hexsha
stringlengths
40
40
repo
stringlengths
5
121
path
stringlengths
4
227
license
sequence
language
stringclasses
1 value
identifier
stringlengths
1
107
return_type
stringlengths
2
237
original_string
stringlengths
75
13.4k
original_docstring
stringlengths
13
12.9k
docstring
stringlengths
13
2.57k
docstring_tokens
sequence
code
stringlengths
23
1.88k
code_tokens
sequence
short_docstring
stringlengths
1
1.32k
short_docstring_tokens
sequence
comment
sequence
parameters
list
docstring_params
dict
code_with_imports
stringlengths
23
1.88k
idxs
int64
0
611k
cluster
int64
0
1.02k
53dd8a0925cb840f7d65106fc569ddb33735d4c0
nicoddemus/scancode-toolkit
src/summarycode/score.py
[ "Apache-2.0", "CC0-1.0" ]
Python
has_spdx_licenses
<not_specific>
def has_spdx_licenses(resource): """ Return True if a Resource licenses are all known SPDX licenses. """ if resource.scan_errors: return False for detected_license in resource.licenses: if not detected_license.get('spdx_license_key'): return False return True
Return True if a Resource licenses are all known SPDX licenses.
Return True if a Resource licenses are all known SPDX licenses.
[ "Return", "True", "if", "a", "Resource", "licenses", "are", "all", "known", "SPDX", "licenses", "." ]
def has_spdx_licenses(resource): if resource.scan_errors: return False for detected_license in resource.licenses: if not detected_license.get('spdx_license_key'): return False return True
[ "def", "has_spdx_licenses", "(", "resource", ")", ":", "if", "resource", ".", "scan_errors", ":", "return", "False", "for", "detected_license", "in", "resource", ".", "licenses", ":", "if", "not", "detected_license", ".", "get", "(", "'spdx_license_key'", ")", ":", "return", "False", "return", "True" ]
Return True if a Resource licenses are all known SPDX licenses.
[ "Return", "True", "if", "a", "Resource", "licenses", "are", "all", "known", "SPDX", "licenses", "." ]
[ "\"\"\"\n Return True if a Resource licenses are all known SPDX licenses.\n \"\"\"" ]
[ { "param": "resource", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "resource", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def has_spdx_licenses(resource): if resource.scan_errors: return False for detected_license in resource.licenses: if not detected_license.get('spdx_license_key'): return False return True
220
122
c8fee5216e1c4d71fdfd904795395554a066d348
wdeconinck/gridtools
pyutils/pyutils/env.py
[ "BSD-3-Clause" ]
Python
hostname
<not_specific>
def hostname(): """Host name of the current machine. Example: >>> hostname() 'keschln-0002' """ hostname = platform.node() return hostname
Host name of the current machine. Example: >>> hostname() 'keschln-0002'
Host name of the current machine.
[ "Host", "name", "of", "the", "current", "machine", "." ]
def hostname(): hostname = platform.node() return hostname
[ "def", "hostname", "(", ")", ":", "hostname", "=", "platform", ".", "node", "(", ")", "return", "hostname" ]
Host name of the current machine.
[ "Host", "name", "of", "the", "current", "machine", "." ]
[ "\"\"\"Host name of the current machine.\n\n Example:\n >>> hostname()\n 'keschln-0002'\n \"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [ { "identifier": "examples", "docstring": null, "docstring_tokens": [ "None" ] } ] }
import platform def hostname(): hostname = platform.node() return hostname
221
623
4e89eb6fba46e5102cb45631747923769feead74
dcoles/pycurl-requests
pycurl_requests/__init__.py
[ "MIT" ]
Python
patch_requests
null
def patch_requests(): """Patch Requests library with PycURL Requests""" import sys for module in ('requests', 'requests.api', 'requests.cookies', 'requests.exceptions', 'requests.models', 'requests.sessions', 'requests.structures'): sys.modules[module] = sys.modules[module.replace('requests', __name__, 1)]
Patch Requests library with PycURL Requests
Patch Requests library with PycURL Requests
[ "Patch", "Requests", "library", "with", "PycURL", "Requests" ]
def patch_requests(): import sys for module in ('requests', 'requests.api', 'requests.cookies', 'requests.exceptions', 'requests.models', 'requests.sessions', 'requests.structures'): sys.modules[module] = sys.modules[module.replace('requests', __name__, 1)]
[ "def", "patch_requests", "(", ")", ":", "import", "sys", "for", "module", "in", "(", "'requests'", ",", "'requests.api'", ",", "'requests.cookies'", ",", "'requests.exceptions'", ",", "'requests.models'", ",", "'requests.sessions'", ",", "'requests.structures'", ")", ":", "sys", ".", "modules", "[", "module", "]", "=", "sys", ".", "modules", "[", "module", ".", "replace", "(", "'requests'", ",", "__name__", ",", "1", ")", "]" ]
Patch Requests library with PycURL Requests
[ "Patch", "Requests", "library", "with", "PycURL", "Requests" ]
[ "\"\"\"Patch Requests library with PycURL Requests\"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
import sys def patch_requests(): import sys for module in ('requests', 'requests.api', 'requests.cookies', 'requests.exceptions', 'requests.models', 'requests.sessions', 'requests.structures'): sys.modules[module] = sys.modules[module.replace('requests', __name__, 1)]
222
143
d9a936894ffe6f37df0d87b4949b7732a658c2f7
emanjavacas/multilemma
multi/dataset.py
[ "MIT" ]
Python
readlines
null
def readlines(path, maxlen=35): """ path: str, path to file with data maxlen: int, maximum sentence length """ with open(path) as f: # skip header next(f) sent, tasks = [], collections.defaultdict(list) for line in f: line = line.strip() # new sentence marker if not line: yield sent, dict(tasks) sent, tasks = [], collections.defaultdict(list) # actual line else: token, lemma, pos, *_ = line.split() # accumulate sent.append(token) for task, data in {'lemma': lemma, 'pos': pos}.items(): tasks[task].append(data) if len(sent) >= maxlen: yield sent, dict(tasks) sent, tasks = [], collections.defaultdict(list) if sent: yield sent, dict(tasks)
path: str, path to file with data maxlen: int, maximum sentence length
str, path to file with data maxlen: int, maximum sentence length
[ "str", "path", "to", "file", "with", "data", "maxlen", ":", "int", "maximum", "sentence", "length" ]
def readlines(path, maxlen=35): with open(path) as f: next(f) sent, tasks = [], collections.defaultdict(list) for line in f: line = line.strip() if not line: yield sent, dict(tasks) sent, tasks = [], collections.defaultdict(list) else: token, lemma, pos, *_ = line.split() sent.append(token) for task, data in {'lemma': lemma, 'pos': pos}.items(): tasks[task].append(data) if len(sent) >= maxlen: yield sent, dict(tasks) sent, tasks = [], collections.defaultdict(list) if sent: yield sent, dict(tasks)
[ "def", "readlines", "(", "path", ",", "maxlen", "=", "35", ")", ":", "with", "open", "(", "path", ")", "as", "f", ":", "next", "(", "f", ")", "sent", ",", "tasks", "=", "[", "]", ",", "collections", ".", "defaultdict", "(", "list", ")", "for", "line", "in", "f", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "not", "line", ":", "yield", "sent", ",", "dict", "(", "tasks", ")", "sent", ",", "tasks", "=", "[", "]", ",", "collections", ".", "defaultdict", "(", "list", ")", "else", ":", "token", ",", "lemma", ",", "pos", ",", "*", "_", "=", "line", ".", "split", "(", ")", "sent", ".", "append", "(", "token", ")", "for", "task", ",", "data", "in", "{", "'lemma'", ":", "lemma", ",", "'pos'", ":", "pos", "}", ".", "items", "(", ")", ":", "tasks", "[", "task", "]", ".", "append", "(", "data", ")", "if", "len", "(", "sent", ")", ">=", "maxlen", ":", "yield", "sent", ",", "dict", "(", "tasks", ")", "sent", ",", "tasks", "=", "[", "]", ",", "collections", ".", "defaultdict", "(", "list", ")", "if", "sent", ":", "yield", "sent", ",", "dict", "(", "tasks", ")" ]
path: str, path to file with data maxlen: int, maximum sentence length
[ "path", ":", "str", "path", "to", "file", "with", "data", "maxlen", ":", "int", "maximum", "sentence", "length" ]
[ "\"\"\"\n path: str, path to file with data\n maxlen: int, maximum sentence length\n \"\"\"", "# skip header", "# new sentence marker", "# actual line", "# accumulate" ]
[ { "param": "path", "type": null }, { "param": "maxlen", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "path", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "maxlen", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import collections def readlines(path, maxlen=35): with open(path) as f: next(f) sent, tasks = [], collections.defaultdict(list) for line in f: line = line.strip() if not line: yield sent, dict(tasks) sent, tasks = [], collections.defaultdict(list) else: token, lemma, pos, *_ = line.split() sent.append(token) for task, data in {'lemma': lemma, 'pos': pos}.items(): tasks[task].append(data) if len(sent) >= maxlen: yield sent, dict(tasks) sent, tasks = [], collections.defaultdict(list) if sent: yield sent, dict(tasks)
223
517
3fcd4b0ed0f4ba4beb907bb63dba5c8cc7be28c2
ampledata/aiscot
aiscot/functions.py
[ "Apache-2.0" ]
Python
read_known_craft
list
def read_known_craft(csv_file: str) -> list: """Reads the FILTER_CSV file into a `list`""" all_rows: list = [] with open(csv_file) as csv_fd: reader = csv.DictReader(csv_fd) for row in reader: all_rows.append(row) return all_rows
Reads the FILTER_CSV file into a `list`
Reads the FILTER_CSV file into a `list`
[ "Reads", "the", "FILTER_CSV", "file", "into", "a", "`", "list", "`" ]
def read_known_craft(csv_file: str) -> list: all_rows: list = [] with open(csv_file) as csv_fd: reader = csv.DictReader(csv_fd) for row in reader: all_rows.append(row) return all_rows
[ "def", "read_known_craft", "(", "csv_file", ":", "str", ")", "->", "list", ":", "all_rows", ":", "list", "=", "[", "]", "with", "open", "(", "csv_file", ")", "as", "csv_fd", ":", "reader", "=", "csv", ".", "DictReader", "(", "csv_fd", ")", "for", "row", "in", "reader", ":", "all_rows", ".", "append", "(", "row", ")", "return", "all_rows" ]
Reads the FILTER_CSV file into a `list`
[ "Reads", "the", "FILTER_CSV", "file", "into", "a", "`", "list", "`" ]
[ "\"\"\"Reads the FILTER_CSV file into a `list`\"\"\"" ]
[ { "param": "csv_file", "type": "str" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "csv_file", "type": "str", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import csv def read_known_craft(csv_file: str) -> list: all_rows: list = [] with open(csv_file) as csv_fd: reader = csv.DictReader(csv_fd) for row in reader: all_rows.append(row) return all_rows
224
714
50d2d2af6b067d034ca17b67c67e1e7ee67f4805
PrateekMunjal/TorchAL
setup.py
[ "MIT" ]
Python
read_requirements
<not_specific>
def read_requirements(): """Retrieves the list of packages mentioned in requirements.txt""" req_list = [] with open("requirements.txt", "r") as f: for line in f.readlines(): line = line.rstrip("\n") req_list.append(line) return req_list
Retrieves the list of packages mentioned in requirements.txt
Retrieves the list of packages mentioned in requirements.txt
[ "Retrieves", "the", "list", "of", "packages", "mentioned", "in", "requirements", ".", "txt" ]
def read_requirements(): req_list = [] with open("requirements.txt", "r") as f: for line in f.readlines(): line = line.rstrip("\n") req_list.append(line) return req_list
[ "def", "read_requirements", "(", ")", ":", "req_list", "=", "[", "]", "with", "open", "(", "\"requirements.txt\"", ",", "\"r\"", ")", "as", "f", ":", "for", "line", "in", "f", ".", "readlines", "(", ")", ":", "line", "=", "line", ".", "rstrip", "(", "\"\\n\"", ")", "req_list", ".", "append", "(", "line", ")", "return", "req_list" ]
Retrieves the list of packages mentioned in requirements.txt
[ "Retrieves", "the", "list", "of", "packages", "mentioned", "in", "requirements", ".", "txt" ]
[ "\"\"\"Retrieves the list of packages mentioned in requirements.txt\"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
def read_requirements(): req_list = [] with open("requirements.txt", "r") as f: for line in f.readlines(): line = line.rstrip("\n") req_list.append(line) return req_list
225
115
e85420853d90d443b439595c4f26148bad52fa6c
fallenpegasus/reconbf
reconbf/modules/test_nginx.py
[ "Apache-2.0" ]
Python
_get_parameters
<not_specific>
def _get_parameters(conf, option): """Get a statement where the first token is the same as option.""" for statement in conf: if statement[0] == option: return statement[1:] return None
Get a statement where the first token is the same as option.
Get a statement where the first token is the same as option.
[ "Get", "a", "statement", "where", "the", "first", "token", "is", "the", "same", "as", "option", "." ]
def _get_parameters(conf, option): for statement in conf: if statement[0] == option: return statement[1:] return None
[ "def", "_get_parameters", "(", "conf", ",", "option", ")", ":", "for", "statement", "in", "conf", ":", "if", "statement", "[", "0", "]", "==", "option", ":", "return", "statement", "[", "1", ":", "]", "return", "None" ]
Get a statement where the first token is the same as option.
[ "Get", "a", "statement", "where", "the", "first", "token", "is", "the", "same", "as", "option", "." ]
[ "\"\"\"Get a statement where the first token is the same as option.\"\"\"" ]
[ { "param": "conf", "type": null }, { "param": "option", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "conf", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "option", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _get_parameters(conf, option): for statement in conf: if statement[0] == option: return statement[1:] return None
227
0
056de883e9b742276b81db971a24d069db53b833
anonymous-sp-submission/korg-update
korg/Construct.py
[ "MIT" ]
Python
innerContents
<not_specific>
def innerContents(singleModelBody): """ This method returns the body of the given model, as an array. The body is between the two curly brace { }. We assume no comments in the model at the moment ... same with in the properties. """ if singleModelBody == False: return False i, j = 0, len(singleModelBody) - 1 while (singleModelBody[i] != "{" and i < len(singleModelBody)): i += 1 while (singleModelBody[j] != "}" and j > 0): j -= 1 if (i >= j or singleModelBody[i] != "{" or singleModelBody[j] != "}"): return None return singleModelBody[i+1:j]
This method returns the body of the given model, as an array. The body is between the two curly brace { }. We assume no comments in the model at the moment ... same with in the properties.
This method returns the body of the given model, as an array. The body is between the two curly brace { }. We assume no comments in the model at the moment same with in the properties.
[ "This", "method", "returns", "the", "body", "of", "the", "given", "model", "as", "an", "array", ".", "The", "body", "is", "between", "the", "two", "curly", "brace", "{", "}", ".", "We", "assume", "no", "comments", "in", "the", "model", "at", "the", "moment", "same", "with", "in", "the", "properties", "." ]
def innerContents(singleModelBody): if singleModelBody == False: return False i, j = 0, len(singleModelBody) - 1 while (singleModelBody[i] != "{" and i < len(singleModelBody)): i += 1 while (singleModelBody[j] != "}" and j > 0): j -= 1 if (i >= j or singleModelBody[i] != "{" or singleModelBody[j] != "}"): return None return singleModelBody[i+1:j]
[ "def", "innerContents", "(", "singleModelBody", ")", ":", "if", "singleModelBody", "==", "False", ":", "return", "False", "i", ",", "j", "=", "0", ",", "len", "(", "singleModelBody", ")", "-", "1", "while", "(", "singleModelBody", "[", "i", "]", "!=", "\"{\"", "and", "i", "<", "len", "(", "singleModelBody", ")", ")", ":", "i", "+=", "1", "while", "(", "singleModelBody", "[", "j", "]", "!=", "\"}\"", "and", "j", ">", "0", ")", ":", "j", "-=", "1", "if", "(", "i", ">=", "j", "or", "singleModelBody", "[", "i", "]", "!=", "\"{\"", "or", "singleModelBody", "[", "j", "]", "!=", "\"}\"", ")", ":", "return", "None", "return", "singleModelBody", "[", "i", "+", "1", ":", "j", "]" ]
This method returns the body of the given model, as an array.
[ "This", "method", "returns", "the", "body", "of", "the", "given", "model", "as", "an", "array", "." ]
[ "\"\"\"\n\tThis method returns the body of the given \n\tmodel, as an array. The body is between the \n\ttwo curly brace { }. \n\tWe assume no comments in the model at the moment ... \n\tsame with in the properties.\n\t\"\"\"" ]
[ { "param": "singleModelBody", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "singleModelBody", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def innerContents(singleModelBody): if singleModelBody == False: return False i, j = 0, len(singleModelBody) - 1 while (singleModelBody[i] != "{" and i < len(singleModelBody)): i += 1 while (singleModelBody[j] != "}" and j > 0): j -= 1 if (i >= j or singleModelBody[i] != "{" or singleModelBody[j] != "}"): return None return singleModelBody[i+1:j]
230
427
fae6e8ec342dce1f1fde1eb1a74389c73b5dd3ac
SAGES-UCSC/Photometry
geom_utils.py
[ "MIT" ]
Python
intersecting
<not_specific>
def intersecting(b1xmin, b1xmax, b1ymin, b1ymax, b2xmin, b2xmax, b2ymin, b2ymax): "Test two boxes to see if they are intersecting. " xmin = max(b1xmin, b2xmin) ymin = max(b1ymin, b2ymin) xmax = min(b1xmax, b2xmax) ymax = min(b1ymax, b2ymax) return (xmin < xmax and ymin < ymax)
Test two boxes to see if they are intersecting.
Test two boxes to see if they are intersecting.
[ "Test", "two", "boxes", "to", "see", "if", "they", "are", "intersecting", "." ]
def intersecting(b1xmin, b1xmax, b1ymin, b1ymax, b2xmin, b2xmax, b2ymin, b2ymax): xmin = max(b1xmin, b2xmin) ymin = max(b1ymin, b2ymin) xmax = min(b1xmax, b2xmax) ymax = min(b1ymax, b2ymax) return (xmin < xmax and ymin < ymax)
[ "def", "intersecting", "(", "b1xmin", ",", "b1xmax", ",", "b1ymin", ",", "b1ymax", ",", "b2xmin", ",", "b2xmax", ",", "b2ymin", ",", "b2ymax", ")", ":", "xmin", "=", "max", "(", "b1xmin", ",", "b2xmin", ")", "ymin", "=", "max", "(", "b1ymin", ",", "b2ymin", ")", "xmax", "=", "min", "(", "b1xmax", ",", "b2xmax", ")", "ymax", "=", "min", "(", "b1ymax", ",", "b2ymax", ")", "return", "(", "xmin", "<", "xmax", "and", "ymin", "<", "ymax", ")" ]
Test two boxes to see if they are intersecting.
[ "Test", "two", "boxes", "to", "see", "if", "they", "are", "intersecting", "." ]
[ "\"Test two boxes to see if they are intersecting. \"" ]
[ { "param": "b1xmin", "type": null }, { "param": "b1xmax", "type": null }, { "param": "b1ymin", "type": null }, { "param": "b1ymax", "type": null }, { "param": "b2xmin", "type": null }, { "param": "b2xmax", "type": null }, { "param": "b2ymin", "type": null }, { "param": "b2ymax", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "b1xmin", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "b1xmax", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "b1ymin", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "b1ymax", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "b2xmin", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "b2xmax", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "b2ymin", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "b2ymax", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def intersecting(b1xmin, b1xmax, b1ymin, b1ymax, b2xmin, b2xmax, b2ymin, b2ymax): xmin = max(b1xmin, b2xmin) ymin = max(b1ymin, b2ymin) xmax = min(b1xmax, b2xmax) ymax = min(b1ymax, b2ymax) return (xmin < xmax and ymin < ymax)
231
744
2f31373c3f5abbf795fea22fbc84a14a9e9e75ba
TheRaizer/Binary-Artificial-Neural-Network
scripts/saveloaddata.py
[ "MIT" ]
Python
check_theta_save
null
def check_theta_save(dims, theta, theta_file, dims_file): """ Asks the user and may save the learned parameters and dimensions Preconditions: dims: list of int length >= 2 theta: dict theta_file: string dims_file: string Parameters: dims: the dimensions of the neural network model theta: learned parameters of the model theta_file: file path to save the parameters dims_file: file path to save the dimensions Postconditions: May or may not save the learned parameters as well as the dimensions used to obtain said parameters. """ saveDecision = input("Type 'save' or 'yes' to save the trained parameters, otherwise type anything: ") if saveDecision == 'yes' or saveDecision == 'save': # open the files for binary writing theta_file = open(theta_file, "wb") dims_file = open(dims_file, "wb") # use the pickle import to save the dict and list pickle.dump(theta, theta_file) pickle.dump(dims, dims_file) # close the files dims_file.close() theta_file.close()
Asks the user and may save the learned parameters and dimensions Preconditions: dims: list of int length >= 2 theta: dict theta_file: string dims_file: string Parameters: dims: the dimensions of the neural network model theta: learned parameters of the model theta_file: file path to save the parameters dims_file: file path to save the dimensions Postconditions: May or may not save the learned parameters as well as the dimensions used to obtain said parameters.
the dimensions of the neural network model theta: learned parameters of the model theta_file: file path to save the parameters dims_file: file path to save the dimensions May or may not save the learned parameters as well as the dimensions used to obtain said parameters.
[ "the", "dimensions", "of", "the", "neural", "network", "model", "theta", ":", "learned", "parameters", "of", "the", "model", "theta_file", ":", "file", "path", "to", "save", "the", "parameters", "dims_file", ":", "file", "path", "to", "save", "the", "dimensions", "May", "or", "may", "not", "save", "the", "learned", "parameters", "as", "well", "as", "the", "dimensions", "used", "to", "obtain", "said", "parameters", "." ]
def check_theta_save(dims, theta, theta_file, dims_file): saveDecision = input("Type 'save' or 'yes' to save the trained parameters, otherwise type anything: ") if saveDecision == 'yes' or saveDecision == 'save': theta_file = open(theta_file, "wb") dims_file = open(dims_file, "wb") pickle.dump(theta, theta_file) pickle.dump(dims, dims_file) dims_file.close() theta_file.close()
[ "def", "check_theta_save", "(", "dims", ",", "theta", ",", "theta_file", ",", "dims_file", ")", ":", "saveDecision", "=", "input", "(", "\"Type 'save' or 'yes' to save the trained parameters, otherwise type anything: \"", ")", "if", "saveDecision", "==", "'yes'", "or", "saveDecision", "==", "'save'", ":", "theta_file", "=", "open", "(", "theta_file", ",", "\"wb\"", ")", "dims_file", "=", "open", "(", "dims_file", ",", "\"wb\"", ")", "pickle", ".", "dump", "(", "theta", ",", "theta_file", ")", "pickle", ".", "dump", "(", "dims", ",", "dims_file", ")", "dims_file", ".", "close", "(", ")", "theta_file", ".", "close", "(", ")" ]
Asks the user and may save the learned parameters and dimensions Preconditions: dims: list of int length >= 2 theta: dict theta_file: string dims_file: string
[ "Asks", "the", "user", "and", "may", "save", "the", "learned", "parameters", "and", "dimensions", "Preconditions", ":", "dims", ":", "list", "of", "int", "length", ">", "=", "2", "theta", ":", "dict", "theta_file", ":", "string", "dims_file", ":", "string" ]
[ "\"\"\" Asks the user and may save the learned parameters and dimensions\n\n Preconditions:\n dims: list of int length >= 2\n theta: dict\n theta_file: string\n dims_file: string\n\n Parameters:\n dims: the dimensions of the neural network model\n theta: learned parameters of the model\n theta_file: file path to save the parameters\n dims_file: file path to save the dimensions\n\n Postconditions:\n May or may not save the learned parameters as well as the dimensions used to obtain said parameters.\n \"\"\"", "# open the files for binary writing", "# use the pickle import to save the dict and list", "# close the files" ]
[ { "param": "dims", "type": null }, { "param": "theta", "type": null }, { "param": "theta_file", "type": null }, { "param": "dims_file", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "dims", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "theta", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "theta_file", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "dims_file", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import pickle def check_theta_save(dims, theta, theta_file, dims_file): saveDecision = input("Type 'save' or 'yes' to save the trained parameters, otherwise type anything: ") if saveDecision == 'yes' or saveDecision == 'save': theta_file = open(theta_file, "wb") dims_file = open(dims_file, "wb") pickle.dump(theta, theta_file) pickle.dump(dims, dims_file) dims_file.close() theta_file.close()
232
424
aa920625cca390e96fb0bdf05e07ad6d32e1ced4
rlhatton/RossROS
rossros_asyncio.py
[ "MIT" ]
Python
gather
null
async def gather(producer_consumer_list): """ Function that uses asyncio.gather to concurrently execute a set of ConsumerProducer functions """ # Make a new list of producer_consumers by evaluating the input list # (this evaluation matches syntax with rossros.py) producer_consumer_list2 = [] for pc in producer_consumer_list: producer_consumer_list2.append(pc()) await asyncio.gather(*producer_consumer_list2)
Function that uses asyncio.gather to concurrently execute a set of ConsumerProducer functions
Function that uses asyncio.gather to concurrently execute a set of ConsumerProducer functions
[ "Function", "that", "uses", "asyncio", ".", "gather", "to", "concurrently", "execute", "a", "set", "of", "ConsumerProducer", "functions" ]
async def gather(producer_consumer_list): producer_consumer_list2 = [] for pc in producer_consumer_list: producer_consumer_list2.append(pc()) await asyncio.gather(*producer_consumer_list2)
[ "async", "def", "gather", "(", "producer_consumer_list", ")", ":", "producer_consumer_list2", "=", "[", "]", "for", "pc", "in", "producer_consumer_list", ":", "producer_consumer_list2", ".", "append", "(", "pc", "(", ")", ")", "await", "asyncio", ".", "gather", "(", "*", "producer_consumer_list2", ")" ]
Function that uses asyncio.gather to concurrently execute a set of ConsumerProducer functions
[ "Function", "that", "uses", "asyncio", ".", "gather", "to", "concurrently", "execute", "a", "set", "of", "ConsumerProducer", "functions" ]
[ "\"\"\"\n Function that uses asyncio.gather to concurrently\n execute a set of ConsumerProducer functions\n \"\"\"", "# Make a new list of producer_consumers by evaluating the input list", "# (this evaluation matches syntax with rossros.py)" ]
[ { "param": "producer_consumer_list", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "producer_consumer_list", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import asyncio async def gather(producer_consumer_list): producer_consumer_list2 = [] for pc in producer_consumer_list: producer_consumer_list2.append(pc()) await asyncio.gather(*producer_consumer_list2)
233
610
d38821cc9e19e65ee830a3ee5c2305293a30cde4
pauliacomi/pyGAPS
src/pygaps/utilities/python_utilities.py
[ "MIT" ]
Python
deep_merge
<not_specific>
def deep_merge(a, b, path=None, update=True): """Recursive updates of a dictionary.""" if path is None: path = [] for key, val in b.items(): if key in a: if ( isinstance(a[key], abc.Mapping) and isinstance(val, abc.Mapping) ): deep_merge(a[key], val, path + [str(key)], update) elif a[key] == val: pass # same leaf value elif update: a[key] = val else: raise Exception(f"Conflict at {'.'.join(path + [str(key)])}") else: a[key] = val return a
Recursive updates of a dictionary.
Recursive updates of a dictionary.
[ "Recursive", "updates", "of", "a", "dictionary", "." ]
def deep_merge(a, b, path=None, update=True): if path is None: path = [] for key, val in b.items(): if key in a: if ( isinstance(a[key], abc.Mapping) and isinstance(val, abc.Mapping) ): deep_merge(a[key], val, path + [str(key)], update) elif a[key] == val: pass elif update: a[key] = val else: raise Exception(f"Conflict at {'.'.join(path + [str(key)])}") else: a[key] = val return a
[ "def", "deep_merge", "(", "a", ",", "b", ",", "path", "=", "None", ",", "update", "=", "True", ")", ":", "if", "path", "is", "None", ":", "path", "=", "[", "]", "for", "key", ",", "val", "in", "b", ".", "items", "(", ")", ":", "if", "key", "in", "a", ":", "if", "(", "isinstance", "(", "a", "[", "key", "]", ",", "abc", ".", "Mapping", ")", "and", "isinstance", "(", "val", ",", "abc", ".", "Mapping", ")", ")", ":", "deep_merge", "(", "a", "[", "key", "]", ",", "val", ",", "path", "+", "[", "str", "(", "key", ")", "]", ",", "update", ")", "elif", "a", "[", "key", "]", "==", "val", ":", "pass", "elif", "update", ":", "a", "[", "key", "]", "=", "val", "else", ":", "raise", "Exception", "(", "f\"Conflict at {'.'.join(path + [str(key)])}\"", ")", "else", ":", "a", "[", "key", "]", "=", "val", "return", "a" ]
Recursive updates of a dictionary.
[ "Recursive", "updates", "of", "a", "dictionary", "." ]
[ "\"\"\"Recursive updates of a dictionary.\"\"\"", "# same leaf value" ]
[ { "param": "a", "type": null }, { "param": "b", "type": null }, { "param": "path", "type": null }, { "param": "update", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "a", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "b", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "path", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "update", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import abc def deep_merge(a, b, path=None, update=True): if path is None: path = [] for key, val in b.items(): if key in a: if ( isinstance(a[key], abc.Mapping) and isinstance(val, abc.Mapping) ): deep_merge(a[key], val, path + [str(key)], update) elif a[key] == val: pass elif update: a[key] = val else: raise Exception(f"Conflict at {'.'.join(path + [str(key)])}") else: a[key] = val return a
234
18
999ce4fc00465ddbd76d2f7fe6be34ef9df1385a
cisagov/gophish-tools
src/util/validate.py
[ "CC0-1.0" ]
Python
validate_assessment_id
<not_specific>
def validate_assessment_id(assessment_id): """Validate that the provided assessment_id is matching the valid assessment_id format. Example: RV1234. Args: assessment_id (string): Assessment identifier to validate. Returns: match: The result of a regular expression match. """ return re.match(r"^RV\d{4,5}$", assessment_id)
Validate that the provided assessment_id is matching the valid assessment_id format. Example: RV1234. Args: assessment_id (string): Assessment identifier to validate. Returns: match: The result of a regular expression match.
Validate that the provided assessment_id is matching the valid assessment_id format.
[ "Validate", "that", "the", "provided", "assessment_id", "is", "matching", "the", "valid", "assessment_id", "format", "." ]
def validate_assessment_id(assessment_id): return re.match(r"^RV\d{4,5}$", assessment_id)
[ "def", "validate_assessment_id", "(", "assessment_id", ")", ":", "return", "re", ".", "match", "(", "r\"^RV\\d{4,5}$\"", ",", "assessment_id", ")" ]
Validate that the provided assessment_id is matching the valid assessment_id format.
[ "Validate", "that", "the", "provided", "assessment_id", "is", "matching", "the", "valid", "assessment_id", "format", "." ]
[ "\"\"\"Validate that the provided assessment_id is matching the valid assessment_id format. Example: RV1234.\n\n Args:\n assessment_id (string): Assessment identifier to validate.\n\n Returns:\n match: The result of a regular expression match.\n \"\"\"" ]
[ { "param": "assessment_id", "type": null } ]
{ "returns": [ { "docstring": "The result of a regular expression match.", "docstring_tokens": [ "The", "result", "of", "a", "regular", "expression", "match", "." ], "type": "match" } ], "raises": [], "params": [ { "identifier": "assessment_id", "type": null, "docstring": "Assessment identifier to validate.", "docstring_tokens": [ "Assessment", "identifier", "to", "validate", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
import re def validate_assessment_id(assessment_id): return re.match(r"^RV\d{4,5}$", assessment_id)
235
441
f4dc4f096ba44186d134736e30884a6e8186d074
ngeor/instarepo
instarepo/fixers/discovery.py
[ "MIT" ]
Python
classes_in_module
<not_specific>
def classes_in_module(module): """ Gets the classes defined in the given module """ module_dict = module.__dict__ return ( module_dict[c] for c in module_dict if ( isinstance(module_dict[c], type) and module_dict[c].__module__ == module.__name__ ) )
Gets the classes defined in the given module
Gets the classes defined in the given module
[ "Gets", "the", "classes", "defined", "in", "the", "given", "module" ]
def classes_in_module(module): module_dict = module.__dict__ return ( module_dict[c] for c in module_dict if ( isinstance(module_dict[c], type) and module_dict[c].__module__ == module.__name__ ) )
[ "def", "classes_in_module", "(", "module", ")", ":", "module_dict", "=", "module", ".", "__dict__", "return", "(", "module_dict", "[", "c", "]", "for", "c", "in", "module_dict", "if", "(", "isinstance", "(", "module_dict", "[", "c", "]", ",", "type", ")", "and", "module_dict", "[", "c", "]", ".", "__module__", "==", "module", ".", "__name__", ")", ")" ]
Gets the classes defined in the given module
[ "Gets", "the", "classes", "defined", "in", "the", "given", "module" ]
[ "\"\"\"\n Gets the classes defined in the given module\n \"\"\"" ]
[ { "param": "module", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "module", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def classes_in_module(module): module_dict = module.__dict__ return ( module_dict[c] for c in module_dict if ( isinstance(module_dict[c], type) and module_dict[c].__module__ == module.__name__ ) )
236
793
c4c2bedda00e5004bb7b286995e7f6f666fbd78e
bsamseth/vehicle-routing-problem
route.py
[ "MIT" ]
Python
pmx_1
<not_specific>
def pmx_1(p1, p2): """Perform Partially Mapped Crossover on p1 and p2, yielding one child.""" cut1 = random.randint(0, len(p1) - 2) cut2 = random.randint(cut1, len(p1) - 1) c1 = [None] * len(p1) c1[cut1:cut2] = p1[cut1:cut2] # fill in parts of p2[cut1:cut2] not in child c1 for i in [i for i in p2[cut1:cut2] if i not in c1]: k = p2.index(p1[p2.index(i)]) while True: if c1[k] is None: c1[k] = i break else: k = p2.index(p1[k]) # Fill in remaining from p2 for i in range(len(p2)): if c1[i] is None: c1[i] = p2[i] assert len(set(c1)) == len(p1), "Crossover lost something." return c1
Perform Partially Mapped Crossover on p1 and p2, yielding one child.
Perform Partially Mapped Crossover on p1 and p2, yielding one child.
[ "Perform", "Partially", "Mapped", "Crossover", "on", "p1", "and", "p2", "yielding", "one", "child", "." ]
def pmx_1(p1, p2): cut1 = random.randint(0, len(p1) - 2) cut2 = random.randint(cut1, len(p1) - 1) c1 = [None] * len(p1) c1[cut1:cut2] = p1[cut1:cut2] for i in [i for i in p2[cut1:cut2] if i not in c1]: k = p2.index(p1[p2.index(i)]) while True: if c1[k] is None: c1[k] = i break else: k = p2.index(p1[k]) for i in range(len(p2)): if c1[i] is None: c1[i] = p2[i] assert len(set(c1)) == len(p1), "Crossover lost something." return c1
[ "def", "pmx_1", "(", "p1", ",", "p2", ")", ":", "cut1", "=", "random", ".", "randint", "(", "0", ",", "len", "(", "p1", ")", "-", "2", ")", "cut2", "=", "random", ".", "randint", "(", "cut1", ",", "len", "(", "p1", ")", "-", "1", ")", "c1", "=", "[", "None", "]", "*", "len", "(", "p1", ")", "c1", "[", "cut1", ":", "cut2", "]", "=", "p1", "[", "cut1", ":", "cut2", "]", "for", "i", "in", "[", "i", "for", "i", "in", "p2", "[", "cut1", ":", "cut2", "]", "if", "i", "not", "in", "c1", "]", ":", "k", "=", "p2", ".", "index", "(", "p1", "[", "p2", ".", "index", "(", "i", ")", "]", ")", "while", "True", ":", "if", "c1", "[", "k", "]", "is", "None", ":", "c1", "[", "k", "]", "=", "i", "break", "else", ":", "k", "=", "p2", ".", "index", "(", "p1", "[", "k", "]", ")", "for", "i", "in", "range", "(", "len", "(", "p2", ")", ")", ":", "if", "c1", "[", "i", "]", "is", "None", ":", "c1", "[", "i", "]", "=", "p2", "[", "i", "]", "assert", "len", "(", "set", "(", "c1", ")", ")", "==", "len", "(", "p1", ")", ",", "\"Crossover lost something.\"", "return", "c1" ]
Perform Partially Mapped Crossover on p1 and p2, yielding one child.
[ "Perform", "Partially", "Mapped", "Crossover", "on", "p1", "and", "p2", "yielding", "one", "child", "." ]
[ "\"\"\"Perform Partially Mapped Crossover on p1 and p2, yielding one child.\"\"\"", "# fill in parts of p2[cut1:cut2] not in child c1", "# Fill in remaining from p2" ]
[ { "param": "p1", "type": null }, { "param": "p2", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "p1", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "p2", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import random def pmx_1(p1, p2): cut1 = random.randint(0, len(p1) - 2) cut2 = random.randint(cut1, len(p1) - 1) c1 = [None] * len(p1) c1[cut1:cut2] = p1[cut1:cut2] for i in [i for i in p2[cut1:cut2] if i not in c1]: k = p2.index(p1[p2.index(i)]) while True: if c1[k] is None: c1[k] = i break else: k = p2.index(p1[k]) for i in range(len(p2)): if c1[i] is None: c1[i] = p2[i] assert len(set(c1)) == len(p1), "Crossover lost something." return c1
237
939
5e7295ed6b582d75f094f4261cdb8e8fc86296bb
kvh/ramp
ramp/store.py
[ "MIT" ]
Python
loadpickle
<not_specific>
def loadpickle(fname): """ Load pickled object from `fname` """ return pickle.load(open(fname, 'rb'))
Load pickled object from `fname`
Load pickled object from `fname`
[ "Load", "pickled", "object", "from", "`", "fname", "`" ]
def loadpickle(fname): return pickle.load(open(fname, 'rb'))
[ "def", "loadpickle", "(", "fname", ")", ":", "return", "pickle", ".", "load", "(", "open", "(", "fname", ",", "'rb'", ")", ")" ]
Load pickled object from `fname`
[ "Load", "pickled", "object", "from", "`", "fname", "`" ]
[ "\"\"\"\n Load pickled object from `fname`\n \"\"\"" ]
[ { "param": "fname", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "fname", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import pickle def loadpickle(fname): return pickle.load(open(fname, 'rb'))
238
254
47573097a8aeb6b65782e6d1d574e7cb1a1759a7
lordofkhaos/Chargen
chargen.py
[ "MIT" ]
Python
printProgressBar
null
def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '#'): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '.' * (length - filledLength) print('\r%s [%s] %s%% %s' % (prefix, bar, percent, suffix)) # Print New Line on Complete if iteration == total: print()
Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str)
Call in a loop to create terminal progress bar
[ "Call", "in", "a", "loop", "to", "create", "terminal", "progress", "bar" ]
def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '#'): percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '.' * (length - filledLength) print('\r%s [%s] %s%% %s' % (prefix, bar, percent, suffix)) if iteration == total: print()
[ "def", "printProgressBar", "(", "iteration", ",", "total", ",", "prefix", "=", "''", ",", "suffix", "=", "''", ",", "decimals", "=", "1", ",", "length", "=", "100", ",", "fill", "=", "'#'", ")", ":", "percent", "=", "(", "\"{0:.\"", "+", "str", "(", "decimals", ")", "+", "\"f}\"", ")", ".", "format", "(", "100", "*", "(", "iteration", "/", "float", "(", "total", ")", ")", ")", "filledLength", "=", "int", "(", "length", "*", "iteration", "//", "total", ")", "bar", "=", "fill", "*", "filledLength", "+", "'.'", "*", "(", "length", "-", "filledLength", ")", "print", "(", "'\\r%s [%s] %s%% %s'", "%", "(", "prefix", ",", "bar", ",", "percent", ",", "suffix", ")", ")", "if", "iteration", "==", "total", ":", "print", "(", ")" ]
Call in a loop to create terminal progress bar
[ "Call", "in", "a", "loop", "to", "create", "terminal", "progress", "bar" ]
[ "\"\"\"\r\n\tCall in a loop to create terminal progress bar\r\n\t@params:\r\n\t\titeration - Required : current iteration (Int)\r\n\t\ttotal\t - Required : total iterations (Int)\r\n\t\tprefix\t - Optional : prefix string (Str)\r\n\t\tsuffix\t - Optional : suffix string (Str)\r\n\t\tdecimals\t- Optional : positive number of decimals in percent complete (Int)\r\n\t\tlength\t - Optional : character length of bar (Int)\r\n\t\tfill\t\t- Optional : bar fill character (Str)\r\n\t\"\"\"", "# Print New Line on Complete\r" ]
[ { "param": "iteration", "type": null }, { "param": "total", "type": null }, { "param": "prefix", "type": null }, { "param": "suffix", "type": null }, { "param": "decimals", "type": null }, { "param": "length", "type": null }, { "param": "fill", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "iteration", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "total", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "prefix", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "suffix", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "decimals", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "length", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "fill", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [ { "identifier": "params", "docstring": "iteration - Required : current iteration (Int)\ntotal - Required : total iterations (Int)\nprefix - Optional : prefix string (Str)\nsuffix - Optional : suffix string (Str)\ndecimals - Optional : positive number of decimals in percent complete (Int)\nlength - Optional : character length of bar (Int)\nfill - Optional : bar fill character (Str)", "docstring_tokens": [ "iteration", "-", "Required", ":", "current", "iteration", "(", "Int", ")", "total", "-", "Required", ":", "total", "iterations", "(", "Int", ")", "prefix", "-", "Optional", ":", "prefix", "string", "(", "Str", ")", "suffix", "-", "Optional", ":", "suffix", "string", "(", "Str", ")", "decimals", "-", "Optional", ":", "positive", "number", "of", "decimals", "in", "percent", "complete", "(", "Int", ")", "length", "-", "Optional", ":", "character", "length", "of", "bar", "(", "Int", ")", "fill", "-", "Optional", ":", "bar", "fill", "character", "(", "Str", ")" ] } ] }
def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '#'): percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '.' * (length - filledLength) print('\r%s [%s] %s%% %s' % (prefix, bar, percent, suffix)) if iteration == total: print()
239
634
b5f806e50be08692d8b5d8948224a07379bd6c6c
BadIdeaFactory/truthgoggles-phrases
congressionalrecord/fileIterator.py
[ "Apache-2.0" ]
Python
findSpeaker
<not_specific>
def findSpeaker(contents): """ takes in the congressional record and returns the speaker of the next speech :param contents: String containing the congressional record :return: String that is the name of the speaker of the next speech in contents (including their prefix) if more speeches in contents, otherwise returns "zzzzzzzzzzzzzzzzzzz" """ speakerSearch = re.search('[M][r,s]{1,2}'r'. ''[A-Z]+[.]', contents) # finds the next occurunce of a speaker try: speaker = speakerSearch.group(0) # returns the name of the speaker of the next speech in contents except: speaker = "zzzzzzzzzzzzzzzzzzz" # returns "zzzzzzzzzzzzzzzzzzz" if no new speech can be found in contents return speaker
takes in the congressional record and returns the speaker of the next speech :param contents: String containing the congressional record :return: String that is the name of the speaker of the next speech in contents (including their prefix) if more speeches in contents, otherwise returns "zzzzzzzzzzzzzzzzzzz"
takes in the congressional record and returns the speaker of the next speech
[ "takes", "in", "the", "congressional", "record", "and", "returns", "the", "speaker", "of", "the", "next", "speech" ]
def findSpeaker(contents): speakerSearch = re.search('[M][r,s]{1,2}'r'. ''[A-Z]+[.]', contents) try: speaker = speakerSearch.group(0) except: speaker = "zzzzzzzzzzzzzzzzzzz" return speaker
[ "def", "findSpeaker", "(", "contents", ")", ":", "speakerSearch", "=", "re", ".", "search", "(", "'[M][r,s]{1,2}'", "r'. '", "'[A-Z]+[.]'", ",", "contents", ")", "try", ":", "speaker", "=", "speakerSearch", ".", "group", "(", "0", ")", "except", ":", "speaker", "=", "\"zzzzzzzzzzzzzzzzzzz\"", "return", "speaker" ]
takes in the congressional record and returns the speaker of the next speech
[ "takes", "in", "the", "congressional", "record", "and", "returns", "the", "speaker", "of", "the", "next", "speech" ]
[ "\"\"\"\n takes in the congressional record and returns the speaker of the next speech\n\n :param contents: String containing the congressional record\n :return: String that is the name of the speaker of the next speech in contents (including their prefix)\n if more speeches in contents, otherwise returns \"zzzzzzzzzzzzzzzzzzz\"\n \"\"\"", "# finds the next occurunce of a speaker", "# returns the name of the speaker of the next speech in contents", "# returns \"zzzzzzzzzzzzzzzzzzz\" if no new speech can be found in contents" ]
[ { "param": "contents", "type": null } ]
{ "returns": [ { "docstring": "String that is the name of the speaker of the next speech in contents (including their prefix)\nif more speeches in contents, otherwise returns \"zzzzzzzzzzzzzzzzzzz\"", "docstring_tokens": [ "String", "that", "is", "the", "name", "of", "the", "speaker", "of", "the", "next", "speech", "in", "contents", "(", "including", "their", "prefix", ")", "if", "more", "speeches", "in", "contents", "otherwise", "returns", "\"", "zzzzzzzzzzzzzzzzzzz", "\"" ], "type": null } ], "raises": [], "params": [ { "identifier": "contents", "type": null, "docstring": "String containing the congressional record", "docstring_tokens": [ "String", "containing", "the", "congressional", "record" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import re def findSpeaker(contents): speakerSearch = re.search('[M][r,s]{1,2}'r'. ''[A-Z]+[.]', contents) try: speaker = speakerSearch.group(0) except: speaker = "zzzzzzzzzzzzzzzzzzz" return speaker
240
322
71ff8f4e769ea2dcb7c49b3161566ee6e8b7be0c
AlexMGitHub/TheWholeEnchilada
tests/integration/conftest.py
[ "MIT" ]
Python
credentials
<not_specific>
def credentials(): """Return MySQL root credentials stored in Docker secrets files.""" with open(os.environ['MYSQL_ROOT_PASSWORD_FILE'], 'r') as secret_file: password = secret_file.read() return 'root', password
Return MySQL root credentials stored in Docker secrets files.
Return MySQL root credentials stored in Docker secrets files.
[ "Return", "MySQL", "root", "credentials", "stored", "in", "Docker", "secrets", "files", "." ]
def credentials(): with open(os.environ['MYSQL_ROOT_PASSWORD_FILE'], 'r') as secret_file: password = secret_file.read() return 'root', password
[ "def", "credentials", "(", ")", ":", "with", "open", "(", "os", ".", "environ", "[", "'MYSQL_ROOT_PASSWORD_FILE'", "]", ",", "'r'", ")", "as", "secret_file", ":", "password", "=", "secret_file", ".", "read", "(", ")", "return", "'root'", ",", "password" ]
Return MySQL root credentials stored in Docker secrets files.
[ "Return", "MySQL", "root", "credentials", "stored", "in", "Docker", "secrets", "files", "." ]
[ "\"\"\"Return MySQL root credentials stored in Docker secrets files.\"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
import os def credentials(): with open(os.environ['MYSQL_ROOT_PASSWORD_FILE'], 'r') as secret_file: password = secret_file.read() return 'root', password
241
710
1df323f2b86d8320c70cd2d3287fa3901d405f25
NREL/open-oa
operational_analysis/toolkits/unit_conversion.py
[ "BSD-3-Clause" ]
Python
compute_gross_energy
<not_specific>
def compute_gross_energy( net_energy, avail_losses, curt_losses, avail_type="frac", curt_type="frac" ): """ This function computes gross energy for a wind plant or turbine by adding reported availability and curtailment losses to reported net energy. Account is made of whether availabilty or curtailment loss data is reported in energy ('energy') or fractional units ('frac'). If in energy units, this function assumes that net energy, availability loss, and curtailment loss are all reported in the same units Args: net energy (numpy array of Pandas series): reported net energy for wind plant or turbine avail (numpy array of Pandas series): reported availability losses for wind plant or turbine curt (numpy array of Pandas series): reported curtailment losses for wind plant or turbine Returns: gross (numpy array of Pandas series): calculated gross energy for wind plant or turbine """ if (avail_type == "frac") & (curt_type == "frac"): gross = net_energy / (1 - avail_losses - curt_losses) elif (avail_type == "frac") & (curt_type == "energy"): gross = net_energy / (1 - avail_losses) + curt_losses elif (avail_type == "energy") & (curt_type == "frac"): gross = net_energy / (1 - curt_losses) + avail_losses elif (avail_type == "energy") & (curt_type == "energy"): gross = net_energy + curt_losses + avail_losses if len(gross[gross < net_energy]) > 0: raise Exception("Gross energy cannot be less than net energy. Check your input values") if (len(avail_losses[avail_losses < 0]) > 0) | (len(curt_losses[curt_losses < 0]) > 0): raise Exception( "Cannot have negative availability or curtailment input values. Check your data" ) return gross
This function computes gross energy for a wind plant or turbine by adding reported availability and curtailment losses to reported net energy. Account is made of whether availabilty or curtailment loss data is reported in energy ('energy') or fractional units ('frac'). If in energy units, this function assumes that net energy, availability loss, and curtailment loss are all reported in the same units Args: net energy (numpy array of Pandas series): reported net energy for wind plant or turbine avail (numpy array of Pandas series): reported availability losses for wind plant or turbine curt (numpy array of Pandas series): reported curtailment losses for wind plant or turbine Returns: gross (numpy array of Pandas series): calculated gross energy for wind plant or turbine
This function computes gross energy for a wind plant or turbine by adding reported availability and curtailment losses to reported net energy. Account is made of whether availabilty or curtailment loss data is reported in energy ('energy') or fractional units ('frac'). If in energy units, this function assumes that net energy, availability loss, and curtailment loss are all reported in the same units
[ "This", "function", "computes", "gross", "energy", "for", "a", "wind", "plant", "or", "turbine", "by", "adding", "reported", "availability", "and", "curtailment", "losses", "to", "reported", "net", "energy", ".", "Account", "is", "made", "of", "whether", "availabilty", "or", "curtailment", "loss", "data", "is", "reported", "in", "energy", "(", "'", "energy", "'", ")", "or", "fractional", "units", "(", "'", "frac", "'", ")", ".", "If", "in", "energy", "units", "this", "function", "assumes", "that", "net", "energy", "availability", "loss", "and", "curtailment", "loss", "are", "all", "reported", "in", "the", "same", "units" ]
def compute_gross_energy( net_energy, avail_losses, curt_losses, avail_type="frac", curt_type="frac" ): if (avail_type == "frac") & (curt_type == "frac"): gross = net_energy / (1 - avail_losses - curt_losses) elif (avail_type == "frac") & (curt_type == "energy"): gross = net_energy / (1 - avail_losses) + curt_losses elif (avail_type == "energy") & (curt_type == "frac"): gross = net_energy / (1 - curt_losses) + avail_losses elif (avail_type == "energy") & (curt_type == "energy"): gross = net_energy + curt_losses + avail_losses if len(gross[gross < net_energy]) > 0: raise Exception("Gross energy cannot be less than net energy. Check your input values") if (len(avail_losses[avail_losses < 0]) > 0) | (len(curt_losses[curt_losses < 0]) > 0): raise Exception( "Cannot have negative availability or curtailment input values. Check your data" ) return gross
[ "def", "compute_gross_energy", "(", "net_energy", ",", "avail_losses", ",", "curt_losses", ",", "avail_type", "=", "\"frac\"", ",", "curt_type", "=", "\"frac\"", ")", ":", "if", "(", "avail_type", "==", "\"frac\"", ")", "&", "(", "curt_type", "==", "\"frac\"", ")", ":", "gross", "=", "net_energy", "/", "(", "1", "-", "avail_losses", "-", "curt_losses", ")", "elif", "(", "avail_type", "==", "\"frac\"", ")", "&", "(", "curt_type", "==", "\"energy\"", ")", ":", "gross", "=", "net_energy", "/", "(", "1", "-", "avail_losses", ")", "+", "curt_losses", "elif", "(", "avail_type", "==", "\"energy\"", ")", "&", "(", "curt_type", "==", "\"frac\"", ")", ":", "gross", "=", "net_energy", "/", "(", "1", "-", "curt_losses", ")", "+", "avail_losses", "elif", "(", "avail_type", "==", "\"energy\"", ")", "&", "(", "curt_type", "==", "\"energy\"", ")", ":", "gross", "=", "net_energy", "+", "curt_losses", "+", "avail_losses", "if", "len", "(", "gross", "[", "gross", "<", "net_energy", "]", ")", ">", "0", ":", "raise", "Exception", "(", "\"Gross energy cannot be less than net energy. Check your input values\"", ")", "if", "(", "len", "(", "avail_losses", "[", "avail_losses", "<", "0", "]", ")", ">", "0", ")", "|", "(", "len", "(", "curt_losses", "[", "curt_losses", "<", "0", "]", ")", ">", "0", ")", ":", "raise", "Exception", "(", "\"Cannot have negative availability or curtailment input values. Check your data\"", ")", "return", "gross" ]
This function computes gross energy for a wind plant or turbine by adding reported availability and curtailment losses to reported net energy.
[ "This", "function", "computes", "gross", "energy", "for", "a", "wind", "plant", "or", "turbine", "by", "adding", "reported", "availability", "and", "curtailment", "losses", "to", "reported", "net", "energy", "." ]
[ "\"\"\"\n This function computes gross energy for a wind plant or turbine by adding reported availability and\n curtailment losses to reported net energy. Account is made of whether availabilty or curtailment loss data\n is reported in energy ('energy') or fractional units ('frac'). If in energy units, this function assumes that net\n energy, availability loss, and curtailment loss are all reported in the same units\n\n Args:\n net energy (numpy array of Pandas series): reported net energy for wind plant or turbine\n avail (numpy array of Pandas series): reported availability losses for wind plant or turbine\n curt (numpy array of Pandas series): reported curtailment losses for wind plant or turbine\n\n Returns:\n gross (numpy array of Pandas series): calculated gross energy for wind plant or turbine\n \"\"\"" ]
[ { "param": "net_energy", "type": null }, { "param": "avail_losses", "type": null }, { "param": "curt_losses", "type": null }, { "param": "avail_type", "type": null }, { "param": "curt_type", "type": null } ]
{ "returns": [ { "docstring": "gross (numpy array of Pandas series): calculated gross energy for wind plant or turbine", "docstring_tokens": [ "gross", "(", "numpy", "array", "of", "Pandas", "series", ")", ":", "calculated", "gross", "energy", "for", "wind", "plant", "or", "turbine" ], "type": null } ], "raises": [], "params": [ { "identifier": "net_energy", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "avail_losses", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "curt_losses", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "avail_type", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "curt_type", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [ { "identifier": "net energy", "type": null, "docstring": "reported net energy for wind plant or turbine", "docstring_tokens": [ "reported", "net", "energy", "for", "wind", "plant", "or", "turbine" ], "default": null, "is_optional": false }, { "identifier": "avail", "type": null, "docstring": "reported availability losses for wind plant or turbine", "docstring_tokens": [ "reported", "availability", "losses", "for", "wind", "plant", "or", "turbine" ], "default": null, "is_optional": false }, { "identifier": "curt", "type": null, "docstring": "reported curtailment losses for wind plant or turbine", "docstring_tokens": [ "reported", "curtailment", "losses", "for", "wind", "plant", "or", "turbine" ], "default": null, "is_optional": false } ], "others": [] }
def compute_gross_energy( net_energy, avail_losses, curt_losses, avail_type="frac", curt_type="frac" ): if (avail_type == "frac") & (curt_type == "frac"): gross = net_energy / (1 - avail_losses - curt_losses) elif (avail_type == "frac") & (curt_type == "energy"): gross = net_energy / (1 - avail_losses) + curt_losses elif (avail_type == "energy") & (curt_type == "frac"): gross = net_energy / (1 - curt_losses) + avail_losses elif (avail_type == "energy") & (curt_type == "energy"): gross = net_energy + curt_losses + avail_losses if len(gross[gross < net_energy]) > 0: raise Exception("Gross energy cannot be less than net energy. Check your input values") if (len(avail_losses[avail_losses < 0]) > 0) | (len(curt_losses[curt_losses < 0]) > 0): raise Exception( "Cannot have negative availability or curtailment input values. Check your data" ) return gross
242
318
61b687ec33e1f7dbda061990fcdc72e05604f148
open-data/ckanext-recombinant
ckanext/recombinant/logic.py
[ "MIT" ]
Python
_datastore_match
<not_specific>
def _datastore_match(fs, fields): """ return True if existing datastore column fields include fields defined in fs. """ # XXX: does not check types or extra columns at this time existing = set(c['id'] for c in fields) return all(f['datastore_id'] in existing for f in fs)
return True if existing datastore column fields include fields defined in fs.
return True if existing datastore column fields include fields defined in fs.
[ "return", "True", "if", "existing", "datastore", "column", "fields", "include", "fields", "defined", "in", "fs", "." ]
def _datastore_match(fs, fields): existing = set(c['id'] for c in fields) return all(f['datastore_id'] in existing for f in fs)
[ "def", "_datastore_match", "(", "fs", ",", "fields", ")", ":", "existing", "=", "set", "(", "c", "[", "'id'", "]", "for", "c", "in", "fields", ")", "return", "all", "(", "f", "[", "'datastore_id'", "]", "in", "existing", "for", "f", "in", "fs", ")" ]
return True if existing datastore column fields include fields defined in fs.
[ "return", "True", "if", "existing", "datastore", "column", "fields", "include", "fields", "defined", "in", "fs", "." ]
[ "\"\"\"\n return True if existing datastore column fields include fields\n defined in fs.\n \"\"\"", "# XXX: does not check types or extra columns at this time" ]
[ { "param": "fs", "type": null }, { "param": "fields", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "fs", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "fields", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _datastore_match(fs, fields): existing = set(c['id'] for c in fields) return all(f['datastore_id'] in existing for f in fs)
243
966
03f89cbf0a367d3bf5477d8e0667a23640053e15
fareliner/jasypt4py
jasypt4py/encryptor.py
[ "Apache-2.0" ]
Python
pad
<not_specific>
def pad(block_size, s): """ Pad a string to the provided block size when using fixed block ciphers. :param block_size: int - the cipher block size :param s: str - the string to pad :return: a padded string that can be fed to the cipher """ return s + (block_size - len(s) % block_size) * chr(block_size - len(s) % block_size)
Pad a string to the provided block size when using fixed block ciphers. :param block_size: int - the cipher block size :param s: str - the string to pad :return: a padded string that can be fed to the cipher
Pad a string to the provided block size when using fixed block ciphers.
[ "Pad", "a", "string", "to", "the", "provided", "block", "size", "when", "using", "fixed", "block", "ciphers", "." ]
def pad(block_size, s): return s + (block_size - len(s) % block_size) * chr(block_size - len(s) % block_size)
[ "def", "pad", "(", "block_size", ",", "s", ")", ":", "return", "s", "+", "(", "block_size", "-", "len", "(", "s", ")", "%", "block_size", ")", "*", "chr", "(", "block_size", "-", "len", "(", "s", ")", "%", "block_size", ")" ]
Pad a string to the provided block size when using fixed block ciphers.
[ "Pad", "a", "string", "to", "the", "provided", "block", "size", "when", "using", "fixed", "block", "ciphers", "." ]
[ "\"\"\"\n Pad a string to the provided block size when using fixed block ciphers.\n\n :param block_size: int - the cipher block size\n :param s: str - the string to pad\n :return: a padded string that can be fed to the cipher\n \"\"\"" ]
[ { "param": "block_size", "type": null }, { "param": "s", "type": null } ]
{ "returns": [ { "docstring": "a padded string that can be fed to the cipher", "docstring_tokens": [ "a", "padded", "string", "that", "can", "be", "fed", "to", "the", "cipher" ], "type": null } ], "raises": [], "params": [ { "identifier": "block_size", "type": null, "docstring": "the cipher block size", "docstring_tokens": [ "the", "cipher", "block", "size" ], "default": null, "is_optional": null }, { "identifier": "s", "type": null, "docstring": "the string to pad", "docstring_tokens": [ "the", "string", "to", "pad" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def pad(block_size, s): return s + (block_size - len(s) % block_size) * chr(block_size - len(s) % block_size)
244
848
1019f1ee3c9ea9e5b733acbcb037707a57212894
dzitkowskik/TwitterSentimentAnalysis
TwitterSentimentAnalysis/downloaders.py
[ "MIT", "Unlicense" ]
Python
undersample
<not_specific>
def undersample(sentiment, manual_grade, threshold=0.4): """ This function defines if a tweet with certain sentiment and manual_grade should be saved or not. It is used for undersampling data with a sentiment close to 0.0 :param sentiment: calculated word sentiment :param manual_grade: manually set sentiment (if exists) :param threshold: all values between -+threshold are considered as redundant :return: true if record is redundant and false if it should be saved """ if abs(sentiment) < threshold and manual_grade is None: return True else: return False
This function defines if a tweet with certain sentiment and manual_grade should be saved or not. It is used for undersampling data with a sentiment close to 0.0 :param sentiment: calculated word sentiment :param manual_grade: manually set sentiment (if exists) :param threshold: all values between -+threshold are considered as redundant :return: true if record is redundant and false if it should be saved
This function defines if a tweet with certain sentiment and manual_grade should be saved or not. It is used for undersampling data with a sentiment close to 0.0
[ "This", "function", "defines", "if", "a", "tweet", "with", "certain", "sentiment", "and", "manual_grade", "should", "be", "saved", "or", "not", ".", "It", "is", "used", "for", "undersampling", "data", "with", "a", "sentiment", "close", "to", "0", ".", "0" ]
def undersample(sentiment, manual_grade, threshold=0.4): if abs(sentiment) < threshold and manual_grade is None: return True else: return False
[ "def", "undersample", "(", "sentiment", ",", "manual_grade", ",", "threshold", "=", "0.4", ")", ":", "if", "abs", "(", "sentiment", ")", "<", "threshold", "and", "manual_grade", "is", "None", ":", "return", "True", "else", ":", "return", "False" ]
This function defines if a tweet with certain sentiment and manual_grade should be saved or not.
[ "This", "function", "defines", "if", "a", "tweet", "with", "certain", "sentiment", "and", "manual_grade", "should", "be", "saved", "or", "not", "." ]
[ "\"\"\"\n This function defines if a tweet with certain sentiment and manual_grade should be saved or not.\n It is used for undersampling data with a sentiment close to 0.0\n :param sentiment: calculated word sentiment\n :param manual_grade: manually set sentiment (if exists)\n :param threshold: all values between -+threshold are considered as redundant\n :return: true if record is redundant and false if it should be saved\n \"\"\"" ]
[ { "param": "sentiment", "type": null }, { "param": "manual_grade", "type": null }, { "param": "threshold", "type": null } ]
{ "returns": [ { "docstring": "true if record is redundant and false if it should be saved", "docstring_tokens": [ "true", "if", "record", "is", "redundant", "and", "false", "if", "it", "should", "be", "saved" ], "type": null } ], "raises": [], "params": [ { "identifier": "sentiment", "type": null, "docstring": "calculated word sentiment", "docstring_tokens": [ "calculated", "word", "sentiment" ], "default": null, "is_optional": null }, { "identifier": "manual_grade", "type": null, "docstring": "manually set sentiment (if exists)", "docstring_tokens": [ "manually", "set", "sentiment", "(", "if", "exists", ")" ], "default": null, "is_optional": null }, { "identifier": "threshold", "type": null, "docstring": "all values between -+threshold are considered as redundant", "docstring_tokens": [ "all", "values", "between", "-", "+", "threshold", "are", "considered", "as", "redundant" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def undersample(sentiment, manual_grade, threshold=0.4): if abs(sentiment) < threshold and manual_grade is None: return True else: return False
245
455
c4c9f7c50cd34aaff7f2f0e1b3bbb2fb1ebc75ba
leggerf/CMSSpark
src/python/CMSSpark/data_aggregation.py
[ "MIT" ]
Python
quiet_logs
null
def quiet_logs(sc): """ Sets logger's level to ERROR so INFO logs would not show up. """ print('Will set log level to ERROR') logger = sc._jvm.org.apache.log4j logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR) print('Did set log level to ERROR')
Sets logger's level to ERROR so INFO logs would not show up.
Sets logger's level to ERROR so INFO logs would not show up.
[ "Sets", "logger", "'", "s", "level", "to", "ERROR", "so", "INFO", "logs", "would", "not", "show", "up", "." ]
def quiet_logs(sc): print('Will set log level to ERROR') logger = sc._jvm.org.apache.log4j logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR) print('Did set log level to ERROR')
[ "def", "quiet_logs", "(", "sc", ")", ":", "print", "(", "'Will set log level to ERROR'", ")", "logger", "=", "sc", ".", "_jvm", ".", "org", ".", "apache", ".", "log4j", "logger", ".", "LogManager", ".", "getRootLogger", "(", ")", ".", "setLevel", "(", "logger", ".", "Level", ".", "ERROR", ")", "print", "(", "'Did set log level to ERROR'", ")" ]
Sets logger's level to ERROR so INFO logs would not show up.
[ "Sets", "logger", "'", "s", "level", "to", "ERROR", "so", "INFO", "logs", "would", "not", "show", "up", "." ]
[ "\"\"\"\n Sets logger's level to ERROR so INFO logs would not show up.\n \"\"\"" ]
[ { "param": "sc", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "sc", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def quiet_logs(sc): print('Will set log level to ERROR') logger = sc._jvm.org.apache.log4j logger.LogManager.getRootLogger().setLevel(logger.Level.ERROR) print('Did set log level to ERROR')
246
335
3cfbb1723a01664144b0920dac6e0e6324f0da46
RonnyPfannschmidt/khal
khal/icalendar.py
[ "MIT" ]
Python
invalid_timezone
<not_specific>
def invalid_timezone(prop): """check if an icalendar property has a timezone attached we don't understand""" if hasattr(prop.dt, 'tzinfo') and prop.dt.tzinfo is None and 'TZID' in prop.params: return True else: return False
check if an icalendar property has a timezone attached we don't understand
check if an icalendar property has a timezone attached we don't understand
[ "check", "if", "an", "icalendar", "property", "has", "a", "timezone", "attached", "we", "don", "'", "t", "understand" ]
def invalid_timezone(prop): if hasattr(prop.dt, 'tzinfo') and prop.dt.tzinfo is None and 'TZID' in prop.params: return True else: return False
[ "def", "invalid_timezone", "(", "prop", ")", ":", "if", "hasattr", "(", "prop", ".", "dt", ",", "'tzinfo'", ")", "and", "prop", ".", "dt", ".", "tzinfo", "is", "None", "and", "'TZID'", "in", "prop", ".", "params", ":", "return", "True", "else", ":", "return", "False" ]
check if an icalendar property has a timezone attached we don't understand
[ "check", "if", "an", "icalendar", "property", "has", "a", "timezone", "attached", "we", "don", "'", "t", "understand" ]
[ "\"\"\"check if an icalendar property has a timezone attached we don't understand\"\"\"" ]
[ { "param": "prop", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "prop", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def invalid_timezone(prop): if hasattr(prop.dt, 'tzinfo') and prop.dt.tzinfo is None and 'TZID' in prop.params: return True else: return False
247
702
8539e65608c4313ba209669bf572ce9ab261e429
stdgy/foosball_backend
api.py
[ "MIT" ]
Python
can_team_score
<not_specific>
def can_team_score(team): """Check whether a team is allowed to score again""" # Check that team doesn't already have 10 points teams = team.game.teams curr_score = len(filter(lambda x: x.own_goal is False, team.scores)) if len(teams) == 2: other_team = None if teams[0].id == team.id: other_team = teams[1] else: other_team = teams[0] curr_score += len(filter(lambda x: x.own_goal is True, other_team.scores)) if curr_score >= 10: return False return True
Check whether a team is allowed to score again
Check whether a team is allowed to score again
[ "Check", "whether", "a", "team", "is", "allowed", "to", "score", "again" ]
def can_team_score(team): teams = team.game.teams curr_score = len(filter(lambda x: x.own_goal is False, team.scores)) if len(teams) == 2: other_team = None if teams[0].id == team.id: other_team = teams[1] else: other_team = teams[0] curr_score += len(filter(lambda x: x.own_goal is True, other_team.scores)) if curr_score >= 10: return False return True
[ "def", "can_team_score", "(", "team", ")", ":", "teams", "=", "team", ".", "game", ".", "teams", "curr_score", "=", "len", "(", "filter", "(", "lambda", "x", ":", "x", ".", "own_goal", "is", "False", ",", "team", ".", "scores", ")", ")", "if", "len", "(", "teams", ")", "==", "2", ":", "other_team", "=", "None", "if", "teams", "[", "0", "]", ".", "id", "==", "team", ".", "id", ":", "other_team", "=", "teams", "[", "1", "]", "else", ":", "other_team", "=", "teams", "[", "0", "]", "curr_score", "+=", "len", "(", "filter", "(", "lambda", "x", ":", "x", ".", "own_goal", "is", "True", ",", "other_team", ".", "scores", ")", ")", "if", "curr_score", ">=", "10", ":", "return", "False", "return", "True" ]
Check whether a team is allowed to score again
[ "Check", "whether", "a", "team", "is", "allowed", "to", "score", "again" ]
[ "\"\"\"Check whether a team is allowed to score again\"\"\"", "# Check that team doesn't already have 10 points" ]
[ { "param": "team", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "team", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def can_team_score(team): teams = team.game.teams curr_score = len(filter(lambda x: x.own_goal is False, team.scores)) if len(teams) == 2: other_team = None if teams[0].id == team.id: other_team = teams[1] else: other_team = teams[0] curr_score += len(filter(lambda x: x.own_goal is True, other_team.scores)) if curr_score >= 10: return False return True
248
601
a50b6f436ea37d382001e0855c57f7faaaf47241
darshitsharma/jax
jax/experimental/maps.py
[ "Apache-2.0" ]
Python
_unzip_axis_resources
<not_specific>
def _unzip_axis_resources(axis_resources: Dict[AxisName, Tuple[ResourceAxisName, ...]], resource_env: ResourceEnv): """Splits axis_resources into separate dicts for physical and loop resources.""" physical_axis_resources = {} loop_axis_resources = {} loop_resource_axes = resource_env.loop_resource_axes for axis, raxes in axis_resources.items(): first_loop = 0 for raxis in raxes: if raxis in loop_resource_axes: break else: first_loop += 1 physical_axis_resources[axis] = raxes[:first_loop] loop_resources = loop_axis_resources[axis] = raxes[first_loop:] if not all(name in loop_resource_axes for name in loop_resources): raise NotImplementedError("Loop resources cannot appear before mesh axes " "in the resource_axis argument") return physical_axis_resources, loop_axis_resources
Splits axis_resources into separate dicts for physical and loop resources.
Splits axis_resources into separate dicts for physical and loop resources.
[ "Splits", "axis_resources", "into", "separate", "dicts", "for", "physical", "and", "loop", "resources", "." ]
def _unzip_axis_resources(axis_resources: Dict[AxisName, Tuple[ResourceAxisName, ...]], resource_env: ResourceEnv): physical_axis_resources = {} loop_axis_resources = {} loop_resource_axes = resource_env.loop_resource_axes for axis, raxes in axis_resources.items(): first_loop = 0 for raxis in raxes: if raxis in loop_resource_axes: break else: first_loop += 1 physical_axis_resources[axis] = raxes[:first_loop] loop_resources = loop_axis_resources[axis] = raxes[first_loop:] if not all(name in loop_resource_axes for name in loop_resources): raise NotImplementedError("Loop resources cannot appear before mesh axes " "in the resource_axis argument") return physical_axis_resources, loop_axis_resources
[ "def", "_unzip_axis_resources", "(", "axis_resources", ":", "Dict", "[", "AxisName", ",", "Tuple", "[", "ResourceAxisName", ",", "...", "]", "]", ",", "resource_env", ":", "ResourceEnv", ")", ":", "physical_axis_resources", "=", "{", "}", "loop_axis_resources", "=", "{", "}", "loop_resource_axes", "=", "resource_env", ".", "loop_resource_axes", "for", "axis", ",", "raxes", "in", "axis_resources", ".", "items", "(", ")", ":", "first_loop", "=", "0", "for", "raxis", "in", "raxes", ":", "if", "raxis", "in", "loop_resource_axes", ":", "break", "else", ":", "first_loop", "+=", "1", "physical_axis_resources", "[", "axis", "]", "=", "raxes", "[", ":", "first_loop", "]", "loop_resources", "=", "loop_axis_resources", "[", "axis", "]", "=", "raxes", "[", "first_loop", ":", "]", "if", "not", "all", "(", "name", "in", "loop_resource_axes", "for", "name", "in", "loop_resources", ")", ":", "raise", "NotImplementedError", "(", "\"Loop resources cannot appear before mesh axes \"", "\"in the resource_axis argument\"", ")", "return", "physical_axis_resources", ",", "loop_axis_resources" ]
Splits axis_resources into separate dicts for physical and loop resources.
[ "Splits", "axis_resources", "into", "separate", "dicts", "for", "physical", "and", "loop", "resources", "." ]
[ "\"\"\"Splits axis_resources into separate dicts for physical and loop resources.\"\"\"" ]
[ { "param": "axis_resources", "type": "Dict[AxisName, Tuple[ResourceAxisName, ...]]" }, { "param": "resource_env", "type": "ResourceEnv" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "axis_resources", "type": "Dict[AxisName, Tuple[ResourceAxisName, ...]]", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "resource_env", "type": "ResourceEnv", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _unzip_axis_resources(axis_resources: Dict[AxisName, Tuple[ResourceAxisName, ...]], resource_env: ResourceEnv): physical_axis_resources = {} loop_axis_resources = {} loop_resource_axes = resource_env.loop_resource_axes for axis, raxes in axis_resources.items(): first_loop = 0 for raxis in raxes: if raxis in loop_resource_axes: break else: first_loop += 1 physical_axis_resources[axis] = raxes[:first_loop] loop_resources = loop_axis_resources[axis] = raxes[first_loop:] if not all(name in loop_resource_axes for name in loop_resources): raise NotImplementedError("Loop resources cannot appear before mesh axes " "in the resource_axis argument") return physical_axis_resources, loop_axis_resources
250
753
9013314cd57369990bc9388ec0930da688c80b83
brandyn-gilbert/DAT-281-CAPSTONE
Old Code/Base.py
[ "MIT" ]
Python
_set_dir
null
def _set_dir(): """ Sets the working directory to the github folder. Also checks to see if you are in a common working dr before prompting to change. Returns ------- None. """ os.chdir(os.path.dirname(sys.argv[0]))
Sets the working directory to the github folder. Also checks to see if you are in a common working dr before prompting to change. Returns ------- None.
Sets the working directory to the github folder. Also checks to see if you are in a common working dr before prompting to change. Returns None.
[ "Sets", "the", "working", "directory", "to", "the", "github", "folder", ".", "Also", "checks", "to", "see", "if", "you", "are", "in", "a", "common", "working", "dr", "before", "prompting", "to", "change", ".", "Returns", "None", "." ]
def _set_dir(): os.chdir(os.path.dirname(sys.argv[0]))
[ "def", "_set_dir", "(", ")", ":", "os", ".", "chdir", "(", "os", ".", "path", ".", "dirname", "(", "sys", ".", "argv", "[", "0", "]", ")", ")" ]
Sets the working directory to the github folder.
[ "Sets", "the", "working", "directory", "to", "the", "github", "folder", "." ]
[ "\"\"\"\n Sets the working directory to the github folder.\n Also checks to see if you are in a common working dr before prompting to \n change.\n Returns\n -------\n None.\n\n \"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
import sys import os def _set_dir(): os.chdir(os.path.dirname(sys.argv[0]))
251
941
3da2b5ae93be0a0d557e50b9c7c6ad6977615736
kube-HPC/python-wrapper.hkube
hkube_python_wrapper/util/percentile.py
[ "MIT" ]
Python
percentile
<not_specific>
def percentile(N, percent, key=lambda x: x): """ Find the percentile of a list of values. @parameter N - is a list of values. Note N MUST BE already sorted. @parameter percent - a float value from 0 to 100 @parameter key - optional key function to compute value from each element of N. @return - the percentile of the values """ if not N: return None percent = percent/100.0 k = (len(N)-1) * percent f = math.floor(k) c = math.ceil(k) if f == c: return key(N[int(k)]) d0 = key(N[int(f)]) * (c-k) d1 = key(N[int(c)]) * (k-f) return d0+d1
Find the percentile of a list of values. @parameter N - is a list of values. Note N MUST BE already sorted. @parameter percent - a float value from 0 to 100 @parameter key - optional key function to compute value from each element of N. @return - the percentile of the values
Find the percentile of a list of values. @parameter N - is a list of values. Note N MUST BE already sorted. @parameter percent - a float value from 0 to 100 @parameter key - optional key function to compute value from each element of N. @return - the percentile of the values
[ "Find", "the", "percentile", "of", "a", "list", "of", "values", ".", "@parameter", "N", "-", "is", "a", "list", "of", "values", ".", "Note", "N", "MUST", "BE", "already", "sorted", ".", "@parameter", "percent", "-", "a", "float", "value", "from", "0", "to", "100", "@parameter", "key", "-", "optional", "key", "function", "to", "compute", "value", "from", "each", "element", "of", "N", ".", "@return", "-", "the", "percentile", "of", "the", "values" ]
def percentile(N, percent, key=lambda x: x): if not N: return None percent = percent/100.0 k = (len(N)-1) * percent f = math.floor(k) c = math.ceil(k) if f == c: return key(N[int(k)]) d0 = key(N[int(f)]) * (c-k) d1 = key(N[int(c)]) * (k-f) return d0+d1
[ "def", "percentile", "(", "N", ",", "percent", ",", "key", "=", "lambda", "x", ":", "x", ")", ":", "if", "not", "N", ":", "return", "None", "percent", "=", "percent", "/", "100.0", "k", "=", "(", "len", "(", "N", ")", "-", "1", ")", "*", "percent", "f", "=", "math", ".", "floor", "(", "k", ")", "c", "=", "math", ".", "ceil", "(", "k", ")", "if", "f", "==", "c", ":", "return", "key", "(", "N", "[", "int", "(", "k", ")", "]", ")", "d0", "=", "key", "(", "N", "[", "int", "(", "f", ")", "]", ")", "*", "(", "c", "-", "k", ")", "d1", "=", "key", "(", "N", "[", "int", "(", "c", ")", "]", ")", "*", "(", "k", "-", "f", ")", "return", "d0", "+", "d1" ]
Find the percentile of a list of values.
[ "Find", "the", "percentile", "of", "a", "list", "of", "values", "." ]
[ "\"\"\"\n Find the percentile of a list of values.\n\n @parameter N - is a list of values. Note N MUST BE already sorted.\n @parameter percent - a float value from 0 to 100\n @parameter key - optional key function to compute value from each element of N.\n\n @return - the percentile of the values\n \"\"\"" ]
[ { "param": "N", "type": null }, { "param": "percent", "type": null }, { "param": "key", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "N", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "percent", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "key", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import math def percentile(N, percent, key=lambda x: x): if not N: return None percent = percent/100.0 k = (len(N)-1) * percent f = math.floor(k) c = math.ceil(k) if f == c: return key(N[int(k)]) d0 = key(N[int(f)]) * (c-k) d1 = key(N[int(c)]) * (k-f) return d0+d1
252
185
6c2fe0b8e67553bb0453721d8063985b771b9d3f
shahzeb-jadoon/Portfolio
quickhull.py
[ "MIT" ]
Python
convex_elim
<not_specific>
def convex_elim(ordered_points): """ Helping function for convex_hull() which eliminates repeating points pre: ordered_points is a list of points sorted in nondecreasing order. ordered_points comprises of tuples of the form (x, y) where x represents the x-axis location and y represents the y-axis location of the point on the cartesian plane post: retruns a list with distinct points of ordered_points """ new_lst = [] for i in range(len(ordered_points) - 1): if ordered_points[i] != ordered_points[i + 1]: new_lst.append(ordered_points[i]) new_lst.append(ordered_points[-1]) return new_lst
Helping function for convex_hull() which eliminates repeating points pre: ordered_points is a list of points sorted in nondecreasing order. ordered_points comprises of tuples of the form (x, y) where x represents the x-axis location and y represents the y-axis location of the point on the cartesian plane post: retruns a list with distinct points of ordered_points
Helping function for convex_hull() which eliminates repeating points pre: ordered_points is a list of points sorted in nondecreasing order. ordered_points comprises of tuples of the form (x, y) where x represents the x-axis location and y represents the y-axis location of the point on the cartesian plane post: retruns a list with distinct points of ordered_points
[ "Helping", "function", "for", "convex_hull", "()", "which", "eliminates", "repeating", "points", "pre", ":", "ordered_points", "is", "a", "list", "of", "points", "sorted", "in", "nondecreasing", "order", ".", "ordered_points", "comprises", "of", "tuples", "of", "the", "form", "(", "x", "y", ")", "where", "x", "represents", "the", "x", "-", "axis", "location", "and", "y", "represents", "the", "y", "-", "axis", "location", "of", "the", "point", "on", "the", "cartesian", "plane", "post", ":", "retruns", "a", "list", "with", "distinct", "points", "of", "ordered_points" ]
def convex_elim(ordered_points): new_lst = [] for i in range(len(ordered_points) - 1): if ordered_points[i] != ordered_points[i + 1]: new_lst.append(ordered_points[i]) new_lst.append(ordered_points[-1]) return new_lst
[ "def", "convex_elim", "(", "ordered_points", ")", ":", "new_lst", "=", "[", "]", "for", "i", "in", "range", "(", "len", "(", "ordered_points", ")", "-", "1", ")", ":", "if", "ordered_points", "[", "i", "]", "!=", "ordered_points", "[", "i", "+", "1", "]", ":", "new_lst", ".", "append", "(", "ordered_points", "[", "i", "]", ")", "new_lst", ".", "append", "(", "ordered_points", "[", "-", "1", "]", ")", "return", "new_lst" ]
Helping function for convex_hull() which eliminates repeating points pre: ordered_points is a list of points sorted in nondecreasing order.
[ "Helping", "function", "for", "convex_hull", "()", "which", "eliminates", "repeating", "points", "pre", ":", "ordered_points", "is", "a", "list", "of", "points", "sorted", "in", "nondecreasing", "order", "." ]
[ "\"\"\" Helping function for convex_hull() which eliminates repeating points\n\n pre: ordered_points is a list of points sorted in nondecreasing order.\n ordered_points comprises of tuples of the form (x, y) where x represents\n the x-axis location and y represents the y-axis location of the point\n on the cartesian plane\n post: retruns a list with distinct points of ordered_points\n \"\"\"" ]
[ { "param": "ordered_points", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "ordered_points", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def convex_elim(ordered_points): new_lst = [] for i in range(len(ordered_points) - 1): if ordered_points[i] != ordered_points[i + 1]: new_lst.append(ordered_points[i]) new_lst.append(ordered_points[-1]) return new_lst
253
12
5051442090703a7b6d71c2d56d2e6136cd20c437
sgalpha01/biopython
Bio/SeqUtils/CheckSum.py
[ "BSD-3-Clause" ]
Python
crc32
<not_specific>
def crc32(seq): """Return the crc32 checksum for a sequence (string or Seq object). Note that the case is important: >>> crc32("ACGTACGTACGT") 20049947 >>> crc32("acgtACGTacgt") 1688586483 """ try: # Assume it's a Seq object s = bytes(seq) except TypeError: # Assume it's a string s = seq.encode() return binascii.crc32(s)
Return the crc32 checksum for a sequence (string or Seq object). Note that the case is important: >>> crc32("ACGTACGTACGT") 20049947 >>> crc32("acgtACGTacgt") 1688586483
Return the crc32 checksum for a sequence (string or Seq object). Note that the case is important.
[ "Return", "the", "crc32", "checksum", "for", "a", "sequence", "(", "string", "or", "Seq", "object", ")", ".", "Note", "that", "the", "case", "is", "important", "." ]
def crc32(seq): try: s = bytes(seq) except TypeError: s = seq.encode() return binascii.crc32(s)
[ "def", "crc32", "(", "seq", ")", ":", "try", ":", "s", "=", "bytes", "(", "seq", ")", "except", "TypeError", ":", "s", "=", "seq", ".", "encode", "(", ")", "return", "binascii", ".", "crc32", "(", "s", ")" ]
Return the crc32 checksum for a sequence (string or Seq object).
[ "Return", "the", "crc32", "checksum", "for", "a", "sequence", "(", "string", "or", "Seq", "object", ")", "." ]
[ "\"\"\"Return the crc32 checksum for a sequence (string or Seq object).\n\n Note that the case is important:\n\n >>> crc32(\"ACGTACGTACGT\")\n 20049947\n >>> crc32(\"acgtACGTacgt\")\n 1688586483\n\n \"\"\"", "# Assume it's a Seq object", "# Assume it's a string" ]
[ { "param": "seq", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "seq", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import binascii def crc32(seq): try: s = bytes(seq) except TypeError: s = seq.encode() return binascii.crc32(s)
254
817
a19024d9cb1c4cf7d490591534f95472aebc1796
kelmore5/python-string-utilities
kelmore_strings/strings.py
[ "MIT" ]
Python
string_ends_with_array
bool
def string_ends_with_array(check: str, ends_with_checks: Iterable[str]) -> bool: """ Checks if a given strings ends with any of the strings contained within an array Usage:: >>> x = 'some string' >>> y: Iterable[str] = ['?', '.', 'end', 'ng'] >>> >>> StringTools.check.string_ends_with_array(x, y) True :param check: Any string :param ends_with_checks: An array of strings to check for in the passed string :return: True if the string ends with any of the strings in ends_with_checks else False :type check: str :type ends_with_checks: Iterable[str] :rtype: bool """ for string in ends_with_checks: if check.lower().strip().endswith(string.lower()): return True return False
Checks if a given strings ends with any of the strings contained within an array Usage:: >>> x = 'some string' >>> y: Iterable[str] = ['?', '.', 'end', 'ng'] >>> >>> StringTools.check.string_ends_with_array(x, y) True :param check: Any string :param ends_with_checks: An array of strings to check for in the passed string :return: True if the string ends with any of the strings in ends_with_checks else False :type check: str :type ends_with_checks: Iterable[str] :rtype: bool
Checks if a given strings ends with any of the strings contained within an array Usage:.
[ "Checks", "if", "a", "given", "strings", "ends", "with", "any", "of", "the", "strings", "contained", "within", "an", "array", "Usage", ":", "." ]
def string_ends_with_array(check: str, ends_with_checks: Iterable[str]) -> bool: for string in ends_with_checks: if check.lower().strip().endswith(string.lower()): return True return False
[ "def", "string_ends_with_array", "(", "check", ":", "str", ",", "ends_with_checks", ":", "Iterable", "[", "str", "]", ")", "->", "bool", ":", "for", "string", "in", "ends_with_checks", ":", "if", "check", ".", "lower", "(", ")", ".", "strip", "(", ")", ".", "endswith", "(", "string", ".", "lower", "(", ")", ")", ":", "return", "True", "return", "False" ]
Checks if a given strings ends with any of the strings contained within an array Usage::
[ "Checks", "if", "a", "given", "strings", "ends", "with", "any", "of", "the", "strings", "contained", "within", "an", "array", "Usage", "::" ]
[ "\"\"\" Checks if a given strings ends with any of the strings contained within an array\n\n Usage::\n\n >>> x = 'some string'\n >>> y: Iterable[str] = ['?', '.', 'end', 'ng']\n >>>\n >>> StringTools.check.string_ends_with_array(x, y)\n True\n\n :param check: Any string\n :param ends_with_checks: An array of strings to check for in the passed string\n :return: True if the string ends with any of the strings in ends_with_checks else False\n\n :type check: str\n :type ends_with_checks: Iterable[str]\n :rtype: bool\n \"\"\"" ]
[ { "param": "check", "type": "str" }, { "param": "ends_with_checks", "type": "Iterable[str]" } ]
{ "returns": [ { "docstring": "True if the string ends with any of the strings in ends_with_checks else False", "docstring_tokens": [ "True", "if", "the", "string", "ends", "with", "any", "of", "the", "strings", "in", "ends_with_checks", "else", "False" ], "type": "bool" } ], "raises": [], "params": [ { "identifier": "check", "type": "str", "docstring": null, "docstring_tokens": [ "None" ], "default": null, "is_optional": null }, { "identifier": "ends_with_checks", "type": "Iterable[str]", "docstring": "An array of strings to check for in the passed string", "docstring_tokens": [ "An", "array", "of", "strings", "to", "check", "for", "in", "the", "passed", "string" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def string_ends_with_array(check: str, ends_with_checks: Iterable[str]) -> bool: for string in ends_with_checks: if check.lower().strip().endswith(string.lower()): return True return False
256
637
386dc94fce2cc45140d1f31dbfc7366f6afa81e0
z8674558/dash
contrib/seeds/makeseeds.py
[ "MIT" ]
Python
filtermultipayoutaddress
<not_specific>
def filtermultipayoutaddress(mns): '''Filter out MNs sharing the same payout address''' hist = collections.defaultdict(list) for mn in mns: hist[mn['state']['payoutAddress']].append(mn) return [mn for mn in mns if len(hist[mn['state']['payoutAddress']]) == 1]
Filter out MNs sharing the same payout address
Filter out MNs sharing the same payout address
[ "Filter", "out", "MNs", "sharing", "the", "same", "payout", "address" ]
def filtermultipayoutaddress(mns): hist = collections.defaultdict(list) for mn in mns: hist[mn['state']['payoutAddress']].append(mn) return [mn for mn in mns if len(hist[mn['state']['payoutAddress']]) == 1]
[ "def", "filtermultipayoutaddress", "(", "mns", ")", ":", "hist", "=", "collections", ".", "defaultdict", "(", "list", ")", "for", "mn", "in", "mns", ":", "hist", "[", "mn", "[", "'state'", "]", "[", "'payoutAddress'", "]", "]", ".", "append", "(", "mn", ")", "return", "[", "mn", "for", "mn", "in", "mns", "if", "len", "(", "hist", "[", "mn", "[", "'state'", "]", "[", "'payoutAddress'", "]", "]", ")", "==", "1", "]" ]
Filter out MNs sharing the same payout address
[ "Filter", "out", "MNs", "sharing", "the", "same", "payout", "address" ]
[ "'''Filter out MNs sharing the same payout address'''" ]
[ { "param": "mns", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "mns", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import collections def filtermultipayoutaddress(mns): hist = collections.defaultdict(list) for mn in mns: hist[mn['state']['payoutAddress']].append(mn) return [mn for mn in mns if len(hist[mn['state']['payoutAddress']]) == 1]
257
504
23ef448e9bc1f1c918a8d8e7455b41434945852f
Glacier-program/pytorch
chiplet/muse-v3/input/quant_layer.py
[ "Intel" ]
Python
_singleton
<not_specific>
def _singleton(cls): """Make a class a Singleton class (only one instance)""" @functools.wraps(cls) def wrapper_singleton(*args, **kwargs): if not wrapper_singleton.instance: wrapper_singleton.instance = cls(*args, **kwargs) return wrapper_singleton.instance wrapper_singleton.instance = None return wrapper_singleton
Make a class a Singleton class (only one instance)
Make a class a Singleton class (only one instance)
[ "Make", "a", "class", "a", "Singleton", "class", "(", "only", "one", "instance", ")" ]
def _singleton(cls): @functools.wraps(cls) def wrapper_singleton(*args, **kwargs): if not wrapper_singleton.instance: wrapper_singleton.instance = cls(*args, **kwargs) return wrapper_singleton.instance wrapper_singleton.instance = None return wrapper_singleton
[ "def", "_singleton", "(", "cls", ")", ":", "@", "functools", ".", "wraps", "(", "cls", ")", "def", "wrapper_singleton", "(", "*", "args", ",", "**", "kwargs", ")", ":", "if", "not", "wrapper_singleton", ".", "instance", ":", "wrapper_singleton", ".", "instance", "=", "cls", "(", "*", "args", ",", "**", "kwargs", ")", "return", "wrapper_singleton", ".", "instance", "wrapper_singleton", ".", "instance", "=", "None", "return", "wrapper_singleton" ]
Make a class a Singleton class (only one instance)
[ "Make", "a", "class", "a", "Singleton", "class", "(", "only", "one", "instance", ")" ]
[ "\"\"\"Make a class a Singleton class (only one instance)\"\"\"" ]
[ { "param": "cls", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "cls", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import functools def _singleton(cls): @functools.wraps(cls) def wrapper_singleton(*args, **kwargs): if not wrapper_singleton.instance: wrapper_singleton.instance = cls(*args, **kwargs) return wrapper_singleton.instance wrapper_singleton.instance = None return wrapper_singleton
258
467
15fc0e6f6d4f9de2b611c8aba8828620f5f17b66
a17hq/py_trees
py_trees/console.py
[ "BSD-3-Clause" ]
Python
console_has_colours
<not_specific>
def console_has_colours(): """ Detects if the console (stdout) has colourising capability. """ if os.environ.get("PY_TREES_DISABLE_COLORS"): return False # From django.core.management.color.supports_color # https://github.com/django/django/blob/master/django/core/management/color.py plat = sys.platform supported_platform = plat != 'Pocket PC' and (plat != 'win32' or 'ANSICON' in os.environ) # isatty is not always implemented, #6223. is_a_tty = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty() if not supported_platform or not is_a_tty: return False return True
Detects if the console (stdout) has colourising capability.
Detects if the console (stdout) has colourising capability.
[ "Detects", "if", "the", "console", "(", "stdout", ")", "has", "colourising", "capability", "." ]
def console_has_colours(): if os.environ.get("PY_TREES_DISABLE_COLORS"): return False plat = sys.platform supported_platform = plat != 'Pocket PC' and (plat != 'win32' or 'ANSICON' in os.environ) is_a_tty = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty() if not supported_platform or not is_a_tty: return False return True
[ "def", "console_has_colours", "(", ")", ":", "if", "os", ".", "environ", ".", "get", "(", "\"PY_TREES_DISABLE_COLORS\"", ")", ":", "return", "False", "plat", "=", "sys", ".", "platform", "supported_platform", "=", "plat", "!=", "'Pocket PC'", "and", "(", "plat", "!=", "'win32'", "or", "'ANSICON'", "in", "os", ".", "environ", ")", "is_a_tty", "=", "hasattr", "(", "sys", ".", "stdout", ",", "'isatty'", ")", "and", "sys", ".", "stdout", ".", "isatty", "(", ")", "if", "not", "supported_platform", "or", "not", "is_a_tty", ":", "return", "False", "return", "True" ]
Detects if the console (stdout) has colourising capability.
[ "Detects", "if", "the", "console", "(", "stdout", ")", "has", "colourising", "capability", "." ]
[ "\"\"\"\n Detects if the console (stdout) has colourising capability.\n \"\"\"", "# From django.core.management.color.supports_color", "# https://github.com/django/django/blob/master/django/core/management/color.py", "# isatty is not always implemented, #6223." ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
import sys import os def console_has_colours(): if os.environ.get("PY_TREES_DISABLE_COLORS"): return False plat = sys.platform supported_platform = plat != 'Pocket PC' and (plat != 'win32' or 'ANSICON' in os.environ) is_a_tty = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty() if not supported_platform or not is_a_tty: return False return True
259
22
6c95185ed0944807e107c5bacc67024ea5cceafe
chinchay/graphene-oxide
mtp_2D_7l/vacancies/myread.py
[ "MIT" ]
Python
grep_valence
<not_specific>
def grep_valence(pseudopotential): """ Given a UPF pseudopotential file, find the number of valence atoms. Parameters ---------- pseudopotential: str Filename of the pseudopotential. Returns ------- valence: float Valence as reported in the pseudopotential. Raises ------ ValueError If valence cannot be found in the pseudopotential. """ # Example lines # Sr.pbe-spn-rrkjus_psl.1.0.0.UPF: z_valence="1.000000000000000E+001" # C.pbe-n-kjpaw_psl.1.0.0.UPF (new ld1.x): # ...PBC" z_valence="4.000000000000e0" total_p... # C_ONCV_PBE-1.0.upf: z_valence=" 4.00" # Ta_pbe_v1.uspp.F.UPF: 13.00000000000 Z valence with open(pseudopotential) as psfile: for line in psfile: if 'z valence' in line.lower(): return float(line.split()[0]) elif 'z_valence' in line.lower(): if line.split()[0] == '<PP_HEADER': line = list(filter(lambda x: 'z_valence' in x, line.split(' ')))[0] return float(line.split('=')[-1].strip().strip('"')) else: raise ValueError('Valence missing in {}'.format(pseudopotential))
Given a UPF pseudopotential file, find the number of valence atoms. Parameters ---------- pseudopotential: str Filename of the pseudopotential. Returns ------- valence: float Valence as reported in the pseudopotential. Raises ------ ValueError If valence cannot be found in the pseudopotential.
Given a UPF pseudopotential file, find the number of valence atoms. Parameters str Filename of the pseudopotential. Returns float Valence as reported in the pseudopotential. Raises ValueError If valence cannot be found in the pseudopotential.
[ "Given", "a", "UPF", "pseudopotential", "file", "find", "the", "number", "of", "valence", "atoms", ".", "Parameters", "str", "Filename", "of", "the", "pseudopotential", ".", "Returns", "float", "Valence", "as", "reported", "in", "the", "pseudopotential", ".", "Raises", "ValueError", "If", "valence", "cannot", "be", "found", "in", "the", "pseudopotential", "." ]
def grep_valence(pseudopotential): with open(pseudopotential) as psfile: for line in psfile: if 'z valence' in line.lower(): return float(line.split()[0]) elif 'z_valence' in line.lower(): if line.split()[0] == '<PP_HEADER': line = list(filter(lambda x: 'z_valence' in x, line.split(' ')))[0] return float(line.split('=')[-1].strip().strip('"')) else: raise ValueError('Valence missing in {}'.format(pseudopotential))
[ "def", "grep_valence", "(", "pseudopotential", ")", ":", "with", "open", "(", "pseudopotential", ")", "as", "psfile", ":", "for", "line", "in", "psfile", ":", "if", "'z valence'", "in", "line", ".", "lower", "(", ")", ":", "return", "float", "(", "line", ".", "split", "(", ")", "[", "0", "]", ")", "elif", "'z_valence'", "in", "line", ".", "lower", "(", ")", ":", "if", "line", ".", "split", "(", ")", "[", "0", "]", "==", "'<PP_HEADER'", ":", "line", "=", "list", "(", "filter", "(", "lambda", "x", ":", "'z_valence'", "in", "x", ",", "line", ".", "split", "(", "' '", ")", ")", ")", "[", "0", "]", "return", "float", "(", "line", ".", "split", "(", "'='", ")", "[", "-", "1", "]", ".", "strip", "(", ")", ".", "strip", "(", "'\"'", ")", ")", "else", ":", "raise", "ValueError", "(", "'Valence missing in {}'", ".", "format", "(", "pseudopotential", ")", ")" ]
Given a UPF pseudopotential file, find the number of valence atoms.
[ "Given", "a", "UPF", "pseudopotential", "file", "find", "the", "number", "of", "valence", "atoms", "." ]
[ "\"\"\"\n Given a UPF pseudopotential file, find the number of valence atoms.\n\n Parameters\n ----------\n pseudopotential: str\n Filename of the pseudopotential.\n\n Returns\n -------\n valence: float\n Valence as reported in the pseudopotential.\n\n Raises\n ------\n ValueError\n If valence cannot be found in the pseudopotential.\n \"\"\"", "# Example lines", "# Sr.pbe-spn-rrkjus_psl.1.0.0.UPF: z_valence=\"1.000000000000000E+001\"", "# C.pbe-n-kjpaw_psl.1.0.0.UPF (new ld1.x):", "# ...PBC\" z_valence=\"4.000000000000e0\" total_p...", "# C_ONCV_PBE-1.0.upf: z_valence=\" 4.00\"", "# Ta_pbe_v1.uspp.F.UPF: 13.00000000000 Z valence" ]
[ { "param": "pseudopotential", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "pseudopotential", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def grep_valence(pseudopotential): with open(pseudopotential) as psfile: for line in psfile: if 'z valence' in line.lower(): return float(line.split()[0]) elif 'z_valence' in line.lower(): if line.split()[0] == '<PP_HEADER': line = list(filter(lambda x: 'z_valence' in x, line.split(' ')))[0] return float(line.split('=')[-1].strip().strip('"')) else: raise ValueError('Valence missing in {}'.format(pseudopotential))
260
1,003
1030ec3eabe95cd3b665ba533cfd51c3c7cea399
ICTU/document-as-code
python/domain/audit/tools/make_audit_evidence.py
[ "Apache-2.0" ]
Python
preamble
null
def preamble(): """ stuff required to make audit evidence work """ print("import domain.audit.model.audit_evidence as audit_evidence")
stuff required to make audit evidence work
stuff required to make audit evidence work
[ "stuff", "required", "to", "make", "audit", "evidence", "work" ]
def preamble(): print("import domain.audit.model.audit_evidence as audit_evidence")
[ "def", "preamble", "(", ")", ":", "print", "(", "\"import domain.audit.model.audit_evidence as audit_evidence\"", ")" ]
stuff required to make audit evidence work
[ "stuff", "required", "to", "make", "audit", "evidence", "work" ]
[ "\"\"\"\n stuff required to make audit evidence work\n \"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
def preamble(): print("import domain.audit.model.audit_evidence as audit_evidence")
263
801
40463e98efbae968b87bd8bb3737e5f00784f19b
gabrielegilardi/Sorting
Code_Python/Sorting.py
[ "MIT" ]
Python
bubble_sort
null
def bubble_sort(a): """ Sorts a list using the bubble sort method. """ for n_pass in range(len(a)-1, 0, -1): for i in range(n_pass): # Swap elements if (a[i] > a[i+1]): a[i+1], a[i] = a[i], a[i+1]
Sorts a list using the bubble sort method.
Sorts a list using the bubble sort method.
[ "Sorts", "a", "list", "using", "the", "bubble", "sort", "method", "." ]
def bubble_sort(a): for n_pass in range(len(a)-1, 0, -1): for i in range(n_pass): if (a[i] > a[i+1]): a[i+1], a[i] = a[i], a[i+1]
[ "def", "bubble_sort", "(", "a", ")", ":", "for", "n_pass", "in", "range", "(", "len", "(", "a", ")", "-", "1", ",", "0", ",", "-", "1", ")", ":", "for", "i", "in", "range", "(", "n_pass", ")", ":", "if", "(", "a", "[", "i", "]", ">", "a", "[", "i", "+", "1", "]", ")", ":", "a", "[", "i", "+", "1", "]", ",", "a", "[", "i", "]", "=", "a", "[", "i", "]", ",", "a", "[", "i", "+", "1", "]" ]
Sorts a list using the bubble sort method.
[ "Sorts", "a", "list", "using", "the", "bubble", "sort", "method", "." ]
[ "\"\"\"\n Sorts a list using the bubble sort method.\n \"\"\"", "# Swap elements" ]
[ { "param": "a", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "a", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def bubble_sort(a): for n_pass in range(len(a)-1, 0, -1): for i in range(n_pass): if (a[i] > a[i+1]): a[i+1], a[i] = a[i], a[i+1]
265
365
37143e425cb914560fd0642087f03fbace1f73d6
detly/flaskery
flaskery/switches/switches.py
[ "MIT" ]
Python
format_bytes
<not_specific>
def format_bytes(data): """ Converts a sequence of bytes to a formatted string, where each byte is represented as hexadecimal. """ return ' '.join('{:02X}'.format(byte) for byte in data)
Converts a sequence of bytes to a formatted string, where each byte is represented as hexadecimal.
Converts a sequence of bytes to a formatted string, where each byte is represented as hexadecimal.
[ "Converts", "a", "sequence", "of", "bytes", "to", "a", "formatted", "string", "where", "each", "byte", "is", "represented", "as", "hexadecimal", "." ]
def format_bytes(data): return ' '.join('{:02X}'.format(byte) for byte in data)
[ "def", "format_bytes", "(", "data", ")", ":", "return", "' '", ".", "join", "(", "'{:02X}'", ".", "format", "(", "byte", ")", "for", "byte", "in", "data", ")" ]
Converts a sequence of bytes to a formatted string, where each byte is represented as hexadecimal.
[ "Converts", "a", "sequence", "of", "bytes", "to", "a", "formatted", "string", "where", "each", "byte", "is", "represented", "as", "hexadecimal", "." ]
[ "\"\"\"\n Converts a sequence of bytes to a formatted string, where each byte is\n represented as hexadecimal.\n \"\"\"" ]
[ { "param": "data", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "data", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def format_bytes(data): return ' '.join('{:02X}'.format(byte) for byte in data)
266
565
afeedede2ef494da95276aeda9381a5bd80b036b
spyysalo/bionlp_st_2011_supporting
extension/tools/subset.py
[ "ISC" ]
Python
equiv_referenced_ids
<not_specific>
def equiv_referenced_ids(ann): """ Given a line with an Equiv annotation, returns a collection containing the IDs referred to. """ fields = ann.split("\t") if len(fields) < 2: return [] args = fields[1].split(" ") return args[1:]
Given a line with an Equiv annotation, returns a collection containing the IDs referred to.
Given a line with an Equiv annotation, returns a collection containing the IDs referred to.
[ "Given", "a", "line", "with", "an", "Equiv", "annotation", "returns", "a", "collection", "containing", "the", "IDs", "referred", "to", "." ]
def equiv_referenced_ids(ann): fields = ann.split("\t") if len(fields) < 2: return [] args = fields[1].split(" ") return args[1:]
[ "def", "equiv_referenced_ids", "(", "ann", ")", ":", "fields", "=", "ann", ".", "split", "(", "\"\\t\"", ")", "if", "len", "(", "fields", ")", "<", "2", ":", "return", "[", "]", "args", "=", "fields", "[", "1", "]", ".", "split", "(", "\" \"", ")", "return", "args", "[", "1", ":", "]" ]
Given a line with an Equiv annotation, returns a collection containing the IDs referred to.
[ "Given", "a", "line", "with", "an", "Equiv", "annotation", "returns", "a", "collection", "containing", "the", "IDs", "referred", "to", "." ]
[ "\"\"\"\n Given a line with an Equiv annotation, returns a collection\n containing the IDs referred to.\n \"\"\"" ]
[ { "param": "ann", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "ann", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def equiv_referenced_ids(ann): fields = ann.split("\t") if len(fields) < 2: return [] args = fields[1].split(" ") return args[1:]
267
132
db30533ea5eebb3a32278dda45151c22d3942b6e
saurabhacellere/subversion
subversion/tests/cmdline/mod_dav_svn_tests.py
[ "Apache-2.0" ]
Python
compare
<not_specific>
def compare(lhs, rhs): """Implements cmp() for Python 2 and 3 alike""" if lhs == None: if rhs == None: return 0 else: return -1 else: if rhs == None: return 1 else: return (lhs > rhs) - (lhs < rhs)
Implements cmp() for Python 2 and 3 alike
Implements cmp() for Python 2 and 3 alike
[ "Implements", "cmp", "()", "for", "Python", "2", "and", "3", "alike" ]
def compare(lhs, rhs): if lhs == None: if rhs == None: return 0 else: return -1 else: if rhs == None: return 1 else: return (lhs > rhs) - (lhs < rhs)
[ "def", "compare", "(", "lhs", ",", "rhs", ")", ":", "if", "lhs", "==", "None", ":", "if", "rhs", "==", "None", ":", "return", "0", "else", ":", "return", "-", "1", "else", ":", "if", "rhs", "==", "None", ":", "return", "1", "else", ":", "return", "(", "lhs", ">", "rhs", ")", "-", "(", "lhs", "<", "rhs", ")" ]
Implements cmp() for Python 2 and 3 alike
[ "Implements", "cmp", "()", "for", "Python", "2", "and", "3", "alike" ]
[ "\"\"\"Implements cmp() for Python 2 and 3 alike\"\"\"" ]
[ { "param": "lhs", "type": null }, { "param": "rhs", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "lhs", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "rhs", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def compare(lhs, rhs): if lhs == None: if rhs == None: return 0 else: return -1 else: if rhs == None: return 1 else: return (lhs > rhs) - (lhs < rhs)
268
62
4e40acacb5c3e4453b6df498e2c8f8cffa75e8f2
ricklentz/open_model_zoo
tools/accuracy_checker/openvino/tools/accuracy_checker/annotation_converters/_nlp_common.py
[ "Apache-2.0" ]
Python
_is_whitespace
<not_specific>
def _is_whitespace(char): """Checks whether `chars` is a whitespace character.""" # \t, \n, and \r are technically control characters but we treat them # as whitespace since they are generally considered as such. if char in [" ", "\t", "\n", "\r"]: return True cat = unicodedata.category(char) if cat == "Zs": return True return False
Checks whether `chars` is a whitespace character.
Checks whether `chars` is a whitespace character.
[ "Checks", "whether", "`", "chars", "`", "is", "a", "whitespace", "character", "." ]
def _is_whitespace(char): if char in [" ", "\t", "\n", "\r"]: return True cat = unicodedata.category(char) if cat == "Zs": return True return False
[ "def", "_is_whitespace", "(", "char", ")", ":", "if", "char", "in", "[", "\" \"", ",", "\"\\t\"", ",", "\"\\n\"", ",", "\"\\r\"", "]", ":", "return", "True", "cat", "=", "unicodedata", ".", "category", "(", "char", ")", "if", "cat", "==", "\"Zs\"", ":", "return", "True", "return", "False" ]
Checks whether `chars` is a whitespace character.
[ "Checks", "whether", "`", "chars", "`", "is", "a", "whitespace", "character", "." ]
[ "\"\"\"Checks whether `chars` is a whitespace character.\"\"\"", "# \\t, \\n, and \\r are technically control characters but we treat them", "# as whitespace since they are generally considered as such." ]
[ { "param": "char", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "char", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import unicodedata def _is_whitespace(char): if char in [" ", "\t", "\n", "\r"]: return True cat = unicodedata.category(char) if cat == "Zs": return True return False
269
524
42284c90ba4d2f741e641db9dae9884bfa233b0d
deephdc/audio-classification-tf
audioclas/misc.py
[ "MIT" ]
Python
open_compressed
<not_specific>
def open_compressed(byte_stream, file_format, output_folder): """ Extract and save a stream of bytes of a compressed file from memory. Parameters ---------- byte_stream : BinaryIO file_format : str Compatible file formats: tarballs, zip files output_folder : str Folder to extract the stream Returns ------- Folder name of the extracted files. """ print('Decompressing the file ...') tar_extensions = ['tar', 'bz2', 'tb2', 'tbz', 'tbz2', 'gz', 'tgz', 'lz', 'lzma', 'tlz', 'xz', 'txz', 'Z', 'tZ'] if file_format in tar_extensions: tar = tarfile.open(mode="r:{}".format(file_format), fileobj=byte_stream) tar.extractall(output_folder) folder_name = tar.getnames()[0] return os.path.join(output_folder, folder_name) elif file_format == 'zip': zf = zipfile.ZipFile(byte_stream) zf.extractall(output_folder) # folder_name = zf.namelist()[0].split('/')[0] # return os.path.join(output_folder, folder_name) else: raise ValueError('Invalid file format for the compressed byte_stream')
Extract and save a stream of bytes of a compressed file from memory. Parameters ---------- byte_stream : BinaryIO file_format : str Compatible file formats: tarballs, zip files output_folder : str Folder to extract the stream Returns ------- Folder name of the extracted files.
Extract and save a stream of bytes of a compressed file from memory. Parameters byte_stream : BinaryIO file_format : str Compatible file formats: tarballs, zip files output_folder : str Folder to extract the stream Returns Folder name of the extracted files.
[ "Extract", "and", "save", "a", "stream", "of", "bytes", "of", "a", "compressed", "file", "from", "memory", ".", "Parameters", "byte_stream", ":", "BinaryIO", "file_format", ":", "str", "Compatible", "file", "formats", ":", "tarballs", "zip", "files", "output_folder", ":", "str", "Folder", "to", "extract", "the", "stream", "Returns", "Folder", "name", "of", "the", "extracted", "files", "." ]
def open_compressed(byte_stream, file_format, output_folder): print('Decompressing the file ...') tar_extensions = ['tar', 'bz2', 'tb2', 'tbz', 'tbz2', 'gz', 'tgz', 'lz', 'lzma', 'tlz', 'xz', 'txz', 'Z', 'tZ'] if file_format in tar_extensions: tar = tarfile.open(mode="r:{}".format(file_format), fileobj=byte_stream) tar.extractall(output_folder) folder_name = tar.getnames()[0] return os.path.join(output_folder, folder_name) elif file_format == 'zip': zf = zipfile.ZipFile(byte_stream) zf.extractall(output_folder) else: raise ValueError('Invalid file format for the compressed byte_stream')
[ "def", "open_compressed", "(", "byte_stream", ",", "file_format", ",", "output_folder", ")", ":", "print", "(", "'Decompressing the file ...'", ")", "tar_extensions", "=", "[", "'tar'", ",", "'bz2'", ",", "'tb2'", ",", "'tbz'", ",", "'tbz2'", ",", "'gz'", ",", "'tgz'", ",", "'lz'", ",", "'lzma'", ",", "'tlz'", ",", "'xz'", ",", "'txz'", ",", "'Z'", ",", "'tZ'", "]", "if", "file_format", "in", "tar_extensions", ":", "tar", "=", "tarfile", ".", "open", "(", "mode", "=", "\"r:{}\"", ".", "format", "(", "file_format", ")", ",", "fileobj", "=", "byte_stream", ")", "tar", ".", "extractall", "(", "output_folder", ")", "folder_name", "=", "tar", ".", "getnames", "(", ")", "[", "0", "]", "return", "os", ".", "path", ".", "join", "(", "output_folder", ",", "folder_name", ")", "elif", "file_format", "==", "'zip'", ":", "zf", "=", "zipfile", ".", "ZipFile", "(", "byte_stream", ")", "zf", ".", "extractall", "(", "output_folder", ")", "else", ":", "raise", "ValueError", "(", "'Invalid file format for the compressed byte_stream'", ")" ]
Extract and save a stream of bytes of a compressed file from memory.
[ "Extract", "and", "save", "a", "stream", "of", "bytes", "of", "a", "compressed", "file", "from", "memory", "." ]
[ "\"\"\"\n Extract and save a stream of bytes of a compressed file from memory.\n\n Parameters\n ----------\n byte_stream : BinaryIO\n file_format : str\n Compatible file formats: tarballs, zip files\n output_folder : str\n Folder to extract the stream\n\n Returns\n -------\n Folder name of the extracted files.\n \"\"\"", "# folder_name = zf.namelist()[0].split('/')[0]", "# return os.path.join(output_folder, folder_name)" ]
[ { "param": "byte_stream", "type": null }, { "param": "file_format", "type": null }, { "param": "output_folder", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "byte_stream", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "file_format", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "output_folder", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import zipfile import tarfile import os def open_compressed(byte_stream, file_format, output_folder): print('Decompressing the file ...') tar_extensions = ['tar', 'bz2', 'tb2', 'tbz', 'tbz2', 'gz', 'tgz', 'lz', 'lzma', 'tlz', 'xz', 'txz', 'Z', 'tZ'] if file_format in tar_extensions: tar = tarfile.open(mode="r:{}".format(file_format), fileobj=byte_stream) tar.extractall(output_folder) folder_name = tar.getnames()[0] return os.path.join(output_folder, folder_name) elif file_format == 'zip': zf = zipfile.ZipFile(byte_stream) zf.extractall(output_folder) else: raise ValueError('Invalid file format for the compressed byte_stream')
270
548
f878a9062a0116a0e84170ddd70f23523feeb5e8
machawk1/cocrawler
tests/warc/warc-diff.py
[ "Apache-2.0" ]
Python
munge
<not_specific>
def munge(s): ''' Remove things known to differ in WARC files: uuids WARC-Date: headers ''' out = '' for line in s.split('\n'): if ':uuid:' in line: line, _, _ = line.partition(':uuid:') elif line.startswith('WARC-Date:'): line = 'WARC-Date:' out += line return out
Remove things known to differ in WARC files: uuids WARC-Date: headers
Remove things known to differ in WARC files: uuids WARC-Date: headers
[ "Remove", "things", "known", "to", "differ", "in", "WARC", "files", ":", "uuids", "WARC", "-", "Date", ":", "headers" ]
def munge(s): out = '' for line in s.split('\n'): if ':uuid:' in line: line, _, _ = line.partition(':uuid:') elif line.startswith('WARC-Date:'): line = 'WARC-Date:' out += line return out
[ "def", "munge", "(", "s", ")", ":", "out", "=", "''", "for", "line", "in", "s", ".", "split", "(", "'\\n'", ")", ":", "if", "':uuid:'", "in", "line", ":", "line", ",", "_", ",", "_", "=", "line", ".", "partition", "(", "':uuid:'", ")", "elif", "line", ".", "startswith", "(", "'WARC-Date:'", ")", ":", "line", "=", "'WARC-Date:'", "out", "+=", "line", "return", "out" ]
Remove things known to differ in WARC files: uuids WARC-Date: headers
[ "Remove", "things", "known", "to", "differ", "in", "WARC", "files", ":", "uuids", "WARC", "-", "Date", ":", "headers" ]
[ "'''\n Remove things known to differ in WARC files:\n uuids\n WARC-Date: headers\n '''" ]
[ { "param": "s", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "s", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def munge(s): out = '' for line in s.split('\n'): if ':uuid:' in line: line, _, _ = line.partition(':uuid:') elif line.startswith('WARC-Date:'): line = 'WARC-Date:' out += line return out
271
545
52419393e616733a9793920892f60210ef302979
THU-DA-6D-Pose-Group/self6dpp
lib/dr_utils/rep/helpers.py
[ "Apache-2.0" ]
Python
_assert_dim_eq
null
def _assert_dim_eq(inp, tgt): """Asserts that the number of dims in inp is exactly equal to the value sepecified in tgt. Args: inp (torch.Tensor): Input tensor, whose number of dimensions is to be compared. tgt (int): Value which the number of dims of inp should equal. """ if inp.dim() != tgt: raise ValueError("Expected input to contain exactly {0} dims. " "Got {1} instead.".format(tgt, inp.dim()))
Asserts that the number of dims in inp is exactly equal to the value sepecified in tgt. Args: inp (torch.Tensor): Input tensor, whose number of dimensions is to be compared. tgt (int): Value which the number of dims of inp should equal.
Asserts that the number of dims in inp is exactly equal to the value sepecified in tgt.
[ "Asserts", "that", "the", "number", "of", "dims", "in", "inp", "is", "exactly", "equal", "to", "the", "value", "sepecified", "in", "tgt", "." ]
def _assert_dim_eq(inp, tgt): if inp.dim() != tgt: raise ValueError("Expected input to contain exactly {0} dims. " "Got {1} instead.".format(tgt, inp.dim()))
[ "def", "_assert_dim_eq", "(", "inp", ",", "tgt", ")", ":", "if", "inp", ".", "dim", "(", ")", "!=", "tgt", ":", "raise", "ValueError", "(", "\"Expected input to contain exactly {0} dims. \"", "\"Got {1} instead.\"", ".", "format", "(", "tgt", ",", "inp", ".", "dim", "(", ")", ")", ")" ]
Asserts that the number of dims in inp is exactly equal to the value sepecified in tgt.
[ "Asserts", "that", "the", "number", "of", "dims", "in", "inp", "is", "exactly", "equal", "to", "the", "value", "sepecified", "in", "tgt", "." ]
[ "\"\"\"Asserts that the number of dims in inp is exactly equal to the value\n sepecified in tgt.\n\n Args:\n inp (torch.Tensor): Input tensor, whose number of dimensions is\n to be compared.\n tgt (int): Value which the number of dims of inp should equal.\n \"\"\"" ]
[ { "param": "inp", "type": null }, { "param": "tgt", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "inp", "type": null, "docstring": "Input tensor, whose number of dimensions is\nto be compared.", "docstring_tokens": [ "Input", "tensor", "whose", "number", "of", "dimensions", "is", "to", "be", "compared", "." ], "default": null, "is_optional": false }, { "identifier": "tgt", "type": null, "docstring": "Value which the number of dims of inp should equal.", "docstring_tokens": [ "Value", "which", "the", "number", "of", "dims", "of", "inp", "should", "equal", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [] }
def _assert_dim_eq(inp, tgt): if inp.dim() != tgt: raise ValueError("Expected input to contain exactly {0} dims. " "Got {1} instead.".format(tgt, inp.dim()))
273
813
2353cefd7c64e1d34edadc5874cce0bee064b11b
YoungYoung619/tf_utils
nps/ops.py
[ "Apache-2.0" ]
Python
assign
<not_specific>
def assign(input, position, value): """This function is used to assign the value to the input at the designated position. Args: input: An input array with any shape position: the position where you wanna assign the value, must be a list or ndarray and have the corresponding dimension with input. value: the value which you wanna assign, a list or ndarray which must has the same length with position or length 1. """ def modifyValue(inputData, pos, val, k=0): """A recursion function which is used to change the input value at designated position """ if len(inputData.shape) == 1: ## stop condition inputData[pos[k]] = val else: newInputData = inputData[pos[k]] k = k + 1 modifyValue(newInputData, pos, val, k) data = copy.deepcopy(input) ## copy a new from input if len(value)==1: for pos in position: modifyValue(data,pos,value[0]) else: for pos,val in zip(position,value): modifyValue(data,pos,val) return data
This function is used to assign the value to the input at the designated position. Args: input: An input array with any shape position: the position where you wanna assign the value, must be a list or ndarray and have the corresponding dimension with input. value: the value which you wanna assign, a list or ndarray which must has the same length with position or length 1.
This function is used to assign the value to the input at the designated position.
[ "This", "function", "is", "used", "to", "assign", "the", "value", "to", "the", "input", "at", "the", "designated", "position", "." ]
def assign(input, position, value): def modifyValue(inputData, pos, val, k=0): if len(inputData.shape) == 1: inputData[pos[k]] = val else: newInputData = inputData[pos[k]] k = k + 1 modifyValue(newInputData, pos, val, k) data = copy.deepcopy(input) if len(value)==1: for pos in position: modifyValue(data,pos,value[0]) else: for pos,val in zip(position,value): modifyValue(data,pos,val) return data
[ "def", "assign", "(", "input", ",", "position", ",", "value", ")", ":", "def", "modifyValue", "(", "inputData", ",", "pos", ",", "val", ",", "k", "=", "0", ")", ":", "\"\"\"A recursion function which is used to change the input value at designated position\n \"\"\"", "if", "len", "(", "inputData", ".", "shape", ")", "==", "1", ":", "inputData", "[", "pos", "[", "k", "]", "]", "=", "val", "else", ":", "newInputData", "=", "inputData", "[", "pos", "[", "k", "]", "]", "k", "=", "k", "+", "1", "modifyValue", "(", "newInputData", ",", "pos", ",", "val", ",", "k", ")", "data", "=", "copy", ".", "deepcopy", "(", "input", ")", "if", "len", "(", "value", ")", "==", "1", ":", "for", "pos", "in", "position", ":", "modifyValue", "(", "data", ",", "pos", ",", "value", "[", "0", "]", ")", "else", ":", "for", "pos", ",", "val", "in", "zip", "(", "position", ",", "value", ")", ":", "modifyValue", "(", "data", ",", "pos", ",", "val", ")", "return", "data" ]
This function is used to assign the value to the input at the designated position.
[ "This", "function", "is", "used", "to", "assign", "the", "value", "to", "the", "input", "at", "the", "designated", "position", "." ]
[ "\"\"\"This function is used to assign the value to the input at the designated position.\n\n Args:\n input: An input array with any shape\n position: the position where you wanna assign the value, must be a list or ndarray and have\n the corresponding dimension with input.\n value: the value which you wanna assign, a list or ndarray which must has the same length\n with position or length 1.\n \"\"\"", "\"\"\"A recursion function which is used to change the input value at designated position\n \"\"\"", "## stop condition", "## copy a new from input" ]
[ { "param": "input", "type": null }, { "param": "position", "type": null }, { "param": "value", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "input", "type": null, "docstring": "An input array with any shape", "docstring_tokens": [ "An", "input", "array", "with", "any", "shape" ], "default": null, "is_optional": null }, { "identifier": "position", "type": null, "docstring": "the position where you wanna assign the value, must be a list or ndarray and have\nthe corresponding dimension with input.", "docstring_tokens": [ "the", "position", "where", "you", "wanna", "assign", "the", "value", "must", "be", "a", "list", "or", "ndarray", "and", "have", "the", "corresponding", "dimension", "with", "input", "." ], "default": null, "is_optional": null }, { "identifier": "value", "type": null, "docstring": "the value which you wanna assign, a list or ndarray which must has the same length\nwith position or length 1.", "docstring_tokens": [ "the", "value", "which", "you", "wanna", "assign", "a", "list", "or", "ndarray", "which", "must", "has", "the", "same", "length", "with", "position", "or", "length", "1", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import copy def assign(input, position, value): def modifyValue(inputData, pos, val, k=0): if len(inputData.shape) == 1: inputData[pos[k]] = val else: newInputData = inputData[pos[k]] k = k + 1 modifyValue(newInputData, pos, val, k) data = copy.deepcopy(input) if len(value)==1: for pos in position: modifyValue(data,pos,value[0]) else: for pos,val in zip(position,value): modifyValue(data,pos,val) return data
274
92
2a01d76e0bdd9aac6668e62b2d97df7cdbe19fb5
benchislett/Skunkworks
Python3/Conv-Autoencoder/train.py
[ "MIT" ]
Python
train_batch
<not_specific>
def train_batch(model, loss_fn, optimizer, batch): """Train the model on a single batch of data, and return the total loss """ optimizer.zero_grad() x = batch[0].cuda() pred = model(x) loss_batch = loss_fn(pred, x) loss_batch.backward() optimizer.step() return loss_batch.item()
Train the model on a single batch of data, and return the total loss
Train the model on a single batch of data, and return the total loss
[ "Train", "the", "model", "on", "a", "single", "batch", "of", "data", "and", "return", "the", "total", "loss" ]
def train_batch(model, loss_fn, optimizer, batch): optimizer.zero_grad() x = batch[0].cuda() pred = model(x) loss_batch = loss_fn(pred, x) loss_batch.backward() optimizer.step() return loss_batch.item()
[ "def", "train_batch", "(", "model", ",", "loss_fn", ",", "optimizer", ",", "batch", ")", ":", "optimizer", ".", "zero_grad", "(", ")", "x", "=", "batch", "[", "0", "]", ".", "cuda", "(", ")", "pred", "=", "model", "(", "x", ")", "loss_batch", "=", "loss_fn", "(", "pred", ",", "x", ")", "loss_batch", ".", "backward", "(", ")", "optimizer", ".", "step", "(", ")", "return", "loss_batch", ".", "item", "(", ")" ]
Train the model on a single batch of data, and return the total loss
[ "Train", "the", "model", "on", "a", "single", "batch", "of", "data", "and", "return", "the", "total", "loss" ]
[ "\"\"\"Train the model on a single batch of data,\n and return the total loss\n\n \"\"\"" ]
[ { "param": "model", "type": null }, { "param": "loss_fn", "type": null }, { "param": "optimizer", "type": null }, { "param": "batch", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "model", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "loss_fn", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "optimizer", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "batch", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def train_batch(model, loss_fn, optimizer, batch): optimizer.zero_grad() x = batch[0].cuda() pred = model(x) loss_batch = loss_fn(pred, x) loss_batch.backward() optimizer.step() return loss_batch.item()
276
390
c4f2a3752d6968e37136bc840962a066d41a8eb7
markkorput/pycfgr
tests/test_json.py
[ "MIT" ]
Python
cfgr
null
def cfgr(builder): """ by default, the Runtime.add_type(<Type>) method will look for a static cfgr method. """ builder.addInput('name').string(lambda v,obj: obj.setName(v)) #builder.addInput('reset').apply(lambda inp,obj: inp.event.subscribe(obj.reset)) builder.addInput('reset').signal_to_method(lambda obj: obj.reset) builder.addOutput('afterReset').from_event(lambda obj: obj.afterResetEvent) builder.addInput('parent').object(lambda v,obj: obj.setParent(v))
by default, the Runtime.add_type(<Type>) method will look for a static cfgr method.
by default, the Runtime.add_type() method will look for a static cfgr method.
[ "by", "default", "the", "Runtime", ".", "add_type", "()", "method", "will", "look", "for", "a", "static", "cfgr", "method", "." ]
def cfgr(builder): builder.addInput('name').string(lambda v,obj: obj.setName(v)) builder.addInput('reset').signal_to_method(lambda obj: obj.reset) builder.addOutput('afterReset').from_event(lambda obj: obj.afterResetEvent) builder.addInput('parent').object(lambda v,obj: obj.setParent(v))
[ "def", "cfgr", "(", "builder", ")", ":", "builder", ".", "addInput", "(", "'name'", ")", ".", "string", "(", "lambda", "v", ",", "obj", ":", "obj", ".", "setName", "(", "v", ")", ")", "builder", ".", "addInput", "(", "'reset'", ")", ".", "signal_to_method", "(", "lambda", "obj", ":", "obj", ".", "reset", ")", "builder", ".", "addOutput", "(", "'afterReset'", ")", ".", "from_event", "(", "lambda", "obj", ":", "obj", ".", "afterResetEvent", ")", "builder", ".", "addInput", "(", "'parent'", ")", ".", "object", "(", "lambda", "v", ",", "obj", ":", "obj", ".", "setParent", "(", "v", ")", ")" ]
by default, the Runtime.add_type(<Type>) method will look for a static cfgr method.
[ "by", "default", "the", "Runtime", ".", "add_type", "(", "<Type", ">", ")", "method", "will", "look", "for", "a", "static", "cfgr", "method", "." ]
[ "\"\"\"\n by default, the Runtime.add_type(<Type>) method will look for a static cfgr method.\n \"\"\"", "#builder.addInput('reset').apply(lambda inp,obj: inp.event.subscribe(obj.reset))" ]
[ { "param": "builder", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "builder", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def cfgr(builder): builder.addInput('name').string(lambda v,obj: obj.setName(v)) builder.addInput('reset').signal_to_method(lambda obj: obj.reset) builder.addOutput('afterReset').from_event(lambda obj: obj.afterResetEvent) builder.addInput('parent').object(lambda v,obj: obj.setParent(v))
277
394
15fa73cd9ab890b31fd31a3a4e02a4af263c1adf
atlas-forward-calorimeter/noise
read.py
[ "MIT" ]
Python
_to_byte
<not_specific>
def _to_byte(byte): """Make sure an object really represents an integer from 0 to 255, and return the integer. """ byte = float(byte) assert byte.is_integer(), f"Got a non-integer byte: {byte}!" byte = int(byte) assert byte >= 0, f"Got a negative value for a byte: {byte}!" assert byte <= 255, f"Got a byte value bigger than 255: {byte}!" return byte
Make sure an object really represents an integer from 0 to 255, and return the integer.
Make sure an object really represents an integer from 0 to 255, and return the integer.
[ "Make", "sure", "an", "object", "really", "represents", "an", "integer", "from", "0", "to", "255", "and", "return", "the", "integer", "." ]
def _to_byte(byte): byte = float(byte) assert byte.is_integer(), f"Got a non-integer byte: {byte}!" byte = int(byte) assert byte >= 0, f"Got a negative value for a byte: {byte}!" assert byte <= 255, f"Got a byte value bigger than 255: {byte}!" return byte
[ "def", "_to_byte", "(", "byte", ")", ":", "byte", "=", "float", "(", "byte", ")", "assert", "byte", ".", "is_integer", "(", ")", ",", "f\"Got a non-integer byte: {byte}!\"", "byte", "=", "int", "(", "byte", ")", "assert", "byte", ">=", "0", ",", "f\"Got a negative value for a byte: {byte}!\"", "assert", "byte", "<=", "255", ",", "f\"Got a byte value bigger than 255: {byte}!\"", "return", "byte" ]
Make sure an object really represents an integer from 0 to 255, and return the integer.
[ "Make", "sure", "an", "object", "really", "represents", "an", "integer", "from", "0", "to", "255", "and", "return", "the", "integer", "." ]
[ "\"\"\"Make sure an object really represents an integer from 0 to 255,\n and return the integer.\n \"\"\"" ]
[ { "param": "byte", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "byte", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _to_byte(byte): byte = float(byte) assert byte.is_integer(), f"Got a non-integer byte: {byte}!" byte = int(byte) assert byte >= 0, f"Got a negative value for a byte: {byte}!" assert byte <= 255, f"Got a byte value bigger than 255: {byte}!" return byte
278
813
4a9a9842ac96e8f422cbd64b38278227294b6297
dunno99/intellij-community
python/helpers/pydev/pydevd_attach_to_process/winappdbg/util.py
[ "Apache-2.0" ]
Python
find_slot
<not_specific>
def find_slot(cls, ctx): """ Finds an empty slot to set a hardware breakpoint. @see: clear_bp, set_bp @type ctx: dict( str S{->} int ) @param ctx: Thread context dictionary. @rtype: int @return: Slot (debug register) for hardware breakpoint. """ Dr7 = ctx['Dr7'] slot = 0 for m in cls.enableMask: if (Dr7 & m) == 0: return slot slot += 1 return None
Finds an empty slot to set a hardware breakpoint. @see: clear_bp, set_bp @type ctx: dict( str S{->} int ) @param ctx: Thread context dictionary. @rtype: int @return: Slot (debug register) for hardware breakpoint.
Finds an empty slot to set a hardware breakpoint.
[ "Finds", "an", "empty", "slot", "to", "set", "a", "hardware", "breakpoint", "." ]
def find_slot(cls, ctx): Dr7 = ctx['Dr7'] slot = 0 for m in cls.enableMask: if (Dr7 & m) == 0: return slot slot += 1 return None
[ "def", "find_slot", "(", "cls", ",", "ctx", ")", ":", "Dr7", "=", "ctx", "[", "'Dr7'", "]", "slot", "=", "0", "for", "m", "in", "cls", ".", "enableMask", ":", "if", "(", "Dr7", "&", "m", ")", "==", "0", ":", "return", "slot", "slot", "+=", "1", "return", "None" ]
Finds an empty slot to set a hardware breakpoint.
[ "Finds", "an", "empty", "slot", "to", "set", "a", "hardware", "breakpoint", "." ]
[ "\"\"\"\n Finds an empty slot to set a hardware breakpoint.\n\n @see: clear_bp, set_bp\n\n @type ctx: dict( str S{->} int )\n @param ctx: Thread context dictionary.\n\n @rtype: int\n @return: Slot (debug register) for hardware breakpoint.\n \"\"\"" ]
[ { "param": "cls", "type": null }, { "param": "ctx", "type": null } ]
{ "returns": [ { "docstring": "Slot (debug register) for hardware breakpoint.", "docstring_tokens": [ "Slot", "(", "debug", "register", ")", "for", "hardware", "breakpoint", "." ], "type": "int" } ], "raises": [], "params": [ { "identifier": "cls", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "ctx", "type": null, "docstring": "Thread context dictionary.", "docstring_tokens": [ "Thread", "context", "dictionary", "." ], "default": null, "is_optional": false } ], "outlier_params": [], "others": [ { "identifier": "see", "docstring": null, "docstring_tokens": [ "None" ] } ] }
def find_slot(cls, ctx): Dr7 = ctx['Dr7'] slot = 0 for m in cls.enableMask: if (Dr7 & m) == 0: return slot slot += 1 return None
280
356
a09f7ab285d85664fe77807ed13c62af7ef6b1dc
karimbahgat/PythonGis
pythongis/vector/data.py
[ "MIT" ]
Python
Name_generator
null
def Name_generator(): """Used internally for ensuring default data names are unique for each Python session. TODO: Maybe make private. """ i = 1 while True: yield "Untitled%s" % i i += 1
Used internally for ensuring default data names are unique for each Python session. TODO: Maybe make private.
Used internally for ensuring default data names are unique for each Python session. TODO: Maybe make private.
[ "Used", "internally", "for", "ensuring", "default", "data", "names", "are", "unique", "for", "each", "Python", "session", ".", "TODO", ":", "Maybe", "make", "private", "." ]
def Name_generator(): i = 1 while True: yield "Untitled%s" % i i += 1
[ "def", "Name_generator", "(", ")", ":", "i", "=", "1", "while", "True", ":", "yield", "\"Untitled%s\"", "%", "i", "i", "+=", "1" ]
Used internally for ensuring default data names are unique for each Python session.
[ "Used", "internally", "for", "ensuring", "default", "data", "names", "are", "unique", "for", "each", "Python", "session", "." ]
[ "\"\"\"Used internally for ensuring default data names are unique for each Python session.\n TODO: Maybe make private. \n \"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
def Name_generator(): i = 1 while True: yield "Untitled%s" % i i += 1
282
580
5fde0a9dbb55ba0fbbdf9a7c7f90eec18b7b5b27
eho-tacc/episimlab
episimlab/utils/variable.py
[ "BSD-3-Clause" ]
Python
group_dict_by_var
dict
def group_dict_by_var(d: dict) -> dict: """Given a dictionary keyed by 2-length tuples, return a dictionary keyed only by the second element of the tuple. """ return {k: d[(proc, k)] for (proc, k) in d}
Given a dictionary keyed by 2-length tuples, return a dictionary keyed only by the second element of the tuple.
Given a dictionary keyed by 2-length tuples, return a dictionary keyed only by the second element of the tuple.
[ "Given", "a", "dictionary", "keyed", "by", "2", "-", "length", "tuples", "return", "a", "dictionary", "keyed", "only", "by", "the", "second", "element", "of", "the", "tuple", "." ]
def group_dict_by_var(d: dict) -> dict: return {k: d[(proc, k)] for (proc, k) in d}
[ "def", "group_dict_by_var", "(", "d", ":", "dict", ")", "->", "dict", ":", "return", "{", "k", ":", "d", "[", "(", "proc", ",", "k", ")", "]", "for", "(", "proc", ",", "k", ")", "in", "d", "}" ]
Given a dictionary keyed by 2-length tuples, return a dictionary keyed only by the second element of the tuple.
[ "Given", "a", "dictionary", "keyed", "by", "2", "-", "length", "tuples", "return", "a", "dictionary", "keyed", "only", "by", "the", "second", "element", "of", "the", "tuple", "." ]
[ "\"\"\"Given a dictionary keyed by 2-length tuples, return a dictionary keyed\n only by the second element of the tuple.\n \"\"\"" ]
[ { "param": "d", "type": "dict" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "d", "type": "dict", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def group_dict_by_var(d: dict) -> dict: return {k: d[(proc, k)] for (proc, k) in d}
283
863
55434f4a306721a3af34caa22b67b1942d88c204
quochuy/hivemind
hive/utils/normalize.py
[ "MIT" ]
Python
rep_log10
<not_specific>
def rep_log10(rep): """Convert raw steemd rep into a UI-ready value centered at 25.""" def _log10(string): leading_digits = int(string[0:4]) log = math.log10(leading_digits) + 0.00000001 num = len(string) - 1 return num + (log - int(log)) rep = str(rep) if rep == "0": return 25 sign = -1 if rep[0] == '-' else 1 if sign < 0: rep = rep[1:] out = _log10(rep) out = max(out - 9, 0) * sign # @ -9, $1 earned is approx magnitude 1 out = (out * 9) + 25 # 9 points per magnitude. center at 25 return round(out, 2)
Convert raw steemd rep into a UI-ready value centered at 25.
Convert raw steemd rep into a UI-ready value centered at 25.
[ "Convert", "raw", "steemd", "rep", "into", "a", "UI", "-", "ready", "value", "centered", "at", "25", "." ]
def rep_log10(rep): def _log10(string): leading_digits = int(string[0:4]) log = math.log10(leading_digits) + 0.00000001 num = len(string) - 1 return num + (log - int(log)) rep = str(rep) if rep == "0": return 25 sign = -1 if rep[0] == '-' else 1 if sign < 0: rep = rep[1:] out = _log10(rep) out = max(out - 9, 0) * sign out = (out * 9) + 25 return round(out, 2)
[ "def", "rep_log10", "(", "rep", ")", ":", "def", "_log10", "(", "string", ")", ":", "leading_digits", "=", "int", "(", "string", "[", "0", ":", "4", "]", ")", "log", "=", "math", ".", "log10", "(", "leading_digits", ")", "+", "0.00000001", "num", "=", "len", "(", "string", ")", "-", "1", "return", "num", "+", "(", "log", "-", "int", "(", "log", ")", ")", "rep", "=", "str", "(", "rep", ")", "if", "rep", "==", "\"0\"", ":", "return", "25", "sign", "=", "-", "1", "if", "rep", "[", "0", "]", "==", "'-'", "else", "1", "if", "sign", "<", "0", ":", "rep", "=", "rep", "[", "1", ":", "]", "out", "=", "_log10", "(", "rep", ")", "out", "=", "max", "(", "out", "-", "9", ",", "0", ")", "*", "sign", "out", "=", "(", "out", "*", "9", ")", "+", "25", "return", "round", "(", "out", ",", "2", ")" ]
Convert raw steemd rep into a UI-ready value centered at 25.
[ "Convert", "raw", "steemd", "rep", "into", "a", "UI", "-", "ready", "value", "centered", "at", "25", "." ]
[ "\"\"\"Convert raw steemd rep into a UI-ready value centered at 25.\"\"\"", "# @ -9, $1 earned is approx magnitude 1", "# 9 points per magnitude. center at 25" ]
[ { "param": "rep", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "rep", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import math def rep_log10(rep): def _log10(string): leading_digits = int(string[0:4]) log = math.log10(leading_digits) + 0.00000001 num = len(string) - 1 return num + (log - int(log)) rep = str(rep) if rep == "0": return 25 sign = -1 if rep[0] == '-' else 1 if sign < 0: rep = rep[1:] out = _log10(rep) out = max(out - 9, 0) * sign out = (out * 9) + 25 return round(out, 2)
284
750
0296b7730d221105d6a32ef9ca5eb3296151dc1c
google/ghost-userspace
experiments/scripts/options.py
[ "Apache-2.0" ]
Python
GetNiceArgs
<not_specific>
def GetNiceArgs(level: int): """Returns the command/arguments to set the `nice` level of a new process. Args: level: The nice level to set (-20 <= `level` <= 19). """ if level < -20 or level > 19: raise ValueError( f"The level must be >= -20 and <= 19. The level specified is {level}.") return ["nice", "-n", str(level)]
Returns the command/arguments to set the `nice` level of a new process. Args: level: The nice level to set (-20 <= `level` <= 19).
Returns the command/arguments to set the `nice` level of a new process.
[ "Returns", "the", "command", "/", "arguments", "to", "set", "the", "`", "nice", "`", "level", "of", "a", "new", "process", "." ]
def GetNiceArgs(level: int): if level < -20 or level > 19: raise ValueError( f"The level must be >= -20 and <= 19. The level specified is {level}.") return ["nice", "-n", str(level)]
[ "def", "GetNiceArgs", "(", "level", ":", "int", ")", ":", "if", "level", "<", "-", "20", "or", "level", ">", "19", ":", "raise", "ValueError", "(", "f\"The level must be >= -20 and <= 19. The level specified is {level}.\"", ")", "return", "[", "\"nice\"", ",", "\"-n\"", ",", "str", "(", "level", ")", "]" ]
Returns the command/arguments to set the `nice` level of a new process.
[ "Returns", "the", "command", "/", "arguments", "to", "set", "the", "`", "nice", "`", "level", "of", "a", "new", "process", "." ]
[ "\"\"\"Returns the command/arguments to set the `nice` level of a new process.\n\n Args:\n level: The nice level to set (-20 <= `level` <= 19).\n \"\"\"" ]
[ { "param": "level", "type": "int" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "level", "type": "int", "docstring": null, "docstring_tokens": [ "None" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def GetNiceArgs(level: int): if level < -20 or level > 19: raise ValueError( f"The level must be >= -20 and <= 19. The level specified is {level}.") return ["nice", "-n", str(level)]
285
341
a1968aba4cc4bcacd944cc1ea4e3cecfe8679083
ebadkamil/nicos
nicos_ess/utilities/csv_utils.py
[ "CC-BY-3.0", "Apache-2.0", "CC-BY-4.0" ]
Python
import_table_from_csv
<not_specific>
def import_table_from_csv(filename): """Import tabular data from a csv file. :param filename: path to csv file :return: tuple of headers (empty if no headers) and rows """ with open(filename, "r") as file: sniffer = csv.Sniffer() has_header = sniffer.has_header(file.read(2048)) file.seek(0) rows = list(csv.reader(file)) if has_header: return rows[0], rows[1:] return [], rows
Import tabular data from a csv file. :param filename: path to csv file :return: tuple of headers (empty if no headers) and rows
Import tabular data from a csv file.
[ "Import", "tabular", "data", "from", "a", "csv", "file", "." ]
def import_table_from_csv(filename): with open(filename, "r") as file: sniffer = csv.Sniffer() has_header = sniffer.has_header(file.read(2048)) file.seek(0) rows = list(csv.reader(file)) if has_header: return rows[0], rows[1:] return [], rows
[ "def", "import_table_from_csv", "(", "filename", ")", ":", "with", "open", "(", "filename", ",", "\"r\"", ")", "as", "file", ":", "sniffer", "=", "csv", ".", "Sniffer", "(", ")", "has_header", "=", "sniffer", ".", "has_header", "(", "file", ".", "read", "(", "2048", ")", ")", "file", ".", "seek", "(", "0", ")", "rows", "=", "list", "(", "csv", ".", "reader", "(", "file", ")", ")", "if", "has_header", ":", "return", "rows", "[", "0", "]", ",", "rows", "[", "1", ":", "]", "return", "[", "]", ",", "rows" ]
Import tabular data from a csv file.
[ "Import", "tabular", "data", "from", "a", "csv", "file", "." ]
[ "\"\"\"Import tabular data from a csv file.\n\n :param filename: path to csv file\n :return: tuple of headers (empty if no headers) and rows\n \"\"\"" ]
[ { "param": "filename", "type": null } ]
{ "returns": [ { "docstring": "tuple of headers (empty if no headers) and rows", "docstring_tokens": [ "tuple", "of", "headers", "(", "empty", "if", "no", "headers", ")", "and", "rows" ], "type": null } ], "raises": [], "params": [ { "identifier": "filename", "type": null, "docstring": "path to csv file", "docstring_tokens": [ "path", "to", "csv", "file" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import csv def import_table_from_csv(filename): with open(filename, "r") as file: sniffer = csv.Sniffer() has_header = sniffer.has_header(file.read(2048)) file.seek(0) rows = list(csv.reader(file)) if has_header: return rows[0], rows[1:] return [], rows
286
224
d4440ecf2b493f12a43664f1534a17fc96c4adf5
wikimedia/user_metrics
user_metrics/etl/aggregator.py
[ "BSD-3-Clause" ]
Python
weighted_rate
<not_specific>
def weighted_rate(iter, **kwargs): """ Computes a weighted rate over the elements of the iterator. """ def weight_method_default(x): return 1 weight_idx = kwargs['weight_idx'] if 'weight_idx' in kwargs else 1 val_idx = kwargs['val_idx'] if 'val_idx' in kwargs else 1 weight_method = kwargs['weight_method'] if 'cmp_method' in kwargs else \ weight_method_default count = 0 total_weight = 0.0 weighted_sum = 0.0 for r in iter.__iter__(): try: count += 1 weight = weight_method(r[weight_idx]) total_weight += r[weight_idx] weighted_sum += weight * r[val_idx] except IndexError: continue except TypeError: continue if count: return [count, total_weight, weighted_sum / count] else: return [count, total_weight, 0.0]
Computes a weighted rate over the elements of the iterator.
Computes a weighted rate over the elements of the iterator.
[ "Computes", "a", "weighted", "rate", "over", "the", "elements", "of", "the", "iterator", "." ]
def weighted_rate(iter, **kwargs): def weight_method_default(x): return 1 weight_idx = kwargs['weight_idx'] if 'weight_idx' in kwargs else 1 val_idx = kwargs['val_idx'] if 'val_idx' in kwargs else 1 weight_method = kwargs['weight_method'] if 'cmp_method' in kwargs else \ weight_method_default count = 0 total_weight = 0.0 weighted_sum = 0.0 for r in iter.__iter__(): try: count += 1 weight = weight_method(r[weight_idx]) total_weight += r[weight_idx] weighted_sum += weight * r[val_idx] except IndexError: continue except TypeError: continue if count: return [count, total_weight, weighted_sum / count] else: return [count, total_weight, 0.0]
[ "def", "weighted_rate", "(", "iter", ",", "**", "kwargs", ")", ":", "def", "weight_method_default", "(", "x", ")", ":", "return", "1", "weight_idx", "=", "kwargs", "[", "'weight_idx'", "]", "if", "'weight_idx'", "in", "kwargs", "else", "1", "val_idx", "=", "kwargs", "[", "'val_idx'", "]", "if", "'val_idx'", "in", "kwargs", "else", "1", "weight_method", "=", "kwargs", "[", "'weight_method'", "]", "if", "'cmp_method'", "in", "kwargs", "else", "weight_method_default", "count", "=", "0", "total_weight", "=", "0.0", "weighted_sum", "=", "0.0", "for", "r", "in", "iter", ".", "__iter__", "(", ")", ":", "try", ":", "count", "+=", "1", "weight", "=", "weight_method", "(", "r", "[", "weight_idx", "]", ")", "total_weight", "+=", "r", "[", "weight_idx", "]", "weighted_sum", "+=", "weight", "*", "r", "[", "val_idx", "]", "except", "IndexError", ":", "continue", "except", "TypeError", ":", "continue", "if", "count", ":", "return", "[", "count", ",", "total_weight", ",", "weighted_sum", "/", "count", "]", "else", ":", "return", "[", "count", ",", "total_weight", ",", "0.0", "]" ]
Computes a weighted rate over the elements of the iterator.
[ "Computes", "a", "weighted", "rate", "over", "the", "elements", "of", "the", "iterator", "." ]
[ "\"\"\"\n Computes a weighted rate over the elements of the iterator.\n \"\"\"" ]
[ { "param": "iter", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "iter", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def weighted_rate(iter, **kwargs): def weight_method_default(x): return 1 weight_idx = kwargs['weight_idx'] if 'weight_idx' in kwargs else 1 val_idx = kwargs['val_idx'] if 'val_idx' in kwargs else 1 weight_method = kwargs['weight_method'] if 'cmp_method' in kwargs else \ weight_method_default count = 0 total_weight = 0.0 weighted_sum = 0.0 for r in iter.__iter__(): try: count += 1 weight = weight_method(r[weight_idx]) total_weight += r[weight_idx] weighted_sum += weight * r[val_idx] except IndexError: continue except TypeError: continue if count: return [count, total_weight, weighted_sum / count] else: return [count, total_weight, 0.0]
288
272
6cc0f76d88f8266436d8e69d67ef3f0bbbfc8643
rigdenlab/PISACov
pisacov/pisacovmods/contacts.py
[ "BSD-3-Clause" ]
Python
match_maps
<not_specific>
def match_maps(conpredlist,pdbmap): """ Obtain several scores for an interface matched contact prediction map Parameters ---------- conpredlist : Conkit Contact Map Contact prediction list pdbmap : str File path to contact list file containing interface pdb contacts Returns ------- matchedmap : Conkit Contact Map The matched map (pdb interface + contact prediction list). cnt : int The number of True Positives. jaccardindex : float The Jaccard Index AvScore : float The average score of all True Positives. AccScore : float The accumulated score of all True Positives. probability : float The interface score. """ matchedmap = conpredlist.match(pdbmap, add_false_negatives=False,inplace=False) cnt=0 AccScore=0.0 probability = 1.0 for contact in matchedmap: if contact.true_positive: cnt += 1 AccScore += contact.raw_score probability *= (1.0 - contact.raw_score) jaccardindex=conpredlist.get_jaccard_index(pdbmap) probability = 1.0 - probability if cnt > 0: AvScore = AccScore / cnt else: AvScore=0 return matchedmap, cnt, jaccardindex, AvScore, AccScore, probability
Obtain several scores for an interface matched contact prediction map Parameters ---------- conpredlist : Conkit Contact Map Contact prediction list pdbmap : str File path to contact list file containing interface pdb contacts Returns ------- matchedmap : Conkit Contact Map The matched map (pdb interface + contact prediction list). cnt : int The number of True Positives. jaccardindex : float The Jaccard Index AvScore : float The average score of all True Positives. AccScore : float The accumulated score of all True Positives. probability : float The interface score.
Obtain several scores for an interface matched contact prediction map Parameters conpredlist : Conkit Contact Map Contact prediction list pdbmap : str File path to contact list file containing interface pdb contacts Returns matchedmap : Conkit Contact Map The matched map (pdb interface + contact prediction list). cnt : int The number of True Positives. jaccardindex : float The Jaccard Index AvScore : float The average score of all True Positives. AccScore : float The accumulated score of all True Positives. probability : float The interface score.
[ "Obtain", "several", "scores", "for", "an", "interface", "matched", "contact", "prediction", "map", "Parameters", "conpredlist", ":", "Conkit", "Contact", "Map", "Contact", "prediction", "list", "pdbmap", ":", "str", "File", "path", "to", "contact", "list", "file", "containing", "interface", "pdb", "contacts", "Returns", "matchedmap", ":", "Conkit", "Contact", "Map", "The", "matched", "map", "(", "pdb", "interface", "+", "contact", "prediction", "list", ")", ".", "cnt", ":", "int", "The", "number", "of", "True", "Positives", ".", "jaccardindex", ":", "float", "The", "Jaccard", "Index", "AvScore", ":", "float", "The", "average", "score", "of", "all", "True", "Positives", ".", "AccScore", ":", "float", "The", "accumulated", "score", "of", "all", "True", "Positives", ".", "probability", ":", "float", "The", "interface", "score", "." ]
def match_maps(conpredlist,pdbmap): matchedmap = conpredlist.match(pdbmap, add_false_negatives=False,inplace=False) cnt=0 AccScore=0.0 probability = 1.0 for contact in matchedmap: if contact.true_positive: cnt += 1 AccScore += contact.raw_score probability *= (1.0 - contact.raw_score) jaccardindex=conpredlist.get_jaccard_index(pdbmap) probability = 1.0 - probability if cnt > 0: AvScore = AccScore / cnt else: AvScore=0 return matchedmap, cnt, jaccardindex, AvScore, AccScore, probability
[ "def", "match_maps", "(", "conpredlist", ",", "pdbmap", ")", ":", "matchedmap", "=", "conpredlist", ".", "match", "(", "pdbmap", ",", "add_false_negatives", "=", "False", ",", "inplace", "=", "False", ")", "cnt", "=", "0", "AccScore", "=", "0.0", "probability", "=", "1.0", "for", "contact", "in", "matchedmap", ":", "if", "contact", ".", "true_positive", ":", "cnt", "+=", "1", "AccScore", "+=", "contact", ".", "raw_score", "probability", "*=", "(", "1.0", "-", "contact", ".", "raw_score", ")", "jaccardindex", "=", "conpredlist", ".", "get_jaccard_index", "(", "pdbmap", ")", "probability", "=", "1.0", "-", "probability", "if", "cnt", ">", "0", ":", "AvScore", "=", "AccScore", "/", "cnt", "else", ":", "AvScore", "=", "0", "return", "matchedmap", ",", "cnt", ",", "jaccardindex", ",", "AvScore", ",", "AccScore", ",", "probability" ]
Obtain several scores for an interface matched contact prediction map Parameters
[ "Obtain", "several", "scores", "for", "an", "interface", "matched", "contact", "prediction", "map", "Parameters" ]
[ "\"\"\"\n Obtain several scores for an interface matched contact prediction map\n\n Parameters\n ----------\n conpredlist : Conkit Contact Map\n Contact prediction list\n pdbmap : str\n File path to contact list file containing interface pdb contacts\n\n Returns\n -------\n matchedmap : Conkit Contact Map\n The matched map (pdb interface + contact prediction list).\n cnt : int\n The number of True Positives.\n jaccardindex : float\n The Jaccard Index\n AvScore : float\n The average score of all True Positives.\n AccScore : float\n The accumulated score of all True Positives.\n probability : float\n The interface score.\n \"\"\"" ]
[ { "param": "conpredlist", "type": null }, { "param": "pdbmap", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "conpredlist", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "pdbmap", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def match_maps(conpredlist,pdbmap): matchedmap = conpredlist.match(pdbmap, add_false_negatives=False,inplace=False) cnt=0 AccScore=0.0 probability = 1.0 for contact in matchedmap: if contact.true_positive: cnt += 1 AccScore += contact.raw_score probability *= (1.0 - contact.raw_score) jaccardindex=conpredlist.get_jaccard_index(pdbmap) probability = 1.0 - probability if cnt > 0: AvScore = AccScore / cnt else: AvScore=0 return matchedmap, cnt, jaccardindex, AvScore, AccScore, probability
289
539
76765eb3523e9c7b0a1c75c43d8e26353b67698d
kylewuolle/google-cloud-sdk
lib/googlecloudsdk/command_lib/iot/util.py
[ "Apache-2.0" ]
Python
AddBlockedToRequest
<not_specific>
def AddBlockedToRequest(ref, args, req): """Python hook for yaml commands to process the blocked flag.""" del ref req.device.blocked = args.blocked return req
Python hook for yaml commands to process the blocked flag.
Python hook for yaml commands to process the blocked flag.
[ "Python", "hook", "for", "yaml", "commands", "to", "process", "the", "blocked", "flag", "." ]
def AddBlockedToRequest(ref, args, req): del ref req.device.blocked = args.blocked return req
[ "def", "AddBlockedToRequest", "(", "ref", ",", "args", ",", "req", ")", ":", "del", "ref", "req", ".", "device", ".", "blocked", "=", "args", ".", "blocked", "return", "req" ]
Python hook for yaml commands to process the blocked flag.
[ "Python", "hook", "for", "yaml", "commands", "to", "process", "the", "blocked", "flag", "." ]
[ "\"\"\"Python hook for yaml commands to process the blocked flag.\"\"\"" ]
[ { "param": "ref", "type": null }, { "param": "args", "type": null }, { "param": "req", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "ref", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "args", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "req", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def AddBlockedToRequest(ref, args, req): del ref req.device.blocked = args.blocked return req
290
656
5b390248f03640a46eae88716347ee27762d9227
kjaymiller/sd-police-call-observability
src/load_geo.py
[ "MIT" ]
Python
convert_data
null
def convert_data(json_data): """Transforms the geopandas dataframe into a json file to be easily loaded into elasticsearch. Eland would be better suited for this but currently does not support geopandas `Point` data. """ for row in json.loads(json_data)["features"]: point = row["properties"] point["coordinates"] = row['geometry']['coordinates'] yield point
Transforms the geopandas dataframe into a json file to be easily loaded into elasticsearch. Eland would be better suited for this but currently does not support geopandas `Point` data.
Transforms the geopandas dataframe into a json file to be easily loaded into elasticsearch. Eland would be better suited for this but currently does not support geopandas `Point` data.
[ "Transforms", "the", "geopandas", "dataframe", "into", "a", "json", "file", "to", "be", "easily", "loaded", "into", "elasticsearch", ".", "Eland", "would", "be", "better", "suited", "for", "this", "but", "currently", "does", "not", "support", "geopandas", "`", "Point", "`", "data", "." ]
def convert_data(json_data): for row in json.loads(json_data)["features"]: point = row["properties"] point["coordinates"] = row['geometry']['coordinates'] yield point
[ "def", "convert_data", "(", "json_data", ")", ":", "for", "row", "in", "json", ".", "loads", "(", "json_data", ")", "[", "\"features\"", "]", ":", "point", "=", "row", "[", "\"properties\"", "]", "point", "[", "\"coordinates\"", "]", "=", "row", "[", "'geometry'", "]", "[", "'coordinates'", "]", "yield", "point" ]
Transforms the geopandas dataframe into a json file to be easily loaded into elasticsearch.
[ "Transforms", "the", "geopandas", "dataframe", "into", "a", "json", "file", "to", "be", "easily", "loaded", "into", "elasticsearch", "." ]
[ "\"\"\"Transforms the geopandas dataframe into a json file to be easily loaded\n into elasticsearch. Eland would be better suited for this but currently\n does not support geopandas `Point` data.\n \"\"\"" ]
[ { "param": "json_data", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "json_data", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import json def convert_data(json_data): for row in json.loads(json_data)["features"]: point = row["properties"] point["coordinates"] = row['geometry']['coordinates'] yield point
291
359
1b5d1ae02bfc9e5f2069483afc1d51d6074eb3c4
cygniv404/BIS-software
Address_Validator.py
[ "MIT" ]
Python
in_suit3
<not_specific>
def in_suit3(list, list0): """ test 2 suits of street numbers if they have crossed numbers For example: "22-27" in "21-24"retruns True :param a: Int of number :param b: String List of number :return: boolean """ text = list.replace("-", "") text0 = list0.replace("-", "") if ("-" in list) and ("-" in list0) and (text.isdigit() is True) and (text0.isdigit() is True): list1 = list.split("-") x = int(list1[0]) suit = set() suit.add(x) while x < int(list1[len(list1) - 1]): x += 1 suit.add(x) suit.add(int(list1[len(list1) - 1])) list2 = list0.split("-") y = int(list2[0]) suit0 = set() suit0.add(y) while y < int(list2[len(list2) - 1]): y += 1 suit0.add(y) suit0.add(int(list2[len(list2) - 1])) temp = [item for item in suit if item in suit0] if len(temp) > 0: return True return False
test 2 suits of street numbers if they have crossed numbers For example: "22-27" in "21-24"retruns True :param a: Int of number :param b: String List of number :return: boolean
test 2 suits of street numbers if they have crossed numbers For example: "22-27" in "21-24"retruns True
[ "test", "2", "suits", "of", "street", "numbers", "if", "they", "have", "crossed", "numbers", "For", "example", ":", "\"", "22", "-", "27", "\"", "in", "\"", "21", "-", "24", "\"", "retruns", "True" ]
def in_suit3(list, list0): text = list.replace("-", "") text0 = list0.replace("-", "") if ("-" in list) and ("-" in list0) and (text.isdigit() is True) and (text0.isdigit() is True): list1 = list.split("-") x = int(list1[0]) suit = set() suit.add(x) while x < int(list1[len(list1) - 1]): x += 1 suit.add(x) suit.add(int(list1[len(list1) - 1])) list2 = list0.split("-") y = int(list2[0]) suit0 = set() suit0.add(y) while y < int(list2[len(list2) - 1]): y += 1 suit0.add(y) suit0.add(int(list2[len(list2) - 1])) temp = [item for item in suit if item in suit0] if len(temp) > 0: return True return False
[ "def", "in_suit3", "(", "list", ",", "list0", ")", ":", "text", "=", "list", ".", "replace", "(", "\"-\"", ",", "\"\"", ")", "text0", "=", "list0", ".", "replace", "(", "\"-\"", ",", "\"\"", ")", "if", "(", "\"-\"", "in", "list", ")", "and", "(", "\"-\"", "in", "list0", ")", "and", "(", "text", ".", "isdigit", "(", ")", "is", "True", ")", "and", "(", "text0", ".", "isdigit", "(", ")", "is", "True", ")", ":", "list1", "=", "list", ".", "split", "(", "\"-\"", ")", "x", "=", "int", "(", "list1", "[", "0", "]", ")", "suit", "=", "set", "(", ")", "suit", ".", "add", "(", "x", ")", "while", "x", "<", "int", "(", "list1", "[", "len", "(", "list1", ")", "-", "1", "]", ")", ":", "x", "+=", "1", "suit", ".", "add", "(", "x", ")", "suit", ".", "add", "(", "int", "(", "list1", "[", "len", "(", "list1", ")", "-", "1", "]", ")", ")", "list2", "=", "list0", ".", "split", "(", "\"-\"", ")", "y", "=", "int", "(", "list2", "[", "0", "]", ")", "suit0", "=", "set", "(", ")", "suit0", ".", "add", "(", "y", ")", "while", "y", "<", "int", "(", "list2", "[", "len", "(", "list2", ")", "-", "1", "]", ")", ":", "y", "+=", "1", "suit0", ".", "add", "(", "y", ")", "suit0", ".", "add", "(", "int", "(", "list2", "[", "len", "(", "list2", ")", "-", "1", "]", ")", ")", "temp", "=", "[", "item", "for", "item", "in", "suit", "if", "item", "in", "suit0", "]", "if", "len", "(", "temp", ")", ">", "0", ":", "return", "True", "return", "False" ]
test 2 suits of street numbers if they have crossed numbers For example: "22-27" in "21-24"retruns True
[ "test", "2", "suits", "of", "street", "numbers", "if", "they", "have", "crossed", "numbers", "For", "example", ":", "\"", "22", "-", "27", "\"", "in", "\"", "21", "-", "24", "\"", "retruns", "True" ]
[ "\"\"\"\n\n test 2 suits of street numbers if they have crossed numbers\n For example: \"22-27\" in \"21-24\"retruns True\n\n :param a: Int of number\n :param b: String List of number\n :return: boolean\n\n\n \"\"\"" ]
[ { "param": "list", "type": null }, { "param": "list0", "type": null } ]
{ "returns": [ { "docstring": null, "docstring_tokens": [ "None" ], "type": null } ], "raises": [], "params": [ { "identifier": "list", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "list0", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [ { "identifier": "a", "type": null, "docstring": "Int of number", "docstring_tokens": [ "Int", "of", "number" ], "default": null, "is_optional": null }, { "identifier": "b", "type": null, "docstring": "String List of number", "docstring_tokens": [ "String", "List", "of", "number" ], "default": null, "is_optional": null } ], "others": [] }
def in_suit3(list, list0): text = list.replace("-", "") text0 = list0.replace("-", "") if ("-" in list) and ("-" in list0) and (text.isdigit() is True) and (text0.isdigit() is True): list1 = list.split("-") x = int(list1[0]) suit = set() suit.add(x) while x < int(list1[len(list1) - 1]): x += 1 suit.add(x) suit.add(int(list1[len(list1) - 1])) list2 = list0.split("-") y = int(list2[0]) suit0 = set() suit0.add(y) while y < int(list2[len(list2) - 1]): y += 1 suit0.add(y) suit0.add(int(list2[len(list2) - 1])) temp = [item for item in suit if item in suit0] if len(temp) > 0: return True return False
292
489
662408d672bc4eb444279bbb2dcb90e2167e3ecf
jsharkey13/facebook_message_parser
fb_analysis.py
[ "MIT" ]
Python
_update_thread_dict
null
def _update_thread_dict(thread_dict, thread_name, num): """Add new entries to count dictionary, dealing with duplicates carefully.""" if thread_name not in thread_dict: thread_dict.update({thread_name: num}) else: # Deal with duplicates, otherwise old entries get overwritten: thread_dict[thread_name] += num
Add new entries to count dictionary, dealing with duplicates carefully.
Add new entries to count dictionary, dealing with duplicates carefully.
[ "Add", "new", "entries", "to", "count", "dictionary", "dealing", "with", "duplicates", "carefully", "." ]
def _update_thread_dict(thread_dict, thread_name, num): if thread_name not in thread_dict: thread_dict.update({thread_name: num}) else: thread_dict[thread_name] += num
[ "def", "_update_thread_dict", "(", "thread_dict", ",", "thread_name", ",", "num", ")", ":", "if", "thread_name", "not", "in", "thread_dict", ":", "thread_dict", ".", "update", "(", "{", "thread_name", ":", "num", "}", ")", "else", ":", "thread_dict", "[", "thread_name", "]", "+=", "num" ]
Add new entries to count dictionary, dealing with duplicates carefully.
[ "Add", "new", "entries", "to", "count", "dictionary", "dealing", "with", "duplicates", "carefully", "." ]
[ "\"\"\"Add new entries to count dictionary, dealing with duplicates carefully.\"\"\"", "# Deal with duplicates, otherwise old entries get overwritten:" ]
[ { "param": "thread_dict", "type": null }, { "param": "thread_name", "type": null }, { "param": "num", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "thread_dict", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "thread_name", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "num", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _update_thread_dict(thread_dict, thread_name, num): if thread_name not in thread_dict: thread_dict.update({thread_name: num}) else: thread_dict[thread_name] += num
293
833
47fde3b12615fee380570b30cff0e48fc7ee1955
anandg95/CLRS-solutions
Ch12/bst_succ_pred.py
[ "MIT" ]
Python
successor_postorder
<not_specific>
def successor_postorder(bst, node): """ Cases: 1. If node is the right child of its parent, then successor is the parent 2. If node is the left child of its parent, successor would be in right subtree of the parent. It is reahced by traversing left childs successively and if there is no left taking right and repeating. If there is no right child, parent is the successor. """ if node.parent is None: return None y = node.parent if y.right == None or y.right == node: return y y = y.right while y is not None: node = y y = y.left if y.left is not None else y.right return node
Cases: 1. If node is the right child of its parent, then successor is the parent 2. If node is the left child of its parent, successor would be in right subtree of the parent. It is reahced by traversing left childs successively and if there is no left taking right and repeating. If there is no right child, parent is the successor.
1. If node is the right child of its parent, then successor is the parent 2. If node is the left child of its parent, successor would be in right subtree of the parent. It is reahced by traversing left childs successively and if there is no left taking right and repeating. If there is no right child, parent is the successor.
[ "1", ".", "If", "node", "is", "the", "right", "child", "of", "its", "parent", "then", "successor", "is", "the", "parent", "2", ".", "If", "node", "is", "the", "left", "child", "of", "its", "parent", "successor", "would", "be", "in", "right", "subtree", "of", "the", "parent", ".", "It", "is", "reahced", "by", "traversing", "left", "childs", "successively", "and", "if", "there", "is", "no", "left", "taking", "right", "and", "repeating", ".", "If", "there", "is", "no", "right", "child", "parent", "is", "the", "successor", "." ]
def successor_postorder(bst, node): if node.parent is None: return None y = node.parent if y.right == None or y.right == node: return y y = y.right while y is not None: node = y y = y.left if y.left is not None else y.right return node
[ "def", "successor_postorder", "(", "bst", ",", "node", ")", ":", "if", "node", ".", "parent", "is", "None", ":", "return", "None", "y", "=", "node", ".", "parent", "if", "y", ".", "right", "==", "None", "or", "y", ".", "right", "==", "node", ":", "return", "y", "y", "=", "y", ".", "right", "while", "y", "is", "not", "None", ":", "node", "=", "y", "y", "=", "y", ".", "left", "if", "y", ".", "left", "is", "not", "None", "else", "y", ".", "right", "return", "node" ]
Cases: 1.
[ "Cases", ":", "1", "." ]
[ "\"\"\"\n Cases:\n 1. If node is the right child of its parent, then successor is the parent\n 2. If node is the left child of its parent, successor would be in right subtree of the parent. It is reahced\n by traversing left childs successively and if there is no left taking right and repeating. \n If there is no right child, parent is the successor.\n \"\"\"" ]
[ { "param": "bst", "type": null }, { "param": "node", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "bst", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "node", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def successor_postorder(bst, node): if node.parent is None: return None y = node.parent if y.right == None or y.right == node: return y y = y.right while y is not None: node = y y = y.left if y.left is not None else y.right return node
295
458
c302dcda1cdabdd30bccc5df1dd00c5325cf2c7a
earthobservatory/ariamh-pub
interferogram/sentinel/standard_product_packaging.py
[ "Apache-2.0" ]
Python
expand_attrdict
<not_specific>
def expand_attrdict(attr_dict, attr_name, attr_value): ''' expand an attribute dict with more keys and values Update the attribute dictionary if original key is used again with a new value ''' #pdb.set_trace() if attr_dict is None: attr_dict = {} for count in range(len(attr_name)): attr_temp = {} attr_temp["name"]=attr_name[count] attr_temp["value"]=attr_value[count] # adding it to the original dictionary if len(attr_dict)==0: attr_dict = [attr_temp] else: # looping over all the attributes to see if the name already is in use count_dict = 0 name_match = None for attr_dict_item in attr_dict: if attr_dict_item["name"] == attr_temp["name"]: name_match = count_dict count_dict = count_dict +1 # if a match was found needs to update the attribute information if name_match is not None: attr_dict[name_match]=attr_temp else: attr_dict.append(attr_temp) return attr_dict
expand an attribute dict with more keys and values Update the attribute dictionary if original key is used again with a new value
expand an attribute dict with more keys and values Update the attribute dictionary if original key is used again with a new value
[ "expand", "an", "attribute", "dict", "with", "more", "keys", "and", "values", "Update", "the", "attribute", "dictionary", "if", "original", "key", "is", "used", "again", "with", "a", "new", "value" ]
def expand_attrdict(attr_dict, attr_name, attr_value): if attr_dict is None: attr_dict = {} for count in range(len(attr_name)): attr_temp = {} attr_temp["name"]=attr_name[count] attr_temp["value"]=attr_value[count] if len(attr_dict)==0: attr_dict = [attr_temp] else: count_dict = 0 name_match = None for attr_dict_item in attr_dict: if attr_dict_item["name"] == attr_temp["name"]: name_match = count_dict count_dict = count_dict +1 if name_match is not None: attr_dict[name_match]=attr_temp else: attr_dict.append(attr_temp) return attr_dict
[ "def", "expand_attrdict", "(", "attr_dict", ",", "attr_name", ",", "attr_value", ")", ":", "if", "attr_dict", "is", "None", ":", "attr_dict", "=", "{", "}", "for", "count", "in", "range", "(", "len", "(", "attr_name", ")", ")", ":", "attr_temp", "=", "{", "}", "attr_temp", "[", "\"name\"", "]", "=", "attr_name", "[", "count", "]", "attr_temp", "[", "\"value\"", "]", "=", "attr_value", "[", "count", "]", "if", "len", "(", "attr_dict", ")", "==", "0", ":", "attr_dict", "=", "[", "attr_temp", "]", "else", ":", "count_dict", "=", "0", "name_match", "=", "None", "for", "attr_dict_item", "in", "attr_dict", ":", "if", "attr_dict_item", "[", "\"name\"", "]", "==", "attr_temp", "[", "\"name\"", "]", ":", "name_match", "=", "count_dict", "count_dict", "=", "count_dict", "+", "1", "if", "name_match", "is", "not", "None", ":", "attr_dict", "[", "name_match", "]", "=", "attr_temp", "else", ":", "attr_dict", ".", "append", "(", "attr_temp", ")", "return", "attr_dict" ]
expand an attribute dict with more keys and values Update the attribute dictionary if original key is used again with a new value
[ "expand", "an", "attribute", "dict", "with", "more", "keys", "and", "values", "Update", "the", "attribute", "dictionary", "if", "original", "key", "is", "used", "again", "with", "a", "new", "value" ]
[ "'''\n expand an attribute dict with more keys and values\n Update the attribute dictionary if original key is used again with a new value\n '''", "#pdb.set_trace()", "# adding it to the original dictionary", "# looping over all the attributes to see if the name already is in use", "# if a match was found needs to update the attribute information" ]
[ { "param": "attr_dict", "type": null }, { "param": "attr_name", "type": null }, { "param": "attr_value", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "attr_dict", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "attr_name", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "attr_value", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def expand_attrdict(attr_dict, attr_name, attr_value): if attr_dict is None: attr_dict = {} for count in range(len(attr_name)): attr_temp = {} attr_temp["name"]=attr_name[count] attr_temp["value"]=attr_value[count] if len(attr_dict)==0: attr_dict = [attr_temp] else: count_dict = 0 name_match = None for attr_dict_item in attr_dict: if attr_dict_item["name"] == attr_temp["name"]: name_match = count_dict count_dict = count_dict +1 if name_match is not None: attr_dict[name_match]=attr_temp else: attr_dict.append(attr_temp) return attr_dict
296
826
077c176bd2d67513a5a3097f158121ce51ab6fb9
pretchu/datadog-agent
tasks/system_probe.py
[ "Apache-2.0" ]
Python
tempdir
null
def tempdir(): """ Helper to create a temp directory and clean it """ dirpath = tempfile.mkdtemp() try: yield dirpath finally: shutil.rmtree(dirpath)
Helper to create a temp directory and clean it
Helper to create a temp directory and clean it
[ "Helper", "to", "create", "a", "temp", "directory", "and", "clean", "it" ]
def tempdir(): dirpath = tempfile.mkdtemp() try: yield dirpath finally: shutil.rmtree(dirpath)
[ "def", "tempdir", "(", ")", ":", "dirpath", "=", "tempfile", ".", "mkdtemp", "(", ")", "try", ":", "yield", "dirpath", "finally", ":", "shutil", ".", "rmtree", "(", "dirpath", ")" ]
Helper to create a temp directory and clean it
[ "Helper", "to", "create", "a", "temp", "directory", "and", "clean", "it" ]
[ "\"\"\"\n Helper to create a temp directory and clean it\n \"\"\"" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
import tempfile import shutil def tempdir(): dirpath = tempfile.mkdtemp() try: yield dirpath finally: shutil.rmtree(dirpath)
297
911
320b18d052c052ec2e7b11b4a4e30465d40fd408
tkisss/anndata
anndata/core/anndata.py
[ "BSD-3-Clause" ]
Python
_check_2d_shape
null
def _check_2d_shape(X): """Check shape of array or sparse matrix. Assure that X is always 2D: Unlike numpy we always deal with 2D arrays. """ if X.dtype.names is None and len(X.shape) != 2: raise ValueError('X needs to be 2-dimensional, not ' '{}-dimensional.'.format(len(X.shape)))
Check shape of array or sparse matrix. Assure that X is always 2D: Unlike numpy we always deal with 2D arrays.
Check shape of array or sparse matrix. Assure that X is always 2D: Unlike numpy we always deal with 2D arrays.
[ "Check", "shape", "of", "array", "or", "sparse", "matrix", ".", "Assure", "that", "X", "is", "always", "2D", ":", "Unlike", "numpy", "we", "always", "deal", "with", "2D", "arrays", "." ]
def _check_2d_shape(X): if X.dtype.names is None and len(X.shape) != 2: raise ValueError('X needs to be 2-dimensional, not ' '{}-dimensional.'.format(len(X.shape)))
[ "def", "_check_2d_shape", "(", "X", ")", ":", "if", "X", ".", "dtype", ".", "names", "is", "None", "and", "len", "(", "X", ".", "shape", ")", "!=", "2", ":", "raise", "ValueError", "(", "'X needs to be 2-dimensional, not '", "'{}-dimensional.'", ".", "format", "(", "len", "(", "X", ".", "shape", ")", ")", ")" ]
Check shape of array or sparse matrix.
[ "Check", "shape", "of", "array", "or", "sparse", "matrix", "." ]
[ "\"\"\"Check shape of array or sparse matrix.\n\n Assure that X is always 2D: Unlike numpy we always deal with 2D arrays.\n \"\"\"" ]
[ { "param": "X", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "X", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _check_2d_shape(X): if X.dtype.names is None and len(X.shape) != 2: raise ValueError('X needs to be 2-dimensional, not ' '{}-dimensional.'.format(len(X.shape)))
298
342
0c37757c13d197d3855aa8c26f0ad82ed174cf46
herbertludowieg/exatomic
exatomic/algorithms/orbital_util.py
[ "Apache-2.0" ]
Python
_check_column
<not_specific>
def _check_column(uni, df, key): """Sanity checking of columns in a given dataframe in the universe. Args: uni (:class:`~exatomic.core.universe.Universe`): a universe df (str): name of dataframe attribute in the universe key (str): column name in df Returns: key (str) if key in uni.df """ if key is None: if 'momatrix' in df: key = 'coef' elif 'orbital' in df: key = 'occupation' else: raise Exception("{} not supported".format(df)) err = '"{}" not in uni.{}.columns'.format if key not in getattr(uni, df).columns: raise Exception(err(key, df)) return key
Sanity checking of columns in a given dataframe in the universe. Args: uni (:class:`~exatomic.core.universe.Universe`): a universe df (str): name of dataframe attribute in the universe key (str): column name in df Returns: key (str) if key in uni.df
Sanity checking of columns in a given dataframe in the universe.
[ "Sanity", "checking", "of", "columns", "in", "a", "given", "dataframe", "in", "the", "universe", "." ]
def _check_column(uni, df, key): if key is None: if 'momatrix' in df: key = 'coef' elif 'orbital' in df: key = 'occupation' else: raise Exception("{} not supported".format(df)) err = '"{}" not in uni.{}.columns'.format if key not in getattr(uni, df).columns: raise Exception(err(key, df)) return key
[ "def", "_check_column", "(", "uni", ",", "df", ",", "key", ")", ":", "if", "key", "is", "None", ":", "if", "'momatrix'", "in", "df", ":", "key", "=", "'coef'", "elif", "'orbital'", "in", "df", ":", "key", "=", "'occupation'", "else", ":", "raise", "Exception", "(", "\"{} not supported\"", ".", "format", "(", "df", ")", ")", "err", "=", "'\"{}\" not in uni.{}.columns'", ".", "format", "if", "key", "not", "in", "getattr", "(", "uni", ",", "df", ")", ".", "columns", ":", "raise", "Exception", "(", "err", "(", "key", ",", "df", ")", ")", "return", "key" ]
Sanity checking of columns in a given dataframe in the universe.
[ "Sanity", "checking", "of", "columns", "in", "a", "given", "dataframe", "in", "the", "universe", "." ]
[ "\"\"\"Sanity checking of columns in a given dataframe in the universe.\n\n Args:\n uni (:class:`~exatomic.core.universe.Universe`): a universe\n df (str): name of dataframe attribute in the universe\n key (str): column name in df\n\n Returns:\n key (str) if key in uni.df\n \"\"\"" ]
[ { "param": "uni", "type": null }, { "param": "df", "type": null }, { "param": "key", "type": null } ]
{ "returns": [ { "docstring": "key (str) if key in uni.df", "docstring_tokens": [ "key", "(", "str", ")", "if", "key", "in", "uni", ".", "df" ], "type": null } ], "raises": [], "params": [ { "identifier": "uni", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "df", "type": null, "docstring": "name of dataframe attribute in the universe", "docstring_tokens": [ "name", "of", "dataframe", "attribute", "in", "the", "universe" ], "default": null, "is_optional": false }, { "identifier": "key", "type": null, "docstring": "column name in df", "docstring_tokens": [ "column", "name", "in", "df" ], "default": null, "is_optional": false } ], "outlier_params": [ { "identifier": "uni (", "type": null, "docstring": "`~exatomic.core.universe.Universe`): a universe", "docstring_tokens": [ "`", "~exatomic", ".", "core", ".", "universe", ".", "Universe", "`", ")", ":", "a", "universe" ], "default": null, "is_optional": null } ], "others": [] }
def _check_column(uni, df, key): if key is None: if 'momatrix' in df: key = 'coef' elif 'orbital' in df: key = 'occupation' else: raise Exception("{} not supported".format(df)) err = '"{}" not in uni.{}.columns'.format if key not in getattr(uni, df).columns: raise Exception(err(key, df)) return key
299
228
932779c0e4387ae783bb57df591e65bcb01ebecb
CDCgov/DCPC
lapps-grid/lib/galaxy/tools/imp_exp/unpack_tar_gz_archive.py
[ "Apache-2.0" ]
Python
check_archive
<not_specific>
def check_archive( archive_file, dest_dir ): """ Ensure that a tar archive has no absolute paths or relative paths outside the archive. """ with tarfile.open( archive_file, mode='r:gz' ) as archive_fp: for arc_path in archive_fp.getnames(): assert os.path.normpath( os.path.join( dest_dir, arc_path ) ).startswith( dest_dir.rstrip(os.sep) + os.sep ), \ "Archive member would extract outside target directory: %s" % arc_path return True
Ensure that a tar archive has no absolute paths or relative paths outside the archive.
Ensure that a tar archive has no absolute paths or relative paths outside the archive.
[ "Ensure", "that", "a", "tar", "archive", "has", "no", "absolute", "paths", "or", "relative", "paths", "outside", "the", "archive", "." ]
def check_archive( archive_file, dest_dir ): with tarfile.open( archive_file, mode='r:gz' ) as archive_fp: for arc_path in archive_fp.getnames(): assert os.path.normpath( os.path.join( dest_dir, arc_path ) ).startswith( dest_dir.rstrip(os.sep) + os.sep ), \ "Archive member would extract outside target directory: %s" % arc_path return True
[ "def", "check_archive", "(", "archive_file", ",", "dest_dir", ")", ":", "with", "tarfile", ".", "open", "(", "archive_file", ",", "mode", "=", "'r:gz'", ")", "as", "archive_fp", ":", "for", "arc_path", "in", "archive_fp", ".", "getnames", "(", ")", ":", "assert", "os", ".", "path", ".", "normpath", "(", "os", ".", "path", ".", "join", "(", "dest_dir", ",", "arc_path", ")", ")", ".", "startswith", "(", "dest_dir", ".", "rstrip", "(", "os", ".", "sep", ")", "+", "os", ".", "sep", ")", ",", "\"Archive member would extract outside target directory: %s\"", "%", "arc_path", "return", "True" ]
Ensure that a tar archive has no absolute paths or relative paths outside the archive.
[ "Ensure", "that", "a", "tar", "archive", "has", "no", "absolute", "paths", "or", "relative", "paths", "outside", "the", "archive", "." ]
[ "\"\"\"\n Ensure that a tar archive has no absolute paths or relative paths outside\n the archive.\n \"\"\"" ]
[ { "param": "archive_file", "type": null }, { "param": "dest_dir", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "archive_file", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "dest_dir", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import tarfile import os def check_archive( archive_file, dest_dir ): with tarfile.open( archive_file, mode='r:gz' ) as archive_fp: for arc_path in archive_fp.getnames(): assert os.path.normpath( os.path.join( dest_dir, arc_path ) ).startswith( dest_dir.rstrip(os.sep) + os.sep ), \ "Archive member would extract outside target directory: %s" % arc_path return True
300
975
fb68875215fce848af62b8298fd455c49e666e18
megvii-research/megfile
megfile/fs.py
[ "Apache-2.0", "MIT" ]
Python
fs_isdir
bool
def fs_isdir(path: PathLike, followlinks: bool = False) -> bool: ''' Test if a path is directory .. note:: The difference between this function and ``os.path.isdir`` is that this function regard symlink as file :param path: Given file path :param followlinks: False if regard symlink as file, else True :returns: True if the path is a directory, else False ''' if os.path.islink(path) and not followlinks: return False return os.path.isdir(path)
Test if a path is directory .. note:: The difference between this function and ``os.path.isdir`` is that this function regard symlink as file :param path: Given file path :param followlinks: False if regard symlink as file, else True :returns: True if the path is a directory, else False
Test if a path is directory note:. The difference between this function and ``os.path.isdir`` is that this function regard symlink as file
[ "Test", "if", "a", "path", "is", "directory", "note", ":", ".", "The", "difference", "between", "this", "function", "and", "`", "`", "os", ".", "path", ".", "isdir", "`", "`", "is", "that", "this", "function", "regard", "symlink", "as", "file" ]
def fs_isdir(path: PathLike, followlinks: bool = False) -> bool: if os.path.islink(path) and not followlinks: return False return os.path.isdir(path)
[ "def", "fs_isdir", "(", "path", ":", "PathLike", ",", "followlinks", ":", "bool", "=", "False", ")", "->", "bool", ":", "if", "os", ".", "path", ".", "islink", "(", "path", ")", "and", "not", "followlinks", ":", "return", "False", "return", "os", ".", "path", ".", "isdir", "(", "path", ")" ]
Test if a path is directory .. note::
[ "Test", "if", "a", "path", "is", "directory", "..", "note", "::" ]
[ "'''\n Test if a path is directory\n\n .. note::\n\n The difference between this function and ``os.path.isdir`` is that this function regard symlink as file\n\n :param path: Given file path\n :param followlinks: False if regard symlink as file, else True\n :returns: True if the path is a directory, else False\n\n '''" ]
[ { "param": "path", "type": "PathLike" }, { "param": "followlinks", "type": "bool" } ]
{ "returns": [ { "docstring": "True if the path is a directory, else False", "docstring_tokens": [ "True", "if", "the", "path", "is", "a", "directory", "else", "False" ], "type": null } ], "raises": [], "params": [ { "identifier": "path", "type": "PathLike", "docstring": "Given file path", "docstring_tokens": [ "Given", "file", "path" ], "default": null, "is_optional": null }, { "identifier": "followlinks", "type": "bool", "docstring": "False if regard symlink as file, else True", "docstring_tokens": [ "False", "if", "regard", "symlink", "as", "file", "else", "True" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os def fs_isdir(path: PathLike, followlinks: bool = False) -> bool: if os.path.islink(path) and not followlinks: return False return os.path.isdir(path)
301
57
357664668399863ce323e34df0428cd6a7040c4a
cguardia/questions
questions/validators.py
[ "MIT" ]
Python
numeric_validator
<not_specific>
def numeric_validator(validator: Validator, value: Any, form_data: Dict[str, Any]): """Validate if number value is within set limits. :param validator: The validator instance for the current question. :param value: The value to be validated. :param form_data: The dictionary containing from data entered for current form. :Returns: If validation passes, :data:`True`, else :data:`False`. """ max_value = float(validator.max_value) min_value = float(validator.min_value) result = True value = float(value) if value < min_value or max_value > 0 and value > max_value: result = False return result
Validate if number value is within set limits. :param validator: The validator instance for the current question. :param value: The value to be validated. :param form_data: The dictionary containing from data entered for current form. :Returns: If validation passes, :data:`True`, else :data:`False`.
Validate if number value is within set limits.
[ "Validate", "if", "number", "value", "is", "within", "set", "limits", "." ]
def numeric_validator(validator: Validator, value: Any, form_data: Dict[str, Any]): max_value = float(validator.max_value) min_value = float(validator.min_value) result = True value = float(value) if value < min_value or max_value > 0 and value > max_value: result = False return result
[ "def", "numeric_validator", "(", "validator", ":", "Validator", ",", "value", ":", "Any", ",", "form_data", ":", "Dict", "[", "str", ",", "Any", "]", ")", ":", "max_value", "=", "float", "(", "validator", ".", "max_value", ")", "min_value", "=", "float", "(", "validator", ".", "min_value", ")", "result", "=", "True", "value", "=", "float", "(", "value", ")", "if", "value", "<", "min_value", "or", "max_value", ">", "0", "and", "value", ">", "max_value", ":", "result", "=", "False", "return", "result" ]
Validate if number value is within set limits.
[ "Validate", "if", "number", "value", "is", "within", "set", "limits", "." ]
[ "\"\"\"Validate if number value is within set limits.\n\n :param validator:\n The validator instance for the current question.\n :param value:\n The value to be validated.\n :param form_data:\n The dictionary containing from data entered for current form.\n\n :Returns:\n If validation passes, :data:`True`, else :data:`False`.\n \"\"\"" ]
[ { "param": "validator", "type": "Validator" }, { "param": "value", "type": "Any" }, { "param": "form_data", "type": "Dict[str, Any]" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "validator", "type": "Validator", "docstring": "The validator instance for the current question.", "docstring_tokens": [ "The", "validator", "instance", "for", "the", "current", "question", "." ], "default": null, "is_optional": null }, { "identifier": "value", "type": "Any", "docstring": "The value to be validated.", "docstring_tokens": [ "The", "value", "to", "be", "validated", "." ], "default": null, "is_optional": null }, { "identifier": "form_data", "type": "Dict[str, Any]", "docstring": "The dictionary containing from data entered for current form.", "docstring_tokens": [ "The", "dictionary", "containing", "from", "data", "entered", "for", "current", "form", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [ { "identifier": "Returns", "docstring": "If validation passes, :data:`True`, else :data:`False`.", "docstring_tokens": [ "If", "validation", "passes", ":", "data", ":", "`", "True", "`", "else", ":", "data", ":", "`", "False", "`", "." ] } ] }
def numeric_validator(validator: Validator, value: Any, form_data: Dict[str, Any]): max_value = float(validator.max_value) min_value = float(validator.min_value) result = True value = float(value) if value < min_value or max_value > 0 and value > max_value: result = False return result
302
907
b35da1fb66211b3512488ba47f5073de4750fc55
lbragstad/fernet-inspector
fernet_inspector/core.py
[ "Apache-2.0" ]
Python
_restore_padding
<not_specific>
def _restore_padding(token): """Restore padding based on token size. :param token: token to restore padding on :returns: token with correct padding """ # Re-inflate the padding mod_returned = len(token) % 4 if mod_returned: missing_padding = 4 - mod_returned token += b'=' * missing_padding return token
Restore padding based on token size. :param token: token to restore padding on :returns: token with correct padding
Restore padding based on token size.
[ "Restore", "padding", "based", "on", "token", "size", "." ]
def _restore_padding(token): mod_returned = len(token) % 4 if mod_returned: missing_padding = 4 - mod_returned token += b'=' * missing_padding return token
[ "def", "_restore_padding", "(", "token", ")", ":", "mod_returned", "=", "len", "(", "token", ")", "%", "4", "if", "mod_returned", ":", "missing_padding", "=", "4", "-", "mod_returned", "token", "+=", "b'='", "*", "missing_padding", "return", "token" ]
Restore padding based on token size.
[ "Restore", "padding", "based", "on", "token", "size", "." ]
[ "\"\"\"Restore padding based on token size.\n\n :param token: token to restore padding on\n :returns: token with correct padding\n\n \"\"\"", "# Re-inflate the padding" ]
[ { "param": "token", "type": null } ]
{ "returns": [ { "docstring": "token with correct padding", "docstring_tokens": [ "token", "with", "correct", "padding" ], "type": null } ], "raises": [], "params": [ { "identifier": "token", "type": null, "docstring": "token to restore padding on", "docstring_tokens": [ "token", "to", "restore", "padding", "on" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _restore_padding(token): mod_returned = len(token) % 4 if mod_returned: missing_padding = 4 - mod_returned token += b'=' * missing_padding return token
303
209
25ca9380d29c3fffaa572be0a8ea8686dd1b17f3
MoustafaaAshraf/Disaster-Response-Message-Classification
models/train_classifier.py
[ "MIT" ]
Python
save_model
null
def save_model(model, model_filepath): ''' Saving a file of the trained model :param model: trained model :param model_filepath: location of the trained model file ''' # Creating a pathfile to save the model model_pkl = open(model_filepath, 'wb') # Saving the model into the created location pickle.dump(model, model_pkl) # Closing model_pkl.close()
Saving a file of the trained model :param model: trained model :param model_filepath: location of the trained model file
Saving a file of the trained model
[ "Saving", "a", "file", "of", "the", "trained", "model" ]
def save_model(model, model_filepath): model_pkl = open(model_filepath, 'wb') pickle.dump(model, model_pkl) model_pkl.close()
[ "def", "save_model", "(", "model", ",", "model_filepath", ")", ":", "model_pkl", "=", "open", "(", "model_filepath", ",", "'wb'", ")", "pickle", ".", "dump", "(", "model", ",", "model_pkl", ")", "model_pkl", ".", "close", "(", ")" ]
Saving a file of the trained model
[ "Saving", "a", "file", "of", "the", "trained", "model" ]
[ "'''\n Saving a file of the trained model\n :param model: trained model\n :param model_filepath: location of the trained model file\n '''", "# Creating a pathfile to save the model", "# Saving the model into the created location", "# Closing" ]
[ { "param": "model", "type": null }, { "param": "model_filepath", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "model", "type": null, "docstring": null, "docstring_tokens": [ "None" ], "default": null, "is_optional": null }, { "identifier": "model_filepath", "type": null, "docstring": "location of the trained model file", "docstring_tokens": [ "location", "of", "the", "trained", "model", "file" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import pickle def save_model(model, model_filepath): model_pkl = open(model_filepath, 'wb') pickle.dump(model, model_pkl) model_pkl.close()
304
157
a55d54a627f7136b12396650c9afe9f182e0d56f
ginogustavo/h1bvisa
cleaning.py
[ "MIT" ]
Python
clean_wages
<not_specific>
def clean_wages(w): """ Function to remove '$' symbol and other delimiters from wages column which consistes of str and float type values if the column entry is string type then remove the symbols else return the column value as it is """ if isinstance(w, str): return(w.replace('$', '').replace(',', '')) return(w)
Function to remove '$' symbol and other delimiters from wages column which consistes of str and float type values if the column entry is string type then remove the symbols else return the column value as it is
Function to remove '$' symbol and other delimiters from wages column which consistes of str and float type values if the column entry is string type then remove the symbols else return the column value as it is
[ "Function", "to", "remove", "'", "$", "'", "symbol", "and", "other", "delimiters", "from", "wages", "column", "which", "consistes", "of", "str", "and", "float", "type", "values", "if", "the", "column", "entry", "is", "string", "type", "then", "remove", "the", "symbols", "else", "return", "the", "column", "value", "as", "it", "is" ]
def clean_wages(w): if isinstance(w, str): return(w.replace('$', '').replace(',', '')) return(w)
[ "def", "clean_wages", "(", "w", ")", ":", "if", "isinstance", "(", "w", ",", "str", ")", ":", "return", "(", "w", ".", "replace", "(", "'$'", ",", "''", ")", ".", "replace", "(", "','", ",", "''", ")", ")", "return", "(", "w", ")" ]
Function to remove '$' symbol and other delimiters from wages column which consistes of str and float type values if the column entry is string type then remove the symbols else return the column value as it is
[ "Function", "to", "remove", "'", "$", "'", "symbol", "and", "other", "delimiters", "from", "wages", "column", "which", "consistes", "of", "str", "and", "float", "type", "values", "if", "the", "column", "entry", "is", "string", "type", "then", "remove", "the", "symbols", "else", "return", "the", "column", "value", "as", "it", "is" ]
[ "\"\"\"\r\n Function to remove '$' symbol and other delimiters from wages column which consistes of str and float type values\r\n if the column entry is string type then remove the symbols else return the column value as it is \r\n \"\"\"" ]
[ { "param": "w", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "w", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def clean_wages(w): if isinstance(w, str): return(w.replace('$', '').replace(',', '')) return(w)
306
503
534146f8def9815e3d8190130fb453ff96ac98f9
cancervariants/metakb
tests/conftest.py
[ "MIT" ]
Python
pmid_11423618
<not_specific>
def pmid_11423618(): """Create a test fixture for PMID 11423618.""" return { "id": "pmid:11423618", "label": "Gorre, Mercedes E., et al. \"Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification.\" Science 293.5531 (2001): 876-880.", # noqa: E501 "xrefs": [ "doi:10.1126/science.1062538" ], "type": "Document" }
Create a test fixture for PMID 11423618.
Create a test fixture for PMID 11423618.
[ "Create", "a", "test", "fixture", "for", "PMID", "11423618", "." ]
def pmid_11423618(): return { "id": "pmid:11423618", "label": "Gorre, Mercedes E., et al. \"Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification.\" Science 293.5531 (2001): 876-880.", "xrefs": [ "doi:10.1126/science.1062538" ], "type": "Document" }
[ "def", "pmid_11423618", "(", ")", ":", "return", "{", "\"id\"", ":", "\"pmid:11423618\"", ",", "\"label\"", ":", "\"Gorre, Mercedes E., et al. \\\"Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification.\\\" Science 293.5531 (2001): 876-880.\"", ",", "\"xrefs\"", ":", "[", "\"doi:10.1126/science.1062538\"", "]", ",", "\"type\"", ":", "\"Document\"", "}" ]
Create a test fixture for PMID 11423618.
[ "Create", "a", "test", "fixture", "for", "PMID", "11423618", "." ]
[ "\"\"\"Create a test fixture for PMID 11423618.\"\"\"", "# noqa: E501" ]
[]
{ "returns": [], "raises": [], "params": [], "outlier_params": [], "others": [] }
def pmid_11423618(): return { "id": "pmid:11423618", "label": "Gorre, Mercedes E., et al. \"Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification.\" Science 293.5531 (2001): 876-880.", "xrefs": [ "doi:10.1126/science.1062538" ], "type": "Document" }
307
713
164033dd319c0ba73f0d9d7a5d621770d594f85f
quic-pdangi/aimet
TrainingExtensions/torch/src/python/aimet_torch/torchscript_utils.py
[ "BSD-3-Clause" ]
Python
_coalesce_add_and_mm_nodes
null
def _coalesce_add_and_mm_nodes(ir_nodes_list: List[IrNode]): """ helper method to combine add and mm operation into addmm to map back to fc layer :param ir_nodes_list: List of ir_nodes to update connections for """ del_node_indices = [] for i, ir_node in enumerate(ir_nodes_list): if ir_node.node_type == 'add' and len(ir_node.inputs) == 1: producer_ir_node = ir_nodes_list[i-1] if producer_ir_node.node_type == 'mm' and len(producer_ir_node.outputs) == 1 and \ producer_ir_node.outputs[0] == ir_node.inputs[0]: producer_ir_node.outputs = ir_node.outputs producer_ir_node.node_type = 'addmm' del_node_indices.insert(0, i) for index in del_node_indices: del ir_nodes_list[index]
helper method to combine add and mm operation into addmm to map back to fc layer :param ir_nodes_list: List of ir_nodes to update connections for
helper method to combine add and mm operation into addmm to map back to fc layer
[ "helper", "method", "to", "combine", "add", "and", "mm", "operation", "into", "addmm", "to", "map", "back", "to", "fc", "layer" ]
def _coalesce_add_and_mm_nodes(ir_nodes_list: List[IrNode]): del_node_indices = [] for i, ir_node in enumerate(ir_nodes_list): if ir_node.node_type == 'add' and len(ir_node.inputs) == 1: producer_ir_node = ir_nodes_list[i-1] if producer_ir_node.node_type == 'mm' and len(producer_ir_node.outputs) == 1 and \ producer_ir_node.outputs[0] == ir_node.inputs[0]: producer_ir_node.outputs = ir_node.outputs producer_ir_node.node_type = 'addmm' del_node_indices.insert(0, i) for index in del_node_indices: del ir_nodes_list[index]
[ "def", "_coalesce_add_and_mm_nodes", "(", "ir_nodes_list", ":", "List", "[", "IrNode", "]", ")", ":", "del_node_indices", "=", "[", "]", "for", "i", ",", "ir_node", "in", "enumerate", "(", "ir_nodes_list", ")", ":", "if", "ir_node", ".", "node_type", "==", "'add'", "and", "len", "(", "ir_node", ".", "inputs", ")", "==", "1", ":", "producer_ir_node", "=", "ir_nodes_list", "[", "i", "-", "1", "]", "if", "producer_ir_node", ".", "node_type", "==", "'mm'", "and", "len", "(", "producer_ir_node", ".", "outputs", ")", "==", "1", "and", "producer_ir_node", ".", "outputs", "[", "0", "]", "==", "ir_node", ".", "inputs", "[", "0", "]", ":", "producer_ir_node", ".", "outputs", "=", "ir_node", ".", "outputs", "producer_ir_node", ".", "node_type", "=", "'addmm'", "del_node_indices", ".", "insert", "(", "0", ",", "i", ")", "for", "index", "in", "del_node_indices", ":", "del", "ir_nodes_list", "[", "index", "]" ]
helper method to combine add and mm operation into addmm to map back to fc layer
[ "helper", "method", "to", "combine", "add", "and", "mm", "operation", "into", "addmm", "to", "map", "back", "to", "fc", "layer" ]
[ "\"\"\"\n helper method to combine add and mm operation into addmm to map back to fc layer\n :param ir_nodes_list: List of ir_nodes to update connections for\n \"\"\"" ]
[ { "param": "ir_nodes_list", "type": "List[IrNode]" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "ir_nodes_list", "type": "List[IrNode]", "docstring": "List of ir_nodes to update connections for", "docstring_tokens": [ "List", "of", "ir_nodes", "to", "update", "connections", "for" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _coalesce_add_and_mm_nodes(ir_nodes_list: List[IrNode]): del_node_indices = [] for i, ir_node in enumerate(ir_nodes_list): if ir_node.node_type == 'add' and len(ir_node.inputs) == 1: producer_ir_node = ir_nodes_list[i-1] if producer_ir_node.node_type == 'mm' and len(producer_ir_node.outputs) == 1 and \ producer_ir_node.outputs[0] == ir_node.inputs[0]: producer_ir_node.outputs = ir_node.outputs producer_ir_node.node_type = 'addmm' del_node_indices.insert(0, i) for index in del_node_indices: del ir_nodes_list[index]
308
490
4aa13db698ad6d7140a4d7d5cd8d6f26dfc49427
mollypi/FinanceOps
returns.py
[ "MIT" ]
Python
max_pullup
<not_specific>
def max_pullup(df, window=None): """ Calculate the Maximum Pullup for all the individual columns in `df`. This gives the Max Pullup for each time-step, calculated either from the beginning or from the preceding window of the given length. If you want the highest pullup that has occurred through all time-steps, then you should call the `max()` function on the resulting DataFrame, for example: `max_pullup(df=df_prices).max()` Unlike the function `max_drawdown` which is typically calculated for the entire DataFrame `df` by setting `window=None`, it is often more useful to set the `window` parameter when calculating the Max Pullup using this function. This is because many stocks tend to have increasing prices over time, so the "pullup" or recovery from their historical lows is potentially infinite over time. So it may be more useful to only consider the pullup over e.g. 1-year periods by setting the `window` parameter accordingly. :param df: Pandas DataFrame typically with share-prices but could have any data. If the DataFrame contains data for more stocks, then the columns are the stock-tickers and the rows are the time-steps. :param window: If `None` then calculate the Max Pullup from the beginning. If an integer then calculate the Max Pullup for a rolling window of that length. :return: Pandas DataFrame with the Max Pullup time-series. """ if window is None: # Calculate Max Pullup from the beginning. max_pu = df / df.cummin() - 1.0 else: # Calculate Max Pullup for a rolling window. max_pu = df / df.rolling(window=window).min() - 1.0 return max_pu
Calculate the Maximum Pullup for all the individual columns in `df`. This gives the Max Pullup for each time-step, calculated either from the beginning or from the preceding window of the given length. If you want the highest pullup that has occurred through all time-steps, then you should call the `max()` function on the resulting DataFrame, for example: `max_pullup(df=df_prices).max()` Unlike the function `max_drawdown` which is typically calculated for the entire DataFrame `df` by setting `window=None`, it is often more useful to set the `window` parameter when calculating the Max Pullup using this function. This is because many stocks tend to have increasing prices over time, so the "pullup" or recovery from their historical lows is potentially infinite over time. So it may be more useful to only consider the pullup over e.g. 1-year periods by setting the `window` parameter accordingly. :param df: Pandas DataFrame typically with share-prices but could have any data. If the DataFrame contains data for more stocks, then the columns are the stock-tickers and the rows are the time-steps. :param window: If `None` then calculate the Max Pullup from the beginning. If an integer then calculate the Max Pullup for a rolling window of that length. :return: Pandas DataFrame with the Max Pullup time-series.
Calculate the Maximum Pullup for all the individual columns in `df`. This gives the Max Pullup for each time-step, calculated either from the beginning or from the preceding window of the given length. If you want the highest pullup that has occurred through all time-steps, then you should call the `max()` function on the resulting DataFrame, for example: `max_pullup(df=df_prices).max()`
[ "Calculate", "the", "Maximum", "Pullup", "for", "all", "the", "individual", "columns", "in", "`", "df", "`", ".", "This", "gives", "the", "Max", "Pullup", "for", "each", "time", "-", "step", "calculated", "either", "from", "the", "beginning", "or", "from", "the", "preceding", "window", "of", "the", "given", "length", ".", "If", "you", "want", "the", "highest", "pullup", "that", "has", "occurred", "through", "all", "time", "-", "steps", "then", "you", "should", "call", "the", "`", "max", "()", "`", "function", "on", "the", "resulting", "DataFrame", "for", "example", ":", "`", "max_pullup", "(", "df", "=", "df_prices", ")", ".", "max", "()", "`" ]
def max_pullup(df, window=None): if window is None: max_pu = df / df.cummin() - 1.0 else: max_pu = df / df.rolling(window=window).min() - 1.0 return max_pu
[ "def", "max_pullup", "(", "df", ",", "window", "=", "None", ")", ":", "if", "window", "is", "None", ":", "max_pu", "=", "df", "/", "df", ".", "cummin", "(", ")", "-", "1.0", "else", ":", "max_pu", "=", "df", "/", "df", ".", "rolling", "(", "window", "=", "window", ")", ".", "min", "(", ")", "-", "1.0", "return", "max_pu" ]
Calculate the Maximum Pullup for all the individual columns in `df`.
[ "Calculate", "the", "Maximum", "Pullup", "for", "all", "the", "individual", "columns", "in", "`", "df", "`", "." ]
[ "\"\"\"\n Calculate the Maximum Pullup for all the individual columns in `df`.\n\n This gives the Max Pullup for each time-step, calculated either\n from the beginning or from the preceding window of the given length.\n\n If you want the highest pullup that has occurred through all time-steps,\n then you should call the `max()` function on the resulting DataFrame,\n for example: `max_pullup(df=df_prices).max()`\n\n Unlike the function `max_drawdown` which is typically calculated for the\n entire DataFrame `df` by setting `window=None`, it is often more useful\n to set the `window` parameter when calculating the Max Pullup using this\n function. This is because many stocks tend to have increasing prices over\n time, so the \"pullup\" or recovery from their historical lows is potentially\n infinite over time. So it may be more useful to only consider the pullup\n over e.g. 1-year periods by setting the `window` parameter accordingly.\n\n :param df:\n Pandas DataFrame typically with share-prices but could have any data.\n If the DataFrame contains data for more stocks, then the columns are\n the stock-tickers and the rows are the time-steps.\n\n :param window:\n If `None` then calculate the Max Pullup from the beginning.\n If an integer then calculate the Max Pullup for a rolling window\n of that length.\n\n :return:\n Pandas DataFrame with the Max Pullup time-series.\n \"\"\"", "# Calculate Max Pullup from the beginning.", "# Calculate Max Pullup for a rolling window." ]
[ { "param": "df", "type": null }, { "param": "window", "type": null } ]
{ "returns": [ { "docstring": "Pandas DataFrame with the Max Pullup time-series.", "docstring_tokens": [ "Pandas", "DataFrame", "with", "the", "Max", "Pullup", "time", "-", "series", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "df", "type": null, "docstring": "Pandas DataFrame typically with share-prices but could have any data.\nIf the DataFrame contains data for more stocks, then the columns are\nthe stock-tickers and the rows are the time-steps.", "docstring_tokens": [ "Pandas", "DataFrame", "typically", "with", "share", "-", "prices", "but", "could", "have", "any", "data", ".", "If", "the", "DataFrame", "contains", "data", "for", "more", "stocks", "then", "the", "columns", "are", "the", "stock", "-", "tickers", "and", "the", "rows", "are", "the", "time", "-", "steps", "." ], "default": null, "is_optional": null }, { "identifier": "window", "type": null, "docstring": "If `None` then calculate the Max Pullup from the beginning.\nIf an integer then calculate the Max Pullup for a rolling window\nof that length.", "docstring_tokens": [ "If", "`", "None", "`", "then", "calculate", "the", "Max", "Pullup", "from", "the", "beginning", ".", "If", "an", "integer", "then", "calculate", "the", "Max", "Pullup", "for", "a", "rolling", "window", "of", "that", "length", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def max_pullup(df, window=None): if window is None: max_pu = df / df.cummin() - 1.0 else: max_pu = df / df.rolling(window=window).min() - 1.0 return max_pu
310
868
244aa1902b798e1cee62de97c4f43ebee221a68f
DataONEorg/d1_python
test_utilities/src/d1_test/pycharm.py
[ "Apache-2.0" ]
Python
_tag_empty_file
null
def _tag_empty_file(path): """If path is to empty file, write the text "<empty>" to the file. - This works around the issue that PyCharm PyCharm Diff & Merge errors out if one of the input files are empty. - Is probably less confusing when debugging """ if not os.path.getsize(path): with open(path, "w") as f: f.write("<empty>")
If path is to empty file, write the text "<empty>" to the file. - This works around the issue that PyCharm PyCharm Diff & Merge errors out if one of the input files are empty. - Is probably less confusing when debugging
If path is to empty file, write the text "" to the file. This works around the issue that PyCharm PyCharm Diff & Merge errors out if one of the input files are empty. - Is probably less confusing when debugging
[ "If", "path", "is", "to", "empty", "file", "write", "the", "text", "\"", "\"", "to", "the", "file", ".", "This", "works", "around", "the", "issue", "that", "PyCharm", "PyCharm", "Diff", "&", "Merge", "errors", "out", "if", "one", "of", "the", "input", "files", "are", "empty", ".", "-", "Is", "probably", "less", "confusing", "when", "debugging" ]
def _tag_empty_file(path): if not os.path.getsize(path): with open(path, "w") as f: f.write("<empty>")
[ "def", "_tag_empty_file", "(", "path", ")", ":", "if", "not", "os", ".", "path", ".", "getsize", "(", "path", ")", ":", "with", "open", "(", "path", ",", "\"w\"", ")", "as", "f", ":", "f", ".", "write", "(", "\"<empty>\"", ")" ]
If path is to empty file, write the text "<empty>" to the file.
[ "If", "path", "is", "to", "empty", "file", "write", "the", "text", "\"", "<empty", ">", "\"", "to", "the", "file", "." ]
[ "\"\"\"If path is to empty file, write the text \"<empty>\" to the file.\n\n - This works around the issue that PyCharm PyCharm Diff & Merge errors out if one\n of the input files are empty. - Is probably less confusing when debugging\n\n \"\"\"" ]
[ { "param": "path", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "path", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os def _tag_empty_file(path): if not os.path.getsize(path): with open(path, "w") as f: f.write("<empty>")
312
218
9d4271d5c29558973c5847595bfe215b0fe8d90f
Zaerog/python-docs-samples
functions/billing/main.py
[ "Apache-2.0" ]
Python
__disable_billing_for_project
null
def __disable_billing_for_project(project_name, projects): """ Disable billing for a project by removing its billing account @param {string} project_name Name of project disable billing on """ body = {'billingAccountName': ''} # Disable billing try: res = projects.updateBillingInfo(name=project_name, body=body).execute() print(f'Billing disabled: {json.dumps(res)}') except Exception: print('Failed to disable billing, possibly check permissions')
Disable billing for a project by removing its billing account @param {string} project_name Name of project disable billing on
Disable billing for a project by removing its billing account @param {string} project_name Name of project disable billing on
[ "Disable", "billing", "for", "a", "project", "by", "removing", "its", "billing", "account", "@param", "{", "string", "}", "project_name", "Name", "of", "project", "disable", "billing", "on" ]
def __disable_billing_for_project(project_name, projects): body = {'billingAccountName': ''} try: res = projects.updateBillingInfo(name=project_name, body=body).execute() print(f'Billing disabled: {json.dumps(res)}') except Exception: print('Failed to disable billing, possibly check permissions')
[ "def", "__disable_billing_for_project", "(", "project_name", ",", "projects", ")", ":", "body", "=", "{", "'billingAccountName'", ":", "''", "}", "try", ":", "res", "=", "projects", ".", "updateBillingInfo", "(", "name", "=", "project_name", ",", "body", "=", "body", ")", ".", "execute", "(", ")", "print", "(", "f'Billing disabled: {json.dumps(res)}'", ")", "except", "Exception", ":", "print", "(", "'Failed to disable billing, possibly check permissions'", ")" ]
Disable billing for a project by removing its billing account @param {string} project_name Name of project disable billing on
[ "Disable", "billing", "for", "a", "project", "by", "removing", "its", "billing", "account", "@param", "{", "string", "}", "project_name", "Name", "of", "project", "disable", "billing", "on" ]
[ "\"\"\"\n Disable billing for a project by removing its billing account\n @param {string} project_name Name of project disable billing on\n \"\"\"", "# Disable billing" ]
[ { "param": "project_name", "type": null }, { "param": "projects", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "project_name", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "projects", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import json def __disable_billing_for_project(project_name, projects): body = {'billingAccountName': ''} try: res = projects.updateBillingInfo(name=project_name, body=body).execute() print(f'Billing disabled: {json.dumps(res)}') except Exception: print('Failed to disable billing, possibly check permissions')
313
987
2a5b9649732caaa6ad1121e0d59c3c505d806b18
lrwb-aou/curation
tests/integration_tests/data_steward/cdr_cleaner/cleaning_rules/ppi_branching_test.py
[ "MIT" ]
Python
_fq_table_name
str
def _fq_table_name(table: Table) -> str: """ Get fully qualified name of a table :param table: the table to get the name of :return: table name in the form `project.dataset.table_id` """ return f'{table.project}.{table.dataset_id}.{table.table_id}'
Get fully qualified name of a table :param table: the table to get the name of :return: table name in the form `project.dataset.table_id`
Get fully qualified name of a table
[ "Get", "fully", "qualified", "name", "of", "a", "table" ]
def _fq_table_name(table: Table) -> str: return f'{table.project}.{table.dataset_id}.{table.table_id}'
[ "def", "_fq_table_name", "(", "table", ":", "Table", ")", "->", "str", ":", "return", "f'{table.project}.{table.dataset_id}.{table.table_id}'" ]
Get fully qualified name of a table
[ "Get", "fully", "qualified", "name", "of", "a", "table" ]
[ "\"\"\"\n Get fully qualified name of a table\n\n :param table: the table to get the name of\n :return: table name in the form `project.dataset.table_id`\n \"\"\"" ]
[ { "param": "table", "type": "Table" } ]
{ "returns": [ { "docstring": "table name in the form `project.dataset.table_id`", "docstring_tokens": [ "table", "name", "in", "the", "form", "`", "project", ".", "dataset", ".", "table_id", "`" ], "type": null } ], "raises": [], "params": [ { "identifier": "table", "type": "Table", "docstring": "the table to get the name of", "docstring_tokens": [ "the", "table", "to", "get", "the", "name", "of" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _fq_table_name(table: Table) -> str: return f'{table.project}.{table.dataset_id}.{table.table_id}'
314
866
8d258afb889602daff524d7be0469af380da8f87
Enzo-ltz/BachelorDIM-Lectures-Algorithms-2020
S1_algotools.py
[ "MIT" ]
Python
average
<not_specific>
def average(tab): ''' This funtion calculates the average of a list Args : tab: The list of number Returns the mean of the list Raises: Value error if no positive value is find ''' som = 0 n=0 for i in range(len(tab)): if tab[i] > 0: som = som + tab[i] n = n+1 if n>0: moy = som/n else: raise ValueError('no positive value found') return(moy) ''' What happens if som initilization is forgotten ? L'erreur NameError: name 'som' is not defined Il faut donc la déclarer What can you expect if all the values are below zero ? Le calcul ne les prendra pas en compte '''
This funtion calculates the average of a list Args : tab: The list of number Returns the mean of the list Raises: Value error if no positive value is find
This funtion calculates the average of a list Args : tab: The list of number Returns the mean of the list Value error if no positive value is find
[ "This", "funtion", "calculates", "the", "average", "of", "a", "list", "Args", ":", "tab", ":", "The", "list", "of", "number", "Returns", "the", "mean", "of", "the", "list", "Value", "error", "if", "no", "positive", "value", "is", "find" ]
def average(tab): som = 0 n=0 for i in range(len(tab)): if tab[i] > 0: som = som + tab[i] n = n+1 if n>0: moy = som/n else: raise ValueError('no positive value found') return(moy)
[ "def", "average", "(", "tab", ")", ":", "som", "=", "0", "n", "=", "0", "for", "i", "in", "range", "(", "len", "(", "tab", ")", ")", ":", "if", "tab", "[", "i", "]", ">", "0", ":", "som", "=", "som", "+", "tab", "[", "i", "]", "n", "=", "n", "+", "1", "if", "n", ">", "0", ":", "moy", "=", "som", "/", "n", "else", ":", "raise", "ValueError", "(", "'no positive value found'", ")", "return", "(", "moy", ")", "'''\n What happens if som initilization is forgotten ?\n L'erreur NameError: name 'som' is not defined\n Il faut donc la déclarer\n \n What can you expect if all the values are below zero ?\n Le calcul ne les prendra pas en compte \n '''" ]
This funtion calculates the average of a list Args : tab: The list of number
[ "This", "funtion", "calculates", "the", "average", "of", "a", "list", "Args", ":", "tab", ":", "The", "list", "of", "number" ]
[ "'''\n \n This funtion calculates the average of a list\n \n Args : \n tab: The list of number\n \n Returns the mean of the list\n \n Raises:\n Value error if no positive value is find\n '''", "'''\n What happens if som initilization is forgotten ?\n L'erreur NameError: name 'som' is not defined\n Il faut donc la déclarer\n \n What can you expect if all the values are below zero ?\n Le calcul ne les prendra pas en compte \n '''" ]
[ { "param": "tab", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "tab", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def average(tab): som = 0 n=0 for i in range(len(tab)): if tab[i] > 0: som = som + tab[i] n = n+1 if n>0: moy = som/n else: raise ValueError('no positive value found') return(moy)
315
458
e89be0e46a4e4f06c678ed62e880b446af83ee7d
yungone/Cilia
src/Utilities.py
[ "MIT" ]
Python
flen
<not_specific>
def flen(filename): """ File LENgth computes and returns the number of lines in a file. @filename <string> is path to a file. This is an epensive method to call for the whole file is read to determine the number of lines. returns: <integer> line count """ # Read and count lines. with open(filename, 'r') as infile: return sum((1 for line in infile))
File LENgth computes and returns the number of lines in a file. @filename <string> is path to a file. This is an epensive method to call for the whole file is read to determine the number of lines. returns: <integer> line count
File LENgth computes and returns the number of lines in a file. @filename is path to a file. This is an epensive method to call for the whole file is read to determine the number of lines. returns: line count
[ "File", "LENgth", "computes", "and", "returns", "the", "number", "of", "lines", "in", "a", "file", ".", "@filename", "is", "path", "to", "a", "file", ".", "This", "is", "an", "epensive", "method", "to", "call", "for", "the", "whole", "file", "is", "read", "to", "determine", "the", "number", "of", "lines", ".", "returns", ":", "line", "count" ]
def flen(filename): with open(filename, 'r') as infile: return sum((1 for line in infile))
[ "def", "flen", "(", "filename", ")", ":", "with", "open", "(", "filename", ",", "'r'", ")", "as", "infile", ":", "return", "sum", "(", "(", "1", "for", "line", "in", "infile", ")", ")" ]
File LENgth computes and returns the number of lines in a file.
[ "File", "LENgth", "computes", "and", "returns", "the", "number", "of", "lines", "in", "a", "file", "." ]
[ "\"\"\"\n\t\tFile LENgth computes and returns the number of lines in a file. @filename <string> is path to a file. This is an epensive method to call for the whole file is read to determine the number of lines.\n\t\t\n\t\treturns: <integer> line count\n\t\"\"\"", "# Read and count lines." ]
[ { "param": "filename", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "filename", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def flen(filename): with open(filename, 'r') as infile: return sum((1 for line in infile))
316
522
3b2206a3c64fbcf5d5a7d28a82c6e758a7a76d84
DBeath/feedsearch-gateway
gateway/utils.py
[ "MIT" ]
Python
truncate_integer
int
def truncate_integer(value: int, length: int = 10) -> int: """ Truncate an integer value to the desired length. :param value: integer to truncate :param length: desired length of integer :return: truncated integer """ val_length = len(str(value)) if val_length > length: diff = val_length - length return value // (10 ** diff) return value
Truncate an integer value to the desired length. :param value: integer to truncate :param length: desired length of integer :return: truncated integer
Truncate an integer value to the desired length.
[ "Truncate", "an", "integer", "value", "to", "the", "desired", "length", "." ]
def truncate_integer(value: int, length: int = 10) -> int: val_length = len(str(value)) if val_length > length: diff = val_length - length return value // (10 ** diff) return value
[ "def", "truncate_integer", "(", "value", ":", "int", ",", "length", ":", "int", "=", "10", ")", "->", "int", ":", "val_length", "=", "len", "(", "str", "(", "value", ")", ")", "if", "val_length", ">", "length", ":", "diff", "=", "val_length", "-", "length", "return", "value", "//", "(", "10", "**", "diff", ")", "return", "value" ]
Truncate an integer value to the desired length.
[ "Truncate", "an", "integer", "value", "to", "the", "desired", "length", "." ]
[ "\"\"\"\n Truncate an integer value to the desired length.\n\n :param value: integer to truncate\n :param length: desired length of integer\n :return: truncated integer\n \"\"\"" ]
[ { "param": "value", "type": "int" }, { "param": "length", "type": "int" } ]
{ "returns": [ { "docstring": null, "docstring_tokens": [ "None" ], "type": null } ], "raises": [], "params": [ { "identifier": "value", "type": "int", "docstring": "integer to truncate", "docstring_tokens": [ "integer", "to", "truncate" ], "default": null, "is_optional": null }, { "identifier": "length", "type": "int", "docstring": "desired length of integer", "docstring_tokens": [ "desired", "length", "of", "integer" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def truncate_integer(value: int, length: int = 10) -> int: val_length = len(str(value)) if val_length > length: diff = val_length - length return value // (10 ** diff) return value
317
868
454a77e9443f874cb912811365baf034e9360b6b
amhirsch/gla-covid-19
daily_pr/parse.py
[ "MIT" ]
Python
_str_to_int
int
def _str_to_int(number: str) -> int: """Parses a string to an integer with safegaurds for commas in numerical representation. """ try: return int(number.replace(',', '')) except ValueError: pass
Parses a string to an integer with safegaurds for commas in numerical representation.
Parses a string to an integer with safegaurds for commas in numerical representation.
[ "Parses", "a", "string", "to", "an", "integer", "with", "safegaurds", "for", "commas", "in", "numerical", "representation", "." ]
def _str_to_int(number: str) -> int: try: return int(number.replace(',', '')) except ValueError: pass
[ "def", "_str_to_int", "(", "number", ":", "str", ")", "->", "int", ":", "try", ":", "return", "int", "(", "number", ".", "replace", "(", "','", ",", "''", ")", ")", "except", "ValueError", ":", "pass" ]
Parses a string to an integer with safegaurds for commas in numerical representation.
[ "Parses", "a", "string", "to", "an", "integer", "with", "safegaurds", "for", "commas", "in", "numerical", "representation", "." ]
[ "\"\"\"Parses a string to an integer with safegaurds for commas in numerical\n representation.\n \"\"\"" ]
[ { "param": "number", "type": "str" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "number", "type": "str", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _str_to_int(number: str) -> int: try: return int(number.replace(',', '')) except ValueError: pass
318
815
9930d6778ff12b786721c238c8745bd6ae64369e
turnaround0/udacity-ai-p2-isolation
game_agent.py
[ "MIT" ]
Python
custom_score_2
<not_specific>
def custom_score_2(game, player): """Calculate the heuristic value of a game state from the point of view of the given player. Note: this function should be called from within a Player instance as `self.score()` -- you should not need to call this function directly. Parameters ---------- game : `isolation.Board` An instance of `isolation.Board` encoding the current state of the game (e.g., player locations and blocked cells). player : object A player instance in the current game (i.e., an object corresponding to one of the player objects `game.__player_1__` or `game.__player_2__`.) Returns ------- float The heuristic value of the current game state to the specified player. """ # Check game is end if game.is_loser(player): return float("-inf") if game.is_winner(player): return float("inf") # If player is close to center, it can go to many directions. # But, on corner, it have a few choices to move. w, h = game.width / 2., game.height / 2. own_y, own_x = game.get_player_location(player) opp_y, opp_x = game.get_player_location(game.get_opponent(player)) own_diff = float((h - own_y)**2 + (w - own_x)**2) opp_diff = float((h - opp_y)**2 + (w - opp_x)**2) # This tactic is to increase number of player moves, # and to decrease number of opponent moves. own_moves = len(game.get_legal_moves(player)) opp_moves = len(game.get_legal_moves(game.get_opponent(player))) # Check if player and opponent is on same quadrant # If then, distance from center should be multiplied. # Because player can attack opponents from center to corner. own_quadrant = opp_quadrant = 0 if own_x >= w: own_quadrant += 1 if own_y >= h: own_quadrant += 2 if opp_x >= w: opp_quadrant += 1 if opp_y >= h: opp_quadrant += 2 if own_quadrant == opp_quadrant: factor = 1. else: factor = 0.1 return float((opp_diff - own_diff) * factor + own_moves - opp_moves)
Calculate the heuristic value of a game state from the point of view of the given player. Note: this function should be called from within a Player instance as `self.score()` -- you should not need to call this function directly. Parameters ---------- game : `isolation.Board` An instance of `isolation.Board` encoding the current state of the game (e.g., player locations and blocked cells). player : object A player instance in the current game (i.e., an object corresponding to one of the player objects `game.__player_1__` or `game.__player_2__`.) Returns ------- float The heuristic value of the current game state to the specified player.
Calculate the heuristic value of a game state from the point of view of the given player. this function should be called from within a Player instance as `self.score()` -- you should not need to call this function directly. Parameters game : `isolation.Board` An instance of `isolation.Board` encoding the current state of the game . player : object A player instance in the current game Returns float The heuristic value of the current game state to the specified player.
[ "Calculate", "the", "heuristic", "value", "of", "a", "game", "state", "from", "the", "point", "of", "view", "of", "the", "given", "player", ".", "this", "function", "should", "be", "called", "from", "within", "a", "Player", "instance", "as", "`", "self", ".", "score", "()", "`", "--", "you", "should", "not", "need", "to", "call", "this", "function", "directly", ".", "Parameters", "game", ":", "`", "isolation", ".", "Board", "`", "An", "instance", "of", "`", "isolation", ".", "Board", "`", "encoding", "the", "current", "state", "of", "the", "game", ".", "player", ":", "object", "A", "player", "instance", "in", "the", "current", "game", "Returns", "float", "The", "heuristic", "value", "of", "the", "current", "game", "state", "to", "the", "specified", "player", "." ]
def custom_score_2(game, player): if game.is_loser(player): return float("-inf") if game.is_winner(player): return float("inf") w, h = game.width / 2., game.height / 2. own_y, own_x = game.get_player_location(player) opp_y, opp_x = game.get_player_location(game.get_opponent(player)) own_diff = float((h - own_y)**2 + (w - own_x)**2) opp_diff = float((h - opp_y)**2 + (w - opp_x)**2) own_moves = len(game.get_legal_moves(player)) opp_moves = len(game.get_legal_moves(game.get_opponent(player))) own_quadrant = opp_quadrant = 0 if own_x >= w: own_quadrant += 1 if own_y >= h: own_quadrant += 2 if opp_x >= w: opp_quadrant += 1 if opp_y >= h: opp_quadrant += 2 if own_quadrant == opp_quadrant: factor = 1. else: factor = 0.1 return float((opp_diff - own_diff) * factor + own_moves - opp_moves)
[ "def", "custom_score_2", "(", "game", ",", "player", ")", ":", "if", "game", ".", "is_loser", "(", "player", ")", ":", "return", "float", "(", "\"-inf\"", ")", "if", "game", ".", "is_winner", "(", "player", ")", ":", "return", "float", "(", "\"inf\"", ")", "w", ",", "h", "=", "game", ".", "width", "/", "2.", ",", "game", ".", "height", "/", "2.", "own_y", ",", "own_x", "=", "game", ".", "get_player_location", "(", "player", ")", "opp_y", ",", "opp_x", "=", "game", ".", "get_player_location", "(", "game", ".", "get_opponent", "(", "player", ")", ")", "own_diff", "=", "float", "(", "(", "h", "-", "own_y", ")", "**", "2", "+", "(", "w", "-", "own_x", ")", "**", "2", ")", "opp_diff", "=", "float", "(", "(", "h", "-", "opp_y", ")", "**", "2", "+", "(", "w", "-", "opp_x", ")", "**", "2", ")", "own_moves", "=", "len", "(", "game", ".", "get_legal_moves", "(", "player", ")", ")", "opp_moves", "=", "len", "(", "game", ".", "get_legal_moves", "(", "game", ".", "get_opponent", "(", "player", ")", ")", ")", "own_quadrant", "=", "opp_quadrant", "=", "0", "if", "own_x", ">=", "w", ":", "own_quadrant", "+=", "1", "if", "own_y", ">=", "h", ":", "own_quadrant", "+=", "2", "if", "opp_x", ">=", "w", ":", "opp_quadrant", "+=", "1", "if", "opp_y", ">=", "h", ":", "opp_quadrant", "+=", "2", "if", "own_quadrant", "==", "opp_quadrant", ":", "factor", "=", "1.", "else", ":", "factor", "=", "0.1", "return", "float", "(", "(", "opp_diff", "-", "own_diff", ")", "*", "factor", "+", "own_moves", "-", "opp_moves", ")" ]
Calculate the heuristic value of a game state from the point of view of the given player.
[ "Calculate", "the", "heuristic", "value", "of", "a", "game", "state", "from", "the", "point", "of", "view", "of", "the", "given", "player", "." ]
[ "\"\"\"Calculate the heuristic value of a game state from the point of view\n of the given player.\n\n Note: this function should be called from within a Player instance as\n `self.score()` -- you should not need to call this function directly.\n\n Parameters\n ----------\n game : `isolation.Board`\n An instance of `isolation.Board` encoding the current state of the\n game (e.g., player locations and blocked cells).\n\n player : object\n A player instance in the current game (i.e., an object corresponding to\n one of the player objects `game.__player_1__` or `game.__player_2__`.)\n\n Returns\n -------\n float\n The heuristic value of the current game state to the specified player.\n \"\"\"", "# Check game is end", "# If player is close to center, it can go to many directions.", "# But, on corner, it have a few choices to move.", "# This tactic is to increase number of player moves,", "# and to decrease number of opponent moves.", "# Check if player and opponent is on same quadrant", "# If then, distance from center should be multiplied.", "# Because player can attack opponents from center to corner." ]
[ { "param": "game", "type": null }, { "param": "player", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "game", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "player", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def custom_score_2(game, player): if game.is_loser(player): return float("-inf") if game.is_winner(player): return float("inf") w, h = game.width / 2., game.height / 2. own_y, own_x = game.get_player_location(player) opp_y, opp_x = game.get_player_location(game.get_opponent(player)) own_diff = float((h - own_y)**2 + (w - own_x)**2) opp_diff = float((h - opp_y)**2 + (w - opp_x)**2) own_moves = len(game.get_legal_moves(player)) opp_moves = len(game.get_legal_moves(game.get_opponent(player))) own_quadrant = opp_quadrant = 0 if own_x >= w: own_quadrant += 1 if own_y >= h: own_quadrant += 2 if opp_x >= w: opp_quadrant += 1 if opp_y >= h: opp_quadrant += 2 if own_quadrant == opp_quadrant: factor = 1. else: factor = 0.1 return float((opp_diff - own_diff) * factor + own_moves - opp_moves)
319
447
f8c9ffa0a8397735e9373a6fb1e7140e428e4bc1
dawedawe/traipor
app/training/plan_util.py
[ "ISC" ]
Python
sort_loads
<not_specific>
def sort_loads(plan): """sort loads in plan while keeping the positions of the loaded days""" loads = [] loaded_days = [] for index, load in enumerate(plan): if load > 0.0: loaded_days.append(index) loads.append(load) loads = sorted(loads) for i in loaded_days: plan[i] = loads.pop(0) return plan
sort loads in plan while keeping the positions of the loaded days
sort loads in plan while keeping the positions of the loaded days
[ "sort", "loads", "in", "plan", "while", "keeping", "the", "positions", "of", "the", "loaded", "days" ]
def sort_loads(plan): loads = [] loaded_days = [] for index, load in enumerate(plan): if load > 0.0: loaded_days.append(index) loads.append(load) loads = sorted(loads) for i in loaded_days: plan[i] = loads.pop(0) return plan
[ "def", "sort_loads", "(", "plan", ")", ":", "loads", "=", "[", "]", "loaded_days", "=", "[", "]", "for", "index", ",", "load", "in", "enumerate", "(", "plan", ")", ":", "if", "load", ">", "0.0", ":", "loaded_days", ".", "append", "(", "index", ")", "loads", ".", "append", "(", "load", ")", "loads", "=", "sorted", "(", "loads", ")", "for", "i", "in", "loaded_days", ":", "plan", "[", "i", "]", "=", "loads", ".", "pop", "(", "0", ")", "return", "plan" ]
sort loads in plan while keeping the positions of the loaded days
[ "sort", "loads", "in", "plan", "while", "keeping", "the", "positions", "of", "the", "loaded", "days" ]
[ "\"\"\"sort loads in plan while keeping the positions of the loaded days\"\"\"" ]
[ { "param": "plan", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "plan", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def sort_loads(plan): loads = [] loaded_days = [] for index, load in enumerate(plan): if load > 0.0: loaded_days.append(index) loads.append(load) loads = sorted(loads) for i in loaded_days: plan[i] = loads.pop(0) return plan
320
230
90bcf24dc2c601750c736ab336ed52b87f7bd4e4
MartinThoma/hwrt
hwrt/utils.py
[ "MIT" ]
Python
create_run_logfile
None
def create_run_logfile(folder: str) -> None: """Create a 'run.log' within folder. This file contains the time of the latest successful run. """ with open(os.path.join(folder, "run.log"), "w") as fp: datestring = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") fp.write("timestamp: '%s'" % datestring)
Create a 'run.log' within folder. This file contains the time of the latest successful run.
Create a 'run.log' within folder. This file contains the time of the latest successful run.
[ "Create", "a", "'", "run", ".", "log", "'", "within", "folder", ".", "This", "file", "contains", "the", "time", "of", "the", "latest", "successful", "run", "." ]
def create_run_logfile(folder: str) -> None: with open(os.path.join(folder, "run.log"), "w") as fp: datestring = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") fp.write("timestamp: '%s'" % datestring)
[ "def", "create_run_logfile", "(", "folder", ":", "str", ")", "->", "None", ":", "with", "open", "(", "os", ".", "path", ".", "join", "(", "folder", ",", "\"run.log\"", ")", ",", "\"w\"", ")", "as", "fp", ":", "datestring", "=", "datetime", ".", "datetime", ".", "utcnow", "(", ")", ".", "strftime", "(", "\"%Y-%m-%d %H:%M:%S\"", ")", "fp", ".", "write", "(", "\"timestamp: '%s'\"", "%", "datestring", ")" ]
Create a 'run.log' within folder.
[ "Create", "a", "'", "run", ".", "log", "'", "within", "folder", "." ]
[ "\"\"\"Create a 'run.log' within folder. This file contains the time of the\n latest successful run.\n \"\"\"" ]
[ { "param": "folder", "type": "str" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "folder", "type": "str", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import os import datetime def create_run_logfile(folder: str) -> None: with open(os.path.join(folder, "run.log"), "w") as fp: datestring = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S") fp.write("timestamp: '%s'" % datestring)
321
594
abb46c36a8bef3d973b36ae91eaf31c3a266595f
ghgindex/gh
ghgi/parser.py
[ "CC0-1.0" ]
Python
unstop
list
def unstop(cls, ingredient: list) -> list: """ Remove stopwords and prep mods from parsed ingredient""" out = [] prev_token = None mods = [] for token in ingredient[0]: if type(token[0]) is str: if token[0].lower() in cls.STOPWORDS: continue elif token[0].lower() in cls.PREP_MODS: mods += [token[0]] continue if token[0] == ',' and prev_token in [',', None]: prev_token = token[0] continue out += [token] if type(token[0]) is str: prev_token = token[0] # clean up dangling cruft left by removal of stopwords while out and out[-1][1] in ['CC', ',', 'TO']: del out[-1] return [out, ingredient[1], ingredient[2] + mods]
Remove stopwords and prep mods from parsed ingredient
Remove stopwords and prep mods from parsed ingredient
[ "Remove", "stopwords", "and", "prep", "mods", "from", "parsed", "ingredient" ]
def unstop(cls, ingredient: list) -> list: out = [] prev_token = None mods = [] for token in ingredient[0]: if type(token[0]) is str: if token[0].lower() in cls.STOPWORDS: continue elif token[0].lower() in cls.PREP_MODS: mods += [token[0]] continue if token[0] == ',' and prev_token in [',', None]: prev_token = token[0] continue out += [token] if type(token[0]) is str: prev_token = token[0] while out and out[-1][1] in ['CC', ',', 'TO']: del out[-1] return [out, ingredient[1], ingredient[2] + mods]
[ "def", "unstop", "(", "cls", ",", "ingredient", ":", "list", ")", "->", "list", ":", "out", "=", "[", "]", "prev_token", "=", "None", "mods", "=", "[", "]", "for", "token", "in", "ingredient", "[", "0", "]", ":", "if", "type", "(", "token", "[", "0", "]", ")", "is", "str", ":", "if", "token", "[", "0", "]", ".", "lower", "(", ")", "in", "cls", ".", "STOPWORDS", ":", "continue", "elif", "token", "[", "0", "]", ".", "lower", "(", ")", "in", "cls", ".", "PREP_MODS", ":", "mods", "+=", "[", "token", "[", "0", "]", "]", "continue", "if", "token", "[", "0", "]", "==", "','", "and", "prev_token", "in", "[", "','", ",", "None", "]", ":", "prev_token", "=", "token", "[", "0", "]", "continue", "out", "+=", "[", "token", "]", "if", "type", "(", "token", "[", "0", "]", ")", "is", "str", ":", "prev_token", "=", "token", "[", "0", "]", "while", "out", "and", "out", "[", "-", "1", "]", "[", "1", "]", "in", "[", "'CC'", ",", "','", ",", "'TO'", "]", ":", "del", "out", "[", "-", "1", "]", "return", "[", "out", ",", "ingredient", "[", "1", "]", ",", "ingredient", "[", "2", "]", "+", "mods", "]" ]
Remove stopwords and prep mods from parsed ingredient
[ "Remove", "stopwords", "and", "prep", "mods", "from", "parsed", "ingredient" ]
[ "\"\"\" Remove stopwords and prep mods from parsed ingredient\"\"\"", "# clean up dangling cruft left by removal of stopwords" ]
[ { "param": "cls", "type": null }, { "param": "ingredient", "type": "list" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "cls", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "ingredient", "type": "list", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def unstop(cls, ingredient: list) -> list: out = [] prev_token = None mods = [] for token in ingredient[0]: if type(token[0]) is str: if token[0].lower() in cls.STOPWORDS: continue elif token[0].lower() in cls.PREP_MODS: mods += [token[0]] continue if token[0] == ',' and prev_token in [',', None]: prev_token = token[0] continue out += [token] if type(token[0]) is str: prev_token = token[0] while out and out[-1][1] in ['CC', ',', 'TO']: del out[-1] return [out, ingredient[1], ingredient[2] + mods]
322
600
fd5b659e7876006c2c69b3cab6023c78b74cb60d
ejfitzgerald/agents-aea
scripts/update_package_versions.py
[ "Apache-2.0" ]
Python
inplace_change
None
def inplace_change(fp: Path, old_string: str, new_string: str) -> None: """Replace the occurence of a string with a new one in the provided file.""" with open(fp) as f: s = f.read() if old_string not in s: return with open(fp, "w") as f: s = s.replace(old_string, new_string) f.write(s)
Replace the occurence of a string with a new one in the provided file.
Replace the occurence of a string with a new one in the provided file.
[ "Replace", "the", "occurence", "of", "a", "string", "with", "a", "new", "one", "in", "the", "provided", "file", "." ]
def inplace_change(fp: Path, old_string: str, new_string: str) -> None: with open(fp) as f: s = f.read() if old_string not in s: return with open(fp, "w") as f: s = s.replace(old_string, new_string) f.write(s)
[ "def", "inplace_change", "(", "fp", ":", "Path", ",", "old_string", ":", "str", ",", "new_string", ":", "str", ")", "->", "None", ":", "with", "open", "(", "fp", ")", "as", "f", ":", "s", "=", "f", ".", "read", "(", ")", "if", "old_string", "not", "in", "s", ":", "return", "with", "open", "(", "fp", ",", "\"w\"", ")", "as", "f", ":", "s", "=", "s", ".", "replace", "(", "old_string", ",", "new_string", ")", "f", ".", "write", "(", "s", ")" ]
Replace the occurence of a string with a new one in the provided file.
[ "Replace", "the", "occurence", "of", "a", "string", "with", "a", "new", "one", "in", "the", "provided", "file", "." ]
[ "\"\"\"Replace the occurence of a string with a new one in the provided file.\"\"\"" ]
[ { "param": "fp", "type": "Path" }, { "param": "old_string", "type": "str" }, { "param": "new_string", "type": "str" } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "fp", "type": "Path", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "old_string", "type": "str", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "new_string", "type": "str", "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def inplace_change(fp: Path, old_string: str, new_string: str) -> None: with open(fp) as f: s = f.read() if old_string not in s: return with open(fp, "w") as f: s = s.replace(old_string, new_string) f.write(s)
323
978
80c038f49648d36c714702aed5bfb3645aec9824
robfalck/AoC2017
day21/day21.py
[ "Apache-2.0" ]
Python
encode_pattern
<not_specific>
def encode_pattern(mat): """ Encode the matrix into a hashable value. """ return tuple(mat.flatten().tolist())
Encode the matrix into a hashable value.
Encode the matrix into a hashable value.
[ "Encode", "the", "matrix", "into", "a", "hashable", "value", "." ]
def encode_pattern(mat): return tuple(mat.flatten().tolist())
[ "def", "encode_pattern", "(", "mat", ")", ":", "return", "tuple", "(", "mat", ".", "flatten", "(", ")", ".", "tolist", "(", ")", ")" ]
Encode the matrix into a hashable value.
[ "Encode", "the", "matrix", "into", "a", "hashable", "value", "." ]
[ "\"\"\"\n Encode the matrix into a hashable value.\n \"\"\"" ]
[ { "param": "mat", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "mat", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def encode_pattern(mat): return tuple(mat.flatten().tolist())
324
869
78a9f0a5983d1c08cfc8edd068974b198976ad6f
Ouranosinc/cowbird
setup.py
[ "MIT" ]
Python
_split_requirement
<not_specific>
def _split_requirement(requirement, version=False, python=False, merge=False): # type: (str, bool, bool, bool) -> Union[str, Tuple[str, str]] """ Splits a requirement package definition into it's name and version specification. Returns the appropriate part(s) according to :paramref:`version`. If ``True``, returns the operator and version string. The returned version in this case would be either the package's or the environment python's version string according to the value of :paramref:`python`. Otherwise, only returns the 'other part' of the requirement, which will be the plain package name without version or the complete ``package+version`` without ``python_version`` part. Package requirement format:: package [<|<=|==|>|>=|!= x.y.z][; python_version <|<=|==|>|>=|!= "x.y.z"] Returned values with provided arguments:: default: "<package>" python=True n/a version=True: ([pkg-op], [pkg-ver]) version=True,python=True: ([py-op], [py-ver]) version=True,merge=True: "<package> [pkg-op] [pkg-ver]" version=True,python=True,merge=True: "[python_version] [py-op] [py-ver]" :param requirement: full package string requirement. :param version: Retrieves the version operator and version number instead of only the package's name (without specifications). :param python: Retrieves the python operator and python version instead of the package's version. Must be combined with :paramref:`version`, otherwise doesn't do anything. :param merge: Nothing done if ``False`` (other arguments behave normally). If only :paramref:`version` is ``True``, merges the package name back with the version operator and number into a single string (if any version part), but without the python version part (if any). If both :paramref:`version` and :paramref:`python` are ``True`` combines back the part after ``;`` to form the python version specifier. :return: Extracted requirement part(s). Emtpy strings if parts cannot be found. """ idx_pyv = -1 if python else 0 if python and "python_version" not in requirement: return ("", "") if version and not merge else "" requirement = requirement.split("python_version")[idx_pyv].replace(";", "").replace("\"", "") op_str = "" pkg_name = requirement for operator in [">=", ">", "<=", "<", "!=", "==", "="]: if operator in requirement: op_str = operator pkg_name, requirement = requirement.split(operator, 1) break if not version: return pkg_name.strip() if op_str == "": pkg_name = requirement requirement = "" parts = (op_str, requirement.strip()) if merge and python: return "python_version {} \"{}\"".format(parts[0], parts[1]) if merge and version: return "{}{}{}".format(pkg_name, parts[0], parts[1]) return parts
Splits a requirement package definition into it's name and version specification. Returns the appropriate part(s) according to :paramref:`version`. If ``True``, returns the operator and version string. The returned version in this case would be either the package's or the environment python's version string according to the value of :paramref:`python`. Otherwise, only returns the 'other part' of the requirement, which will be the plain package name without version or the complete ``package+version`` without ``python_version`` part. Package requirement format:: package [<|<=|==|>|>=|!= x.y.z][; python_version <|<=|==|>|>=|!= "x.y.z"] Returned values with provided arguments:: default: "<package>" python=True n/a version=True: ([pkg-op], [pkg-ver]) version=True,python=True: ([py-op], [py-ver]) version=True,merge=True: "<package> [pkg-op] [pkg-ver]" version=True,python=True,merge=True: "[python_version] [py-op] [py-ver]" :param requirement: full package string requirement. :param version: Retrieves the version operator and version number instead of only the package's name (without specifications). :param python: Retrieves the python operator and python version instead of the package's version. Must be combined with :paramref:`version`, otherwise doesn't do anything. :param merge: Nothing done if ``False`` (other arguments behave normally). If only :paramref:`version` is ``True``, merges the package name back with the version operator and number into a single string (if any version part), but without the python version part (if any). If both :paramref:`version` and :paramref:`python` are ``True`` combines back the part after ``;`` to form the python version specifier. :return: Extracted requirement part(s). Emtpy strings if parts cannot be found.
Splits a requirement package definition into it's name and version specification. Returns the appropriate part(s) according to :paramref:`version`. If ``True``, returns the operator and version string. The returned version in this case would be either the package's or the environment python's version string according to the value of :paramref:`python`. Package requirement format:. Returned values with provided arguments:.
[ "Splits", "a", "requirement", "package", "definition", "into", "it", "'", "s", "name", "and", "version", "specification", ".", "Returns", "the", "appropriate", "part", "(", "s", ")", "according", "to", ":", "paramref", ":", "`", "version", "`", ".", "If", "`", "`", "True", "`", "`", "returns", "the", "operator", "and", "version", "string", ".", "The", "returned", "version", "in", "this", "case", "would", "be", "either", "the", "package", "'", "s", "or", "the", "environment", "python", "'", "s", "version", "string", "according", "to", "the", "value", "of", ":", "paramref", ":", "`", "python", "`", ".", "Package", "requirement", "format", ":", ".", "Returned", "values", "with", "provided", "arguments", ":", "." ]
def _split_requirement(requirement, version=False, python=False, merge=False): idx_pyv = -1 if python else 0 if python and "python_version" not in requirement: return ("", "") if version and not merge else "" requirement = requirement.split("python_version")[idx_pyv].replace(";", "").replace("\"", "") op_str = "" pkg_name = requirement for operator in [">=", ">", "<=", "<", "!=", "==", "="]: if operator in requirement: op_str = operator pkg_name, requirement = requirement.split(operator, 1) break if not version: return pkg_name.strip() if op_str == "": pkg_name = requirement requirement = "" parts = (op_str, requirement.strip()) if merge and python: return "python_version {} \"{}\"".format(parts[0], parts[1]) if merge and version: return "{}{}{}".format(pkg_name, parts[0], parts[1]) return parts
[ "def", "_split_requirement", "(", "requirement", ",", "version", "=", "False", ",", "python", "=", "False", ",", "merge", "=", "False", ")", ":", "idx_pyv", "=", "-", "1", "if", "python", "else", "0", "if", "python", "and", "\"python_version\"", "not", "in", "requirement", ":", "return", "(", "\"\"", ",", "\"\"", ")", "if", "version", "and", "not", "merge", "else", "\"\"", "requirement", "=", "requirement", ".", "split", "(", "\"python_version\"", ")", "[", "idx_pyv", "]", ".", "replace", "(", "\";\"", ",", "\"\"", ")", ".", "replace", "(", "\"\\\"\"", ",", "\"\"", ")", "op_str", "=", "\"\"", "pkg_name", "=", "requirement", "for", "operator", "in", "[", "\">=\"", ",", "\">\"", ",", "\"<=\"", ",", "\"<\"", ",", "\"!=\"", ",", "\"==\"", ",", "\"=\"", "]", ":", "if", "operator", "in", "requirement", ":", "op_str", "=", "operator", "pkg_name", ",", "requirement", "=", "requirement", ".", "split", "(", "operator", ",", "1", ")", "break", "if", "not", "version", ":", "return", "pkg_name", ".", "strip", "(", ")", "if", "op_str", "==", "\"\"", ":", "pkg_name", "=", "requirement", "requirement", "=", "\"\"", "parts", "=", "(", "op_str", ",", "requirement", ".", "strip", "(", ")", ")", "if", "merge", "and", "python", ":", "return", "\"python_version {} \\\"{}\\\"\"", ".", "format", "(", "parts", "[", "0", "]", ",", "parts", "[", "1", "]", ")", "if", "merge", "and", "version", ":", "return", "\"{}{}{}\"", ".", "format", "(", "pkg_name", ",", "parts", "[", "0", "]", ",", "parts", "[", "1", "]", ")", "return", "parts" ]
Splits a requirement package definition into it's name and version specification.
[ "Splits", "a", "requirement", "package", "definition", "into", "it", "'", "s", "name", "and", "version", "specification", "." ]
[ "# type: (str, bool, bool, bool) -> Union[str, Tuple[str, str]]", "\"\"\"\n Splits a requirement package definition into it's name and version specification.\n\n Returns the appropriate part(s) according to :paramref:`version`. If ``True``, returns the operator and version\n string. The returned version in this case would be either the package's or the environment python's version string\n according to the value of :paramref:`python`. Otherwise, only returns the 'other part' of the requirement, which\n will be the plain package name without version or the complete ``package+version`` without ``python_version`` part.\n\n Package requirement format::\n\n package [<|<=|==|>|>=|!= x.y.z][; python_version <|<=|==|>|>=|!= \"x.y.z\"]\n\n Returned values with provided arguments::\n\n default: \"<package>\"\n python=True n/a\n version=True: ([pkg-op], [pkg-ver])\n version=True,python=True: ([py-op], [py-ver])\n version=True,merge=True: \"<package> [pkg-op] [pkg-ver]\"\n version=True,python=True,merge=True: \"[python_version] [py-op] [py-ver]\"\n\n :param requirement: full package string requirement.\n :param version:\n Retrieves the version operator and version number instead of only the package's name (without specifications).\n :param python:\n Retrieves the python operator and python version instead of the package's version.\n Must be combined with :paramref:`version`, otherwise doesn't do anything.\n :param merge:\n Nothing done if ``False`` (other arguments behave normally).\n If only :paramref:`version` is ``True``, merges the package name back with the version operator and number into\n a single string (if any version part), but without the python version part (if any).\n If both :paramref:`version` and :paramref:`python` are ``True`` combines back the part after ``;`` to form\n the python version specifier.\n :return: Extracted requirement part(s). Emtpy strings if parts cannot be found.\n \"\"\"" ]
[ { "param": "requirement", "type": null }, { "param": "version", "type": null }, { "param": "python", "type": null }, { "param": "merge", "type": null } ]
{ "returns": [ { "docstring": "Extracted requirement part(s). Emtpy strings if parts cannot be found.", "docstring_tokens": [ "Extracted", "requirement", "part", "(", "s", ")", ".", "Emtpy", "strings", "if", "parts", "cannot", "be", "found", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "requirement", "type": null, "docstring": "full package string requirement.", "docstring_tokens": [ "full", "package", "string", "requirement", "." ], "default": null, "is_optional": null }, { "identifier": "version", "type": null, "docstring": "Retrieves the version operator and version number instead of only the package's name (without specifications).", "docstring_tokens": [ "Retrieves", "the", "version", "operator", "and", "version", "number", "instead", "of", "only", "the", "package", "'", "s", "name", "(", "without", "specifications", ")", "." ], "default": null, "is_optional": null }, { "identifier": "python", "type": null, "docstring": "Retrieves the python operator and python version instead of the package's version.\nMust be combined with :paramref:`version`, otherwise doesn't do anything.", "docstring_tokens": [ "Retrieves", "the", "python", "operator", "and", "python", "version", "instead", "of", "the", "package", "'", "s", "version", ".", "Must", "be", "combined", "with", ":", "paramref", ":", "`", "version", "`", "otherwise", "doesn", "'", "t", "do", "anything", "." ], "default": null, "is_optional": null }, { "identifier": "merge", "type": null, "docstring": "Nothing done if ``False`` (other arguments behave normally).\nIf only :paramref:`version` is ``True``, merges the package name back with the version operator and number into\na single string (if any version part), but without the python version part (if any).\nIf both :paramref:`version` and :paramref:`python` are ``True`` combines back the part after ``;`` to form\nthe python version specifier.", "docstring_tokens": [ "Nothing", "done", "if", "`", "`", "False", "`", "`", "(", "other", "arguments", "behave", "normally", ")", ".", "If", "only", ":", "paramref", ":", "`", "version", "`", "is", "`", "`", "True", "`", "`", "merges", "the", "package", "name", "back", "with", "the", "version", "operator", "and", "number", "into", "a", "single", "string", "(", "if", "any", "version", "part", ")", "but", "without", "the", "python", "version", "part", "(", "if", "any", ")", ".", "If", "both", ":", "paramref", ":", "`", "version", "`", "and", ":", "paramref", ":", "`", "python", "`", "are", "`", "`", "True", "`", "`", "combines", "back", "the", "part", "after", "`", "`", ";", "`", "`", "to", "form", "the", "python", "version", "specifier", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _split_requirement(requirement, version=False, python=False, merge=False): idx_pyv = -1 if python else 0 if python and "python_version" not in requirement: return ("", "") if version and not merge else "" requirement = requirement.split("python_version")[idx_pyv].replace(";", "").replace("\"", "") op_str = "" pkg_name = requirement for operator in [">=", ">", "<=", "<", "!=", "==", "="]: if operator in requirement: op_str = operator pkg_name, requirement = requirement.split(operator, 1) break if not version: return pkg_name.strip() if op_str == "": pkg_name = requirement requirement = "" parts = (op_str, requirement.strip()) if merge and python: return "python_version {} \"{}\"".format(parts[0], parts[1]) if merge and version: return "{}{}{}".format(pkg_name, parts[0], parts[1]) return parts
325
31
462982d8e43ae9a5a9f7901259d7fa159bdc91ab
panchiwalashivani/neuroconv
BonsaiRecordingExtractor.py
[ "Apache-2.0" ]
Python
find_soup
<not_specific>
def find_soup(soup, **kwargs): """ Raise error when no matching text is found in soup Parameters ---------- soup : BeautifulSoup object kwargs : parameters to pass into find """ if soup.find(**kwargs) is None: raise ValueError( f"Cannot find text matching {kwargs} in file. Check if specified file path is correct" ) return soup.find(**kwargs)
Raise error when no matching text is found in soup Parameters ---------- soup : BeautifulSoup object kwargs : parameters to pass into find
Raise error when no matching text is found in soup Parameters soup : BeautifulSoup object kwargs : parameters to pass into find
[ "Raise", "error", "when", "no", "matching", "text", "is", "found", "in", "soup", "Parameters", "soup", ":", "BeautifulSoup", "object", "kwargs", ":", "parameters", "to", "pass", "into", "find" ]
def find_soup(soup, **kwargs): if soup.find(**kwargs) is None: raise ValueError( f"Cannot find text matching {kwargs} in file. Check if specified file path is correct" ) return soup.find(**kwargs)
[ "def", "find_soup", "(", "soup", ",", "**", "kwargs", ")", ":", "if", "soup", ".", "find", "(", "**", "kwargs", ")", "is", "None", ":", "raise", "ValueError", "(", "f\"Cannot find text matching {kwargs} in file. Check if specified file path is correct\"", ")", "return", "soup", ".", "find", "(", "**", "kwargs", ")" ]
Raise error when no matching text is found in soup Parameters
[ "Raise", "error", "when", "no", "matching", "text", "is", "found", "in", "soup", "Parameters" ]
[ "\"\"\"\n Raise error when no matching text is found in soup\n\n Parameters\n ----------\n soup : BeautifulSoup object \n kwargs : parameters to pass into find\n \"\"\"" ]
[ { "param": "soup", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "soup", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def find_soup(soup, **kwargs): if soup.find(**kwargs) is None: raise ValueError( f"Cannot find text matching {kwargs} in file. Check if specified file path is correct" ) return soup.find(**kwargs)
326
596
2112933751835c522c87b9c5261f35ac4ccf9d54
copumpkin/pants
src/python/pants/engine/scheduler.py
[ "Apache-2.0" ]
Python
failure
<not_specific>
def failure(cls, error): """Create a failure result. A failure result represent a run with a fatal error. It presents the error but no products. :param error: The execution error encountered. :type error: :class:`pants.base.exceptions.TaskError` :rtype: `ExecutionResult` """ return cls(error=error, root_products=None)
Create a failure result. A failure result represent a run with a fatal error. It presents the error but no products. :param error: The execution error encountered. :type error: :class:`pants.base.exceptions.TaskError` :rtype: `ExecutionResult`
Create a failure result. A failure result represent a run with a fatal error. It presents the error but no products.
[ "Create", "a", "failure", "result", ".", "A", "failure", "result", "represent", "a", "run", "with", "a", "fatal", "error", ".", "It", "presents", "the", "error", "but", "no", "products", "." ]
def failure(cls, error): return cls(error=error, root_products=None)
[ "def", "failure", "(", "cls", ",", "error", ")", ":", "return", "cls", "(", "error", "=", "error", ",", "root_products", "=", "None", ")" ]
Create a failure result.
[ "Create", "a", "failure", "result", "." ]
[ "\"\"\"Create a failure result.\n\n A failure result represent a run with a fatal error. It presents the error but no\n products.\n\n :param error: The execution error encountered.\n :type error: :class:`pants.base.exceptions.TaskError`\n :rtype: `ExecutionResult`\n \"\"\"" ]
[ { "param": "cls", "type": null }, { "param": "error", "type": null } ]
{ "returns": [ { "docstring": null, "docstring_tokens": [ "None" ], "type": "`ExecutionResult`" } ], "raises": [], "params": [ { "identifier": "cls", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "error", "type": null, "docstring": "The execution error encountered.", "docstring_tokens": [ "The", "execution", "error", "encountered", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def failure(cls, error): return cls(error=error, root_products=None)
327
957
7a4eadc60c7f5d7e9df279c8ed4e0f27684700d0
softdevteam/warmup_stats
warmup/krun_results.py
[ "Apache-2.0", "MIT-0", "MIT" ]
Python
read_krun_results_file
<not_specific>
def read_krun_results_file(results_file): """Return the JSON data stored in a Krun results file. """ results = None with bz2.BZ2File(results_file, 'rb') as file_: results = json.loads(file_.read()) return results return None
Return the JSON data stored in a Krun results file.
Return the JSON data stored in a Krun results file.
[ "Return", "the", "JSON", "data", "stored", "in", "a", "Krun", "results", "file", "." ]
def read_krun_results_file(results_file): results = None with bz2.BZ2File(results_file, 'rb') as file_: results = json.loads(file_.read()) return results return None
[ "def", "read_krun_results_file", "(", "results_file", ")", ":", "results", "=", "None", "with", "bz2", ".", "BZ2File", "(", "results_file", ",", "'rb'", ")", "as", "file_", ":", "results", "=", "json", ".", "loads", "(", "file_", ".", "read", "(", ")", ")", "return", "results", "return", "None" ]
Return the JSON data stored in a Krun results file.
[ "Return", "the", "JSON", "data", "stored", "in", "a", "Krun", "results", "file", "." ]
[ "\"\"\"Return the JSON data stored in a Krun results file.\n \"\"\"" ]
[ { "param": "results_file", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "results_file", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import bz2 import json def read_krun_results_file(results_file): results = None with bz2.BZ2File(results_file, 'rb') as file_: results = json.loads(file_.read()) return results return None
328
908
914085ef72b1ddbfd2e924b1cbf3154431a99276
QISKit/qiskit-sdk-py
qiskit/transpiler/passes/routing/swap_strategies/pauli_2q_evolution_commutation.py
[ "Apache-2.0" ]
Python
summands_commute
bool
def summands_commute(operator: SparsePauliOp) -> bool: """Check if all summands in the evolved operator commute. Args: operator: The operator to check if all its summands commute. Returns: True if all summands commute, False otherwise. """ # get a list of summands that commute commuting_subparts = operator.paulis.group_qubit_wise_commuting() # if all commute we only have one summand! return len(commuting_subparts) == 1
Check if all summands in the evolved operator commute. Args: operator: The operator to check if all its summands commute. Returns: True if all summands commute, False otherwise.
Check if all summands in the evolved operator commute.
[ "Check", "if", "all", "summands", "in", "the", "evolved", "operator", "commute", "." ]
def summands_commute(operator: SparsePauliOp) -> bool: commuting_subparts = operator.paulis.group_qubit_wise_commuting() return len(commuting_subparts) == 1
[ "def", "summands_commute", "(", "operator", ":", "SparsePauliOp", ")", "->", "bool", ":", "commuting_subparts", "=", "operator", ".", "paulis", ".", "group_qubit_wise_commuting", "(", ")", "return", "len", "(", "commuting_subparts", ")", "==", "1" ]
Check if all summands in the evolved operator commute.
[ "Check", "if", "all", "summands", "in", "the", "evolved", "operator", "commute", "." ]
[ "\"\"\"Check if all summands in the evolved operator commute.\n\n Args:\n operator: The operator to check if all its summands commute.\n\n Returns:\n True if all summands commute, False otherwise.\n \"\"\"", "# get a list of summands that commute", "# if all commute we only have one summand!" ]
[ { "param": "operator", "type": "SparsePauliOp" } ]
{ "returns": [ { "docstring": "True if all summands commute, False otherwise.", "docstring_tokens": [ "True", "if", "all", "summands", "commute", "False", "otherwise", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "operator", "type": "SparsePauliOp", "docstring": "The operator to check if all its summands commute.", "docstring_tokens": [ "The", "operator", "to", "check", "if", "all", "its", "summands", "commute", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def summands_commute(operator: SparsePauliOp) -> bool: commuting_subparts = operator.paulis.group_qubit_wise_commuting() return len(commuting_subparts) == 1
329
348
639575c5891df1c628bda56d85dd31b9d6ca3543
jjhuang/django-anonymizer
anonymizer/replacers.py
[ "MIT" ]
Python
email
<not_specific>
def email(anon, obj, field, val): """ Generates a random email address. """ return anon.faker.email(field=field)
Generates a random email address.
Generates a random email address.
[ "Generates", "a", "random", "email", "address", "." ]
def email(anon, obj, field, val): return anon.faker.email(field=field)
[ "def", "email", "(", "anon", ",", "obj", ",", "field", ",", "val", ")", ":", "return", "anon", ".", "faker", ".", "email", "(", "field", "=", "field", ")" ]
Generates a random email address.
[ "Generates", "a", "random", "email", "address", "." ]
[ "\"\"\"\n Generates a random email address.\n \"\"\"" ]
[ { "param": "anon", "type": null }, { "param": "obj", "type": null }, { "param": "field", "type": null }, { "param": "val", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "anon", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "obj", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "field", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "val", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def email(anon, obj, field, val): return anon.faker.email(field=field)
330
1,022
c3a7f5d559117a04284aab27f6f1a3cd6d5d3236
kokyriakidis/bcbio-nextgen
bcbio/distributed/ipythontasks.py
[ "MIT" ]
Python
apply
<not_specific>
def apply(object, args=None, kwargs=None): """Python3 apply replacement for double unpacking of inputs during apply. Thanks to: https://github.com/stefanholek/apply """ if args is None: args = () if kwargs is None: kwargs = {} return object(*args, **kwargs)
Python3 apply replacement for double unpacking of inputs during apply. Thanks to: https://github.com/stefanholek/apply
Python3 apply replacement for double unpacking of inputs during apply.
[ "Python3", "apply", "replacement", "for", "double", "unpacking", "of", "inputs", "during", "apply", "." ]
def apply(object, args=None, kwargs=None): if args is None: args = () if kwargs is None: kwargs = {} return object(*args, **kwargs)
[ "def", "apply", "(", "object", ",", "args", "=", "None", ",", "kwargs", "=", "None", ")", ":", "if", "args", "is", "None", ":", "args", "=", "(", ")", "if", "kwargs", "is", "None", ":", "kwargs", "=", "{", "}", "return", "object", "(", "*", "args", ",", "**", "kwargs", ")" ]
Python3 apply replacement for double unpacking of inputs during apply.
[ "Python3", "apply", "replacement", "for", "double", "unpacking", "of", "inputs", "during", "apply", "." ]
[ "\"\"\"Python3 apply replacement for double unpacking of inputs during apply.\n\n Thanks to: https://github.com/stefanholek/apply\n \"\"\"" ]
[ { "param": "object", "type": null }, { "param": "args", "type": null }, { "param": "kwargs", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "object", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "args", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "kwargs", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def apply(object, args=None, kwargs=None): if args is None: args = () if kwargs is None: kwargs = {} return object(*args, **kwargs)
331
169
b11ce15ff742ec149db808f567017fc64131d6ca
azadoks/aiida-core
aiida/tools/visualization/graph.py
[ "MIT", "BSD-3-Clause" ]
Python
_add_graphviz_edge
<not_specific>
def _add_graphviz_edge(graph, in_node, out_node, style=None): """add graphviz edge between two nodes :param graph: the graphviz.DiGraph to add the edge to :param in_node: the head node :param out_node: the tail node :param style: the graphviz style (Default value = None) :type style: dict or None """ if style is None: style = {} # coerce node style values to strings style = {k: str(v) for k, v in style.items()} return graph.edge(f'N{in_node.pk}', f'N{out_node.pk}', **style)
add graphviz edge between two nodes :param graph: the graphviz.DiGraph to add the edge to :param in_node: the head node :param out_node: the tail node :param style: the graphviz style (Default value = None) :type style: dict or None
add graphviz edge between two nodes
[ "add", "graphviz", "edge", "between", "two", "nodes" ]
def _add_graphviz_edge(graph, in_node, out_node, style=None): if style is None: style = {} style = {k: str(v) for k, v in style.items()} return graph.edge(f'N{in_node.pk}', f'N{out_node.pk}', **style)
[ "def", "_add_graphviz_edge", "(", "graph", ",", "in_node", ",", "out_node", ",", "style", "=", "None", ")", ":", "if", "style", "is", "None", ":", "style", "=", "{", "}", "style", "=", "{", "k", ":", "str", "(", "v", ")", "for", "k", ",", "v", "in", "style", ".", "items", "(", ")", "}", "return", "graph", ".", "edge", "(", "f'N{in_node.pk}'", ",", "f'N{out_node.pk}'", ",", "**", "style", ")" ]
add graphviz edge between two nodes
[ "add", "graphviz", "edge", "between", "two", "nodes" ]
[ "\"\"\"add graphviz edge between two nodes\n\n :param graph: the graphviz.DiGraph to add the edge to\n :param in_node: the head node\n :param out_node: the tail node\n :param style: the graphviz style (Default value = None)\n :type style: dict or None\n \"\"\"", "# coerce node style values to strings" ]
[ { "param": "graph", "type": null }, { "param": "in_node", "type": null }, { "param": "out_node", "type": null }, { "param": "style", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "graph", "type": null, "docstring": "the graphviz.DiGraph to add the edge to", "docstring_tokens": [ "the", "graphviz", ".", "DiGraph", "to", "add", "the", "edge", "to" ], "default": null, "is_optional": null }, { "identifier": "in_node", "type": null, "docstring": "the head node", "docstring_tokens": [ "the", "head", "node" ], "default": null, "is_optional": null }, { "identifier": "out_node", "type": null, "docstring": "the tail node", "docstring_tokens": [ "the", "tail", "node" ], "default": null, "is_optional": null }, { "identifier": "style", "type": null, "docstring": "the graphviz style (Default value = None)", "docstring_tokens": [ "the", "graphviz", "style", "(", "Default", "value", "=", "None", ")" ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _add_graphviz_edge(graph, in_node, out_node, style=None): if style is None: style = {} style = {k: str(v) for k, v in style.items()} return graph.edge(f'N{in_node.pk}', f'N{out_node.pk}', **style)
333
504
4efb8100915f2e5fdc23d323a15fe8496bfd82ef
abattery/falken
service/learner/brains/observation_preprocessor.py
[ "Apache-2.0" ]
Python
_get_from_nest
<not_specific>
def _get_from_nest(nest, path): """Return element from a dictionary-only nest using path specified as list. Args: nest: A nested dictionary. path: A list of strings specifying a nested element. Returns: An leaf or subnest of the input nest. """ if not path or not nest: return nest return _get_from_nest(nest.get(path[0], None), path[1:])
Return element from a dictionary-only nest using path specified as list. Args: nest: A nested dictionary. path: A list of strings specifying a nested element. Returns: An leaf or subnest of the input nest.
Return element from a dictionary-only nest using path specified as list.
[ "Return", "element", "from", "a", "dictionary", "-", "only", "nest", "using", "path", "specified", "as", "list", "." ]
def _get_from_nest(nest, path): if not path or not nest: return nest return _get_from_nest(nest.get(path[0], None), path[1:])
[ "def", "_get_from_nest", "(", "nest", ",", "path", ")", ":", "if", "not", "path", "or", "not", "nest", ":", "return", "nest", "return", "_get_from_nest", "(", "nest", ".", "get", "(", "path", "[", "0", "]", ",", "None", ")", ",", "path", "[", "1", ":", "]", ")" ]
Return element from a dictionary-only nest using path specified as list.
[ "Return", "element", "from", "a", "dictionary", "-", "only", "nest", "using", "path", "specified", "as", "list", "." ]
[ "\"\"\"Return element from a dictionary-only nest using path specified as list.\n\n Args:\n nest: A nested dictionary.\n path: A list of strings specifying a nested element.\n Returns:\n An leaf or subnest of the input nest.\n \"\"\"" ]
[ { "param": "nest", "type": null }, { "param": "path", "type": null } ]
{ "returns": [ { "docstring": "An leaf or subnest of the input nest.", "docstring_tokens": [ "An", "leaf", "or", "subnest", "of", "the", "input", "nest", "." ], "type": null } ], "raises": [], "params": [ { "identifier": "nest", "type": null, "docstring": "A nested dictionary.", "docstring_tokens": [ "A", "nested", "dictionary", "." ], "default": null, "is_optional": null }, { "identifier": "path", "type": null, "docstring": "A list of strings specifying a nested element.", "docstring_tokens": [ "A", "list", "of", "strings", "specifying", "a", "nested", "element", "." ], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def _get_from_nest(nest, path): if not path or not nest: return nest return _get_from_nest(nest.get(path[0], None), path[1:])
334
464
91809908f1eccf694a7928861c277a83294a1ec9
AntiCompositeNumber/AntiCompositeBot
src/BadGPS.py
[ "Apache-2.0" ]
Python
save_page
null
def save_page(page, summary): """Save the page to the wiki, retrying once if it doesn't work.""" try: page.save(summary=summary, botflag=True) except Exception: print("Save failed, trying again soon") time.sleep(15) page.save(summary=summary, botflag=True)
Save the page to the wiki, retrying once if it doesn't work.
Save the page to the wiki, retrying once if it doesn't work.
[ "Save", "the", "page", "to", "the", "wiki", "retrying", "once", "if", "it", "doesn", "'", "t", "work", "." ]
def save_page(page, summary): try: page.save(summary=summary, botflag=True) except Exception: print("Save failed, trying again soon") time.sleep(15) page.save(summary=summary, botflag=True)
[ "def", "save_page", "(", "page", ",", "summary", ")", ":", "try", ":", "page", ".", "save", "(", "summary", "=", "summary", ",", "botflag", "=", "True", ")", "except", "Exception", ":", "print", "(", "\"Save failed, trying again soon\"", ")", "time", ".", "sleep", "(", "15", ")", "page", ".", "save", "(", "summary", "=", "summary", ",", "botflag", "=", "True", ")" ]
Save the page to the wiki, retrying once if it doesn't work.
[ "Save", "the", "page", "to", "the", "wiki", "retrying", "once", "if", "it", "doesn", "'", "t", "work", "." ]
[ "\"\"\"Save the page to the wiki, retrying once if it doesn't work.\"\"\"" ]
[ { "param": "page", "type": null }, { "param": "summary", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "page", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "summary", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import time def save_page(page, summary): try: page.save(summary=summary, botflag=True) except Exception: print("Save failed, trying again soon") time.sleep(15) page.save(summary=summary, botflag=True)
335
781
5300ceb789f587dbdfdcfba9721616d01a33b870
consag/build-and-deploy-informatica
cicd/createProject.py
[ "MIT" ]
Python
parse_the_arguments
<not_specific>
def parse_the_arguments(argv): """Parses the provided arguments and exits on an error. Use the option -h on the command line to get an overview of the required and optional arguments. """ parser = argparse.ArgumentParser() parser.add_argument("-p", "--project", required=True, action="store", dest="project_name", help="Name of the project that needs to be created.") args = parser.parse_args() return args
Parses the provided arguments and exits on an error. Use the option -h on the command line to get an overview of the required and optional arguments.
Parses the provided arguments and exits on an error. Use the option -h on the command line to get an overview of the required and optional arguments.
[ "Parses", "the", "provided", "arguments", "and", "exits", "on", "an", "error", ".", "Use", "the", "option", "-", "h", "on", "the", "command", "line", "to", "get", "an", "overview", "of", "the", "required", "and", "optional", "arguments", "." ]
def parse_the_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument("-p", "--project", required=True, action="store", dest="project_name", help="Name of the project that needs to be created.") args = parser.parse_args() return args
[ "def", "parse_the_arguments", "(", "argv", ")", ":", "parser", "=", "argparse", ".", "ArgumentParser", "(", ")", "parser", ".", "add_argument", "(", "\"-p\"", ",", "\"--project\"", ",", "required", "=", "True", ",", "action", "=", "\"store\"", ",", "dest", "=", "\"project_name\"", ",", "help", "=", "\"Name of the project that needs to be created.\"", ")", "args", "=", "parser", ".", "parse_args", "(", ")", "return", "args" ]
Parses the provided arguments and exits on an error.
[ "Parses", "the", "provided", "arguments", "and", "exits", "on", "an", "error", "." ]
[ "\"\"\"Parses the provided arguments and exits on an error.\n Use the option -h on the command line to get an overview of the required and optional arguments.\n \"\"\"" ]
[ { "param": "argv", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "argv", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
import argparse def parse_the_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument("-p", "--project", required=True, action="store", dest="project_name", help="Name of the project that needs to be created.") args = parser.parse_args() return args
336
412
d60987083cf4a23f3a0287d6ff297e5c71656554
CyberFlameGO/gpt-code-clippy
evaluation/evaluation/metrics/extrinsic_eval.py
[ "Apache-2.0" ]
Python
compute_exact_match
float
def compute_exact_match(references, generated) -> float: """ Computes Exact Match Accuracy. args: reference: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation: list of translations to score. Each translation should be tokenized into a list of tokens. returns: exact_match_accuracy : Float """ assert ( len(references[0]) == len(generated), "Number of Samples should be equal in References and Synthesized Outputs..", ) exact_match_count = 0.0 for gen, ref in zip(generated, references[0]): if gen == ref: exact_match_count += 1 exact_match_acc = exact_match_count / len(generated) return exact_match_acc
Computes Exact Match Accuracy. args: reference: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation: list of translations to score. Each translation should be tokenized into a list of tokens. returns: exact_match_accuracy : Float
Computes Exact Match Accuracy. args: reference: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation: list of translations to score. Each translation should be tokenized into a list of tokens. returns: exact_match_accuracy : Float
[ "Computes", "Exact", "Match", "Accuracy", ".", "args", ":", "reference", ":", "list", "of", "lists", "of", "references", "for", "each", "translation", ".", "Each", "reference", "should", "be", "tokenized", "into", "a", "list", "of", "tokens", ".", "translation", ":", "list", "of", "translations", "to", "score", ".", "Each", "translation", "should", "be", "tokenized", "into", "a", "list", "of", "tokens", ".", "returns", ":", "exact_match_accuracy", ":", "Float" ]
def compute_exact_match(references, generated) -> float: assert ( len(references[0]) == len(generated), "Number of Samples should be equal in References and Synthesized Outputs..", ) exact_match_count = 0.0 for gen, ref in zip(generated, references[0]): if gen == ref: exact_match_count += 1 exact_match_acc = exact_match_count / len(generated) return exact_match_acc
[ "def", "compute_exact_match", "(", "references", ",", "generated", ")", "->", "float", ":", "assert", "(", "len", "(", "references", "[", "0", "]", ")", "==", "len", "(", "generated", ")", ",", "\"Number of Samples should be equal in References and Synthesized Outputs..\"", ",", ")", "exact_match_count", "=", "0.0", "for", "gen", ",", "ref", "in", "zip", "(", "generated", ",", "references", "[", "0", "]", ")", ":", "if", "gen", "==", "ref", ":", "exact_match_count", "+=", "1", "exact_match_acc", "=", "exact_match_count", "/", "len", "(", "generated", ")", "return", "exact_match_acc" ]
Computes Exact Match Accuracy.
[ "Computes", "Exact", "Match", "Accuracy", "." ]
[ "\"\"\"\n Computes Exact Match Accuracy.\n args:\n reference: list of lists of references for each translation. Each\n reference should be tokenized into a list of tokens.\n translation: list of translations to score. Each translation\n should be tokenized into a list of tokens.\n returns:\n exact_match_accuracy : Float\n \"\"\"" ]
[ { "param": "references", "type": null }, { "param": "generated", "type": null } ]
{ "returns": [], "raises": [], "params": [ { "identifier": "references", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null }, { "identifier": "generated", "type": null, "docstring": null, "docstring_tokens": [], "default": null, "is_optional": null } ], "outlier_params": [], "others": [] }
def compute_exact_match(references, generated) -> float: assert ( len(references[0]) == len(generated), "Number of Samples should be equal in References and Synthesized Outputs..", ) exact_match_count = 0.0 for gen, ref in zip(generated, references[0]): if gen == ref: exact_match_count += 1 exact_match_acc = exact_match_count / len(generated) return exact_match_acc
337
12