixture( GeneratorFixture('contrail-alarm-gen', [collectors[1]], logging, None, node_type='Analytics', hostname=alarm_gen2_name)) api_server.verify_on_setup() vr_agent.verify_on_setup() alarm_gen1.verify_on_setup() alarm_gen2.verify_on_setup() vn_list = ['default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&'] api_server.send_vn_config_uve(name=vn_list[0], partial_conn_nw=[vn_list[1]], num_acl_rules=2) api_server.send_vn_config_uve(name=vn_list[1], num_acl_rules=3) vr_agent.send_vn_agent_uve(name=vn_list[1], num_acl_rules=3, ipkts=2, ibytes=1024) vr_agent.send_vn_agent_uve(name=vn_list[2], ipkts=4, ibytes=128) vr_agent.send_vn_agent_uve(name=vn_list[3], ipkts=8, ibytes=256) alarms = alarm_gen1.create_alarm('InPktsThreshold') alarms += alarm_gen1.create_alarm('InBytesThreshold', ack=True) alarm_gen1.send_alarm(vn_list[1], alarms, VN_TABLE) alarms = alarm_gen2.create_alarm('ConfigNotPresent', ack=False) alarm_gen2.send_alarm(vn_list[2], alarms, VN_TABLE) alarms = alarm_gen2.create_alarm('ConfigNotPresent', ack=False) alarm_gen2.send_alarm(vn_list[3], alarms, VN_TABLE) filt_test = [ { 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'get_alarms': { 'virtual-network': [ { 'name' : 'default-domain:project1:vn2', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name' : 'default-domain:project2:vn1', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name' : 'default-domain:project2:vn1&', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, ] }, 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': ['*'], 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': ['default-domain:project1:*', 'default-domain:project2:*'], 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': ['default-domain:project1:vn1', 'default-domain:project2:*'], 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': [ 'default-domain:project2:*', 'invalid-vn:*' ], 'get_alarms': { 'virtual-network': [ { 'name' : 'default-domain:project2:vn1', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name' : 'default-domain:project2:vn1&', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, ] }, 'uve_list_get': [ 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1&', 'invalid-vn' ], 'uve_list_get': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': ['invalid-vn'], 'uve_list_get': [], 'uve_get_post': {'value': []}, }, { 'sfilt': socket.gethostname()+'_1', 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } } ] }, }, { 'sfilt': socket.gethostname()+'_3', 'uve_list_get': [ 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project2:vn1', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'sfilt': 'invalid_source', 'uve_list_get': [], 'uve_get_post': {'value': []}, }, { 'mfilt': 'Config:contrail-api:0', 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 } } } ] }, }, { 'mfilt': 'Analytics:contrail-alarm-gen:0', 'uve_list_get': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'mfilt': 'Analytics:contrail-invalid:0', 'uve_list_get': [], 'uve_get_post': {'value': []}, }, { 'cfilt': ['UveVirtualNetworkAgent'], 'uve_list_get': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 } } } ] }, }, { 'cfilt': [ 'UveVirtualNetworkAgent:total_acl_rules', 'UveVirtualNetworkConfig:partially_connected_networks' ], 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ] } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'total_acl_rules': 3 } } } ] }, }, { 'cfilt': [ 'UveVirtualNetworkConfig:invalid', 'UveVirtualNetworkAgent:in_tpkts', 'UVEAlarms:alarms' ], 'uve_list_get': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'cfilt': [ 'UveVirtualNetworkAgent:invalid', 'UVEAlarms:invalid_alarms', 'invalid' ], 'uve_list_get': [], 'uve_get_post': {'value': []}, }, { 'ackfilt': True, 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InBytesThreshold', 'ack': True } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, } } ] }, }, { 'ackfilt': False, 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'get_alarms': { 'virtual-network': [ { 'name' : 'default-domain:project1:vn2', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, ] } } }, { 'name' : 'default-domain:project2:vn1', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name' : 'default-domain:project2:vn1&', 'value' : { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, ] }, 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 }, 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', } ] } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 }, 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': [ 'default-domain:project1:*', 'default-domain:project2:vn1', 'default-domain:invalid' ], 'sfilt': socket.gethostname()+'_2', 'uve_list_get': [ 'default-domain:project1:vn2', 'default-domain:project2:vn1' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 2, 'in_bytes': 1024, 'total_acl_rules': 3 } } }, { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 } } } ] }, }, { 'kfilt': [ 'default-domain:project1:vn1', 'default-domain:project2:*', 'default-domain:invalid' ], 'sfilt': socket.gethostname()+'_2', 'ackfilt': True, 'uve_list_get': [ 'default-domain:project2:vn1', 'default-domain:project2:vn1&' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project2:vn1', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 4, 'in_bytes': 128 } } }, { 'name': 'default-domain:project2:vn1&', 'value': { 'UveVirtualNetworkAgent': { 'in_tpkts': 8, 'in_bytes': 256 } } } ] }, }, { 'kfilt': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:vn1' ], 'sfilt': socket.gethostname()+'_1', 'cfilt': [ 'UveVirtualNetworkAgent', 'UVEAlarms', 'UveVirtualNetworkConfig:Invalid' ], 'uve_list_get': [ 'default-domain:project1:vn2' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn2', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'InPktsThreshold', }, { 'type': 'InBytesThreshold', 'ack': True } ] } } } ] }, }, { 'kfilt': ['*'], 'mfilt': 'Config:contrail-api:0', 'cfilt': [ 'UveVirtualNetworkAgent', 'UVEAlarms:alarms' ], 'uve_list_get': [], 'uve_get_post': {'value': []}, }, { 'kfilt': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2', 'default-domain:project2:*' ], 'sfilt': socket.gethostname()+'_1', 'mfilt': 'Config:contrail-api:0', 'cfilt': [ 'UveVirtualNetworkConfig:partially_connected_networks', 'UveVirtualNetworkConfig:total_acl_rules', 'UVEAlarms' ], 'uve_list_get': [ 'default-domain:project1:vn1', 'default-domain:project1:vn2' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project1:vn1', 'value': { 'UveVirtualNetworkConfig': { 'partially_connected_networks': [ 'default-domain:project1:vn2' ], 'total_acl_rules': 2 } } }, { 'name': 'default-domain:project1:vn2', 'value': { 'UveVirtualNetworkConfig': { 'total_acl_rules': 3 }, } } ] }, }, { 'kfilt': [ 'default-domain:project1:*', 'default-domain:project2:vn1', 'default-domain:project2:invalid' ], 'sfilt': socket.gethostname()+'_3', 'mfilt': 'Analytics:contrail-alarm-gen:0', 'cfilt': [ 'UveVirtualNetworkConfig', 'UVEAlarms:alarms', 'UveVirtualNetworkAgent' ], 'uve_list_get': [ 'default-domain:project2:vn1' ], 'uve_get_post': { 'value': [ { 'name': 'default-domain:project2:vn1', 'value': { 'UVEAlarms': { 'alarms': [ { 'type': 'ConfigNotPresent', 'ack': False } ] } } } ] }, }, { 'kfilt': [ 'default-domain:project1:*', 'default-domain:project2:vn1&', 'default-domain:project2:invalid' ], 'sfilt': socket.gethostname()+'_3', 'mfilt': 'Analytics:contrail-alarm-gen:0', 'cfilt': [ 'UveVirtualNetworkConfig', 'UVEAlarms:alarms', 'UveVirtualNetworkAgent' ], 'ackfilt': True, 'uve_list_get': [ 'default-domain:project2:vn1&' ], 'uve_get_post': {'value': []}, } ] vn_table = _OBJECT_TABLES[VN_TABLE].log_query_name for i in range(len(filt_test)): filters = dict(kfilt=filt_test[i].get('kfilt'), sfilt=filt_test[i].get('sfilt'), mfilt=filt_test[i].get('mfilt'), cfilt=filt_test[i].get('cfilt'), ackfilt=filt_test[i].get('ackfilt')) assert(vizd_obj.verify_uve_list(vn_table, filts=filters, exp_uve_list=filt_test[i]['uve_list_get'])) assert(vizd_obj.verify_multi_uve_get(vn_table, filts=filters, exp_uves=filt_test[i]['uve_get_post'])) assert(vizd_obj.verify_uve_post(vn_table, filts=filters, exp_uves=filt_test[i]['uve_get_post'])) if 'get_alarms' in filt_test[i]: filters['tablefilt'] = 'virtual-network' assert(vizd_obj.verify_get_alarms(vn_table, filts=filters, exp_uves=filt_test[i]['get_alarms'])) @staticmethod def get_free_port(): cs = socket.socket(socket.AF_INET, socket.SOCK_STREAM) cs.bind(("", 0)) cport = cs.getsockname()[1] cs.close() return cport @staticmethod def _check_skip_kafka(): (PLATFORM, VERSION, EXTRA) = platform.linux_distribution() if PLATFORM.lower() == 'ubuntu': if VERSION.find('12.') == 0: return True if PLATFORM.lower() == 'centos': if VERSION.find('6.') == 0: return True return False def _term_handler(*_): raise IntSignal() if __name__ == '__main__': gevent.signal(signal.SIGINT,_term_handler) unittest.main(catchbreak=True)
true
true
f70f7f844b3f8ee5ade345d734bba14d2d862c60
8,736
py
Python
PyPowerDNS/api.py
TheDJVG/PyPowerDNS
2e0e47c3bb7a7b20c08ddfa6f0cd93e663d02dc7
[ "MIT" ]
1
2021-04-05T21:40:34.000Z
2021-04-05T21:40:34.000Z
PyPowerDNS/api.py
TheDJVG/PyPowerDNS
2e0e47c3bb7a7b20c08ddfa6f0cd93e663d02dc7
[ "MIT" ]
1
2020-09-21T15:00:44.000Z
2020-09-22T00:38:15.000Z
PyPowerDNS/api.py
TheDJVG/PyPowerDNS
2e0e47c3bb7a7b20c08ddfa6f0cd93e663d02dc7
[ "MIT" ]
null
null
null
from .objects import Server, Zone, RRSet, Record, Comment, Cryptokey, Metadata, SearchResult, StatisticItem, \ MapStatisticItem, RingStatisticItem, SimpleStatisticItem, CacheFlushResult from .exceptions import PDNSApiException, PDNSApiNotFound import json from functools import partial import requests import logging logger = logging.getLogger(__name__) # TODO: # - Logging # - TSIGKeys class APIClient: def __init__(self, api_host, api_key, tls_verify=True, request_timeout=None): self._api_url = api_host if 'api/v1' in api_host else f"{api_host}/api/v1" self._api_key = api_key self._tls_verify = tls_verify self._request_timeout = request_timeout if not self._tls_verify: logger.warning("Disabling TLS certificate validation.") import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) self.request_headers = {'X-API-Key': self._api_key} self.get = partial(self.request, method='GET') self.post = partial(self.request, method='POST') self.put = partial(self.request, method='PUT') self.patch = partial(self.request, method='PATCH') self.delete = partial(self.request, method='DELETE') self.servers = self._set_servers() self.current_server = self.servers[0] self.zones = self._set_zones() def request(self, path: str, method: str, data=None, **kwargs): url = f"{self._api_url}/{path.lstrip('/')}" if data is None: data = {} response = requests.request(method, url, json=data, headers=self.request_headers, timeout=self._request_timeout, verify=self._tls_verify, **kwargs ) try: response.raise_for_status() return response.json() except requests.exceptions.HTTPError as e: if response.status_code == 404: raise (PDNSApiNotFound(e)) from None try: status_message = response.json() status_message = status_message.get('error', status_message.get('errors', 'Unknown error')) except: status_message = response.text raise PDNSApiException(response.status_code, status_message) from None except json.decoder.JSONDecodeError: return response.text def _set_servers(self): new_servers = list() for server in self.get('servers'): new_servers.append(Server(**server)) return new_servers def _set_zones(self): new_zones = list() for zone in self.get(f'servers/{self.current_server.id}/zones'): new_zones.append(Zone(**zone)) return new_zones def create_zone(self, zone: Zone): path = f'servers/{self.current_server.id}/zones' return Zone(**self.post(path, data=zone)) # Zones def get_zone(self, zone_name): path = f'servers/{self.current_server.id}/zones/{zone_name}' zone = Zone(**self.get(path)) new_rrsets = [] for rrset in zone.rrsets: new_comments = [] new_records = [] rrset = RRSet(**rrset) for comment in rrset.comments: new_comments.append(Comment(**comment)) for record in rrset.records: new_records.append(Record(**record)) rrset.comments = new_comments rrset.records = new_records new_rrsets.append(rrset) zone.rrsets = new_rrsets return zone def delete_zone(self, zone_name): path = f'servers/{self.current_server.id}/zones/{zone_name}' self.delete(path) def update_zone_metadata(self, zone: Zone): path = f'servers/{self.current_server.id}/zones/{zone.name}' self.put(path, data=zone) return self.get_zone(zone.name) def patch_rrsets(self, zone: Zone): path = f'servers/{self.current_server.id}/zones/{zone.name}' self.patch(path, data={'rrsets': zone.rrsets}) return self.get_zone(zone.name) def create_records(self, zone: Zone, rrsets: list): for rrset in rrsets: rrset.changetype = 'REPLACE' zone = Zone(name=zone.name, kind=zone.kind, rrsets=rrsets) return self.patch_rrsets(zone) def delete_records(self, zone: Zone, rrsets: list): for rrset in rrsets: rrset.changetype = 'DELETE' zone = Zone(name=zone.name, kind=zone.kind, rrsets=rrsets) return self.patch_rrsets(zone) # Cryptokeys def get_zone_cryptokeys(self, zone: Zone): path = f'servers/{self.current_server.id}/zones/{zone.name}/cryptokeys' cryptkeys_new = [] for cryptokey in self.get(path): cryptkeys_new.append(Cryptokey(**cryptokey)) return cryptkeys_new def create_cryptokey(self, zone: Zone, cryptokey: Cryptokey): path = f'servers/{self.current_server.id}/zones/{zone.name}/cryptokeys' return self.post(path, data=cryptokey) def get_cryptokey(self, zone: Zone, key_id): path = f'servers/{self.current_server.id}/zones/{zone.name}/cryptokeys/{key_id}' return Cryptokey(**self.get(path)) def put_cryptokey(self, zone: Zone, cryptokey: Cryptokey): path = f'servers/{self.current_server.id}/zones/{zone.name}/cryptokeys/{cryptokey.id}' self.put(path, data=cryptokey) # Metadata def get_zone_metadata(self, zone: Zone): path = f'servers/{self.current_server.id}/zones/{zone.name}/metadata' metadata_new = [] for metadata in self.get(path): metadata_new.append(Metadata(**metadata)) return metadata_new def create_metadata(self, zone: Zone, metadata: Metadata): path = f'servers/{self.current_server.id}/zones/{zone.name}/metadata' self.post(path, data=metadata) return self.get_zone_metadata(zone) def get_metadata(self, zone: Zone, metadata_kind): path = f'servers/{self.current_server.id}/zones/{zone.name}/metadata/{metadata_kind}' return Metadata(**self.get(path)) def put_metadata(self, zone: Zone, metadata: Metadata): path = f'servers/{self.current_server.id}/zones/{zone.name}/metadata/{metadata.kind}' return Metadata(**self.put(path, data=metadata)) def delete_metadata(self, zone: Zone, metadata: Metadata): path = f'servers/{self.current_server.id}/zones/{zone.name}/metadata/{metadata.kind}' self.delete(path) # TSIGKeys # FIXME TBW # Searching def search(self, query: str, max_results: int, object_type: str): path = f'servers/{self.current_server.id}/search-data' object_types = ['all', 'zone', 'record', 'comment'] if object_type not in object_types: raise TypeError(f"object_type must be one of {', '.join(object_types)}") if not isinstance(max_results, int): raise TypeError("max_results needs to be an integer.") payload = {'q': query, 'max': max_results, 'object_type': object_type} new_results = [] for result in self.get(path, params=payload): new_results.append(SearchResult(**result)) return new_results # Statistics def statistics(self, statistic=None, includerings=True): path = f'servers/{self.current_server.id}/statistics' payload = {'statistic': statistic, 'includerings': includerings} type_map = { 'StatisticItem': StatisticItem, 'MapStatisticItem': MapStatisticItem, 'RingStatisticItem': RingStatisticItem } new_statistics = [] for item in self.get(path, params=payload): if item.get('type') in type_map.keys(): new_statistic = type_map[item.get('type')](**item) if isinstance(new_statistic.value, list): new_values = [] for value in new_statistic.value: new_values.append(SimpleStatisticItem(**value)) new_statistic.value = new_values if statistic is not None: return new_statistic new_statistics.append(new_statistic) return new_statistics # Cache def flush_cache(self, domain: str): path = f'servers/{self.current_server.id}/cache/flush' payload = {'domain': domain} return CacheFlushResult(**self.put(path, params=payload))
38.484581
110
0.615156
from .objects import Server, Zone, RRSet, Record, Comment, Cryptokey, Metadata, SearchResult, StatisticItem, \ MapStatisticItem, RingStatisticItem, SimpleStatisticItem, CacheFlushResult from .exceptions import PDNSApiException, PDNSApiNotFound import json from functools import partial import requests import logging logger = logging.getLogger(__name__) class APIClient: def __init__(self, api_host, api_key, tls_verify=True, request_timeout=None): self._api_url = api_host if 'api/v1' in api_host else f"{api_host}/api/v1" self._api_key = api_key self._tls_verify = tls_verify self._request_timeout = request_timeout if not self._tls_verify: logger.warning("Disabling TLS certificate validation.") import urllib3 urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) self.request_headers = {'X-API-Key': self._api_key} self.get = partial(self.request, method='GET') self.post = partial(self.request, method='POST') self.put = partial(self.request, method='PUT') self.patch = partial(self.request, method='PATCH') self.delete = partial(self.request, method='DELETE') self.servers = self._set_servers() self.current_server = self.servers[0] self.zones = self._set_zones() def request(self, path: str, method: str, data=None, **kwargs): url = f"{self._api_url}/{path.lstrip('/')}" if data is None: data = {} response = requests.request(method, url, json=data, headers=self.request_headers, timeout=self._request_timeout, verify=self._tls_verify, **kwargs ) try: response.raise_for_status() return response.json() except requests.exceptions.HTTPError as e: if response.status_code == 404: raise (PDNSApiNotFound(e)) from None try: status_message = response.json() status_message = status_message.get('error', status_message.get('errors', 'Unknown error')) except: status_message = response.text raise PDNSApiException(response.status_code, status_message) from None except json.decoder.JSONDecodeError: return response.text def _set_servers(self): new_servers = list() for server in self.get('servers'): new_servers.append(Server(**server)) return new_servers def _set_zones(self): new_zones = list() for zone in self.get(f'servers/{self.current_server.id}/zones'): new_zones.append(Zone(**zone)) return new_zones def create_zone(self, zone: Zone): path = f'servers/{self.current_server.id}/zones' return Zone(**self.post(path, data=zone)) def get_zone(self, zone_name): path = f'servers/{self.current_server.id}/zones/{zone_name}' zone = Zone(**self.get(path)) new_rrsets = [] for rrset in zone.rrsets: new_comments = [] new_records = [] rrset = RRSet(**rrset) for comment in rrset.comments: new_comments.append(Comment(**comment)) for record in rrset.records: new_records.append(Record(**record)) rrset.comments = new_comments rrset.records = new_records new_rrsets.append(rrset) zone.rrsets = new_rrsets return zone def delete_zone(self, zone_name): path = f'servers/{self.current_server.id}/zones/{zone_name}' self.delete(path) def update_zone_metadata(self, zone: Zone): path = f'servers/{self.current_server.id}/zones/{zone.name}' self.put(path, data=zone) return self.get_zone(zone.name) def patch_rrsets(self, zone: Zone): path = f'servers/{self.current_server.id}/zones/{zone.name}' self.patch(path, data={'rrsets': zone.rrsets}) return self.get_zone(zone.name) def create_records(self, zone: Zone, rrsets: list): for rrset in rrsets: rrset.changetype = 'REPLACE' zone = Zone(name=zone.name, kind=zone.kind, rrsets=rrsets) return self.patch_rrsets(zone) def delete_records(self, zone: Zone, rrsets: list): for rrset in rrsets: rrset.changetype = 'DELETE' zone = Zone(name=zone.name, kind=zone.kind, rrsets=rrsets) return self.patch_rrsets(zone) def get_zone_cryptokeys(self, zone: Zone): path = f'servers/{self.current_server.id}/zones/{zone.name}/cryptokeys' cryptkeys_new = [] for cryptokey in self.get(path): cryptkeys_new.append(Cryptokey(**cryptokey)) return cryptkeys_new def create_cryptokey(self, zone: Zone, cryptokey: Cryptokey): path = f'servers/{self.current_server.id}/zones/{zone.name}/cryptokeys' return self.post(path, data=cryptokey) def get_cryptokey(self, zone: Zone, key_id): path = f'servers/{self.current_server.id}/zones/{zone.name}/cryptokeys/{key_id}' return Cryptokey(**self.get(path)) def put_cryptokey(self, zone: Zone, cryptokey: Cryptokey): path = f'servers/{self.current_server.id}/zones/{zone.name}/cryptokeys/{cryptokey.id}' self.put(path, data=cryptokey) def get_zone_metadata(self, zone: Zone): path = f'servers/{self.current_server.id}/zones/{zone.name}/metadata' metadata_new = [] for metadata in self.get(path): metadata_new.append(Metadata(**metadata)) return metadata_new def create_metadata(self, zone: Zone, metadata: Metadata): path = f'servers/{self.current_server.id}/zones/{zone.name}/metadata' self.post(path, data=metadata) return self.get_zone_metadata(zone) def get_metadata(self, zone: Zone, metadata_kind): path = f'servers/{self.current_server.id}/zones/{zone.name}/metadata/{metadata_kind}' return Metadata(**self.get(path)) def put_metadata(self, zone: Zone, metadata: Metadata): path = f'servers/{self.current_server.id}/zones/{zone.name}/metadata/{metadata.kind}' return Metadata(**self.put(path, data=metadata)) def delete_metadata(self, zone: Zone, metadata: Metadata): path = f'servers/{self.current_server.id}/zones/{zone.name}/metadata/{metadata.kind}' self.delete(path) def search(self, query: str, max_results: int, object_type: str): path = f'servers/{self.current_server.id}/search-data' object_types = ['all', 'zone', 'record', 'comment'] if object_type not in object_types: raise TypeError(f"object_type must be one of {', '.join(object_types)}") if not isinstance(max_results, int): raise TypeError("max_results needs to be an integer.") payload = {'q': query, 'max': max_results, 'object_type': object_type} new_results = [] for result in self.get(path, params=payload): new_results.append(SearchResult(**result)) return new_results def statistics(self, statistic=None, includerings=True): path = f'servers/{self.current_server.id}/statistics' payload = {'statistic': statistic, 'includerings': includerings} type_map = { 'StatisticItem': StatisticItem, 'MapStatisticItem': MapStatisticItem, 'RingStatisticItem': RingStatisticItem } new_statistics = [] for item in self.get(path, params=payload): if item.get('type') in type_map.keys(): new_statistic = type_map[item.get('type')](**item) if isinstance(new_statistic.value, list): new_values = [] for value in new_statistic.value: new_values.append(SimpleStatisticItem(**value)) new_statistic.value = new_values if statistic is not None: return new_statistic new_statistics.append(new_statistic) return new_statistics def flush_cache(self, domain: str): path = f'servers/{self.current_server.id}/cache/flush' payload = {'domain': domain} return CacheFlushResult(**self.put(path, params=payload))
true
true
f70f80addbf2038f17208bc47e55b1fabb3e74e7
5,534
py
Python
ezcoach/ezcoach/agent.py
Pawel-M/EZ-Coach
ee078b8ab7409730e99cb38653d03aa574ab914b
[ "MIT" ]
1
2021-09-14T13:17:33.000Z
2021-09-14T13:17:33.000Z
ezcoach/ezcoach/agent.py
Pawel-M/EZ-Coach
ee078b8ab7409730e99cb38653d03aa574ab914b
[ "MIT" ]
null
null
null
ezcoach/ezcoach/agent.py
Pawel-M/EZ-Coach
ee078b8ab7409730e99cb38653d03aa574ab914b
[ "MIT" ]
null
null
null
""" The agent module contains three abstract classes that are subclassed in order to create algorithms. The classes are: * Player - for an algorithm that cannot learn and can only play * Learner - for a learning algorithm controlling a single agent * MultiLearner - for a learning algorithm of controlling a number of agents """ import abc from typing import List, Iterable from ezcoach.enviroment import Manifest class Player(abc.ABC): """ The abstract class representing a playing agent. It can be initialized with the manifest of the game and can react to states by selecting actions. Both methods are empty and must be implemented in the concrete class. A class that inherits from the Player class can be used with the Runner's test procedure. """ @abc.abstractmethod def initialize(self, manifest: Manifest): """ Initializes the object with the manifest that describe the game. :param manifest: a Manifest class obtained from the environment. """ @abc.abstractmethod def act(self, state): """ Selects an action to be performed in the given state. :param state: a state received from the environment :return: an action compliant with the manifest provided in initialize method """ @classmethod def __subclasshook__(cls, obj): if cls is Player: methods = ('initialize', 'act') if all(any(method in superclass.__dict__ for superclass in obj.__mro__) for method in methods): return True return NotImplemented class Learner(Player): """ The abstract class representing an agent that is capable of learning. It inherits from the Player class and thus it is capable of playing. Only do_start_episode method must be implemented. Other methods can be left unimplemented and consequently empty. Rewards are received on the step basis in receive_reward method and on episode basis with episode_ended method. Methods that ensure persistence are added for convenience. An agent derived from Learner can be used in both training and testing procedures. """ @abc.abstractmethod def do_start_episode(self, episode: int) -> bool: """ Decides if next episode should be started. :param episode: the number of an episode to be started (starting from 1) :return: the decision if the next episode should be started """ def episode_started(self, episode: int): """ Informs the algorithm that the episode was started. :param episode: the number of the started episode (starting from 1) """ def receive_reward(self, previous_state, action, reward: float, accumulated_reward: float, next_state): """ Receives a reward from an environment. :param previous_state: the state that precedes the reward :param action: the action that precedes the reward :param reward: the numerical reward signal :param accumulated_reward: the reward accumulated during the current episode :param next_state: the state that follow the reward """ def episode_ended(self, terminal_state, accumulated_reward): """ Receives the accumulated reward for an episode. If a discount is used this value should be ignored and the actual reward should be calculated using receive_reward method during the episode. :param terminal_state: the last state of the episode :param accumulated_reward: the accumulated reward assuming no discount """ @classmethod def __subclasshook__(cls, obj): if cls is Learner: methods = ('initialize', 'act', 'do_start_episode', 'episode_started', 'receive_reward', 'episode_ended') if all(any(method in superclass.__dict__ for superclass in obj.__mro__) for method in methods): return True return NotImplemented class MultiLearner(Learner): """ The class representing a learning algorithm capable of controlling a number of agents. It inherits from Learner class. The list of player numbers is provided in set_players method before each episode. The number identifying currently acting player is set in set_acting_player method which is invoked before act and receive_reward methods during an episode and before episode_ended method at the end of an episode. """ @abc.abstractmethod def set_players(self, players: Iterable[int]): """ Informs the learner about the players that it will control. :param players: an iterable of numbers identifying players """ @abc.abstractmethod def set_acting_player(self, player): """ Sets the current player that will act, receive reward and end episode. :param player: a number identifying the acting player """ @classmethod def __subclasshook__(cls, obj): if cls is MultiLearner: methods = ('initialize', 'act', 'do_start_episode', 'episode_started', 'receive_reward', 'episode_ended', 'set_players', 'set_acting_player') if all(any(method in superclass.__dict__ for superclass in obj.__mro__) for method in methods): return True return NotImplemented
36.893333
117
0.669859
import abc from typing import List, Iterable from ezcoach.enviroment import Manifest class Player(abc.ABC): @abc.abstractmethod def initialize(self, manifest: Manifest): @abc.abstractmethod def act(self, state): @classmethod def __subclasshook__(cls, obj): if cls is Player: methods = ('initialize', 'act') if all(any(method in superclass.__dict__ for superclass in obj.__mro__) for method in methods): return True return NotImplemented class Learner(Player): @abc.abstractmethod def do_start_episode(self, episode: int) -> bool: def episode_started(self, episode: int): def receive_reward(self, previous_state, action, reward: float, accumulated_reward: float, next_state): def episode_ended(self, terminal_state, accumulated_reward): @classmethod def __subclasshook__(cls, obj): if cls is Learner: methods = ('initialize', 'act', 'do_start_episode', 'episode_started', 'receive_reward', 'episode_ended') if all(any(method in superclass.__dict__ for superclass in obj.__mro__) for method in methods): return True return NotImplemented class MultiLearner(Learner): @abc.abstractmethod def set_players(self, players: Iterable[int]): @abc.abstractmethod def set_acting_player(self, player): @classmethod def __subclasshook__(cls, obj): if cls is MultiLearner: methods = ('initialize', 'act', 'do_start_episode', 'episode_started', 'receive_reward', 'episode_ended', 'set_players', 'set_acting_player') if all(any(method in superclass.__dict__ for superclass in obj.__mro__) for method in methods): return True return NotImplemented
true
true
f70f81401c08d654abb1e9dcd49531c69b6cbd11
8,969
py
Python
ceilometer/tests/alarm/test_notifier.py
NeCTAR-RC/ceilometer
25cb8740b83bfbf5c526be816fa3ae10f936bff5
[ "Apache-2.0" ]
1
2015-02-26T03:23:09.000Z
2015-02-26T03:23:09.000Z
ceilometer/tests/alarm/test_notifier.py
NeCTAR-RC/ceilometer
25cb8740b83bfbf5c526be816fa3ae10f936bff5
[ "Apache-2.0" ]
null
null
null
ceilometer/tests/alarm/test_notifier.py
NeCTAR-RC/ceilometer
25cb8740b83bfbf5c526be816fa3ae10f936bff5
[ "Apache-2.0" ]
null
null
null
# -*- encoding: utf-8 -*- # # Copyright © 2013 eNovance # # Author: Julien Danjou <julien@danjou.info> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import six.moves.urllib.parse as urlparse import mock import requests from ceilometer.alarm import service from ceilometer.openstack.common import context from ceilometer.openstack.common.fixture import config from ceilometer.openstack.common import test DATA_JSON = ('{"current": "ALARM", "alarm_id": "foobar",' ' "reason": "what ?", "reason_data": {"test": "test"},' ' "previous": "OK"}') NOTIFICATION = dict(alarm_id='foobar', condition=dict(threshold=42), reason='what ?', reason_data={'test': 'test'}, previous='OK', current='ALARM') class TestAlarmNotifier(test.BaseTestCase): def setUp(self): super(TestAlarmNotifier, self).setUp() self.CONF = self.useFixture(config.Config()).conf self.service = service.AlarmNotifierService('somehost', 'sometopic') @mock.patch('ceilometer.pipeline.setup_pipeline', mock.MagicMock()) def test_init_host(self): # If we try to create a real RPC connection, init_host() never # returns. Mock it out so we can establish the service # configuration. with mock.patch('ceilometer.openstack.common.rpc.create_connection'): self.service.start() def test_notify_alarm(self): data = { 'actions': ['test://'], 'alarm_id': 'foobar', 'previous': 'OK', 'current': 'ALARM', 'reason': 'Everything is on fire', 'reason_data': {'fire': 'everywhere'} } self.service.notify_alarm(context.get_admin_context(), data) notifications = self.service.notifiers['test'].obj.notifications self.assertEqual(1, len(notifications)) self.assertEqual((urlparse.urlsplit(data['actions'][0]), data['alarm_id'], data['previous'], data['current'], data['reason'], data['reason_data']), notifications[0]) def test_notify_alarm_no_action(self): self.service.notify_alarm(context.get_admin_context(), {}) def test_notify_alarm_log_action(self): self.service.notify_alarm(context.get_admin_context(), { 'actions': ['log://'], 'alarm_id': 'foobar', 'condition': {'threshold': 42}, }) @staticmethod def _fake_spawn_n(func, *args, **kwargs): func(*args, **kwargs) @staticmethod def _notification(action): notification = {} notification.update(NOTIFICATION) notification['actions'] = [action] return notification HTTP_HEADERS = {'content-type': 'application/json'} def test_notify_alarm_rest_action_ok(self): action = 'http://host/action' with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS) def test_notify_alarm_rest_action_with_ssl_client_cert(self): action = 'https://host/action' certificate = "/etc/ssl/cert/whatever.pem" self.CONF.set_override("rest_notifier_certificate_file", certificate, group='alarm') with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS, cert=certificate, verify=True) def test_notify_alarm_rest_action_with_ssl_client_cert_and_key(self): action = 'https://host/action' certificate = "/etc/ssl/cert/whatever.pem" key = "/etc/ssl/cert/whatever.key" self.CONF.set_override("rest_notifier_certificate_file", certificate, group='alarm') self.CONF.set_override("rest_notifier_certificate_key", key, group='alarm') with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS, cert=(certificate, key), verify=True) def test_notify_alarm_rest_action_with_ssl_verify_disable_by_cfg(self): action = 'https://host/action' self.CONF.set_override("rest_notifier_ssl_verify", False, group='alarm') with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS, verify=False) def test_notify_alarm_rest_action_with_ssl_verify_disable(self): action = 'https://host/action?ceilometer-alarm-ssl-verify=0' with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS, verify=False) def test_notify_alarm_rest_action_with_ssl_verify_enable_by_user(self): action = 'https://host/action?ceilometer-alarm-ssl-verify=1' self.CONF.set_override("rest_notifier_ssl_verify", False, group='alarm') with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS, verify=True) @staticmethod def _fake_urlsplit(*args, **kwargs): raise Exception("Evil urlsplit!") def test_notify_alarm_invalid_url(self): with mock.patch('ceilometer.openstack.common.network_utils.urlsplit', self._fake_urlsplit): LOG = mock.MagicMock() with mock.patch('ceilometer.alarm.service.LOG', LOG): self.service.notify_alarm( context.get_admin_context(), { 'actions': ['no-such-action-i-am-sure'], 'alarm_id': 'foobar', 'condition': {'threshold': 42}, }) self.assertTrue(LOG.error.called) def test_notify_alarm_invalid_action(self): LOG = mock.MagicMock() with mock.patch('ceilometer.alarm.service.LOG', LOG): self.service.notify_alarm( context.get_admin_context(), { 'actions': ['no-such-action-i-am-sure://'], 'alarm_id': 'foobar', 'condition': {'threshold': 42}, }) self.assertTrue(LOG.error.called)
42.709524
79
0.563051
import six.moves.urllib.parse as urlparse import mock import requests from ceilometer.alarm import service from ceilometer.openstack.common import context from ceilometer.openstack.common.fixture import config from ceilometer.openstack.common import test DATA_JSON = ('{"current": "ALARM", "alarm_id": "foobar",' ' "reason": "what ?", "reason_data": {"test": "test"},' ' "previous": "OK"}') NOTIFICATION = dict(alarm_id='foobar', condition=dict(threshold=42), reason='what ?', reason_data={'test': 'test'}, previous='OK', current='ALARM') class TestAlarmNotifier(test.BaseTestCase): def setUp(self): super(TestAlarmNotifier, self).setUp() self.CONF = self.useFixture(config.Config()).conf self.service = service.AlarmNotifierService('somehost', 'sometopic') @mock.patch('ceilometer.pipeline.setup_pipeline', mock.MagicMock()) def test_init_host(self): with mock.patch('ceilometer.openstack.common.rpc.create_connection'): self.service.start() def test_notify_alarm(self): data = { 'actions': ['test://'], 'alarm_id': 'foobar', 'previous': 'OK', 'current': 'ALARM', 'reason': 'Everything is on fire', 'reason_data': {'fire': 'everywhere'} } self.service.notify_alarm(context.get_admin_context(), data) notifications = self.service.notifiers['test'].obj.notifications self.assertEqual(1, len(notifications)) self.assertEqual((urlparse.urlsplit(data['actions'][0]), data['alarm_id'], data['previous'], data['current'], data['reason'], data['reason_data']), notifications[0]) def test_notify_alarm_no_action(self): self.service.notify_alarm(context.get_admin_context(), {}) def test_notify_alarm_log_action(self): self.service.notify_alarm(context.get_admin_context(), { 'actions': ['log://'], 'alarm_id': 'foobar', 'condition': {'threshold': 42}, }) @staticmethod def _fake_spawn_n(func, *args, **kwargs): func(*args, **kwargs) @staticmethod def _notification(action): notification = {} notification.update(NOTIFICATION) notification['actions'] = [action] return notification HTTP_HEADERS = {'content-type': 'application/json'} def test_notify_alarm_rest_action_ok(self): action = 'http://host/action' with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS) def test_notify_alarm_rest_action_with_ssl_client_cert(self): action = 'https://host/action' certificate = "/etc/ssl/cert/whatever.pem" self.CONF.set_override("rest_notifier_certificate_file", certificate, group='alarm') with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS, cert=certificate, verify=True) def test_notify_alarm_rest_action_with_ssl_client_cert_and_key(self): action = 'https://host/action' certificate = "/etc/ssl/cert/whatever.pem" key = "/etc/ssl/cert/whatever.key" self.CONF.set_override("rest_notifier_certificate_file", certificate, group='alarm') self.CONF.set_override("rest_notifier_certificate_key", key, group='alarm') with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS, cert=(certificate, key), verify=True) def test_notify_alarm_rest_action_with_ssl_verify_disable_by_cfg(self): action = 'https://host/action' self.CONF.set_override("rest_notifier_ssl_verify", False, group='alarm') with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS, verify=False) def test_notify_alarm_rest_action_with_ssl_verify_disable(self): action = 'https://host/action?ceilometer-alarm-ssl-verify=0' with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS, verify=False) def test_notify_alarm_rest_action_with_ssl_verify_enable_by_user(self): action = 'https://host/action?ceilometer-alarm-ssl-verify=1' self.CONF.set_override("rest_notifier_ssl_verify", False, group='alarm') with mock.patch('eventlet.spawn_n', self._fake_spawn_n): with mock.patch.object(requests, 'post') as poster: self.service.notify_alarm(context.get_admin_context(), self._notification(action)) poster.assert_called_with(action, data=DATA_JSON, headers=self.HTTP_HEADERS, verify=True) @staticmethod def _fake_urlsplit(*args, **kwargs): raise Exception("Evil urlsplit!") def test_notify_alarm_invalid_url(self): with mock.patch('ceilometer.openstack.common.network_utils.urlsplit', self._fake_urlsplit): LOG = mock.MagicMock() with mock.patch('ceilometer.alarm.service.LOG', LOG): self.service.notify_alarm( context.get_admin_context(), { 'actions': ['no-such-action-i-am-sure'], 'alarm_id': 'foobar', 'condition': {'threshold': 42}, }) self.assertTrue(LOG.error.called) def test_notify_alarm_invalid_action(self): LOG = mock.MagicMock() with mock.patch('ceilometer.alarm.service.LOG', LOG): self.service.notify_alarm( context.get_admin_context(), { 'actions': ['no-such-action-i-am-sure://'], 'alarm_id': 'foobar', 'condition': {'threshold': 42}, }) self.assertTrue(LOG.error.called)
true
true
f70f82382935e2fef97fc4bfb9b6127666b2db6e
1,793
py
Python
app.py
ds19991999/CKUser
c66ebda6ef5068a79b816de2c57a443b25d7096d
[ "MIT" ]
null
null
null
app.py
ds19991999/CKUser
c66ebda6ef5068a79b816de2c57a443b25d7096d
[ "MIT" ]
null
null
null
app.py
ds19991999/CKUser
c66ebda6ef5068a79b816de2c57a443b25d7096d
[ "MIT" ]
null
null
null
#!/usr/bin/python3 # -*- coding:utf-8 -*- from ckuser import client,server import os def print_client_menu(): print("用户菜单:") print("-"*25) print("0"+"-"*10+"显示用户菜单"+"-"*10) print("1"+"-"*10+"显示服务菜单"+"-"*10) print("2"+"-"*10+"用户登录系统"+"-"*10) print("3"+"-"*10+"用户修改信息"+"-"*10) print("4"+"-"*10+"用户注册信息"+"-"*10) print("6"+"-"*10+"退出系统") def print_server_menu(): print("服务菜单:") print("-"*25) print("0"+"-"*10+"显示用户菜单"+"-"*10) print("1"+"-"*10+"显示服务菜单"+"-"*10) print("2"+"-"*10+"添加用户帐号"+"-"*10) print("3"+"-"*10+"删除用户帐号"+"-"*10) print("4"+"-"*10+"修改用户帐号"+"-"*10) print("5"+"-"*10+"查找用户帐号"+"-"*10) print("6"+"-"*10+"退出系统") def server_oper(): print_server_menu() while True: try: i = int(input("请输入操作符:")) if i == 0: os.system("clear") break elif i == 1: os.system("clear") print_server_menu() elif i == 2: server.user_add() elif i == 3: server.user_del() elif i == 4: server.user_update() elif i == 5: server.user_find() elif i == 6: os.system("clear") os.system(exit()) except Exception as msg: os.system("clear") print_server_menu() print("输入错误!") client_oper() def client_oper(): print_client_menu() while True: try: i = int(input("请输入操作符:")) if i == 0: os.system("clear") print_client_menu() elif i == 1: os.system("clear") break elif i == 2: client.login() elif i == 3: client.update() elif i == 4: client.register() elif i == 6: os.system("clear") os.system(exit()) else: os.system("clear") print_client_menu() print("输入错误!") except Exception: os.system("clear") print_client_menu() print("输入错误!") server_oper() def main(): # server.user_update() client_oper() if __name__ == '__main__': main()
19.703297
34
0.557167
from ckuser import client,server import os def print_client_menu(): print("用户菜单:") print("-"*25) print("0"+"-"*10+"显示用户菜单"+"-"*10) print("1"+"-"*10+"显示服务菜单"+"-"*10) print("2"+"-"*10+"用户登录系统"+"-"*10) print("3"+"-"*10+"用户修改信息"+"-"*10) print("4"+"-"*10+"用户注册信息"+"-"*10) print("6"+"-"*10+"退出系统") def print_server_menu(): print("服务菜单:") print("-"*25) print("0"+"-"*10+"显示用户菜单"+"-"*10) print("1"+"-"*10+"显示服务菜单"+"-"*10) print("2"+"-"*10+"添加用户帐号"+"-"*10) print("3"+"-"*10+"删除用户帐号"+"-"*10) print("4"+"-"*10+"修改用户帐号"+"-"*10) print("5"+"-"*10+"查找用户帐号"+"-"*10) print("6"+"-"*10+"退出系统") def server_oper(): print_server_menu() while True: try: i = int(input("请输入操作符:")) if i == 0: os.system("clear") break elif i == 1: os.system("clear") print_server_menu() elif i == 2: server.user_add() elif i == 3: server.user_del() elif i == 4: server.user_update() elif i == 5: server.user_find() elif i == 6: os.system("clear") os.system(exit()) except Exception as msg: os.system("clear") print_server_menu() print("输入错误!") client_oper() def client_oper(): print_client_menu() while True: try: i = int(input("请输入操作符:")) if i == 0: os.system("clear") print_client_menu() elif i == 1: os.system("clear") break elif i == 2: client.login() elif i == 3: client.update() elif i == 4: client.register() elif i == 6: os.system("clear") os.system(exit()) else: os.system("clear") print_client_menu() print("输入错误!") except Exception: os.system("clear") print_client_menu() print("输入错误!") server_oper() def main(): client_oper() if __name__ == '__main__': main()
true
true
f70f84ea78513abd82f40253fd127865d7f56a02
2,181
py
Python
sound_factory/sound_factory.py
jphacks/C_2008
65d7a1d3a90045b149397cdd1e038ab648bb842e
[ "MIT" ]
2
2020-11-28T05:10:48.000Z
2020-11-29T01:23:53.000Z
sound_factory/sound_factory.py
jphacks/C_2008
65d7a1d3a90045b149397cdd1e038ab648bb842e
[ "MIT" ]
5
2020-11-01T06:34:02.000Z
2020-11-01T06:37:46.000Z
sound_factory/sound_factory.py
jphacks/C_2008
65d7a1d3a90045b149397cdd1e038ab648bb842e
[ "MIT" ]
null
null
null
import os import re import argparse import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.preprocessing.image import load_img, img_to_array IMAGE_SHAPE = [(224, 224), (240, 240), (260, 260), (300, 300), (380, 380), (456, 456), (528, 528), (600, 600)] def main(paths : list, model_name : str): try: model = tf.keras.models.load_model(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'model', model_name)) except Exception: print('そのようなモデルはありません') exit() model_index = int(re.search('\d', model_name).group(0)) with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'model', model_name, 'labels.txt'), mode='r', encoding='utf-8') as f1: labels = [s.strip() for s in f1.readlines()] with open('manga_sound_labels.csv', mode='w', encoding='utf-8') as f2: for path in paths: if os.path.isfile(path): try: img = np.expand_dims(img_to_array(load_img(path,target_size=IMAGE_SHAPE[model_index])) / 255, axis=0) except Exception: continue pridict = labels[np.argmax(model.predict(img)[0])] f2.write(path + ',' + pridict + '\n') else: for filename in os.listdir(path): try: img = np.expand_dims(img_to_array(load_img(os.path.join(path, filename),target_size=IMAGE_SHAPE[model_index])) / 255, axis=0) except Exception: continue pridict = labels[np.argmax(model.predict(img)[0])] f2.write(os.path.join(path, filename) + ',' + pridict + '\n') if __name__ == '__main__': parser = argparse.ArgumentParser(description='コマの画像から背景音を予測します') parser.add_argument('path',nargs='*', help='解析するファイル名かディレクトリ名') parser.add_argument('--model', default=os.path.join('best','b0'), help='クラス分けに使用するモデル名') args = parser.parse_args() if 'manga_sound_labels.csv' in os.listdir(os.getcwd()): print('manga_sound_labels.csvがすでにあるので終了します') exit() main(args.path, args.model)
41.942308
149
0.604768
import os import re import argparse import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras.preprocessing.image import load_img, img_to_array IMAGE_SHAPE = [(224, 224), (240, 240), (260, 260), (300, 300), (380, 380), (456, 456), (528, 528), (600, 600)] def main(paths : list, model_name : str): try: model = tf.keras.models.load_model(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'model', model_name)) except Exception: print('そのようなモデルはありません') exit() model_index = int(re.search('\d', model_name).group(0)) with open(os.path.join(os.path.abspath(os.path.dirname(__file__)), 'model', model_name, 'labels.txt'), mode='r', encoding='utf-8') as f1: labels = [s.strip() for s in f1.readlines()] with open('manga_sound_labels.csv', mode='w', encoding='utf-8') as f2: for path in paths: if os.path.isfile(path): try: img = np.expand_dims(img_to_array(load_img(path,target_size=IMAGE_SHAPE[model_index])) / 255, axis=0) except Exception: continue pridict = labels[np.argmax(model.predict(img)[0])] f2.write(path + ',' + pridict + '\n') else: for filename in os.listdir(path): try: img = np.expand_dims(img_to_array(load_img(os.path.join(path, filename),target_size=IMAGE_SHAPE[model_index])) / 255, axis=0) except Exception: continue pridict = labels[np.argmax(model.predict(img)[0])] f2.write(os.path.join(path, filename) + ',' + pridict + '\n') if __name__ == '__main__': parser = argparse.ArgumentParser(description='コマの画像から背景音を予測します') parser.add_argument('path',nargs='*', help='解析するファイル名かディレクトリ名') parser.add_argument('--model', default=os.path.join('best','b0'), help='クラス分けに使用するモデル名') args = parser.parse_args() if 'manga_sound_labels.csv' in os.listdir(os.getcwd()): print('manga_sound_labels.csvがすでにあるので終了します') exit() main(args.path, args.model)
true
true
f70f862db871c216db3b2e5ea714abdc5fdf04bd
3,238
py
Python
scripts/load_file_into_mod.py
strategineer/crusader_kings_3_mods
e290c3e8e542875c0ced2d1b7a013eb85b2037fb
[ "MIT" ]
null
null
null
scripts/load_file_into_mod.py
strategineer/crusader_kings_3_mods
e290c3e8e542875c0ced2d1b7a013eb85b2037fb
[ "MIT" ]
null
null
null
scripts/load_file_into_mod.py
strategineer/crusader_kings_3_mods
e290c3e8e542875c0ced2d1b7a013eb85b2037fb
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import os import sys from shutil import copyfile import argparse from pathlib import Path import logging logging.basicConfig(level=logging.INFO) NUMBERED_FILENAME_SPLIT_CHARACTER = "_" parser = argparse.ArgumentParser(description='') parser.add_argument('filepath', help='') parser.add_argument('--force', '-f', action="store_true", help='Override any existing files') parser.add_argument('--increment', '-i', action="store_true", help='Increment the version number on the file so 00_X.txt will be copied as 01_X.txt') args = parser.parse_args() CRUSADER_KINGS_3_CURRENT_MOD_NAME = "CRUSADER_KINGS_3_CURRENT_MOD_NAME" CRUSADER_KINGS_3_MAIN_DIR = "CRUSADER_KINGS_3_MAIN_DIR" CRUSADER_KINGS_3_MOD_DIR = "CRUSADER_KINGS_3_MOD_DIR" mod_name = os.environ.get(CRUSADER_KINGS_3_CURRENT_MOD_NAME, '') main_directory_str = os.environ.get(CRUSADER_KINGS_3_MAIN_DIR, '').replace(" ", "\\ ") base_mod_directory_str = os.environ.get(CRUSADER_KINGS_3_MOD_DIR, '').replace(" ", "\\ ") if not mod_name: logging.error(f"The {CRUSADER_KINGS_3_CURRENT_MOD_NAME} environment variable must be set") sys.exit(1) if not main_directory_str: logging.error(f"The {CRUSADER_KINGS_3_MAIN_DIR} environment variable must be set") sys.exit(1) if not base_mod_directory_str: logging.error(f"The {CRUSADER_KINGS_3_MOD_DIR} environment variable must be set") sys.exit(1) main_path = Path(main_directory_str) if not main_path.exists() or not main_path.is_dir(): logging.error(f"Please ensure that {main_directory_str} points to a valid directory") sys.exit(1) base_mod_path = Path(base_mod_directory_str) if not base_mod_path.exists() or not base_mod_path.is_dir(): logging.error(f"Please ensure that {base_mod_directory_str} points to a valid directory") sys.exit(1) mod_directory_str = f"{base_mod_directory_str}/{mod_name}" mod_path = Path(mod_directory_str) if not mod_path.exists() or not mod_path.is_dir(): logging.error(f"Please ensure that {mod_directory_str} points to a valid directory") sys.exit(1) filepath_str = f"{main_directory_str}/{args.filepath}" filepath_path = Path(filepath_str) if not filepath_path.exists() or not filepath_path.is_file(): logging.error(f"Please ensure that {filepath_str} points to an existing file") sys.exit(1) destination_filepath = args.filepath if args.increment: filepath = Path(args.filepath) if NUMBERED_FILENAME_SPLIT_CHARACTER in filepath.name: (n, tail) = filepath.name.split(NUMBERED_FILENAME_SPLIT_CHARACTER, 1) n = str(int(n) + 1).zfill(len(n)) destination_filepath = str(filepath.parents[0]) + f"/{n}_{tail}" destination_filepath_str = f"{mod_directory_str}/{destination_filepath}" destination_filepath_path = Path(destination_filepath_str) if destination_filepath_path.exists() and not args.force: logging.error(f"File exists at {destination_filepath_str} already, please use the --force/-f parameter if you want to write over it") sys.exit(1) destination_filepath_path.parents[0].mkdir(parents=True, exist_ok=True) destination_filepath_path.touch(exist_ok=True) destination_filepath_path.write_text(filepath_path.read_text()) logging.info(f"Created at {destination_filepath_path}")
39.012048
149
0.774552
import os import sys from shutil import copyfile import argparse from pathlib import Path import logging logging.basicConfig(level=logging.INFO) NUMBERED_FILENAME_SPLIT_CHARACTER = "_" parser = argparse.ArgumentParser(description='') parser.add_argument('filepath', help='') parser.add_argument('--force', '-f', action="store_true", help='Override any existing files') parser.add_argument('--increment', '-i', action="store_true", help='Increment the version number on the file so 00_X.txt will be copied as 01_X.txt') args = parser.parse_args() CRUSADER_KINGS_3_CURRENT_MOD_NAME = "CRUSADER_KINGS_3_CURRENT_MOD_NAME" CRUSADER_KINGS_3_MAIN_DIR = "CRUSADER_KINGS_3_MAIN_DIR" CRUSADER_KINGS_3_MOD_DIR = "CRUSADER_KINGS_3_MOD_DIR" mod_name = os.environ.get(CRUSADER_KINGS_3_CURRENT_MOD_NAME, '') main_directory_str = os.environ.get(CRUSADER_KINGS_3_MAIN_DIR, '').replace(" ", "\\ ") base_mod_directory_str = os.environ.get(CRUSADER_KINGS_3_MOD_DIR, '').replace(" ", "\\ ") if not mod_name: logging.error(f"The {CRUSADER_KINGS_3_CURRENT_MOD_NAME} environment variable must be set") sys.exit(1) if not main_directory_str: logging.error(f"The {CRUSADER_KINGS_3_MAIN_DIR} environment variable must be set") sys.exit(1) if not base_mod_directory_str: logging.error(f"The {CRUSADER_KINGS_3_MOD_DIR} environment variable must be set") sys.exit(1) main_path = Path(main_directory_str) if not main_path.exists() or not main_path.is_dir(): logging.error(f"Please ensure that {main_directory_str} points to a valid directory") sys.exit(1) base_mod_path = Path(base_mod_directory_str) if not base_mod_path.exists() or not base_mod_path.is_dir(): logging.error(f"Please ensure that {base_mod_directory_str} points to a valid directory") sys.exit(1) mod_directory_str = f"{base_mod_directory_str}/{mod_name}" mod_path = Path(mod_directory_str) if not mod_path.exists() or not mod_path.is_dir(): logging.error(f"Please ensure that {mod_directory_str} points to a valid directory") sys.exit(1) filepath_str = f"{main_directory_str}/{args.filepath}" filepath_path = Path(filepath_str) if not filepath_path.exists() or not filepath_path.is_file(): logging.error(f"Please ensure that {filepath_str} points to an existing file") sys.exit(1) destination_filepath = args.filepath if args.increment: filepath = Path(args.filepath) if NUMBERED_FILENAME_SPLIT_CHARACTER in filepath.name: (n, tail) = filepath.name.split(NUMBERED_FILENAME_SPLIT_CHARACTER, 1) n = str(int(n) + 1).zfill(len(n)) destination_filepath = str(filepath.parents[0]) + f"/{n}_{tail}" destination_filepath_str = f"{mod_directory_str}/{destination_filepath}" destination_filepath_path = Path(destination_filepath_str) if destination_filepath_path.exists() and not args.force: logging.error(f"File exists at {destination_filepath_str} already, please use the --force/-f parameter if you want to write over it") sys.exit(1) destination_filepath_path.parents[0].mkdir(parents=True, exist_ok=True) destination_filepath_path.touch(exist_ok=True) destination_filepath_path.write_text(filepath_path.read_text()) logging.info(f"Created at {destination_filepath_path}")
true
true
f70f86fe1ee1ad646b17cffe4377c00e9ea1c90b
13,474
py
Python
chapter05/blackjack.py
bhomaidan1990/reinforcement-learning-an-introduction
fbf020d9da2daec3194a17f968ef29d12ebde6f6
[ "MIT" ]
12,197
2016-10-04T03:34:49.000Z
2022-03-31T12:55:36.000Z
chapter05/blackjack.py
bhomaidan1990/reinforcement-learning-an-introduction
fbf020d9da2daec3194a17f968ef29d12ebde6f6
[ "MIT" ]
134
2016-11-01T06:06:51.000Z
2022-02-07T00:12:01.000Z
chapter05/blackjack.py
bhomaidan1990/reinforcement-learning-an-introduction
fbf020d9da2daec3194a17f968ef29d12ebde6f6
[ "MIT" ]
4,738
2016-09-27T07:38:23.000Z
2022-03-31T10:09:14.000Z
####################################################################### # Copyright (C) # # 2016-2018 Shangtong Zhang(zhangshangtong.cpp@gmail.com) # # 2016 Kenta Shimada(hyperkentakun@gmail.com) # # 2017 Nicky van Foreest(vanforeest@gmail.com) # # Permission given to modify the code as long as you keep this # # declaration at the top # ####################################################################### import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm # actions: hit or stand ACTION_HIT = 0 ACTION_STAND = 1 # "strike" in the book ACTIONS = [ACTION_HIT, ACTION_STAND] # policy for player POLICY_PLAYER = np.zeros(22, dtype=np.int) for i in range(12, 20): POLICY_PLAYER[i] = ACTION_HIT POLICY_PLAYER[20] = ACTION_STAND POLICY_PLAYER[21] = ACTION_STAND # function form of target policy of player def target_policy_player(usable_ace_player, player_sum, dealer_card): return POLICY_PLAYER[player_sum] # function form of behavior policy of player def behavior_policy_player(usable_ace_player, player_sum, dealer_card): if np.random.binomial(1, 0.5) == 1: return ACTION_STAND return ACTION_HIT # policy for dealer POLICY_DEALER = np.zeros(22) for i in range(12, 17): POLICY_DEALER[i] = ACTION_HIT for i in range(17, 22): POLICY_DEALER[i] = ACTION_STAND # get a new card def get_card(): card = np.random.randint(1, 14) card = min(card, 10) return card # get the value of a card (11 for ace). def card_value(card_id): return 11 if card_id == 1 else card_id # play a game # @policy_player: specify policy for player # @initial_state: [whether player has a usable Ace, sum of player's cards, one card of dealer] # @initial_action: the initial action def play(policy_player, initial_state=None, initial_action=None): # player status # sum of player player_sum = 0 # trajectory of player player_trajectory = [] # whether player uses Ace as 11 usable_ace_player = False # dealer status dealer_card1 = 0 dealer_card2 = 0 usable_ace_dealer = False if initial_state is None: # generate a random initial state while player_sum < 12: # if sum of player is less than 12, always hit card = get_card() player_sum += card_value(card) # If the player's sum is larger than 21, he may hold one or two aces. if player_sum > 21: assert player_sum == 22 # last card must be ace player_sum -= 10 else: usable_ace_player |= (1 == card) # initialize cards of dealer, suppose dealer will show the first card he gets dealer_card1 = get_card() dealer_card2 = get_card() else: # use specified initial state usable_ace_player, player_sum, dealer_card1 = initial_state dealer_card2 = get_card() # initial state of the game state = [usable_ace_player, player_sum, dealer_card1] # initialize dealer's sum dealer_sum = card_value(dealer_card1) + card_value(dealer_card2) usable_ace_dealer = 1 in (dealer_card1, dealer_card2) # if the dealer's sum is larger than 21, he must hold two aces. if dealer_sum > 21: assert dealer_sum == 22 # use one Ace as 1 rather than 11 dealer_sum -= 10 assert dealer_sum <= 21 assert player_sum <= 21 # game starts! # player's turn while True: if initial_action is not None: action = initial_action initial_action = None else: # get action based on current sum action = policy_player(usable_ace_player, player_sum, dealer_card1) # track player's trajectory for importance sampling player_trajectory.append([(usable_ace_player, player_sum, dealer_card1), action]) if action == ACTION_STAND: break # if hit, get new card card = get_card() # Keep track of the ace count. the usable_ace_player flag is insufficient alone as it cannot # distinguish between having one ace or two. ace_count = int(usable_ace_player) if card == 1: ace_count += 1 player_sum += card_value(card) # If the player has a usable ace, use it as 1 to avoid busting and continue. while player_sum > 21 and ace_count: player_sum -= 10 ace_count -= 1 # player busts if player_sum > 21: return state, -1, player_trajectory assert player_sum <= 21 usable_ace_player = (ace_count == 1) # dealer's turn while True: # get action based on current sum action = POLICY_DEALER[dealer_sum] if action == ACTION_STAND: break # if hit, get a new card new_card = get_card() ace_count = int(usable_ace_dealer) if new_card == 1: ace_count += 1 dealer_sum += card_value(new_card) # If the dealer has a usable ace, use it as 1 to avoid busting and continue. while dealer_sum > 21 and ace_count: dealer_sum -= 10 ace_count -= 1 # dealer busts if dealer_sum > 21: return state, 1, player_trajectory usable_ace_dealer = (ace_count == 1) # compare the sum between player and dealer assert player_sum <= 21 and dealer_sum <= 21 if player_sum > dealer_sum: return state, 1, player_trajectory elif player_sum == dealer_sum: return state, 0, player_trajectory else: return state, -1, player_trajectory # Monte Carlo Sample with On-Policy def monte_carlo_on_policy(episodes): states_usable_ace = np.zeros((10, 10)) # initialze counts to 1 to avoid 0 being divided states_usable_ace_count = np.ones((10, 10)) states_no_usable_ace = np.zeros((10, 10)) # initialze counts to 1 to avoid 0 being divided states_no_usable_ace_count = np.ones((10, 10)) for i in tqdm(range(0, episodes)): _, reward, player_trajectory = play(target_policy_player) for (usable_ace, player_sum, dealer_card), _ in player_trajectory: player_sum -= 12 dealer_card -= 1 if usable_ace: states_usable_ace_count[player_sum, dealer_card] += 1 states_usable_ace[player_sum, dealer_card] += reward else: states_no_usable_ace_count[player_sum, dealer_card] += 1 states_no_usable_ace[player_sum, dealer_card] += reward return states_usable_ace / states_usable_ace_count, states_no_usable_ace / states_no_usable_ace_count # Monte Carlo with Exploring Starts def monte_carlo_es(episodes): # (playerSum, dealerCard, usableAce, action) state_action_values = np.zeros((10, 10, 2, 2)) # initialze counts to 1 to avoid division by 0 state_action_pair_count = np.ones((10, 10, 2, 2)) # behavior policy is greedy def behavior_policy(usable_ace, player_sum, dealer_card): usable_ace = int(usable_ace) player_sum -= 12 dealer_card -= 1 # get argmax of the average returns(s, a) values_ = state_action_values[player_sum, dealer_card, usable_ace, :] / \ state_action_pair_count[player_sum, dealer_card, usable_ace, :] return np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)]) # play for several episodes for episode in tqdm(range(episodes)): # for each episode, use a randomly initialized state and action initial_state = [bool(np.random.choice([0, 1])), np.random.choice(range(12, 22)), np.random.choice(range(1, 11))] initial_action = np.random.choice(ACTIONS) current_policy = behavior_policy if episode else target_policy_player _, reward, trajectory = play(current_policy, initial_state, initial_action) first_visit_check = set() for (usable_ace, player_sum, dealer_card), action in trajectory: usable_ace = int(usable_ace) player_sum -= 12 dealer_card -= 1 state_action = (usable_ace, player_sum, dealer_card, action) if state_action in first_visit_check: continue first_visit_check.add(state_action) # update values of state-action pairs state_action_values[player_sum, dealer_card, usable_ace, action] += reward state_action_pair_count[player_sum, dealer_card, usable_ace, action] += 1 return state_action_values / state_action_pair_count # Monte Carlo Sample with Off-Policy def monte_carlo_off_policy(episodes): initial_state = [True, 13, 2] rhos = [] returns = [] for i in range(0, episodes): _, reward, player_trajectory = play(behavior_policy_player, initial_state=initial_state) # get the importance ratio numerator = 1.0 denominator = 1.0 for (usable_ace, player_sum, dealer_card), action in player_trajectory: if action == target_policy_player(usable_ace, player_sum, dealer_card): denominator *= 0.5 else: numerator = 0.0 break rho = numerator / denominator rhos.append(rho) returns.append(reward) rhos = np.asarray(rhos) returns = np.asarray(returns) weighted_returns = rhos * returns weighted_returns = np.add.accumulate(weighted_returns) rhos = np.add.accumulate(rhos) ordinary_sampling = weighted_returns / np.arange(1, episodes + 1) with np.errstate(divide='ignore',invalid='ignore'): weighted_sampling = np.where(rhos != 0, weighted_returns / rhos, 0) return ordinary_sampling, weighted_sampling def figure_5_1(): states_usable_ace_1, states_no_usable_ace_1 = monte_carlo_on_policy(10000) states_usable_ace_2, states_no_usable_ace_2 = monte_carlo_on_policy(500000) states = [states_usable_ace_1, states_usable_ace_2, states_no_usable_ace_1, states_no_usable_ace_2] titles = ['Usable Ace, 10000 Episodes', 'Usable Ace, 500000 Episodes', 'No Usable Ace, 10000 Episodes', 'No Usable Ace, 500000 Episodes'] _, axes = plt.subplots(2, 2, figsize=(40, 30)) plt.subplots_adjust(wspace=0.1, hspace=0.2) axes = axes.flatten() for state, title, axis in zip(states, titles, axes): fig = sns.heatmap(np.flipud(state), cmap="YlGnBu", ax=axis, xticklabels=range(1, 11), yticklabels=list(reversed(range(12, 22)))) fig.set_ylabel('player sum', fontsize=30) fig.set_xlabel('dealer showing', fontsize=30) fig.set_title(title, fontsize=30) plt.savefig('../images/figure_5_1.png') plt.close() def figure_5_2(): state_action_values = monte_carlo_es(500000) state_value_no_usable_ace = np.max(state_action_values[:, :, 0, :], axis=-1) state_value_usable_ace = np.max(state_action_values[:, :, 1, :], axis=-1) # get the optimal policy action_no_usable_ace = np.argmax(state_action_values[:, :, 0, :], axis=-1) action_usable_ace = np.argmax(state_action_values[:, :, 1, :], axis=-1) images = [action_usable_ace, state_value_usable_ace, action_no_usable_ace, state_value_no_usable_ace] titles = ['Optimal policy with usable Ace', 'Optimal value with usable Ace', 'Optimal policy without usable Ace', 'Optimal value without usable Ace'] _, axes = plt.subplots(2, 2, figsize=(40, 30)) plt.subplots_adjust(wspace=0.1, hspace=0.2) axes = axes.flatten() for image, title, axis in zip(images, titles, axes): fig = sns.heatmap(np.flipud(image), cmap="YlGnBu", ax=axis, xticklabels=range(1, 11), yticklabels=list(reversed(range(12, 22)))) fig.set_ylabel('player sum', fontsize=30) fig.set_xlabel('dealer showing', fontsize=30) fig.set_title(title, fontsize=30) plt.savefig('../images/figure_5_2.png') plt.close() def figure_5_3(): true_value = -0.27726 episodes = 10000 runs = 100 error_ordinary = np.zeros(episodes) error_weighted = np.zeros(episodes) for i in tqdm(range(0, runs)): ordinary_sampling_, weighted_sampling_ = monte_carlo_off_policy(episodes) # get the squared error error_ordinary += np.power(ordinary_sampling_ - true_value, 2) error_weighted += np.power(weighted_sampling_ - true_value, 2) error_ordinary /= runs error_weighted /= runs plt.plot(np.arange(1, episodes + 1), error_ordinary, color='green', label='Ordinary Importance Sampling') plt.plot(np.arange(1, episodes + 1), error_weighted, color='red', label='Weighted Importance Sampling') plt.ylim(-0.1, 5) plt.xlabel('Episodes (log scale)') plt.ylabel(f'Mean square error\n(average over {runs} runs)') plt.xscale('log') plt.legend() plt.savefig('../images/figure_5_3.png') plt.close() if __name__ == '__main__': figure_5_1() figure_5_2() figure_5_3()
36.318059
113
0.635149
_sum -= 12 dealer_card -= 1 if usable_ace: states_usable_ace_count[player_sum, dealer_card] += 1 states_usable_ace[player_sum, dealer_card] += reward else: states_no_usable_ace_count[player_sum, dealer_card] += 1 states_no_usable_ace[player_sum, dealer_card] += reward return states_usable_ace / states_usable_ace_count, states_no_usable_ace / states_no_usable_ace_count # Monte Carlo with Exploring Starts def monte_carlo_es(episodes): # (playerSum, dealerCard, usableAce, action) state_action_values = np.zeros((10, 10, 2, 2)) # initialze counts to 1 to avoid division by 0 state_action_pair_count = np.ones((10, 10, 2, 2)) # behavior policy is greedy def behavior_policy(usable_ace, player_sum, dealer_card): usable_ace = int(usable_ace) player_sum -= 12 dealer_card -= 1 # get argmax of the average returns(s, a) values_ = state_action_values[player_sum, dealer_card, usable_ace, :] / \ state_action_pair_count[player_sum, dealer_card, usable_ace, :] return np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)]) # play for several episodes for episode in tqdm(range(episodes)): # for each episode, use a randomly initialized state and action initial_state = [bool(np.random.choice([0, 1])), np.random.choice(range(12, 22)), np.random.choice(range(1, 11))] initial_action = np.random.choice(ACTIONS) current_policy = behavior_policy if episode else target_policy_player _, reward, trajectory = play(current_policy, initial_state, initial_action) first_visit_check = set() for (usable_ace, player_sum, dealer_card), action in trajectory: usable_ace = int(usable_ace) player_sum -= 12 dealer_card -= 1 state_action = (usable_ace, player_sum, dealer_card, action) if state_action in first_visit_check: continue first_visit_check.add(state_action) # update values of state-action pairs state_action_values[player_sum, dealer_card, usable_ace, action] += reward state_action_pair_count[player_sum, dealer_card, usable_ace, action] += 1 return state_action_values / state_action_pair_count # Monte Carlo Sample with Off-Policy def monte_carlo_off_policy(episodes): initial_state = [True, 13, 2] rhos = [] returns = [] for i in range(0, episodes): _, reward, player_trajectory = play(behavior_policy_player, initial_state=initial_state) # get the importance ratio numerator = 1.0 denominator = 1.0 for (usable_ace, player_sum, dealer_card), action in player_trajectory: if action == target_policy_player(usable_ace, player_sum, dealer_card): denominator *= 0.5 else: numerator = 0.0 break rho = numerator / denominator rhos.append(rho) returns.append(reward) rhos = np.asarray(rhos) returns = np.asarray(returns) weighted_returns = rhos * returns weighted_returns = np.add.accumulate(weighted_returns) rhos = np.add.accumulate(rhos) ordinary_sampling = weighted_returns / np.arange(1, episodes + 1) with np.errstate(divide='ignore',invalid='ignore'): weighted_sampling = np.where(rhos != 0, weighted_returns / rhos, 0) return ordinary_sampling, weighted_sampling def figure_5_1(): states_usable_ace_1, states_no_usable_ace_1 = monte_carlo_on_policy(10000) states_usable_ace_2, states_no_usable_ace_2 = monte_carlo_on_policy(500000) states = [states_usable_ace_1, states_usable_ace_2, states_no_usable_ace_1, states_no_usable_ace_2] titles = ['Usable Ace, 10000 Episodes', 'Usable Ace, 500000 Episodes', 'No Usable Ace, 10000 Episodes', 'No Usable Ace, 500000 Episodes'] _, axes = plt.subplots(2, 2, figsize=(40, 30)) plt.subplots_adjust(wspace=0.1, hspace=0.2) axes = axes.flatten() for state, title, axis in zip(states, titles, axes): fig = sns.heatmap(np.flipud(state), cmap="YlGnBu", ax=axis, xticklabels=range(1, 11), yticklabels=list(reversed(range(12, 22)))) fig.set_ylabel('player sum', fontsize=30) fig.set_xlabel('dealer showing', fontsize=30) fig.set_title(title, fontsize=30) plt.savefig('../images/figure_5_1.png') plt.close() def figure_5_2(): state_action_values = monte_carlo_es(500000) state_value_no_usable_ace = np.max(state_action_values[:, :, 0, :], axis=-1) state_value_usable_ace = np.max(state_action_values[:, :, 1, :], axis=-1) # get the optimal policy action_no_usable_ace = np.argmax(state_action_values[:, :, 0, :], axis=-1) action_usable_ace = np.argmax(state_action_values[:, :, 1, :], axis=-1) images = [action_usable_ace, state_value_usable_ace, action_no_usable_ace, state_value_no_usable_ace] titles = ['Optimal policy with usable Ace', 'Optimal value with usable Ace', 'Optimal policy without usable Ace', 'Optimal value without usable Ace'] _, axes = plt.subplots(2, 2, figsize=(40, 30)) plt.subplots_adjust(wspace=0.1, hspace=0.2) axes = axes.flatten() for image, title, axis in zip(images, titles, axes): fig = sns.heatmap(np.flipud(image), cmap="YlGnBu", ax=axis, xticklabels=range(1, 11), yticklabels=list(reversed(range(12, 22)))) fig.set_ylabel('player sum', fontsize=30) fig.set_xlabel('dealer showing', fontsize=30) fig.set_title(title, fontsize=30) plt.savefig('../images/figure_5_2.png') plt.close() def figure_5_3(): true_value = -0.27726 episodes = 10000 runs = 100 error_ordinary = np.zeros(episodes) error_weighted = np.zeros(episodes) for i in tqdm(range(0, runs)): ordinary_sampling_, weighted_sampling_ = monte_carlo_off_policy(episodes) # get the squared error error_ordinary += np.power(ordinary_sampling_ - true_value, 2) error_weighted += np.power(weighted_sampling_ - true_value, 2) error_ordinary /= runs error_weighted /= runs plt.plot(np.arange(1, episodes + 1), error_ordinary, color='green', label='Ordinary Importance Sampling') plt.plot(np.arange(1, episodes + 1), error_weighted, color='red', label='Weighted Importance Sampling') plt.ylim(-0.1, 5) plt.xlabel('Episodes (log scale)') plt.ylabel(f'Mean square error\n(average over {runs} runs)') plt.xscale('log') plt.legend() plt.savefig('../images/figure_5_3.png') plt.close() if __name__ == '__main__': figure_5_1() figure_5_2() figure_5_3()
true
true
f70f874944a8646dbb751573e99b3ab43f3e5dcf
1,826
py
Python
image_preprocessing.py
kpullak/PlantPhenotyping
a0b5bd68787b0850ad1d4d56cab7767cc4f2dc61
[ "Apache-2.0" ]
null
null
null
image_preprocessing.py
kpullak/PlantPhenotyping
a0b5bd68787b0850ad1d4d56cab7767cc4f2dc61
[ "Apache-2.0" ]
null
null
null
image_preprocessing.py
kpullak/PlantPhenotyping
a0b5bd68787b0850ad1d4d56cab7767cc4f2dc61
[ "Apache-2.0" ]
null
null
null
import os import cv2 source_path = './test_images/' def processImage(filename, mImage): if '2019' in filename: # ---------------------------------- # Remove noise - by applying guassian blur on src image mImage = cv2.GaussianBlur(mImage, (5, 5), cv2.BORDER_DEFAULT) # pink rgb values - 255, 153, 255 # white rgb values - 255, 255, 255 # ghost white values - 248, 248, 255 # mImage = mImage[np.where((mImage == [255, 255, 255]).all(axis=2))] = [255, 153, 255] # working (best performing, descending) - gtruth 55 - 200 (58), 220 (86), 180 (33), 150 (0) mImage[mImage >= 128] = 200 mImage[mImage < 128] = 0 ''' hsvImg = cv2.cvtColor(mImage,cv2.COLOR_BGR2HSV) value = 5 # changeable vValue = hsvImg[..., 2] hsvImg[..., 2] = np.where((255-vValue) < value, 255, vValue + value) ''' # save the processed image with a new file name new_name = source_path + os.path.splitext(filename)[0] + '_processed.jpg' cv2.imwrite(new_name, mImage) else: pass for filename in os.listdir(source_path): if filename.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')): # read the image img = cv2.imread(os.path.join(source_path, filename)) if img is not None: processImage(filename, img) for filename in os.listdir(source_path): if filename.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')): if '_processed' in filename: to_remove = filename.replace('_processed', '') to_remove_file = os.path.join(source_path, to_remove) os.remove(to_remove_file) for filename in os.listdir(source_path): if filename.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')): if '_processed' in filename: new_name = filename.replace('_processed', '') os.rename(os.path.join(source_path, filename), os.path.join(source_path, new_name))
33.814815
93
0.646769
import os import cv2 source_path = './test_images/' def processImage(filename, mImage): if '2019' in filename: mImage = cv2.GaussianBlur(mImage, (5, 5), cv2.BORDER_DEFAULT) mImage[mImage >= 128] = 200 mImage[mImage < 128] = 0 new_name = source_path + os.path.splitext(filename)[0] + '_processed.jpg' cv2.imwrite(new_name, mImage) else: pass for filename in os.listdir(source_path): if filename.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')): img = cv2.imread(os.path.join(source_path, filename)) if img is not None: processImage(filename, img) for filename in os.listdir(source_path): if filename.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')): if '_processed' in filename: to_remove = filename.replace('_processed', '') to_remove_file = os.path.join(source_path, to_remove) os.remove(to_remove_file) for filename in os.listdir(source_path): if filename.lower().endswith(('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')): if '_processed' in filename: new_name = filename.replace('_processed', '') os.rename(os.path.join(source_path, filename), os.path.join(source_path, new_name))
true
true
f70f87745a9dddf3fca3ea25b23a3a50d07f934b
765
py
Python
kur/engine/__init__.py
greedyuser/kur
ba6588ebfa5dec66d1e462c180618cc115fd38ef
[ "Apache-2.0" ]
867
2016-12-05T20:24:23.000Z
2022-02-18T09:07:14.000Z
kur/engine/__init__.py
greedyuser/kur
ba6588ebfa5dec66d1e462c180618cc115fd38ef
[ "Apache-2.0" ]
90
2017-01-14T22:46:23.000Z
2021-02-09T13:32:27.000Z
kur/engine/__init__.py
greedyuser/kur
ba6588ebfa5dec66d1e462c180618cc115fd38ef
[ "Apache-2.0" ]
135
2017-01-18T19:21:20.000Z
2022-01-24T16:57:59.000Z
""" Copyright 2016 Deepgram Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from .engine import Engine, ScopeStack from .passthrough_engine import PassthroughEngine from .jinja_engine import JinjaEngine ### EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF
34.772727
79
0.789542
from .engine import Engine, ScopeStack from .passthrough_engine import PassthroughEngine from .jinja_engine import JinjaEngine
true
true
f70f8807470cc0430f7ec49eed3f61f2abc42cb2
14,684
py
Python
sphinx_ext/design_choice.py
friendly-traceback/docs
413a1d6980b605e2305d5b0ab5757f098a1700c1
[ "CC0-1.0" ]
null
null
null
sphinx_ext/design_choice.py
friendly-traceback/docs
413a1d6980b605e2305d5b0ab5757f098a1700c1
[ "CC0-1.0" ]
3
2021-07-17T17:19:47.000Z
2022-02-01T13:39:12.000Z
sphinx_ext/design_choice.py
friendly-traceback/docs
413a1d6980b605e2305d5b0ab5757f098a1700c1
[ "CC0-1.0" ]
1
2021-07-11T12:59:46.000Z
2021-07-11T12:59:46.000Z
""" design_choice ~~~~~~~~~~~~~~ IMPORTANT: This is a straightforward adaptation of sphinx's todo extension done by search/replace. Allow design_choices to be inserted into your documentation. Inclusion of design_choices can be switched of by a configuration variable. The design_choice_list directive collects all design_choices of your project and lists them along with a backlink to the original location. :copyright: Copyright 2007-2021 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import warnings from typing import Any, Dict, Iterable, List, Tuple, cast from docutils import nodes from docutils.nodes import Element, Node from docutils.parsers.rst import directives from docutils.parsers.rst.directives.admonitions import BaseAdmonition import sphinx from sphinx import addnodes from sphinx.application import Sphinx # from sphinx.deprecation import RemovedInSphinx40Warning from sphinx.domains import Domain from sphinx.environment import BuildEnvironment from sphinx.errors import NoUri from sphinx.locale import _, __ from sphinx.util import logging, texescape from sphinx.util.docutils import SphinxDirective, new_document from sphinx.util.nodes import make_refnode from sphinx.writers.html import HTMLTranslator from sphinx.writers.latex import LaTeXTranslator logger = logging.getLogger(__name__) class design_choice_node(nodes.Admonition, nodes.Element): pass class design_choice_list(nodes.General, nodes.Element): pass class DesignChoice(BaseAdmonition, SphinxDirective): """ A design_choice entry, displayed (if configured) in the form of an admonition. """ node_class = design_choice_node has_content = True required_arguments = 0 optional_arguments = 0 final_argument_whitespace = False option_spec = { "class": directives.class_option, "name": directives.unchanged, "title": directives.unchanged, "prefix": directives.unchanged, } def run(self) -> List[Node]: if not self.options.get("class"): self.options["class"] = ["admonition-design_choice"] (design_choice,) = super().run() # type: Tuple[Node] if isinstance(design_choice, nodes.system_message): return [design_choice] elif isinstance(design_choice, design_choice_node): prefix = '' if "prefix" in self.options: prefix = self.options["prefix"] + " " design_choice.insert( 0, nodes.title(text=prefix + _("Design Choice: ") + self.options["title"]) ) design_choice["docname"] = self.env.docname self.add_name(design_choice) self.set_source_info(design_choice) self.state.document.note_explicit_target(design_choice) return [design_choice] else: raise RuntimeError # never reached here class DesignChoiceDomain(Domain): name = "design_choice" label = "design_choice" @property def design_choices(self) -> Dict[str, List[design_choice_node]]: return self.data.setdefault("design_choices", {}) def clear_doc(self, docname: str) -> None: self.design_choices.pop(docname, None) def merge_domaindata(self, docnames: List[str], otherdata: Dict) -> None: for docname in docnames: self.design_choices[docname] = otherdata["design_choices"][docname] def process_doc( self, env: BuildEnvironment, docname: str, document: nodes.document ) -> None: design_choices = self.design_choices.setdefault(docname, []) for design_choice in document.traverse(design_choice_node): env.app.emit("design_choice-defined", design_choice) design_choices.append(design_choice) if env.config.design_choice_emit_warnings: logger.warning( __("TODO entry found: %s"), design_choice[1].astext(), location=design_choice, ) def process_design_choices(app: Sphinx, doctree: nodes.document) -> None: # warnings.warn( # "process_design_choices() is deprecated.", # RemovedInSphinx40Warning, # stacklevel=2, # ) # collect all design_choices in the environment # this is not done in the directive itself because it some transformations # must have already been run, e.g. substitutions env = app.builder.env if not hasattr(env, "design_choice_all_design_choices"): env.design_choice_all_design_choices = [] # type: ignore for node in doctree.traverse(design_choice_node): app.events.emit("design_choice-defined", node) newnode = node.deepcopy() newnode["ids"] = [] env.design_choice_all_design_choices.append( { # type: ignore "docname": env.docname, "source": node.source or env.doc2path(env.docname), "lineno": node.line, "design_choice": newnode, "target": node["ids"][0], } ) if env.config.design_choice_emit_warnings: label = cast(nodes.Element, node[1]) logger.warning(__("TODO entry found: %s"), label.astext(), location=node) class DesignChoiceList(SphinxDirective): """ A list of all design_choice entries. """ has_content = False required_arguments = 0 optional_arguments = 0 final_argument_whitespace = False option_spec = {} # type: Dict def run(self) -> List[Node]: # Simply insert an empty design_choice_list node which will be replaced later # when process_design_choice_nodes is called return [design_choice_list("")] class DesignChoiceListProcessor: def __init__(self, app: Sphinx, doctree: nodes.document, docname: str) -> None: self.builder = app.builder self.config = app.config self.env = app.env self.domain = cast(DesignChoiceDomain, app.env.get_domain("design_choice")) self.document = new_document("") self.process(doctree, docname) def process(self, doctree: nodes.document, docname: str) -> None: design_choices = sum( self.domain.design_choices.values(), [] ) # type: List[design_choice_node] for node in doctree.traverse(design_choice_list): if not self.config.design_choice_include_design_choices: node.parent.remove(node) continue if node.get("ids"): content = [nodes.target()] # type: List[Element] else: content = [] for design_choice in design_choices: # Create a copy of the design_choice node new_design_choice = design_choice.deepcopy() new_design_choice["ids"].clear() self.resolve_reference(new_design_choice, docname) content.append(new_design_choice) design_choice_ref = self.create_design_choice_reference( design_choice, docname ) content.append(design_choice_ref) node.replace_self(content) def create_design_choice_reference( self, design_choice: design_choice_node, docname: str ) -> nodes.paragraph: if self.config.design_choice_link_only: description = _("<<original entry>>") else: description = _("(The <<original entry>> is located in %s, line %d.)") % ( design_choice.source, design_choice.line, ) prefix = description[: description.find("<<")] suffix = description[description.find(">>") + 2 :] para = nodes.paragraph(classes=["design_choice-source"]) para += nodes.Text(prefix, prefix) # Create a reference linktext = nodes.emphasis(_("original entry"), _("original entry")) reference = nodes.reference("", "", linktext, internal=True) try: reference["refuri"] = self.builder.get_relative_uri( docname, design_choice["docname"] ) reference["refuri"] += "#" + design_choice["ids"][0] except NoUri: # ignore if no URI can be determined, e.g. for LaTeX output pass para += reference para += nodes.Text(suffix, suffix) return para def resolve_reference( self, design_choice: design_choice_node, docname: str ) -> None: """Resolve references in the design_choice content.""" for node in design_choice.traverse(addnodes.pending_xref): if "refdoc" in node: node["refdoc"] = docname # Note: To resolve references, it is needed to wrap it with document node self.document += design_choice self.env.resolve_references(self.document, docname, self.builder) self.document.remove(design_choice) def process_design_choice_nodes( app: Sphinx, doctree: nodes.document, fromdocname: str ) -> None: """Replace all design_choice_list nodes with a list of the collected design_choices. Augment each design_choice with a backlink to the original location. """ # warnings.warn( # "process_design_choice_nodes() is deprecated.", # RemovedInSphinx40Warning, # stacklevel=2, # ) domain = cast(DesignChoiceDomain, app.env.get_domain("design_choice")) design_choices = sum( domain.design_choices.values(), [] ) # type: List[design_choice_node] for node in doctree.traverse(design_choice_list): if node.get("ids"): content = [nodes.target()] # type: List[Element] else: content = [] if not app.config["design_choice_include_design_choices"]: node.replace_self(content) continue for design_choice_info in design_choices: para = nodes.paragraph(classes=["design_choice-source"]) if app.config["design_choice_link_only"]: description = _("<<original entry>>") else: description = _( "(The <<original entry>> is located in %s, line %d.)" ) % (design_choice_info.source, design_choice_info.line) desc1 = description[: description.find("<<")] desc2 = description[description.find(">>") + 2 :] para += nodes.Text(desc1, desc1) # Create a reference innernode = nodes.emphasis(_("original entry"), _("original entry")) try: para += make_refnode( app.builder, fromdocname, design_choice_info["docname"], design_choice_info["ids"][0], innernode, ) except NoUri: # ignore if no URI can be determined, e.g. for LaTeX output pass para += nodes.Text(desc2, desc2) design_choice_entry = design_choice_info.deepcopy() design_choice_entry["ids"].clear() # (Recursively) resolve references in the design_choice content app.env.resolve_references(design_choice_entry, design_choice_info["docname"], app.builder) # type: ignore # NOQA # Insert into the design_choice_list content.append(design_choice_entry) content.append(para) node.replace_self(content) def purge_design_choices(app: Sphinx, env: BuildEnvironment, docname: str) -> None: # warnings.warn( # "purge_design_choices() is deprecated.", RemovedInSphinx40Warning, stacklevel=2 # ) if not hasattr(env, "design_choice_all_design_choices"): return env.design_choice_all_design_choices = [ design_choice for design_choice in env.design_choice_all_design_choices # type: ignore if design_choice["docname"] != docname ] def merge_info( app: Sphinx, env: BuildEnvironment, docnames: Iterable[str], other: BuildEnvironment ) -> None: # warnings.warn("merge_info() is deprecated.", RemovedInSphinx40Warning, stacklevel=2) if not hasattr(other, "design_choice_all_design_choices"): return if not hasattr(env, "design_choice_all_design_choices"): env.design_choice_all_design_choices = [] # type: ignore env.design_choice_all_design_choices.extend(other.design_choice_all_design_choices) # type: ignore def visit_design_choice_node(self: HTMLTranslator, node: design_choice_node) -> None: if self.config.design_choice_include_design_choices: self.visit_admonition(node) else: raise nodes.SkipNode def depart_design_choice_node(self: HTMLTranslator, node: design_choice_node) -> None: self.depart_admonition(node) def latex_visit_design_choice_node( self: LaTeXTranslator, node: design_choice_node ) -> None: if self.config.design_choice_include_design_choices: self.body.append("\n\\begin{sphinxadmonition}{note}{") self.body.append(self.hypertarget_to(node)) title_node = cast(nodes.title, node[0]) title = texescape.escape(title_node.astext(), self.config.latex_engine) self.body.append("%s:}" % title) node.pop(0) else: raise nodes.SkipNode def latex_depart_design_choice_node( self: LaTeXTranslator, node: design_choice_node ) -> None: self.body.append("\\end{sphinxadmonition}\n") def setup(app: Sphinx) -> Dict[str, Any]: app.add_event("design_choice-defined") app.add_config_value("design_choice_include_design_choices", False, "html") app.add_config_value("design_choice_link_only", False, "html") app.add_config_value("design_choice_emit_warnings", False, "html") app.add_node(design_choice_list) app.add_node( design_choice_node, html=(visit_design_choice_node, depart_design_choice_node), latex=(latex_visit_design_choice_node, latex_depart_design_choice_node), text=(visit_design_choice_node, depart_design_choice_node), man=(visit_design_choice_node, depart_design_choice_node), texinfo=(visit_design_choice_node, depart_design_choice_node), ) app.add_directive("design_choice", DesignChoice) app.add_directive("design_choice_list", DesignChoiceList) app.add_domain(DesignChoiceDomain) app.connect("doctree-resolved", DesignChoiceListProcessor) return { "version": sphinx.__display_version__, "env_version": 2, "parallel_read_safe": True, }
36.078624
127
0.649346
import warnings from typing import Any, Dict, Iterable, List, Tuple, cast from docutils import nodes from docutils.nodes import Element, Node from docutils.parsers.rst import directives from docutils.parsers.rst.directives.admonitions import BaseAdmonition import sphinx from sphinx import addnodes from sphinx.application import Sphinx from sphinx.domains import Domain from sphinx.environment import BuildEnvironment from sphinx.errors import NoUri from sphinx.locale import _, __ from sphinx.util import logging, texescape from sphinx.util.docutils import SphinxDirective, new_document from sphinx.util.nodes import make_refnode from sphinx.writers.html import HTMLTranslator from sphinx.writers.latex import LaTeXTranslator logger = logging.getLogger(__name__) class design_choice_node(nodes.Admonition, nodes.Element): pass class design_choice_list(nodes.General, nodes.Element): pass class DesignChoice(BaseAdmonition, SphinxDirective): node_class = design_choice_node has_content = True required_arguments = 0 optional_arguments = 0 final_argument_whitespace = False option_spec = { "class": directives.class_option, "name": directives.unchanged, "title": directives.unchanged, "prefix": directives.unchanged, } def run(self) -> List[Node]: if not self.options.get("class"): self.options["class"] = ["admonition-design_choice"] (design_choice,) = super().run() if isinstance(design_choice, nodes.system_message): return [design_choice] elif isinstance(design_choice, design_choice_node): prefix = '' if "prefix" in self.options: prefix = self.options["prefix"] + " " design_choice.insert( 0, nodes.title(text=prefix + _("Design Choice: ") + self.options["title"]) ) design_choice["docname"] = self.env.docname self.add_name(design_choice) self.set_source_info(design_choice) self.state.document.note_explicit_target(design_choice) return [design_choice] else: raise RuntimeError class DesignChoiceDomain(Domain): name = "design_choice" label = "design_choice" @property def design_choices(self) -> Dict[str, List[design_choice_node]]: return self.data.setdefault("design_choices", {}) def clear_doc(self, docname: str) -> None: self.design_choices.pop(docname, None) def merge_domaindata(self, docnames: List[str], otherdata: Dict) -> None: for docname in docnames: self.design_choices[docname] = otherdata["design_choices"][docname] def process_doc( self, env: BuildEnvironment, docname: str, document: nodes.document ) -> None: design_choices = self.design_choices.setdefault(docname, []) for design_choice in document.traverse(design_choice_node): env.app.emit("design_choice-defined", design_choice) design_choices.append(design_choice) if env.config.design_choice_emit_warnings: logger.warning( __("TODO entry found: %s"), design_choice[1].astext(), location=design_choice, ) def process_design_choices(app: Sphinx, doctree: nodes.document) -> None: env = app.builder.env if not hasattr(env, "design_choice_all_design_choices"): env.design_choice_all_design_choices = [] for node in doctree.traverse(design_choice_node): app.events.emit("design_choice-defined", node) newnode = node.deepcopy() newnode["ids"] = [] env.design_choice_all_design_choices.append( { "docname": env.docname, "source": node.source or env.doc2path(env.docname), "lineno": node.line, "design_choice": newnode, "target": node["ids"][0], } ) if env.config.design_choice_emit_warnings: label = cast(nodes.Element, node[1]) logger.warning(__("TODO entry found: %s"), label.astext(), location=node) class DesignChoiceList(SphinxDirective): has_content = False required_arguments = 0 optional_arguments = 0 final_argument_whitespace = False option_spec = {} def run(self) -> List[Node]: return [design_choice_list("")] class DesignChoiceListProcessor: def __init__(self, app: Sphinx, doctree: nodes.document, docname: str) -> None: self.builder = app.builder self.config = app.config self.env = app.env self.domain = cast(DesignChoiceDomain, app.env.get_domain("design_choice")) self.document = new_document("") self.process(doctree, docname) def process(self, doctree: nodes.document, docname: str) -> None: design_choices = sum( self.domain.design_choices.values(), [] ) for node in doctree.traverse(design_choice_list): if not self.config.design_choice_include_design_choices: node.parent.remove(node) continue if node.get("ids"): content = [nodes.target()] else: content = [] for design_choice in design_choices: new_design_choice = design_choice.deepcopy() new_design_choice["ids"].clear() self.resolve_reference(new_design_choice, docname) content.append(new_design_choice) design_choice_ref = self.create_design_choice_reference( design_choice, docname ) content.append(design_choice_ref) node.replace_self(content) def create_design_choice_reference( self, design_choice: design_choice_node, docname: str ) -> nodes.paragraph: if self.config.design_choice_link_only: description = _("<<original entry>>") else: description = _("(The <<original entry>> is located in %s, line %d.)") % ( design_choice.source, design_choice.line, ) prefix = description[: description.find("<<")] suffix = description[description.find(">>") + 2 :] para = nodes.paragraph(classes=["design_choice-source"]) para += nodes.Text(prefix, prefix) linktext = nodes.emphasis(_("original entry"), _("original entry")) reference = nodes.reference("", "", linktext, internal=True) try: reference["refuri"] = self.builder.get_relative_uri( docname, design_choice["docname"] ) reference["refuri"] += "#" + design_choice["ids"][0] except NoUri: pass para += reference para += nodes.Text(suffix, suffix) return para def resolve_reference( self, design_choice: design_choice_node, docname: str ) -> None: for node in design_choice.traverse(addnodes.pending_xref): if "refdoc" in node: node["refdoc"] = docname self.document += design_choice self.env.resolve_references(self.document, docname, self.builder) self.document.remove(design_choice) def process_design_choice_nodes( app: Sphinx, doctree: nodes.document, fromdocname: str ) -> None: domain = cast(DesignChoiceDomain, app.env.get_domain("design_choice")) design_choices = sum( domain.design_choices.values(), [] ) for node in doctree.traverse(design_choice_list): if node.get("ids"): content = [nodes.target()] else: content = [] if not app.config["design_choice_include_design_choices"]: node.replace_self(content) continue for design_choice_info in design_choices: para = nodes.paragraph(classes=["design_choice-source"]) if app.config["design_choice_link_only"]: description = _("<<original entry>>") else: description = _( "(The <<original entry>> is located in %s, line %d.)" ) % (design_choice_info.source, design_choice_info.line) desc1 = description[: description.find("<<")] desc2 = description[description.find(">>") + 2 :] para += nodes.Text(desc1, desc1) innernode = nodes.emphasis(_("original entry"), _("original entry")) try: para += make_refnode( app.builder, fromdocname, design_choice_info["docname"], design_choice_info["ids"][0], innernode, ) except NoUri: pass para += nodes.Text(desc2, desc2) design_choice_entry = design_choice_info.deepcopy() design_choice_entry["ids"].clear() app.env.resolve_references(design_choice_entry, design_choice_info["docname"], app.builder) content.append(design_choice_entry) content.append(para) node.replace_self(content) def purge_design_choices(app: Sphinx, env: BuildEnvironment, docname: str) -> None: if not hasattr(env, "design_choice_all_design_choices"): return env.design_choice_all_design_choices = [ design_choice for design_choice in env.design_choice_all_design_choices if design_choice["docname"] != docname ] def merge_info( app: Sphinx, env: BuildEnvironment, docnames: Iterable[str], other: BuildEnvironment ) -> None: if not hasattr(other, "design_choice_all_design_choices"): return if not hasattr(env, "design_choice_all_design_choices"): env.design_choice_all_design_choices = [] env.design_choice_all_design_choices.extend(other.design_choice_all_design_choices) def visit_design_choice_node(self: HTMLTranslator, node: design_choice_node) -> None: if self.config.design_choice_include_design_choices: self.visit_admonition(node) else: raise nodes.SkipNode def depart_design_choice_node(self: HTMLTranslator, node: design_choice_node) -> None: self.depart_admonition(node) def latex_visit_design_choice_node( self: LaTeXTranslator, node: design_choice_node ) -> None: if self.config.design_choice_include_design_choices: self.body.append("\n\\begin{sphinxadmonition}{note}{") self.body.append(self.hypertarget_to(node)) title_node = cast(nodes.title, node[0]) title = texescape.escape(title_node.astext(), self.config.latex_engine) self.body.append("%s:}" % title) node.pop(0) else: raise nodes.SkipNode def latex_depart_design_choice_node( self: LaTeXTranslator, node: design_choice_node ) -> None: self.body.append("\\end{sphinxadmonition}\n") def setup(app: Sphinx) -> Dict[str, Any]: app.add_event("design_choice-defined") app.add_config_value("design_choice_include_design_choices", False, "html") app.add_config_value("design_choice_link_only", False, "html") app.add_config_value("design_choice_emit_warnings", False, "html") app.add_node(design_choice_list) app.add_node( design_choice_node, html=(visit_design_choice_node, depart_design_choice_node), latex=(latex_visit_design_choice_node, latex_depart_design_choice_node), text=(visit_design_choice_node, depart_design_choice_node), man=(visit_design_choice_node, depart_design_choice_node), texinfo=(visit_design_choice_node, depart_design_choice_node), ) app.add_directive("design_choice", DesignChoice) app.add_directive("design_choice_list", DesignChoiceList) app.add_domain(DesignChoiceDomain) app.connect("doctree-resolved", DesignChoiceListProcessor) return { "version": sphinx.__display_version__, "env_version": 2, "parallel_read_safe": True, }
true
true
f70f8831567b456197e476ae0d16b0a4367f7af6
4,769
py
Python
src/alias/azext_alias/_validators.py
PoisonousJohn/azure-cli-extensions
cf0d7b6c031ba844dd5e43cc4e07533b85ef1269
[ "MIT" ]
1
2018-09-22T14:53:04.000Z
2018-09-22T14:53:04.000Z
src/alias/azext_alias/_validators.py
PoisonousJohn/azure-cli-extensions
cf0d7b6c031ba844dd5e43cc4e07533b85ef1269
[ "MIT" ]
null
null
null
src/alias/azext_alias/_validators.py
PoisonousJohn/azure-cli-extensions
cf0d7b6c031ba844dd5e43cc4e07533b85ef1269
[ "MIT" ]
null
null
null
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- import re import shlex from knack.util import CLIError import azext_alias from azext_alias.argument import get_placeholders from azext_alias._const import ( COLLISION_CHECK_LEVEL_DEPTH, INVALID_ALIAS_COMMAND_ERROR, EMPTY_ALIAS_ERROR, INVALID_STARTING_CHAR_ERROR, INCONSISTENT_ARG_ERROR, COMMAND_LVL_ERROR ) from azext_alias.alias import AliasManager def process_alias_create_namespace(namespace): """ Validate input arguments when the user invokes 'az alias create'. Args: namespace: argparse namespace object. """ _validate_alias_name(namespace.alias_name) _validate_alias_command(namespace.alias_command) _validate_alias_command_level(namespace.alias_name, namespace.alias_command) _validate_pos_args_syntax(namespace.alias_name, namespace.alias_command) def _validate_alias_name(alias_name): """ Check if the alias name is valid. Args: alias_name: The name of the alias to validate. """ if not alias_name: raise CLIError(EMPTY_ALIAS_ERROR) if not re.match('^[a-zA-Z]', alias_name): raise CLIError(INVALID_STARTING_CHAR_ERROR.format(alias_name[0])) def _validate_alias_command(alias_command): """ Check if the alias command is valid. Args: alias_command: The command to validate. """ if not alias_command: raise CLIError(EMPTY_ALIAS_ERROR) # Boundary index is the index at which named argument or positional argument starts split_command = shlex.split(alias_command) boundary_index = len(split_command) for i, subcommand in enumerate(split_command): if not re.match('^[a-z]', subcommand.lower()) or i > COLLISION_CHECK_LEVEL_DEPTH: boundary_index = i break # Extract possible CLI commands and validate command_to_validate = ' '.join(split_command[:boundary_index]).lower() for command in azext_alias.cached_reserved_commands: if re.match(r'([a-z\-]*\s)*{}($|\s)'.format(command_to_validate), command): return raise CLIError(INVALID_ALIAS_COMMAND_ERROR.format(command_to_validate if command_to_validate else alias_command)) def _validate_pos_args_syntax(alias_name, alias_command): """ Check if the positional argument syntax is valid in alias name and alias command. Args: alias_name: The name of the alias to validate. alias_command: The command to validate. """ pos_args_from_alias = get_placeholders(alias_name) # Split by '|' to extract positional argument name from Jinja filter (e.g. {{ arg_name | upper }}) # Split by '.' to extract positional argument name from function call (e.g. {{ arg_name.split()[0] }}) pos_args_from_command = [x.split('|')[0].split('.')[0].strip() for x in get_placeholders(alias_command)] if set(pos_args_from_alias) != set(pos_args_from_command): arg_diff = set(pos_args_from_alias) ^ set(pos_args_from_command) raise CLIError(INCONSISTENT_ARG_ERROR.format('' if len(arg_diff) == 1 else 's', arg_diff, 'is' if len(arg_diff) == 1 else 'are')) def _validate_alias_command_level(alias, command): """ Make sure that if the alias is a reserved command, the command that the alias points to in the command tree does not conflict in levels. e.g. 'dns' -> 'network dns' is valid because dns is a level 2 command and network dns starts at level 1. However, 'list' -> 'show' is not valid because list and show are both reserved commands at level 2. Args: alias: The name of the alias. command: The command that the alias points to. """ alias_collision_table = AliasManager.build_collision_table([alias], azext_alias.cached_reserved_commands) # Alias is not a reserved command, so it can point to any command if not alias_collision_table: return command_collision_table = AliasManager.build_collision_table([command], azext_alias.cached_reserved_commands) alias_collision_levels = alias_collision_table.get(alias.split()[0], []) command_collision_levels = command_collision_table.get(command.split()[0], []) # Check if there is a command level conflict if set(alias_collision_levels) & set(command_collision_levels): raise CLIError(COMMAND_LVL_ERROR.format(alias, command))
38.772358
117
0.681275
import re import shlex from knack.util import CLIError import azext_alias from azext_alias.argument import get_placeholders from azext_alias._const import ( COLLISION_CHECK_LEVEL_DEPTH, INVALID_ALIAS_COMMAND_ERROR, EMPTY_ALIAS_ERROR, INVALID_STARTING_CHAR_ERROR, INCONSISTENT_ARG_ERROR, COMMAND_LVL_ERROR ) from azext_alias.alias import AliasManager def process_alias_create_namespace(namespace): _validate_alias_name(namespace.alias_name) _validate_alias_command(namespace.alias_command) _validate_alias_command_level(namespace.alias_name, namespace.alias_command) _validate_pos_args_syntax(namespace.alias_name, namespace.alias_command) def _validate_alias_name(alias_name): if not alias_name: raise CLIError(EMPTY_ALIAS_ERROR) if not re.match('^[a-zA-Z]', alias_name): raise CLIError(INVALID_STARTING_CHAR_ERROR.format(alias_name[0])) def _validate_alias_command(alias_command): if not alias_command: raise CLIError(EMPTY_ALIAS_ERROR) split_command = shlex.split(alias_command) boundary_index = len(split_command) for i, subcommand in enumerate(split_command): if not re.match('^[a-z]', subcommand.lower()) or i > COLLISION_CHECK_LEVEL_DEPTH: boundary_index = i break command_to_validate = ' '.join(split_command[:boundary_index]).lower() for command in azext_alias.cached_reserved_commands: if re.match(r'([a-z\-]*\s)*{}($|\s)'.format(command_to_validate), command): return raise CLIError(INVALID_ALIAS_COMMAND_ERROR.format(command_to_validate if command_to_validate else alias_command)) def _validate_pos_args_syntax(alias_name, alias_command): pos_args_from_alias = get_placeholders(alias_name) pos_args_from_command = [x.split('|')[0].split('.')[0].strip() for x in get_placeholders(alias_command)] if set(pos_args_from_alias) != set(pos_args_from_command): arg_diff = set(pos_args_from_alias) ^ set(pos_args_from_command) raise CLIError(INCONSISTENT_ARG_ERROR.format('' if len(arg_diff) == 1 else 's', arg_diff, 'is' if len(arg_diff) == 1 else 'are')) def _validate_alias_command_level(alias, command): alias_collision_table = AliasManager.build_collision_table([alias], azext_alias.cached_reserved_commands) if not alias_collision_table: return command_collision_table = AliasManager.build_collision_table([command], azext_alias.cached_reserved_commands) alias_collision_levels = alias_collision_table.get(alias.split()[0], []) command_collision_levels = command_collision_table.get(command.split()[0], []) if set(alias_collision_levels) & set(command_collision_levels): raise CLIError(COMMAND_LVL_ERROR.format(alias, command))
true
true
f70f8a2f41f8fdb18d9b0a96c1d23e7abc0f59f7
1,752
py
Python
python/lvmieb/exceptions.py
sdss/OsuActor
bf3d92448e07cefc4c1346db04b1eb9b7e00dd41
[ "BSD-3-Clause" ]
2
2021-07-30T04:38:30.000Z
2021-08-13T13:34:04.000Z
python/lvmieb/exceptions.py
sdss/OsuActor
bf3d92448e07cefc4c1346db04b1eb9b7e00dd41
[ "BSD-3-Clause" ]
4
2021-06-03T12:01:00.000Z
2021-08-14T09:34:12.000Z
python/lvmieb/exceptions.py
sdss/osuactor
bf3d92448e07cefc4c1346db04b1eb9b7e00dd41
[ "BSD-3-Clause" ]
2
2021-05-04T06:19:39.000Z
2021-05-11T08:35:02.000Z
# -*- coding: utf-8 -*- # # Licensed under a 3-clause BSD license. # # @Author: Changgon Kim, Mingeyong Yang, Taeeun Kim # @Date: 2021-04-26 17:14 # @Last modified by: Changgon Kim from __future__ import absolute_import, division, print_function class LvmIebError(Exception): """A custom core LvmIeb exception""" def __init__(self, message=None): message = "There has been an error" if not message else message super(LvmIebError, self).__init__(message) class LvmIebNotImplemented(LvmIebError): """A custom exception for not yet implemented features.""" def __init__(self, message=None): message = "This feature is not implemented yet." if not message else message super(LvmIebNotImplemented, self).__init__(message) class LvmIebAPIError(LvmIebError): """A custom exception for API errors""" def __init__(self, message=None): if not message: message = "Error with Http Response from LvmIeb API" else: message = "Http response error from LvmIeb API. {0}".format(message) super(LvmIebAPIError, self).__init__(message) class LvmIebApiAuthError(LvmIebAPIError): """A custom exception for API authentication errors""" pass class LvmIebMissingDependency(LvmIebError): """A custom exception for missing dependencies.""" pass class LvmIebWarning(Warning): """Base warning for LvmIeb.""" class LvmIebUserWarning(UserWarning, LvmIebWarning): """The primary warning class.""" pass class LvmIebSkippedTestWarning(LvmIebUserWarning): """A warning for when a test is skipped.""" pass class LvmIebDeprecationWarning(LvmIebUserWarning): """A warning for deprecated features.""" pass
23.052632
84
0.695205
from __future__ import absolute_import, division, print_function class LvmIebError(Exception): def __init__(self, message=None): message = "There has been an error" if not message else message super(LvmIebError, self).__init__(message) class LvmIebNotImplemented(LvmIebError): def __init__(self, message=None): message = "This feature is not implemented yet." if not message else message super(LvmIebNotImplemented, self).__init__(message) class LvmIebAPIError(LvmIebError): def __init__(self, message=None): if not message: message = "Error with Http Response from LvmIeb API" else: message = "Http response error from LvmIeb API. {0}".format(message) super(LvmIebAPIError, self).__init__(message) class LvmIebApiAuthError(LvmIebAPIError): pass class LvmIebMissingDependency(LvmIebError): pass class LvmIebWarning(Warning): class LvmIebUserWarning(UserWarning, LvmIebWarning): pass class LvmIebSkippedTestWarning(LvmIebUserWarning): pass class LvmIebDeprecationWarning(LvmIebUserWarning): pass
true
true
f70f8a6fdb098ef333f9170579450717e8ff2c68
12,261
py
Python
common/manager.py
hxwork/OMNet
be88a734e7327def365e1875bbc7cd2fea1539b0
[ "MIT" ]
null
null
null
common/manager.py
hxwork/OMNet
be88a734e7327def365e1875bbc7cd2fea1539b0
[ "MIT" ]
null
null
null
common/manager.py
hxwork/OMNet
be88a734e7327def365e1875bbc7cd2fea1539b0
[ "MIT" ]
1
2021-11-14T12:56:40.000Z
2021-11-14T12:56:40.000Z
import os from collections import defaultdict import numpy as np import torch from termcolor import colored from torch.utils.tensorboard import SummaryWriter from common import utils class Manager(): def __init__(self, model, optimizer, scheduler, params, dataloaders, logger): # params status self.params = params self.model = model self.optimizer = optimizer self.scheduler = scheduler self.dataloaders = dataloaders self.logger = logger self.epoch = 0 self.step = 0 self.best_val_score = np.inf self.cur_val_score = np.inf self.best_test_score = np.inf self.cur_test_score = np.inf # train status self.train_status = defaultdict(utils.AverageMeter) # val status self.val_status = defaultdict(utils.AverageMeter) # test status self.test_status = defaultdict(utils.AverageMeter) # model status self.loss_status = defaultdict(utils.AverageMeter) # init local tensorboard and html self.init_tb_and_html() def init_tb_and_html(self): # tensorboard loss local_tb_dir = os.path.join(self.params.model_dir, "summary/loss") os.makedirs(local_tb_dir, exist_ok=True) self.local_loss_writter = SummaryWriter(log_dir=local_tb_dir) # tensorboard metric local_tb_dir = os.path.join(self.params.model_dir, "summary/metric") os.makedirs(local_tb_dir, exist_ok=True) self.local_metric_writter = SummaryWriter(log_dir=local_tb_dir) # html local_html_dir = os.path.join(self.params.model_dir, "summary/html") os.makedirs(local_html_dir, exist_ok=True) self.local_html_dir = local_html_dir def update_step(self): self.step += 1 def update_epoch(self): self.epoch += 1 def update_loss_status(self, loss, batch_size): for k, v in loss.items(): self.loss_status[k].update(val=v.item(), num=batch_size) def update_metric_status(self, metrics, split, batch_size): if split == "val": for k, v in metrics.items(): self.val_status[k].update(val=v.item(), num=batch_size) self.cur_val_score = self.val_status[self.params.major_metric].avg elif split == "test": for k, v in metrics.items(): self.test_status[k].update(val=v.item(), num=batch_size) self.cur_test_score = self.test_status[self.params.major_metric].avg else: raise ValueError("Wrong eval type: {}".format(split)) def summarize_metric_status(self, metrics, split): if split == "val": for k in metrics: if k.endswith('MSE'): self.val_status[k[:-3] + 'RMSE'].set(val=np.sqrt(self.val_status[k].avg)) else: continue elif split == "test": for k in metrics: if k.endswith('MSE'): self.test_status[k[:-3] + 'RMSE'].set(val=np.sqrt(self.test_status[k].avg)) else: continue else: raise ValueError("Wrong eval type: {}".format(split)) def reset_loss_status(self): for k, v in self.loss_status.items(): self.loss_status[k].reset() def reset_metric_status(self, split): if split == "val": for k, v in self.val_status.items(): self.val_status[k].reset() elif split == "test": for k, v in self.test_status.items(): self.test_status[k].reset() else: raise ValueError("Wrong split string: {}".format(split)) def print_train_info(self): exp_name = self.params.model_dir.split('/')[-1] print_str = "{} Epoch: {:4d}, lr={:.4f} ".format(exp_name, self.epoch, self.scheduler.get_last_lr()[0]) print_str += "total loss: %.4f(%.4f)" % (self.loss_status['total'].val, self.loss_status['total'].avg) return print_str def print_metrics(self, split, title="Eval", color="red", only_best=False): if split == "val": metric_status = self.val_status is_best = self.cur_val_score < self.best_val_score elif split == "test": metric_status = self.test_status is_best = self.cur_test_score < self.best_test_score else: raise ValueError("Wrong split string: {}".format(split)) print_str = " | ".join("{}: {:4g}".format(k, v.avg) for k, v in metric_status.items()) if only_best: if is_best: self.logger.info(colored("Best Epoch: {}, {} Results: {}".format(self.epoch, title, print_str), color, attrs=["bold"])) else: self.logger.info(colored("Epoch: {}, {} Results: {}".format(self.epoch, title, print_str), color, attrs=["bold"])) def write_loss_to_tb(self, split): for k, v in self.loss_status.items(): if split == "train": self.local_loss_writter.add_scalar("train_Loss/{}".format(k), v.val, self.step) elif split == "val": self.local_loss_writter.add_scalar("val_Loss/{}".format(k), v.val, self.step) elif split == "test": self.local_loss_writter.add_scalar("test_Loss/{}".format(k), v.val, self.step) else: raise ValueError("Wrong split string: {}".format(split)) def write_metric_to_tb(self, split): if split == "val": for k, v in self.val_status.items(): self.local_metric_writter.add_scalar("val_Metric/{}".format(k), v.avg, self.epoch) elif split == "test": for k, v in self.test_status.items(): self.local_metric_writter.add_scalar("test_Metric/{}".format(k), v.avg, self.epoch) else: raise ValueError("Wrong split string: {}".format(split)) def check_best_save_last_checkpoints(self, save_latest_freq=5, save_best_after=50): state = { "state_dict": self.model.state_dict(), "optimizer": self.optimizer.state_dict(), "scheduler": self.scheduler.state_dict(), "step": self.step, "epoch": self.epoch, } if self.dataloaders["val"] is not None: state["best_val_score"] = self.best_val_score if self.dataloaders["test"] is not None: state["best_test_score"] = self.best_test_score # save latest checkpoint if self.epoch % save_latest_freq == 0: latest_ckpt_name = os.path.join(self.params.model_dir, "model_latest.pth") torch.save(state, latest_ckpt_name) self.logger.info("Saved latest checkpoint to: {}".format(latest_ckpt_name)) # save val latest metrics, and check if val is best checkpoints if self.dataloaders["val"] is not None: val_latest_metrics_name = os.path.join(self.params.model_dir, "val_metrics_latest.json") utils.save_dict_to_json(self.val_status, val_latest_metrics_name) is_best = self.cur_val_score < self.best_val_score if is_best: # save metrics self.best_val_score = self.cur_val_score best_metrics_name = os.path.join(self.params.model_dir, "val_metrics_best.json") utils.save_dict_to_json(self.val_status, best_metrics_name) self.logger.info("Current is val best, score={:.7f}".format(self.best_val_score)) # save checkpoint if self.epoch > save_best_after: best_ckpt_name = os.path.join(self.params.model_dir, "val_model_best.pth") torch.save(state, best_ckpt_name) self.logger.info("Saved val best checkpoint to: {}".format(best_ckpt_name)) # save test latest metrics, and check if test is best checkpoints if self.dataloaders["test"] is not None: test_latest_metrics_name = os.path.join(self.params.model_dir, "test_metrics_latest.json") utils.save_dict_to_json(self.test_status, test_latest_metrics_name) is_best = self.cur_test_score < self.best_test_score if is_best: # save metrics self.best_test_score = self.cur_test_score best_metrics_name = os.path.join(self.params.model_dir, "test_metrics_best.json") utils.save_dict_to_json(self.test_status, best_metrics_name) self.logger.info("Current is test best, score={:.7f}".format(self.best_test_score)) # save checkpoint if self.epoch > save_best_after: best_ckpt_name = os.path.join(self.params.model_dir, "test_model_best.pth") torch.save(state, best_ckpt_name) self.logger.info("Saved test best checkpoint to: {}".format(best_ckpt_name)) def load_checkpoints(self): state = torch.load(self.params.restore_file) ckpt_component = [] if "state_dict" in state and self.model is not None: try: self.model.load_state_dict(state["state_dict"]) except RuntimeError: print("Using custom loading net") net_dict = self.model.state_dict() if "module" not in list(state["state_dict"].keys())[0]: state_dict = {"module." + k: v for k, v in state["state_dict"].items() if "module." + k in net_dict.keys()} else: state_dict = {k: v for k, v in state["state_dict"].items() if k in net_dict.keys()} net_dict.update(state_dict) self.model.load_state_dict(net_dict, strict=False) ckpt_component.append("net") if not self.params.only_weights: if "optimizer" in state and self.optimizer is not None: try: self.optimizer.load_state_dict(state["optimizer"]) except RuntimeError: print("Using custom loading optimizer") optimizer_dict = self.optimizer.state_dict() state_dict = {k: v for k, v in state["optimizer"].items() if k in optimizer_dict.keys()} optimizer_dict.update(state_dict) self.optimizer.load_state_dict(optimizer_dict) ckpt_component.append("opt") if "scheduler" in state and self.train_status["scheduler"] is not None: try: self.scheduler.load_state_dict(state["scheduler"]) except RuntimeError: print("Using custom loading scheduler") scheduler_dict = self.scheduler.state_dict() state_dict = {k: v for k, v in state["scheduler"].items() if k in scheduler_dict.keys()} scheduler_dict.update(state_dict) self.scheduler.load_state_dict(scheduler_dict) ckpt_component.append("sch") if "step" in state: self.step = state["step"] + 1 ckpt_component.append("step") if "epoch" in state: self.epoch = state["epoch"] + 1 ckpt_component.append("epoch") if "best_val_score" in state: self.best_val_score = state["best_val_score"] ckpt_component.append("best val score: {:.3g}".format(self.best_val_score)) if "best_test_score" in state: self.best_test_score = state["best_test_score"] ckpt_component.append("best test score: {:.3g}".format(self.best_test_score)) ckpt_component = ", ".join(i for i in ckpt_component) self.logger.info("Loaded models from: {}".format(self.params.restore_file)) self.logger.info("Ckpt load: {}".format(ckpt_component))
45.077206
136
0.581437
import os from collections import defaultdict import numpy as np import torch from termcolor import colored from torch.utils.tensorboard import SummaryWriter from common import utils class Manager(): def __init__(self, model, optimizer, scheduler, params, dataloaders, logger): self.params = params self.model = model self.optimizer = optimizer self.scheduler = scheduler self.dataloaders = dataloaders self.logger = logger self.epoch = 0 self.step = 0 self.best_val_score = np.inf self.cur_val_score = np.inf self.best_test_score = np.inf self.cur_test_score = np.inf self.train_status = defaultdict(utils.AverageMeter) self.val_status = defaultdict(utils.AverageMeter) self.test_status = defaultdict(utils.AverageMeter) self.loss_status = defaultdict(utils.AverageMeter) self.init_tb_and_html() def init_tb_and_html(self): local_tb_dir = os.path.join(self.params.model_dir, "summary/loss") os.makedirs(local_tb_dir, exist_ok=True) self.local_loss_writter = SummaryWriter(log_dir=local_tb_dir) local_tb_dir = os.path.join(self.params.model_dir, "summary/metric") os.makedirs(local_tb_dir, exist_ok=True) self.local_metric_writter = SummaryWriter(log_dir=local_tb_dir) local_html_dir = os.path.join(self.params.model_dir, "summary/html") os.makedirs(local_html_dir, exist_ok=True) self.local_html_dir = local_html_dir def update_step(self): self.step += 1 def update_epoch(self): self.epoch += 1 def update_loss_status(self, loss, batch_size): for k, v in loss.items(): self.loss_status[k].update(val=v.item(), num=batch_size) def update_metric_status(self, metrics, split, batch_size): if split == "val": for k, v in metrics.items(): self.val_status[k].update(val=v.item(), num=batch_size) self.cur_val_score = self.val_status[self.params.major_metric].avg elif split == "test": for k, v in metrics.items(): self.test_status[k].update(val=v.item(), num=batch_size) self.cur_test_score = self.test_status[self.params.major_metric].avg else: raise ValueError("Wrong eval type: {}".format(split)) def summarize_metric_status(self, metrics, split): if split == "val": for k in metrics: if k.endswith('MSE'): self.val_status[k[:-3] + 'RMSE'].set(val=np.sqrt(self.val_status[k].avg)) else: continue elif split == "test": for k in metrics: if k.endswith('MSE'): self.test_status[k[:-3] + 'RMSE'].set(val=np.sqrt(self.test_status[k].avg)) else: continue else: raise ValueError("Wrong eval type: {}".format(split)) def reset_loss_status(self): for k, v in self.loss_status.items(): self.loss_status[k].reset() def reset_metric_status(self, split): if split == "val": for k, v in self.val_status.items(): self.val_status[k].reset() elif split == "test": for k, v in self.test_status.items(): self.test_status[k].reset() else: raise ValueError("Wrong split string: {}".format(split)) def print_train_info(self): exp_name = self.params.model_dir.split('/')[-1] print_str = "{} Epoch: {:4d}, lr={:.4f} ".format(exp_name, self.epoch, self.scheduler.get_last_lr()[0]) print_str += "total loss: %.4f(%.4f)" % (self.loss_status['total'].val, self.loss_status['total'].avg) return print_str def print_metrics(self, split, title="Eval", color="red", only_best=False): if split == "val": metric_status = self.val_status is_best = self.cur_val_score < self.best_val_score elif split == "test": metric_status = self.test_status is_best = self.cur_test_score < self.best_test_score else: raise ValueError("Wrong split string: {}".format(split)) print_str = " | ".join("{}: {:4g}".format(k, v.avg) for k, v in metric_status.items()) if only_best: if is_best: self.logger.info(colored("Best Epoch: {}, {} Results: {}".format(self.epoch, title, print_str), color, attrs=["bold"])) else: self.logger.info(colored("Epoch: {}, {} Results: {}".format(self.epoch, title, print_str), color, attrs=["bold"])) def write_loss_to_tb(self, split): for k, v in self.loss_status.items(): if split == "train": self.local_loss_writter.add_scalar("train_Loss/{}".format(k), v.val, self.step) elif split == "val": self.local_loss_writter.add_scalar("val_Loss/{}".format(k), v.val, self.step) elif split == "test": self.local_loss_writter.add_scalar("test_Loss/{}".format(k), v.val, self.step) else: raise ValueError("Wrong split string: {}".format(split)) def write_metric_to_tb(self, split): if split == "val": for k, v in self.val_status.items(): self.local_metric_writter.add_scalar("val_Metric/{}".format(k), v.avg, self.epoch) elif split == "test": for k, v in self.test_status.items(): self.local_metric_writter.add_scalar("test_Metric/{}".format(k), v.avg, self.epoch) else: raise ValueError("Wrong split string: {}".format(split)) def check_best_save_last_checkpoints(self, save_latest_freq=5, save_best_after=50): state = { "state_dict": self.model.state_dict(), "optimizer": self.optimizer.state_dict(), "scheduler": self.scheduler.state_dict(), "step": self.step, "epoch": self.epoch, } if self.dataloaders["val"] is not None: state["best_val_score"] = self.best_val_score if self.dataloaders["test"] is not None: state["best_test_score"] = self.best_test_score if self.epoch % save_latest_freq == 0: latest_ckpt_name = os.path.join(self.params.model_dir, "model_latest.pth") torch.save(state, latest_ckpt_name) self.logger.info("Saved latest checkpoint to: {}".format(latest_ckpt_name)) if self.dataloaders["val"] is not None: val_latest_metrics_name = os.path.join(self.params.model_dir, "val_metrics_latest.json") utils.save_dict_to_json(self.val_status, val_latest_metrics_name) is_best = self.cur_val_score < self.best_val_score if is_best: self.best_val_score = self.cur_val_score best_metrics_name = os.path.join(self.params.model_dir, "val_metrics_best.json") utils.save_dict_to_json(self.val_status, best_metrics_name) self.logger.info("Current is val best, score={:.7f}".format(self.best_val_score)) if self.epoch > save_best_after: best_ckpt_name = os.path.join(self.params.model_dir, "val_model_best.pth") torch.save(state, best_ckpt_name) self.logger.info("Saved val best checkpoint to: {}".format(best_ckpt_name)) if self.dataloaders["test"] is not None: test_latest_metrics_name = os.path.join(self.params.model_dir, "test_metrics_latest.json") utils.save_dict_to_json(self.test_status, test_latest_metrics_name) is_best = self.cur_test_score < self.best_test_score if is_best: self.best_test_score = self.cur_test_score best_metrics_name = os.path.join(self.params.model_dir, "test_metrics_best.json") utils.save_dict_to_json(self.test_status, best_metrics_name) self.logger.info("Current is test best, score={:.7f}".format(self.best_test_score)) if self.epoch > save_best_after: best_ckpt_name = os.path.join(self.params.model_dir, "test_model_best.pth") torch.save(state, best_ckpt_name) self.logger.info("Saved test best checkpoint to: {}".format(best_ckpt_name)) def load_checkpoints(self): state = torch.load(self.params.restore_file) ckpt_component = [] if "state_dict" in state and self.model is not None: try: self.model.load_state_dict(state["state_dict"]) except RuntimeError: print("Using custom loading net") net_dict = self.model.state_dict() if "module" not in list(state["state_dict"].keys())[0]: state_dict = {"module." + k: v for k, v in state["state_dict"].items() if "module." + k in net_dict.keys()} else: state_dict = {k: v for k, v in state["state_dict"].items() if k in net_dict.keys()} net_dict.update(state_dict) self.model.load_state_dict(net_dict, strict=False) ckpt_component.append("net") if not self.params.only_weights: if "optimizer" in state and self.optimizer is not None: try: self.optimizer.load_state_dict(state["optimizer"]) except RuntimeError: print("Using custom loading optimizer") optimizer_dict = self.optimizer.state_dict() state_dict = {k: v for k, v in state["optimizer"].items() if k in optimizer_dict.keys()} optimizer_dict.update(state_dict) self.optimizer.load_state_dict(optimizer_dict) ckpt_component.append("opt") if "scheduler" in state and self.train_status["scheduler"] is not None: try: self.scheduler.load_state_dict(state["scheduler"]) except RuntimeError: print("Using custom loading scheduler") scheduler_dict = self.scheduler.state_dict() state_dict = {k: v for k, v in state["scheduler"].items() if k in scheduler_dict.keys()} scheduler_dict.update(state_dict) self.scheduler.load_state_dict(scheduler_dict) ckpt_component.append("sch") if "step" in state: self.step = state["step"] + 1 ckpt_component.append("step") if "epoch" in state: self.epoch = state["epoch"] + 1 ckpt_component.append("epoch") if "best_val_score" in state: self.best_val_score = state["best_val_score"] ckpt_component.append("best val score: {:.3g}".format(self.best_val_score)) if "best_test_score" in state: self.best_test_score = state["best_test_score"] ckpt_component.append("best test score: {:.3g}".format(self.best_test_score)) ckpt_component = ", ".join(i for i in ckpt_component) self.logger.info("Loaded models from: {}".format(self.params.restore_file)) self.logger.info("Ckpt load: {}".format(ckpt_component))
true
true
f70f8c67ca5c8f4c4bc0844a6821081bdf4ce0d1
33,589
py
Python
Cogs/Strike.py
camielverdult/CorpBot.py
56cf3ee736625525d05f9f447b31e34baf93596d
[ "MIT" ]
null
null
null
Cogs/Strike.py
camielverdult/CorpBot.py
56cf3ee736625525d05f9f447b31e34baf93596d
[ "MIT" ]
null
null
null
Cogs/Strike.py
camielverdult/CorpBot.py
56cf3ee736625525d05f9f447b31e34baf93596d
[ "MIT" ]
null
null
null
import asyncio import discord import time import parsedatetime from datetime import datetime from operator import itemgetter from discord.ext import commands from Cogs import ReadableTime from Cogs import DisplayName from Cogs import Nullify def setup(bot): # Add the bot and deps settings = bot.get_cog("Settings") mute = bot.get_cog("Mute") bot.add_cog(Strike(bot, settings, mute)) # This is the Strike module. It keeps track of warnings and kicks/bans accordingly # Strikes = [ time until drops off ] # StrikeOut = 3 (3 strikes and you're out) # StrikeLevel (a list similar to xproles) # Standard strike roles: # 0 = Not been punished already # 1 = Muted for x amount of time # 2 = Already been kicked (id in kick list) # 3 = Already been banned (auto-mute) class Strike(commands.Cog): # Init with the bot reference, and a reference to the settings var def __init__(self, bot, settings, mute): self.bot = bot self.settings = settings self.mute = mute self.loop_list = [] global Utils, DisplayName Utils = self.bot.get_cog("Utils") DisplayName = self.bot.get_cog("DisplayName") async def onjoin(self, member, server): # Check id against the kick and ban list and react accordingly kickList = self.settings.getServerStat(server, "KickList") if str(member.id) in kickList: # The user has been kicked before - set their strikeLevel to 2 self.settings.setUserStat(member, server, "StrikeLevel", 2) banList = self.settings.getServerStat(server, "BanList") if str(member.id) in banList: # The user has been kicked before - set their strikeLevel to 3 # Also mute them self.settings.setUserStat(member, server, "StrikeLevel", 3) self.settings.setUserStat(member, server, "Muted", True) self.settings.setUserStat(member, server, "Cooldown", None) await self.mute._mute(member, server) # Proof of concept stuff for reloading cog/extension def _is_submodule(self, parent, child): return parent == child or child.startswith(parent + ".") @commands.Cog.listener() async def on_unloaded_extension(self, ext): # Called to shut things down if not self._is_submodule(ext.__name__, self.__module__): return for task in self.loop_list: task.cancel() @commands.Cog.listener() async def on_loaded_extension(self, ext): # See if we were loaded if not self._is_submodule(ext.__name__, self.__module__): return self.bot.loop.create_task(self.start_loading()) async def start_loading(self): await self.bot.wait_until_ready() await self.bot.loop.run_in_executor(None, self.check_strikes) def check_strikes(self): # Check all strikes - and start timers print("Checking strikes...") t = time.time() for server in self.bot.guilds: for member in server.members: strikes = self.settings.getUserStat(member, server, "Strikes") if strikes == None: continue if len(strikes): # We have a list for strike in strikes: # Make sure it's a strike that *can* roll off if not strike['Time'] == -1: self.loop_list.append(self.bot.loop.create_task( self.checkStrike(member, strike))) print("Strikes checked - took {} seconds.".format(time.time() - t)) async def checkStrike(self, member, strike): # Start our countdown countDown = int(strike['Time'])-int(time.time()) if countDown > 0: # We have a positive countdown - let's wait await asyncio.sleep(countDown) strikes = self.settings.getUserStat(member, member.guild, "Strikes") # Verify strike is still valid if not strike in strikes: return strikes.remove(strike) self.settings.setUserStat(member, member.guild, "Strikes", strikes) @commands.command(pass_context=True) async def strike(self, ctx, member: discord.Member = None, days=None, *, message: str = None): """Give a user a strike (bot-admin only).""" isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}strike [member] [strike timeout (in days) - 0 = forever] [message (optional)]`'.format( ctx.prefix) await ctx.channel.send(msg) return # Check if we're striking ourselves if member.id == ctx.message.author.id: # We're giving ourselves a strike? await ctx.channel.send('You can\'t give yourself a strike, silly.') return # Check if the bot is getting the strike if member.id == self.bot.user.id: await ctx.channel.send('I can\'t do that, *{}*.'.format(DisplayName.name(ctx.message.author))) return # Check if we're striking another admin/bot-admin isAdmin = member.permissions_in(ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in member.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True if isAdmin: await ctx.channel.send('You can\'t give other admins/bot-admins strikes, bub.') return # Check if days is an int - otherwise assume it's part of the message try: days = int(days) except Exception: if not days == None: if message == None: message = days else: message = days + ' ' + message days = 0 # If it's not at least a day, it's forever if days < 1: days = -1 currentTime = int(time.time()) # Build our Strike strike = {} if days == -1: strike['Time'] = -1 else: strike['Time'] = currentTime+(86400*days) self.loop_list.append(self.bot.loop.create_task( self.checkStrike(member, strike))) strike['Message'] = message strike['GivenBy'] = ctx.message.author.id strikes = self.settings.getUserStat( member, ctx.message.guild, "Strikes") strikeout = int(self.settings.getServerStat( ctx.message.guild, "StrikeOut")) strikeLevel = int(self.settings.getUserStat( member, ctx.message.guild, "StrikeLevel")) strikes.append(strike) self.settings.setUserStat( member, ctx.message.guild, "Strikes", strikes) strikeNum = len(strikes) # Set up consequences if strikeLevel == 0: consequence = '**muted for a day**.' elif strikeLevel == 1: consequence = '**kicked**.' else: consequence = '**banned**.' # Check if we've struck out if strikeNum < strikeout: # We haven't struck out yet msg = '*{}* has just received *strike {}*. *{}* more and they will be {}'.format( DisplayName.name(member), strikeNum, strikeout-strikeNum, consequence) else: # We struck out - let's evaluate if strikeLevel == 0: cooldownFinal = currentTime+86400 checkRead = ReadableTime.getReadableTimeBetween( currentTime, cooldownFinal) if message: mutemessage = 'You have been muted in *{}*.\nThe Reason:\n{}'.format( Nullify.escape_all(ctx.guild.name), message) else: mutemessage = 'You have been muted in *{}*.'.format( Nullify.escape_all(ctx.guild.name)) # Check if already muted alreadyMuted = self.settings.getUserStat( member, ctx.message.guild, "Muted") if alreadyMuted: # Find out for how long muteTime = self.settings.getUserStat( member, ctx.message.guild, "Cooldown") if not muteTime == None: if muteTime < cooldownFinal: self.settings.setUserStat( member, ctx.message.guild, "Cooldown", cooldownFinal) timeRemains = ReadableTime.getReadableTimeBetween( currentTime, cooldownFinal) if message: mutemessage = 'Your muted time in *{}* has been extended to *{}*.\nThe Reason:\n{}'.format( Nullify.escape_all(ctx.guild.name), timeRemains, message) else: mutemessage = 'You muted time in *{}* has been extended to *{}*.'.format( Nullify.escape_all(ctx.guild.name), timeRemains) else: self.settings.setUserStat( member, ctx.message.guild, "Muted", True) self.settings.setUserStat( member, ctx.message.guild, "Cooldown", cooldownFinal) await self.mute._mute(member, ctx.message.guild, cooldownFinal) await member.send(mutemessage) elif strikeLevel == 1: kickList = self.settings.getServerStat( ctx.message.guild, "KickList") if not str(member.id) in kickList: kickList.append(str(member.id)) self.settings.setServerStat( ctx.message.guild, "KickList", kickList) if message: kickmessage = 'You have been kicked from *{}*.\nThe Reason:\n{}'.format( Nullify.escape_all(ctx.guild.name), message) else: kickmessage = 'You have been kicked from *{}*.'.format( Nullify.escape_all(ctx.guild.name)) await member.send(kickmessage) await ctx.guild.kick(member) else: banList = self.settings.getServerStat( ctx.message.guild, "BanList") if not str(member.id) in banList: banList.append(str(member.id)) self.settings.setServerStat( ctx.message.guild, "BanList", banList) if message: banmessage = 'You have been banned from *{}*.\nThe Reason:\n{}'.format( Nullify.escape_all(ctx.guild.name), message) else: banmessage = 'You have been banned from *{}*.'.format( Nullify.escape_all(ctx.guild.name)) await member.send(banmessage) await ctx.guild.ban(member) self.settings.incrementStat( member, ctx.message.guild, "StrikeLevel", 1) self.settings.setUserStat(member, ctx.message.guild, "Strikes", []) msg = '*{}* has just received *strike {}*. They have been {}'.format( DisplayName.name(member), strikeNum, consequence) await ctx.channel.send(msg) @strike.error async def strike_error(self, ctx, error): # do stuff msg = 'strike Error: {}'.format(error) await ctx.channel.send(msg) @commands.command(pass_context=True) async def strikes(self, ctx, *, member=None): """Check a your own, or another user's total strikes (bot-admin needed to check other users).""" isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True if member == None: member = ctx.message.author if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return # Only allow admins to check others' strikes if not isAdmin: if member: if not member.id == ctx.message.author.id: await ctx.channel.send('You are not a bot-admin. You can only see your own strikes.') member = ctx.message.author # Create blank embed stat_embed = discord.Embed(color=member.color) strikes = self.settings.getUserStat( member, ctx.message.guild, "Strikes") strikeout = int(self.settings.getServerStat( ctx.message.guild, "StrikeOut")) strikeLevel = int(self.settings.getUserStat( member, ctx.message.guild, "StrikeLevel")) # Add strikes, and strike level stat_embed.add_field(name="Strikes", value=len(strikes), inline=True) stat_embed.add_field(name="Strike Level", value=strikeLevel, inline=True) # Get member's avatar url avURL = member.avatar_url if not len(avURL): avURL = member.default_avatar_url if member.nick: # We have a nickname msg = "__***{},*** **who currently goes by** ***{}:***__\n\n".format( member.name, member.nick) # Add to embed stat_embed.set_author(name='{}, who currently goes by {}'.format( member.name, member.nick), icon_url=avURL) else: msg = "__***{}:***__\n\n".format(member.name) # Add to embed stat_embed.set_author(name='{}'.format( member.name), icon_url=avURL) # Get messages - and cooldowns currentTime = int(time.time()) if not len(strikes): # no strikes messages = "None." cooldowns = "None." givenBy = "None." else: messages = '' cooldowns = '' givenBy = '' for i in range(0, len(strikes)): if strikes[i]['Message']: messages += '{}. {}\n'.format(i+1, strikes[i]['Message']) else: messages += '{}. No message\n'.format(i+1) timeLeft = strikes[i]['Time'] if timeLeft == -1: cooldowns += '{}. Never rolls off\n'.format(i+1) else: timeRemains = ReadableTime.getReadableTimeBetween( currentTime, timeLeft) cooldowns += '{}. {}\n'.format(i+1, timeRemains) given = strikes[i]['GivenBy'] givenBy += '{}. {}\n'.format(i+1, DisplayName.name( DisplayName.memberForID(given, ctx.message.guild))) # Add messages and cooldowns stat_embed.add_field(name="Messages", value=messages, inline=True) stat_embed.add_field(name="Time Left", value=cooldowns, inline=True) stat_embed.add_field(name="Given By", value=givenBy, inline=True) # Strikes remaining stat_embed.add_field(name="Strikes Remaining", value=strikeout-len(strikes), inline=True) await ctx.channel.send(embed=stat_embed) @commands.command(pass_context=True) async def removestrike(self, ctx, *, member=None): """Removes a strike given to a member (bot-admin only).""" isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}removestrike [member]`'.format(ctx.prefix) await ctx.channel.send(msg) return if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return # We have what we need - get the list strikes = self.settings.getUserStat( member, ctx.message.guild, "Strikes") # Return if no strikes to take if not len(strikes): await ctx.channel.send('*{}* has no strikes to remove.'.format(DisplayName.name(member))) return # We have some - naughty naughty! strikes = sorted(strikes, key=lambda x: int(x['Time'])) for strike in strikes: # Check if we've got one that's not -1 if not strike['Time'] == -1: # First item that isn't forever - kill it strikes.remove(strike) self.settings.setUserStat( member, ctx.message.guild, "Strikes", strikes) await ctx.channel.send('*{}* has one less strike. They are down to *{}*.'.format(DisplayName.name(member), len(strikes))) return # If we're here - we just remove one del strikes[0] self.settings.setUserStat( member, ctx.message.guild, "Strikes", strikes) await ctx.channel.send('*{}* has one less strike. They are down to *{}*.'.format(DisplayName.name(member), len(strikes))) return @commands.command(pass_context=True) async def setstrikelevel(self, ctx, *, member=None, strikelevel: int = None): """Sets the strike level of the passed user (bot-admin only).""" isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return author = ctx.message.author server = ctx.message.guild channel = ctx.message.channel usage = 'Usage: `{}setstrikelevel [member] [strikelevel]`'.format( ctx.prefix) if member == None: await ctx.channel.send(usage) return # Check for formatting issues if strikelevel == None: # Either strike level wasn't set - or it's the last section if type(member) is str: # It' a string - the hope continues nameCheck = DisplayName.checkNameForInt(member, server) if not nameCheck: await ctx.channel.send(usage) return if not nameCheck["Member"]: msg = 'I couldn\'t find *{}* on the server.'.format( Nullify.escape_all(member)) await ctx.channel.send(msg) return member = nameCheck["Member"] strikelevel = nameCheck["Int"] if strikelevel == None: # Still no strike level await ctx.channel.send(usage) return self.settings.setUserStat( member, ctx.message.guild, "StrikeLevel", strikelevel) msg = '*{}\'s* strike level has been set to *{}!*'.format( DisplayName.name(member), strikelevel) await ctx.channel.send(msg) @commands.command(pass_context=True) async def addkick(self, ctx, *, member=None): """Adds the passed user to the kick list (bot-admin only).""" isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}addkick [member]`'.format(ctx.prefix) await ctx.channel.send(msg) return if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return msg = '' kickList = self.settings.getServerStat(ctx.message.guild, "KickList") if not str(member.id) in kickList: kickList.append(str(member.id)) self.settings.setServerStat( ctx.message.guild, "KickList", kickList) msg = '*{}* was added to the kick list.'.format( DisplayName.name(member)) else: msg = '*{}* is already in the kick list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def removekick(self, ctx, *, member=None): """Removes the passed user from the kick list (bot-admin only).""" isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}removekick [member]`'.format(ctx.prefix) await ctx.channel.send(msg) return if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return msg = '' kickList = self.settings.getServerStat(ctx.message.guild, "KickList") if str(member.id) in kickList: kickList.remove(str(member.id)) self.settings.setServerStat( ctx.message.guild, "KickList", kickList) msg = '*{}* was removed from the kick list.'.format( DisplayName.name(member)) else: msg = '*{}* was not found in the kick list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def addban(self, ctx, *, member=None): """Adds the passed user to the ban list (bot-admin only).""" isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}addban [member]`'.format(ctx.prefix) await ctx.channel.send(msg) return if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return msg = '' banList = self.settings.getServerStat(ctx.message.guild, "BanList") if not str(member.id) in banList: banList.append(str(member.id)) self.settings.setServerStat(ctx.message.guild, "BanList", banList) msg = '*{}* was added to the ban list.'.format( DisplayName.name(member)) else: msg = '*{}* is already in the ban list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def removeban(self, ctx, *, member=None): """Removes the passed user from the ban list (bot-admin only).""" isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}removeban [member]`'.format(ctx.prefix) await ctx.channel.send(msg) return if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return msg = '' banList = self.settings.getServerStat(ctx.message.guild, "BanList") if str(member.id) in banList: banList.remove(str(member.id)) self.settings.setServerStat(ctx.message.guild, "BanList", banList) msg = '*{}* was removed from the ban list.'.format( DisplayName.name(member)) else: msg = '*{}* was not found in the ban list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def iskicked(self, ctx, *, member=None): """Lists whether the user is in the kick list.""" if member == None: member = ctx.message.author if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return kickList = self.settings.getServerStat(ctx.message.guild, "KickList") if str(member.id) in kickList: msg = '*{}* is in the kick list.'.format(DisplayName.name(member)) else: msg = '*{}* is **not** in the kick list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def isbanned(self, ctx, *, member=None): """Lists whether the user is in the ban list.""" if member == None: member = ctx.message.author if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return banList = self.settings.getServerStat(ctx.message.guild, "BanList") if str(member.id) in banList: msg = '*{}* is in the ban list.'.format(DisplayName.name(member)) else: msg = '*{}* is **not** in the ban list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def strikelimit(self, ctx): """Lists the number of strikes before advancing to the next consequence.""" strikeout = int(self.settings.getServerStat( ctx.message.guild, "StrikeOut")) msg = '*{}* strikes are required to strike out.'.format(strikeout) await ctx.channel.send(msg) @commands.command(pass_context=True) async def setstrikelimit(self, ctx, limit=None): """Sets the number of strikes before advancing to the next consequence (bot-admin only).""" isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if not limit: await ctx.channel.send('Strike limit must be *at least* one.') return try: limit = int(limit) except Exception: await ctx.channel.send('Strike limit must be an integer.') return self.settings.setServerStat(ctx.message.guild, "StrikeOut", limit) msg = '*{}* strikes are now required to strike out.'.format(limit) await ctx.channel.send(msg) @setstrikelimit.error async def setstrikelimit_error(self, ctx, error): # do stuff msg = 'setstrikelimit Error: {}'.format(ctx) await error.channel.send(msg)
42.46397
139
0.541397
import asyncio import discord import time import parsedatetime from datetime import datetime from operator import itemgetter from discord.ext import commands from Cogs import ReadableTime from Cogs import DisplayName from Cogs import Nullify def setup(bot): settings = bot.get_cog("Settings") mute = bot.get_cog("Mute") bot.add_cog(Strike(bot, settings, mute)) # StrikeLevel (a list similar to xproles) # Standard strike roles: # 0 = Not been punished already # 1 = Muted for x amount of time # 2 = Already been kicked (id in kick list) # 3 = Already been banned (auto-mute) class Strike(commands.Cog): # Init with the bot reference, and a reference to the settings var def __init__(self, bot, settings, mute): self.bot = bot self.settings = settings self.mute = mute self.loop_list = [] global Utils, DisplayName Utils = self.bot.get_cog("Utils") DisplayName = self.bot.get_cog("DisplayName") async def onjoin(self, member, server): # Check id against the kick and ban list and react accordingly kickList = self.settings.getServerStat(server, "KickList") if str(member.id) in kickList: # The user has been kicked before - set their strikeLevel to 2 self.settings.setUserStat(member, server, "StrikeLevel", 2) banList = self.settings.getServerStat(server, "BanList") if str(member.id) in banList: # The user has been kicked before - set their strikeLevel to 3 # Also mute them self.settings.setUserStat(member, server, "StrikeLevel", 3) self.settings.setUserStat(member, server, "Muted", True) self.settings.setUserStat(member, server, "Cooldown", None) await self.mute._mute(member, server) # Proof of concept stuff for reloading cog/extension def _is_submodule(self, parent, child): return parent == child or child.startswith(parent + ".") @commands.Cog.listener() async def on_unloaded_extension(self, ext): # Called to shut things down if not self._is_submodule(ext.__name__, self.__module__): return for task in self.loop_list: task.cancel() @commands.Cog.listener() async def on_loaded_extension(self, ext): # See if we were loaded if not self._is_submodule(ext.__name__, self.__module__): return self.bot.loop.create_task(self.start_loading()) async def start_loading(self): await self.bot.wait_until_ready() await self.bot.loop.run_in_executor(None, self.check_strikes) def check_strikes(self): # Check all strikes - and start timers print("Checking strikes...") t = time.time() for server in self.bot.guilds: for member in server.members: strikes = self.settings.getUserStat(member, server, "Strikes") if strikes == None: continue if len(strikes): # We have a list for strike in strikes: # Make sure it's a strike that *can* roll off if not strike['Time'] == -1: self.loop_list.append(self.bot.loop.create_task( self.checkStrike(member, strike))) print("Strikes checked - took {} seconds.".format(time.time() - t)) async def checkStrike(self, member, strike): countDown = int(strike['Time'])-int(time.time()) if countDown > 0: await asyncio.sleep(countDown) strikes = self.settings.getUserStat(member, member.guild, "Strikes") # Verify strike is still valid if not strike in strikes: return strikes.remove(strike) self.settings.setUserStat(member, member.guild, "Strikes", strikes) @commands.command(pass_context=True) async def strike(self, ctx, member: discord.Member = None, days=None, *, message: str = None): isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}strike [member] [strike timeout (in days) - 0 = forever] [message (optional)]`'.format( ctx.prefix) await ctx.channel.send(msg) return # Check if we're striking ourselves if member.id == ctx.message.author.id: await ctx.channel.send('You can\'t give yourself a strike, silly.') return if member.id == self.bot.user.id: await ctx.channel.send('I can\'t do that, *{}*.'.format(DisplayName.name(ctx.message.author))) return # Check if we're striking another admin/bot-admin isAdmin = member.permissions_in(ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in member.roles: for aRole in checkAdmin: if str(aRole['ID']) == str(role.id): isAdmin = True if isAdmin: await ctx.channel.send('You can\'t give other admins/bot-admins strikes, bub.') return # Check if days is an int - otherwise assume it's part of the message try: days = int(days) except Exception: if not days == None: if message == None: message = days else: message = days + ' ' + message days = 0 if days < 1: days = -1 currentTime = int(time.time()) strike = {} if days == -1: strike['Time'] = -1 else: strike['Time'] = currentTime+(86400*days) self.loop_list.append(self.bot.loop.create_task( self.checkStrike(member, strike))) strike['Message'] = message strike['GivenBy'] = ctx.message.author.id strikes = self.settings.getUserStat( member, ctx.message.guild, "Strikes") strikeout = int(self.settings.getServerStat( ctx.message.guild, "StrikeOut")) strikeLevel = int(self.settings.getUserStat( member, ctx.message.guild, "StrikeLevel")) strikes.append(strike) self.settings.setUserStat( member, ctx.message.guild, "Strikes", strikes) strikeNum = len(strikes) if strikeLevel == 0: consequence = '**muted for a day**.' elif strikeLevel == 1: consequence = '**kicked**.' else: consequence = '**banned**.' if strikeNum < strikeout: # We haven't struck out yet msg = '*{}* has just received *strike {}*. *{}* more and they will be {}'.format( DisplayName.name(member), strikeNum, strikeout-strikeNum, consequence) else: if strikeLevel == 0: cooldownFinal = currentTime+86400 checkRead = ReadableTime.getReadableTimeBetween( currentTime, cooldownFinal) if message: mutemessage = 'You have been muted in *{}*.\nThe Reason:\n{}'.format( Nullify.escape_all(ctx.guild.name), message) else: mutemessage = 'You have been muted in *{}*.'.format( Nullify.escape_all(ctx.guild.name)) # Check if already muted alreadyMuted = self.settings.getUserStat( member, ctx.message.guild, "Muted") if alreadyMuted: # Find out for how long muteTime = self.settings.getUserStat( member, ctx.message.guild, "Cooldown") if not muteTime == None: if muteTime < cooldownFinal: self.settings.setUserStat( member, ctx.message.guild, "Cooldown", cooldownFinal) timeRemains = ReadableTime.getReadableTimeBetween( currentTime, cooldownFinal) if message: mutemessage = 'Your muted time in *{}* has been extended to *{}*.\nThe Reason:\n{}'.format( Nullify.escape_all(ctx.guild.name), timeRemains, message) else: mutemessage = 'You muted time in *{}* has been extended to *{}*.'.format( Nullify.escape_all(ctx.guild.name), timeRemains) else: self.settings.setUserStat( member, ctx.message.guild, "Muted", True) self.settings.setUserStat( member, ctx.message.guild, "Cooldown", cooldownFinal) await self.mute._mute(member, ctx.message.guild, cooldownFinal) await member.send(mutemessage) elif strikeLevel == 1: kickList = self.settings.getServerStat( ctx.message.guild, "KickList") if not str(member.id) in kickList: kickList.append(str(member.id)) self.settings.setServerStat( ctx.message.guild, "KickList", kickList) if message: kickmessage = 'You have been kicked from *{}*.\nThe Reason:\n{}'.format( Nullify.escape_all(ctx.guild.name), message) else: kickmessage = 'You have been kicked from *{}*.'.format( Nullify.escape_all(ctx.guild.name)) await member.send(kickmessage) await ctx.guild.kick(member) else: banList = self.settings.getServerStat( ctx.message.guild, "BanList") if not str(member.id) in banList: banList.append(str(member.id)) self.settings.setServerStat( ctx.message.guild, "BanList", banList) if message: banmessage = 'You have been banned from *{}*.\nThe Reason:\n{}'.format( Nullify.escape_all(ctx.guild.name), message) else: banmessage = 'You have been banned from *{}*.'.format( Nullify.escape_all(ctx.guild.name)) await member.send(banmessage) await ctx.guild.ban(member) self.settings.incrementStat( member, ctx.message.guild, "StrikeLevel", 1) self.settings.setUserStat(member, ctx.message.guild, "Strikes", []) msg = '*{}* has just received *strike {}*. They have been {}'.format( DisplayName.name(member), strikeNum, consequence) await ctx.channel.send(msg) @strike.error async def strike_error(self, ctx, error): # do stuff msg = 'strike Error: {}'.format(error) await ctx.channel.send(msg) @commands.command(pass_context=True) async def strikes(self, ctx, *, member=None): isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True if member == None: member = ctx.message.author if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return if not isAdmin: if member: if not member.id == ctx.message.author.id: await ctx.channel.send('You are not a bot-admin. You can only see your own strikes.') member = ctx.message.author # Create blank embed stat_embed = discord.Embed(color=member.color) strikes = self.settings.getUserStat( member, ctx.message.guild, "Strikes") strikeout = int(self.settings.getServerStat( ctx.message.guild, "StrikeOut")) strikeLevel = int(self.settings.getUserStat( member, ctx.message.guild, "StrikeLevel")) # Add strikes, and strike level stat_embed.add_field(name="Strikes", value=len(strikes), inline=True) stat_embed.add_field(name="Strike Level", value=strikeLevel, inline=True) # Get member's avatar url avURL = member.avatar_url if not len(avURL): avURL = member.default_avatar_url if member.nick: msg = "__***{},*** **who currently goes by** ***{}:***__\n\n".format( member.name, member.nick) stat_embed.set_author(name='{}, who currently goes by {}'.format( member.name, member.nick), icon_url=avURL) else: msg = "__***{}:***__\n\n".format(member.name) stat_embed.set_author(name='{}'.format( member.name), icon_url=avURL) currentTime = int(time.time()) if not len(strikes): messages = "None." cooldowns = "None." givenBy = "None." else: messages = '' cooldowns = '' givenBy = '' for i in range(0, len(strikes)): if strikes[i]['Message']: messages += '{}. {}\n'.format(i+1, strikes[i]['Message']) else: messages += '{}. No message\n'.format(i+1) timeLeft = strikes[i]['Time'] if timeLeft == -1: cooldowns += '{}. Never rolls off\n'.format(i+1) else: timeRemains = ReadableTime.getReadableTimeBetween( currentTime, timeLeft) cooldowns += '{}. {}\n'.format(i+1, timeRemains) given = strikes[i]['GivenBy'] givenBy += '{}. {}\n'.format(i+1, DisplayName.name( DisplayName.memberForID(given, ctx.message.guild))) stat_embed.add_field(name="Messages", value=messages, inline=True) stat_embed.add_field(name="Time Left", value=cooldowns, inline=True) stat_embed.add_field(name="Given By", value=givenBy, inline=True) stat_embed.add_field(name="Strikes Remaining", value=strikeout-len(strikes), inline=True) await ctx.channel.send(embed=stat_embed) @commands.command(pass_context=True) async def removestrike(self, ctx, *, member=None): isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: if str(aRole['ID']) == str(role.id): isAdmin = True if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}removestrike [member]`'.format(ctx.prefix) await ctx.channel.send(msg) return if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return # We have what we need - get the list strikes = self.settings.getUserStat( member, ctx.message.guild, "Strikes") # Return if no strikes to take if not len(strikes): await ctx.channel.send('*{}* has no strikes to remove.'.format(DisplayName.name(member))) return # We have some - naughty naughty! strikes = sorted(strikes, key=lambda x: int(x['Time'])) for strike in strikes: # Check if we've got one that's not -1 if not strike['Time'] == -1: # First item that isn't forever - kill it strikes.remove(strike) self.settings.setUserStat( member, ctx.message.guild, "Strikes", strikes) await ctx.channel.send('*{}* has one less strike. They are down to *{}*.'.format(DisplayName.name(member), len(strikes))) return del strikes[0] self.settings.setUserStat( member, ctx.message.guild, "Strikes", strikes) await ctx.channel.send('*{}* has one less strike. They are down to *{}*.'.format(DisplayName.name(member), len(strikes))) return @commands.command(pass_context=True) async def setstrikelevel(self, ctx, *, member=None, strikelevel: int = None): isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return author = ctx.message.author server = ctx.message.guild channel = ctx.message.channel usage = 'Usage: `{}setstrikelevel [member] [strikelevel]`'.format( ctx.prefix) if member == None: await ctx.channel.send(usage) return # Check for formatting issues if strikelevel == None: # Either strike level wasn't set - or it's the last section if type(member) is str: # It' a string - the hope continues nameCheck = DisplayName.checkNameForInt(member, server) if not nameCheck: await ctx.channel.send(usage) return if not nameCheck["Member"]: msg = 'I couldn\'t find *{}* on the server.'.format( Nullify.escape_all(member)) await ctx.channel.send(msg) return member = nameCheck["Member"] strikelevel = nameCheck["Int"] if strikelevel == None: # Still no strike level await ctx.channel.send(usage) return self.settings.setUserStat( member, ctx.message.guild, "StrikeLevel", strikelevel) msg = '*{}\'s* strike level has been set to *{}!*'.format( DisplayName.name(member), strikelevel) await ctx.channel.send(msg) @commands.command(pass_context=True) async def addkick(self, ctx, *, member=None): isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: if str(aRole['ID']) == str(role.id): isAdmin = True if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}addkick [member]`'.format(ctx.prefix) await ctx.channel.send(msg) return if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return msg = '' kickList = self.settings.getServerStat(ctx.message.guild, "KickList") if not str(member.id) in kickList: kickList.append(str(member.id)) self.settings.setServerStat( ctx.message.guild, "KickList", kickList) msg = '*{}* was added to the kick list.'.format( DisplayName.name(member)) else: msg = '*{}* is already in the kick list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def removekick(self, ctx, *, member=None): isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}removekick [member]`'.format(ctx.prefix) await ctx.channel.send(msg) return if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return msg = '' kickList = self.settings.getServerStat(ctx.message.guild, "KickList") if str(member.id) in kickList: kickList.remove(str(member.id)) self.settings.setServerStat( ctx.message.guild, "KickList", kickList) msg = '*{}* was removed from the kick list.'.format( DisplayName.name(member)) else: msg = '*{}* was not found in the kick list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def addban(self, ctx, *, member=None): isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: if str(aRole['ID']) == str(role.id): isAdmin = True if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}addban [member]`'.format(ctx.prefix) await ctx.channel.send(msg) return if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return msg = '' banList = self.settings.getServerStat(ctx.message.guild, "BanList") if not str(member.id) in banList: banList.append(str(member.id)) self.settings.setServerStat(ctx.message.guild, "BanList", banList) msg = '*{}* was added to the ban list.'.format( DisplayName.name(member)) else: msg = '*{}* is already in the ban list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def removeban(self, ctx, *, member=None): isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: # Get the role that corresponds to the id if str(aRole['ID']) == str(role.id): isAdmin = True # Only allow admins to change server stats if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if member == None: msg = 'Usage: `{}removeban [member]`'.format(ctx.prefix) await ctx.channel.send(msg) return if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return msg = '' banList = self.settings.getServerStat(ctx.message.guild, "BanList") if str(member.id) in banList: banList.remove(str(member.id)) self.settings.setServerStat(ctx.message.guild, "BanList", banList) msg = '*{}* was removed from the ban list.'.format( DisplayName.name(member)) else: msg = '*{}* was not found in the ban list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def iskicked(self, ctx, *, member=None): if member == None: member = ctx.message.author if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return kickList = self.settings.getServerStat(ctx.message.guild, "KickList") if str(member.id) in kickList: msg = '*{}* is in the kick list.'.format(DisplayName.name(member)) else: msg = '*{}* is **not** in the kick list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def isbanned(self, ctx, *, member=None): if member == None: member = ctx.message.author if type(member) is str: memberName = member member = DisplayName.memberForName(memberName, ctx.message.guild) if not member: msg = 'I couldn\'t find *{}*...'.format( Nullify.escape_all(memberName)) await ctx.channel.send(msg) return banList = self.settings.getServerStat(ctx.message.guild, "BanList") if str(member.id) in banList: msg = '*{}* is in the ban list.'.format(DisplayName.name(member)) else: msg = '*{}* is **not** in the ban list.'.format( DisplayName.name(member)) await ctx.channel.send(msg) @commands.command(pass_context=True) async def strikelimit(self, ctx): strikeout = int(self.settings.getServerStat( ctx.message.guild, "StrikeOut")) msg = '*{}* strikes are required to strike out.'.format(strikeout) await ctx.channel.send(msg) @commands.command(pass_context=True) async def setstrikelimit(self, ctx, limit=None): isAdmin = ctx.message.author.permissions_in( ctx.message.channel).administrator if not isAdmin: checkAdmin = self.settings.getServerStat( ctx.message.guild, "AdminArray") for role in ctx.message.author.roles: for aRole in checkAdmin: if str(aRole['ID']) == str(role.id): isAdmin = True if not isAdmin: await ctx.channel.send('You do not have sufficient privileges to access this command.') return if not limit: await ctx.channel.send('Strike limit must be *at least* one.') return try: limit = int(limit) except Exception: await ctx.channel.send('Strike limit must be an integer.') return self.settings.setServerStat(ctx.message.guild, "StrikeOut", limit) msg = '*{}* strikes are now required to strike out.'.format(limit) await ctx.channel.send(msg) @setstrikelimit.error async def setstrikelimit_error(self, ctx, error): msg = 'setstrikelimit Error: {}'.format(ctx) await error.channel.send(msg)
true
true
f70f8da0066e2601d4d7d9e6e313a05b5a080127
19,727
py
Python
src/watchdog/observers/inotify_c.py
rec/watchdog
0224e4424daea365a41125c6691c3477ee1bf86f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/watchdog/observers/inotify_c.py
rec/watchdog
0224e4424daea365a41125c6691c3477ee1bf86f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
src/watchdog/observers/inotify_c.py
rec/watchdog
0224e4424daea365a41125c6691c3477ee1bf86f
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2011 Yesudeep Mangalapilly <yesudeep@gmail.com> # Copyright 2012 Google, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import with_statement import os import errno import struct import threading import ctypes import ctypes.util from functools import reduce from ctypes import c_int, c_char_p, c_uint32 from watchdog.utils import has_attribute from watchdog.utils import UnsupportedLibc from watchdog.utils.unicode_paths import decode def _load_libc(): libc_path = None try: libc_path = ctypes.util.find_library('c') except (OSError, IOError, RuntimeError): # Note: find_library will on some platforms raise these undocumented # errors, e.g.on android IOError "No usable temporary directory found" # will be raised. pass if libc_path is not None: return ctypes.CDLL(libc_path) # Fallbacks try: return ctypes.CDLL('libc.so') except (OSError, IOError): pass try: return ctypes.CDLL('libc.so.6') except (OSError, IOError): pass # uClibc try: return ctypes.CDLL('libc.so.0') except (OSError, IOError) as err: raise err libc = _load_libc() if not has_attribute(libc, 'inotify_init') or \ not has_attribute(libc, 'inotify_add_watch') or \ not has_attribute(libc, 'inotify_rm_watch'): raise UnsupportedLibc("Unsupported libc version found: %s" % libc._name) inotify_add_watch = ctypes.CFUNCTYPE(c_int, c_int, c_char_p, c_uint32, use_errno=True)( ("inotify_add_watch", libc)) inotify_rm_watch = ctypes.CFUNCTYPE(c_int, c_int, c_uint32, use_errno=True)( ("inotify_rm_watch", libc)) inotify_init = ctypes.CFUNCTYPE(c_int, use_errno=True)( ("inotify_init", libc)) class InotifyConstants(object): # User-space events IN_ACCESS = 0x00000001 # File was accessed. IN_MODIFY = 0x00000002 # File was modified. IN_ATTRIB = 0x00000004 # Meta-data changed. IN_CLOSE_WRITE = 0x00000008 # Writable file was closed. IN_CLOSE_NOWRITE = 0x00000010 # Unwritable file closed. IN_OPEN = 0x00000020 # File was opened. IN_MOVED_FROM = 0x00000040 # File was moved from X. IN_MOVED_TO = 0x00000080 # File was moved to Y. IN_CREATE = 0x00000100 # Subfile was created. IN_DELETE = 0x00000200 # Subfile was deleted. IN_DELETE_SELF = 0x00000400 # Self was deleted. IN_MOVE_SELF = 0x00000800 # Self was moved. # Helper user-space events. IN_CLOSE = IN_CLOSE_WRITE | IN_CLOSE_NOWRITE # Close. IN_MOVE = IN_MOVED_FROM | IN_MOVED_TO # Moves. # Events sent by the kernel to a watch. IN_UNMOUNT = 0x00002000 # Backing file system was unmounted. IN_Q_OVERFLOW = 0x00004000 # Event queued overflowed. IN_IGNORED = 0x00008000 # File was ignored. # Special flags. IN_ONLYDIR = 0x01000000 # Only watch the path if it's a directory. IN_DONT_FOLLOW = 0x02000000 # Do not follow a symbolic link. IN_EXCL_UNLINK = 0x04000000 # Exclude events on unlinked objects IN_MASK_ADD = 0x20000000 # Add to the mask of an existing watch. IN_ISDIR = 0x40000000 # Event occurred against directory. IN_ONESHOT = 0x80000000 # Only send event once. # All user-space events. IN_ALL_EVENTS = reduce( lambda x, y: x | y, [ IN_ACCESS, IN_MODIFY, IN_ATTRIB, IN_CLOSE_WRITE, IN_CLOSE_NOWRITE, IN_OPEN, IN_MOVED_FROM, IN_MOVED_TO, IN_DELETE, IN_CREATE, IN_DELETE_SELF, IN_MOVE_SELF, ]) # Flags for ``inotify_init1`` IN_CLOEXEC = 0x02000000 IN_NONBLOCK = 0x00004000 # Watchdog's API cares only about these events. WATCHDOG_ALL_EVENTS = reduce( lambda x, y: x | y, [ InotifyConstants.IN_MODIFY, InotifyConstants.IN_ATTRIB, InotifyConstants.IN_MOVED_FROM, InotifyConstants.IN_MOVED_TO, InotifyConstants.IN_CREATE, InotifyConstants.IN_DELETE, InotifyConstants.IN_DELETE_SELF, InotifyConstants.IN_DONT_FOLLOW, ]) class inotify_event_struct(ctypes.Structure): """ Structure representation of the inotify_event structure (used in buffer size calculations):: struct inotify_event { __s32 wd; /* watch descriptor */ __u32 mask; /* watch mask */ __u32 cookie; /* cookie to synchronize two events */ __u32 len; /* length (including nulls) of name */ char name[0]; /* stub for possible name */ }; """ _fields_ = [('wd', c_int), ('mask', c_uint32), ('cookie', c_uint32), ('len', c_uint32), ('name', c_char_p)] EVENT_SIZE = ctypes.sizeof(inotify_event_struct) DEFAULT_NUM_EVENTS = 2048 DEFAULT_EVENT_BUFFER_SIZE = DEFAULT_NUM_EVENTS * (EVENT_SIZE + 16) class Inotify(object): """ Linux inotify(7) API wrapper class. :param path: The directory path for which we want an inotify object. :type path: :class:`bytes` :param recursive: ``True`` if subdirectories should be monitored; ``False`` otherwise. """ def __init__(self, path, recursive=False, event_mask=WATCHDOG_ALL_EVENTS): # The file descriptor associated with the inotify instance. inotify_fd = inotify_init() if inotify_fd == -1: Inotify._raise_error() self._inotify_fd = inotify_fd self._lock = threading.Lock() # Stores the watch descriptor for a given path. self._wd_for_path = dict() self._path_for_wd = dict() self._path = path self._event_mask = event_mask self._is_recursive = recursive if os.path.isdir(path): self._add_dir_watch(path, recursive, event_mask) else: self._add_watch(path, event_mask) self._moved_from_events = dict() @property def event_mask(self): """The event mask for this inotify instance.""" return self._event_mask @property def path(self): """The path associated with the inotify instance.""" return self._path @property def is_recursive(self): """Whether we are watching directories recursively.""" return self._is_recursive @property def fd(self): """The file descriptor associated with the inotify instance.""" return self._inotify_fd def clear_move_records(self): """Clear cached records of MOVED_FROM events""" self._moved_from_events = dict() def source_for_move(self, destination_event): """ The source path corresponding to the given MOVED_TO event. If the source path is outside the monitored directories, None is returned instead. """ if destination_event.cookie in self._moved_from_events: return self._moved_from_events[destination_event.cookie].src_path else: return None def remember_move_from_event(self, event): """ Save this event as the source event for future MOVED_TO events to reference. """ self._moved_from_events[event.cookie] = event def add_watch(self, path): """ Adds a watch for the given path. :param path: Path to begin monitoring. """ with self._lock: self._add_watch(path, self._event_mask) def remove_watch(self, path): """ Removes a watch for the given path. :param path: Path string for which the watch will be removed. """ with self._lock: wd = self._wd_for_path.pop(path) del self._path_for_wd[wd] if inotify_rm_watch(self._inotify_fd, wd) == -1: Inotify._raise_error() def close(self): """ Closes the inotify instance and removes all associated watches. """ with self._lock: if self._path in self._wd_for_path: wd = self._wd_for_path[self._path] inotify_rm_watch(self._inotify_fd, wd) os.close(self._inotify_fd) def read_events(self, event_buffer_size=DEFAULT_EVENT_BUFFER_SIZE): """ Reads events from inotify and yields them. """ # HACK: We need to traverse the directory path # recursively and simulate events for newly # created subdirectories/files. This will handle # mkdir -p foobar/blah/bar; touch foobar/afile def _recursive_simulate(src_path): events = [] for root, dirnames, filenames in os.walk(src_path): for dirname in dirnames: try: full_path = os.path.join(root, dirname) wd_dir = self._add_watch(full_path, self._event_mask) e = InotifyEvent( wd_dir, InotifyConstants.IN_CREATE | InotifyConstants.IN_ISDIR, 0, dirname, full_path) events.append(e) except OSError: pass for filename in filenames: full_path = os.path.join(root, filename) wd_parent_dir = self._wd_for_path[os.path.dirname(full_path)] e = InotifyEvent( wd_parent_dir, InotifyConstants.IN_CREATE, 0, filename, full_path) events.append(e) return events event_buffer = None while True: try: event_buffer = os.read(self._inotify_fd, event_buffer_size) except OSError as e: if e.errno == errno.EINTR: continue break with self._lock: event_list = [] for wd, mask, cookie, name in Inotify._parse_event_buffer(event_buffer): if wd == -1: continue wd_path = self._path_for_wd[wd] src_path = os.path.join(wd_path, name) if name else wd_path # avoid trailing slash inotify_event = InotifyEvent(wd, mask, cookie, name, src_path) if inotify_event.is_moved_from: self.remember_move_from_event(inotify_event) elif inotify_event.is_moved_to: move_src_path = self.source_for_move(inotify_event) if move_src_path in self._wd_for_path: moved_wd = self._wd_for_path[move_src_path] del self._wd_for_path[move_src_path] self._wd_for_path[inotify_event.src_path] = moved_wd self._path_for_wd[moved_wd] = inotify_event.src_path if self.is_recursive: for _path, _wd in self._wd_for_path.copy().items(): if _path.startswith(move_src_path + os.path.sep.encode()): moved_wd = self._wd_for_path.pop(_path) _move_to_path = _path.replace(move_src_path, inotify_event.src_path) self._wd_for_path[_move_to_path] = moved_wd self._path_for_wd[moved_wd] = _move_to_path src_path = os.path.join(wd_path, name) inotify_event = InotifyEvent(wd, mask, cookie, name, src_path) if inotify_event.is_ignored: # Clean up book-keeping for deleted watches. path = self._path_for_wd.pop(wd) if self._wd_for_path[path] == wd: del self._wd_for_path[path] continue event_list.append(inotify_event) if (self.is_recursive and inotify_event.is_directory and inotify_event.is_create): # TODO: When a directory from another part of the # filesystem is moved into a watched directory, this # will not generate events for the directory tree. # We need to coalesce IN_MOVED_TO events and those # IN_MOVED_TO events which don't pair up with # IN_MOVED_FROM events should be marked IN_CREATE # instead relative to this directory. try: self._add_watch(src_path, self._event_mask) except OSError: continue event_list.extend(_recursive_simulate(src_path)) return event_list # Non-synchronized methods. def _add_dir_watch(self, path, recursive, mask): """ Adds a watch (optionally recursively) for the given directory path to monitor events specified by the mask. :param path: Path to monitor :param recursive: ``True`` to monitor recursively. :param mask: Event bit mask. """ if not os.path.isdir(path): raise OSError(errno.ENOTDIR, os.strerror(errno.ENOTDIR), path) self._add_watch(path, mask) if recursive: for root, dirnames, _ in os.walk(path): for dirname in dirnames: full_path = os.path.join(root, dirname) if os.path.islink(full_path): continue self._add_watch(full_path, mask) def _add_watch(self, path, mask): """ Adds a watch for the given path to monitor events specified by the mask. :param path: Path to monitor :param mask: Event bit mask. """ wd = inotify_add_watch(self._inotify_fd, path, mask) if wd == -1: Inotify._raise_error() self._wd_for_path[path] = wd self._path_for_wd[wd] = path return wd @staticmethod def _raise_error(): """ Raises errors for inotify failures. """ err = ctypes.get_errno() if err == errno.ENOSPC: raise OSError(errno.ENOSPC, "inotify watch limit reached") elif err == errno.EMFILE: raise OSError(errno.EMFILE, "inotify instance limit reached") else: raise OSError(err, os.strerror(err)) @staticmethod def _parse_event_buffer(event_buffer): """ Parses an event buffer of ``inotify_event`` structs returned by inotify:: struct inotify_event { __s32 wd; /* watch descriptor */ __u32 mask; /* watch mask */ __u32 cookie; /* cookie to synchronize two events */ __u32 len; /* length (including nulls) of name */ char name[0]; /* stub for possible name */ }; The ``cookie`` member of this struct is used to pair two related events, for example, it pairs an IN_MOVED_FROM event with an IN_MOVED_TO event. """ i = 0 while i + 16 <= len(event_buffer): wd, mask, cookie, length = struct.unpack_from('iIII', event_buffer, i) name = event_buffer[i + 16:i + 16 + length].rstrip(b'\0') i += 16 + length yield wd, mask, cookie, name class InotifyEvent(object): """ Inotify event struct wrapper. :param wd: Watch descriptor :param mask: Event mask :param cookie: Event cookie :param name: Base name of the event source path. :param src_path: Full event source path. """ def __init__(self, wd, mask, cookie, name, src_path): self._wd = wd self._mask = mask self._cookie = cookie self._name = name self._src_path = src_path @property def src_path(self): return self._src_path @property def wd(self): return self._wd @property def mask(self): return self._mask @property def cookie(self): return self._cookie @property def name(self): return self._name @property def is_modify(self): return self._mask & InotifyConstants.IN_MODIFY > 0 @property def is_close_write(self): return self._mask & InotifyConstants.IN_CLOSE_WRITE > 0 @property def is_close_nowrite(self): return self._mask & InotifyConstants.IN_CLOSE_NOWRITE > 0 @property def is_access(self): return self._mask & InotifyConstants.IN_ACCESS > 0 @property def is_delete(self): return self._mask & InotifyConstants.IN_DELETE > 0 @property def is_delete_self(self): return self._mask & InotifyConstants.IN_DELETE_SELF > 0 @property def is_create(self): return self._mask & InotifyConstants.IN_CREATE > 0 @property def is_moved_from(self): return self._mask & InotifyConstants.IN_MOVED_FROM > 0 @property def is_moved_to(self): return self._mask & InotifyConstants.IN_MOVED_TO > 0 @property def is_move(self): return self._mask & InotifyConstants.IN_MOVE > 0 @property def is_move_self(self): return self._mask & InotifyConstants.IN_MOVE_SELF > 0 @property def is_attrib(self): return self._mask & InotifyConstants.IN_ATTRIB > 0 @property def is_ignored(self): return self._mask & InotifyConstants.IN_IGNORED > 0 @property def is_directory(self): # It looks like the kernel does not provide this information for # IN_DELETE_SELF and IN_MOVE_SELF. In this case, assume it's a dir. # See also: https://github.com/seb-m/pyinotify/blob/2c7e8f8/python2/pyinotify.py#L897 return (self.is_delete_self or self.is_move_self or self._mask & InotifyConstants.IN_ISDIR > 0) @property def key(self): return self._src_path, self._wd, self._mask, self._cookie, self._name def __eq__(self, inotify_event): return self.key == inotify_event.key def __ne__(self, inotify_event): return self.key == inotify_event.key def __hash__(self): return hash(self.key) @staticmethod def _get_mask_string(mask): masks = [] for c in dir(InotifyConstants): if c.startswith('IN_') and c not in ['IN_ALL_EVENTS', 'IN_CLOSE', 'IN_MOVE']: c_val = getattr(InotifyConstants, c) if mask & c_val: masks.append(c) mask_string = '|'.join(masks) return mask_string def __repr__(self): mask_string = self._get_mask_string(self.mask) s = '<%s: src_path=%r, wd=%d, mask=%s, cookie=%d, name=%s>' return s % (type(self).__name__, self.src_path, self.wd, mask_string, self.cookie, decode(self.name))
33.54932
114
0.596441
from __future__ import with_statement import os import errno import struct import threading import ctypes import ctypes.util from functools import reduce from ctypes import c_int, c_char_p, c_uint32 from watchdog.utils import has_attribute from watchdog.utils import UnsupportedLibc from watchdog.utils.unicode_paths import decode def _load_libc(): libc_path = None try: libc_path = ctypes.util.find_library('c') except (OSError, IOError, RuntimeError): pass if libc_path is not None: return ctypes.CDLL(libc_path) try: return ctypes.CDLL('libc.so') except (OSError, IOError): pass try: return ctypes.CDLL('libc.so.6') except (OSError, IOError): pass try: return ctypes.CDLL('libc.so.0') except (OSError, IOError) as err: raise err libc = _load_libc() if not has_attribute(libc, 'inotify_init') or \ not has_attribute(libc, 'inotify_add_watch') or \ not has_attribute(libc, 'inotify_rm_watch'): raise UnsupportedLibc("Unsupported libc version found: %s" % libc._name) inotify_add_watch = ctypes.CFUNCTYPE(c_int, c_int, c_char_p, c_uint32, use_errno=True)( ("inotify_add_watch", libc)) inotify_rm_watch = ctypes.CFUNCTYPE(c_int, c_int, c_uint32, use_errno=True)( ("inotify_rm_watch", libc)) inotify_init = ctypes.CFUNCTYPE(c_int, use_errno=True)( ("inotify_init", libc)) class InotifyConstants(object): IN_ACCESS = 0x00000001 IN_MODIFY = 0x00000002 IN_ATTRIB = 0x00000004 IN_CLOSE_WRITE = 0x00000008 IN_CLOSE_NOWRITE = 0x00000010 IN_OPEN = 0x00000020 IN_MOVED_FROM = 0x00000040 IN_MOVED_TO = 0x00000080 IN_CREATE = 0x00000100 IN_DELETE = 0x00000200 IN_DELETE_SELF = 0x00000400 IN_MOVE_SELF = 0x00000800 IN_CLOSE = IN_CLOSE_WRITE | IN_CLOSE_NOWRITE IN_MOVE = IN_MOVED_FROM | IN_MOVED_TO IN_UNMOUNT = 0x00002000 IN_Q_OVERFLOW = 0x00004000 IN_IGNORED = 0x00008000 IN_ONLYDIR = 0x01000000 IN_DONT_FOLLOW = 0x02000000 # Do not follow a symbolic link. IN_EXCL_UNLINK = 0x04000000 # Exclude events on unlinked objects IN_MASK_ADD = 0x20000000 # Add to the mask of an existing watch. IN_ISDIR = 0x40000000 # Event occurred against directory. IN_ONESHOT = 0x80000000 # Only send event once. # All user-space events. IN_ALL_EVENTS = reduce( lambda x, y: x | y, [ IN_ACCESS, IN_MODIFY, IN_ATTRIB, IN_CLOSE_WRITE, IN_CLOSE_NOWRITE, IN_OPEN, IN_MOVED_FROM, IN_MOVED_TO, IN_DELETE, IN_CREATE, IN_DELETE_SELF, IN_MOVE_SELF, ]) # Flags for ``inotify_init1`` IN_CLOEXEC = 0x02000000 IN_NONBLOCK = 0x00004000 # Watchdog's API cares only about these events. WATCHDOG_ALL_EVENTS = reduce( lambda x, y: x | y, [ InotifyConstants.IN_MODIFY, InotifyConstants.IN_ATTRIB, InotifyConstants.IN_MOVED_FROM, InotifyConstants.IN_MOVED_TO, InotifyConstants.IN_CREATE, InotifyConstants.IN_DELETE, InotifyConstants.IN_DELETE_SELF, InotifyConstants.IN_DONT_FOLLOW, ]) class inotify_event_struct(ctypes.Structure): _fields_ = [('wd', c_int), ('mask', c_uint32), ('cookie', c_uint32), ('len', c_uint32), ('name', c_char_p)] EVENT_SIZE = ctypes.sizeof(inotify_event_struct) DEFAULT_NUM_EVENTS = 2048 DEFAULT_EVENT_BUFFER_SIZE = DEFAULT_NUM_EVENTS * (EVENT_SIZE + 16) class Inotify(object): def __init__(self, path, recursive=False, event_mask=WATCHDOG_ALL_EVENTS): inotify_fd = inotify_init() if inotify_fd == -1: Inotify._raise_error() self._inotify_fd = inotify_fd self._lock = threading.Lock() self._wd_for_path = dict() self._path_for_wd = dict() self._path = path self._event_mask = event_mask self._is_recursive = recursive if os.path.isdir(path): self._add_dir_watch(path, recursive, event_mask) else: self._add_watch(path, event_mask) self._moved_from_events = dict() @property def event_mask(self): return self._event_mask @property def path(self): return self._path @property def is_recursive(self): return self._is_recursive @property def fd(self): return self._inotify_fd def clear_move_records(self): self._moved_from_events = dict() def source_for_move(self, destination_event): if destination_event.cookie in self._moved_from_events: return self._moved_from_events[destination_event.cookie].src_path else: return None def remember_move_from_event(self, event): self._moved_from_events[event.cookie] = event def add_watch(self, path): with self._lock: self._add_watch(path, self._event_mask) def remove_watch(self, path): with self._lock: wd = self._wd_for_path.pop(path) del self._path_for_wd[wd] if inotify_rm_watch(self._inotify_fd, wd) == -1: Inotify._raise_error() def close(self): with self._lock: if self._path in self._wd_for_path: wd = self._wd_for_path[self._path] inotify_rm_watch(self._inotify_fd, wd) os.close(self._inotify_fd) def read_events(self, event_buffer_size=DEFAULT_EVENT_BUFFER_SIZE): def _recursive_simulate(src_path): events = [] for root, dirnames, filenames in os.walk(src_path): for dirname in dirnames: try: full_path = os.path.join(root, dirname) wd_dir = self._add_watch(full_path, self._event_mask) e = InotifyEvent( wd_dir, InotifyConstants.IN_CREATE | InotifyConstants.IN_ISDIR, 0, dirname, full_path) events.append(e) except OSError: pass for filename in filenames: full_path = os.path.join(root, filename) wd_parent_dir = self._wd_for_path[os.path.dirname(full_path)] e = InotifyEvent( wd_parent_dir, InotifyConstants.IN_CREATE, 0, filename, full_path) events.append(e) return events event_buffer = None while True: try: event_buffer = os.read(self._inotify_fd, event_buffer_size) except OSError as e: if e.errno == errno.EINTR: continue break with self._lock: event_list = [] for wd, mask, cookie, name in Inotify._parse_event_buffer(event_buffer): if wd == -1: continue wd_path = self._path_for_wd[wd] src_path = os.path.join(wd_path, name) if name else wd_path inotify_event = InotifyEvent(wd, mask, cookie, name, src_path) if inotify_event.is_moved_from: self.remember_move_from_event(inotify_event) elif inotify_event.is_moved_to: move_src_path = self.source_for_move(inotify_event) if move_src_path in self._wd_for_path: moved_wd = self._wd_for_path[move_src_path] del self._wd_for_path[move_src_path] self._wd_for_path[inotify_event.src_path] = moved_wd self._path_for_wd[moved_wd] = inotify_event.src_path if self.is_recursive: for _path, _wd in self._wd_for_path.copy().items(): if _path.startswith(move_src_path + os.path.sep.encode()): moved_wd = self._wd_for_path.pop(_path) _move_to_path = _path.replace(move_src_path, inotify_event.src_path) self._wd_for_path[_move_to_path] = moved_wd self._path_for_wd[moved_wd] = _move_to_path src_path = os.path.join(wd_path, name) inotify_event = InotifyEvent(wd, mask, cookie, name, src_path) if inotify_event.is_ignored: path = self._path_for_wd.pop(wd) if self._wd_for_path[path] == wd: del self._wd_for_path[path] continue event_list.append(inotify_event) if (self.is_recursive and inotify_event.is_directory and inotify_event.is_create): # IN_MOVED_FROM events should be marked IN_CREATE # instead relative to this directory. try: self._add_watch(src_path, self._event_mask) except OSError: continue event_list.extend(_recursive_simulate(src_path)) return event_list # Non-synchronized methods. def _add_dir_watch(self, path, recursive, mask): if not os.path.isdir(path): raise OSError(errno.ENOTDIR, os.strerror(errno.ENOTDIR), path) self._add_watch(path, mask) if recursive: for root, dirnames, _ in os.walk(path): for dirname in dirnames: full_path = os.path.join(root, dirname) if os.path.islink(full_path): continue self._add_watch(full_path, mask) def _add_watch(self, path, mask): wd = inotify_add_watch(self._inotify_fd, path, mask) if wd == -1: Inotify._raise_error() self._wd_for_path[path] = wd self._path_for_wd[wd] = path return wd @staticmethod def _raise_error(): err = ctypes.get_errno() if err == errno.ENOSPC: raise OSError(errno.ENOSPC, "inotify watch limit reached") elif err == errno.EMFILE: raise OSError(errno.EMFILE, "inotify instance limit reached") else: raise OSError(err, os.strerror(err)) @staticmethod def _parse_event_buffer(event_buffer): i = 0 while i + 16 <= len(event_buffer): wd, mask, cookie, length = struct.unpack_from('iIII', event_buffer, i) name = event_buffer[i + 16:i + 16 + length].rstrip(b'\0') i += 16 + length yield wd, mask, cookie, name class InotifyEvent(object): def __init__(self, wd, mask, cookie, name, src_path): self._wd = wd self._mask = mask self._cookie = cookie self._name = name self._src_path = src_path @property def src_path(self): return self._src_path @property def wd(self): return self._wd @property def mask(self): return self._mask @property def cookie(self): return self._cookie @property def name(self): return self._name @property def is_modify(self): return self._mask & InotifyConstants.IN_MODIFY > 0 @property def is_close_write(self): return self._mask & InotifyConstants.IN_CLOSE_WRITE > 0 @property def is_close_nowrite(self): return self._mask & InotifyConstants.IN_CLOSE_NOWRITE > 0 @property def is_access(self): return self._mask & InotifyConstants.IN_ACCESS > 0 @property def is_delete(self): return self._mask & InotifyConstants.IN_DELETE > 0 @property def is_delete_self(self): return self._mask & InotifyConstants.IN_DELETE_SELF > 0 @property def is_create(self): return self._mask & InotifyConstants.IN_CREATE > 0 @property def is_moved_from(self): return self._mask & InotifyConstants.IN_MOVED_FROM > 0 @property def is_moved_to(self): return self._mask & InotifyConstants.IN_MOVED_TO > 0 @property def is_move(self): return self._mask & InotifyConstants.IN_MOVE > 0 @property def is_move_self(self): return self._mask & InotifyConstants.IN_MOVE_SELF > 0 @property def is_attrib(self): return self._mask & InotifyConstants.IN_ATTRIB > 0 @property def is_ignored(self): return self._mask & InotifyConstants.IN_IGNORED > 0 @property def is_directory(self): # It looks like the kernel does not provide this information for # IN_DELETE_SELF and IN_MOVE_SELF. In this case, assume it's a dir. return (self.is_delete_self or self.is_move_self or self._mask & InotifyConstants.IN_ISDIR > 0) @property def key(self): return self._src_path, self._wd, self._mask, self._cookie, self._name def __eq__(self, inotify_event): return self.key == inotify_event.key def __ne__(self, inotify_event): return self.key == inotify_event.key def __hash__(self): return hash(self.key) @staticmethod def _get_mask_string(mask): masks = [] for c in dir(InotifyConstants): if c.startswith('IN_') and c not in ['IN_ALL_EVENTS', 'IN_CLOSE', 'IN_MOVE']: c_val = getattr(InotifyConstants, c) if mask & c_val: masks.append(c) mask_string = '|'.join(masks) return mask_string def __repr__(self): mask_string = self._get_mask_string(self.mask) s = '<%s: src_path=%r, wd=%d, mask=%s, cookie=%d, name=%s>' return s % (type(self).__name__, self.src_path, self.wd, mask_string, self.cookie, decode(self.name))
true
true
f70f8e73132e3e8bee5eadba32f1938ebaba2aa7
319
py
Python
example/routes.py
fitahol/aiohttprest
b9f1a386b22ad03e53f2f0e74ed3b29da5bcc220
[ "Apache-2.0" ]
1
2017-03-14T23:39:55.000Z
2017-03-14T23:39:55.000Z
example/routes.py
fitahol/aiohttprest
b9f1a386b22ad03e53f2f0e74ed3b29da5bcc220
[ "Apache-2.0" ]
null
null
null
example/routes.py
fitahol/aiohttprest
b9f1a386b22ad03e53f2f0e74ed3b29da5bcc220
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # coding=utf-8 """ __created__ = '06/01/2017' __author__ = 'deling.ma' """ from aio_rest.routes import RouteCollector, Route from example.views import publish, IndexView routes = RouteCollector(prefix='/app', routes=[ Route('/', IndexView), Route('/publish', publish, method='GET'), ])
19.9375
49
0.689655
from aio_rest.routes import RouteCollector, Route from example.views import publish, IndexView routes = RouteCollector(prefix='/app', routes=[ Route('/', IndexView), Route('/publish', publish, method='GET'), ])
true
true
f70f8ec2299360b366ee181be4fd170341ad6326
869
py
Python
Inflearn_SungKim/1.LinearRegression/LinearRegression(placeholders).py
shinhaha/tensorflow
4647017a727985d64c5b0addee92f0ec516952c1
[ "MIT" ]
null
null
null
Inflearn_SungKim/1.LinearRegression/LinearRegression(placeholders).py
shinhaha/tensorflow
4647017a727985d64c5b0addee92f0ec516952c1
[ "MIT" ]
null
null
null
Inflearn_SungKim/1.LinearRegression/LinearRegression(placeholders).py
shinhaha/tensorflow
4647017a727985d64c5b0addee92f0ec516952c1
[ "MIT" ]
null
null
null
import tensorflow as tf #placeholder variable(scalar) X=tf.placeholder(tf.float32,shape=[None]) Y=tf.placeholder(tf.float32,shape=[None]) W=tf.Variable(tf.random_normal([1]),name='weight') b=tf.Variable(tf.random_normal([1]),name='bias') hypothesis=X*W+b #average cost=tf.reduce_mean(tf.square(hypothesis-Y)) optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.01) #minimize cost train=optimizer.minimize(cost) sess=tf.Session() #initialize var sess.run(tf.global_variables_initializer()) #learning for step in range(2001): cost_val,W_val,b_val,_=sess.run([cost,W,b,train], feed_dict={X:[1,2,3,4,5],Y:[2.1,3.1,4.1,5.1,6.1]}) if step%20==0: print(step,cost_val,W_val,b_val) #evlauation print(sess.run(hypothesis,feed_dict={X:[5]})) print(sess.run(hypothesis,feed_dict={X:[2.5]})) print(sess.run(hypothesis,feed_dict={X:[1.5,3.5]}))
27.15625
63
0.727273
import tensorflow as tf X=tf.placeholder(tf.float32,shape=[None]) Y=tf.placeholder(tf.float32,shape=[None]) W=tf.Variable(tf.random_normal([1]),name='weight') b=tf.Variable(tf.random_normal([1]),name='bias') hypothesis=X*W+b cost=tf.reduce_mean(tf.square(hypothesis-Y)) optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.01) train=optimizer.minimize(cost) sess=tf.Session() sess.run(tf.global_variables_initializer()) for step in range(2001): cost_val,W_val,b_val,_=sess.run([cost,W,b,train], feed_dict={X:[1,2,3,4,5],Y:[2.1,3.1,4.1,5.1,6.1]}) if step%20==0: print(step,cost_val,W_val,b_val) print(sess.run(hypothesis,feed_dict={X:[5]})) print(sess.run(hypothesis,feed_dict={X:[2.5]})) print(sess.run(hypothesis,feed_dict={X:[1.5,3.5]}))
true
true
f70f8f560c5f80a9cb4578a691c38108667a8423
1,211
py
Python
deel/model/lstm.py
ghelia/deel
6ff67d7246daf12d1884357010dd82842fbc31d1
[ "MIT" ]
null
null
null
deel/model/lstm.py
ghelia/deel
6ff67d7246daf12d1884357010dd82842fbc31d1
[ "MIT" ]
null
null
null
deel/model/lstm.py
ghelia/deel
6ff67d7246daf12d1884357010dd82842fbc31d1
[ "MIT" ]
null
null
null
import chainer import chainer.functions as F import chainer.links as L """ Based on chainer official example https://github.com/pfnet/chainer/tree/master/examples/ptb Modified by shi3z March 28,2016 """ class RNNLM(chainer.Chain): """Recurrent neural net languabe model for penn tree bank corpus. This is an example of deep LSTM network for infinite length input. """ def __init__(self, n_input_units=1000,n_vocab=100, n_units=100, train=True): super(RNNLM, self).__init__( inputVector= L.Linear(n_input_units, n_units), embed=L.EmbedID(n_vocab, n_units), l1=L.LSTM(n_units, n_units), l2=L.LSTM(n_units, n_units), l3=L.Linear(n_units, n_vocab), ) self.train = train def reset_state(self): self.l1.reset_state() self.l2.reset_state() self.l3.reset_state() def __call__(self, x,mode=0): if mode == 1: h0 = self.inputVector(x) else: h0 = self.embed(x) h1 = self.l1(F.dropout(h0, train=self.train)) h2 = self.l2(F.dropout(h1, train=self.train)) y = self.l3(F.dropout(h2, train=self.train)) return y
28.162791
80
0.618497
import chainer import chainer.functions as F import chainer.links as L class RNNLM(chainer.Chain): def __init__(self, n_input_units=1000,n_vocab=100, n_units=100, train=True): super(RNNLM, self).__init__( inputVector= L.Linear(n_input_units, n_units), embed=L.EmbedID(n_vocab, n_units), l1=L.LSTM(n_units, n_units), l2=L.LSTM(n_units, n_units), l3=L.Linear(n_units, n_vocab), ) self.train = train def reset_state(self): self.l1.reset_state() self.l2.reset_state() self.l3.reset_state() def __call__(self, x,mode=0): if mode == 1: h0 = self.inputVector(x) else: h0 = self.embed(x) h1 = self.l1(F.dropout(h0, train=self.train)) h2 = self.l2(F.dropout(h1, train=self.train)) y = self.l3(F.dropout(h2, train=self.train)) return y
true
true
f70f910ce1791081915a783482feb7b0db02c894
5,716
py
Python
src/films/tests/test_hdrfilm.py
tizian/layer-laboratory
008cc94b76127e9eb74227fcd3d0145da8ddec30
[ "CNRI-Python" ]
7
2020-07-24T03:19:59.000Z
2022-03-30T10:56:12.000Z
src/films/tests/test_hdrfilm.py
tizian/layer-laboratory
008cc94b76127e9eb74227fcd3d0145da8ddec30
[ "CNRI-Python" ]
1
2021-04-07T22:30:23.000Z
2021-04-08T00:55:36.000Z
src/films/tests/test_hdrfilm.py
tizian/layer-laboratory
008cc94b76127e9eb74227fcd3d0145da8ddec30
[ "CNRI-Python" ]
2
2020-06-08T08:25:09.000Z
2021-04-05T22:13:08.000Z
import mitsuba import pytest import os import enoki as ek def test01_construct(variant_scalar_rgb): from mitsuba.core.xml import load_string # With default reconstruction filter film = load_string("""<film version="2.0.0" type="hdrfilm"></film>""") assert film is not None assert film.reconstruction_filter() is not None # With a provided reconstruction filter film = load_string("""<film version="2.0.0" type="hdrfilm"> <rfilter type="gaussian"> <float name="stddev" value="18.5"/> </rfilter> </film>""") assert film is not None assert film.reconstruction_filter().radius() == (4 * 18.5) # Certain parameter values are not allowed with pytest.raises(RuntimeError): load_string("""<film version="2.0.0" type="hdrfilm"> <string name="component_format" value="uint8"/> </film>""") with pytest.raises(RuntimeError): load_string("""<film version="2.0.0" type="hdrfilm"> <string name="pixel_format" value="brga"/> </film>""") def test02_crops(variant_scalar_rgb): from mitsuba.core.xml import load_string film = load_string("""<film version="2.0.0" type="hdrfilm"> <integer name="width" value="32"/> <integer name="height" value="21"/> <integer name="crop_width" value="11"/> <integer name="crop_height" value="5"/> <integer name="crop_offset_x" value="2"/> <integer name="crop_offset_y" value="3"/> <boolean name="high_quality_edges" value="true"/> <string name="pixel_format" value="rgba"/> </film>""") assert film is not None assert ek.all(film.size() == [32, 21]) assert ek.all(film.crop_size() == [11, 5]) assert ek.all(film.crop_offset() == [2, 3]) assert film.has_high_quality_edges() # Crop size doesn't adjust its size, so an error should be raised if the # resulting crop window goes out of bounds. incomplete = """<film version="2.0.0" type="hdrfilm"> <integer name="width" value="32"/> <integer name="height" value="21"/> <integer name="crop_offset_x" value="30"/> <integer name="crop_offset_y" value="20"/>""" with pytest.raises(RuntimeError): film = load_string(incomplete + "</film>") film = load_string(incomplete + """ <integer name="crop_width" value="2"/> <integer name="crop_height" value="1"/> </film>""") assert film is not None assert ek.all(film.size() == [32, 21]) assert ek.all(film.crop_size() == [2, 1]) assert ek.all(film.crop_offset() == [30, 20]) @pytest.mark.parametrize('file_format', ['exr', 'rgbe', 'pfm']) def test03_develop(variant_scalar_rgb, file_format, tmpdir): from mitsuba.core.xml import load_string from mitsuba.core import Bitmap, Struct, ReconstructionFilter, float_dtype from mitsuba.render import ImageBlock import numpy as np """Create a test image. Develop it to a few file format, each time reading it back and checking that contents are unchanged.""" np.random.seed(12345 + ord(file_format[0])) # Note: depending on the file format, the alpha channel may be automatically removed. film = load_string("""<film version="2.0.0" type="hdrfilm"> <integer name="width" value="41"/> <integer name="height" value="37"/> <string name="file_format" value="{}"/> <string name="pixel_format" value="rgba"/> <string name="component_format" value="float32"/> <rfilter type="box"/> </film>""".format(file_format)) # Regardless of the output file format, values are stored as XYZAW (5 channels). contents = np.random.uniform(size=(film.size()[1], film.size()[0], 5)) # RGBE and will only reconstruct well images that have similar scales on # all channel (because exponent is shared between channels). if file_format is "rgbe": contents = 1 + 0.1 * contents # Use unit weights. contents[:, :, 4] = 1.0 block = ImageBlock(film.size(), 5, film.reconstruction_filter()) block.clear() for x in range(film.size()[1]): for y in range(film.size()[0]): block.put([y+0.5, x+0.5], contents[x, y, :]) film.prepare(['X', 'Y', 'Z', 'A', 'W']) film.put(block) with pytest.raises(RuntimeError): # Should raise when the destination file hasn't been specified. film.develop() filename = str(tmpdir.join('test_image.' + file_format)) film.set_destination_file(filename) film.develop() # Read back and check contents other = Bitmap(filename).convert(Bitmap.PixelFormat.XYZAW, Struct.Type.Float32, srgb_gamma=False) img = np.array(other, copy=False) if False: import matplotlib.pyplot as plt plt.figure() plt.subplot(1, 3, 1) plt.imshow(contents[:, :, :3]) plt.subplot(1, 3, 2) plt.imshow(img[:, :, :3]) plt.subplot(1, 3, 3) plt.imshow(ek.sum(ek.abs(img[:, :, :3] - contents[:, :, :3]), axis=2), cmap='coolwarm') plt.colorbar() plt.show() if file_format == "exr": assert ek.allclose(img, contents, atol=1e-5) else: if file_format == "rgbe": assert ek.allclose(img[:, :, :3], contents[:, :, :3], atol=1e-2), \ '\n{}\nvs\n{}\n'.format(img[:4, :4, :3], contents[:4, :4, :3]) else: assert ek.allclose(img[:, :, :3], contents[:, :, :3], atol=1e-5) # Alpha channel was ignored, alpha and weights should default to 1.0. assert ek.allclose(img[:, :, 3:5], 1.0, atol=1e-6)
39.42069
101
0.603569
import mitsuba import pytest import os import enoki as ek def test01_construct(variant_scalar_rgb): from mitsuba.core.xml import load_string film = load_string("""<film version="2.0.0" type="hdrfilm"></film>""") assert film is not None assert film.reconstruction_filter() is not None film = load_string("""<film version="2.0.0" type="hdrfilm"> <rfilter type="gaussian"> <float name="stddev" value="18.5"/> </rfilter> </film>""") assert film is not None assert film.reconstruction_filter().radius() == (4 * 18.5) with pytest.raises(RuntimeError): load_string("""<film version="2.0.0" type="hdrfilm"> <string name="component_format" value="uint8"/> </film>""") with pytest.raises(RuntimeError): load_string("""<film version="2.0.0" type="hdrfilm"> <string name="pixel_format" value="brga"/> </film>""") def test02_crops(variant_scalar_rgb): from mitsuba.core.xml import load_string film = load_string("""<film version="2.0.0" type="hdrfilm"> <integer name="width" value="32"/> <integer name="height" value="21"/> <integer name="crop_width" value="11"/> <integer name="crop_height" value="5"/> <integer name="crop_offset_x" value="2"/> <integer name="crop_offset_y" value="3"/> <boolean name="high_quality_edges" value="true"/> <string name="pixel_format" value="rgba"/> </film>""") assert film is not None assert ek.all(film.size() == [32, 21]) assert ek.all(film.crop_size() == [11, 5]) assert ek.all(film.crop_offset() == [2, 3]) assert film.has_high_quality_edges() # resulting crop window goes out of bounds. incomplete = """<film version="2.0.0" type="hdrfilm"> <integer name="width" value="32"/> <integer name="height" value="21"/> <integer name="crop_offset_x" value="30"/> <integer name="crop_offset_y" value="20"/>""" with pytest.raises(RuntimeError): film = load_string(incomplete + "</film>") film = load_string(incomplete + """ <integer name="crop_width" value="2"/> <integer name="crop_height" value="1"/> </film>""") assert film is not None assert ek.all(film.size() == [32, 21]) assert ek.all(film.crop_size() == [2, 1]) assert ek.all(film.crop_offset() == [30, 20]) @pytest.mark.parametrize('file_format', ['exr', 'rgbe', 'pfm']) def test03_develop(variant_scalar_rgb, file_format, tmpdir): from mitsuba.core.xml import load_string from mitsuba.core import Bitmap, Struct, ReconstructionFilter, float_dtype from mitsuba.render import ImageBlock import numpy as np np.random.seed(12345 + ord(file_format[0])) # Note: depending on the file format, the alpha channel may be automatically removed. film = load_string("""<film version="2.0.0" type="hdrfilm"> <integer name="width" value="41"/> <integer name="height" value="37"/> <string name="file_format" value="{}"/> <string name="pixel_format" value="rgba"/> <string name="component_format" value="float32"/> <rfilter type="box"/> </film>""".format(file_format)) # Regardless of the output file format, values are stored as XYZAW (5 channels). contents = np.random.uniform(size=(film.size()[1], film.size()[0], 5)) # RGBE and will only reconstruct well images that have similar scales on # all channel (because exponent is shared between channels). if file_format is "rgbe": contents = 1 + 0.1 * contents # Use unit weights. contents[:, :, 4] = 1.0 block = ImageBlock(film.size(), 5, film.reconstruction_filter()) block.clear() for x in range(film.size()[1]): for y in range(film.size()[0]): block.put([y+0.5, x+0.5], contents[x, y, :]) film.prepare(['X', 'Y', 'Z', 'A', 'W']) film.put(block) with pytest.raises(RuntimeError): # Should raise when the destination file hasn't been specified. film.develop() filename = str(tmpdir.join('test_image.' + file_format)) film.set_destination_file(filename) film.develop() other = Bitmap(filename).convert(Bitmap.PixelFormat.XYZAW, Struct.Type.Float32, srgb_gamma=False) img = np.array(other, copy=False) if False: import matplotlib.pyplot as plt plt.figure() plt.subplot(1, 3, 1) plt.imshow(contents[:, :, :3]) plt.subplot(1, 3, 2) plt.imshow(img[:, :, :3]) plt.subplot(1, 3, 3) plt.imshow(ek.sum(ek.abs(img[:, :, :3] - contents[:, :, :3]), axis=2), cmap='coolwarm') plt.colorbar() plt.show() if file_format == "exr": assert ek.allclose(img, contents, atol=1e-5) else: if file_format == "rgbe": assert ek.allclose(img[:, :, :3], contents[:, :, :3], atol=1e-2), \ '\n{}\nvs\n{}\n'.format(img[:4, :4, :3], contents[:4, :4, :3]) else: assert ek.allclose(img[:, :, :3], contents[:, :, :3], atol=1e-5) assert ek.allclose(img[:, :, 3:5], 1.0, atol=1e-6)
true
true
f70f925d50a5f908572efb96b2f9609c818088a6
2,959
py
Python
tests/test_inline_functions/test_query.py
pyansys/pyansys
adf51893be746c632f40a9dc8c9247dbee138dda
[ "MIT" ]
1
2021-08-19T14:08:34.000Z
2021-08-19T14:08:34.000Z
tests/test_inline_functions/test_query.py
pyansys/pyansys
adf51893be746c632f40a9dc8c9247dbee138dda
[ "MIT" ]
null
null
null
tests/test_inline_functions/test_query.py
pyansys/pyansys
adf51893be746c632f40a9dc8c9247dbee138dda
[ "MIT" ]
null
null
null
import pytest class TestParseParameter: @pytest.mark.parametrize( "values", [ ("PARAMETER test = 4", 4.0), ("PARAMETER=4", 4.0), ("PARAMETER WARNING = 4", 4.0), ("PARAMETER = _=4", 4.0), ("WARNING = PARAMETER = 4", 4.0), ("PARAMETER = .4", 0.4), ], ) def test_parse_float(self, values, query): input_, output = values assert query._parse_parameter_float_response(input_) == output @pytest.mark.parametrize( "values", [ ("PARAMETER test = 4", 4), ("PARAMETER=4", 4), ("PARAMETER WARNING = 4", 4), ("PARAMETER = _=4", 4), ("WARNING = PARAMETER = 4", 4), ("PARAMETER = .4", 0), ], ) def test_parse_int(self, values, query): input_, output = values assert query._parse_parameter_integer_response(input_) == output def test_parse_float_type_warning(self, query): input_ = "WARNING PARAMETER = 4" with pytest.warns(UserWarning): query._parse_parameter_float_response(input_) def test_parse_int_type_warning(self, query): input_ = "WARNING PARAMETER = 4" with pytest.warns(UserWarning): query._parse_parameter_integer_response(input_) @pytest.mark.parametrize( "value", ["parameter test = 4", "PARAMETER 4", "WARNING = 4", ""] ) def test_parse_float_type_error(self, value, query): input_ = value with pytest.raises(TypeError): query._parse_parameter_float_response(input_) @pytest.mark.parametrize( "value", ["parameter test = 4", "PARAMETER 4", "WARNING = 4", ""] ) def test_parse_int_type_error(self, value, query): input_ = value with pytest.raises(TypeError): query._parse_parameter_integer_response(input_) class TestRunQuery: @pytest.mark.parametrize('command', [('KX(1)', float), ('KP(1,1,1)', int)]) def test_run_query_returned_type(self, line_geometry, command): q, kps, l0 = line_geometry cmd, type_ = command integer = False if type_ == float else True v = q._run_query(cmd, integer=integer) assert isinstance(v, type_) def test_interactive_mode_error(self, mapdl, line_geometry): q, kps, l0 = line_geometry with mapdl.non_interactive: with pytest.raises(RuntimeError): v = q.kx(1) @pytest.mark.skip_grpc # only works in gRPC mode def test_nopr_mode(self, mapdl, line_geometry): try: # enter no printout mode mapdl._run('/NOPR', mute=True) assert mapdl.prep7() is None # verify that queries still work q, kps, l0 = line_geometry assert q.kx(2) == 1.0 finally: # always return printing mapdl._run('/GOPR', mute=True)
32.516484
79
0.57756
import pytest class TestParseParameter: @pytest.mark.parametrize( "values", [ ("PARAMETER test = 4", 4.0), ("PARAMETER=4", 4.0), ("PARAMETER WARNING = 4", 4.0), ("PARAMETER = _=4", 4.0), ("WARNING = PARAMETER = 4", 4.0), ("PARAMETER = .4", 0.4), ], ) def test_parse_float(self, values, query): input_, output = values assert query._parse_parameter_float_response(input_) == output @pytest.mark.parametrize( "values", [ ("PARAMETER test = 4", 4), ("PARAMETER=4", 4), ("PARAMETER WARNING = 4", 4), ("PARAMETER = _=4", 4), ("WARNING = PARAMETER = 4", 4), ("PARAMETER = .4", 0), ], ) def test_parse_int(self, values, query): input_, output = values assert query._parse_parameter_integer_response(input_) == output def test_parse_float_type_warning(self, query): input_ = "WARNING PARAMETER = 4" with pytest.warns(UserWarning): query._parse_parameter_float_response(input_) def test_parse_int_type_warning(self, query): input_ = "WARNING PARAMETER = 4" with pytest.warns(UserWarning): query._parse_parameter_integer_response(input_) @pytest.mark.parametrize( "value", ["parameter test = 4", "PARAMETER 4", "WARNING = 4", ""] ) def test_parse_float_type_error(self, value, query): input_ = value with pytest.raises(TypeError): query._parse_parameter_float_response(input_) @pytest.mark.parametrize( "value", ["parameter test = 4", "PARAMETER 4", "WARNING = 4", ""] ) def test_parse_int_type_error(self, value, query): input_ = value with pytest.raises(TypeError): query._parse_parameter_integer_response(input_) class TestRunQuery: @pytest.mark.parametrize('command', [('KX(1)', float), ('KP(1,1,1)', int)]) def test_run_query_returned_type(self, line_geometry, command): q, kps, l0 = line_geometry cmd, type_ = command integer = False if type_ == float else True v = q._run_query(cmd, integer=integer) assert isinstance(v, type_) def test_interactive_mode_error(self, mapdl, line_geometry): q, kps, l0 = line_geometry with mapdl.non_interactive: with pytest.raises(RuntimeError): v = q.kx(1) @pytest.mark.skip_grpc def test_nopr_mode(self, mapdl, line_geometry): try: mapdl._run('/NOPR', mute=True) assert mapdl.prep7() is None q, kps, l0 = line_geometry assert q.kx(2) == 1.0 finally: mapdl._run('/GOPR', mute=True)
true
true
f70f94b36a95bfd5abb974ec2563582a58d0197b
169
py
Python
app/src/imports/requests.py
jkulak/spotify-grabtrack
e6cd16709195ca6d2e186a3b8cc7ce1419b6aace
[ "MIT" ]
null
null
null
app/src/imports/requests.py
jkulak/spotify-grabtrack
e6cd16709195ca6d2e186a3b8cc7ce1419b6aace
[ "MIT" ]
13
2022-02-10T20:07:49.000Z
2022-03-27T20:07:21.000Z
app/src/imports/requests.py
jkulak/spotify-grabtrack
e6cd16709195ca6d2e186a3b8cc7ce1419b6aace
[ "MIT" ]
null
null
null
import requests_cache from requests_cache import SQLiteCache requests_cache.install_cache( "grabtrack_sqlite_cache", SQLiteCache("spotify_api_cache", timeout=30) )
24.142857
74
0.83432
import requests_cache from requests_cache import SQLiteCache requests_cache.install_cache( "grabtrack_sqlite_cache", SQLiteCache("spotify_api_cache", timeout=30) )
true
true
f70f95230083e964837c7ccf662a8d3e815a9abf
3,469
py
Python
gui/mon/views.py
erigones/esdc-ce
2e39211a8f5132d66e574d3a657906c7d3c406fe
[ "Apache-2.0" ]
97
2016-11-15T14:44:23.000Z
2022-03-13T18:09:15.000Z
gui/mon/views.py
erigones/esdc-ce
2e39211a8f5132d66e574d3a657906c7d3c406fe
[ "Apache-2.0" ]
334
2016-11-17T19:56:57.000Z
2022-03-18T10:45:53.000Z
gui/mon/views.py
erigones/esdc-ce
2e39211a8f5132d66e574d3a657906c7d3c406fe
[ "Apache-2.0" ]
33
2017-01-02T16:04:13.000Z
2022-02-07T19:20:24.000Z
import json from re import match from django.contrib.auth.decorators import login_required from django.views.decorators.http import require_POST from django.shortcuts import redirect, render from gui.mon.forms import BaseAlertFilterForm from gui.utils import collect_view_data from gui.decorators import ajax_required, profile_required, admin_required from api.decorators import setting_required from api.utils.views import call_api_view from api.mon.alerting.views import mon_alert_list @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def mon_server_redirect(request): """ Monitoring management. """ if match("^http", request.dc.settings.MON_ZABBIX_SERVER_EXTERNAL_URL): return redirect(request.dc.settings.MON_ZABBIX_SERVER_EXTERNAL_URL) else: return redirect(request.dc.settings.MON_ZABBIX_SERVER) @login_required @admin_required @ajax_required @require_POST def alert_list_table(request): context = collect_view_data(request, 'mon_alert_list') try: api_data = json.loads(request.POST.get('alert_filter', None)) except (ValueError, TypeError): context['error'] = 'Unexpected error: could not parse alert filter.' else: context['alert_filter'] = api_data res = call_api_view(request, 'GET', mon_alert_list, data=api_data) if res.status_code == 200: context['alerts'] = res.data['result'] elif res.status_code == 201: context['error'] = 'Unexpected error: got into an API loop.' else: context['error'] = res.data.get('result', {}).get('error', res.data) return render(request, 'gui/mon/alert_table.html', context) @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def alert_list(request): context = collect_view_data(request, 'mon_alert_list') data = request.GET.copy() data.pop('_', None) if not data and request.user.is_staff and request.dc.is_default(): data['show_nodes'] = True context['filters'] = form = BaseAlertFilterForm(request, data) context['init'] = True if form.is_valid() and form.api_data is not None: # new visit, or form submission context['alert_filter'] = form.api_data context['alert_filter_ok'] = True else: context['alert_filter_ok'] = False # Do not run javascript API TASKs! return render(request, 'gui/mon/alert_list.html', context) @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def hostgroup_list(request): context = collect_view_data(request, 'mon_hostgroup_list') return render(request, 'gui/mon/hostgroup_list.html', context) @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def template_list(request): context = collect_view_data(request, 'mon_template_list') return render(request, 'gui/mon/template_list.html', context) @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def action_list(request): context = collect_view_data(request, 'mon_action_list') return render(request, 'gui/mon/action_list.html', context) @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def webcheck_list(request): context = collect_view_data(request, 'mon_webcheck_list') return render(request, 'gui/mon/webcheck_list.html', context)
29.649573
86
0.742289
import json from re import match from django.contrib.auth.decorators import login_required from django.views.decorators.http import require_POST from django.shortcuts import redirect, render from gui.mon.forms import BaseAlertFilterForm from gui.utils import collect_view_data from gui.decorators import ajax_required, profile_required, admin_required from api.decorators import setting_required from api.utils.views import call_api_view from api.mon.alerting.views import mon_alert_list @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def mon_server_redirect(request): if match("^http", request.dc.settings.MON_ZABBIX_SERVER_EXTERNAL_URL): return redirect(request.dc.settings.MON_ZABBIX_SERVER_EXTERNAL_URL) else: return redirect(request.dc.settings.MON_ZABBIX_SERVER) @login_required @admin_required @ajax_required @require_POST def alert_list_table(request): context = collect_view_data(request, 'mon_alert_list') try: api_data = json.loads(request.POST.get('alert_filter', None)) except (ValueError, TypeError): context['error'] = 'Unexpected error: could not parse alert filter.' else: context['alert_filter'] = api_data res = call_api_view(request, 'GET', mon_alert_list, data=api_data) if res.status_code == 200: context['alerts'] = res.data['result'] elif res.status_code == 201: context['error'] = 'Unexpected error: got into an API loop.' else: context['error'] = res.data.get('result', {}).get('error', res.data) return render(request, 'gui/mon/alert_table.html', context) @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def alert_list(request): context = collect_view_data(request, 'mon_alert_list') data = request.GET.copy() data.pop('_', None) if not data and request.user.is_staff and request.dc.is_default(): data['show_nodes'] = True context['filters'] = form = BaseAlertFilterForm(request, data) context['init'] = True if form.is_valid() and form.api_data is not None: context['alert_filter'] = form.api_data context['alert_filter_ok'] = True else: context['alert_filter_ok'] = False return render(request, 'gui/mon/alert_list.html', context) @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def hostgroup_list(request): context = collect_view_data(request, 'mon_hostgroup_list') return render(request, 'gui/mon/hostgroup_list.html', context) @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def template_list(request): context = collect_view_data(request, 'mon_template_list') return render(request, 'gui/mon/template_list.html', context) @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def action_list(request): context = collect_view_data(request, 'mon_action_list') return render(request, 'gui/mon/action_list.html', context) @login_required @admin_required @profile_required @setting_required('MON_ZABBIX_ENABLED') def webcheck_list(request): context = collect_view_data(request, 'mon_webcheck_list') return render(request, 'gui/mon/webcheck_list.html', context)
true
true
f70f9523490f01a422da6c46e57bf7055ca504f2
515
py
Python
ucp_intro/07_mad_lib_game.py
matiasmasca/python
7631583820d51e3132bdb793fed28cc83f4877a2
[ "MIT" ]
null
null
null
ucp_intro/07_mad_lib_game.py
matiasmasca/python
7631583820d51e3132bdb793fed28cc83f4877a2
[ "MIT" ]
null
null
null
ucp_intro/07_mad_lib_game.py
matiasmasca/python
7631583820d51e3132bdb793fed28cc83f4877a2
[ "MIT" ]
null
null
null
# Primer juego... print("Mi poesia:") print("Las rosas son Rojas") print("Las violetas son Azules") print("Y yo te amo a ti") # Mad Libs # ingresar palabras random, adjetivos, verbos, sustantivos. print("Ahora te toca a vos") print("") color = input("Ingrese un color: ") sustantivo_plular = input("Ingrese un sustantivo en plural: ") celebridad = input("Ingrese el nombre de una celebridad: ") print("Las rosas son " + color) print( sustantivo_plular + " son Azules") print("Y yo te amo a ti " + celebridad )
24.52381
62
0.702913
print("Mi poesia:") print("Las rosas son Rojas") print("Las violetas son Azules") print("Y yo te amo a ti") print("Ahora te toca a vos") print("") color = input("Ingrese un color: ") sustantivo_plular = input("Ingrese un sustantivo en plural: ") celebridad = input("Ingrese el nombre de una celebridad: ") print("Las rosas son " + color) print( sustantivo_plular + " son Azules") print("Y yo te amo a ti " + celebridad )
true
true
f70f95734cfa15fb6dd93d15f2c9dd8ecf2607d6
178
py
Python
data/external/repositories/113677/KaggleBillionWordImputation-master/scripts/average.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories/113677/KaggleBillionWordImputation-master/scripts/average.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
null
null
null
data/external/repositories/113677/KaggleBillionWordImputation-master/scripts/average.py
Keesiu/meta-kaggle
87de739aba2399fd31072ee81b391f9b7a63f540
[ "MIT" ]
1
2019-12-04T08:23:33.000Z
2019-12-04T08:23:33.000Z
#!/usr/bin/env python import sys if __name__ == '__main__': total = 0.0 n = 0 for line in sys.stdin: total += float(line) n += 1 print total / n
16.181818
28
0.533708
import sys if __name__ == '__main__': total = 0.0 n = 0 for line in sys.stdin: total += float(line) n += 1 print total / n
false
true
f70f96b662e9909e240adb12a588cfe7baf1df63
14,338
py
Python
src/pytorch_metric_learning/utils/logging_presets.py
kvzhao/pytorch-metric-learning
9c8a94bd1a906317d5834f26d8a94e59d578b825
[ "MIT" ]
2
2020-08-11T03:42:15.000Z
2022-01-11T07:25:30.000Z
src/pytorch_metric_learning/utils/logging_presets.py
FadouaKhm/pytorch-metric-learning
9eb792bcfc1616b599e6ee457514e3cb3a7235dd
[ "MIT" ]
null
null
null
src/pytorch_metric_learning/utils/logging_presets.py
FadouaKhm/pytorch-metric-learning
9eb792bcfc1616b599e6ee457514e3cb3a7235dd
[ "MIT" ]
1
2021-03-15T04:24:52.000Z
2021-03-15T04:24:52.000Z
import logging from . import common_functions as c_f import os import torch from collections import defaultdict import sqlite3 # You can write your own hooks for logging. # But if you'd like something that just works, then use this HookContainer. # You'll need to install record-keeper and tensorboard. # pip install record-keeper tensorboard class HookContainer: def __init__(self, record_keeper, record_group_name_prefix=None, primary_metric="mean_average_precision_at_r", validation_split_name="val"): self.record_keeper = record_keeper self.record_group_name_prefix = record_group_name_prefix self.saveable_trainer_objects = ["models", "optimizers", "lr_schedulers", "loss_funcs", "mining_funcs"] self.primary_metric = primary_metric self.validation_split_name = validation_split_name ############################################ ############################################ ################## HOOKS ################# ############################################ ############################################ ### Define the end_of_iteration hook. This will be executed at the end of every iteration. ### def end_of_iteration_hook(self, trainer): record_these = [[trainer.loss_tracker.losses, {"input_group_name_for_non_objects": "loss_histories"}], [trainer.loss_tracker.loss_weights, {"input_group_name_for_non_objects": "loss_weights"}], [trainer.loss_funcs, {"recursive_types": [torch.nn.Module]}], [trainer.mining_funcs, {}], [trainer.models, {}], [trainer.optimizers, {"custom_attr_func": self.optimizer_custom_attr_func}]] for record, kwargs in record_these: self.record_keeper.update_records(record, trainer.get_global_iteration(), **kwargs) # This hook will be passed into the trainer and will be executed at the end of every epoch. def end_of_epoch_hook(self, tester, dataset_dict, model_folder, test_interval=1, patience=None, test_collate_fn=None): if not self.primary_metric in tester.accuracy_calculator.get_curr_metrics(): raise ValueError("HookContainer `primary_metric` must be one of: {}".format(tester.accuracy_calculator.get_curr_metrics())) if not os.path.exists(model_folder): os.makedirs(model_folder) def actual_hook(trainer): continue_training = True if trainer.epoch % test_interval == 0: best_epoch = self.save_models_and_eval(trainer, dataset_dict, model_folder, test_interval, tester, test_collate_fn) continue_training = self.patience_remaining(trainer.epoch, best_epoch, patience) return continue_training return actual_hook def end_of_testing_hook(self, tester): for split_name, accuracies in tester.all_accuracies.items(): epoch = accuracies["epoch"] self.record_keeper.update_records(accuracies, epoch, input_group_name_for_non_objects=self.record_group_name(tester, split_name)) _, _, best_epoch, best_accuracy = self.is_new_best_accuracy(tester, split_name, epoch) best = {"best_epoch":best_epoch, "best_accuracy": best_accuracy} self.record_keeper.update_records(best, epoch, input_group_name_for_non_objects=self.record_group_name(tester, split_name)) for split_name, u in tester.dim_reduced_embeddings.items(): for k, (dim_reduced, labels) in u.items(): tag = '%s/%s'%(self.record_group_name(tester, split_name), k) self.record_keeper.add_embedding_plot(dim_reduced, labels, tag, epoch) ############################################ ############################################ ######### MODEL LOADING AND SAVING ######### ############################################ ############################################ def load_latest_saved_models(self, trainer, model_folder, device=None, best=False): if device is None: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") resume_epoch, model_suffix = c_f.latest_version(model_folder, "trunk_*.pth", best=best) if resume_epoch > 0: for obj_dict in [getattr(trainer, x, {}) for x in self.saveable_trainer_objects]: c_f.load_dict_of_models(obj_dict, model_suffix, model_folder, device, log_if_successful=True) return resume_epoch + 1 def save_models(self, trainer, model_folder, curr_suffix, prev_suffix=None): for obj_dict in [getattr(trainer, x, {}) for x in self.saveable_trainer_objects]: c_f.save_dict_of_models(obj_dict, curr_suffix, model_folder) if prev_suffix is not None: c_f.delete_dict_of_models(obj_dict, prev_suffix, model_folder) def save_models_and_eval(self, trainer, dataset_dict, model_folder, test_interval, tester, collate_fn): epoch = trainer.epoch tester.test(dataset_dict, epoch, trainer.models["trunk"], trainer.models["embedder"], list(dataset_dict.keys()), collate_fn) prev_best_epoch, _ = self.get_best_epoch_and_accuracy(tester, self.validation_split_name) is_new_best, curr_accuracy, best_epoch, best_accuracy = self.is_new_best_accuracy(tester, self.validation_split_name, epoch) self.record_keeper.save_records() trainer.step_lr_plateau_schedulers(curr_accuracy) self.save_models(trainer, model_folder, epoch, epoch-test_interval) # save latest model if is_new_best: logging.info("New best accuracy! {}".format(curr_accuracy)) curr_suffix = "best%d"%best_epoch prev_suffix = "best%d"%prev_best_epoch if prev_best_epoch is not None else None self.save_models(trainer, model_folder, curr_suffix, prev_suffix) # save best model return best_epoch def is_new_best_accuracy(self, tester, split_name, epoch): curr_accuracy = self.get_curr_primary_metric(tester, split_name) best_epoch, best_accuracy = self.get_best_epoch_and_accuracy(tester, split_name) is_new_best = False if (curr_accuracy > best_accuracy) or (best_epoch is None): best_epoch, best_accuracy = epoch, curr_accuracy is_new_best = True return is_new_best, curr_accuracy, best_epoch, best_accuracy ############################################ ############################################ ##### BEST EPOCH AND ACCURACY TRACKING ##### ############################################ ############################################ def get_loss_history(self, loss_names=()): columns = "*" if len(loss_names) == 0 else ", ".join(loss_names) table_name = "loss_histories" if not self.record_keeper.table_exists(table_name): return {} output = self.record_keeper.query("SELECT {} FROM {}".format(columns, table_name), return_dict=True) output.pop("id", None) return output def get_accuracy_history(self, tester, split_name, return_all_metrics=False, metrics=()): table_name = self.record_group_name(tester, split_name) if not self.record_keeper.table_exists(table_name): return {} def get_accuracies(keys): keys = "*" if return_all_metrics else "epoch, %s"%keys query = "SELECT {} FROM {}".format(keys, table_name) return self.record_keeper.query(query, return_dict=True) keys = metrics if len(metrics) > 0 else [self.primary_metric] output = self.try_keys(keys, tester, get_accuracies) output.pop("id", None) return output def get_curr_primary_metric(self, tester, split_name): def get_curr(key): return tester.all_accuracies[split_name][key] return self.try_primary_metric(tester, get_curr) def try_keys(self, input_keys, tester, input_func): for average in [True, False]: keys = ", ".join([tester.accuracies_keyname(k, average=average, label_hierarchy_level=tester.label_hierarchy_level) for k in input_keys]) try: return input_func(keys) except (KeyError, sqlite3.OperationalError): pass raise KeyError def try_primary_metric(self, tester, input_func): return self.try_keys([self.primary_metric], tester, input_func) # returns accuracies of a specified epoch def get_accuracies_of_epoch(self, tester, split_name, epoch, select_all=True): table_name = self.record_group_name(tester, split_name) if not self.record_keeper.table_exists(table_name): return [] def get_accuracies(key): columns = "*" if select_all else "epoch, %s"%key query = "SELECT %s FROM %s WHERE epoch=?"%(columns, table_name) return self.record_keeper.query(query, (epoch, )) return self.try_primary_metric(tester, get_accuracies) # returns accuracies of best epoch and the metric name used to determine best acuracy def get_accuracies_of_best_epoch(self, tester, split_name, select_all=True, ignore_epoch=(-1,)): table_name = self.record_group_name(tester, split_name) if not self.record_keeper.table_exists(table_name): return [], None def get_accuracies(key): columns = "*" if select_all else "epoch, %s"%key params = ", ".join(["?"]*len(ignore_epoch)) query = """SELECT {0} FROM {1} WHERE {2}= (SELECT max({2}) FROM {1} WHERE epoch NOT IN ({3})) AND epoch NOT IN ({3})""".format(columns, table_name, key, params) output = self.record_keeper.query(query, ignore_epoch+ignore_epoch) return output, key return self.try_primary_metric(tester, get_accuracies) def get_best_epoch_and_accuracy(self, tester, split_name, ignore_epoch=(-1,)): accuracies, key = self.get_accuracies_of_best_epoch(tester, split_name, select_all=False, ignore_epoch=ignore_epoch) if len(accuracies) > 0: return accuracies[0]["epoch"], accuracies[0][key] return None, 0 def patience_remaining(self, epoch, best_epoch, patience): if patience is not None and best_epoch is not None: if epoch - best_epoch > patience: logging.info("Validation accuracy has plateaued. Exiting.") return False return True def run_tester_separately(self, tester, dataset_dict, epoch, trunk, embedder, splits_to_eval=None, collate_fn=None, skip_eval_if_already_done=True): if skip_eval_if_already_done: splits_to_eval = self.get_splits_to_eval(tester, dataset_dict, epoch, splits_to_eval) if len(splits_to_eval) == 0: logging.info("Already evaluated") return False tester.test(dataset_dict, epoch, trunk, embedder, splits_to_eval, collate_fn) return True def get_splits_to_eval(self, tester, dataset_dict, epoch, input_splits_to_eval): input_splits_to_eval = list(dataset_dict.keys()) if input_splits_to_eval is None else input_splits_to_eval splits_to_eval = [] for split in input_splits_to_eval: if len(self.get_accuracies_of_epoch(tester, split, epoch)) == 0: splits_to_eval.append(split) return splits_to_eval def base_record_group_name(self, tester): base_record_group_name = "%s_"%self.record_group_name_prefix if self.record_group_name_prefix else '' base_record_group_name += tester.description_suffixes("accuracies") return base_record_group_name def record_group_name(self, tester, split_name): base_record_group_name = self.base_record_group_name(tester) return "%s_%s"%(base_record_group_name, split_name.upper()) def optimizer_custom_attr_func(self, optimizer): return {"lr": optimizer.param_groups[0]["lr"]} class EmptyContainer: def end_of_epoch_hook(self, *args): return None end_of_iteration_hook = None end_of_testing_hook = None def get_record_keeper(csv_folder, tensorboard_folder, global_db_path=None, experiment_name=None, is_new_experiment=True, save_figures=False, save_lists=False): try: import record_keeper as record_keeper_package from torch.utils.tensorboard import SummaryWriter record_writer = record_keeper_package.RecordWriter(folder = csv_folder, global_db_path = global_db_path, experiment_name = experiment_name, is_new_experiment = is_new_experiment, save_lists = save_lists) tensorboard_writer = SummaryWriter(log_dir=tensorboard_folder) record_keeper = record_keeper_package.RecordKeeper(tensorboard_writer = tensorboard_writer, record_writer = record_writer, attributes_to_search_for = c_f.list_of_recordable_attributes_list_names(), save_figures=save_figures) return record_keeper, record_writer, tensorboard_writer except ModuleNotFoundError as e: logging.warn(e) logging.warn("There won't be any logging or model saving.") logging.warn("To fix this, pip install record-keeper tensorboard") return None, None, None def get_hook_container(record_keeper, **kwargs): if record_keeper: return HookContainer(record_keeper, **kwargs) else: logging.warn("No record_keeper, so no preset hooks are being returned.") return EmptyContainer()
52.328467
160
0.625122
import logging from . import common_functions as c_f import os import torch from collections import defaultdict import sqlite3 # You'll need to install record-keeper and tensorboard. class HookContainer: def __init__(self, record_keeper, record_group_name_prefix=None, primary_metric="mean_average_precision_at_r", validation_split_name="val"): self.record_keeper = record_keeper self.record_group_name_prefix = record_group_name_prefix self.saveable_trainer_objects = ["models", "optimizers", "lr_schedulers", "loss_funcs", "mining_funcs"] self.primary_metric = primary_metric self.validation_split_name = validation_split_name
true
true
f70f96f0024b1699103a63385d86facba9fae422
9,937
py
Python
xfer/contrib/xfer_leap/synthetic_data.py
apaleyes/xfer
99cd83424bc7e76a2c2def9d5b1dacd06f6e9eb5
[ "Apache-2.0" ]
null
null
null
xfer/contrib/xfer_leap/synthetic_data.py
apaleyes/xfer
99cd83424bc7e76a2c2def9d5b1dacd06f6e9eb5
[ "Apache-2.0" ]
null
null
null
xfer/contrib/xfer_leap/synthetic_data.py
apaleyes/xfer
99cd83424bc7e76a2c2def9d5b1dacd06f6e9eb5
[ "Apache-2.0" ]
null
null
null
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # ============================================================================== import os import random import numpy as np import matplotlib.pyplot as plt from mxnet.gluon.data import ArrayDataset import mxnet from .data import MetaTaskDataContainer, TaskDataContainer from .config import DEFAULT_CONFIG_SYNTHETIC class MetaTaskSynthetic(MetaTaskDataContainer): def __init__(self, config=None, weights=None, bias=None, seed=1, context=None): """ :param config: If None, DEFAULT_CONFIG_SYNTHETIC is loaded. :param weights: Tasks' weights matrix. Row k corresponds to the weight parameters of task k. If None, w is sampled from a N(0,1). :param bias: Tasks' biases vector. Row k corresponds to the bias parameters of task k. If None, w is sampled from a N(0,1). :param seed: Seed for random generator. """ if config is None: config = DEFAULT_CONFIG_SYNTHETIC self.config = config self.weights = weights self.bias = bias if context is None: context = mxnet.cpu() self.context = context self.seed = seed random.seed(self.seed) num_tasks_train = config["num_tasks_train"] num_tasks_test = config["num_tasks_test"] num_tasks_val = config["num_tasks_val"] num_tasks = num_tasks_train + num_tasks_test + num_tasks_val self.num_tasks = num_tasks self._generate_parameters() self._validate_parameters() num_examples = config["num_examples_per_task"] std_x = config["std_x"] hold_out = config["hold_out"] noise = config["std_noise"] # Generate the training/test/val dataset. # Each dataset is a list of TaskSynthetic objects (one per task) data_train = [TaskSynthetic(self.weights[t, :], self.bias[t], num_examples, std_x, noise, hold_out, context=context) for t in np.arange(0, num_tasks_train)] data_test = [TaskSynthetic(self.weights[t, :], self.bias[t], num_examples, std_x, noise, hold_out, context=context) for t in np.arange(num_tasks_train, num_tasks_train + num_tasks_test)] data_val = [TaskSynthetic(self.weights[t, :], self.bias[t], num_examples, std_x, noise, hold_out, context=context) for t in np.arange(num_tasks_train + num_tasks_test, num_tasks)] super().__init__(data_train, data_test, data_val, context=context) def plot_sample(self, root="./sample_synth"): """Plot N images from each alphabet and store the images in root.""" if self.weights.shape[1] != 2: raise ValueError("Only 2D datasets can be plot.") if not os.path.exists(root): os.makedirs(root) fig_train = self._plot([dd._train_dataset for dd in self.train_tasks], "Training Samples for Training Tasks") fig_train.savefig(os.path.join(root, "sample_train_train_tasks.png")) del fig_train fig_test = self._plot([dd._train_dataset for dd in self.test_tasks], "Training Samples for Test Tasks") fig_test.savefig(os.path.join(root, "sample_train_test_tasks.png")) del fig_test fig_val = self._plot([dd._train_dataset for dd in self.val_tasks], "Training Samples for Validation Tasks") fig_val.savefig(os.path.join(root, "sample_train_val_tasks.png")) del fig_val if self.config["hold_out"] > 0: fig_train = self._plot([dd._val_dataset for dd in self.train_tasks], "Validation Samples for Training Tasks") fig_train.savefig(os.path.join(root, "sample_val_train_tasks.png")) del fig_train fig_test = self._plot([dd._val_dataset for dd in self.test_tasks], "Validation Samples for Test Tasks") fig_test.savefig(os.path.join(root, "sample_val_test_tasks.png")) del fig_test fig_val = self._plot([dd._val_dataset for dd in self.val_tasks], "Validation Samples for Validation Tasks") fig_val.savefig(os.path.join(root, "sample_val_val_tasks.png")) del fig_val def _plot(self, data, title): """Helper function for plotting.""" num_tasks = len(data) fig, ax = plt.subplots(1, num_tasks, figsize=(num_tasks*5, 5)) fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.5, hspace=0.5) for mm in range(num_tasks): X, y = data[mm][:] X = X.asnumpy() y = y.asnumpy() ax[mm].scatter(X[:, 0], X[:, 1], c=y.flatten()) fig.suptitle(title, size=18) return fig def _validate_parameters(self): if self.weights.shape[0] != self.num_tasks: raise ValueError("Number of rows in w must be equal to the total number of tasks") if len(self.bias) != self.num_tasks: raise ValueError("Length of b must be equal to the total number of tasks") def _generate_parameters(self): if self.weights is None: dim = self.config["dim"] self.weights = self.config["global_bias"] + mxnet.nd.random_normal(shape=(self.num_tasks, dim), ctx=self.context) if self.bias is None: if self.config["task_bias"]: self.bias = mxnet.nd.random_normal(shape=self.num_tasks, ctx=self.context) else: self.bias = mxnet.nd.zeros(num_tasks, ctx=self.context) class TaskSynthetic(TaskDataContainer): """ Synthetic Task Container: Linear Regression. """ def __init__(self, w, b, num_examples, std_x, noise, hold_out=None, seed=None, context=None): """ :param w: Task's weights vector. :param b: Task's bias. :param num_examples: Total number of examples per task. :param std_x: The covariates are sampled from a zero mean normal distribution with standard deviation equal to std_x. :param hold_out: Number of examples to hold out for validation :param seed: seed for the random generator """ self.w = w self.b = b self.num_examples = num_examples self.seed = seed if context is None: context = mxnet.cpu() self.context = context if seed: random.seed(seed) if hold_out and hold_out < num_examples: Xtr, Ytr = self._real_fn(std_x * mxnet.nd.random_normal(shape=(num_examples - hold_out, len(w)), ctx=context), noise) train_dataset = ArrayDataset(Xtr, Ytr) Xval, Yval = self._real_fn(std_x * mxnet.nd.random_normal(shape=(hold_out, len(w)), ctx=context), noise) val_dataset = ArrayDataset(Xval, Yval) else: Xtr, Ytr = self._real_fn(std_x * mxnet.nd.random_normal(shape=(num_examples, len(w)), ctx=context), noise) train_dataset = ArrayDataset(Xtr, Ytr) val_dataset = None super().__init__(train_dataset, val_dataset, context=context) def _real_fn(self, X, noise): y = mxnet.nd.dot(X, mxnet.nd.expand_dims(self.w, axis=1)) + self.b if noise > 0.0: y += mxnet.nd.expand_dims(noise * mxnet.nd.random_normal(shape=(X.shape[0],)), axis=1) return X, y if __name__ == '__main__': s1 = MetaTaskSynthetic() s1.plot_sample() batch_size = 20 train_tasks = s1.train_tasks assert len(s1.train_tasks) == 3 for task in train_tasks: tr_iterator = task.get_train_iterator(batch_size) for data in tr_iterator: assert (data[0].shape == (batch_size, 2)) assert (data[1].shape == (batch_size, 1)) assert (data[1].asnumpy().dtype == np.float32) break val_iterator = task.get_val_iterator(batch_size) for data in val_iterator: assert (data[0].shape == (batch_size, 2)) assert (data[1].shape == (batch_size, 1)) assert (data[1].asnumpy().dtype == np.float32) break dim = 2 num_tasks = 15 w = mxnet.nd.random_normal(shape=(num_tasks, dim)) b = mxnet.nd.random_normal(shape=num_tasks) s2 = MetaTaskSynthetic(weights=w, bias=b) s2.plot_sample(root="./sample_synth_w_b_given") batch_size = 20 train_tasks = s2.train_tasks assert len(train_tasks) == 3 for task in train_tasks: tr_iterator = task.get_train_iterator(batch_size) for data in tr_iterator: assert (data[0].shape == (batch_size, 2)) assert (data[1].shape == (batch_size, 1)) assert (data[1].asnumpy().dtype == np.float32) break val_iterator = task.get_val_iterator(batch_size) for data in val_iterator: assert (data[0].shape == (batch_size, 2)) assert (data[1].shape == (batch_size, 1)) assert (data[1].asnumpy().dtype == np.float32) break
39.748
118
0.603301
import os import random import numpy as np import matplotlib.pyplot as plt from mxnet.gluon.data import ArrayDataset import mxnet from .data import MetaTaskDataContainer, TaskDataContainer from .config import DEFAULT_CONFIG_SYNTHETIC class MetaTaskSynthetic(MetaTaskDataContainer): def __init__(self, config=None, weights=None, bias=None, seed=1, context=None): if config is None: config = DEFAULT_CONFIG_SYNTHETIC self.config = config self.weights = weights self.bias = bias if context is None: context = mxnet.cpu() self.context = context self.seed = seed random.seed(self.seed) num_tasks_train = config["num_tasks_train"] num_tasks_test = config["num_tasks_test"] num_tasks_val = config["num_tasks_val"] num_tasks = num_tasks_train + num_tasks_test + num_tasks_val self.num_tasks = num_tasks self._generate_parameters() self._validate_parameters() num_examples = config["num_examples_per_task"] std_x = config["std_x"] hold_out = config["hold_out"] noise = config["std_noise"] data_train = [TaskSynthetic(self.weights[t, :], self.bias[t], num_examples, std_x, noise, hold_out, context=context) for t in np.arange(0, num_tasks_train)] data_test = [TaskSynthetic(self.weights[t, :], self.bias[t], num_examples, std_x, noise, hold_out, context=context) for t in np.arange(num_tasks_train, num_tasks_train + num_tasks_test)] data_val = [TaskSynthetic(self.weights[t, :], self.bias[t], num_examples, std_x, noise, hold_out, context=context) for t in np.arange(num_tasks_train + num_tasks_test, num_tasks)] super().__init__(data_train, data_test, data_val, context=context) def plot_sample(self, root="./sample_synth"): if self.weights.shape[1] != 2: raise ValueError("Only 2D datasets can be plot.") if not os.path.exists(root): os.makedirs(root) fig_train = self._plot([dd._train_dataset for dd in self.train_tasks], "Training Samples for Training Tasks") fig_train.savefig(os.path.join(root, "sample_train_train_tasks.png")) del fig_train fig_test = self._plot([dd._train_dataset for dd in self.test_tasks], "Training Samples for Test Tasks") fig_test.savefig(os.path.join(root, "sample_train_test_tasks.png")) del fig_test fig_val = self._plot([dd._train_dataset for dd in self.val_tasks], "Training Samples for Validation Tasks") fig_val.savefig(os.path.join(root, "sample_train_val_tasks.png")) del fig_val if self.config["hold_out"] > 0: fig_train = self._plot([dd._val_dataset for dd in self.train_tasks], "Validation Samples for Training Tasks") fig_train.savefig(os.path.join(root, "sample_val_train_tasks.png")) del fig_train fig_test = self._plot([dd._val_dataset for dd in self.test_tasks], "Validation Samples for Test Tasks") fig_test.savefig(os.path.join(root, "sample_val_test_tasks.png")) del fig_test fig_val = self._plot([dd._val_dataset for dd in self.val_tasks], "Validation Samples for Validation Tasks") fig_val.savefig(os.path.join(root, "sample_val_val_tasks.png")) del fig_val def _plot(self, data, title): num_tasks = len(data) fig, ax = plt.subplots(1, num_tasks, figsize=(num_tasks*5, 5)) fig.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.5, hspace=0.5) for mm in range(num_tasks): X, y = data[mm][:] X = X.asnumpy() y = y.asnumpy() ax[mm].scatter(X[:, 0], X[:, 1], c=y.flatten()) fig.suptitle(title, size=18) return fig def _validate_parameters(self): if self.weights.shape[0] != self.num_tasks: raise ValueError("Number of rows in w must be equal to the total number of tasks") if len(self.bias) != self.num_tasks: raise ValueError("Length of b must be equal to the total number of tasks") def _generate_parameters(self): if self.weights is None: dim = self.config["dim"] self.weights = self.config["global_bias"] + mxnet.nd.random_normal(shape=(self.num_tasks, dim), ctx=self.context) if self.bias is None: if self.config["task_bias"]: self.bias = mxnet.nd.random_normal(shape=self.num_tasks, ctx=self.context) else: self.bias = mxnet.nd.zeros(num_tasks, ctx=self.context) class TaskSynthetic(TaskDataContainer): def __init__(self, w, b, num_examples, std_x, noise, hold_out=None, seed=None, context=None): self.w = w self.b = b self.num_examples = num_examples self.seed = seed if context is None: context = mxnet.cpu() self.context = context if seed: random.seed(seed) if hold_out and hold_out < num_examples: Xtr, Ytr = self._real_fn(std_x * mxnet.nd.random_normal(shape=(num_examples - hold_out, len(w)), ctx=context), noise) train_dataset = ArrayDataset(Xtr, Ytr) Xval, Yval = self._real_fn(std_x * mxnet.nd.random_normal(shape=(hold_out, len(w)), ctx=context), noise) val_dataset = ArrayDataset(Xval, Yval) else: Xtr, Ytr = self._real_fn(std_x * mxnet.nd.random_normal(shape=(num_examples, len(w)), ctx=context), noise) train_dataset = ArrayDataset(Xtr, Ytr) val_dataset = None super().__init__(train_dataset, val_dataset, context=context) def _real_fn(self, X, noise): y = mxnet.nd.dot(X, mxnet.nd.expand_dims(self.w, axis=1)) + self.b if noise > 0.0: y += mxnet.nd.expand_dims(noise * mxnet.nd.random_normal(shape=(X.shape[0],)), axis=1) return X, y if __name__ == '__main__': s1 = MetaTaskSynthetic() s1.plot_sample() batch_size = 20 train_tasks = s1.train_tasks assert len(s1.train_tasks) == 3 for task in train_tasks: tr_iterator = task.get_train_iterator(batch_size) for data in tr_iterator: assert (data[0].shape == (batch_size, 2)) assert (data[1].shape == (batch_size, 1)) assert (data[1].asnumpy().dtype == np.float32) break val_iterator = task.get_val_iterator(batch_size) for data in val_iterator: assert (data[0].shape == (batch_size, 2)) assert (data[1].shape == (batch_size, 1)) assert (data[1].asnumpy().dtype == np.float32) break dim = 2 num_tasks = 15 w = mxnet.nd.random_normal(shape=(num_tasks, dim)) b = mxnet.nd.random_normal(shape=num_tasks) s2 = MetaTaskSynthetic(weights=w, bias=b) s2.plot_sample(root="./sample_synth_w_b_given") batch_size = 20 train_tasks = s2.train_tasks assert len(train_tasks) == 3 for task in train_tasks: tr_iterator = task.get_train_iterator(batch_size) for data in tr_iterator: assert (data[0].shape == (batch_size, 2)) assert (data[1].shape == (batch_size, 1)) assert (data[1].asnumpy().dtype == np.float32) break val_iterator = task.get_val_iterator(batch_size) for data in val_iterator: assert (data[0].shape == (batch_size, 2)) assert (data[1].shape == (batch_size, 1)) assert (data[1].asnumpy().dtype == np.float32) break
true
true
f70f977c652da15ff9173d2b3951c11786d65299
6,282
py
Python
solution/10. regular-expression-match.py
sundaycat/Leetcode-Practice
65c3ab0f967331a095fd8a6eb2f3d7765cbf7d5a
[ "MIT" ]
null
null
null
solution/10. regular-expression-match.py
sundaycat/Leetcode-Practice
65c3ab0f967331a095fd8a6eb2f3d7765cbf7d5a
[ "MIT" ]
null
null
null
solution/10. regular-expression-match.py
sundaycat/Leetcode-Practice
65c3ab0f967331a095fd8a6eb2f3d7765cbf7d5a
[ "MIT" ]
null
null
null
''' A: suffix solution 1. subproblems: define dp(i, j) = is_match(s[i:], p[j:]), suffix 2. guess, 2.1 the current char in p is a '*' - use '*', repeat the char before it - do not use '*', skip to next char after '*' 2.2 current char in s and p are match, s[i] == p[j] or p[j] == '.' 3. relate subproblems: dp(i, j) = match(s[i:], s[j:]) dp(i, j) = a. if j + 1 is in bound and p[j + 1] == '*', then dp(i, j + 2) or (s[i] = p[j] or p[j] = '.' and dp(i + 1, j)) b. if s[i] == p[j] or p[j] == '.', then dp(i + 1, j + 1) c. esle false B: prefix solution 1. subproblems: define dp(i, j) = is_match(s[:i], p[:j]), prefix 2. guess, 2.1 current char in s and p are match, s[i] == p[j] or p[j] == '.' 2.2 the current char in p is a '*' - use '*', repeat the char before it - do not use '*', skip to next char after '*' 3. relate subproblems: dp(i, j) = match(s[:i], s[:j]) dp(i, j) = a. if s[i] == p[j] or p[j] == '.', then dp(i - 1, j - 1) b. if p[j] == '*', then dp(i, j - 2) or (s[i] = p[j - 1] or p[j - 1] = '.' and dp(i - 1, j)) c. else false reference: 1. https://www.youtube.com/watch?v=HAA8mgxlov8 (use * or no use) 2. https://www.youtube.com/watch?v=l3hda49XcDE (dp solution) ''' class Solution: def isMatch(self, s: str, p: str) -> bool: # Somtimes there still matches even s is out of bound, but p is still in bound(s:a, p: a*b*). # But if p is out of bound, then we must return false # return self.dfs_td(s, p, 0, 0, {}) # return self.dfs_prefix(s, p, len(s) - 1, len(p) - 1) # return self.dp_bottome_up_prefix(s, p) return self.dp_bottom_up_suffix(s, p) # top down, dfs + memorization, suffix def dfs_suffix(self, s, p, i, j, memo): # base case # if both i and j are out of boud, then we found our solution if (i, j) in memo: return memo[(i, j)] if i >= len(s) and j >= len(p): return True # if i is in bound, but j is out of bound, return false. if j >= len(p): return False # 注意括号的顺序, 在i没有超出数组下标的范围的情况下, 判断是否有匹配 match = i < len(s) and (s[i] == p[j] or p[j] == '.') # if the next character in p is a star(need to prevent the j + 1 go byond the bounday) if j + 1 < len(p) and p[j + 1] == '*': # either repeating the current character in p and move to the next character in s # or no repeating in p and skip to next character in p memo[(i, j)] = (match and self.dfs_td(s, p, i + 1, j, memo)) or self.dfs_td(s, p, i, j + 2, memo) return memo[(i, j)] # if it is not a star but a match found in the current index of s and p if match: memo[(i, j)] = self.dfs_td(s, p, i + 1, j + 1, memo) return memo[(i, j)] # if no a match and next character is not star memo[(i, j)] = False return False # bottom up solution, suffix. def dp_bottom_up_suffix(self, s, p): s_len = len(s) p_len = len(p) dp = [[False for col in range(p_len + 1)] for row in range(s_len + 1)] dp[s_len][p_len] = True # deal with the case like a*b*c* for the last row for j in range(p_len - 2, -1, -1): if p[j + 1] == '*': dp[s_len][j] = dp[s_len][j + 2] for i in range(s_len - 1, -1, -1): for j in range(p_len - 1, -1, -1): # for suffix, checking '*' goes first. if j <= p_len - 2 and p[j + 1] == '*': if s[i] == p[j] or p[j] == '.': dp[i][j] = dp[i + 1][j] dp[i][j] = (dp[i][j] or dp[i][j + 2]) continue if s[i] == p[j] or p[j] == '.': dp[i][j] = dp[i + 1][j + 1] for i in dp: print(i) print() return dp[0][0] # top down solution, start at (n, n) def dfs_prefix(self, s, p, i, j): # base case if i < 0 and j < 0: return True # if i is in bound, but j is out of bound, return false. if j < 0: return False # if the current char is a star if j >= 0 and p[j] == '*': # check if there is a match of the current char in s and previous char in p(before *) match = (i >= 0) and (s[i] == p[j - 1] or p[j - 1] == '.') # if current charts match, then go dp(i-1, j), if no match, go check dp(i, j-2) return (match and self.dfs_prefix(s, p, i - 1, j)) or self.dfs_prefix(s, p, i, j - 2) # if there is a match of the current char in s and p if i >= 0 and (s[i] == p[j] or p[j] == '.'): return self.dfs_prefix(s, p, i - 1, j - 1) return False # bottom up algorithm, start from dp(0,0) -> dp(n, n) def dp_bottome_up_prefix(self, s, p): s_len, p_len = len(s), len(p) dp = [[False for col in range(p_len + 1)] for row in range(s_len + 1)] dp[0][0] = True # handle the pattern like a*, a*b* or a*b*c* for the 0th row for j in range(1, p_len + 1): if p[j - 1] == '*': dp[0][j] = dp[0][j - 2] for i in range(1, s_len + 1): for j in range(1, p_len + 1): if s[i - 1] == p[j - 1] or p[j - 1] == '.': dp[i][j] = dp[i - 1][j - 1] continue if p[j - 1] == '*': if s[i - 1] == p[j - 2] or p[j - 2] == '.': dp[i][j] = dp[i - 1][j] dp[i][j] = (dp[i][j] or dp[i][j - 2]) for i in dp: print(i) print() return dp[s_len][p_len] s = 'aab' p = 'c*a*b' # s = 'aaa' # p = 'aaaa' # s = "a" # p = ".*..a*" s = 'aa' p = 'a*' sol = Solution() print(sol.isMatch(s, p)) x = 'abc' print(x[1:1])
32.381443
109
0.446832
class Solution: def isMatch(self, s: str, p: str) -> bool: return self.dp_bottom_up_suffix(s, p) def dfs_suffix(self, s, p, i, j, memo): if (i, j) in memo: return memo[(i, j)] if i >= len(s) and j >= len(p): return True if j >= len(p): return False match = i < len(s) and (s[i] == p[j] or p[j] == '.') if j + 1 < len(p) and p[j + 1] == '*': memo[(i, j)] = (match and self.dfs_td(s, p, i + 1, j, memo)) or self.dfs_td(s, p, i, j + 2, memo) return memo[(i, j)] if match: memo[(i, j)] = self.dfs_td(s, p, i + 1, j + 1, memo) return memo[(i, j)] memo[(i, j)] = False return False def dp_bottom_up_suffix(self, s, p): s_len = len(s) p_len = len(p) dp = [[False for col in range(p_len + 1)] for row in range(s_len + 1)] dp[s_len][p_len] = True for j in range(p_len - 2, -1, -1): if p[j + 1] == '*': dp[s_len][j] = dp[s_len][j + 2] for i in range(s_len - 1, -1, -1): for j in range(p_len - 1, -1, -1): if j <= p_len - 2 and p[j + 1] == '*': if s[i] == p[j] or p[j] == '.': dp[i][j] = dp[i + 1][j] dp[i][j] = (dp[i][j] or dp[i][j + 2]) continue if s[i] == p[j] or p[j] == '.': dp[i][j] = dp[i + 1][j + 1] for i in dp: print(i) print() return dp[0][0] def dfs_prefix(self, s, p, i, j): if i < 0 and j < 0: return True if j < 0: return False if j >= 0 and p[j] == '*': match = (i >= 0) and (s[i] == p[j - 1] or p[j - 1] == '.') return (match and self.dfs_prefix(s, p, i - 1, j)) or self.dfs_prefix(s, p, i, j - 2) if i >= 0 and (s[i] == p[j] or p[j] == '.'): return self.dfs_prefix(s, p, i - 1, j - 1) return False def dp_bottome_up_prefix(self, s, p): s_len, p_len = len(s), len(p) dp = [[False for col in range(p_len + 1)] for row in range(s_len + 1)] dp[0][0] = True for j in range(1, p_len + 1): if p[j - 1] == '*': dp[0][j] = dp[0][j - 2] for i in range(1, s_len + 1): for j in range(1, p_len + 1): if s[i - 1] == p[j - 1] or p[j - 1] == '.': dp[i][j] = dp[i - 1][j - 1] continue if p[j - 1] == '*': if s[i - 1] == p[j - 2] or p[j - 2] == '.': dp[i][j] = dp[i - 1][j] dp[i][j] = (dp[i][j] or dp[i][j - 2]) for i in dp: print(i) print() return dp[s_len][p_len] s = 'aab' p = 'c*a*b' s = 'aa' p = 'a*' sol = Solution() print(sol.isMatch(s, p)) x = 'abc' print(x[1:1])
true
true
f70f988e2189afa8f9091db3302eee4536752431
5,172
py
Python
opentamp/src/policy_hooks/vae/run_training.py
Algorithmic-Alignment-Lab/openTAMP-legacy
3b7c3be164cc968ad77a928286d6460cd70a670e
[ "MIT" ]
2
2022-03-09T19:48:20.000Z
2022-03-26T17:31:07.000Z
opentamp/src/policy_hooks/vae/run_training.py
Algorithmic-Alignment-Lab/OpenTAMP
eecb950bd273da8cbed4394487630e8453f2c242
[ "MIT" ]
null
null
null
opentamp/src/policy_hooks/vae/run_training.py
Algorithmic-Alignment-Lab/OpenTAMP
eecb950bd273da8cbed4394487630e8453f2c242
[ "MIT" ]
null
null
null
import argparse import imp import importlib import random from opentamp.src.policy_hooks.vae.vae_main import MultiProcessMain def load_config(args, reload_module=None): config_file = args.config if config_file != '': if reload_module is not None: config_module = reload_module imp.reload(config_module) else: config_module = importlib.import_module('policy_hooks.'+config_file) config = config_module.config else: config_module = None config = {} config['use_local'] = not args.remote config['num_conds'] = args.nconds if args.nconds > 0 else config['num_conds'] if 'num_conds' in config else 1 if 'common' in config: config['common']['num_conds'] = config['num_conds'] config['num_objs'] = args.nobjs if args.nobjs > 0 else config['num_objs'] if 'num_objs' in config else 1 config['weight_dir'] = config['base_weight_dir'] + str(config['num_objs']) if 'base_weight_dir' in config else args.weight_dir config['log_timing'] = args.timing config['hl_timeout'] = 0 config['rollout_server'] = args.rollout_server or args.all_servers config['vae_server'] = args.vae_server or args.all_servers config['viewer'] = args.viewer config['server_id'] = args.server_id if args.server_id != '' else str(random.randint(0,2**32)) config['n_rollout_servers'] = args.n_rollout_servers config['no_child_process'] = args.no_child_process config['rollout_len'] = args.rollout_len config['train_vae'] = args.train_vae config['unconditional'] = args.unconditional config['train_reward'] = args.train_reward config['load_step'] = args.load_step config['train_params'] = { 'use_recurrent_dynamics': args.use_recurrent_dynamics, 'use_overshooting': args.use_overshooting, 'data_limit': args.train_samples if args.train_samples > 0 else None, 'beta': args.beta, 'overshoot_beta': args.overshoot_beta, 'dist_constraint': args.dist_constraint, } return config, config_module def load_env(args, reload_module=None): env_path = args.environment_path if reload_module is not None: module = reload_module imp.reload(module) else: module = importlib.import_module(env_path) env = args.environment return getattr(module, env) def main(): parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default='') parser.add_argument('-wd', '--weight_dir', type=str, default='') parser.add_argument('-nf', '--nofull', action='store_true', default=False) parser.add_argument('-n', '--nconds', type=int, default=0) parser.add_argument('-o', '--nobjs', type=int, default=0) # parser.add_argument('-ptt', '--pretrain_timeout', type=int, default=300) parser.add_argument('-hlt', '--hl_timeout', type=int, default=0) parser.add_argument('-k', '--killall', action='store_true', default=True) parser.add_argument('-r', '--remote', action='store_true', default=False) parser.add_argument('-t', '--timing', action='store_true', default=False) parser.add_argument('-vae', '--vae_server', action='store_true', default=False) parser.add_argument('-sim', '--rollout_server', action='store_true', default=False) parser.add_argument('-all', '--all_servers', action='store_true', default=False) parser.add_argument('-v', '--viewer', action='store_true', default=False) parser.add_argument('-id', '--server_id', type=str, default='') parser.add_argument('-env_path', '--environment_path', type=str, default='') parser.add_argument('-env', '--environment', type=str, default='') parser.add_argument('-tamp', '--use_tamp', type=str, default='') parser.add_argument('-nrs', '--n_rollout_servers', type=int, default=1) parser.add_argument('-ncp', '--no_child_process', action='store_true', default=False) parser.add_argument('-rl', '--rollout_len', type=int, default=0) parser.add_argument('-tv', '--train_vae', action='store_true', default=False) parser.add_argument('-uncond', '--unconditional', action='store_true', default=False) parser.add_argument('-tr', '--train_reward', action='store_true', default=False) parser.add_argument('-loadstep', '--load_step', type=int, default=-1) parser.add_argument('-beta', '--beta', type=int, default=1) parser.add_argument('-beta_d', '--overshoot_beta', type=int, default=1) parser.add_argument('-nts', '--train_samples', type=int, default=-1) parser.add_argument('-rnn', '--use_recurrent_dynamics', action='store_true', default=False) parser.add_argument('-over', '--use_overshooting', action='store_true', default=False) parser.add_argument('-dist', '--dist_constraint', action='store_true', default=False) args = parser.parse_args() config, config_module = load_config(args) if args.config != '': main = MultiProcessMain(config) else: env_cls = load_env(args) main = MultiProcessMain.no_config_load(env_cls, args.environment, config) main.start(kill_all=args.killall) if __name__ == '__main__': main()
45.769912
130
0.683875
import argparse import imp import importlib import random from opentamp.src.policy_hooks.vae.vae_main import MultiProcessMain def load_config(args, reload_module=None): config_file = args.config if config_file != '': if reload_module is not None: config_module = reload_module imp.reload(config_module) else: config_module = importlib.import_module('policy_hooks.'+config_file) config = config_module.config else: config_module = None config = {} config['use_local'] = not args.remote config['num_conds'] = args.nconds if args.nconds > 0 else config['num_conds'] if 'num_conds' in config else 1 if 'common' in config: config['common']['num_conds'] = config['num_conds'] config['num_objs'] = args.nobjs if args.nobjs > 0 else config['num_objs'] if 'num_objs' in config else 1 config['weight_dir'] = config['base_weight_dir'] + str(config['num_objs']) if 'base_weight_dir' in config else args.weight_dir config['log_timing'] = args.timing config['hl_timeout'] = 0 config['rollout_server'] = args.rollout_server or args.all_servers config['vae_server'] = args.vae_server or args.all_servers config['viewer'] = args.viewer config['server_id'] = args.server_id if args.server_id != '' else str(random.randint(0,2**32)) config['n_rollout_servers'] = args.n_rollout_servers config['no_child_process'] = args.no_child_process config['rollout_len'] = args.rollout_len config['train_vae'] = args.train_vae config['unconditional'] = args.unconditional config['train_reward'] = args.train_reward config['load_step'] = args.load_step config['train_params'] = { 'use_recurrent_dynamics': args.use_recurrent_dynamics, 'use_overshooting': args.use_overshooting, 'data_limit': args.train_samples if args.train_samples > 0 else None, 'beta': args.beta, 'overshoot_beta': args.overshoot_beta, 'dist_constraint': args.dist_constraint, } return config, config_module def load_env(args, reload_module=None): env_path = args.environment_path if reload_module is not None: module = reload_module imp.reload(module) else: module = importlib.import_module(env_path) env = args.environment return getattr(module, env) def main(): parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default='') parser.add_argument('-wd', '--weight_dir', type=str, default='') parser.add_argument('-nf', '--nofull', action='store_true', default=False) parser.add_argument('-n', '--nconds', type=int, default=0) parser.add_argument('-o', '--nobjs', type=int, default=0) parser.add_argument('-hlt', '--hl_timeout', type=int, default=0) parser.add_argument('-k', '--killall', action='store_true', default=True) parser.add_argument('-r', '--remote', action='store_true', default=False) parser.add_argument('-t', '--timing', action='store_true', default=False) parser.add_argument('-vae', '--vae_server', action='store_true', default=False) parser.add_argument('-sim', '--rollout_server', action='store_true', default=False) parser.add_argument('-all', '--all_servers', action='store_true', default=False) parser.add_argument('-v', '--viewer', action='store_true', default=False) parser.add_argument('-id', '--server_id', type=str, default='') parser.add_argument('-env_path', '--environment_path', type=str, default='') parser.add_argument('-env', '--environment', type=str, default='') parser.add_argument('-tamp', '--use_tamp', type=str, default='') parser.add_argument('-nrs', '--n_rollout_servers', type=int, default=1) parser.add_argument('-ncp', '--no_child_process', action='store_true', default=False) parser.add_argument('-rl', '--rollout_len', type=int, default=0) parser.add_argument('-tv', '--train_vae', action='store_true', default=False) parser.add_argument('-uncond', '--unconditional', action='store_true', default=False) parser.add_argument('-tr', '--train_reward', action='store_true', default=False) parser.add_argument('-loadstep', '--load_step', type=int, default=-1) parser.add_argument('-beta', '--beta', type=int, default=1) parser.add_argument('-beta_d', '--overshoot_beta', type=int, default=1) parser.add_argument('-nts', '--train_samples', type=int, default=-1) parser.add_argument('-rnn', '--use_recurrent_dynamics', action='store_true', default=False) parser.add_argument('-over', '--use_overshooting', action='store_true', default=False) parser.add_argument('-dist', '--dist_constraint', action='store_true', default=False) args = parser.parse_args() config, config_module = load_config(args) if args.config != '': main = MultiProcessMain(config) else: env_cls = load_env(args) main = MultiProcessMain.no_config_load(env_cls, args.environment, config) main.start(kill_all=args.killall) if __name__ == '__main__': main()
true
true
f70f9b444405e0c9fb473ff45e8dc0b8422e10c7
2,325
py
Python
tests/test_action_tag_category_create.py
lingfish/stackstorm-vsphere
49199f5ebdc05b70b7504962e104642b0c30ba30
[ "Apache-2.0" ]
null
null
null
tests/test_action_tag_category_create.py
lingfish/stackstorm-vsphere
49199f5ebdc05b70b7504962e104642b0c30ba30
[ "Apache-2.0" ]
2
2019-03-25T18:03:02.000Z
2019-03-26T13:13:59.000Z
tests/test_action_tag_category_create.py
lingfish/stackstorm-vsphere
49199f5ebdc05b70b7504962e104642b0c30ba30
[ "Apache-2.0" ]
1
2021-03-05T10:12:21.000Z
2021-03-05T10:12:21.000Z
# Licensed to the StackStorm, Inc ('StackStorm') under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import mock from tag_category_create import CategoryCreate from vsphere_base_action_test_case import VsphereBaseActionTestCase __all__ = [ 'CategoryCreateTestCase' ] class CategoryCreateTestCase(VsphereBaseActionTestCase): __test__ = True action_cls = CategoryCreate @mock.patch("vmwarelib.actions.BaseAction.connect_rest") def test_run(self, mock_connect): action = self.get_action_instance(self.new_config) # mock expected_result = "result" action.tagging = mock.Mock() action.tagging.category_create.return_value = expected_result # define test variables category_name = "name" category_description = "test description" category_cardinality = "SINGLE" category_types = [] vsphere = "default" test_kwargs = { "category_name": category_name, "category_description": category_description, "category_cardinality": category_cardinality, "category_types": category_types, "vsphere": vsphere } # invoke action with valid parameters result = action.run(**test_kwargs) self.assertEqual(result, expected_result) action.tagging.category_create.assert_called_with(category_name, category_description, category_cardinality, category_types) mock_connect.assert_called_with(vsphere)
38.114754
79
0.669247
import mock from tag_category_create import CategoryCreate from vsphere_base_action_test_case import VsphereBaseActionTestCase __all__ = [ 'CategoryCreateTestCase' ] class CategoryCreateTestCase(VsphereBaseActionTestCase): __test__ = True action_cls = CategoryCreate @mock.patch("vmwarelib.actions.BaseAction.connect_rest") def test_run(self, mock_connect): action = self.get_action_instance(self.new_config) expected_result = "result" action.tagging = mock.Mock() action.tagging.category_create.return_value = expected_result category_name = "name" category_description = "test description" category_cardinality = "SINGLE" category_types = [] vsphere = "default" test_kwargs = { "category_name": category_name, "category_description": category_description, "category_cardinality": category_cardinality, "category_types": category_types, "vsphere": vsphere } result = action.run(**test_kwargs) self.assertEqual(result, expected_result) action.tagging.category_create.assert_called_with(category_name, category_description, category_cardinality, category_types) mock_connect.assert_called_with(vsphere)
true
true
f70f9c881df168564cbf2431bbc2ebdf7e7f7ded
18,480
py
Python
tensorflow/contrib/data/python/ops/readers.py
idharmateja/tensorflow
4e108ef30d7cd7ae5e1c550ec5ae27e79b8c6e39
[ "Apache-2.0" ]
13
2018-07-23T18:53:35.000Z
2021-11-18T19:56:45.000Z
tensorflow/contrib/data/python/ops/readers.py
DandelionCN/tensorflow
1712002ad02f044f7569224bf465e0ea00e6a6c4
[ "Apache-2.0" ]
null
null
null
tensorflow/contrib/data/python/ops/readers.py
DandelionCN/tensorflow
1712002ad02f044f7569224bf465e0ea00e6a6c4
[ "Apache-2.0" ]
13
2018-09-07T13:28:38.000Z
2020-07-17T15:06:24.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Python wrappers for reader Datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.data.python.ops import interleave_ops from tensorflow.contrib.data.python.ops import shuffle_ops from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import readers as core_readers from tensorflow.python.data.util import nest from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import gen_dataset_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import gfile from tensorflow.python.util import deprecation _ACCEPTABLE_CSV_TYPES = (dtypes.float32, dtypes.float64, dtypes.int32, dtypes.int64, dtypes.string) def make_csv_dataset( file_pattern, batch_size, column_keys, column_defaults, label_key=None, field_delim=",", use_quote_delim=True, skip=0, filter_fn=None, num_epochs=None, shuffle=True, shuffle_buffer_size=10000, shuffle_seed=None, prefetch_buffer_size=1, ): """Reads CSV files into a dataset. Reads CSV files into a dataset, where each element is a (features, labels) tuple that corresponds to a batch of CSV rows. The features dictionary maps feature column names to `Tensor`s containing the corresponding feature data, and labels is a `Tensor` containing the batch's label data. Args: file_pattern: List of files or patterns of file paths containing CSV records. See @{tf.gfile.Glob} for pattern rules. batch_size: An int representing the number of consecutive elements of this dataset to combine in a single batch. column_keys: A list of strings that corresponds to the CSV columns, in order. One per column of the input record. column_defaults: A list of default values for the CSV fields. One item per column of the input record. Each item in the list is either one of the following dtypes: float32, float64, int32, int64, or string, or a `Tensor` with one of the aforementioned types. One item per column of the input record, with either scalar default value for that column if it is required, or, if the column is required, an empty `Tensor` or a dtype. label_key: A optional string corresponding to the label column. If provided, the data for this column is returned as a separate `Tensor` from the features dictionary, so that the dataset complies with the format expected by a `tf.Estimator.train` or `tf.Estimator.evaluate` input function. field_delim: An optional `string`. Defaults to `","`. Char delimiter to separate fields in a record. use_quote_delim: An optional bool. Defaults to `True`. If false, treats double quotation marks as regular characters inside of the string fields. skip: An integer that corresponds to the number of lines to skip at the head of each CSV file. Defaults to 0. filter_fn: A callable function that takes in a CSV string and returns a boolean that corresponds to whether the record should be included. If None, does not filter records. num_epochs: An int specifying the number of times this dataset is repeated. If None, cycles through the dataset forever. shuffle: A bool that indicates whether the input should be shuffled. shuffle_buffer_size: Buffer size to use for shuffling. A large buffer size ensures better shuffling, but would increase memory usage and startup time. shuffle_seed: Randomization seed to use for shuffling. prefetch_buffer_size: An int specifying the number of feature batches to prefetch for performance improvement. Recommended value is the number of batches consumed per training step. Returns: A dataset, where each element is a (features, labels) tuple that corresponds to a batch of `batch_size` CSV rows. The features dictionary maps feature column names to `Tensor`s containing the corresponding column data, and labels is a `Tensor` containing the column data for the label column specified by `label_key`. """ filenames = _get_file_names(file_pattern, False) column_defaults = [ constant_op.constant([], dtype=x) if x in _ACCEPTABLE_CSV_TYPES else x for x in column_defaults ] dataset = dataset_ops.Dataset.from_tensor_slices(filenames) if label_key is not None: assert label_key in column_keys def filename_to_dataset(filename): ds = core_readers.TextLineDataset(filename) if skip > 0: ds = ds.skip(skip) if filter_fn is not None: ds = ds.filter(filter_fn) return ds def decode_csv(line): """Decodes csv line into features. Args: line: String tensor corresponding to one csv record. Returns: A dictionary of feature names to values for that particular record. If label_key is provided, extracts the label feature to be returned as the second element of the tuple. """ columns = parsing_ops.decode_csv( line, column_defaults, field_delim=field_delim, use_quote_delim=use_quote_delim) features = dict(zip(column_keys, columns)) if label_key is not None: label = features.pop(label_key) return features, label return features # TODO(rachelim): interleave records from files for better shuffling dataset = dataset.flat_map(filename_to_dataset) # TODO(rachelim): use fused shuffle_and_repeat for perf if shuffle: dataset = dataset.shuffle(shuffle_buffer_size, shuffle_seed) if num_epochs != 1: dataset = dataset.repeat(num_epochs) dataset = dataset.batch(batch_size) dataset = dataset.map(decode_csv) dataset = dataset.prefetch(prefetch_buffer_size) return dataset def make_batched_features_dataset(file_pattern, batch_size, features, reader=core_readers.TFRecordDataset, reader_args=None, num_epochs=None, shuffle=True, shuffle_buffer_size=10000, shuffle_seed=None, prefetch_buffer_size=1, reader_num_threads=1, parser_num_threads=2, sloppy_ordering=False): """Returns a `Dataset` of feature dictionaries from `Example` protos. Example: ``` serialized_examples = [ features { feature { key: "age" value { int64_list { value: [ 0 ] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } feature { key: "kws" value { bytes_list { value: [ "code", "art" ] } } } }, features { feature { key: "age" value { int64_list { value: [] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } feature { key: "kws" value { bytes_list { value: [ "sports" ] } } } } ] ``` We can use arguments: ``` features: { "age": FixedLenFeature([], dtype=tf.int64, default_value=-1), "gender": FixedLenFeature([], dtype=tf.string), "kws": VarLenFeature(dtype=tf.string), } ``` And the expected output is: ```python { "age": [[0], [-1]], "gender": [["f"], ["f"]], "kws": SparseTensor( indices=[[0, 0], [0, 1], [1, 0]], values=["code", "art", "sports"] dense_shape=[2, 2]), } ``` Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.gfile.Glob` for pattern rules. batch_size: An int representing the number of consecutive elements of this dataset to combine in a single batch. features: A `dict` mapping feature keys to `FixedLenFeature` or `VarLenFeature` values. See `tf.parse_example`. reader: A function or class that can be called with a `filenames` tensor and (optional) `reader_args` and returns a `Dataset` of `Example` tensors. Defaults to `tf.data.TFRecordDataset`. reader_args: Additional arguments to pass to the reader class. num_epochs: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever. Defaults to `None`. shuffle: A boolean, indicates whether the input should be shuffled. Defaults to `True`. shuffle_buffer_size: Buffer size of the ShuffleDataset. A large capacity ensures better shuffling but would increase memory usage and startup time. shuffle_seed: Randomization seed to use for shuffling. prefetch_buffer_size: Number of feature batches to prefetch in order to improve performance. Recommended value is the number of batches consumed per training step (default is 1). reader_num_threads: Number of threads used to read `Example` records. If >1, the results will be interleaved. parser_num_threads: Number of threads to use for parsing `Example` tensors into a dictionary of `Feature` tensors. sloppy_ordering: If `True`, reading performance will be improved at the cost of non-deterministic ordering. If `False`, the order of elements produced is deterministic prior to shuffling (elements are still randomized if `shuffle=True`. Note that if the seed is set, then order of elements after shuffling is deterministic). Defaults to `False`. Returns: A dataset of `dict` elements. Each `dict` maps feature keys to `Tensor` or `SparseTensor` objects. """ # Create dataset of all matching filenames if shuffle: dataset = dataset_ops.Dataset.list_files(file_pattern, shuffle=True) else: # TODO(b/73959787): Use Dataset.list_files() once ordering is deterministic. filenames = _get_file_names(file_pattern, shuffle) dataset = dataset_ops.Dataset.from_tensor_slices(filenames) # Read `Example` records from files as tensor objects. if reader_args is None: reader_args = [] # Read files sequentially (if reader_num_threads=1) or in parallel dataset = dataset.apply( interleave_ops.parallel_interleave( lambda filename: reader(filename, *reader_args), cycle_length=reader_num_threads, sloppy=sloppy_ordering)) # Extract values if the `Example` tensors are stored as key-value tuples. if dataset.output_types == (dtypes.string, dtypes.string): dataset = dataset.map(lambda _, v: v) # Apply dataset repeat and shuffle transformations. repeat_dataset = (num_epochs != 1) if repeat_dataset and shuffle: # Used fused shuffle_and_repeat operation for better performance dataset = dataset.apply( shuffle_ops.shuffle_and_repeat(shuffle_buffer_size, num_epochs, shuffle_seed)) elif repeat_dataset: dataset = dataset.repeat(num_epochs) elif shuffle: dataset = dataset.shuffle(shuffle_buffer_size, shuffle_seed) dataset = dataset.batch(batch_size) # Parse `Example` tensors to a dictionary of `Feature` tensors. dataset = dataset.map( lambda x: parsing_ops.parse_example(x, features), num_parallel_calls=parser_num_threads) # TODO(rachelim): Add an optional label_key argument for extracting the label # from the features dictionary, to comply with the type expected by the # input_fn to a `tf.Estimator.train` or `tf.Estimator.evaluate` function. dataset = dataset.prefetch(prefetch_buffer_size) return dataset @deprecation.deprecated(None, "Use `tf.contrib.data.make_batched_features_dataset`") def read_batch_features(file_pattern, batch_size, features, reader=core_readers.TFRecordDataset, reader_args=None, randomize_input=True, num_epochs=None, capacity=10000): """Reads batches of Examples. Example: ``` serialized_examples = [ features { feature { key: "age" value { int64_list { value: [ 0 ] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } feature { key: "kws" value { bytes_list { value: [ "code", "art" ] } } } }, features { feature { key: "age" value { int64_list { value: [] } } } feature { key: "gender" value { bytes_list { value: [ "f" ] } } } feature { key: "kws" value { bytes_list { value: [ "sports" ] } } } } ] ``` We can use arguments: ``` features: { "age": FixedLenFeature([], dtype=tf.int64, default_value=-1), "gender": FixedLenFeature([], dtype=tf.string), "kws": VarLenFeature(dtype=tf.string), } ``` And the expected output is: ```python { "age": [[0], [-1]], "gender": [["f"], ["f"]], "kws": SparseTensor( indices=[[0, 0], [0, 1], [1, 0]], values=["code", "art", "sports"] dense_shape=[2, 2]), } ``` Args: file_pattern: List of files or patterns of file paths containing `Example` records. See `tf.gfile.Glob` for pattern rules. batch_size: An int representing the number of consecutive elements of this dataset to combine in a single batch. features: A `dict` mapping feature keys to `FixedLenFeature` or `VarLenFeature` values. See `tf.parse_example`. reader: A function or class that can be called with a `filenames` tensor and (optional) `reader_args` and returns a `Dataset` of `Example` tensors. Defaults to `tf.data.TFRecordDataset`. reader_args: Additional arguments to pass to the reader class. randomize_input: Whether the input should be randomized. num_epochs: Integer specifying the number of times to read through the dataset. If None, cycles through the dataset forever. capacity: Buffer size of the ShuffleDataset. A large capacity ensures better shuffling but would increase memory usage and startup time. Returns: A dict from keys in features to `Tensor` or `SparseTensor` objects. """ dataset = make_batched_features_dataset( file_pattern, batch_size, features, reader=reader, reader_args=reader_args, shuffle=randomize_input, num_epochs=num_epochs, shuffle_buffer_size=capacity) iterator = dataset.make_one_shot_iterator() outputs = iterator.get_next() return outputs def _get_file_names(file_pattern, shuffle): """Parse list of file names from pattern, optionally shuffled. Args: file_pattern: File glob pattern, or list of glob patterns. shuffle: Whether to shuffle the order of file names. Returns: List of file names matching `file_pattern`. Raises: ValueError: If `file_pattern` is empty, or pattern matches no files. """ if isinstance(file_pattern, list): if not file_pattern: raise ValueError("File pattern is empty.") file_names = [] for entry in file_pattern: file_names.extend(gfile.Glob(entry)) else: file_names = list(gfile.Glob(file_pattern)) if not file_names: raise ValueError("No files match %s." % file_pattern) # Sort files so it will be deterministic for unit tests. if not shuffle: file_names = sorted(file_names) return file_names class SqlDataset(dataset_ops.Dataset): """A `Dataset` consisting of the results from a SQL query.""" def __init__(self, driver_name, data_source_name, query, output_types): """Creates a `SqlDataset`. `SqlDataset` allows a user to read data from the result set of a SQL query. For example: ```python dataset = tf.contrib.data.SqlDataset("sqlite", "/foo/bar.sqlite3", "SELECT name, age FROM people", (tf.string, tf.int32)) iterator = dataset.make_one_shot_iterator() next_element = iterator.get_next() # Prints the rows of the result set of the above query. while True: try: print(sess.run(next_element)) except tf.errors.OutOfRangeError: break ``` Args: driver_name: A 0-D `tf.string` tensor containing the database type. Currently, the only supported value is 'sqlite'. data_source_name: A 0-D `tf.string` tensor containing a connection string to connect to the database. query: A 0-D `tf.string` tensor containing the SQL query to execute. output_types: A tuple of `tf.DType` objects representing the types of the columns returned by `query`. """ super(SqlDataset, self).__init__() self._driver_name = ops.convert_to_tensor( driver_name, dtype=dtypes.string, name="driver_name") self._data_source_name = ops.convert_to_tensor( data_source_name, dtype=dtypes.string, name="data_source_name") self._query = ops.convert_to_tensor( query, dtype=dtypes.string, name="query") self._output_types = output_types def _as_variant_tensor(self): return gen_dataset_ops.sql_dataset(self._driver_name, self._data_source_name, self._query, nest.flatten(self.output_types), nest.flatten(self.output_shapes)) @property def output_classes(self): return nest.map_structure(lambda _: ops.Tensor, self._output_types) @property def output_shapes(self): return nest.map_structure(lambda _: tensor_shape.TensorShape([]), self._output_types) @property def output_types(self): return self._output_types
39.152542
80
0.676082
from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.data.python.ops import interleave_ops from tensorflow.contrib.data.python.ops import shuffle_ops from tensorflow.python.data.ops import dataset_ops from tensorflow.python.data.ops import readers as core_readers from tensorflow.python.data.util import nest from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import gen_dataset_ops from tensorflow.python.ops import parsing_ops from tensorflow.python.platform import gfile from tensorflow.python.util import deprecation _ACCEPTABLE_CSV_TYPES = (dtypes.float32, dtypes.float64, dtypes.int32, dtypes.int64, dtypes.string) def make_csv_dataset( file_pattern, batch_size, column_keys, column_defaults, label_key=None, field_delim=",", use_quote_delim=True, skip=0, filter_fn=None, num_epochs=None, shuffle=True, shuffle_buffer_size=10000, shuffle_seed=None, prefetch_buffer_size=1, ): filenames = _get_file_names(file_pattern, False) column_defaults = [ constant_op.constant([], dtype=x) if x in _ACCEPTABLE_CSV_TYPES else x for x in column_defaults ] dataset = dataset_ops.Dataset.from_tensor_slices(filenames) if label_key is not None: assert label_key in column_keys def filename_to_dataset(filename): ds = core_readers.TextLineDataset(filename) if skip > 0: ds = ds.skip(skip) if filter_fn is not None: ds = ds.filter(filter_fn) return ds def decode_csv(line): columns = parsing_ops.decode_csv( line, column_defaults, field_delim=field_delim, use_quote_delim=use_quote_delim) features = dict(zip(column_keys, columns)) if label_key is not None: label = features.pop(label_key) return features, label return features dataset = dataset.flat_map(filename_to_dataset) if shuffle: dataset = dataset.shuffle(shuffle_buffer_size, shuffle_seed) if num_epochs != 1: dataset = dataset.repeat(num_epochs) dataset = dataset.batch(batch_size) dataset = dataset.map(decode_csv) dataset = dataset.prefetch(prefetch_buffer_size) return dataset def make_batched_features_dataset(file_pattern, batch_size, features, reader=core_readers.TFRecordDataset, reader_args=None, num_epochs=None, shuffle=True, shuffle_buffer_size=10000, shuffle_seed=None, prefetch_buffer_size=1, reader_num_threads=1, parser_num_threads=2, sloppy_ordering=False): if shuffle: dataset = dataset_ops.Dataset.list_files(file_pattern, shuffle=True) else: filenames = _get_file_names(file_pattern, shuffle) dataset = dataset_ops.Dataset.from_tensor_slices(filenames) if reader_args is None: reader_args = [] dataset = dataset.apply( interleave_ops.parallel_interleave( lambda filename: reader(filename, *reader_args), cycle_length=reader_num_threads, sloppy=sloppy_ordering)) if dataset.output_types == (dtypes.string, dtypes.string): dataset = dataset.map(lambda _, v: v) repeat_dataset = (num_epochs != 1) if repeat_dataset and shuffle: dataset = dataset.apply( shuffle_ops.shuffle_and_repeat(shuffle_buffer_size, num_epochs, shuffle_seed)) elif repeat_dataset: dataset = dataset.repeat(num_epochs) elif shuffle: dataset = dataset.shuffle(shuffle_buffer_size, shuffle_seed) dataset = dataset.batch(batch_size) dataset = dataset.map( lambda x: parsing_ops.parse_example(x, features), num_parallel_calls=parser_num_threads) dataset = dataset.prefetch(prefetch_buffer_size) return dataset @deprecation.deprecated(None, "Use `tf.contrib.data.make_batched_features_dataset`") def read_batch_features(file_pattern, batch_size, features, reader=core_readers.TFRecordDataset, reader_args=None, randomize_input=True, num_epochs=None, capacity=10000): dataset = make_batched_features_dataset( file_pattern, batch_size, features, reader=reader, reader_args=reader_args, shuffle=randomize_input, num_epochs=num_epochs, shuffle_buffer_size=capacity) iterator = dataset.make_one_shot_iterator() outputs = iterator.get_next() return outputs def _get_file_names(file_pattern, shuffle): if isinstance(file_pattern, list): if not file_pattern: raise ValueError("File pattern is empty.") file_names = [] for entry in file_pattern: file_names.extend(gfile.Glob(entry)) else: file_names = list(gfile.Glob(file_pattern)) if not file_names: raise ValueError("No files match %s." % file_pattern) if not shuffle: file_names = sorted(file_names) return file_names class SqlDataset(dataset_ops.Dataset): def __init__(self, driver_name, data_source_name, query, output_types): super(SqlDataset, self).__init__() self._driver_name = ops.convert_to_tensor( driver_name, dtype=dtypes.string, name="driver_name") self._data_source_name = ops.convert_to_tensor( data_source_name, dtype=dtypes.string, name="data_source_name") self._query = ops.convert_to_tensor( query, dtype=dtypes.string, name="query") self._output_types = output_types def _as_variant_tensor(self): return gen_dataset_ops.sql_dataset(self._driver_name, self._data_source_name, self._query, nest.flatten(self.output_types), nest.flatten(self.output_shapes)) @property def output_classes(self): return nest.map_structure(lambda _: ops.Tensor, self._output_types) @property def output_shapes(self): return nest.map_structure(lambda _: tensor_shape.TensorShape([]), self._output_types) @property def output_types(self): return self._output_types
true
true
f70f9fbd792e49e3bb17519f8daf955fc3b614b8
3,041
py
Python
projects/api/main.py
lborro/projects
c971c2fc65cdb09310d0b3782cd7119203aa4db3
[ "Apache-2.0" ]
null
null
null
projects/api/main.py
lborro/projects
c971c2fc65cdb09310d0b3782cd7119203aa4db3
[ "Apache-2.0" ]
null
null
null
projects/api/main.py
lborro/projects
c971c2fc65cdb09310d0b3782cd7119203aa4db3
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """WSGI server.""" import argparse import sys from flask import Flask, jsonify from flask_cors import CORS from werkzeug.exceptions import BadRequest, NotFound, MethodNotAllowed, \ Forbidden, InternalServerError from projects.api.compare_results import bp as compare_results_blueprint from projects.api.experiments import bp as experiments_blueprint from projects.api.json_encoder import CustomJSONEncoder from projects.api.operators import bp as operators_blueprint from projects.api.parameters import bp as parameters_blueprint from projects.api.projects import bp as projects_blueprint from projects.api.tasks import bp as tasks_blueprint from projects.api.templates import bp as templates_blueprint from projects.database import db_session, init_db from projects.samples import init_tasks app = Flask(__name__) app.json_encoder = CustomJSONEncoder app.register_blueprint(projects_blueprint, url_prefix="/projects") app.register_blueprint(compare_results_blueprint, url_prefix="/projects/<project_id>/comparisons") app.register_blueprint(experiments_blueprint, url_prefix="/projects/<project_id>/experiments") app.register_blueprint(tasks_blueprint, url_prefix="/tasks") app.register_blueprint(parameters_blueprint, url_prefix="/tasks/<task_id>/parameters") app.register_blueprint(operators_blueprint, url_prefix="/projects/<project_id>/experiments/<experiment_id>/operators") app.register_blueprint(templates_blueprint, url_prefix="/templates") @app.teardown_appcontext def shutdown_session(exception=None): db_session.remove() @app.route("/", methods=["GET"]) def ping(): """Handles GET requests to /.""" return "pong" @app.errorhandler(BadRequest) @app.errorhandler(NotFound) @app.errorhandler(MethodNotAllowed) @app.errorhandler(Forbidden) @app.errorhandler(InternalServerError) def handle_errors(e): """Handles exceptions raised by the API.""" return jsonify({"message": e.description}), e.code def parse_args(args): """Takes argv and parses API options.""" parser = argparse.ArgumentParser( description="Projects API" ) parser.add_argument( "--port", type=int, default=8080, help="Port for HTTP server (default: 8080)" ) parser.add_argument("--enable-cors", action="count") parser.add_argument( "--debug", action="count", help="Enable debug" ) parser.add_argument( "--init-db", action="count", help="Create database and tables before the HTTP server starts" ) parser.add_argument( "--samples-config", help="Path to sample tasks config file." ) return parser.parse_args(args) if __name__ == "__main__": args = parse_args(sys.argv[1:]) # Enable CORS if required if args.enable_cors: CORS(app) # Initializes DB if required if args.init_db: init_db() # Install sample tasks if required if args.samples_config: init_tasks(args.samples_config) app.run(host="0.0.0.0", port=args.port, debug=args.debug)
33.054348
100
0.74515
import argparse import sys from flask import Flask, jsonify from flask_cors import CORS from werkzeug.exceptions import BadRequest, NotFound, MethodNotAllowed, \ Forbidden, InternalServerError from projects.api.compare_results import bp as compare_results_blueprint from projects.api.experiments import bp as experiments_blueprint from projects.api.json_encoder import CustomJSONEncoder from projects.api.operators import bp as operators_blueprint from projects.api.parameters import bp as parameters_blueprint from projects.api.projects import bp as projects_blueprint from projects.api.tasks import bp as tasks_blueprint from projects.api.templates import bp as templates_blueprint from projects.database import db_session, init_db from projects.samples import init_tasks app = Flask(__name__) app.json_encoder = CustomJSONEncoder app.register_blueprint(projects_blueprint, url_prefix="/projects") app.register_blueprint(compare_results_blueprint, url_prefix="/projects/<project_id>/comparisons") app.register_blueprint(experiments_blueprint, url_prefix="/projects/<project_id>/experiments") app.register_blueprint(tasks_blueprint, url_prefix="/tasks") app.register_blueprint(parameters_blueprint, url_prefix="/tasks/<task_id>/parameters") app.register_blueprint(operators_blueprint, url_prefix="/projects/<project_id>/experiments/<experiment_id>/operators") app.register_blueprint(templates_blueprint, url_prefix="/templates") @app.teardown_appcontext def shutdown_session(exception=None): db_session.remove() @app.route("/", methods=["GET"]) def ping(): return "pong" @app.errorhandler(BadRequest) @app.errorhandler(NotFound) @app.errorhandler(MethodNotAllowed) @app.errorhandler(Forbidden) @app.errorhandler(InternalServerError) def handle_errors(e): return jsonify({"message": e.description}), e.code def parse_args(args): parser = argparse.ArgumentParser( description="Projects API" ) parser.add_argument( "--port", type=int, default=8080, help="Port for HTTP server (default: 8080)" ) parser.add_argument("--enable-cors", action="count") parser.add_argument( "--debug", action="count", help="Enable debug" ) parser.add_argument( "--init-db", action="count", help="Create database and tables before the HTTP server starts" ) parser.add_argument( "--samples-config", help="Path to sample tasks config file." ) return parser.parse_args(args) if __name__ == "__main__": args = parse_args(sys.argv[1:]) if args.enable_cors: CORS(app) if args.init_db: init_db() if args.samples_config: init_tasks(args.samples_config) app.run(host="0.0.0.0", port=args.port, debug=args.debug)
true
true
f70fa0d1d8aad41a969517b69bc42c6dd87cbd53
2,411
py
Python
codes/preprocess/collect_noise.py
yicrane/Real-SR
a6e380b791129b80fe58bf282089c0cfd9159b36
[ "Apache-2.0" ]
null
null
null
codes/preprocess/collect_noise.py
yicrane/Real-SR
a6e380b791129b80fe58bf282089c0cfd9159b36
[ "Apache-2.0" ]
null
null
null
codes/preprocess/collect_noise.py
yicrane/Real-SR
a6e380b791129b80fe58bf282089c0cfd9159b36
[ "Apache-2.0" ]
1
2021-07-07T13:56:30.000Z
2021-07-07T13:56:30.000Z
from PIL import Image import numpy as np import os.path as osp import glob import os import argparse import yaml parser = argparse.ArgumentParser(description='create a dataset') parser.add_argument('--dataset', default='df2k', type=str, help='selecting different datasets') parser.add_argument('--artifacts', default='', type=str, help='selecting different artifacts type') parser.add_argument('--cleanup_factor', default=2, type=int, help='downscaling factor for image cleanup') parser.add_argument('--upscale_factor', default=4, type=int, choices=[4], help='super resolution upscale factor') opt = parser.parse_args() # define input and target directories with open('./preprocess/paths.yml', 'r') as stream: PATHS = yaml.load(stream) def noise_patch(rgb_img, sp, max_var, min_mean): img = rgb_img.convert('L') rgb_img = np.array(rgb_img) img = np.array(img) w, h = img.shape collect_patchs = [] for i in range(0, w - sp, sp): for j in range(0, h - sp, sp): patch = img[i:i + sp, j:j + sp] var_global = np.var(patch) mean_global = np.mean(patch) if var_global < max_var and mean_global > min_mean: rgb_patch = rgb_img[i:i + sp, j:j + sp, :] collect_patchs.append(rgb_patch) return collect_patchs if __name__ == '__main__': if opt.dataset == 'df2k': img_dir = PATHS[opt.dataset][opt.artifacts]['source'] noise_dir = PATHS['datasets']['df2k'] + '/Corrupted_noise' sp = 256 max_var = 20 min_mean = 0 else: img_dir = PATHS[opt.dataset][opt.artifacts]['hr']['train'] noise_dir = PATHS['datasets']['dped'] + '/DPEDiphone_noise_sp32v20m50' sp = 256 max_var = 20 min_mean = 50 assert not os.path.exists(noise_dir) os.mkdir(noise_dir) img_paths = sorted(glob.glob(osp.join(img_dir, '*.png'))) cnt = 0 for path in img_paths: img_name = osp.splitext(osp.basename(path))[0] print('**********', img_name, '**********') img = Image.open(path).convert('RGB') patchs = noise_patch(img, sp, max_var, min_mean) for idx, patch in enumerate(patchs): save_path = osp.join(noise_dir, '{}_{:03}.png'.format(img_name, idx)) cnt += 1 print('collect:', cnt, save_path) Image.fromarray(patch).save(save_path)
33.957746
113
0.623393
from PIL import Image import numpy as np import os.path as osp import glob import os import argparse import yaml parser = argparse.ArgumentParser(description='create a dataset') parser.add_argument('--dataset', default='df2k', type=str, help='selecting different datasets') parser.add_argument('--artifacts', default='', type=str, help='selecting different artifacts type') parser.add_argument('--cleanup_factor', default=2, type=int, help='downscaling factor for image cleanup') parser.add_argument('--upscale_factor', default=4, type=int, choices=[4], help='super resolution upscale factor') opt = parser.parse_args() with open('./preprocess/paths.yml', 'r') as stream: PATHS = yaml.load(stream) def noise_patch(rgb_img, sp, max_var, min_mean): img = rgb_img.convert('L') rgb_img = np.array(rgb_img) img = np.array(img) w, h = img.shape collect_patchs = [] for i in range(0, w - sp, sp): for j in range(0, h - sp, sp): patch = img[i:i + sp, j:j + sp] var_global = np.var(patch) mean_global = np.mean(patch) if var_global < max_var and mean_global > min_mean: rgb_patch = rgb_img[i:i + sp, j:j + sp, :] collect_patchs.append(rgb_patch) return collect_patchs if __name__ == '__main__': if opt.dataset == 'df2k': img_dir = PATHS[opt.dataset][opt.artifacts]['source'] noise_dir = PATHS['datasets']['df2k'] + '/Corrupted_noise' sp = 256 max_var = 20 min_mean = 0 else: img_dir = PATHS[opt.dataset][opt.artifacts]['hr']['train'] noise_dir = PATHS['datasets']['dped'] + '/DPEDiphone_noise_sp32v20m50' sp = 256 max_var = 20 min_mean = 50 assert not os.path.exists(noise_dir) os.mkdir(noise_dir) img_paths = sorted(glob.glob(osp.join(img_dir, '*.png'))) cnt = 0 for path in img_paths: img_name = osp.splitext(osp.basename(path))[0] print('**********', img_name, '**********') img = Image.open(path).convert('RGB') patchs = noise_patch(img, sp, max_var, min_mean) for idx, patch in enumerate(patchs): save_path = osp.join(noise_dir, '{}_{:03}.png'.format(img_name, idx)) cnt += 1 print('collect:', cnt, save_path) Image.fromarray(patch).save(save_path)
true
true
f70fa0e5384e444c718b501e35ff39db46d5b99a
6,872
py
Python
pennylane/transforms/__init__.py
XanaduAI/pennylane
0620b8a8bb56ff55bfc2130619fa0a5a1af2b2a4
[ "Apache-2.0" ]
539
2018-11-13T08:45:42.000Z
2020-07-27T18:17:16.000Z
pennylane/transforms/__init__.py
XanaduAI/pennylane
0620b8a8bb56ff55bfc2130619fa0a5a1af2b2a4
[ "Apache-2.0" ]
588
2018-11-14T10:21:47.000Z
2020-07-28T06:27:14.000Z
pennylane/transforms/__init__.py
XanaduAI/pennylane
0620b8a8bb56ff55bfc2130619fa0a5a1af2b2a4
[ "Apache-2.0" ]
165
2018-11-13T18:58:56.000Z
2020-07-27T17:18:17.000Z
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This subpackage contains QNode, quantum function, device, and tape transforms. .. currentmodule:: pennylane Transforms ---------- Transforms that act on QNodes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ These transforms accept QNodes, and return new transformed functions that compute the desired quantity. .. autosummary:: :toctree: api ~transforms.classical_jacobian ~batch_params ~batch_input ~metric_tensor ~adjoint_metric_tensor ~specs ~transforms.mitigate_with_zne ~transforms.split_non_commuting Transforms that act on quantum functions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ These transforms accept quantum functions (Python functions containing quantum operations) that are used to construct QNodes. .. autosummary:: :toctree: api ~adjoint ~ctrl ~transforms.cond ~defer_measurements ~apply_controlled_Q ~quantum_monte_carlo ~transforms.insert Transforms for circuit compilation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This set of transforms accept quantum functions, and perform basic circuit compilation tasks. .. autosummary:: :toctree: api ~compile ~transforms.cancel_inverses ~transforms.commute_controlled ~transforms.merge_rotations ~transforms.single_qubit_fusion ~transforms.unitary_to_rot ~transforms.merge_amplitude_embedding ~transforms.remove_barrier ~transforms.undo_swaps ~transforms.pattern_matching_optimization ~transforms.transpile There are also utility functions and decompositions available that assist with both transforms, and decompositions within the larger PennyLane codebase. .. autosummary:: :toctree: api ~transforms.zyz_decomposition ~transforms.two_qubit_decomposition ~transforms.set_decomposition ~transforms.simplify ~transforms.pattern_matching There are also utility functions that take a circuit and return a DAG. .. autosummary:: :toctree: api ~transforms.commutation_dag ~transforms.CommutationDAG ~transforms.CommutationDAGNode Transform for circuit cutting ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The :func:`~.cut_circuit` transform accepts a QNode and returns a new function that cuts the original circuit, allowing larger circuits to be split into smaller circuits that are compatible with devices that have a restricted number of qubits. .. autosummary:: :toctree: api ~cut_circuit The :func:`~.cut_circuit_mc` transform is designed to be used for cutting circuits which contain :func:`~.sample` measurements and is implemented using a Monte Carlo method. Similarly to the :func:`~.cut_circuit` transform, this transform accepts a QNode and returns a new function that cuts the original circuit. This transform can also accept an optional classical processing function to calculate an expectation value. .. autosummary:: :toctree: api ~cut_circuit_mc There are also low-level functions that can be used to build up the circuit cutting functionalities: .. autosummary:: :toctree: api ~transforms.qcut.tape_to_graph ~transforms.qcut.replace_wire_cut_nodes ~transforms.qcut.fragment_graph ~transforms.qcut.graph_to_tape ~transforms.qcut.remap_tape_wires ~transforms.qcut.expand_fragment_tape ~transforms.qcut.expand_fragment_tapes_mc ~transforms.qcut.qcut_processing_fn ~transforms.qcut.qcut_processing_fn_sample ~transforms.qcut.qcut_processing_fn_mc ~transforms.qcut.CutStrategy ~transforms.qcut.kahypar_cut ~transforms.qcut.place_wire_cuts ~transforms.qcut.find_and_place_cuts Transforms that act on tapes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ These transforms accept quantum tapes, and return one or more tapes as well as a classical processing function. .. autosummary:: :toctree: api ~transforms.measurement_grouping ~transforms.hamiltonian_expand Decorators and utility functions -------------------------------- The following decorators and convenience functions are provided to help build custom QNode, quantum function, and tape transforms: .. autosummary:: :toctree: api ~single_tape_transform ~batch_transform ~qfunc_transform ~op_transform ~transforms.make_tape ~transforms.map_batch_transform ~transforms.create_expand_fn ~transforms.create_decomp_expand_fn ~transforms.expand_invalid_trainable ~transforms.expand_multipar ~transforms.expand_trainable_multipar ~transforms.expand_nonunitary_gen """ # Import the decorators first to prevent circular imports when used in other transforms from .batch_transform import batch_transform, map_batch_transform from .qfunc_transforms import make_tape, single_tape_transform, qfunc_transform from .op_transforms import op_transform from .adjoint import adjoint from .batch_params import batch_params from .batch_input import batch_input from .classical_jacobian import classical_jacobian from .condition import cond, Conditional from .compile import compile from .control import ControlledOperation, ctrl from .decompositions import zyz_decomposition, two_qubit_decomposition from .defer_measurements import defer_measurements from .hamiltonian_expand import hamiltonian_expand from .split_non_commuting import split_non_commuting from .measurement_grouping import measurement_grouping from .metric_tensor import metric_tensor from .adjoint_metric_tensor import adjoint_metric_tensor from .insert_ops import insert from .mitigate import mitigate_with_zne from .optimization import ( cancel_inverses, commute_controlled, merge_rotations, single_qubit_fusion, merge_amplitude_embedding, remove_barrier, undo_swaps, pattern_matching, pattern_matching_optimization, ) from .specs import specs from .qmc import apply_controlled_Q, quantum_monte_carlo from .unitary_to_rot import unitary_to_rot from .commutation_dag import ( commutation_dag, is_commuting, CommutationDAG, CommutationDAGNode, simplify, ) from .tape_expand import ( expand_invalid_trainable, expand_multipar, expand_nonunitary_gen, expand_trainable_multipar, create_expand_fn, create_decomp_expand_fn, set_decomposition, ) from .transpile import transpile from . import qcut from .qcut import cut_circuit, cut_circuit_mc
30.008734
113
0.766589
from .batch_transform import batch_transform, map_batch_transform from .qfunc_transforms import make_tape, single_tape_transform, qfunc_transform from .op_transforms import op_transform from .adjoint import adjoint from .batch_params import batch_params from .batch_input import batch_input from .classical_jacobian import classical_jacobian from .condition import cond, Conditional from .compile import compile from .control import ControlledOperation, ctrl from .decompositions import zyz_decomposition, two_qubit_decomposition from .defer_measurements import defer_measurements from .hamiltonian_expand import hamiltonian_expand from .split_non_commuting import split_non_commuting from .measurement_grouping import measurement_grouping from .metric_tensor import metric_tensor from .adjoint_metric_tensor import adjoint_metric_tensor from .insert_ops import insert from .mitigate import mitigate_with_zne from .optimization import ( cancel_inverses, commute_controlled, merge_rotations, single_qubit_fusion, merge_amplitude_embedding, remove_barrier, undo_swaps, pattern_matching, pattern_matching_optimization, ) from .specs import specs from .qmc import apply_controlled_Q, quantum_monte_carlo from .unitary_to_rot import unitary_to_rot from .commutation_dag import ( commutation_dag, is_commuting, CommutationDAG, CommutationDAGNode, simplify, ) from .tape_expand import ( expand_invalid_trainable, expand_multipar, expand_nonunitary_gen, expand_trainable_multipar, create_expand_fn, create_decomp_expand_fn, set_decomposition, ) from .transpile import transpile from . import qcut from .qcut import cut_circuit, cut_circuit_mc
true
true
f70fa191b2427b7e00ffd7084a2710be0b35e10c
10,735
py
Python
src/m3_calling_functions_returning_values.py
DavidMutchler/03-AccumulatorsAndFunctionsWithParameters
548b9a527357e4a18c6ab3e0cc84c907c6e33d87
[ "MIT" ]
null
null
null
src/m3_calling_functions_returning_values.py
DavidMutchler/03-AccumulatorsAndFunctionsWithParameters
548b9a527357e4a18c6ab3e0cc84c907c6e33d87
[ "MIT" ]
null
null
null
src/m3_calling_functions_returning_values.py
DavidMutchler/03-AccumulatorsAndFunctionsWithParameters
548b9a527357e4a18c6ab3e0cc84c907c6e33d87
[ "MIT" ]
66
2018-03-08T12:57:23.000Z
2020-11-09T18:59:08.000Z
""" This module demonstrates and practices: -- using ARGUMENTs in function CALLs, -- having PARAMETERs in function DEFINITIONs, and -- RETURNING a value from a function, possibly CAPTURING the RETURNED VALUE in a VARIABLE. -- UNIT TESTING. Authors: David Mutchler, Valerie Galluzzi, Mark Hays, Amanda Stouder, their colleagues and PUT_YOUR_NAME_HERE. """ # TODO: 1. PUT YOUR NAME IN THE ABOVE LINE. import m3t_tester def main(): """ Calls the TEST functions in this module. """ run_test_sum_of_digits() run_test_digits_in_cube() run_test_digits_in_power() run_test_fancy_sums_of_digits() # ------------------------------------------------------------------ # TODO: 9. DO THIS LAST! # -- Uncomment the line of code below to run the main function # in m3t_tester.py (do not make changes to it). # It runs OUR tests on your code. # -- Check to see whether all test cases indicate they # "COMPLETED SUCCESSFULLY!" # -- If your code fails any of OUR tests but passes YOUR tests, # then you are likely not TESTING the methods correctly. # ** Ask a TA or your professor for help in that case. ** # ------------------------------------------------------------------ # m3t_tester.main() def run_test_sum_of_digits(): """ Tests the sum_of_digits function. """ # ------------------------------------------------------------------ # TODO: 2. Implement this TEST function, as follows: # # Step 1: This TEST function tests the sum_of_digits function. # So read the doc-string of the sum_of_digits function # defined below. Be sure that you understand from the # doc-string what the sum_of_digits function SHOULD return. # # Step 2: Pick a test case: a number that you could send as # an actual argument to the sum_of_digits function. # - For example, you could pick the test case 826. # # Step 3: Figure out the CORRECT (EXPECTED) answer for your # test case. In the example of 826 the correct answer # for the sum of its digits is 8 + 2 + 6, which is 16. # # Step 4: Write code that prints both the EXPECTED answer # and the ACTUAL answer returned when you call the function. # See the example below. # ------------------------------------------------------------------ print() print('--------------------------------------------------') print('Testing the sum_of_digits function:') print('--------------------------------------------------') # Test 1: expected = 16 answer = sum_of_digits(826) print('Test 1 expected:', expected) print(' actual: ', answer) # ------------------------------------------------------------------ # TO DO: 2 (continued). # Below this comment, add 3 more test cases of your own choosing. # ------------------------------------------------------------------ def sum_of_digits(number): """ What comes in: An integer. What goes out: The sum of the digits in the given integer. Side effects: None. Example: If the integer is 83135, this function returns (8 + 3 + 1 + 3 + 5), which is 20. """ # ------------------------------------------------------------------ # Students: # Do NOT touch this function - it has no TO DO in it. # Do NOT copy code from this function. # # Instead, ** CALL ** this function as needed in the other problems. # # Ask for help if you are unsure what it means to CALL a function. # The ONLY part of this function that you need to understand is # the doc-string above. Treat this function as a black box. # ------------------------------------------------------------------ if number < 0: number = -number digit_sum = 0 while True: if number == 0: break digit_sum = digit_sum + (number % 10) number = number // 10 return digit_sum def run_test_digits_in_cube(): """ Tests the digits_in_cube function. """ # ------------------------------------------------------------------ # TODO: 3. Implement this function. # It TESTS the digits_in_cube function defined below. # Include at least ** 3 ** tests. # # To implement this TEST function, use the same 4 steps as above: # # Step 1: Read the doc-string of digits_in_cube below. # Understand what that function SHOULD return. # # Step 2: Pick a test case: a number(s) that you could send as # actual argument(s) to the digits_in_cube function. # # Step 3: Figure out the CORRECT (EXPECTED) answer for your test case. # # Step 4: Write code that prints both the EXPECTED answer # and the ACTUAL answer returned when you call the function. # Follow the same form as in previous examples. # # Include at least ** 3 ** tests. # ------------------------------------------------------------------ print() print('-----------------------------------------------------') print('Testing the digits_in_cube function:') print('-----------------------------------------------------') def digits_in_cube(n): """ What comes in: A positive integer. What goes out: The sum of the digits in the CUBE of the integer. Side effects: None. Example: If the integer (n) is 5 (so n cubed is 125), this function returns (1 + 2 + 5), which is 8. """ # ------------------------------------------------------------------ # TODO: 4. Implement and test this function. # Note that you should write its TEST function first (above). # That is called TEST-DRIVEN DEVELOPMENT (TDD). # #################################################################### # IMPORTANT: CALL, as many times as needed, # the sum_of_digits function that is DEFINED ABOVE. #################################################################### # ------------------------------------------------------------------ def run_test_digits_in_power(): """ Tests the digits_in_power function. """ # ------------------------------------------------------------------ # TODO: 5. Implement this function. # It TESTS the digits_in_power function defined below. # Include at least ** 3 ** tests. # # Use the same 4-step process as in implementing previous TEST functions. # ------------------------------------------------------------------ print() print('--------------------------------------------------') print('Testing the digits_in_power function:') print('--------------------------------------------------') def digits_in_power(n, k): """ What comes in: Two positive integers, n and k. What goes out: The sum of the digits in x, where x is n raised to the kth power. Side effects: None. Example: If the arguments are 12 and 3, respectively, this function returns 18 since 12 to the 3rd power is 1728 (whose digits sum to 18). """ # ------------------------------------------------------------------ # TODO: 6. Implement and test this function. # #################################################################### # IMPORTANT: CALL, as many times as needed, # the sum_of_digits function that is DEFINED ABOVE. #################################################################### # ------------------------------------------------------------------ def run_test_fancy_sums_of_digits(): """ Tests the fancy_sums_of_digits function. """ # ------------------------------------------------------------------ # TODO: 7. Implement this function. # It TESTS the fancy_sums_of_digits function defined below. # Include at least ** 3 ** tests. # # Use the same 4-step process as in implementing the previous # TEST functions. # ------------------------------------------------------------------ print() print('--------------------------------------------------') print('Testing the fancy_sums_of_digits function:') print('--------------------------------------------------') # ------------------------------------------------------------------ # HINT: For your 1st test, consider n=10. Figure out BY HAND # the correct (expected) answer for that test case. (It's easy.) # The doc-string below gives test cases you can use for # your 2nd and 3rd tests but READ THOSE TEST CASES CAREFULLY # in the doc-string to be sure that you understand the specification. # ------------------------------------------------------------------ def fancy_sums_of_digits(n): """ What comes in: A positive integer n. What goes out: -- Let X denote the sum of the digits in (n ** 1000). -- Let Y denote the sum of the digits in (n ** 999). This function RETURNs the sum of the digits in (X ** Y). Side effects: None. Examples: -- If n is 2, then: -- the sum of the digits in n ** 1000 is 1366 (trust me!). -- the sum of the digits in n ** 999 is 1367 (trust me!). -- so X ** Y is VERY LARGE in this case (don't try to print it!) -- the sum of the digits in (X ** Y) is 19084 (trust me!) -- so this function returns 19084. -- If n is 35, then: -- the sum of the digits in n ** 1000 is 7021 (trust me!). -- the sum of the digits in n ** 999 is 7145 (trust me!). -- so X ** Y is VERY LARGE in this case (don't try to print it!) -- the sum of the digits in (X ** Y) is 124309 (trust me!) -- so this function returns 124309. """ # ------------------------------------------------------------------ # TODO: 8. Implement and test this function. # #################################################################### # IMPORTANT: CALL, as many times as needed, # the sum_of_digits function that is DEFINED ABOVE. #################################################################### # ------------------------------------------------------------------ # ---------------------------------------------------------------------- # Calls main to start the ball rolling. # This unusual form is necessary for the special testing we provided. # ---------------------------------------------------------------------- if __name__ == '__main__': main()
41.447876
77
0.469213
import m3t_tester def main(): run_test_sum_of_digits() run_test_digits_in_cube() run_test_digits_in_power() run_test_fancy_sums_of_digits() def run_test_sum_of_digits(): print() print('--------------------------------------------------') print('Testing the sum_of_digits function:') print('--------------------------------------------------') expected = 16 answer = sum_of_digits(826) print('Test 1 expected:', expected) print(' actual: ', answer) def sum_of_digits(number): if number < 0: number = -number digit_sum = 0 while True: if number == 0: break digit_sum = digit_sum + (number % 10) number = number // 10 return digit_sum def run_test_digits_in_cube(): print() print('-----------------------------------------------------') print('Testing the digits_in_cube function:') print('-----------------------------------------------------') def digits_in_cube(n):
true
true
f70fa2944e0e3fcde401f3381a70b6633f36db93
5,384
py
Python
indieauth/views.py
wivn/feed-reader
1b4524fcdfc79391a5cf982ce9c5681e600f4303
[ "MIT" ]
null
null
null
indieauth/views.py
wivn/feed-reader
1b4524fcdfc79391a5cf982ce9c5681e600f4303
[ "MIT" ]
null
null
null
indieauth/views.py
wivn/feed-reader
1b4524fcdfc79391a5cf982ce9c5681e600f4303
[ "MIT" ]
null
null
null
from django.shortcuts import render, HttpResponseRedirect from django.urls import reverse from urllib.parse import urlencode, unquote import requests from bs4 import BeautifulSoup from django.utils.crypto import get_random_string from django.contrib import messages from urllib.parse import urlparse, urljoin from django.contrib.auth import get_user_model from django.contrib.auth import login as login_auth def redirect_logged_in_users(function): def _function(request,*args, **kwargs): if request.user.is_authenticated: return HttpResponseRedirect(reverse("feed:index")) return function(request, *args, **kwargs) return _function @redirect_logged_in_users def index(request): cleanup(request) return render(request, 'indieauth/index.html', {}) def login(request): try: if request.method == 'POST': site = request.POST.get("site", None) url_data = urlparse(site) if site and url_data.netloc != '' and (url_data.scheme == 'http' or url_data.scheme == 'https'): if url_data.path == '': site = site + '/' print(site) r = requests.get(site) soup = BeautifulSoup(r.text, 'html.parser') unique_id = get_random_string(length=32) for link in soup.find_all('link'): if link.get('rel')[0] == "authorization_endpoint": authorization_endpoint = link.get('href') # if relative URL, this will attach it to the end of the redirected url authorization_endpoint = urljoin(r.url, authorization_endpoint) if r.headers.get('Link', None): links = r.headers['Link'] print(links) for link in links.split(","): possible_url = link.split(";")[0].strip() possible_url = possible_url[1:len(possible_url)-1] possible_rel = link.split(";")[1].strip() if possible_rel == "rel=authorization_endpoint": authorization_endpoint = urljoin(r.url, possible_url) # after redirects, the final URL will be contained in the response site = r.url print(r.history) searchHistory = True i = -1 # ensure that if there's temp redirects that the "me" url is always the last permanent redirect while searchHistory and (i*-1) <= len(r.history): history_piece = r.history[i] if history_piece.status_code == 301: site = history_piece.url i -= 1 # If ALL of them are temporary redirects than use the initial value if all(i.status_code == 302 for i in r.history): site = request.POST.get("site", None) if authorization_endpoint: request.session['authorization_endpoint']=authorization_endpoint request.session['client_id'] = site request.session['state'] = unique_id payload = {'me': site, 'redirect_uri': request.build_absolute_uri(reverse('indieauth:redirect')), 'client_id': f'{request.scheme}://{ request.get_host() }/indieauth/application_info', 'state': unique_id, 'response_type': 'id'} redirect_site = authorization_endpoint + "?" + urlencode(payload) return HttpResponseRedirect(redirect_site) else: cleanup(request) messages.error(request, 'No authorization_endpoint found.') return HttpResponseRedirect(reverse('indieauth:index')) except Exception as e: print(e) messages.error(request, 'Error in retrieving url.') return HttpResponseRedirect(reverse('indieauth:index')) messages.error(request, 'No site submitted or the URL submitted was not valid.') return HttpResponseRedirect(reverse('indieauth:index')) def redirect(request): if request.GET.get('state', None) == request.session.get('state', None) and request.session.get('state', None) != None: client_id = request.session['client_id'] authorization_endpoint = request.session['authorization_endpoint'] redirect_uri = request.build_absolute_uri(reverse('indieauth:redirect')) code = request.GET.get('code') r = requests.post(authorization_endpoint, data = {'code':code, 'client_id':client_id, 'redirect_uri': redirect_uri}) if r.headers['content-type'] == "application/x-www-form-urlencoded": user_site = unquote(r.text)[3:] elif r.headers['content-type'] == "application/json": user_site = r.text['me'] else: user_site = None user_site_matches_domain = urlparse(client_id).netloc == urlparse(user_site).netloc print(urlparse(client_id).netloc, urlparse(user_site).netloc) if r.status_code == 200 and user_site and user_site_matches_domain: messages.success(request, 'Your URL is: ' + user_site) user_model = get_user_model() user = user_model.objects.filter(site=user_site) if user: login_auth(request, user[0]) else: user = user_model.objects.create_user(username=user_site, site=user_site) user.set_unusable_password() login_auth(request, user) cleanup(request) return HttpResponseRedirect(reverse('feed:index')) else: messages.error(request, 'Error in URL. Please try again.') cleanup(request) return HttpResponseRedirect(reverse('indieauth:index')) else: messages.error(request, 'Major error. Likely timeout. Please try again.') cleanup(request) return HttpResponseRedirect(reverse('indieauth:index')) def cleanup(request): try: del request.session['authorization_endpoint'] del request.session['state'] del request.session['client_id'] except KeyError: pass def application_info(request): return render(request, "indieauth/application_info.html")
40.481203
120
0.717125
from django.shortcuts import render, HttpResponseRedirect from django.urls import reverse from urllib.parse import urlencode, unquote import requests from bs4 import BeautifulSoup from django.utils.crypto import get_random_string from django.contrib import messages from urllib.parse import urlparse, urljoin from django.contrib.auth import get_user_model from django.contrib.auth import login as login_auth def redirect_logged_in_users(function): def _function(request,*args, **kwargs): if request.user.is_authenticated: return HttpResponseRedirect(reverse("feed:index")) return function(request, *args, **kwargs) return _function @redirect_logged_in_users def index(request): cleanup(request) return render(request, 'indieauth/index.html', {}) def login(request): try: if request.method == 'POST': site = request.POST.get("site", None) url_data = urlparse(site) if site and url_data.netloc != '' and (url_data.scheme == 'http' or url_data.scheme == 'https'): if url_data.path == '': site = site + '/' print(site) r = requests.get(site) soup = BeautifulSoup(r.text, 'html.parser') unique_id = get_random_string(length=32) for link in soup.find_all('link'): if link.get('rel')[0] == "authorization_endpoint": authorization_endpoint = link.get('href') authorization_endpoint = urljoin(r.url, authorization_endpoint) if r.headers.get('Link', None): links = r.headers['Link'] print(links) for link in links.split(","): possible_url = link.split(";")[0].strip() possible_url = possible_url[1:len(possible_url)-1] possible_rel = link.split(";")[1].strip() if possible_rel == "rel=authorization_endpoint": authorization_endpoint = urljoin(r.url, possible_url) site = r.url print(r.history) searchHistory = True i = -1 while searchHistory and (i*-1) <= len(r.history): history_piece = r.history[i] if history_piece.status_code == 301: site = history_piece.url i -= 1 # If ALL of them are temporary redirects than use the initial value if all(i.status_code == 302 for i in r.history): site = request.POST.get("site", None) if authorization_endpoint: request.session['authorization_endpoint']=authorization_endpoint request.session['client_id'] = site request.session['state'] = unique_id payload = {'me': site, 'redirect_uri': request.build_absolute_uri(reverse('indieauth:redirect')), 'client_id': f'{request.scheme}://{ request.get_host() }/indieauth/application_info', 'state': unique_id, 'response_type': 'id'} redirect_site = authorization_endpoint + "?" + urlencode(payload) return HttpResponseRedirect(redirect_site) else: cleanup(request) messages.error(request, 'No authorization_endpoint found.') return HttpResponseRedirect(reverse('indieauth:index')) except Exception as e: print(e) messages.error(request, 'Error in retrieving url.') return HttpResponseRedirect(reverse('indieauth:index')) messages.error(request, 'No site submitted or the URL submitted was not valid.') return HttpResponseRedirect(reverse('indieauth:index')) def redirect(request): if request.GET.get('state', None) == request.session.get('state', None) and request.session.get('state', None) != None: client_id = request.session['client_id'] authorization_endpoint = request.session['authorization_endpoint'] redirect_uri = request.build_absolute_uri(reverse('indieauth:redirect')) code = request.GET.get('code') r = requests.post(authorization_endpoint, data = {'code':code, 'client_id':client_id, 'redirect_uri': redirect_uri}) if r.headers['content-type'] == "application/x-www-form-urlencoded": user_site = unquote(r.text)[3:] elif r.headers['content-type'] == "application/json": user_site = r.text['me'] else: user_site = None user_site_matches_domain = urlparse(client_id).netloc == urlparse(user_site).netloc print(urlparse(client_id).netloc, urlparse(user_site).netloc) if r.status_code == 200 and user_site and user_site_matches_domain: messages.success(request, 'Your URL is: ' + user_site) user_model = get_user_model() user = user_model.objects.filter(site=user_site) if user: login_auth(request, user[0]) else: user = user_model.objects.create_user(username=user_site, site=user_site) user.set_unusable_password() login_auth(request, user) cleanup(request) return HttpResponseRedirect(reverse('feed:index')) else: messages.error(request, 'Error in URL. Please try again.') cleanup(request) return HttpResponseRedirect(reverse('indieauth:index')) else: messages.error(request, 'Major error. Likely timeout. Please try again.') cleanup(request) return HttpResponseRedirect(reverse('indieauth:index')) def cleanup(request): try: del request.session['authorization_endpoint'] del request.session['state'] del request.session['client_id'] except KeyError: pass def application_info(request): return render(request, "indieauth/application_info.html")
true
true
f70fa2ec4e8ddf2e3938910c093b9fd6af4215c2
8,957
py
Python
mpf/devices/switch.py
cloudjor/mpf
1cf6bf18b0d81120383b0b128b0ebbfa1c62717c
[ "MIT" ]
null
null
null
mpf/devices/switch.py
cloudjor/mpf
1cf6bf18b0d81120383b0b128b0ebbfa1c62717c
[ "MIT" ]
null
null
null
mpf/devices/switch.py
cloudjor/mpf
1cf6bf18b0d81120383b0b128b0ebbfa1c62717c
[ "MIT" ]
null
null
null
"""Contains the Switch parent class.""" import asyncio from functools import partial from mpf.core.device_monitor import DeviceMonitor from mpf.core.machine import MachineController from mpf.core.system_wide_device import SystemWideDevice from mpf.core.utility_functions import Util from mpf.core.platform import SwitchConfig from mpf.devices.device_mixins import DevicePositionMixin MYPY = False if MYPY: # pragma: no cover from mpf.platforms.interfaces.switch_platform_interface import SwitchPlatformInterface from mpf.core.platform import SwitchPlatform @DeviceMonitor("state", "recycle_jitter_count") class Switch(SystemWideDevice, DevicePositionMixin): """A switch in a pinball machine.""" config_section = 'switches' collection = 'switches' class_label = 'switch' __slots__ = ["hw_switch", "platform", "state", "hw_state", "invert", "recycle_secs", "recycle_clear_time", "recycle_jitter_count", "_events_to_post", "last_change"] def __init__(self, machine: MachineController, name: str) -> None: """Initialise switch.""" self.hw_switch = None # type: SwitchPlatformInterface self.platform = None # type: SwitchPlatform super().__init__(machine, name) self.state = 0 """ The logical state of a switch. 1 = active, 0 = inactive. This takes into consideration the NC or NO settings for the switch.""" self.hw_state = 0 """ The physical hardware state of the switch. 1 = active, 0 = inactive. This is what the actual hardware is reporting and does not consider whether a switch is NC or NO.""" self.invert = 0 self.recycle_secs = 0 self.recycle_clear_time = None self.recycle_jitter_count = 0 self._events_to_post = {0: [], 1: []} self.last_change = -100000 # register switch so other devices can add handlers to it self.machine.switch_controller.register_switch(self) @classmethod def device_class_init(cls, machine: MachineController): """Register handler for duplicate switch number checks.""" machine.events.add_handler("init_phase_4", cls._check_duplicate_switch_numbers, machine=machine) @staticmethod def _check_duplicate_switch_numbers(machine, **kwargs): del kwargs check_set = set() for switch in machine.switches: key = (switch.platform, switch.hw_switch.number) if key in check_set: raise AssertionError( "Duplicate switch number {} for switch {}".format( switch.hw_switch.number, switch)) check_set.add(key) def validate_and_parse_config(self, config, is_mode_config, debug_prefix: str = None): """Validate switch config.""" config = super().validate_and_parse_config(config, is_mode_config, debug_prefix) platform = self.machine.get_platform_sections( 'switches', getattr(config, "platform", None)) config['platform_settings'] = platform.validate_switch_section( self, config.get('platform_settings', None)) self._configure_device_logging(config) return config def _create_activation_event(self, event_str: str, state: int): if "|" in event_str: event, ev_time = event_str.split("|") ms = Util.string_to_ms(ev_time) self.machine.switch_controller.add_switch_handler( switch_name=self.name, state=state, callback=partial(self.machine.events.post, event=event), ms=ms ) else: self._events_to_post[state].append(event_str) def _recycle_passed(self, state): self.recycle_clear_time = None # only post event if the switch toggled if self.state != state: self._post_events(self.state) def _post_events_with_recycle(self, state): # if recycle is ongoing do nothing if not self.recycle_clear_time: # calculate clear time self.recycle_clear_time = self.machine.clock.get_time() + self.recycle_secs self.machine.clock.loop.call_at(self.recycle_clear_time, partial(self._recycle_passed, state)) # post event self._post_events(state) def _post_events(self, state): for event in self._events_to_post[state]: if self.machine.events.does_event_exist(event): self.machine.events.post(event) @asyncio.coroutine def _initialize(self): yield from super()._initialize() self.platform = self.machine.get_platform_sections( 'switches', self.config['platform']) if self.config['type'].upper() == 'NC': self.invert = 1 self.recycle_secs = self.config['ignore_window_ms'] / 1000.0 config = SwitchConfig(invert=self.invert, debounce=self.config['debounce']) try: self.hw_switch = self.platform.configure_switch( self.config['number'], config, self.config['platform_settings']) except AssertionError as e: raise AssertionError("Failed to configure switch {} in platform. See error above".format(self.name)) from e if self.recycle_secs: self.add_handler(state=1, callback=self._post_events_with_recycle, callback_kwargs={"state": 1}) self.add_handler(state=0, callback=self._post_events_with_recycle, callback_kwargs={"state": 0}) else: self.add_handler(state=1, callback=self._post_events, callback_kwargs={"state": 1}) self.add_handler(state=0, callback=self._post_events, callback_kwargs={"state": 0}) if self.machine.config['mpf']['auto_create_switch_events']: self._create_activation_event( self.machine.config['mpf']['switch_event_active'].replace( '%', self.name), 1) self._create_activation_event( self.machine.config['mpf']['switch_event_inactive'].replace( '%', self.name), 0) for tag in self.tags: self._create_activation_event( self.machine.config['mpf']['switch_tag_event'].replace( '%', tag), 1) self._create_activation_event( self.machine.config['mpf']['switch_tag_event'].replace( '%', tag) + "_active", 1) self._create_activation_event( self.machine.config['mpf']['switch_tag_event'].replace( '%', tag) + "_inactive", 0) for event in Util.string_to_lowercase_list( self.config['events_when_activated']): self._create_activation_event(event, 1) for event in Util.string_to_lowercase_list( self.config['events_when_deactivated']): self._create_activation_event(event, 0) # pylint: disable-msg=too-many-arguments def add_handler(self, callback, state=1, ms=0, return_info=False, callback_kwargs=None): """Add switch handler (callback) for this switch which is called when this switch state changes. Note that this method just calls the :doc:`Switch Controller's <self.machine.switch_controller>` ``add_switch_handler()`` method behind the scenes. Args: callback: A callable method that will be called when the switch state changes. state: The state that the switch which change into which triggers the callback to be called. Values are 0 or 1, with 0 meaning the switch changed to inactive, and 1 meaning the switch changed to an active state. ms: How many milliseconds the switch needs to be in the new state before the callback is called. Default is 0 which means that the callback will be called immediately. You can use this setting as a form of software debounce, as the switch needs to be in the state consistently before the callback is called. return_info: If True, the switch controller will pass the parameters of the switch handler as arguments to the callback, including switch_name, state, and ms. callback_kwargs: Additional kwargs that will be passed with the callback. """ return self.machine.switch_controller.add_switch_handler( self.name, callback, state, ms, return_info, callback_kwargs) def remove_handler(self, callback, state=1, ms=0): """Remove switch handler for this switch.""" return self.machine.switch_controller.remove_switch_handler( self.name, callback, state, ms)
43.692683
119
0.635927
import asyncio from functools import partial from mpf.core.device_monitor import DeviceMonitor from mpf.core.machine import MachineController from mpf.core.system_wide_device import SystemWideDevice from mpf.core.utility_functions import Util from mpf.core.platform import SwitchConfig from mpf.devices.device_mixins import DevicePositionMixin MYPY = False if MYPY: from mpf.platforms.interfaces.switch_platform_interface import SwitchPlatformInterface from mpf.core.platform import SwitchPlatform @DeviceMonitor("state", "recycle_jitter_count") class Switch(SystemWideDevice, DevicePositionMixin): config_section = 'switches' collection = 'switches' class_label = 'switch' __slots__ = ["hw_switch", "platform", "state", "hw_state", "invert", "recycle_secs", "recycle_clear_time", "recycle_jitter_count", "_events_to_post", "last_change"] def __init__(self, machine: MachineController, name: str) -> None: self.hw_switch = None self.platform = None super().__init__(machine, name) self.state = 0 self.hw_state = 0 self.invert = 0 self.recycle_secs = 0 self.recycle_clear_time = None self.recycle_jitter_count = 0 self._events_to_post = {0: [], 1: []} self.last_change = -100000 self.machine.switch_controller.register_switch(self) @classmethod def device_class_init(cls, machine: MachineController): machine.events.add_handler("init_phase_4", cls._check_duplicate_switch_numbers, machine=machine) @staticmethod def _check_duplicate_switch_numbers(machine, **kwargs): del kwargs check_set = set() for switch in machine.switches: key = (switch.platform, switch.hw_switch.number) if key in check_set: raise AssertionError( "Duplicate switch number {} for switch {}".format( switch.hw_switch.number, switch)) check_set.add(key) def validate_and_parse_config(self, config, is_mode_config, debug_prefix: str = None): config = super().validate_and_parse_config(config, is_mode_config, debug_prefix) platform = self.machine.get_platform_sections( 'switches', getattr(config, "platform", None)) config['platform_settings'] = platform.validate_switch_section( self, config.get('platform_settings', None)) self._configure_device_logging(config) return config def _create_activation_event(self, event_str: str, state: int): if "|" in event_str: event, ev_time = event_str.split("|") ms = Util.string_to_ms(ev_time) self.machine.switch_controller.add_switch_handler( switch_name=self.name, state=state, callback=partial(self.machine.events.post, event=event), ms=ms ) else: self._events_to_post[state].append(event_str) def _recycle_passed(self, state): self.recycle_clear_time = None if self.state != state: self._post_events(self.state) def _post_events_with_recycle(self, state): if not self.recycle_clear_time: self.recycle_clear_time = self.machine.clock.get_time() + self.recycle_secs self.machine.clock.loop.call_at(self.recycle_clear_time, partial(self._recycle_passed, state)) self._post_events(state) def _post_events(self, state): for event in self._events_to_post[state]: if self.machine.events.does_event_exist(event): self.machine.events.post(event) @asyncio.coroutine def _initialize(self): yield from super()._initialize() self.platform = self.machine.get_platform_sections( 'switches', self.config['platform']) if self.config['type'].upper() == 'NC': self.invert = 1 self.recycle_secs = self.config['ignore_window_ms'] / 1000.0 config = SwitchConfig(invert=self.invert, debounce=self.config['debounce']) try: self.hw_switch = self.platform.configure_switch( self.config['number'], config, self.config['platform_settings']) except AssertionError as e: raise AssertionError("Failed to configure switch {} in platform. See error above".format(self.name)) from e if self.recycle_secs: self.add_handler(state=1, callback=self._post_events_with_recycle, callback_kwargs={"state": 1}) self.add_handler(state=0, callback=self._post_events_with_recycle, callback_kwargs={"state": 0}) else: self.add_handler(state=1, callback=self._post_events, callback_kwargs={"state": 1}) self.add_handler(state=0, callback=self._post_events, callback_kwargs={"state": 0}) if self.machine.config['mpf']['auto_create_switch_events']: self._create_activation_event( self.machine.config['mpf']['switch_event_active'].replace( '%', self.name), 1) self._create_activation_event( self.machine.config['mpf']['switch_event_inactive'].replace( '%', self.name), 0) for tag in self.tags: self._create_activation_event( self.machine.config['mpf']['switch_tag_event'].replace( '%', tag), 1) self._create_activation_event( self.machine.config['mpf']['switch_tag_event'].replace( '%', tag) + "_active", 1) self._create_activation_event( self.machine.config['mpf']['switch_tag_event'].replace( '%', tag) + "_inactive", 0) for event in Util.string_to_lowercase_list( self.config['events_when_activated']): self._create_activation_event(event, 1) for event in Util.string_to_lowercase_list( self.config['events_when_deactivated']): self._create_activation_event(event, 0) def add_handler(self, callback, state=1, ms=0, return_info=False, callback_kwargs=None): return self.machine.switch_controller.add_switch_handler( self.name, callback, state, ms, return_info, callback_kwargs) def remove_handler(self, callback, state=1, ms=0): return self.machine.switch_controller.remove_switch_handler( self.name, callback, state, ms)
true
true
f70fa4716a8ad9de69464eb03d1b8acc667bcf25
8,629
py
Python
lucida/speechrecognition/kaldi_gstreamer_asr/kaldigstserver/decoder2.py
extremenelson/sirius
0bad428bb763fe404d01db5d9e08ee33a8f3776c
[ "BSD-3-Clause" ]
1,808
2015-12-23T09:38:57.000Z
2022-03-24T05:55:03.000Z
lucida/speechrecognition/kaldi_gstreamer_asr/kaldigstserver/decoder2.py
extremenelson/sirius
0bad428bb763fe404d01db5d9e08ee33a8f3776c
[ "BSD-3-Clause" ]
164
2015-12-22T17:32:16.000Z
2022-01-30T16:19:28.000Z
lucida/speechrecognition/kaldi_gstreamer_asr/kaldigstserver/decoder2.py
mrinformatics/lucida1604
f17fba20be9765c3464437f40e97278bba29b9d5
[ "BSD-3-Clause" ]
554
2015-12-23T11:29:34.000Z
2022-02-08T05:31:49.000Z
""" Created on May 17, 2013 @author: tanel """ import gi gi.require_version('Gst', '1.0') from gi.repository import GObject, Gst GObject.threads_init() Gst.init(None) import logging import thread import os logger = logging.getLogger(__name__) import pdb class DecoderPipeline2(object): def __init__(self, conf={}): logger.info("Creating decoder using conf: %s" % conf) self.create_pipeline(conf) self.outdir = conf.get("out-dir", None) if not os.path.exists(self.outdir): os.makedirs(self.outdir) elif not os.path.isdir(self.outdir): raise Exception("Output directory %s already exists as a file" % self.outdir) self.result_handler = None self.full_result_handler = None self.eos_handler = None self.error_handler = None self.request_id = "<undefined>" def create_pipeline(self, conf): self.appsrc = Gst.ElementFactory.make("appsrc", "appsrc") self.decodebin = Gst.ElementFactory.make("decodebin", "decodebin") self.audioconvert = Gst.ElementFactory.make("audioconvert", "audioconvert") self.audioresample = Gst.ElementFactory.make("audioresample", "audioresample") self.tee = Gst.ElementFactory.make("tee", "tee") self.queue1 = Gst.ElementFactory.make("queue", "queue1") self.filesink = Gst.ElementFactory.make("filesink", "filesink") self.queue2 = Gst.ElementFactory.make("queue", "queue2") self.asr = Gst.ElementFactory.make("kaldinnet2onlinedecoder", "asr") self.fakesink = Gst.ElementFactory.make("fakesink", "fakesink") # This needs to be set first if "use-threaded-decoder" in conf["decoder"]: self.asr.set_property("use-threaded-decoder", conf["decoder"]["use-threaded-decoder"]) for (key, val) in conf.get("decoder", {}).iteritems(): if key != "use-threaded-decoder": logger.info("Setting decoder property: %s = %s" % (key, val)) self.asr.set_property(key, val) self.appsrc.set_property("is-live", True) self.filesink.set_property("location", "/dev/null") logger.info('Created GStreamer elements') self.pipeline = Gst.Pipeline() for element in [self.appsrc, self.decodebin, self.audioconvert, self.audioresample, self.tee, self.queue1, self.filesink, self.queue2, self.asr, self.fakesink]: logger.debug("Adding %s to the pipeline" % element) self.pipeline.add(element) logger.info('Linking GStreamer elements') self.appsrc.link(self.decodebin) #self.appsrc.link(self.audioconvert) self.decodebin.connect('pad-added', self._connect_decoder) self.audioconvert.link(self.audioresample) self.audioresample.link(self.tee) self.tee.link(self.queue1) self.queue1.link(self.filesink) self.tee.link(self.queue2) self.queue2.link(self.asr) self.asr.link(self.fakesink) # Create bus and connect several handlers self.bus = self.pipeline.get_bus() self.bus.add_signal_watch() self.bus.enable_sync_message_emission() self.bus.connect('message::eos', self._on_eos) self.bus.connect('message::error', self._on_error) #self.bus.connect('message::cutter', self._on_cutter) self.asr.connect('partial-result', self._on_partial_result) self.asr.connect('final-result', self._on_final_result) self.asr.connect('full-final-result', self._on_full_final_result) logger.info("Setting pipeline to READY") self.pipeline.set_state(Gst.State.READY) logger.info("Set pipeline to READY") def _connect_decoder(self, element, pad): logger.info("%s: Connecting audio decoder" % self.request_id) pad.link(self.audioconvert.get_static_pad("sink")) logger.info("%s: Connected audio decoder" % self.request_id) def _on_partial_result(self, asr, hyp): logger.info("%s: Got partial result: %s" % (self.request_id, hyp.decode('utf8'))) if self.result_handler: self.result_handler(hyp, False) def _on_final_result(self, asr, hyp): logger.info("%s: Got final result: %s" % (self.request_id, hyp.decode('utf8'))) if self.result_handler: self.result_handler(hyp, True) def _on_full_final_result(self, asr, result_json): logger.info("%s: Got full final result: %s" % (self.request_id, result_json.decode('utf8'))) if self.full_result_handler: self.full_result_handler(result_json) def _on_error(self, bus, msg): self.error = msg.parse_error() logger.error(self.error) self.finish_request() if self.error_handler: self.error_handler(self.error[0].message) def _on_eos(self, bus, msg): logger.info('%s: Pipeline received eos signal' % self.request_id) #self.decodebin.unlink(self.audioconvert) self.finish_request() if self.eos_handler: self.eos_handler[0](self.eos_handler[1]) def get_adaptation_state(self): return self.asr.get_property("adaptation-state") def set_adaptation_state(self, adaptation_state): """Sets the adaptation state to a certian value, previously retrieved using get_adaptation_state() Should be called after init_request(..) """ return self.asr.set_property("adaptation-state", adaptation_state) def finish_request(self): logger.info("%s: Resetting decoder state" % self.request_id) if self.outdir: self.filesink.set_state(Gst.State.NULL) self.filesink.set_property('location', "/dev/null") self.filesink.set_state(Gst.State.PLAYING) self.pipeline.set_state(Gst.State.NULL) self.request_id = "<undefined>" def init_request(self, id, caps_str): self.request_id = id logger.info("%s: Initializing request" % (self.request_id)) if caps_str and len(caps_str) > 0: logger.info("%s: Setting caps to %s" % (self.request_id, caps_str)) caps = Gst.caps_from_string(caps_str) self.appsrc.set_property("caps", caps) else: #caps = Gst.caps_from_string("") self.appsrc.set_property("caps", None) #self.pipeline.set_state(Gst.State.READY) pass #self.appsrc.set_state(Gst.State.PAUSED) if self.outdir: self.pipeline.set_state(Gst.State.PAUSED) self.filesink.set_state(Gst.State.NULL) self.filesink.set_property('location', "%s/%s.raw" % (self.outdir, id)) self.filesink.set_state(Gst.State.PLAYING) #self.filesink.set_state(Gst.State.PLAYING) #self.decodebin.set_state(Gst.State.PLAYING) self.pipeline.set_state(Gst.State.PLAYING) self.filesink.set_state(Gst.State.PLAYING) # push empty buffer (to avoid hang on client diconnect) #buf = Gst.Buffer.new_allocate(None, 0, None) #self.appsrc.emit("push-buffer", buf) # reset adaptation state self.set_adaptation_state("") def process_data(self, data): logger.debug('%s: Pushing buffer of size %d to pipeline' % (self.request_id, len(data))) buf = Gst.Buffer.new_allocate(None, len(data), None) buf.fill(0, data) self.appsrc.emit("push-buffer", buf) logger.debug('%s: Pushing buffer done' % self.request_id) def end_request(self): logger.info("%s: Pushing EOS to pipeline" % self.request_id) self.appsrc.emit("end-of-stream") def set_result_handler(self, handler): self.result_handler = handler def set_full_result_handler(self, handler): self.full_result_handler = handler def set_eos_handler(self, handler, user_data=None): self.eos_handler = (handler, user_data) def set_error_handler(self, handler): self.error_handler = handler def cancel(self): logger.info("%s: Sending EOS to pipeline in order to cancel processing" % self.request_id) self.appsrc.emit("end-of-stream") #self.asr.set_property("silent", True) #self.pipeline.set_state(Gst.State.NULL) #if (self.pipeline.get_state() == Gst.State.PLAYING): #logger.debug("Sending EOS to pipeline") #self.pipeline.send_event(Gst.Event.new_eos()) #self.pipeline.set_state(Gst.State.READY) logger.info("%s: Cancelled pipeline" % self.request_id)
38.013216
106
0.644918
import gi gi.require_version('Gst', '1.0') from gi.repository import GObject, Gst GObject.threads_init() Gst.init(None) import logging import thread import os logger = logging.getLogger(__name__) import pdb class DecoderPipeline2(object): def __init__(self, conf={}): logger.info("Creating decoder using conf: %s" % conf) self.create_pipeline(conf) self.outdir = conf.get("out-dir", None) if not os.path.exists(self.outdir): os.makedirs(self.outdir) elif not os.path.isdir(self.outdir): raise Exception("Output directory %s already exists as a file" % self.outdir) self.result_handler = None self.full_result_handler = None self.eos_handler = None self.error_handler = None self.request_id = "<undefined>" def create_pipeline(self, conf): self.appsrc = Gst.ElementFactory.make("appsrc", "appsrc") self.decodebin = Gst.ElementFactory.make("decodebin", "decodebin") self.audioconvert = Gst.ElementFactory.make("audioconvert", "audioconvert") self.audioresample = Gst.ElementFactory.make("audioresample", "audioresample") self.tee = Gst.ElementFactory.make("tee", "tee") self.queue1 = Gst.ElementFactory.make("queue", "queue1") self.filesink = Gst.ElementFactory.make("filesink", "filesink") self.queue2 = Gst.ElementFactory.make("queue", "queue2") self.asr = Gst.ElementFactory.make("kaldinnet2onlinedecoder", "asr") self.fakesink = Gst.ElementFactory.make("fakesink", "fakesink") if "use-threaded-decoder" in conf["decoder"]: self.asr.set_property("use-threaded-decoder", conf["decoder"]["use-threaded-decoder"]) for (key, val) in conf.get("decoder", {}).iteritems(): if key != "use-threaded-decoder": logger.info("Setting decoder property: %s = %s" % (key, val)) self.asr.set_property(key, val) self.appsrc.set_property("is-live", True) self.filesink.set_property("location", "/dev/null") logger.info('Created GStreamer elements') self.pipeline = Gst.Pipeline() for element in [self.appsrc, self.decodebin, self.audioconvert, self.audioresample, self.tee, self.queue1, self.filesink, self.queue2, self.asr, self.fakesink]: logger.debug("Adding %s to the pipeline" % element) self.pipeline.add(element) logger.info('Linking GStreamer elements') self.appsrc.link(self.decodebin) self.decodebin.connect('pad-added', self._connect_decoder) self.audioconvert.link(self.audioresample) self.audioresample.link(self.tee) self.tee.link(self.queue1) self.queue1.link(self.filesink) self.tee.link(self.queue2) self.queue2.link(self.asr) self.asr.link(self.fakesink) self.bus = self.pipeline.get_bus() self.bus.add_signal_watch() self.bus.enable_sync_message_emission() self.bus.connect('message::eos', self._on_eos) self.bus.connect('message::error', self._on_error) self.asr.connect('partial-result', self._on_partial_result) self.asr.connect('final-result', self._on_final_result) self.asr.connect('full-final-result', self._on_full_final_result) logger.info("Setting pipeline to READY") self.pipeline.set_state(Gst.State.READY) logger.info("Set pipeline to READY") def _connect_decoder(self, element, pad): logger.info("%s: Connecting audio decoder" % self.request_id) pad.link(self.audioconvert.get_static_pad("sink")) logger.info("%s: Connected audio decoder" % self.request_id) def _on_partial_result(self, asr, hyp): logger.info("%s: Got partial result: %s" % (self.request_id, hyp.decode('utf8'))) if self.result_handler: self.result_handler(hyp, False) def _on_final_result(self, asr, hyp): logger.info("%s: Got final result: %s" % (self.request_id, hyp.decode('utf8'))) if self.result_handler: self.result_handler(hyp, True) def _on_full_final_result(self, asr, result_json): logger.info("%s: Got full final result: %s" % (self.request_id, result_json.decode('utf8'))) if self.full_result_handler: self.full_result_handler(result_json) def _on_error(self, bus, msg): self.error = msg.parse_error() logger.error(self.error) self.finish_request() if self.error_handler: self.error_handler(self.error[0].message) def _on_eos(self, bus, msg): logger.info('%s: Pipeline received eos signal' % self.request_id) self.finish_request() if self.eos_handler: self.eos_handler[0](self.eos_handler[1]) def get_adaptation_state(self): return self.asr.get_property("adaptation-state") def set_adaptation_state(self, adaptation_state): return self.asr.set_property("adaptation-state", adaptation_state) def finish_request(self): logger.info("%s: Resetting decoder state" % self.request_id) if self.outdir: self.filesink.set_state(Gst.State.NULL) self.filesink.set_property('location', "/dev/null") self.filesink.set_state(Gst.State.PLAYING) self.pipeline.set_state(Gst.State.NULL) self.request_id = "<undefined>" def init_request(self, id, caps_str): self.request_id = id logger.info("%s: Initializing request" % (self.request_id)) if caps_str and len(caps_str) > 0: logger.info("%s: Setting caps to %s" % (self.request_id, caps_str)) caps = Gst.caps_from_string(caps_str) self.appsrc.set_property("caps", caps) else: self.appsrc.set_property("caps", None) pass if self.outdir: self.pipeline.set_state(Gst.State.PAUSED) self.filesink.set_state(Gst.State.NULL) self.filesink.set_property('location', "%s/%s.raw" % (self.outdir, id)) self.filesink.set_state(Gst.State.PLAYING) self.pipeline.set_state(Gst.State.PLAYING) self.filesink.set_state(Gst.State.PLAYING) self.set_adaptation_state("") def process_data(self, data): logger.debug('%s: Pushing buffer of size %d to pipeline' % (self.request_id, len(data))) buf = Gst.Buffer.new_allocate(None, len(data), None) buf.fill(0, data) self.appsrc.emit("push-buffer", buf) logger.debug('%s: Pushing buffer done' % self.request_id) def end_request(self): logger.info("%s: Pushing EOS to pipeline" % self.request_id) self.appsrc.emit("end-of-stream") def set_result_handler(self, handler): self.result_handler = handler def set_full_result_handler(self, handler): self.full_result_handler = handler def set_eos_handler(self, handler, user_data=None): self.eos_handler = (handler, user_data) def set_error_handler(self, handler): self.error_handler = handler def cancel(self): logger.info("%s: Sending EOS to pipeline in order to cancel processing" % self.request_id) self.appsrc.emit("end-of-stream") logger.info("%s: Cancelled pipeline" % self.request_id)
true
true
f70fa47cf19e266644db800bdfe629f660dc9d2e
419
py
Python
Mundo 2 - Exercicios/61Exercicio.py
andrezzadede/Curso_Python_Guanabara_Mundo_2
e4ebf171f74809f8a65e846c59978db95c5d3b1b
[ "MIT" ]
null
null
null
Mundo 2 - Exercicios/61Exercicio.py
andrezzadede/Curso_Python_Guanabara_Mundo_2
e4ebf171f74809f8a65e846c59978db95c5d3b1b
[ "MIT" ]
null
null
null
Mundo 2 - Exercicios/61Exercicio.py
andrezzadede/Curso_Python_Guanabara_Mundo_2
e4ebf171f74809f8a65e846c59978db95c5d3b1b
[ "MIT" ]
null
null
null
print('---------- Bem vindo ao exercicio 61 ------') print('\033[32m Reçaca o desafio 51. Lendo o primeiro termo e a razao de uma PA. Mostrando os 10 primeiros termos da progressa usando a estrutura while\033[m') primeiro = int(input('Primeiro termo: ')) razao = int(input('Razão: ')) termo = primeiro c = 1 while c <= 10: print('{} -> '.format(termo), end='') termo += razao c += 1 print('Fim')
18.217391
159
0.618138
print('---------- Bem vindo ao exercicio 61 ------') print('\033[32m Reçaca o desafio 51. Lendo o primeiro termo e a razao de uma PA. Mostrando os 10 primeiros termos da progressa usando a estrutura while\033[m') primeiro = int(input('Primeiro termo: ')) razao = int(input('Razão: ')) termo = primeiro c = 1 while c <= 10: print('{} -> '.format(termo), end='') termo += razao c += 1 print('Fim')
true
true
f70fa4df361d80f9ecacef1088f93b318fd49fe6
2,056
py
Python
docs/conf.py
Moody-Tunes/spotify-client
496c72d915d92c29795a31a18cc9af26a9015b4b
[ "MIT" ]
1
2020-12-21T02:35:18.000Z
2020-12-21T02:35:18.000Z
docs/conf.py
Moody-Tunes/spotify-client
496c72d915d92c29795a31a18cc9af26a9015b4b
[ "MIT" ]
9
2020-09-04T15:35:23.000Z
2021-04-24T02:10:56.000Z
docs/conf.py
Moody-Tunes/spotify-client
496c72d915d92c29795a31a18cc9af26a9015b4b
[ "MIT" ]
2
2020-12-21T02:35:24.000Z
2020-12-29T07:38:16.000Z
# Configuration file for the Sphinx documentation builder. # # This file only contains a selection of the most common options. For a full # list see the documentation: # https://www.sphinx-doc.org/en/master/usage/configuration.html # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # import os import sys sys.path.insert(0, os.path.abspath('..')) # -- Project information ----------------------------------------------------- project = 'spotify-client' copyright = '2020, MoodyTunes' author = 'MoodyTunes' # The full version, including alpha/beta/rc tags with open("../VERSION", "r") as version_file: version = version_file.read().strip() release = version # -- General configuration --------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = ['sphinx.ext.autodoc'] pygments_style = 'sphinx' # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path. exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static']
35.448276
79
0.669747
import os import sys sys.path.insert(0, os.path.abspath('..')) project = 'spotify-client' copyright = '2020, MoodyTunes' author = 'MoodyTunes' with open("../VERSION", "r") as version_file: version = version_file.read().strip() release = version extensions = ['sphinx.ext.autodoc'] pygments_style = 'sphinx' templates_path = ['_templates'] exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] html_theme = 'alabaster' html_static_path = ['_static']
true
true
f70fa5c21d44574a534aa9a438155cd0428d003d
946
py
Python
decorator/send_commands_netmiko.py
levs72/pyneng-examples
d6288292dcf9d1ebc5a9db4a0d620bd11b4a2df9
[ "MIT" ]
11
2021-04-05T09:30:23.000Z
2022-03-09T13:27:56.000Z
decorator/send_commands_netmiko.py
levs72/pyneng-examples
d6288292dcf9d1ebc5a9db4a0d620bd11b4a2df9
[ "MIT" ]
null
null
null
decorator/send_commands_netmiko.py
levs72/pyneng-examples
d6288292dcf9d1ebc5a9db4a0d620bd11b4a2df9
[ "MIT" ]
11
2021-04-06T03:44:35.000Z
2022-03-04T21:20:40.000Z
from netmiko import ConnectHandler import yaml from pprint import pprint def send_show_command(device, show_command): with ConnectHandler(**device) as ssh: ssh.enable() result = ssh.send_command(show_command) return result def send_config_commands(device, config_commands): with ConnectHandler(**device) as ssh: ssh.enable() result = ssh.send_config_set(config_commands) return result def send_commands(device, config=None, show=None): if show: return send_show_command(device_list, show) elif config: return send_config_commands(device_list, config) if __name__ == "__main__": commands = ["logging 10.255.255.1", "logging buffered 20010", "no logging console"] show_command = "sh ip int br" with open("devices.yaml") as f: dev_list = yaml.safe_load(f) send_commands(dev_list, config=commands) send_commands(dev_list, show=show_command)
27.028571
87
0.707188
from netmiko import ConnectHandler import yaml from pprint import pprint def send_show_command(device, show_command): with ConnectHandler(**device) as ssh: ssh.enable() result = ssh.send_command(show_command) return result def send_config_commands(device, config_commands): with ConnectHandler(**device) as ssh: ssh.enable() result = ssh.send_config_set(config_commands) return result def send_commands(device, config=None, show=None): if show: return send_show_command(device_list, show) elif config: return send_config_commands(device_list, config) if __name__ == "__main__": commands = ["logging 10.255.255.1", "logging buffered 20010", "no logging console"] show_command = "sh ip int br" with open("devices.yaml") as f: dev_list = yaml.safe_load(f) send_commands(dev_list, config=commands) send_commands(dev_list, show=show_command)
true
true