Unnamed: 0
int64
category
string
githuburl
string
customtopics
string
customabout
string
customarxiv
string
custompypi
string
featured
float64
links
string
description
string
_repopath
string
_reponame
string
_stars
int64
_forks
int64
_watches
int64
_language
string
_homepage
string
_github_description
string
_organization
string
_updated_at
string
_created_at
string
_age_weeks
int64
_stars_per_week
float64
_avatar_url
string
_description
string
_github_topics
string
_topics
string
_last_commit_date
string
sim
string
_pop_contributor_count
int64
_pop_contributor_orgs_len
float64
_pop_contributor_orgs_error
float64
_pop_commit_frequency
float64
_pop_updated_issues_count
int64
_pop_closed_issues_count
int64
_pop_created_since_days
int64
_pop_updated_since_days
int64
_pop_recent_releases_count
int64
_pop_recent_releases_estimated_tags
int64
_pop_recent_releases_adjusted_count
int64
_pop_issue_count
float64
_pop_comment_count
float64
_pop_comment_count_lookback_days
float64
_pop_comment_frequency
float64
_pop_score
int64
720
web
https://github.com/rstudio/py-shiny
[]
null
[]
[]
null
null
null
rstudio/py-shiny
py-shiny
817
49
29
Python
https://shiny.posit.co/py/
Shiny for Python
rstudio
2024-01-13
2021-07-27
131
6.236641
https://avatars.githubusercontent.com/u/107264312?v=4
Shiny for Python
[]
[]
2024-01-12
[('python/cpython', 0.536689817905426, 'util', 0), ('holoviz/panel', 0.5275716781616211, 'viz', 0), ('plotly/dash', 0.5270806550979614, 'viz', 0), ('pypy/pypy', 0.5167948603630066, 'util', 0), ('hoffstadt/dearpygui', 0.5147618651390076, 'gui', 0), ('eleutherai/pyfra', 0.5123597979545593, 'ml', 0)]
18
4
null
7.56
272
164
30
0
11
9
11
272
269
90
1
46
343
data
https://github.com/scikit-hep/awkward-1.0
[]
null
[]
[]
null
null
null
scikit-hep/awkward-1.0
awkward
770
77
21
Python
https://awkward-array.org
Manipulate JSON-like data with NumPy-like idioms.
scikit-hep
2024-01-14
2019-08-14
232
3.306748
https://avatars.githubusercontent.com/u/23454624?v=4
Manipulate JSON-like data with NumPy-like idioms.
['apache-arrow', 'cern-root', 'columnar-format', 'data-analysis', 'jagged-array', 'json', 'numba', 'numpy', 'pandas', 'ragged-array', 'rdataframe', 'scikit-hep']
['apache-arrow', 'cern-root', 'columnar-format', 'data-analysis', 'jagged-array', 'json', 'numba', 'numpy', 'pandas', 'ragged-array', 'rdataframe', 'scikit-hep']
2024-01-12
[('apache/arrow', 0.559539258480072, 'data', 3), ('vaexio/vaex', 0.5477538704872131, 'perf', 0), ('man-group/dtale', 0.5412405729293823, 'viz', 2), ('kellyjonbrazil/jello', 0.5297543406486511, 'util', 1), ('brokenloop/jsontopydantic', 0.5177565813064575, 'util', 0), ('pandas-dev/pandas', 0.5098268389701843, 'pandas', 2), ('jazzband/tablib', 0.5033981800079346, 'data', 0), ('jsonpickle/jsonpickle', 0.500355064868927, 'data', 1)]
40
4
null
9.77
197
165
54
0
36
62
36
196
380
90
1.9
46
881
gis
https://github.com/osgeo/grass
[]
null
[]
[]
null
null
null
osgeo/grass
grass
720
255
43
C
https://grass.osgeo.org
GRASS GIS - free and open-source geospatial processing engine
osgeo
2024-01-13
2019-05-17
245
2.931937
https://avatars.githubusercontent.com/u/1058467?v=4
GRASS GIS - free and open-source geospatial processing engine
['arrays', 'data-science', 'earth-observation', 'geospatial', 'geospatial-analysis', 'gis', 'grass-gis', 'image-processing', 'jupyter', 'machine-learning', 'open-science', 'parallel-computing', 'raster', 'remote-sensing', 'science', 'spatial', 'timeseries-analysis', 'vector']
['arrays', 'data-science', 'earth-observation', 'geospatial', 'geospatial-analysis', 'gis', 'grass-gis', 'image-processing', 'jupyter', 'machine-learning', 'open-science', 'parallel-computing', 'raster', 'remote-sensing', 'science', 'spatial', 'timeseries-analysis', 'vector']
2024-01-14
[('remotesensinglab/raster4ml', 0.6746719479560852, 'gis', 3), ('fatiando/verde', 0.6331599950790405, 'gis', 2), ('microsoft/torchgeo', 0.6095272302627563, 'gis', 3), ('earthlab/earthpy', 0.5645433068275452, 'gis', 2), ('osgeo/gdal', 0.5594460368156433, 'gis', 3), ('giswqs/geemap', 0.5491253137588501, 'gis', 6), ('apache/incubator-sedona', 0.5388128757476807, 'gis', 1), ('opengeos/segment-geospatial', 0.5276463627815247, 'gis', 2), ('opengeos/leafmap', 0.5151031017303467, 'gis', 5), ('r-barnes/richdem', 0.5100005269050598, 'gis', 1), ('determined-ai/determined', 0.5073267817497253, 'ml-ops', 2), ('perrygeo/python-rasterstats', 0.5056399703025818, 'gis', 0), ('darribas/gds_env', 0.502344012260437, 'gis', 0)]
107
6
null
8.48
316
166
57
0
6
30
6
317
588
90
1.9
46
1,409
math
https://github.com/lean-dojo/leandojo
[]
null
[]
[]
null
null
null
lean-dojo/leandojo
LeanDojo
389
45
13
Python
https://leandojo.org
Tool for data extraction and interacting with Lean programmatically.
lean-dojo
2024-01-14
2023-06-13
33
11.787879
https://avatars.githubusercontent.com/u/136513911?v=4
Tool for data extraction and interacting with Lean programmatically.
['lean', 'lean4', 'machine-learning', 'theorem-proving']
['lean', 'lean4', 'machine-learning', 'theorem-proving']
2024-01-10
[('lean-dojo/reprover', 0.6379106640815735, 'math', 3), ('intake/intake', 0.5443071722984314, 'data', 0), ('paperswithcode/axcell', 0.5234335660934448, 'util', 0), ('linealabs/lineapy', 0.5060582756996155, 'jupyter', 0)]
11
5
null
5.35
45
43
7
0
16
28
16
45
33
90
0.7
46
998
finance
https://github.com/quantopian/zipline
[]
null
[]
[]
null
null
null
quantopian/zipline
zipline
16,792
4,710
1,000
Python
https://www.zipline.io
Zipline, a Pythonic Algorithmic Trading Library
quantopian
2024-01-14
2012-10-19
588
28.530097
https://avatars.githubusercontent.com/u/1393215?v=4
Zipline, a Pythonic Algorithmic Trading Library
['algorithmic-trading', 'quant', 'zipline']
['algorithmic-trading', 'quant', 'zipline']
2020-10-14
[('gbeced/pyalgotrade', 0.8662933707237244, 'finance', 0), ('quantconnect/lean', 0.6676159501075745, 'finance', 0), ('robcarver17/pysystemtrade', 0.6582158803939819, 'finance', 0), ('gbeced/basana', 0.6551344394683838, 'finance', 1), ('ranaroussi/quantstats', 0.5925479531288147, 'finance', 2), ('cuemacro/finmarketpy', 0.5911790132522583, 'finance', 0), ('goldmansachs/gs-quant', 0.5875362753868103, 'finance', 0), ('cuemacro/findatapy', 0.5615792870521545, 'finance', 0), ('mementum/backtrader', 0.5593721866607666, 'finance', 0), ('quantecon/quantecon.py', 0.5450539588928223, 'sim', 0), ('keon/algorithms', 0.5438115000724792, 'util', 0), ('kernc/backtesting.py', 0.540707528591156, 'finance', 1), ('ta-lib/ta-lib-python', 0.5401220321655273, 'finance', 0), ('pmorissette/ffn', 0.5246074199676514, 'finance', 0), ('primal100/pybitcointools', 0.5228780508041382, 'crypto', 0), ('zvtvz/zvt', 0.5200475454330444, 'finance', 2), ('sympy/sympy', 0.5198596119880676, 'math', 0), ('polakowo/vectorbt', 0.519047737121582, 'finance', 1), ('pytoolz/toolz', 0.5173577070236206, 'util', 0), ('erotemic/ubelt', 0.5161089897155762, 'util', 0), ('1200wd/bitcoinlib', 0.5117334723472595, 'crypto', 0), ('hydrosquall/tiingo-python', 0.5056824684143066, 'finance', 0), ('linkedin/shiv', 0.5038162469863892, 'util', 0), ('scipy/scipy', 0.5005958080291748, 'math', 0), ('thealgorithms/python', 0.5000721216201782, 'study', 0)]
160
5
null
0
3
0
137
40
0
2
2
3
1
90
0.3
45
540
ml
https://github.com/aleju/imgaug
[]
null
[]
[]
null
null
null
aleju/imgaug
imgaug
13,972
2,422
232
Python
http://imgaug.readthedocs.io
Image augmentation for machine learning experiments.
aleju
2024-01-12
2015-07-10
446
31.287268
null
Image augmentation for machine learning experiments.
['affine-transformation', 'augment-images', 'augmentation', 'bounding-boxes', 'contrast', 'crop', 'deep-learning', 'heatmap', 'image-augmentation', 'images', 'keypoints', 'machine-learning', 'polygon', 'segmentation-maps']
['affine-transformation', 'augment-images', 'augmentation', 'bounding-boxes', 'contrast', 'crop', 'deep-learning', 'heatmap', 'image-augmentation', 'images', 'keypoints', 'machine-learning', 'polygon', 'segmentation-maps']
2020-06-01
[('mdbloice/augmentor', 0.7141932845115662, 'ml', 3), ('albumentations-team/albumentations', 0.6503161787986755, 'ml-dl', 4), ('fepegar/torchio', 0.5931549072265625, 'ml-dl', 3), ('roboflow/supervision', 0.5748479962348938, 'ml', 2), ('facebookresearch/augly', 0.5716978311538696, 'data', 0), ('lutzroeder/netron', 0.5660139322280884, 'ml', 2), ('makcedward/nlpaug', 0.5599479079246521, 'nlp', 2), ('microsoft/torchgeo', 0.5551947355270386, 'gis', 1), ('awslabs/autogluon', 0.5523484349250793, 'ml', 2), ('open-mmlab/mmediting', 0.5496745109558105, 'ml', 1), ('neuralmagic/sparseml', 0.5411894917488098, 'ml-dl', 0), ('huggingface/datasets', 0.5358902812004089, 'nlp', 2), ('rwightman/pytorch-image-models', 0.5356476902961731, 'ml-dl', 0), ('open-mmlab/mmsegmentation', 0.5349984169006348, 'ml', 0), ('onnx/onnx', 0.5340151786804199, 'ml', 2), ('developmentseed/label-maker', 0.5313600897789001, 'gis', 1), ('mosaicml/composer', 0.517113983631134, 'ml-dl', 2), ('deci-ai/super-gradients', 0.5129750370979309, 'ml-dl', 1), ('lightly-ai/lightly', 0.5071452260017395, 'ml', 2), ('keras-team/keras-cv', 0.5068478584289551, 'ml-dl', 0), ('kevinmusgrave/pytorch-metric-learning', 0.506173312664032, 'ml', 2), ('ddbourgin/numpy-ml', 0.5041775107383728, 'ml', 1)]
36
6
null
0
2
2
104
44
0
2
2
2
1
90
0.5
45
281
util
https://github.com/arrow-py/arrow
[]
null
[]
[]
null
null
null
arrow-py/arrow
arrow
8,455
689
135
Python
https://arrow.readthedocs.io
🏹 Better dates & times for Python
arrow-py
2024-01-12
2012-11-18
584
14.47066
https://avatars.githubusercontent.com/u/68518399?v=4
🏹 Better dates & times for Python
['arrow', 'date', 'datetime', 'time', 'timestamp', 'timezones']
['arrow', 'date', 'datetime', 'time', 'timestamp', 'timezones']
2023-09-30
[('sdispater/pendulum', 0.7535154819488525, 'util', 4), ('dateutil/dateutil', 0.7106708884239197, 'util', 3), ('scrapinghub/dateparser', 0.5817139744758606, 'util', 2), ('stub42/pytz', 0.5504962205886841, 'util', 0), ('spulec/freezegun', 0.5130565166473389, 'testing', 0)]
270
4
null
0.12
7
0
136
4
1
5
1
7
8
90
1.1
45
777
diffusion
https://github.com/xavierxiao/dreambooth-stable-diffusion
[]
null
[]
[]
null
null
null
xavierxiao/dreambooth-stable-diffusion
Dreambooth-Stable-Diffusion
7,295
775
95
Jupyter Notebook
null
Implementation of Dreambooth (https://arxiv.org/abs/2208.12242) with Stable Diffusion
xavierxiao
2024-01-13
2022-09-06
73
99.931507
null
Implementation of Dreambooth (https://arxiv.org/abs/2208.12242) with Stable Diffusion
['pytorch', 'pytorch-lightning', 'stable-diffusion', 'text-to-image']
['pytorch', 'pytorch-lightning', 'stable-diffusion', 'text-to-image']
2022-09-21
[('carson-katri/dream-textures', 0.5931910872459412, 'diffusion', 1), ('automatic1111/stable-diffusion-webui', 0.5680199861526489, 'diffusion', 2), ('ashawkey/stable-dreamfusion', 0.5586757659912109, 'diffusion', 1), ('huggingface/diffusers', 0.5447068810462952, 'diffusion', 2), ('comfyanonymous/comfyui', 0.5401220321655273, 'diffusion', 2)]
1
1
null
0
8
0
16
16
0
0
0
8
6
90
0.8
45
134
ml
https://github.com/hyperopt/hyperopt
[]
null
[]
[]
null
null
null
hyperopt/hyperopt
hyperopt
6,976
1,073
126
Python
http://hyperopt.github.io/hyperopt
Distributed Asynchronous Hyperparameter Optimization in Python
hyperopt
2024-01-13
2011-09-06
647
10.782071
https://avatars.githubusercontent.com/u/5280805?v=4
Distributed Asynchronous Hyperparameter Optimization in Python
[]
[]
2023-09-29
[('optuna/optuna', 0.7380708456039429, 'ml', 0), ('kubeflow/katib', 0.6022725701332092, 'ml', 0), ('google/vizier', 0.5750223994255066, 'ml', 0), ('samuelcolvin/arq', 0.5642699599266052, 'data', 0), ('baruchel/tco', 0.5423157215118408, 'perf', 0), ('scikit-optimize/scikit-optimize', 0.5412236452102661, 'ml', 0), ('determined-ai/determined', 0.5405532121658325, 'ml-ops', 0), ('dask/dask', 0.5399159789085388, 'perf', 0), ('klen/py-frameworks-bench', 0.5207222700119019, 'perf', 0), ('ipython/ipyparallel', 0.5190962553024292, 'perf', 0), ('joblib/joblib', 0.5118980407714844, 'util', 0), ('python-trio/trio', 0.510098934173584, 'perf', 0), ('geeogi/async-python-lambda-template', 0.5066941976547241, 'template', 0), ('alirn76/panther', 0.5043962597846985, 'web', 0)]
102
5
null
0.44
75
50
150
5
0
1
1
75
49
90
0.7
45
681
util
https://github.com/bndr/pipreqs
[]
null
[]
[]
null
null
null
bndr/pipreqs
pipreqs
5,580
367
56
Python
null
pipreqs - Generate pip requirements.txt file based on imports of any project. Looking for maintainers to move this project forward.
bndr
2024-01-13
2015-04-22
457
12.187207
null
pipreqs - Generate pip requirements.txt file based on imports of any project. Looking for maintainers to move this project forward.
[]
[]
2023-10-08
[('thoth-station/micropipenv', 0.625019907951355, 'util', 0), ('pypa/pipenv', 0.550599217414856, 'util', 0), ('pdm-project/pdm', 0.5109939575195312, 'util', 0), ('pomponchik/instld', 0.5049751996994019, 'util', 0)]
60
2
null
0.23
42
22
106
3
2
3
2
42
76
90
1.8
45
1,673
data
https://github.com/madmaze/pytesseract
['ocr']
null
[]
[]
null
null
null
madmaze/pytesseract
pytesseract
5,291
717
107
Python
null
A Python wrapper for Google Tesseract
madmaze
2024-01-13
2010-10-27
691
7.647533
null
A Python wrapper for Google Tesseract
[]
['ocr']
2024-01-10
[('rapidai/rapidocr', 0.5656213164329529, 'data', 1), ('jaidedai/easyocr', 0.5150726437568665, 'data', 1), ('hrnet/hrnet-semantic-segmentation', 0.5132443308830261, 'ml', 0)]
45
2
null
0.96
13
9
161
0
3
2
3
13
28
90
2.2
45
264
util
https://github.com/pytransitions/transitions
[]
null
[]
[]
null
null
null
pytransitions/transitions
transitions
5,203
519
92
Python
null
A lightweight, object-oriented finite state machine implementation in Python with many extensions
pytransitions
2024-01-14
2014-10-12
485
10.721519
https://avatars.githubusercontent.com/u/26332704?v=4
A lightweight, object-oriented finite state machine implementation in Python with many extensions
['hierarchical-state-machine', 'nested-states', 'state-diagram', 'state-machine']
['hierarchical-state-machine', 'nested-states', 'state-diagram', 'state-machine']
2023-09-20
[('artemyk/dynpy', 0.55495285987854, 'sim', 0), ('pyston/pyston', 0.5525701642036438, 'util', 0), ('sympy/sympy', 0.523476243019104, 'math', 0), ('ethereum/py-evm', 0.5112031698226929, 'crypto', 0), ('citadel-ai/langcheck', 0.5025991201400757, 'llm', 0)]
76
6
null
0.48
7
3
113
4
0
5
5
7
7
90
1
45
311
util
https://github.com/indygreg/pyoxidizer
['package-manager', 'packaging']
null
[]
[]
null
null
null
indygreg/pyoxidizer
PyOxidizer
5,016
212
62
Rust
null
A modern Python application packaging and distribution tool
indygreg
2024-01-13
2018-12-18
267
18.786517
null
A modern Python application packaging and distribution tool
[]
['package-manager', 'packaging']
2023-01-21
[('pypa/flit', 0.8746299147605896, 'util', 2), ('mitsuhiko/rye', 0.8726885914802551, 'util', 2), ('python-poetry/poetry', 0.8143705725669861, 'util', 2), ('pdm-project/pdm', 0.7249577045440674, 'util', 2), ('pomponchik/instld', 0.7080777883529663, 'util', 1), ('regebro/pyroma', 0.7064893245697021, 'util', 1), ('pypa/hatch', 0.7048346400260925, 'util', 2), ('mamba-org/mamba', 0.6980676651000977, 'util', 2), ('pyodide/micropip', 0.6752342581748962, 'util', 0), ('pypi/warehouse', 0.6707281470298767, 'util', 0), ('ofek/pyapp', 0.6547517776489258, 'util', 1), ('beeware/briefcase', 0.6296486258506775, 'util', 0), ('pypa/pipenv', 0.6146742701530457, 'util', 1), ('conda/conda', 0.5986080169677734, 'util', 2), ('jazzband/pip-tools', 0.5879077315330505, 'util', 1), ('pypa/installer', 0.5681904554367065, 'util', 0), ('tezromach/python-package-template', 0.5635542273521423, 'template', 0), ('spack/spack', 0.5544406771659851, 'util', 1), ('tiangolo/poetry-version-plugin', 0.5493191480636597, 'util', 1), ('dosisod/refurb', 0.5480595827102661, 'util', 0), ('pytables/pytables', 0.5478392839431763, 'data', 0), ('omry/omegaconf', 0.5404947400093079, 'util', 0), ('mamba-org/gator', 0.5344242453575134, 'jupyter', 0), ('pypa/gh-action-pypi-publish', 0.5328114628791809, 'util', 0), ('pyinstaller/pyinstaller', 0.5304632782936096, 'util', 0), ('pympler/pympler', 0.5277453064918518, 'perf', 0), ('linkedin/shiv', 0.5276411175727844, 'util', 0), ('grahamdumpleton/wrapt', 0.5274959206581116, 'util', 0), ('hoffstadt/dearpygui', 0.5257773995399475, 'gui', 0), ('malloydata/malloy-py', 0.5247126221656799, 'data', 0), ('python-injector/injector', 0.5219050645828247, 'util', 0), ('beeware/toga', 0.5212326645851135, 'gui', 0), ('conda/conda-pack', 0.5181369781494141, 'util', 0), ('mgedmin/check-manifest', 0.5157642364501953, 'util', 0), ('bottlepy/bottle', 0.514263391494751, 'web', 0), ('thoth-station/micropipenv', 0.513746976852417, 'util', 0), ('pyscaffold/pyscaffold', 0.5098890662193298, 'template', 0), ('urwid/urwid', 0.5094347596168518, 'term', 0), ('ethtx/ethtx', 0.5071747303009033, 'crypto', 0), ('eleutherai/pyfra', 0.503706157207489, 'ml', 0), ('pallets/flask', 0.5036942958831787, 'web', 0), ('lukasschwab/arxiv.py', 0.5008288621902466, 'util', 0), ('conda/conda-build', 0.5000386834144592, 'util', 0)]
54
3
null
0
21
3
62
12
0
72
72
21
11
90
0.5
45
536
nlp
https://github.com/salesforce/codegen
[]
null
[]
[]
null
null
null
salesforce/codegen
CodeGen
4,596
353
77
Python
null
CodeGen is a family of open-source model for program synthesis. Trained on TPU-v4. Competitive with OpenAI Codex.
salesforce
2024-01-13
2022-03-28
96
47.803863
https://avatars.githubusercontent.com/u/453694?v=4
CodeGen is a family of open-source model for program synthesis. Trained on TPU-v4. Competitive with OpenAI Codex.
['codex', 'generativemodel', 'languagemodel', 'llm', 'programsynthesis', 'tpu-acceleration']
['codex', 'generativemodel', 'languagemodel', 'llm', 'programsynthesis', 'tpu-acceleration']
2023-11-21
[('salesforce/codet5', 0.6593608856201172, 'nlp', 0), ('thudm/codegeex', 0.6133092045783997, 'llm', 0), ('bigcode-project/starcoder', 0.601254940032959, 'llm', 0), ('openai/image-gpt', 0.5758861303329468, 'llm', 0), ('ravenscroftj/turbopilot', 0.5407807230949402, 'llm', 0), ('conceptofmind/toolformer', 0.5336177945137024, 'llm', 0), ('microsoft/pycodegpt', 0.5231809020042419, 'llm', 0), ('lupantech/chameleon-llm', 0.5142695307731628, 'llm', 1), ('next-gpt/next-gpt', 0.5129567384719849, 'llm', 1), ('pytorch/glow', 0.5098628997802734, 'ml', 0), ('modularml/mojo', 0.5068298578262329, 'util', 0), ('ludwig-ai/ludwig', 0.5055090188980103, 'ml-ops', 1)]
10
2
null
0.65
5
1
22
2
0
0
0
5
2
90
0.4
45
146
ml
https://github.com/nmslib/hnswlib
[]
null
[]
[]
null
null
null
nmslib/hnswlib
hnswlib
3,773
593
64
C++
https://github.com/nmslib/hnswlib
Header-only C++/python library for fast approximate nearest neighbors
nmslib
2024-01-13
2017-07-06
342
11.00917
https://avatars.githubusercontent.com/u/37882366?v=4
Header-only C++/python library for fast approximate nearest neighbors
[]
[]
2023-12-03
[('spotify/annoy', 0.7858440279960632, 'ml', 0), ('lmcinnes/pynndescent', 0.6369488835334778, 'ml', 0), ('spotify/voyager', 0.5946098566055298, 'ml', 0), ('pyston/pyston', 0.5059448480606079, 'util', 0), ('facebookresearch/faiss', 0.5014215111732483, 'ml', 0)]
72
4
null
0.65
30
11
79
1
2
2
2
30
28
90
0.9
45
758
diffusion
https://github.com/lkwq007/stablediffusion-infinity
[]
null
[]
[]
null
null
null
lkwq007/stablediffusion-infinity
stablediffusion-infinity
3,732
295
41
Python
null
Outpainting with Stable Diffusion on an infinite canvas
lkwq007
2024-01-14
2022-09-02
73
50.726214
null
Outpainting with Stable Diffusion on an infinite canvas
['gui', 'inpainting', 'outpainting', 'stable-diffusion', 'stablediffusion']
['gui', 'inpainting', 'outpainting', 'stable-diffusion', 'stablediffusion']
2023-01-24
[('carson-katri/dream-textures', 0.5580441951751709, 'diffusion', 1), ('sanster/lama-cleaner', 0.5446968078613281, 'ml-dl', 2), ('timothybrooks/instruct-pix2pix', 0.5145807266235352, 'diffusion', 0), ('jina-ai/discoart', 0.5142841935157776, 'diffusion', 1), ('comfyanonymous/comfyui', 0.5033169388771057, 'diffusion', 2)]
7
2
null
0.13
4
0
17
12
0
2
2
4
3
90
0.8
45
1,169
llm
https://github.com/instruction-tuning-with-gpt-4/gpt-4-llm
[]
null
[]
[]
null
null
null
instruction-tuning-with-gpt-4/gpt-4-llm
GPT-4-LLM
3,721
272
44
HTML
https://instruction-tuning-with-gpt-4.github.io/
Instruction Tuning with GPT-4
instruction-tuning-with-gpt-4
2024-01-14
2023-04-06
42
87.113712
null
Instruction Tuning with GPT-4
['alpaca', 'chatgpt', 'gpt-4', 'instruction-tuning', 'llama']
['alpaca', 'chatgpt', 'gpt-4', 'instruction-tuning', 'llama']
2023-06-11
[('declare-lab/instruct-eval', 0.653624415397644, 'llm', 0), ('haotian-liu/llava', 0.6272305250167847, 'llm', 4), ('farizrahman4u/loopgpt', 0.5821303129196167, 'llm', 1), ('hiyouga/llama-efficient-tuning', 0.5739951133728027, 'llm', 2), ('hiyouga/llama-factory', 0.5739949345588684, 'llm', 2), ('tiger-ai-lab/mammoth', 0.5739008784294128, 'llm', 1), ('zrrskywalker/llama-adapter', 0.5689181685447693, 'llm', 2), ('tloen/alpaca-lora', 0.5178021788597107, 'llm', 1)]
7
3
null
0.63
0
0
9
7
0
0
0
0
0
90
0
45
259
util
https://github.com/python-markdown/markdown
[]
null
[]
[]
null
null
null
python-markdown/markdown
markdown
3,472
865
76
Python
https://python-markdown.github.io/
A Python implementation of John Gruber’s Markdown with Extension support.
python-markdown
2024-01-12
2010-05-29
713
4.86664
https://avatars.githubusercontent.com/u/11278576?v=4
A Python implementation of John Gruber’s Markdown with Extension support.
['markdown', 'markdown-parser', 'markdown-to-html', 'python-markdown']
['markdown', 'markdown-parser', 'markdown-to-html', 'python-markdown']
2024-01-10
[('getpelican/pelican', 0.6716626882553101, 'web', 0), ('hhatto/autopep8', 0.5607690811157227, 'util', 0), ('google/yapf', 0.5518056154251099, 'util', 0), ('mwouts/jupytext', 0.5461102724075317, 'jupyter', 1), ('google/latexify_py', 0.5334113240242004, 'util', 0), ('pygments/pygments', 0.5284628868103027, 'util', 0), ('roniemartinez/dude', 0.5186324715614319, 'util', 0), ('pytoolz/toolz', 0.5181722640991211, 'util', 0), ('connorferster/handcalcs', 0.5013054609298706, 'jupyter', 0), ('feincms/feincms', 0.500464141368866, 'web', 0)]
173
2
null
0.87
49
40
166
0
2
4
2
48
167
90
3.5
45
360
ml-ops
https://github.com/polyaxon/polyaxon
[]
null
[]
[]
null
null
null
polyaxon/polyaxon
polyaxon
3,432
321
79
null
https://polyaxon.com
MLOps Tools For Managing & Orchestrating The Machine Learning LifeCycle
polyaxon
2024-01-12
2016-12-26
370
9.272096
https://avatars.githubusercontent.com/u/24544827?v=4
MLOps Tools For Managing & Orchestrating The Machine Learning LifeCycle
['artificial-intelligence', 'caffe', 'data-science', 'deep-learning', 'hyperparameter-optimization', 'jupyter', 'jupyterlab', 'k8s', 'keras', 'kubernetes', 'machine-learning', 'ml', 'mlops', 'mxnet', 'notebook', 'pipelines', 'pytorch', 'reinforcement-learning', 'tensorflow', 'workflow']
['artificial-intelligence', 'caffe', 'data-science', 'deep-learning', 'hyperparameter-optimization', 'jupyter', 'jupyterlab', 'k8s', 'keras', 'kubernetes', 'machine-learning', 'ml', 'mlops', 'mxnet', 'notebook', 'pipelines', 'pytorch', 'reinforcement-learning', 'tensorflow', 'workflow']
2024-01-12
[('kubeflow/pipelines', 0.7241019010543823, 'ml-ops', 4), ('mlflow/mlflow', 0.7237421870231628, 'ml-ops', 2), ('bentoml/bentoml', 0.70576012134552, 'ml-ops', 4), ('netflix/metaflow', 0.6915358901023865, 'ml-ops', 5), ('onnx/onnx', 0.6912744641304016, 'ml', 7), ('fmind/mlops-python-package', 0.6891217231750488, 'template', 2), ('bodywork-ml/bodywork-core', 0.6861110925674438, 'ml-ops', 4), ('feast-dev/feast', 0.6851301193237305, 'ml-ops', 4), ('microsoft/nni', 0.6834843754768372, 'ml', 7), ('flyteorg/flyte', 0.6784146428108215, 'ml-ops', 5), ('determined-ai/determined', 0.6687636971473694, 'ml-ops', 9), ('wandb/client', 0.6643576622009277, 'ml', 9), ('zenml-io/zenml', 0.6621537804603577, 'ml-ops', 9), ('allegroai/clearml', 0.6574744582176208, 'ml-ops', 4), ('unionai-oss/unionml', 0.6547122597694397, 'ml-ops', 2), ('huggingface/datasets', 0.6493980884552002, 'nlp', 4), ('skypilot-org/skypilot', 0.6188631057739258, 'llm', 3), ('merantix-momentum/squirrel-core', 0.6144108772277832, 'ml', 6), ('googlecloudplatform/vertex-ai-samples', 0.6127983331680298, 'ml', 4), ('tensorflow/tensorflow', 0.6108132600784302, 'ml-dl', 4), ('avaiga/taipy', 0.6045488119125366, 'data', 3), ('ml-tooling/opyrator', 0.6038118600845337, 'viz', 1), ('lutzroeder/netron', 0.5946682095527649, 'ml', 8), ('microsoft/onnxruntime', 0.5915482044219971, 'ml', 4), ('orchest/orchest', 0.5914933681488037, 'ml-ops', 6), ('polyaxon/datatile', 0.5872251987457275, 'pandas', 4), ('getindata/kedro-kubeflow', 0.5841188430786133, 'ml-ops', 1), ('ploomber/ploomber', 0.5840852856636047, 'ml-ops', 6), ('dagster-io/dagster', 0.5835554003715515, 'ml-ops', 3), ('firmai/industry-machine-learning', 0.5819257497787476, 'study', 2), ('horovod/horovod', 0.5797879695892334, 'ml-ops', 6), ('skops-dev/skops', 0.5779671669006348, 'ml-ops', 2), ('kubeflow/fairing', 0.5774126648902893, 'ml-ops', 0), ('apple/coremltools', 0.5726978778839111, 'ml', 3), ('iterative/dvc', 0.5695563554763794, 'ml-ops', 2), ('roboflow/supervision', 0.5695512890815735, 'ml', 4), ('mage-ai/mage-ai', 0.5694826245307922, 'ml-ops', 4), ('apache/airflow', 0.5673277974128723, 'ml-ops', 4), ('deepchecks/deepchecks', 0.5667403340339661, 'data', 6), ('alirezadir/machine-learning-interview-enlightener', 0.564633309841156, 'study', 2), ('kubeflow-kale/kale', 0.5640344619750977, 'ml-ops', 1), ('nccr-itmo/fedot', 0.5636411905288696, 'ml-ops', 2), ('kestra-io/kestra', 0.561455249786377, 'ml-ops', 1), ('gradio-app/gradio', 0.5608937740325928, 'viz', 3), ('activeloopai/deeplake', 0.5602334141731262, 'ml-ops', 7), ('doccano/doccano', 0.5601885914802551, 'nlp', 1), ('aimhubio/aim', 0.5590616464614868, 'ml-ops', 6), ('adap/flower', 0.5568473935127258, 'ml-ops', 5), ('jina-ai/jina', 0.5560136437416077, 'ml', 4), ('automl/auto-sklearn', 0.5545597672462463, 'ml', 1), ('dagworks-inc/hamilton', 0.5525692701339722, 'ml-ops', 3), ('ddbourgin/numpy-ml', 0.5511565208435059, 'ml', 2), ('alpa-projects/alpa', 0.5499585866928101, 'ml-dl', 2), ('xplainable/xplainable', 0.5472549796104431, 'ml-interpretability', 2), ('ray-project/ray', 0.5454540252685547, 'ml-ops', 7), ('unity-technologies/ml-agents', 0.5450904965400696, 'ml-rl', 3), ('explosion/thinc', 0.5428985357284546, 'ml-dl', 6), ('nvidia/deeplearningexamples', 0.5416098833084106, 'ml-dl', 4), ('aws/sagemaker-python-sdk', 0.5382318496704102, 'ml', 4), ('hpcaitech/colossalai', 0.5358098745346069, 'llm', 1), ('google/mediapipe', 0.5345292091369629, 'ml', 2), ('mosaicml/composer', 0.5328403115272522, 'ml-dl', 3), ('titanml/takeoff', 0.5318194031715393, 'llm', 0), ('featureform/embeddinghub', 0.5308116674423218, 'nlp', 4), ('pytorchlightning/pytorch-lightning', 0.529716968536377, 'ml-dl', 5), ('evidentlyai/evidently', 0.5295282006263733, 'ml-ops', 3), ('google/vizier', 0.5294651389122009, 'ml', 3), ('whylabs/whylogs', 0.5290948152542114, 'util', 3), ('backtick-se/cowait', 0.5269318222999573, 'util', 2), ('districtdatalabs/yellowbrick', 0.5260629653930664, 'ml', 1), ('pythagora-io/gpt-pilot', 0.5244739055633545, 'llm', 0), ('deepmind/dm_control', 0.5232641100883484, 'ml-rl', 4), ('keras-team/autokeras', 0.5219746232032776, 'ml-dl', 4), ('microsoft/deepspeed', 0.5181537866592407, 'ml-dl', 3), ('ludwig-ai/ludwig', 0.5176489949226379, 'ml-ops', 5), ('microsoft/lmops', 0.5171562433242798, 'llm', 0), ('keras-team/keras-nlp', 0.5162709355354309, 'nlp', 4), ('pydoit/doit', 0.5158570408821106, 'util', 2), ('meltano/meltano', 0.5144167542457581, 'ml-ops', 1), ('epistasislab/tpot', 0.5143507122993469, 'ml', 3), ('huggingface/transformers', 0.5142974257469177, 'nlp', 4), ('cheshire-cat-ai/core', 0.512060284614563, 'llm', 0), ('csinva/imodels', 0.5118154883384705, 'ml', 4), ('nevronai/metisfl', 0.5108596682548523, 'ml', 3), ('bentoml/openllm', 0.5105753540992737, 'ml-ops', 2), ('selfexplainml/piml-toolbox', 0.5091049075126648, 'ml-interpretability', 0), ('chaostoolkit/chaostoolkit', 0.5090064406394958, 'util', 0), ('uber/fiber', 0.5087381601333618, 'data', 1), ('zenml-io/mlstacks', 0.5073304176330566, 'ml-ops', 2), ('eventual-inc/daft', 0.5069470405578613, 'pandas', 3), ('awslabs/autogluon', 0.5069301724433899, 'ml', 5), ('pathwaycom/pathway', 0.5067856311798096, 'data', 0), ('lucidrains/toolformer-pytorch', 0.5062516927719116, 'llm', 2), ('tensorflow/tensor2tensor', 0.5061532258987427, 'ml', 3), ('kedro-org/kedro', 0.5058719515800476, 'ml-ops', 2), ('neuralmagic/deepsparse', 0.504664957523346, 'nlp', 0), ('towhee-io/towhee', 0.5038055181503296, 'ml-ops', 1), ('spack/spack', 0.5023648738861084, 'util', 0), ('giskard-ai/giskard', 0.5021538734436035, 'data', 3), ('lastmile-ai/aiconfig', 0.5021164417266846, 'util', 0), ('keras-rl/keras-rl', 0.5010080337524414, 'ml-rl', 4), ('superduperdb/superduperdb', 0.5004454851150513, 'data', 3), ('microsoft/flaml', 0.5002272129058838, 'ml', 4)]
98
3
null
3.77
3
1
86
0
0
29
29
3
1
90
0.3
45
35
data
https://github.com/jmcnamara/xlsxwriter
[]
null
[]
[]
null
null
null
jmcnamara/xlsxwriter
XlsxWriter
3,402
624
118
Python
https://xlsxwriter.readthedocs.io
A Python module for creating Excel XLSX files.
jmcnamara
2024-01-13
2013-01-04
577
5.890181
null
A Python module for creating Excel XLSX files.
['charts', 'libxlsxwriter', 'pandas', 'spreadsheet', 'xlsx', 'xlsx-files', 'xlsxwriter']
['charts', 'libxlsxwriter', 'pandas', 'spreadsheet', 'xlsx', 'xlsx-files', 'xlsxwriter']
2023-11-08
[('zoomeranalytics/xlwings', 0.7553142309188843, 'data', 0), ('jazzband/tablib', 0.5911999344825745, 'data', 0), ('tkrabel/bamboolib', 0.5247606039047241, 'pandas', 1), ('connorferster/handcalcs', 0.5153928399085999, 'jupyter', 0), ('vizzuhq/ipyvizzu', 0.5122716426849365, 'jupyter', 1), ('holoviz/hvplot', 0.5030190348625183, 'pandas', 0), ('cuemacro/chartpy', 0.500167191028595, 'viz', 0)]
52
2
null
1.31
27
19
134
2
0
15
15
27
87
90
3.2
45
365
ml
https://github.com/facebookresearch/vissl
[]
null
[]
[]
null
null
null
facebookresearch/vissl
vissl
3,180
328
53
Jupyter Notebook
https://vissl.ai
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.
facebookresearch
2024-01-13
2020-04-09
198
16.002876
https://avatars.githubusercontent.com/u/16943930?v=4
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.
[]
[]
2024-01-05
[('deci-ai/super-gradients', 0.6394485831260681, 'ml-dl', 0), ('lightly-ai/lightly', 0.6104288101196289, 'ml', 0), ('roboflow/notebooks', 0.5875295996665955, 'study', 0), ('google-research/maxvit', 0.5404923558235168, 'ml', 0), ('lucidrains/vit-pytorch', 0.5331419110298157, 'ml-dl', 0), ('paperswithcode/sota-extractor', 0.5020662546157837, 'data', 0)]
37
5
null
0.19
2
0
46
0
0
1
1
2
2
90
1
45
654
ml
https://github.com/pytorch/glow
[]
null
[]
[]
null
null
null
pytorch/glow
glow
3,085
690
157
C++
null
Compiler for Neural Network hardware accelerators
pytorch
2024-01-13
2017-09-29
330
9.332325
https://avatars.githubusercontent.com/u/21003710?v=4
Compiler for Neural Network hardware accelerators
[]
[]
2024-01-09
[('microsoft/onnxruntime', 0.6179055571556091, 'ml', 0), ('alpa-projects/alpa', 0.6077716946601868, 'ml-dl', 0), ('karpathy/micrograd', 0.6073175668716431, 'study', 0), ('intel/intel-extension-for-pytorch', 0.6005612015724182, 'perf', 0), ('exaloop/codon', 0.5580657720565796, 'perf', 0), ('microsoft/olive', 0.5527094006538391, 'ml', 0), ('plasma-umass/scalene', 0.5508031249046326, 'profiling', 0), ('facebookincubator/aitemplate', 0.542003870010376, 'ml-dl', 0), ('rasbt/machine-learning-book', 0.5354295372962952, 'study', 0), ('microsoft/deepspeed', 0.5229150652885437, 'ml-dl', 0), ('cython/cython', 0.5203021168708801, 'util', 0), ('pytorch/pytorch', 0.5188764929771423, 'ml-dl', 0), ('huggingface/optimum', 0.5153691172599792, 'ml', 0), ('neuralmagic/deepsparse', 0.514583945274353, 'nlp', 0), ('openai/triton', 0.5112419724464417, 'util', 0), ('salesforce/codegen', 0.5098628997802734, 'nlp', 0), ('fastai/fastcore', 0.509026288986206, 'util', 0), ('google/tf-quant-finance', 0.5075867772102356, 'finance', 0), ('denys88/rl_games', 0.5074953436851501, 'ml-rl', 0), ('bobazooba/xllm', 0.5073339343070984, 'llm', 0), ('pytorchlightning/pytorch-lightning', 0.5054729580879211, 'ml-dl', 0), ('skorch-dev/skorch', 0.5048933029174805, 'ml-dl', 0), ('determined-ai/determined', 0.5047574639320374, 'ml-ops', 0), ('intel/scikit-learn-intelex', 0.5033442378044128, 'perf', 0)]
353
1
null
1.23
8
1
77
0
0
0
0
8
27
90
3.4
45
669
diffusion
https://github.com/saharmor/dalle-playground
[]
null
[]
[]
null
null
null
saharmor/dalle-playground
dalle-playground
2,751
603
32
JavaScript
null
A playground to generate images from any text prompt using Stable Diffusion (past: using DALL-E Mini)
saharmor
2024-01-12
2021-09-13
124
22.159954
null
A playground to generate images from any text prompt using Stable Diffusion (past: using DALL-E Mini)
['artificial', 'artificial-intelligence', 'dall-e', 'dalle', 'dalle-mini', 'gan', 'machine-learning', 'openai', 'stable-diffusion', 'text-to-image', 'transformers']
['artificial', 'artificial-intelligence', 'dall-e', 'dalle', 'dalle-mini', 'gan', 'machine-learning', 'openai', 'stable-diffusion', 'text-to-image', 'transformers']
2023-12-29
[('borisdayma/dalle-mini', 0.7689334750175476, 'diffusion', 0), ('nateraw/stable-diffusion-videos', 0.671584963798523, 'diffusion', 2), ('fourthbrain/fastapi-for-machine-learning-live-demo', 0.6557318568229675, 'web', 1), ('lucidrains/deep-daze', 0.6547111868858337, 'ml', 3), ('automatic1111/stable-diffusion-webui', 0.6440442204475403, 'diffusion', 1), ('compvis/stable-diffusion', 0.6419358253479004, 'diffusion', 0), ('sharonzhou/long_stable_diffusion', 0.6195039749145508, 'diffusion', 0), ('invoke-ai/invokeai', 0.6060563921928406, 'diffusion', 2), ('openai/glide-text2im', 0.6006641387939453, 'diffusion', 0), ('lucidrains/imagen-pytorch', 0.5938807725906372, 'ml-dl', 2), ('lucidrains/dalle2-pytorch', 0.5927163362503052, 'diffusion', 2), ('thereforegames/unprompted', 0.5805418491363525, 'diffusion', 1), ('promptslab/awesome-prompt-engineering', 0.5731377005577087, 'study', 3), ('laion-ai/dalle2-laion', 0.570446252822876, 'diffusion', 1), ('open-mmlab/mmediting', 0.5508294105529785, 'ml', 0), ('huggingface/diffusers', 0.539817750453949, 'diffusion', 1), ('thudm/cogvideo', 0.529645562171936, 'ml', 0), ('openai/clip', 0.5254179239273071, 'ml-dl', 1), ('carson-katri/dream-textures', 0.5181798934936523, 'diffusion', 1), ('alibaba/easynlp', 0.5042204260826111, 'nlp', 2)]
11
4
null
0.13
2
2
28
1
0
0
0
2
4
90
2
45
868
study
https://github.com/rasbt/machine-learning-book
[]
null
[]
[]
null
null
null
rasbt/machine-learning-book
machine-learning-book
2,524
923
45
Jupyter Notebook
https://sebastianraschka.com/books/#machine-learning-with-pytorch-and-scikit-learn
Code Repository for Machine Learning with PyTorch and Scikit-Learn
rasbt
2024-01-13
2021-12-19
110
22.88601
null
Code Repository for Machine Learning with PyTorch and Scikit-Learn
['deep-learning', 'machine-learning', 'neural-networks', 'pytorch', 'scikit-learn']
['deep-learning', 'machine-learning', 'neural-networks', 'pytorch', 'scikit-learn']
2023-12-27
[('skorch-dev/skorch', 0.777802050113678, 'ml-dl', 3), ('intel/intel-extension-for-pytorch', 0.7345353960990906, 'perf', 3), ('pytorch/ignite', 0.7284553050994873, 'ml-dl', 3), ('mrdbourke/pytorch-deep-learning', 0.6849406957626343, 'study', 3), ('fchollet/deep-learning-with-python-notebooks', 0.6557565331459045, 'study', 0), ('ageron/handson-ml2', 0.6461301445960999, 'ml', 0), ('pyg-team/pytorch_geometric', 0.6416996121406555, 'ml-dl', 2), ('determined-ai/determined', 0.6383908987045288, 'ml-ops', 3), ('pycaret/pycaret', 0.6377236843109131, 'ml', 1), ('nvidia/apex', 0.6338503956794739, 'ml-dl', 0), ('ashleve/lightning-hydra-template', 0.619256317615509, 'util', 2), ('patchy631/machine-learning', 0.6192141175270081, 'ml', 0), ('huggingface/transformers', 0.6170870065689087, 'nlp', 3), ('tensorflow/tensorflow', 0.6161754131317139, 'ml-dl', 2), ('tensorlayer/tensorlayer', 0.6144220232963562, 'ml-rl', 1), ('pytorch/data', 0.6106820106506348, 'data', 0), ('teamhg-memex/eli5', 0.607665479183197, 'ml', 2), ('koaning/human-learn', 0.6072452068328857, 'data', 2), ('gradio-app/gradio', 0.607107937335968, 'viz', 2), ('allenai/allennlp', 0.6064896583557129, 'nlp', 2), ('microsoft/semi-supervised-learning', 0.6046102046966553, 'ml', 3), ('microsoft/nni', 0.603572428226471, 'ml', 3), ('huggingface/huggingface_hub', 0.6020623445510864, 'ml', 3), ('automl/auto-sklearn', 0.6004539132118225, 'ml', 1), ('karpathy/micrograd', 0.597282350063324, 'study', 0), ('featurelabs/featuretools', 0.5927860736846924, 'ml', 2), ('tensorflow/tensor2tensor', 0.5888902544975281, 'ml', 2), ('horovod/horovod', 0.5868951082229614, 'ml-ops', 3), ('nvidia/deeplearningexamples', 0.5868580937385559, 'ml-dl', 2), ('aws/sagemaker-python-sdk', 0.586579442024231, 'ml', 2), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5862606167793274, 'study', 2), ('intellabs/bayesian-torch', 0.5859395861625671, 'ml', 2), ('koaning/scikit-lego', 0.5857502818107605, 'ml', 2), ('iryna-kondr/scikit-llm', 0.5804186463356018, 'llm', 3), ('deepmind/deepmind-research', 0.5797885060310364, 'ml', 0), ('oml-team/open-metric-learning', 0.5796335339546204, 'ml', 2), ('neuralmagic/sparseml', 0.5774632692337036, 'ml-dl', 1), ('facebookresearch/pytorch3d', 0.574776828289032, 'ml-dl', 0), ('rentruewang/koila', 0.5745282769203186, 'ml', 3), ('pyro-ppl/pyro', 0.5722088813781738, 'ml-dl', 3), ('pytorch/rl', 0.5708683729171753, 'ml-rl', 2), ('intel/scikit-learn-intelex', 0.5701589584350586, 'perf', 2), ('uber/petastorm', 0.5682684183120728, 'data', 3), ('huggingface/datasets', 0.5675892233848572, 'nlp', 3), ('aistream-peelout/flow-forecast', 0.5672064423561096, 'time-series', 2), ('denys88/rl_games', 0.5648091435432434, 'ml-rl', 2), ('samuela/git-re-basin', 0.564606785774231, 'ml-dl', 3), ('jovianml/opendatasets', 0.5631752610206604, 'data', 1), ('mlflow/mlflow', 0.5623690485954285, 'ml-ops', 1), ('microsoft/deepspeed', 0.5622684955596924, 'ml-dl', 3), ('arogozhnikov/einops', 0.5617372989654541, 'ml-dl', 2), ('firmai/industry-machine-learning', 0.5610123872756958, 'study', 1), ('probml/pyprobml', 0.5608888268470764, 'ml', 2), ('rdkit/rdkit', 0.5607836246490479, 'sim', 0), ('davidadsp/generative_deep_learning_2nd_edition', 0.5600119233131409, 'study', 2), ('salesforce/deeptime', 0.559136688709259, 'time-series', 1), ('microsoft/onnxruntime', 0.5571870803833008, 'ml', 5), ('keras-team/autokeras', 0.5562219023704529, 'ml-dl', 2), ('keras-team/keras', 0.5560621619224548, 'ml-dl', 4), ('tlkh/tf-metal-experiments', 0.5555431246757507, 'perf', 1), ('ggerganov/ggml', 0.5550714135169983, 'ml', 1), ('skops-dev/skops', 0.5548707246780396, 'ml-ops', 2), ('kubeflow/fairing', 0.5534403324127197, 'ml-ops', 0), ('explosion/thinc', 0.5526840686798096, 'ml-dl', 3), ('tensorflow/data-validation', 0.5481884479522705, 'ml-ops', 0), ('wandb/client', 0.5468006134033203, 'ml', 3), ('ddbourgin/numpy-ml', 0.5466738343238831, 'ml', 2), ('facebookresearch/dinov2', 0.5447684526443481, 'diffusion', 0), ('onnx/onnx', 0.5438082814216614, 'ml', 4), ('pytorch/torchrec', 0.5437749624252319, 'ml-dl', 2), ('rafiqhasan/auto-tensorflow', 0.5379175543785095, 'ml-dl', 2), ('d2l-ai/d2l-en', 0.5370543003082275, 'study', 3), ('lightly-ai/lightly', 0.5357835292816162, 'ml', 3), ('pytorch/glow', 0.5354295372962952, 'ml', 0), ('rasbt/mlxtend', 0.5330138206481934, 'ml', 1), ('xl0/lovely-tensors', 0.5321751236915588, 'ml-dl', 2), ('scikit-learn/scikit-learn', 0.5305891036987305, 'ml', 1), ('dmlc/dgl', 0.5301172733306885, 'ml-dl', 1), ('christoschristofidis/awesome-deep-learning', 0.5299058556556702, 'study', 2), ('pytorch/captum', 0.5297553539276123, 'ml-interpretability', 0), ('scikit-learn-contrib/metric-learn', 0.5294020175933838, 'ml', 2), ('google-research/language', 0.5288284420967102, 'nlp', 1), ('nyandwi/modernconvnets', 0.5279679298400879, 'ml-dl', 1), ('dask/dask-ml', 0.5278743505477905, 'ml', 0), ('jeshraghian/snntorch', 0.5273086428642273, 'ml-dl', 3), ('huggingface/evaluate', 0.5270928740501404, 'ml', 1), ('hysts/pytorch_image_classification', 0.5264284610748291, 'ml-dl', 1), ('microsoft/flaml', 0.5261116623878479, 'ml', 3), ('nvlabs/gcvit', 0.5256971716880798, 'diffusion', 1), ('huggingface/accelerate', 0.5255182385444641, 'ml', 0), ('mdbloice/augmentor', 0.5249707102775574, 'ml', 3), ('scikit-learn-contrib/imbalanced-learn', 0.5242375731468201, 'ml', 1), ('merantix-momentum/squirrel-core', 0.5238132476806641, 'ml', 3), ('speechbrain/speechbrain', 0.5237654447555542, 'nlp', 2), ('csinva/imodels', 0.5234281420707703, 'ml', 2), ('google/tf-quant-finance', 0.523298442363739, 'finance', 0), ('googlecloudplatform/vertex-ai-samples', 0.5225531458854675, 'ml', 0), ('thu-ml/tianshou', 0.5220516920089722, 'ml-rl', 1), ('google/temporian', 0.5215150117874146, 'time-series', 0), ('lucidrains/imagen-pytorch', 0.5199929475784302, 'ml-dl', 1), ('aiqc/aiqc', 0.519234299659729, 'ml-ops', 0), ('salesforce/blip', 0.5187211036682129, 'diffusion', 0), ('graykode/nlp-tutorial', 0.518619179725647, 'study', 1), ('lutzroeder/netron', 0.5182120203971863, 'ml', 3), ('udacity/deep-learning-v2-pytorch', 0.517561674118042, 'study', 2), ('deepmind/dm-haiku', 0.5160495638847351, 'ml-dl', 3), ('nicolas-chaulet/torch-points3d', 0.5115610957145691, 'ml', 0), ('epistasislab/tpot', 0.5111925601959229, 'ml', 2), ('catboost/catboost', 0.5105630159378052, 'ml', 1), ('weecology/deepforest', 0.5097160339355469, 'gis', 0), ('neuralmagic/deepsparse', 0.5080384612083435, 'nlp', 0), ('tensorflow/lucid', 0.5070700645446777, 'ml-interpretability', 1), ('cvxgrp/pymde', 0.5070154070854187, 'ml', 2), ('dylanhogg/awesome-python', 0.5065024495124817, 'study', 2), ('keras-rl/keras-rl', 0.5053036212921143, 'ml-rl', 2), ('carla-recourse/carla', 0.5052952766418457, 'ml', 2), ('unity-technologies/ml-agents', 0.5040963292121887, 'ml-rl', 3), ('deepmodeling/deepmd-kit', 0.5035223960876465, 'sim', 1), ('adafruit/circuitpython', 0.5035032033920288, 'util', 0), ('ray-project/tune-sklearn', 0.5028691291809082, 'ml', 1), ('google/vizier', 0.5023799538612366, 'ml', 2), ('nltk/nltk', 0.5020496249198914, 'nlp', 1), ('blackhc/toma', 0.5006940960884094, 'ml-dl', 2), ('ludwig-ai/ludwig', 0.5003655552864075, 'ml-ops', 3)]
14
3
null
0.38
7
4
25
1
0
1
1
7
7
90
1
45
1,793
util
https://github.com/pyinfra-dev/pyinfra
[]
null
[]
[]
null
null
null
pyinfra-dev/pyinfra
pyinfra
2,467
319
37
Python
https://pyinfra.com
pyinfra automates infrastructure using Python. It’s fast and scales from one server to thousands. Great for ad-hoc command execution, service deployment, configuration management and more.
pyinfra-dev
2024-01-13
2014-10-19
484
5.0941
https://avatars.githubusercontent.com/u/146648081?v=4
pyinfra automates infrastructure using Python. It’s fast and scales from one server to thousands. Great for ad-hoc command execution, service deployment, configuration management and more.
['cloud-management', 'configuration-management', 'high-performance', 'infrastructure', 'pyinfra', 'remote-execution']
['cloud-management', 'configuration-management', 'high-performance', 'infrastructure', 'pyinfra', 'remote-execution']
2024-01-13
[('willmcgugan/textual', 0.6321539878845215, 'term', 0), ('pypy/pypy', 0.6099465489387512, 'util', 0), ('backtick-se/cowait', 0.5932263135910034, 'util', 0), ('bottlepy/bottle', 0.590758204460144, 'web', 0), ('cython/cython', 0.5551347732543945, 'util', 0), ('pypa/hatch', 0.5454100966453552, 'util', 0), ('pallets/flask', 0.5409476161003113, 'web', 0), ('pallets/quart', 0.5390889048576355, 'web', 0), ('dddomodossola/remi', 0.5348232984542847, 'gui', 0), ('pytables/pytables', 0.5320051312446594, 'data', 0), ('micropython/micropython', 0.5298929214477539, 'util', 0), ('eventual-inc/daft', 0.5292609333992004, 'pandas', 0), ('eleutherai/pyfra', 0.5274806022644043, 'ml', 0), ('falconry/falcon', 0.5231207609176636, 'web', 0), ('hoffstadt/dearpygui', 0.5215190649032593, 'gui', 0), ('klen/py-frameworks-bench', 0.5210394263267517, 'perf', 0), ('nficano/python-lambda', 0.5205470323562622, 'util', 0), ('fastai/fastcore', 0.5203496217727661, 'util', 0), ('webpy/webpy', 0.5194896459579468, 'web', 0), ('masoniteframework/masonite', 0.5186633467674255, 'web', 0), ('aws/chalice', 0.5128588080406189, 'web', 0), ('pyodide/micropip', 0.5114571452140808, 'util', 0), ('pypa/pipenv', 0.5107925534248352, 'util', 0), ('flet-dev/flet', 0.5072339773178101, 'web', 0), ('neoteroi/blacksheep', 0.5058210492134094, 'web', 0), ('google/gin-config', 0.5022099614143372, 'util', 1), ('klen/muffin', 0.5019458532333374, 'web', 0)]
104
5
null
1.31
61
25
112
0
4
22
4
61
52
90
0.9
45
585
util
https://github.com/hgrecco/pint
[]
null
[]
[]
null
null
null
hgrecco/pint
pint
2,171
492
41
Python
http://pint.readthedocs.org/
Operate and manipulate physical quantities in Python
hgrecco
2024-01-12
2012-07-13
602
3.602892
null
Operate and manipulate physical quantities in Python
['science', 'units']
['science', 'units']
2024-01-03
[('fredrik-johansson/mpmath', 0.5482094883918762, 'math', 0), ('numpy/numpy', 0.5478784441947937, 'math', 0), ('sympy/sympy', 0.534096896648407, 'math', 1), ('artemyk/dynpy', 0.5099499225616455, 'sim', 0), ('connorferster/handcalcs', 0.506892740726471, 'jupyter', 0)]
208
3
null
3.29
80
28
140
0
0
4
4
80
169
90
2.1
45
1,872
ml
https://github.com/freedmand/semantra
[]
Semantra is a multipurpose tool for semantically searching documents. Query by meaning rather than just by matching text.
[]
[]
null
null
null
freedmand/semantra
semantra
2,152
117
31
Python
null
Multi-tool for semantic search
freedmand
2024-01-13
2023-03-31
43
49.390164
null
Multi-tool for semantic search
['cli', 'machine-learning', 'semantic-search']
['cli', 'machine-learning', 'semantic-search']
2023-12-16
[('docarray/docarray', 0.5385406017303467, 'data', 2), ('nomic-ai/semantic-search-app-template', 0.5121299624443054, 'study', 1)]
4
1
null
0.87
7
5
10
1
0
0
0
7
7
90
1
45
297
finance
https://github.com/blankly-finance/blankly
[]
null
[]
[]
null
null
null
blankly-finance/blankly
blankly
1,864
250
39
Python
https://package.blankly.finance
🚀 💸 Easily build, backtest and deploy your algo in just a few lines of code. Trade stocks, cryptos, and forex across exchanges w/ one package.
blankly-finance
2024-01-14
2021-03-09
151
12.344371
https://avatars.githubusercontent.com/u/82687739?v=4
🚀 💸 Easily build, backtest and deploy your algo in just a few lines of code. Trade stocks, cryptos, and forex across exchanges w/ one package.
['algotrading', 'binance', 'blankly', 'bot', 'bot-framework', 'bots', 'coinbase', 'crypto', 'cryptocurrency', 'framework', 'investment', 'platform', 'stocks', 'trading', 'trading-bot', 'trading-strategies']
['algotrading', 'binance', 'blankly', 'bot', 'bot-framework', 'bots', 'coinbase', 'crypto', 'cryptocurrency', 'framework', 'investment', 'platform', 'stocks', 'trading', 'trading-bot', 'trading-strategies']
2023-12-23
[('ccxt/ccxt', 0.6164409518241882, 'crypto', 4), ('kernc/backtesting.py', 0.5919058918952942, 'finance', 5), ('gbeced/basana', 0.5776981711387634, 'finance', 3), ('freqtrade/freqtrade', 0.5714588165283203, 'crypto', 2), ('idanya/algo-trader', 0.5535969138145447, 'finance', 2), ('quantconnect/lean', 0.5336184501647949, 'finance', 3)]
18
5
null
0.35
7
3
35
1
0
10
10
7
6
90
0.9
45
507
ml
https://github.com/tensorflow/addons
[]
null
[]
[]
null
null
null
tensorflow/addons
addons
1,680
612
58
Python
null
Useful extra functionality for TensorFlow 2.x maintained by SIG-addons
tensorflow
2024-01-09
2018-11-26
270
6.218932
https://avatars.githubusercontent.com/u/15658638?v=4
Useful extra functionality for TensorFlow 2.x maintained by SIG-addons
['deep-learning', 'machine-learning', 'neural-network', 'tensorflow', 'tensorflow-addons']
['deep-learning', 'machine-learning', 'neural-network', 'tensorflow', 'tensorflow-addons']
2023-12-13
[('arogozhnikov/einops', 0.6348954439163208, 'ml-dl', 2), ('intel/intel-extension-for-pytorch', 0.6045843958854675, 'perf', 3), ('blackhc/toma', 0.5717829465866089, 'ml-dl', 1), ('tlkh/tf-metal-experiments', 0.5677783489227295, 'perf', 2), ('nyandwi/modernconvnets', 0.567768931388855, 'ml-dl', 1), ('google/tf-quant-finance', 0.5670149326324463, 'finance', 1), ('tensorflow/similarity', 0.5603650212287903, 'ml-dl', 3), ('tensorly/tensorly', 0.5590072274208069, 'ml-dl', 2), ('danielegrattarola/spektral', 0.5564872026443481, 'ml-dl', 2), ('explosion/thinc', 0.5554784536361694, 'ml-dl', 3), ('microsoft/onnxruntime', 0.5536020994186401, 'ml', 3), ('neuralmagic/sparseml', 0.5490881204605103, 'ml-dl', 1), ('pytorch/pytorch', 0.5459487438201904, 'ml-dl', 3), ('xl0/lovely-tensors', 0.5444281697273254, 'ml-dl', 1), ('horovod/horovod', 0.5429335832595825, 'ml-ops', 3), ('huggingface/transformers', 0.5373498797416687, 'nlp', 3), ('lutzroeder/netron', 0.5334285497665405, 'ml', 4), ('ageron/handson-ml2', 0.5312256813049316, 'ml', 0), ('rafiqhasan/auto-tensorflow', 0.530368983745575, 'ml-dl', 2), ('nvidia/deeplearningexamples', 0.5303577780723572, 'ml-dl', 2), ('huggingface/datasets', 0.5287928581237793, 'nlp', 3), ('pytorch/ignite', 0.5261369943618774, 'ml-dl', 3), ('ggerganov/ggml', 0.525490939617157, 'ml', 1), ('tensorlayer/tensorlayer', 0.5212689638137817, 'ml-rl', 3), ('nvidia/tensorrt-llm', 0.5190548300743103, 'viz', 0), ('tensorflow/tensorflow', 0.5162330865859985, 'ml-dl', 4), ('onnx/onnx', 0.515902578830719, 'ml', 4), ('mdbloice/augmentor', 0.5146579742431641, 'ml', 2), ('keras-team/keras-nlp', 0.5104029178619385, 'nlp', 3), ('keras-team/keras', 0.5103944540023804, 'ml-dl', 3), ('ashleve/lightning-hydra-template', 0.5103277564048767, 'util', 1), ('determined-ai/determined', 0.5096710920333862, 'ml-ops', 3), ('google/gin-config', 0.5091912150382996, 'util', 1), ('dmlc/dgl', 0.5086209774017334, 'ml-dl', 1), ('google-research/deeplab2', 0.5076053738594055, 'ml', 0), ('ddbourgin/numpy-ml', 0.5075183510780334, 'ml', 1)]
207
7
null
0.54
16
13
62
1
4
8
4
16
25
90
1.6
45
212
data
https://github.com/sfu-db/connector-x
[]
null
[]
[]
1
null
null
sfu-db/connector-x
connector-x
1,656
121
30
Rust
https://sfu-db.github.io/connector-x/intro.html
Fastest library to load data from DB to DataFrames in Rust and Python
sfu-db
2024-01-12
2021-01-13
158
10.42446
https://avatars.githubusercontent.com/u/18023593?v=4
Fastest library to load data from DB to DataFrames in Rust and Python
['database', 'dataframe', 'rust', 'sql']
['database', 'dataframe', 'rust', 'sql']
2024-01-11
[('pola-rs/polars', 0.6430513262748718, 'pandas', 2), ('delta-io/delta-rs', 0.5911102890968323, 'pandas', 1), ('ibis-project/ibis', 0.5806707143783569, 'data', 2), ('eventual-inc/daft', 0.5663425326347351, 'pandas', 2), ('tobymao/sqlglot', 0.5419861674308777, 'data', 1), ('jmcarpenter2/swifter', 0.5345582962036133, 'pandas', 0), ('tiangolo/sqlmodel', 0.5301145911216736, 'data', 1), ('klen/py-frameworks-bench', 0.5208754539489746, 'perf', 0), ('sqlalchemy/sqlalchemy', 0.5162760019302368, 'data', 1), ('samuelcolvin/rtoml', 0.5036177039146423, 'data', 1), ('mcfunley/pugsql', 0.5034618377685547, 'data', 1)]
43
5
null
1.71
33
9
36
0
1
3
1
33
38
90
1.2
45
303
nlp
https://github.com/featureform/embeddinghub
[]
null
[]
[]
null
null
null
featureform/embeddinghub
featureform
1,627
91
14
Jupyter Notebook
https://www.featureform.com
The Virtual Feature Store. Turn your existing data infrastructure into a feature store.
featureform
2024-01-13
2020-10-16
171
9.482931
https://avatars.githubusercontent.com/u/72954069?v=4
The Virtual Feature Store. Turn your existing data infrastructure into a feature store.
['data-quality', 'data-science', 'embeddings', 'embeddings-similarity', 'feature-engineering', 'feature-store', 'machine-learning', 'ml', 'mlops', 'vector-database']
['data-quality', 'data-science', 'embeddings', 'embeddings-similarity', 'feature-engineering', 'feature-store', 'machine-learning', 'ml', 'mlops', 'vector-database']
2023-12-15
[('feast-dev/feast', 0.7385993599891663, 'ml-ops', 6), ('lancedb/lancedb', 0.6071080565452576, 'data', 1), ('activeloopai/deeplake', 0.6054278016090393, 'ml-ops', 5), ('superduperdb/superduperdb', 0.6010522246360779, 'data', 2), ('airbytehq/airbyte', 0.5929150581359863, 'data', 0), ('mage-ai/mage-ai', 0.5914458632469177, 'ml-ops', 2), ('dgarnitz/vectorflow', 0.5690073370933533, 'data', 2), ('streamlit/streamlit', 0.5492863059043884, 'viz', 2), ('jina-ai/vectordb', 0.549279510974884, 'data', 1), ('netflix/metaflow', 0.5473335981369019, 'ml-ops', 4), ('orchest/orchest', 0.5408744215965271, 'ml-ops', 2), ('polyaxon/polyaxon', 0.5308116674423218, 'ml-ops', 4), ('ploomber/ploomber', 0.529184103012085, 'ml-ops', 3), ('milvus-io/bootcamp', 0.5258285403251648, 'data', 2), ('avaiga/taipy', 0.5199906229972839, 'data', 1), ('meltano/meltano', 0.5155656337738037, 'ml-ops', 0), ('dagster-io/dagster', 0.512913703918457, 'ml-ops', 2), ('flyteorg/flyte', 0.5021466612815857, 'ml-ops', 3), ('huggingface/datasets', 0.5000424981117249, 'nlp', 1)]
30
1
null
11.08
201
147
40
1
20
12
20
201
85
90
0.4
45
1,686
perf
https://github.com/faster-cpython/ideas
['cpython']
Discussion and work tracker for Faster CPython project.
[]
[]
null
null
null
faster-cpython/ideas
ideas
1,618
53
130
null
null
null
faster-cpython
2024-01-13
2021-03-02
152
10.644737
https://avatars.githubusercontent.com/u/81193161?v=4
Discussion and work tracker for Faster CPython project.
[]
['cpython']
2024-01-03
[('faster-cpython/tools', 0.8179801106452942, 'perf', 1), ('python/cpython', 0.7051501274108887, 'util', 1), ('brandtbucher/specialist', 0.6769110560417175, 'perf', 1), ('markshannon/faster-cpython', 0.6732155084609985, 'perf', 0), ('pypy/pypy', 0.6248586773872375, 'util', 1), ('p403n1x87/austin', 0.6115438938140869, 'profiling', 0), ('ipython/ipyparallel', 0.5969278216362, 'perf', 0), ('cohere-ai/notebooks', 0.5839570760726929, 'llm', 0), ('cython/cython', 0.5725173354148865, 'util', 1), ('facebookincubator/cinder', 0.5721518397331238, 'perf', 1), ('agronholm/apscheduler', 0.5676429867744446, 'util', 0), ('wxwidgets/phoenix', 0.563103973865509, 'gui', 0), ('pyston/pyston', 0.5621926188468933, 'util', 0), ('wesm/pydata-book', 0.5588380694389343, 'study', 0), ('scikit-build/scikit-build', 0.5575029253959656, 'ml', 1), ('fastai/fastcore', 0.5519487857818604, 'util', 0), ('ipython/ipython', 0.5474236607551575, 'util', 0), ('gotcha/ipdb', 0.5395191311836243, 'debug', 0), ('eleutherai/pyfra', 0.5366376042366028, 'ml', 0), ('pytorch/data', 0.5340155959129333, 'data', 0), ('reloadware/reloadium', 0.5288839936256409, 'profiling', 0), ('tqdm/tqdm', 0.5260686874389648, 'term', 0), ('rasbt/watermark', 0.5214296579360962, 'util', 0), ('hoffstadt/dearpygui', 0.5212865471839905, 'gui', 0), ('sumerc/yappi', 0.5191786289215088, 'profiling', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5187180638313293, 'study', 0), ('intel/intel-extension-for-pytorch', 0.5159723162651062, 'perf', 0), ('willmcgugan/textual', 0.5151427388191223, 'term', 0), ('alexmojaki/snoop', 0.5135080814361572, 'debug', 0), ('erotemic/ubelt', 0.5061014890670776, 'util', 0), ('allenai/allennlp', 0.5050787329673767, 'nlp', 0), ('mynameisfiber/high_performance_python_2e', 0.5015802979469299, 'study', 0), ('timofurrer/awesome-asyncio', 0.500760018825531, 'study', 0)]
11
2
null
4.48
25
6
35
0
0
0
0
25
97
90
3.9
45
1,866
data
https://github.com/rapidai/rapidocr
[]
null
[]
[]
null
null
null
rapidai/rapidocr
RapidOCR
1,614
266
33
Python
https://rapidai.github.io/RapidOCRDocs/docs/
A cross platform OCR Library based on PaddleOCR & OnnxRuntime & OpenVINO.
rapidai
2024-01-13
2021-01-04
160
10.078501
https://avatars.githubusercontent.com/u/87350760?v=4
A cross platform OCR Library based on PaddleOCR & OnnxRuntime & OpenVINO.
['chineseocr', 'crnn', 'dbnet', 'easyocr', 'ocr', 'onnxruntime', 'openvino', 'paddleocr', 'rapidocr']
['chineseocr', 'crnn', 'dbnet', 'easyocr', 'ocr', 'onnxruntime', 'openvino', 'paddleocr', 'rapidocr']
2023-12-28
[('jaidedai/easyocr', 0.6983810663223267, 'data', 3), ('hrnet/hrnet-semantic-segmentation', 0.5680984258651733, 'ml', 0), ('madmaze/pytesseract', 0.5656213164329529, 'data', 1), ('unstructured-io/pipeline-paddleocr', 0.5100756287574768, 'data', 1)]
14
4
null
4.33
12
9
37
1
4
4
4
12
19
90
1.6
45
1,789
web
https://github.com/indico/indico
[]
null
[]
[]
null
null
null
indico/indico
indico
1,591
397
63
Python
https://getindico.io
Indico - A feature-rich event management system, made @ CERN, the place where the Web was born.
indico
2024-01-13
2011-07-27
652
2.43698
https://avatars.githubusercontent.com/u/715236?v=4
Indico - A feature-rich event management system, made @ CERN, the place where the Web was born.
['conferences', 'events', 'flask', 'sqlalchemy']
['conferences', 'events', 'flask', 'sqlalchemy']
2024-01-11
[('masoniteframework/masonite', 0.5639700293540955, 'web', 0), ('pallets/flask', 0.5564385056495667, 'web', 1), ('bottlepy/bottle', 0.5327122211456299, 'web', 0), ('brettkromkamp/contextualise', 0.5198062658309937, 'data', 0), ('django/django', 0.514659583568573, 'web', 0), ('dylanhogg/awesome-python', 0.5107914209365845, 'study', 0), ('wagtail/wagtail', 0.5091932415962219, 'web', 0), ('klen/muffin', 0.5037544369697571, 'web', 0), ('emmett-framework/emmett', 0.5001763701438904, 'web', 0), ('feincms/feincms', 0.5001288652420044, 'web', 0)]
142
5
null
9.62
181
120
152
0
6
10
6
181
266
90
1.5
45
1,718
util
https://github.com/codespell-project/codespell
['code-quality']
null
[]
[]
null
null
null
codespell-project/codespell
codespell
1,590
470
24
Python
null
check code for common misspellings
codespell-project
2024-01-14
2011-01-28
678
2.343158
https://avatars.githubusercontent.com/u/39140587?v=4
check code for common misspellings
[]
['code-quality']
2024-01-13
[]
188
5
null
8.06
188
147
158
0
4
3
4
188
287
90
1.5
45
263
data
https://github.com/collerek/ormar
[]
null
[]
[]
null
null
null
collerek/ormar
ormar
1,506
78
17
Python
https://collerek.github.io/ormar/
python async orm with fastapi in mind and pydantic validation
collerek
2024-01-13
2020-08-02
182
8.261755
null
python async orm with fastapi in mind and pydantic validation
['alembic', 'async-orm', 'databases', 'fastapi', 'orm', 'pydantic', 'python-orm', 'sqlalchemy']
['alembic', 'async-orm', 'databases', 'fastapi', 'orm', 'pydantic', 'python-orm', 'sqlalchemy']
2024-01-11
[('tiangolo/sqlmodel', 0.6308665871620178, 'data', 3), ('mcfunley/pugsql', 0.6217651963233948, 'data', 1), ('sqlalchemy/sqlalchemy', 0.6017918586730957, 'data', 1), ('python-trio/trio', 0.5920240879058838, 'perf', 0), ('andialbrecht/sqlparse', 0.5768142938613892, 'data', 0), ('s3rius/fastapi-template', 0.5686522722244263, 'web', 2), ('fastai/fastcore', 0.5605081915855408, 'util', 0), ('rawheel/fastapi-boilerplate', 0.5596618056297302, 'web', 5), ('ibis-project/ibis', 0.5441567301750183, 'data', 1), ('pypy/pypy', 0.5436598658561707, 'util', 0), ('aeternalis-ingenium/fastapi-backend-template', 0.5430356860160828, 'web', 3), ('pyeve/cerberus', 0.5298268795013428, 'data', 0), ('pydantic/pydantic', 0.5280044078826904, 'util', 1), ('aminalaee/sqladmin', 0.5242454409599304, 'data', 2), ('python-cachier/cachier', 0.5154281258583069, 'perf', 0), ('pyston/pyston', 0.5057287812232971, 'util', 0), ('eleutherai/pyfra', 0.5003811717033386, 'ml', 0)]
35
5
null
2.88
36
20
42
0
2
22
2
36
32
90
0.9
45
801
web
https://github.com/s3rius/fastapi-template
[]
null
[]
[]
null
null
null
s3rius/fastapi-template
FastAPI-template
1,421
126
24
Python
null
Feature rich robust FastAPI template.
s3rius
2024-01-14
2020-10-05
173
8.207096
null
Feature rich robust FastAPI template.
['aerich', 'alembic', 'asynchronous', 'asyncio', 'cookiecutter', 'cookiecutter-python3', 'cookiecutter-template', 'fastapi', 'fastapi-boilerplate', 'fastapi-template', 'graphql', 'opentelemetry', 'ormar', 'prometheus', 'sentry', 'sqlalchemy-orm', 'strawberry-graphql', 'tortoise-orm']
['aerich', 'alembic', 'asynchronous', 'asyncio', 'cookiecutter', 'cookiecutter-python3', 'cookiecutter-template', 'fastapi', 'fastapi-boilerplate', 'fastapi-template', 'graphql', 'opentelemetry', 'ormar', 'prometheus', 'sentry', 'sqlalchemy-orm', 'strawberry-graphql', 'tortoise-orm']
2023-09-12
[('rawheel/fastapi-boilerplate', 0.6903481483459473, 'web', 4), ('asacristani/fastapi-rocket-boilerplate', 0.6634681224822998, 'template', 1), ('tiangolo/fastapi', 0.6399540305137634, 'web', 2), ('buuntu/fastapi-react', 0.6214925646781921, 'template', 2), ('fastai/fastcore', 0.6101469993591309, 'util', 0), ('fastapi-admin/fastapi-admin', 0.6024838089942932, 'web', 2), ('dmontagu/fastapi_client', 0.6021080613136292, 'web', 0), ('aminalaee/sqladmin', 0.5958586931228638, 'data', 2), ('fastapi-users/fastapi-users', 0.595072329044342, 'web', 2), ('vitalik/django-ninja', 0.5742310285568237, 'web', 0), ('aeternalis-ingenium/fastapi-backend-template', 0.5711674690246582, 'web', 3), ('collerek/ormar', 0.5686522722244263, 'data', 2), ('tiangolo/full-stack-fastapi-postgresql', 0.5562103986740112, 'template', 2), ('starlite-api/starlite', 0.5500728487968445, 'web', 1), ('pallets/jinja', 0.5498924255371094, 'util', 0), ('python-restx/flask-restx', 0.5399068593978882, 'web', 0), ('tiangolo/sqlmodel', 0.5149979591369629, 'data', 1), ('awtkns/fastapi-crudrouter', 0.514696478843689, 'web', 2), ('tedivm/robs_awesome_python_template', 0.5110516548156738, 'template', 1), ('klen/muffin', 0.5076808333396912, 'web', 1), ('strawberry-graphql/strawberry', 0.5046817064285278, 'web', 2), ('sumerc/yappi', 0.5003270506858826, 'profiling', 2)]
18
6
null
0.73
13
3
40
4
14
11
14
13
37
90
2.8
45
1,472
data
https://github.com/aminalaee/sqladmin
[]
null
[]
[]
null
null
null
aminalaee/sqladmin
sqladmin
1,391
141
12
Python
https://aminalaee.dev/sqladmin/
SQLAlchemy Admin for FastAPI and Starlette
aminalaee
2024-01-12
2021-12-22
109
12.661899
null
SQLAlchemy Admin for FastAPI and Starlette
['admin', 'admin-dashboard', 'asgi', 'asyncio', 'fastapi', 'sqlalchemy', 'starlette', 'web', 'wsgi']
['admin', 'admin-dashboard', 'asgi', 'asyncio', 'fastapi', 'sqlalchemy', 'starlette', 'web', 'wsgi']
2023-12-13
[('piccolo-orm/piccolo_admin', 0.6254207491874695, 'data', 5), ('fastapi-admin/fastapi-admin', 0.6240462064743042, 'web', 3), ('sqlalchemy/sqlalchemy', 0.6173149347305298, 'data', 1), ('aeternalis-ingenium/fastapi-backend-template', 0.6071468591690063, 'web', 2), ('s3rius/fastapi-template', 0.5958586931228638, 'web', 2), ('rawheel/fastapi-boilerplate', 0.5917928218841553, 'web', 2), ('tiangolo/sqlmodel', 0.5850541591644287, 'data', 2), ('mause/duckdb_engine', 0.5703755021095276, 'data', 1), ('sqlalchemy/alembic', 0.5552855730056763, 'data', 1), ('starlite-api/starlite', 0.5524939894676208, 'web', 2), ('fastapi-users/fastapi-users', 0.5336757302284241, 'web', 3), ('collerek/ormar', 0.5242454409599304, 'data', 2), ('neoteroi/blacksheep', 0.5168036818504333, 'web', 3), ('ibis-project/ibis', 0.512384831905365, 'data', 1), ('agronholm/sqlacodegen', 0.5044848918914795, 'data', 0), ('pallets/werkzeug', 0.5044029355049133, 'web', 1)]
46
1
null
2.08
45
32
25
1
14
17
14
45
55
90
1.2
45
1,185
ml
https://github.com/castorini/pyserini
[]
null
[]
[]
null
null
null
castorini/pyserini
pyserini
1,269
283
16
Python
http://pyserini.io/
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.
castorini
2024-01-12
2019-11-01
221
5.727273
https://avatars.githubusercontent.com/u/26842848?v=4
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.
['information-retrieval']
['information-retrieval']
2024-01-11
[('facebookresearch/dpr-scale', 0.5861307978630066, 'nlp', 0), ('qdrant/fastembed', 0.556861937046051, 'ml', 0), ('harangju/wikinet', 0.5286003351211548, 'data', 0), ('kagisearch/vectordb', 0.5248305201530457, 'data', 0), ('paddlepaddle/rocketqa', 0.5224674940109253, 'nlp', 1), ('qdrant/qdrant-client', 0.5034437775611877, 'util', 0)]
148
2
null
4.27
99
89
51
0
6
8
6
99
93
90
0.9
45
743
data
https://github.com/pytorch/data
[]
null
[]
[]
null
null
null
pytorch/data
data
1,044
136
33
Python
null
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
pytorch
2024-01-13
2021-05-12
141
7.359517
https://avatars.githubusercontent.com/u/21003710?v=4
A PyTorch repo for data loading and utilities to be shared by the PyTorch domain libraries.
[]
[]
2024-01-13
[('intel/intel-extension-for-pytorch', 0.6773589849472046, 'perf', 0), ('nvidia/apex', 0.6665452122688293, 'ml-dl', 0), ('pytorch/ignite', 0.655742347240448, 'ml-dl', 0), ('skorch-dev/skorch', 0.631018877029419, 'ml-dl', 0), ('rasbt/machine-learning-book', 0.6106820106506348, 'study', 0), ('parallel-domain/pd-sdk', 0.6059823036193848, 'data', 0), ('erotemic/ubelt', 0.5979729294776917, 'util', 0), ('allenai/allennlp', 0.5899907946586609, 'nlp', 0), ('pytorch/torchrec', 0.5872920751571655, 'ml-dl', 0), ('fastai/fastcore', 0.5834670066833496, 'util', 0), ('ashleve/lightning-hydra-template', 0.5815867781639099, 'util', 0), ('pytorch-labs/gpt-fast', 0.5759943723678589, 'llm', 0), ('karpathy/micrograd', 0.5738345980644226, 'study', 0), ('rentruewang/koila', 0.5698388814926147, 'ml', 0), ('faster-cpython/tools', 0.5645531415939331, 'perf', 0), ('mrdbourke/pytorch-deep-learning', 0.5634875893592834, 'study', 0), ('kshitij12345/torchnnprofiler', 0.5611929297447205, 'profiling', 0), ('huggingface/accelerate', 0.5591470003128052, 'ml', 0), ('blackhc/toma', 0.5554980635643005, 'ml-dl', 0), ('pytoolz/toolz', 0.5517788529396057, 'util', 0), ('pyg-team/pytorch_geometric', 0.5495861768722534, 'ml-dl', 0), ('nvidia/cuda-python', 0.5482061505317688, 'ml', 0), ('pytorch/captum', 0.5359891057014465, 'ml-interpretability', 0), ('faster-cpython/ideas', 0.5340155959129333, 'perf', 0), ('facebookresearch/pytorch3d', 0.5338151454925537, 'ml-dl', 0), ('arogozhnikov/einops', 0.5333592891693115, 'ml-dl', 0), ('google/gin-config', 0.5325197577476501, 'util', 0), ('huggingface/transformers', 0.5293325185775757, 'nlp', 0), ('pytorch/rl', 0.5270489454269409, 'ml-rl', 0), ('p403n1x87/austin', 0.5269789695739746, 'profiling', 0), ('laekov/fastmoe', 0.5255650877952576, 'ml', 0), ('pypy/pypy', 0.5254920721054077, 'util', 0), ('gotcha/ipdb', 0.5220991969108582, 'debug', 0), ('dlt-hub/dlt', 0.5167723298072815, 'data', 0), ('ipython/ipyparallel', 0.5157786011695862, 'perf', 0), ('graphistry/pygraphistry', 0.5149250030517578, 'data', 0), ('xl0/lovely-tensors', 0.5113422274589539, 'ml-dl', 0), ('jovianml/opendatasets', 0.5112810730934143, 'data', 0), ('imageio/imageio', 0.5112005472183228, 'util', 0), ('wesm/pydata-book', 0.5109310746192932, 'study', 0), ('denys88/rl_games', 0.5077896118164062, 'ml-rl', 0), ('uber/petastorm', 0.5076653361320496, 'data', 0), ('timdettmers/bitsandbytes', 0.5031000375747681, 'util', 0), ('kubeflow/fairing', 0.5028988122940063, 'ml-ops', 0), ('qdrant/fastembed', 0.5008647441864014, 'ml', 0)]
79
7
null
2.08
14
8
33
0
4
9
4
14
15
90
1.1
45
1,836
ml
https://github.com/spotify/voyager
[]
null
[]
[]
null
null
null
spotify/voyager
voyager
1,024
33
10
C++
https://spotify.github.io/voyager/
🛰️ Voyager is an approximate nearest-neighbor search library for Python and Java with a focus on ease of use, simplicity, and deployability.
spotify
2024-01-14
2023-04-13
41
24.547945
https://avatars.githubusercontent.com/u/251374?v=4
🛰️ Voyager is an approximate nearest-neighbor search library for Python and Java with a focus on ease of use, simplicity, and deployability.
['hnsw', 'hnswlib', 'java', 'machine-learning', 'nearest-neighbor-search']
['hnsw', 'hnswlib', 'java', 'machine-learning', 'nearest-neighbor-search']
2023-12-07
[('lmcinnes/pynndescent', 0.6540524363517761, 'ml', 1), ('spotify/annoy', 0.6272151470184326, 'ml', 1), ('nmslib/hnswlib', 0.5946098566055298, 'ml', 0), ('erotemic/ubelt', 0.5305669903755188, 'util', 0), ('scikit-learn-contrib/metric-learn', 0.503491997718811, 'ml', 1), ('pycaret/pycaret', 0.502596914768219, 'ml', 1), ('radiantearth/radiant-mlhub', 0.5025808811187744, 'gis', 1)]
5
2
null
1.15
23
13
9
1
7
11
7
23
19
90
0.8
45
1,321
ml-dl
https://github.com/keras-team/keras-cv
['keras', 'computer-vision']
null
[]
[]
null
null
null
keras-team/keras-cv
keras-cv
888
285
32
Python
null
Industry-strength Computer Vision workflows with Keras
keras-team
2024-01-13
2020-05-18
193
4.597633
https://avatars.githubusercontent.com/u/34455048?v=4
Industry-strength Computer Vision workflows with Keras
[]
['computer-vision', 'keras']
2024-01-12
[('roboflow/supervision', 0.640568733215332, 'ml', 1), ('nyandwi/modernconvnets', 0.6089338064193726, 'ml-dl', 2), ('deci-ai/super-gradients', 0.5779148936271667, 'ml-dl', 1), ('keras-team/keras-nlp', 0.5433396697044373, 'nlp', 1), ('lutzroeder/netron', 0.5374981760978699, 'ml', 1), ('huggingface/datasets', 0.535764217376709, 'nlp', 1), ('hysts/pytorch_image_classification', 0.5079523921012878, 'ml-dl', 1), ('aleju/imgaug', 0.5068478584289551, 'ml', 0), ('onnx/onnx', 0.5009073615074158, 'ml', 1), ('nvidia/deeplearningexamples', 0.5008230805397034, 'ml-dl', 1)]
89
2
null
8.73
251
196
44
0
21
12
21
251
321
90
1.3
45
324
security
https://github.com/trailofbits/pip-audit
[]
null
[]
[]
null
null
null
trailofbits/pip-audit
pip-audit
877
60
25
Python
https://pypi.org/project/pip-audit/
Audits Python environments and dependency trees for known vulnerabilities
trailofbits
2024-01-13
2021-09-02
125
6.976136
https://avatars.githubusercontent.com/u/647025?v=4
Audits Python environments and dependency trees for known vulnerabilities
['pip', 'security', 'security-audit', 'supply-chain']
['pip', 'security', 'security-audit', 'supply-chain']
2024-01-12
[('pyupio/safety', 0.7114713788032532, 'security', 1), ('aswinnnn/pyscan', 0.6042621731758118, 'security', 2), ('pdm-project/pdm', 0.54820716381073, 'util', 0), ('tiiuae/sbomnix', 0.5466781258583069, 'util', 1), ('alexmojaki/snoop', 0.5462668538093567, 'debug', 0), ('klen/pylama', 0.5406633019447327, 'util', 0), ('pypa/pipenv', 0.531186044216156, 'util', 1), ('legrandin/pycryptodome', 0.5239244103431702, 'util', 1), ('pypa/hatch', 0.5167754292488098, 'util', 0), ('jazzband/pip-tools', 0.5135653614997864, 'util', 1), ('thoth-station/micropipenv', 0.5130209922790527, 'util', 1), ('ethereum/web3.py', 0.5048879981040955, 'crypto', 0), ('tox-dev/pipdeptree', 0.5004677176475525, 'util', 1)]
27
4
null
3.29
47
40
29
0
14
23
14
47
40
90
0.9
45
1,888
ml
https://github.com/oml-team/open-metric-learning
['pytorch', 'embeddings']
OML is a PyTorch-based framework to train and validate the models producing high-quality embeddings.
[]
[]
null
null
null
oml-team/open-metric-learning
open-metric-learning
716
45
10
Jupyter Notebook
https://open-metric-learning.readthedocs.io/en/latest/index.html
Library for metric learning pipelines and models.
oml-team
2024-01-12
2022-06-04
86
8.284298
https://avatars.githubusercontent.com/u/104944039?v=4
Library for metric learning pipelines and models.
['computer-vision', 'data-science', 'deep-learning', 'hacktoberfest-2023', 'hacktoberfest2023', 'metric-learning', 'pytorch', 'pytorch-lightning', 'representation-learning', 'similarity-learning']
['computer-vision', 'data-science', 'deep-learning', 'embeddings', 'hacktoberfest-2023', 'hacktoberfest2023', 'metric-learning', 'pytorch', 'pytorch-lightning', 'representation-learning', 'similarity-learning']
2023-12-30
[('kevinmusgrave/pytorch-metric-learning', 0.7173192501068115, 'ml', 5), ('scikit-learn-contrib/metric-learn', 0.6861700415611267, 'ml', 1), ('qdrant/quaterion', 0.618319571018219, 'ml', 5), ('pytorch/ignite', 0.6061093807220459, 'ml-dl', 2), ('rasbt/machine-learning-book', 0.5796335339546204, 'study', 2), ('ashleve/lightning-hydra-template', 0.5497283339500427, 'util', 3), ('roboflow/supervision', 0.5494734644889832, 'ml', 3), ('uber/petastorm', 0.5485543012619019, 'data', 2), ('ggerganov/ggml', 0.5477278232574463, 'ml', 0), ('tensorflow/tensorflow', 0.5407246947288513, 'ml-dl', 1), ('pytorch/torchrec', 0.5388403534889221, 'ml-dl', 2), ('neuralmagic/sparseml', 0.5373204350471497, 'ml-dl', 1), ('tensorflow/similarity', 0.5347641706466675, 'ml-dl', 3), ('huggingface/transformers', 0.5327936410903931, 'nlp', 2), ('featurelabs/featuretools', 0.5298222899436951, 'ml', 1), ('catboost/catboost', 0.5297994017601013, 'ml', 1), ('huggingface/datasets', 0.528002142906189, 'nlp', 3), ('dmlc/xgboost', 0.5269960761070251, 'ml', 0), ('pyg-team/pytorch_geometric', 0.5263068079948425, 'ml-dl', 2), ('lightly-ai/lightly', 0.5244993567466736, 'ml', 4), ('tensorflow/data-validation', 0.5238116979598999, 'ml-ops', 0), ('huggingface/evaluate', 0.5213491320610046, 'ml', 0), ('aws/sagemaker-python-sdk', 0.5199127197265625, 'ml', 1), ('skorch-dev/skorch', 0.5191598534584045, 'ml-dl', 1), ('deci-ai/super-gradients', 0.5170210599899292, 'ml-dl', 3), ('pycaret/pycaret', 0.5165910124778748, 'ml', 1), ('tensorflow/tensor2tensor', 0.5146539211273193, 'ml', 1), ('tensorlayer/tensorlayer', 0.5133138298988342, 'ml-rl', 1), ('gradio-app/gradio', 0.5132337808609009, 'viz', 2), ('microsoft/flaml', 0.5119624733924866, 'ml', 2), ('keras-team/autokeras', 0.5088566541671753, 'ml-dl', 1), ('cvxgrp/pymde', 0.5077699422836304, 'ml', 1), ('microsoft/nni', 0.5069662928581238, 'ml', 3), ('intel/intel-extension-for-pytorch', 0.506502091884613, 'perf', 2)]
20
4
null
2.87
56
52
20
0
0
12
12
56
52
90
0.9
45
948
ml
https://github.com/facebookresearch/balance
[]
null
[]
[]
null
null
null
facebookresearch/balance
balance
656
42
6
Python
https://import-balance.org
The balance python package offers a simple workflow and methods for dealing with biased data samples when looking to infer from them to some target population of interest.
facebookresearch
2024-01-11
2022-11-15
63
10.412698
https://avatars.githubusercontent.com/u/16943930?v=4
The balance python package offers a simple workflow and methods for dealing with biased data samples when looking to infer from them to some target population of interest.
[]
[]
2023-12-07
[('scikit-learn-contrib/imbalanced-learn', 0.5837095379829407, 'ml', 0)]
19
5
null
1.88
1
1
14
1
9
9
9
1
3
90
3
45
1,422
sim
https://github.com/bowang-lab/scgpt
[]
scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI
[]
[]
null
null
null
bowang-lab/scgpt
scGPT
584
91
29
Jupyter Notebook
https://scgpt.readthedocs.io/en/latest/
null
bowang-lab
2024-01-11
2023-04-23
40
14.496454
https://avatars.githubusercontent.com/u/50999261?v=4
scGPT: Towards Building a Foundation Model for Single-Cell Multi-omics Using Generative AI
['foundation-model', 'gpt', 'single-cell']
['foundation-model', 'gpt', 'single-cell']
2024-01-13
[]
6
1
null
2.83
56
43
9
0
7
9
7
56
109
90
1.9
45
1,882
sim
https://github.com/google-deepmind/concordia
[]
null
[]
[]
null
null
null
google-deepmind/concordia
concordia
207
24
13
Python
null
A library for generative social simulation
google-deepmind
2024-01-13
2023-11-21
10
20.7
https://avatars.githubusercontent.com/u/8596759?v=4
A library for generative social simulation
['agent-based-simulation', 'generative-agents', 'multi-agent', 'social-simulation']
['agent-based-simulation', 'generative-agents', 'multi-agent', 'social-simulation']
2024-01-09
[('humanoidagents/humanoidagents', 0.640636682510376, 'sim', 0), ('projectmesa/mesa', 0.6392713785171509, 'sim', 1), ('crowddynamics/crowddynamics', 0.5502240657806396, 'sim', 1)]
11
6
null
2.15
17
16
2
0
1
6
1
17
18
90
1.1
45
963
ml-rl
https://github.com/openai/baselines
[]
null
[]
[]
null
null
null
openai/baselines
baselines
15,098
4,861
648
Python
null
OpenAI Baselines: high-quality implementations of reinforcement learning algorithms
openai
2024-01-14
2017-05-24
348
43.27846
https://avatars.githubusercontent.com/u/14957082?v=4
OpenAI Baselines: high-quality implementations of reinforcement learning algorithms
[]
[]
2020-01-31
[('thu-ml/tianshou', 0.6823237538337708, 'ml-rl', 0), ('denys88/rl_games', 0.5995540618896484, 'ml-rl', 0), ('salesforce/warp-drive', 0.5866561532020569, 'ml-rl', 0), ('humancompatibleai/imitation', 0.5837662816047668, 'ml-rl', 0), ('farama-foundation/gymnasium', 0.5754907131195068, 'ml-rl', 0), ('google/dopamine', 0.5650805830955505, 'ml-rl', 0), ('nvidia-omniverse/omniisaacgymenvs', 0.5605931282043457, 'sim', 0), ('unity-technologies/ml-agents', 0.5591613054275513, 'ml-rl', 0), ('openai/gym', 0.5574614405632019, 'ml-rl', 0), ('keras-rl/keras-rl', 0.5544887781143188, 'ml-rl', 0), ('pytorch/rl', 0.5460628867149353, 'ml-rl', 0), ('pettingzoo-team/pettingzoo', 0.5400475859642029, 'ml-rl', 0), ('google/trax', 0.5311444401741028, 'ml-dl', 0), ('nvidia-omniverse/isaacgymenvs', 0.5117769837379456, 'sim', 0), ('kzl/decision-transformer', 0.5097741484642029, 'ml-rl', 0), ('openai/spinningup', 0.5069130063056946, 'study', 0), ('inspirai/timechamber', 0.5040830969810486, 'sim', 0)]
115
3
null
0
5
2
81
48
0
0
0
5
1
90
0.2
44
156
data
https://github.com/s0md3v/photon
[]
null
[]
[]
null
null
null
s0md3v/photon
Photon
10,251
1,459
324
Python
null
Incredibly fast crawler designed for OSINT.
s0md3v
2024-01-14
2018-03-30
304
33.657129
null
Incredibly fast crawler designed for OSINT.
['crawler', 'information-gathering', 'osint', 'spider']
['crawler', 'information-gathering', 'osint', 'spider']
2022-12-20
[('binux/pyspider', 0.7611035108566284, 'data', 1), ('scrapy/scrapy', 0.6149922609329224, 'data', 1)]
21
3
null
0
4
0
70
13
0
3
3
4
1
90
0.2
44
1,057
ml-rl
https://github.com/deepmind/pysc2
[]
null
[]
[]
null
null
null
deepmind/pysc2
pysc2
7,863
1,164
352
Python
null
StarCraft II Learning Environment
deepmind
2024-01-12
2017-07-25
340
23.126471
https://avatars.githubusercontent.com/u/8596759?v=4
StarCraft II Learning Environment
['blizzard-api', 'deepmind', 'machine-learning', 'reinforcement-learning', 'starcraft-ii', 'starcraft-ii-replays']
['blizzard-api', 'deepmind', 'machine-learning', 'reinforcement-learning', 'starcraft-ii', 'starcraft-ii-replays']
2023-04-19
[('pettingzoo-team/pettingzoo', 0.5372393131256104, 'ml-rl', 1), ('farama-foundation/gymnasium', 0.5224155187606812, 'ml-rl', 1), ('unity-technologies/ml-agents', 0.5204218029975891, 'ml-rl', 2), ('google/trax', 0.5190588235855103, 'ml-dl', 2), ('keras-rl/keras-rl', 0.5143329501152039, 'ml-rl', 2)]
39
4
null
0.13
4
1
79
9
0
1
1
4
3
90
0.8
44
675
ml
https://github.com/hips/autograd
[]
null
[]
[]
null
null
null
hips/autograd
autograd
6,644
908
218
Python
null
Efficiently computes derivatives of numpy code.
hips
2024-01-13
2014-11-24
479
13.866428
https://avatars.githubusercontent.com/u/7935606?v=4
Efficiently computes derivatives of numpy code.
[]
[]
2023-11-16
[('google/jax', 0.5986758470535278, 'ml', 0), ('numpy/numpy', 0.5689885020256042, 'math', 0), ('numba/numba', 0.5151181817054749, 'perf', 0), ('cupy/cupy', 0.5063801407814026, 'math', 0), ('andgoldschmidt/derivative', 0.5045579075813293, 'math', 0)]
56
7
null
0.54
37
3
111
2
0
0
0
37
8
90
0.2
44
1,647
util
https://github.com/evhub/coconut
['functional']
null
[]
[]
null
null
null
evhub/coconut
coconut
3,868
116
62
Python
http://coconut-lang.org
Simple, elegant, Pythonic functional programming.
evhub
2024-01-13
2014-10-04
486
7.951836
null
Simple, elegant, Pythonic functional programming.
['coconut', 'compiler', 'functional', 'functional-language', 'functional-programming', 'language', 'programming-language', 'xonsh', 'xontrib']
['coconut', 'compiler', 'functional', 'functional-language', 'functional-programming', 'language', 'programming-language', 'xonsh', 'xontrib']
2023-11-28
[('pytoolz/toolz', 0.6476520895957947, 'util', 0), ('suor/funcy', 0.6461945176124573, 'util', 1), ('google/pyglove', 0.583031415939331, 'util', 0), ('fastai/fastcore', 0.5812950730323792, 'util', 1), ('modularml/mojo', 0.5474485754966736, 'util', 2), ('pypy/pypy', 0.544915497303009, 'util', 1), ('dylanhogg/awesome-python', 0.5391582250595093, 'study', 0), ('lukaszahradnik/pyneuralogic', 0.5328680872917175, 'math', 0), ('python/cpython', 0.5319302678108215, 'util', 0), ('stanfordnlp/dspy', 0.5305084586143494, 'llm', 0), ('explosion/thinc', 0.5264431834220886, 'ml-dl', 1), ('1200wd/bitcoinlib', 0.5255511403083801, 'crypto', 0), ('pygamelib/pygamelib', 0.5140511989593506, 'gamedev', 0), ('fluentpython/example-code-2e', 0.5133896470069885, 'study', 0), ('pyston/pyston', 0.5107958316802979, 'util', 0), ('gondolav/pyfuncol', 0.5076735019683838, 'util', 1), ('xonsh/xonsh', 0.5075111985206604, 'util', 1), ('norvig/pytudes', 0.5068784356117249, 'util', 0), ('joblib/joblib', 0.5061070322990417, 'util', 0), ('tiangolo/typer', 0.5052512884140015, 'term', 0), ('pyparsing/pyparsing', 0.504447877407074, 'util', 0), ('sloria/textblob', 0.5033293962478638, 'nlp', 0), ('pyomo/pyomo', 0.5014179944992065, 'math', 0)]
33
3
null
6.79
36
24
113
2
5
4
5
36
25
90
0.7
44
907
util
https://github.com/ets-labs/python-dependency-injector
[]
null
[]
[]
1
null
null
ets-labs/python-dependency-injector
python-dependency-injector
3,414
307
48
Python
https://python-dependency-injector.ets-labs.org/
Dependency injection framework for Python
ets-labs
2024-01-13
2015-01-04
473
7.213402
https://avatars.githubusercontent.com/u/11329744?v=4
Dependency injection framework for Python
['aiohttp', 'asyncio', 'dependency-injection', 'dependency-injection-container', 'dependency-injection-framework', 'design-patterns', 'factory', 'flask', 'flask-application', 'flask-restful', 'ioc', 'ioc-container', 'singleton', 'threadlocal']
['aiohttp', 'asyncio', 'dependency-injection', 'dependency-injection-container', 'dependency-injection-framework', 'design-patterns', 'factory', 'flask', 'flask-application', 'flask-restful', 'ioc', 'ioc-container', 'singleton', 'threadlocal']
2022-12-19
[('allrod5/injectable', 0.6628846526145935, 'util', 2), ('python-injector/injector', 0.6611223220825195, 'util', 2), ('ivankorobkov/python-inject', 0.6299859881401062, 'util', 1), ('aio-libs/aiohttp', 0.5857105255126953, 'web', 2), ('pallets/flask', 0.5796188712120056, 'web', 1), ('timofurrer/awesome-asyncio', 0.5701932311058044, 'study', 1), ('bottlepy/bottle', 0.5632432699203491, 'web', 0), ('klen/muffin', 0.5598342418670654, 'web', 1), ('python-restx/flask-restx', 0.551591694355011, 'web', 1), ('falconry/falcon', 0.5372539758682251, 'web', 0), ('neoteroi/blacksheep', 0.5310226678848267, 'web', 1), ('pallets/quart', 0.5255832672119141, 'web', 1), ('alirn76/panther', 0.516931414604187, 'web', 0), ('eleutherai/pyfra', 0.5152551531791687, 'ml', 0), ('python-poetry/poetry', 0.510571300983429, 'util', 0), ('sumerc/yappi', 0.5105165839195251, 'profiling', 1), ('encode/uvicorn', 0.5008002519607544, 'web', 1), ('backtick-se/cowait', 0.500067412853241, 'util', 0)]
29
7
null
0
35
6
110
13
0
36
36
35
80
90
2.3
44
1,219
ml
https://github.com/py-why/econml
[]
null
[]
[]
null
null
null
py-why/econml
EconML
3,385
655
75
Jupyter Notebook
https://www.microsoft.com/en-us/research/project/alice/
ALICE (Automated Learning and Intelligence for Causation and Economics) is a Microsoft Research project aimed at applying Artificial Intelligence concepts to economic decision making. One of its goals is to build a toolkit that combines state-of-the-art machine learning techniques with econometrics in order to bring automation to complex causal inference problems. To date, the ALICE Python SDK (econml) implements orthogonal machine learning algorithms such as the double machine learning work of Chernozhukov et al. This toolkit is designed to measure the causal effect of some treatment variable(s) t on an outcome variable y, controlling for a set of features x.
py-why
2024-01-13
2018-04-30
300
11.277963
https://avatars.githubusercontent.com/u/101266056?v=4
ALICE (Automated Learning and Intelligence for Causation and Economics) is a Microsoft Research project aimed at applying Artificial Intelligence concepts to economic decision making. One of its goals is to build a toolkit that combines state-of-the-art machine learning techniques with econometrics in order to bring automation to complex causal inference problems. To date, the ALICE Python SDK (econml) implements orthogonal machine learning algorithms such as the double machine learning work of Chernozhukov et al. This toolkit is designed to measure the causal effect of some treatment variable(s) t on an outcome variable y, controlling for a set of features x.
['causal-inference', 'causality', 'econometrics', 'economics', 'machine-learning', 'treatment-effects']
['causal-inference', 'causality', 'econometrics', 'economics', 'machine-learning', 'treatment-effects']
2024-01-12
[('py-why/dowhy', 0.5789477229118347, 'ml', 4), ('uber/causalml', 0.5542822480201721, 'ml', 2), ('mckinsey/causalnex', 0.5422161221504211, 'math', 2)]
34
3
null
0.96
35
18
69
0
1
5
1
35
27
90
0.8
44
271
data
https://github.com/praw-dev/praw
[]
null
[]
[]
null
null
null
praw-dev/praw
praw
3,248
461
73
Python
http://praw.readthedocs.io/
PRAW, an acronym for "Python Reddit API Wrapper", is a python package that allows for simple access to Reddit's API.
praw-dev
2024-01-13
2010-08-19
701
4.628664
https://avatars.githubusercontent.com/u/1696888?v=4
PRAW, an acronym for "Python Reddit API Wrapper", is a python package that allows for simple access to Reddit's API.
['api', 'oauth', 'praw', 'reddit', 'reddit-api']
['api', 'oauth', 'praw', 'reddit', 'reddit-api']
2024-01-10
[('praw-dev/asyncpraw', 0.8785129189491272, 'ml-dl', 5)]
226
4
null
1.31
36
27
163
0
2
12
2
36
48
90
1.3
44
690
ml-dl
https://github.com/deepmind/dm-haiku
[]
null
[]
[]
null
null
null
deepmind/dm-haiku
dm-haiku
2,675
222
39
Python
https://dm-haiku.readthedocs.io
JAX-based neural network library
deepmind
2024-01-14
2020-02-18
206
12.985437
https://avatars.githubusercontent.com/u/8596759?v=4
JAX-based neural network library
['deep-learning', 'deep-neural-networks', 'jax', 'machine-learning', 'neural-networks']
['deep-learning', 'deep-neural-networks', 'jax', 'machine-learning', 'neural-networks']
2023-11-30
[('deepmind/synjax', 0.7001689076423645, 'math', 1), ('google/flax', 0.6950955986976624, 'ml-dl', 1), ('google/trax', 0.6491378545761108, 'ml-dl', 3), ('keras-team/keras', 0.6441159844398499, 'ml-dl', 4), ('explosion/thinc', 0.6371207237243652, 'ml-dl', 3), ('huggingface/transformers', 0.6224076747894287, 'nlp', 3), ('sanchit-gandhi/whisper-jax', 0.6133875846862793, 'ml', 2), ('alpa-projects/alpa', 0.6117678284645081, 'ml-dl', 3), ('deepmind/kfac-jax', 0.5966999530792236, 'math', 2), ('google/evojax', 0.5894790291786194, 'sim', 1), ('deepmind/chex', 0.5875384211540222, 'ml-dl', 1), ('tensorflow/tensorflow', 0.5688497424125671, 'ml-dl', 3), ('tensorlayer/tensorlayer', 0.5642551183700562, 'ml-rl', 1), ('uber/petastorm', 0.557473361492157, 'data', 2), ('onnx/onnx', 0.542344868183136, 'ml', 3), ('microsoft/onnxruntime', 0.540787935256958, 'ml', 3), ('ml-tooling/opyrator', 0.5379303097724915, 'viz', 1), ('karpathy/micrograd', 0.5368869304656982, 'study', 0), ('pytorch/ignite', 0.5363015532493591, 'ml-dl', 2), ('horovod/horovod', 0.5358175039291382, 'ml-ops', 2), ('keras-team/autokeras', 0.5257297158241272, 'ml-dl', 2), ('young-geng/easylm', 0.5241255164146423, 'llm', 2), ('aiqc/aiqc', 0.5235515236854553, 'ml-ops', 0), ('apache/incubator-mxnet', 0.522907018661499, 'ml-dl', 0), ('microsoft/deepspeed', 0.5188496112823486, 'ml-dl', 2), ('microsoft/nni', 0.5166778564453125, 'ml', 2), ('rasbt/machine-learning-book', 0.5160495638847351, 'study', 3), ('titanml/takeoff', 0.5155620574951172, 'llm', 0), ('tensorflow/tensor2tensor', 0.5139560103416443, 'ml', 2), ('arogozhnikov/einops', 0.5126287341117859, 'ml-dl', 2), ('nvidia/deeplearningexamples', 0.5113754868507385, 'ml-dl', 1), ('d2l-ai/d2l-en', 0.5113567113876343, 'study', 3), ('denys88/rl_games', 0.507714569568634, 'ml-rl', 1), ('mlflow/mlflow', 0.50584477186203, 'ml-ops', 1), ('adap/flower', 0.5038338303565979, 'ml-ops', 2)]
79
5
null
1.83
23
19
48
2
1
3
1
23
4
90
0.2
44
1,812
llm
https://github.com/paperswithcode/galai
['scientific', 'citations', 'language-model']
null
[]
[]
null
null
null
paperswithcode/galai
galai
2,613
274
44
Jupyter Notebook
null
Model API for GALACTICA
paperswithcode
2024-01-13
2022-11-15
63
41.47619
https://avatars.githubusercontent.com/u/40305508?v=4
Model API for GALACTICA
[]
['citations', 'language-model', 'scientific']
2023-02-14
[('princeton-nlp/alce', 0.6015400290489197, 'llm', 1), ('tatsu-lab/stanford_alpaca', 0.5739641785621643, 'llm', 1), ('hannibal046/awesome-llm', 0.5614985823631287, 'study', 1), ('freedomintelligence/llmzoo', 0.5310094356536865, 'llm', 1), ('ctlllll/llm-toolmaker', 0.5114402174949646, 'llm', 1), ('urschrei/pyzotero', 0.5094993710517883, 'util', 1)]
7
3
null
0.1
1
0
14
11
0
3
3
1
1
90
1
44
1,431
util
https://github.com/tox-dev/pipdeptree
['cli', 'dependencies', 'packages']
null
[]
[]
null
null
null
tox-dev/pipdeptree
pipdeptree
2,606
141
31
Python
https://pypi.python.org/pypi/pipdeptree
A command line utility to display dependency tree of the installed Python packages
tox-dev
2024-01-13
2014-02-02
521
4.999178
https://avatars.githubusercontent.com/u/20345659?v=4
A command line utility to display dependency tree of the installed Python packages
['dependency-graph', 'pip']
['cli', 'dependencies', 'dependency-graph', 'packages', 'pip']
2024-01-10
[('mitsuhiko/rye', 0.5925803780555725, 'util', 0), ('pypi/warehouse', 0.5815759897232056, 'util', 0), ('python-poetry/poetry', 0.5638055205345154, 'util', 0), ('pdm-project/pdm', 0.5571689605712891, 'util', 0), ('hugovk/pypistats', 0.5279873609542847, 'util', 1), ('pypa/hatch', 0.5165544152259827, 'util', 1), ('pyodide/micropip', 0.5127100944519043, 'util', 0), ('trailofbits/pip-audit', 0.5004677176475525, 'security', 1)]
43
5
null
1.63
21
21
121
0
23
5
23
21
16
90
0.8
44
201
util
https://github.com/camelot-dev/camelot
[]
null
[]
[]
null
null
null
camelot-dev/camelot
camelot
2,490
408
45
Python
https://camelot-py.readthedocs.io
A Python library to extract tabular data from PDFs
camelot-dev
2024-01-14
2019-07-01
239
10.412186
https://avatars.githubusercontent.com/u/43926448?v=4
A Python library to extract tabular data from PDFs
[]
[]
2023-10-02
[('py-pdf/pypdf2', 0.6539286971092224, 'util', 0), ('astanin/python-tabulate', 0.6331050395965576, 'util', 0), ('pyfpdf/fpdf2', 0.5940113663673401, 'util', 0), ('paperswithcode/axcell', 0.577544093132019, 'util', 0), ('wireservice/csvkit', 0.567770779132843, 'util', 0), ('unstructured-io/pipeline-paddleocr', 0.5457990169525146, 'data', 0), ('jazzband/tablib', 0.5369576811790466, 'data', 0), ('pypdfium2-team/pypdfium2', 0.5336915850639343, 'util', 0), ('jorisschellekens/borb', 0.5273860692977905, 'util', 0), ('jazzband/prettytable', 0.5252398252487183, 'term', 0)]
46
4
null
0.65
50
17
55
3
0
6
6
50
37
90
0.7
44
1,622
data
https://github.com/kayak/pypika
['sql']
null
[]
[]
null
null
null
kayak/pypika
pypika
2,260
273
35
Python
http://pypika.readthedocs.io/en/latest/
PyPika is a python SQL query builder that exposes the full richness of the SQL language using a syntax that reflects the resulting query. PyPika excels at all sorts of SQL queries but is especially useful for data analysis.
kayak
2024-01-13
2016-07-06
394
5.723589
https://avatars.githubusercontent.com/u/521891?v=4
PyPika is a python SQL query builder that exposes the full richness of the SQL language using a syntax that reflects the resulting query. PyPika excels at all sorts of SQL queries but is especially useful for data analysis.
['builder', 'data', 'functional', 'pythonic', 'query', 'sql']
['builder', 'data', 'functional', 'pythonic', 'query', 'sql']
2023-12-10
[('ibis-project/ibis', 0.6313249468803406, 'data', 1), ('tiangolo/sqlmodel', 0.6139056086540222, 'data', 1), ('sqlalchemy/sqlalchemy', 0.5847384333610535, 'data', 1), ('macbre/sql-metadata', 0.5715281367301941, 'data', 1), ('andialbrecht/sqlparse', 0.5649843811988831, 'data', 0), ('tobymao/sqlglot', 0.5631858706474304, 'data', 1), ('mcfunley/pugsql', 0.5262505412101746, 'data', 1)]
98
3
null
0.21
29
4
92
1
0
10
10
28
57
90
2
44
761
ml-dl
https://github.com/fepegar/torchio
[]
null
[]
[]
null
null
null
fepegar/torchio
torchio
1,902
219
18
Python
http://www.torchio.org
Medical imaging toolkit for deep learning
fepegar
2024-01-13
2019-11-26
218
8.724771
null
Medical imaging toolkit for deep learning
['augmentation', 'data-augmentation', 'deep-learning', 'machine-learning', 'medical-image-analysis', 'medical-image-computing', 'medical-image-processing', 'medical-images', 'medical-imaging-datasets', 'medical-imaging-with-deep-learning', 'pytorch']
['augmentation', 'data-augmentation', 'deep-learning', 'machine-learning', 'medical-image-analysis', 'medical-image-computing', 'medical-image-processing', 'medical-images', 'medical-imaging-datasets', 'medical-imaging-with-deep-learning', 'pytorch']
2024-01-13
[('project-monai/monai', 0.8480987548828125, 'ml', 4), ('aleju/imgaug', 0.5931549072265625, 'ml', 3), ('albumentations-team/albumentations', 0.5927706956863403, 'ml-dl', 3), ('mdbloice/augmentor', 0.5896494388580322, 'ml', 3), ('keras-team/keras', 0.5828122496604919, 'ml-dl', 3), ('open-mmlab/mmsegmentation', 0.5752494931221008, 'ml', 1), ('huggingface/datasets', 0.574800968170166, 'nlp', 3), ('onnx/onnx', 0.5600517392158508, 'ml', 3), ('microsoft/onnxruntime', 0.5472385883331299, 'ml', 3), ('tensorflow/tensor2tensor', 0.5404090285301208, 'ml', 2), ('deepfakes/faceswap', 0.5368450880050659, 'ml-dl', 2), ('mosaicml/composer', 0.5322839617729187, 'ml-dl', 3), ('lutzroeder/netron', 0.531164288520813, 'ml', 3), ('explosion/thinc', 0.5309528112411499, 'ml-dl', 3), ('nvidia/deeplearningexamples', 0.5291038155555725, 'ml-dl', 2), ('tensorflow/tensorflow', 0.5249353647232056, 'ml-dl', 2), ('neuralmagic/sparseml', 0.5229683518409729, 'ml-dl', 1), ('open-mmlab/mmediting', 0.5203762650489807, 'ml', 2), ('iperov/deepfacelab', 0.5164421200752258, 'ml-dl', 2), ('microsoft/deepspeed', 0.5152624845504761, 'ml-dl', 3), ('nyandwi/modernconvnets', 0.5130273699760437, 'ml-dl', 0), ('roboflow/supervision', 0.5101572871208191, 'ml', 3), ('ddbourgin/numpy-ml', 0.507611870765686, 'ml', 1), ('rwightman/pytorch-image-models', 0.5073763728141785, 'ml-dl', 1), ('tensorlayer/tensorlayer', 0.5055205225944519, 'ml-rl', 1), ('lucidrains/imagen-pytorch', 0.5043638348579407, 'ml-dl', 1), ('awslabs/autogluon', 0.5024552941322327, 'ml', 3), ('neuralmagic/deepsparse', 0.5005324482917786, 'nlp', 0)]
47
2
null
1.6
28
24
50
0
1
64
1
28
49
90
1.8
44
670
gis
https://github.com/apache/incubator-sedona
[]
null
[]
[]
null
null
null
apache/incubator-sedona
sedona
1,654
622
102
Java
https://sedona.apache.org/
A cluster computing framework for processing large-scale geospatial data
apache
2024-01-11
2015-04-24
457
3.614736
https://avatars.githubusercontent.com/u/47359?v=4
A cluster computing framework for processing large-scale geospatial data
['cluster-computing', 'geospatial', 'java', 'scala', 'spatial-analysis', 'spatial-query', 'spatial-sql']
['cluster-computing', 'geospatial', 'java', 'scala', 'spatial-analysis', 'spatial-query', 'spatial-sql']
2024-01-14
[('apache/spark', 0.5984252095222473, 'data', 2), ('giswqs/geog-414', 0.560769259929657, 'study', 1), ('osgeo/grass', 0.5388128757476807, 'gis', 1)]
110
4
null
7
158
150
106
0
3
9
3
159
120
90
0.8
44
1,245
sim
https://github.com/facebookresearch/habitat-lab
[]
null
[]
[]
null
null
null
facebookresearch/habitat-lab
habitat-lab
1,538
432
48
Python
https://aihabitat.org/
A modular high-level library to train embodied AI agents across a variety of tasks and environments.
facebookresearch
2024-01-13
2019-02-04
260
5.912136
https://avatars.githubusercontent.com/u/16943930?v=4
A modular high-level library to train embodied AI agents across a variety of tasks and environments.
['ai', 'computer-vision', 'deep-learning', 'deep-reinforcement-learning', 'reinforcement-learning', 'research', 'robotics', 'sim2real', 'simulator']
['ai', 'computer-vision', 'deep-learning', 'deep-reinforcement-learning', 'reinforcement-learning', 'research', 'robotics', 'sim2real', 'simulator']
2024-01-12
[('facebookresearch/droidlet', 0.6688793897628784, 'sim', 0), ('unity-technologies/ml-agents', 0.6679417490959167, 'ml-rl', 3), ('tensorlayer/tensorlayer', 0.6519606113433838, 'ml-rl', 2), ('minedojo/voyager', 0.6467283964157104, 'llm', 0), ('pytorch/rl', 0.6235378384590149, 'ml-rl', 3), ('arise-initiative/robosuite', 0.596968412399292, 'ml-rl', 2), ('prefecthq/marvin', 0.5811783671379089, 'nlp', 1), ('pettingzoo-team/pettingzoo', 0.5756711363792419, 'ml-rl', 1), ('google/dopamine', 0.5727390646934509, 'ml-rl', 1), ('luodian/otter', 0.5644159913063049, 'llm', 1), ('farama-foundation/gymnasium', 0.5635895729064941, 'ml-rl', 1), ('nvidia-omniverse/orbit', 0.5620828866958618, 'sim', 1), ('thu-ml/tianshou', 0.5616220831871033, 'ml-rl', 0), ('inspirai/timechamber', 0.5581255555152893, 'sim', 2), ('tensorflow/tensor2tensor', 0.5538010597229004, 'ml', 2), ('explosion/thinc', 0.5424818396568298, 'ml-dl', 2), ('operand/agency', 0.5416178107261658, 'llm', 1), ('salesforce/warp-drive', 0.5386927127838135, 'ml-rl', 2), ('deepmind/acme', 0.52789306640625, 'ml-rl', 2), ('deeppavlov/deeppavlov', 0.5260887145996094, 'nlp', 2), ('humanoidagents/humanoidagents', 0.5243606567382812, 'sim', 0), ('denys88/rl_games', 0.5146901607513428, 'ml-rl', 2), ('nvidia-omniverse/omniisaacgymenvs', 0.5088497400283813, 'sim', 0), ('huggingface/deep-rl-class', 0.5081996917724609, 'study', 3), ('openai/spinningup', 0.5063529014587402, 'study', 0), ('google/trax', 0.5037897825241089, 'ml-dl', 3), ('deepmind/dm_control', 0.5033023357391357, 'ml-rl', 2), ('kornia/kornia', 0.502574622631073, 'ml-dl', 3), ('bulletphysics/bullet3', 0.5023512840270996, 'sim', 3), ('smol-ai/developer', 0.5017600059509277, 'llm', 1)]
71
3
null
3.02
142
78
60
0
3
5
3
142
104
90
0.7
44
1,625
util
https://github.com/instagram/libcst
['ast', 'cst', 'serializer']
null
[]
[]
null
null
null
instagram/libcst
LibCST
1,341
166
42
Python
https://libcst.readthedocs.io/
A concrete syntax tree parser and serializer library for Python that preserves many aspects of Python's abstract syntax tree
instagram
2024-01-14
2019-08-06
234
5.730769
https://avatars.githubusercontent.com/u/549085?v=4
A concrete syntax tree parser and serializer library for Python that preserves many aspects of Python's abstract syntax tree
[]
['ast', 'cst', 'serializer']
2024-01-08
[('pyparsing/pyparsing', 0.6272467970848083, 'util', 0), ('marshmallow-code/marshmallow', 0.6035540699958801, 'util', 0), ('pytoolz/toolz', 0.6008638739585876, 'util', 0), ('python-rope/rope', 0.5846632719039917, 'util', 1), ('pyston/pyston', 0.5713760852813721, 'util', 0), ('python-odin/odin', 0.5643008351325989, 'util', 0), ('python/cpython', 0.5573931932449341, 'util', 0), ('pygments/pygments', 0.5501353144645691, 'util', 0), ('ibm/transition-amr-parser', 0.5405070781707764, 'nlp', 0), ('uqfoundation/dill', 0.5361902713775635, 'data', 0), ('google/latexify_py', 0.5354775786399841, 'util', 0), ('andialbrecht/sqlparse', 0.5294908285140991, 'data', 0), ('hhatto/autopep8', 0.5244827270507812, 'util', 0), ('psf/black', 0.5167094469070435, 'util', 0), ('pypy/pypy', 0.5154047608375549, 'util', 0), ('microsoft/pycodegpt', 0.5071039795875549, 'llm', 0), ('instagram/monkeytype', 0.5069942474365234, 'typing', 0), ('pydantic/pydantic', 0.5014991164207458, 'util', 0), ('mkdocstrings/griffe', 0.5002207159996033, 'util', 0)]
75
3
null
2.02
63
41
54
0
4
9
4
63
94
90
1.5
44
613
testing
https://github.com/pytest-dev/pytest-asyncio
[]
null
[]
[]
null
null
null
pytest-dev/pytest-asyncio
pytest-asyncio
1,264
131
38
Python
https://pytest-asyncio.readthedocs.io
Asyncio support for pytest
pytest-dev
2024-01-12
2015-04-11
459
2.751244
https://avatars.githubusercontent.com/u/8897583?v=4
Asyncio support for pytest
['asyncio', 'pytest-plugin', 'testing']
['asyncio', 'pytest-plugin', 'testing']
2024-01-10
[('pytest-dev/pytest-xdist', 0.6232805252075195, 'testing', 1), ('pytest-dev/pytest-mock', 0.6129404306411743, 'testing', 0), ('pytest-dev/pytest-cov', 0.6025922894477844, 'testing', 0), ('computationalmodelling/nbval', 0.5843405723571777, 'jupyter', 2), ('timofurrer/awesome-asyncio', 0.5779024958610535, 'study', 1), ('ionelmc/pytest-benchmark', 0.5777239203453064, 'testing', 0), ('aio-libs/aiohttp', 0.5665972828865051, 'web', 1), ('pytest-dev/pytest', 0.5557228922843933, 'testing', 1), ('teemu/pytest-sugar', 0.5544842481613159, 'testing', 2), ('magicstack/uvloop', 0.552464485168457, 'util', 1), ('samuelcolvin/aioaws', 0.5367757081985474, 'data', 1), ('alex-sherman/unsync', 0.5358930230140686, 'util', 0), ('aio-libs/aiobotocore', 0.5174840688705444, 'util', 1), ('erdewit/nest_asyncio', 0.5122057199478149, 'util', 1), ('samuelcolvin/arq', 0.5120292901992798, 'data', 1), ('encode/httpx', 0.5099304914474487, 'web', 1)]
44
4
null
4.63
179
153
107
0
13
6
13
179
267
90
1.5
44
1,382
ml
https://github.com/laekov/fastmoe
['mixture-of-experts']
null
[]
[]
null
null
null
laekov/fastmoe
fastmoe
1,240
152
13
Python
https://fastmoe.ai
A fast MoE impl for PyTorch
laekov
2024-01-13
2021-01-25
157
7.890909
null
A fast MoE impl for PyTorch
[]
['mixture-of-experts']
2023-10-08
[('nvidia/apex', 0.6603500247001648, 'ml-dl', 0), ('pytorch/ignite', 0.6223480701446533, 'ml-dl', 0), ('intel/intel-extension-for-pytorch', 0.5892179012298584, 'perf', 0), ('davidmrau/mixture-of-experts', 0.5889419913291931, 'ml', 1), ('huggingface/accelerate', 0.5827643275260925, 'ml', 0), ('pytorch/botorch', 0.5626605749130249, 'ml-dl', 0), ('skorch-dev/skorch', 0.5523069500923157, 'ml-dl', 0), ('mrdbourke/pytorch-deep-learning', 0.5278257131576538, 'study', 0), ('pytorch/data', 0.5255650877952576, 'data', 0)]
23
7
null
0.58
9
3
36
3
2
3
2
9
35
90
3.9
44
1,491
math
https://github.com/dynamicslab/pysindy/
[]
null
[]
[]
null
null
null
dynamicslab/pysindy/
pysindy
1,176
282
33
Python
https://pysindy.readthedocs.io/en/latest/
A package for the sparse identification of nonlinear dynamical systems from data
dynamicslab
2024-01-12
2019-05-10
246
4.769409
https://avatars.githubusercontent.com/u/59835780?v=4
A package for the sparse identification of nonlinear dynamical systems from data
['dynamical-systems', 'machine-learning', 'model-discovery', 'nonlinear-dynamics', 'sparse-regression', 'system-identification']
['dynamical-systems', 'machine-learning', 'model-discovery', 'nonlinear-dynamics', 'sparse-regression', 'system-identification']
2023-12-01
[('wilsonrljr/sysidentpy', 0.6205930113792419, 'time-series', 3)]
26
5
null
2.23
51
21
57
0
3
10
3
51
114
90
2.2
44
1,148
util
https://github.com/aio-libs/yarl
[]
null
[]
[]
null
null
null
aio-libs/yarl
yarl
1,081
151
31
Python
https://yarl.aio-libs.org
Yet another URL library
aio-libs
2024-01-14
2016-08-02
391
2.764706
https://avatars.githubusercontent.com/u/7049303?v=4
Yet another URL library
['aiohttp', 'url-parsing', 'urls']
['aiohttp', 'url-parsing', 'urls']
2024-01-01
[('magicstack/httptools', 0.5892772674560547, 'web', 0)]
84
6
null
5.52
62
44
91
0
4
15
4
62
128
90
2.1
44
1,801
ml
https://github.com/microsoft/olive
['onnx', 'gpu', 'toolchain', 'performance']
null
[]
[]
null
null
null
microsoft/olive
Olive
1,064
102
25
Python
null
Olive is an easy-to-use hardware-aware model optimization tool that composes industry-leading techniques across model compression, optimization, and compilation.
microsoft
2024-01-12
2019-08-12
233
4.563725
https://avatars.githubusercontent.com/u/6154722?v=4
Olive is an easy-to-use hardware-aware model optimization tool that composes industry-leading techniques across model compression, optimization, and compilation.
[]
['gpu', 'onnx', 'performance', 'toolchain']
2024-01-12
[('pytorch/glow', 0.5527094006538391, 'ml', 0), ('microsoft/nni', 0.5166267156600952, 'ml', 0), ('plasma-umass/scalene', 0.503036618232727, 'profiling', 1), ('eleutherai/oslo', 0.5006281733512878, 'ml', 0)]
30
1
null
10.9
248
223
54
0
8
2
8
248
420
90
1.7
44
1,244
ml
https://github.com/microsoft/semi-supervised-learning
[]
null
[]
[]
null
null
null
microsoft/semi-supervised-learning
Semi-supervised-learning
1,056
143
19
Python
https://usb.readthedocs.io
A Unified Semi-Supervised Learning Codebase (NeurIPS'22)
microsoft
2024-01-14
2022-05-05
90
11.640945
https://avatars.githubusercontent.com/u/6154722?v=4
A Unified Semi-Supervised Learning Codebase (NeurIPS'22)
['audio-classification', 'classification', 'computer-vision', 'deep-learning', 'low-resource', 'machine-learning', 'natural-language-processing', 'pytorch', 'semi-supervised-learning', 'semisupervised-learning', 'transformer']
['audio-classification', 'classification', 'computer-vision', 'deep-learning', 'low-resource', 'machine-learning', 'natural-language-processing', 'pytorch', 'semi-supervised-learning', 'semisupervised-learning', 'transformer']
2023-11-10
[('rasbt/machine-learning-book', 0.6046102046966553, 'study', 3), ('huggingface/transformers', 0.5814858078956604, 'nlp', 5), ('tensorflow/tensorflow', 0.5672532916069031, 'ml-dl', 2), ('ludwig-ai/ludwig', 0.5534067749977112, 'ml-ops', 5), ('nvidia/deeplearningexamples', 0.5403677821159363, 'ml-dl', 3), ('milvus-io/bootcamp', 0.5314620733261108, 'data', 1), ('speechbrain/speechbrain', 0.5235595107078552, 'nlp', 2), ('lightly-ai/lightly', 0.5161562561988831, 'ml', 4), ('onnx/onnx', 0.5151509642601013, 'ml', 3), ('keras-team/autokeras', 0.514286458492279, 'ml-dl', 2), ('ddbourgin/numpy-ml', 0.5134571194648743, 'ml', 1), ('deepmind/deepmind-research', 0.5121714472770691, 'ml', 0), ('alpa-projects/alpa', 0.5067688822746277, 'ml-dl', 2), ('aiqc/aiqc', 0.5059452652931213, 'ml-ops', 0), ('huggingface/datasets', 0.505528450012207, 'nlp', 5), ('nyandwi/modernconvnets', 0.5045065879821777, 'ml-dl', 1), ('salesforce/blip', 0.5032647848129272, 'diffusion', 0), ('keras-team/keras', 0.5026553869247437, 'ml-dl', 3), ('pycaret/pycaret', 0.50245600938797, 'ml', 2), ('explosion/thinc', 0.5021923780441284, 'ml-dl', 4), ('huggingface/autotrain-advanced', 0.5021505355834961, 'ml', 3), ('keras-team/keras-nlp', 0.5014702677726746, 'nlp', 3)]
20
5
null
0.92
30
20
21
2
0
1
1
30
55
90
1.8
44
1,641
llm
https://github.com/linksoul-ai/autoagents
['autonomous-agents']
null
[]
[]
null
null
null
linksoul-ai/autoagents
AutoAgents
889
107
20
Python
https://huggingface.co/spaces/LinkSoul/AutoAgents
Generate different roles for GPTs to form a collaborative entity for complex tasks.
linksoul-ai
2024-01-13
2023-08-21
23
38.41358
https://avatars.githubusercontent.com/u/147458898?v=4
Generate different roles for GPTs to form a collaborative entity for complex tasks.
[]
['autonomous-agents']
2023-11-24
[('assafelovic/gpt-researcher', 0.6728865504264832, 'llm', 0), ('yoheinakajima/babyagi', 0.6577290892601013, 'llm', 1), ('geekan/metagpt', 0.6280576586723328, 'llm', 0), ('torantulino/auto-gpt', 0.5497490167617798, 'llm', 1), ('langchain-ai/opengpts', 0.5377379655838013, 'llm', 0), ('operand/agency', 0.5123705267906189, 'llm', 1)]
11
3
null
1.44
17
6
5
2
0
0
0
17
9
90
0.5
44
684
util
https://github.com/pyfpdf/fpdf2
[]
null
[]
[]
null
null
null
pyfpdf/fpdf2
fpdf2
860
211
23
Python
https://py-pdf.github.io/fpdf2/
Simple PDF generation for Python
pyfpdf
2024-01-12
2017-03-15
358
2.396497
https://avatars.githubusercontent.com/u/102914013?v=4
Simple PDF generation for Python
['barcode', 'markdown', 'pdf', 'pdf-generation', 'pdf-library', 'svg']
['barcode', 'markdown', 'pdf', 'pdf-generation', 'pdf-library', 'svg']
2024-01-02
[('py-pdf/pypdf2', 0.6898808479309082, 'util', 1), ('pypdfium2-team/pypdfium2', 0.6115421652793884, 'util', 1), ('jorisschellekens/borb', 0.6073178052902222, 'util', 3), ('camelot-dev/camelot', 0.5940113663673401, 'util', 0), ('google/latexify_py', 0.5399512052536011, 'util', 0), ('pdfminer/pdfminer.six', 0.5335804224014282, 'util', 1), ('unstructured-io/pipeline-paddleocr', 0.531453549861908, 'data', 1), ('lukasschwab/arxiv.py', 0.5308734774589539, 'util', 1), ('google/yapf', 0.5062951445579529, 'util', 0), ('microsoft/genalog', 0.5020582675933838, 'data', 0), ('connorferster/handcalcs', 0.5012051463127136, 'jupyter', 0)]
116
3
null
5.4
152
122
83
0
7
6
7
152
399
90
2.6
44
898
data
https://github.com/googleapis/python-bigquery
[]
null
[]
[]
null
null
null
googleapis/python-bigquery
python-bigquery
686
316
54
Python
null
null
googleapis
2024-01-11
2019-12-10
216
3.175926
https://avatars.githubusercontent.com/u/16785467?v=4
googleapis/python-bigquery
[]
[]
2024-01-12
[('pytables/pytables', 0.5208421349525452, 'data', 0), ('ibis-project/ibis', 0.5185703635215759, 'data', 0), ('googleapis/google-api-python-client', 0.5121608376502991, 'util', 0), ('ofek/pypinfo', 0.5070151686668396, 'util', 0)]
142
5
null
2.87
152
115
50
0
20
34
20
152
196
90
1.3
44
796
util
https://github.com/open-telemetry/opentelemetry-python-contrib
[]
null
[]
[]
null
null
null
open-telemetry/opentelemetry-python-contrib
opentelemetry-python-contrib
554
469
16
Python
https://opentelemetry.io
OpenTelemetry instrumentation for Python modules
open-telemetry
2024-01-13
2019-11-08
220
2.511658
https://avatars.githubusercontent.com/u/49998002?v=4
OpenTelemetry instrumentation for Python modules
[]
[]
2024-01-11
[('open-telemetry/opentelemetry-python', 0.7430706024169922, 'util', 0), ('pympler/pympler', 0.5808881521224976, 'perf', 0), ('gaogaotiantian/viztracer', 0.5290429592132568, 'profiling', 0), ('openai/openai-python', 0.5244234204292297, 'util', 0)]
226
6
null
2.98
177
78
51
0
7
10
7
177
243
90
1.4
44
1,607
llm
https://github.com/zhudotexe/kani
[]
null
[]
[]
null
null
null
zhudotexe/kani
kani
499
24
9
Python
https://kani.readthedocs.io
kani (カニ) is a highly hackable microframework for chat-based language models with tool use/function calling. (NLP-OSS @ EMNLP 2023)
zhudotexe
2024-01-14
2023-07-14
28
17.465
null
kani (カニ) is a highly hackable microframework for chat-based language models with tool use/function calling. (NLP-OSS @ EMNLP 2023)
['chatgpt', 'claude-2', 'framework', 'function-calling', 'gpt-3', 'gpt-4', 'large-language-models', 'llama', 'llama-2', 'llms', 'microframework', 'openai', 'tool-use']
['chatgpt', 'claude-2', 'framework', 'function-calling', 'gpt-3', 'gpt-4', 'large-language-models', 'llama', 'llama-2', 'llms', 'microframework', 'openai', 'tool-use']
2023-12-04
[('lm-sys/fastchat', 0.579633891582489, 'llm', 0), ('thudm/chatglm2-6b', 0.5553779602050781, 'llm', 1), ('openai/tiktoken', 0.528551459312439, 'nlp', 1), ('next-gpt/next-gpt', 0.5206196904182434, 'llm', 3), ('embedchain/embedchain', 0.5120741724967957, 'llm', 1), ('microsoft/autogen', 0.5002747178077698, 'llm', 2)]
6
3
null
4.69
7
6
6
1
18
36
18
7
4
90
0.6
44
1,860
sim
https://github.com/nvidia-omniverse/orbit
['robot-learning']
null
[]
[]
null
null
null
nvidia-omniverse/orbit
orbit
494
135
23
Python
https://isaac-orbit.github.io/orbit/
Unified framework for robot learning built on NVIDIA Isaac Sim
nvidia-omniverse
2024-01-13
2022-11-16
62
7.859091
https://avatars.githubusercontent.com/u/57824658?v=4
Unified framework for robot learning built on NVIDIA Isaac Sim
['omniverse-kit-extension', 'robot-learning', 'robotics']
['omniverse-kit-extension', 'robot-learning', 'robotics']
2024-01-11
[('nvidia-omniverse/omniisaacgymenvs', 0.6811214685440063, 'sim', 1), ('arise-initiative/robosuite', 0.6593456268310547, 'ml-rl', 2), ('unity-technologies/ml-agents', 0.5719271898269653, 'ml-rl', 0), ('facebookresearch/habitat-lab', 0.5620828866958618, 'sim', 1), ('pytorch/rl', 0.5298061966896057, 'ml-rl', 1), ('salesforce/warp-drive', 0.513428270816803, 'ml-rl', 0)]
18
4
null
4.58
80
44
14
0
1
2
1
80
160
90
2
44
424
study
https://github.com/fchollet/deep-learning-with-python-notebooks
[]
null
[]
[]
null
null
null
fchollet/deep-learning-with-python-notebooks
deep-learning-with-python-notebooks
17,496
8,431
651
Jupyter Notebook
null
Jupyter notebooks for the code samples of the book "Deep Learning with Python"
fchollet
2024-01-13
2017-09-05
334
52.383234
null
Jupyter notebooks for the code samples of the book "Deep Learning with Python"
[]
[]
2023-02-13
[('ageron/handson-ml2', 0.8291416168212891, 'ml', 0), ('cohere-ai/notebooks', 0.7323339581489563, 'llm', 0), ('wesm/pydata-book', 0.6737366318702698, 'study', 0), ('mynameisfiber/high_performance_python_2e', 0.6630170941352844, 'study', 0), ('jupyter/nbformat', 0.6576974987983704, 'jupyter', 0), ('rasbt/machine-learning-book', 0.6557565331459045, 'study', 0), ('jakevdp/pythondatasciencehandbook', 0.6521231532096863, 'study', 0), ('adafruit/circuitpython', 0.6453861594200134, 'util', 0), ('probml/pyprobml', 0.6373811364173889, 'ml', 0), ('python/cpython', 0.6243636608123779, 'util', 0), ('pypy/pypy', 0.5973843932151794, 'util', 0), ('mrdbourke/pytorch-deep-learning', 0.5927961468696594, 'study', 0), ('gradio-app/gradio', 0.5826172232627869, 'viz', 0), ('intel/intel-extension-for-pytorch', 0.5782514214515686, 'perf', 0), ('d2l-ai/d2l-en', 0.5766072273254395, 'study', 0), ('mwouts/jupytext', 0.5749877095222473, 'jupyter', 0), ('ipython/ipyparallel', 0.5656928420066833, 'perf', 0), ('dylanhogg/awesome-python', 0.5646929144859314, 'study', 0), ('jupyter/nbconvert', 0.5641415119171143, 'jupyter', 0), ('pytoolz/toolz', 0.5609208941459656, 'util', 0), ('uber/petastorm', 0.5607595443725586, 'data', 0), ('jupyter-lsp/jupyterlab-lsp', 0.5593620538711548, 'jupyter', 0), ('gerdm/prml', 0.5584812760353088, 'study', 0), ('brandon-rhodes/python-patterns', 0.55435711145401, 'util', 0), ('ta-lib/ta-lib-python', 0.5513738393783569, 'finance', 0), ('jupyterlab/jupyterlab-desktop', 0.5508671402931213, 'jupyter', 0), ('nvidia/deeplearningexamples', 0.5502544045448303, 'ml-dl', 0), ('kubeflow/fairing', 0.5467697381973267, 'ml-ops', 0), ('opengeos/leafmap', 0.5463659763336182, 'gis', 0), ('pytorch/ignite', 0.5449861288070679, 'ml-dl', 0), ('jupyterlab/jupyterlab', 0.5447031259536743, 'jupyter', 0), ('amaargiru/pyroad', 0.5438991785049438, 'study', 0), ('ipython/ipykernel', 0.5428215265274048, 'util', 0), ('goldmansachs/gs-quant', 0.5427274107933044, 'finance', 0), ('jupyter-widgets/ipywidgets', 0.5422195792198181, 'jupyter', 0), ('arogozhnikov/einops', 0.5417112112045288, 'ml-dl', 0), ('cuemacro/finmarketpy', 0.541059136390686, 'finance', 0), ('huggingface/huggingface_hub', 0.5410536527633667, 'ml', 0), ('firmai/industry-machine-learning', 0.5408152937889099, 'study', 0), ('rafiqhasan/auto-tensorflow', 0.5406836867332458, 'ml-dl', 0), ('graykode/nlp-tutorial', 0.5380004644393921, 'study', 0), ('tatsu-lab/stanford_alpaca', 0.5365834832191467, 'llm', 0), ('google/gin-config', 0.5364246964454651, 'util', 0), ('jupyter/notebook', 0.5353759527206421, 'jupyter', 0), ('pycaret/pycaret', 0.5345378518104553, 'ml', 0), ('jupyter/nbgrader', 0.5345233678817749, 'jupyter', 0), ('faster-cpython/tools', 0.533972442150116, 'perf', 0), ('eleutherai/pyfra', 0.5332986116409302, 'ml', 0), ('koaning/calm-notebooks', 0.5319899320602417, 'study', 0), ('tensorlayer/tensorlayer', 0.5313844680786133, 'ml-rl', 0), ('jeshraghian/snntorch', 0.5287100076675415, 'ml-dl', 0), ('mito-ds/monorepo', 0.525928795337677, 'jupyter', 0), ('aws/graph-notebook', 0.525762140750885, 'jupyter', 0), ('ipython/ipython', 0.525562584400177, 'util', 0), ('cython/cython', 0.5218517780303955, 'util', 0), ('jupyter/nbdime', 0.5217457413673401, 'jupyter', 0), ('nedbat/coveragepy', 0.521513819694519, 'testing', 0), ('imageio/imageio', 0.5206165909767151, 'util', 0), ('faster-cpython/ideas', 0.5187180638313293, 'perf', 0), ('voila-dashboards/voila', 0.5183944702148438, 'jupyter', 0), ('klen/muffin', 0.5174252390861511, 'web', 0), ('udacity/deep-learning-v2-pytorch', 0.5173661708831787, 'study', 0), ('skorch-dev/skorch', 0.5172905325889587, 'ml-dl', 0), ('numba/llvmlite', 0.5170167088508606, 'util', 0), ('huggingface/transformers', 0.5168095827102661, 'nlp', 0), ('maartenbreddels/ipyvolume', 0.516755223274231, 'jupyter', 0), ('ashleve/lightning-hydra-template', 0.5156070590019226, 'util', 0), ('google/latexify_py', 0.5139066576957703, 'util', 0), ('googlecloudplatform/vertex-ai-samples', 0.5130940079689026, 'ml', 0), ('tensorly/tensorly', 0.5126520395278931, 'ml-dl', 0), ('nteract/papermill', 0.5121607780456543, 'jupyter', 0), ('quantopian/qgrid', 0.5115215182304382, 'jupyter', 0), ('masoniteframework/masonite', 0.5106345415115356, 'web', 0), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5104230642318726, 'study', 0), ('p403n1x87/austin', 0.5097584128379822, 'profiling', 0), ('timofurrer/awesome-asyncio', 0.5076543092727661, 'study', 0), ('atsushisakai/pythonrobotics', 0.5075343251228333, 'sim', 0), ('ggerganov/ggml', 0.5067695379257202, 'ml', 0), ('computationalmodelling/nbval', 0.5067647099494934, 'jupyter', 0), ('realpython/python-guide', 0.5066047310829163, 'study', 0), ('facebookresearch/pytorch3d', 0.5057374238967896, 'ml-dl', 0), ('dmlc/dgl', 0.504264235496521, 'ml-dl', 0), ('astral-sh/ruff', 0.5036055445671082, 'util', 0), ('pyro-ppl/pyro', 0.5035637617111206, 'ml-dl', 0), ('nbqa-dev/nbqa', 0.5034378170967102, 'jupyter', 0), ('grantjenks/blue', 0.5027827024459839, 'util', 0), ('psf/black', 0.5026202201843262, 'util', 0), ('jupyterlab/jupyter-ai', 0.5025471448898315, 'jupyter', 0), ('willmcgugan/textual', 0.5023050904273987, 'term', 0), ('fastai/fastcore', 0.5009275078773499, 'util', 0)]
9
1
null
0.02
3
1
77
11
0
0
0
3
1
90
0.3
43
1,331
study
https://github.com/graykode/nlp-tutorial
[]
null
[]
[]
null
null
null
graykode/nlp-tutorial
nlp-tutorial
13,361
3,865
291
Jupyter Notebook
https://www.reddit.com/r/MachineLearning/comments/amfinl/project_nlptutoral_repository_who_is_studying/
Natural Language Processing Tutorial for Deep Learning Researchers
graykode
2024-01-14
2019-01-09
263
50.63725
null
Natural Language Processing Tutorial for Deep Learning Researchers
['attention', 'bert', 'natural-language-processing', 'nlp', 'paper', 'pytorch', 'tensorflow', 'transformer', 'tutorial']
['attention', 'bert', 'natural-language-processing', 'nlp', 'paper', 'pytorch', 'tensorflow', 'transformer', 'tutorial']
2021-07-25
[('allenai/allennlp', 0.6779881715774536, 'nlp', 3), ('keras-team/keras-nlp', 0.6779394149780273, 'nlp', 3), ('huggingface/transformers', 0.6622538566589355, 'nlp', 6), ('alibaba/easynlp', 0.6614455580711365, 'nlp', 3), ('extreme-bert/extreme-bert', 0.6246617436408997, 'llm', 5), ('deepset-ai/farm', 0.6138063669204712, 'nlp', 3), ('bigscience-workshop/megatron-deepspeed', 0.6075314879417419, 'llm', 0), ('microsoft/megatron-deepspeed', 0.6075314879417419, 'llm', 0), ('mrdbourke/pytorch-deep-learning', 0.6003298163414001, 'study', 1), ('paddlepaddle/paddlenlp', 0.5823931097984314, 'llm', 2), ('nltk/nltk', 0.5764945149421692, 'nlp', 2), ('salesforce/blip', 0.5725541710853577, 'diffusion', 0), ('nvidia/deeplearningexamples', 0.569402277469635, 'ml-dl', 3), ('udacity/deep-learning-v2-pytorch', 0.5692509412765503, 'study', 1), ('flairnlp/flair', 0.561720073223114, 'nlp', 3), ('llmware-ai/llmware', 0.559558093547821, 'llm', 3), ('jonasgeiping/cramming', 0.5574339628219604, 'nlp', 0), ('tatsu-lab/stanford_alpaca', 0.5533468723297119, 'llm', 0), ('ageron/handson-ml2', 0.5493988394737244, 'ml', 0), ('jina-ai/finetuner', 0.5485501885414124, 'ml', 1), ('rasahq/rasa', 0.5484858155250549, 'llm', 2), ('ddangelov/top2vec', 0.5482358932495117, 'nlp', 1), ('christoschristofidis/awesome-deep-learning', 0.5480766296386719, 'study', 0), ('explosion/spacy', 0.5477665066719055, 'nlp', 2), ('jina-ai/clip-as-service', 0.5440134406089783, 'nlp', 2), ('rafiqhasan/auto-tensorflow', 0.5383457541465759, 'ml-dl', 1), ('fchollet/deep-learning-with-python-notebooks', 0.5380004644393921, 'study', 0), ('maartengr/bertopic', 0.5367704629898071, 'nlp', 2), ('pytorch/ignite', 0.5355981588363647, 'ml-dl', 1), ('norskregnesentral/skweak', 0.5352105498313904, 'nlp', 1), ('d2l-ai/d2l-en', 0.5312547087669373, 'study', 3), ('deeppavlov/deeppavlov', 0.529963493347168, 'nlp', 2), ('thilinarajapakse/simpletransformers', 0.5299626588821411, 'nlp', 0), ('explosion/spacy-models', 0.5290482044219971, 'nlp', 2), ('google-research/electra', 0.5271270871162415, 'ml-dl', 2), ('whu-zqh/chatgpt-vs.-bert', 0.5263599753379822, 'llm', 1), ('explosion/thinc', 0.5204659104347229, 'ml-dl', 4), ('rasbt/machine-learning-book', 0.518619179725647, 'study', 1), ('keras-team/keras', 0.5174597501754761, 'ml-dl', 2), ('nvidia/nemo', 0.5165086388587952, 'nlp', 1), ('sloria/textblob', 0.5135754942893982, 'nlp', 2), ('huggingface/text-generation-inference', 0.5133894681930542, 'llm', 3), ('microsoft/generative-ai-for-beginners', 0.5113995671272278, 'study', 0), ('openai/finetune-transformer-lm', 0.5100629329681396, 'llm', 1), ('mooler0410/llmspracticalguide', 0.510050356388092, 'study', 2), ('nvlabs/gcvit', 0.5081471800804138, 'diffusion', 0), ('jalammar/ecco', 0.5071130990982056, 'ml-interpretability', 3), ('amanchadha/coursera-deep-learning-specialization', 0.5051466226577759, 'study', 0), ('arogozhnikov/einops', 0.5046815276145935, 'ml-dl', 2), ('amansrivastava17/embedding-as-service', 0.5044365525245667, 'nlp', 4), ('udlbook/udlbook', 0.5029069185256958, 'study', 0), ('deepmind/deepmind-research', 0.5026014447212219, 'ml', 0), ('tensorly/tensorly', 0.5011732578277588, 'ml-dl', 2), ('ashleve/lightning-hydra-template', 0.5006478428840637, 'util', 1)]
14
4
null
0
1
0
61
30
0
0
0
1
0
90
0
43
152
nlp
https://github.com/sloria/textblob
[]
null
[]
[]
null
null
null
sloria/textblob
TextBlob
8,820
1,134
267
Python
https://textblob.readthedocs.io/
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.
sloria
2024-01-13
2013-06-30
552
15.969995
null
Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more.
['natural-language-processing', 'nlp', 'nltk', 'pattern']
['natural-language-processing', 'nlp', 'nltk', 'pattern']
2023-03-11
[('explosion/spacy', 0.7043011784553528, 'nlp', 2), ('nltk/nltk', 0.6578431129455566, 'nlp', 3), ('flairnlp/flair', 0.6279769539833069, 'nlp', 2), ('clips/pattern', 0.6183449029922485, 'nlp', 1), ('keras-team/keras-nlp', 0.5880878567695618, 'nlp', 2), ('vi3k6i5/flashtext', 0.5837533473968506, 'data', 1), ('explosion/spacy-models', 0.5832897424697876, 'nlp', 2), ('pemistahl/lingua-py', 0.5679237246513367, 'nlp', 2), ('paddlepaddle/paddlenlp', 0.559609591960907, 'llm', 1), ('lexpredict/lexpredict-lexnlp', 0.5583809018135071, 'nlp', 1), ('pyparsing/pyparsing', 0.5576520562171936, 'util', 0), ('pandas-dev/pandas', 0.554803729057312, 'pandas', 0), ('eliasdabbas/advertools', 0.5545390248298645, 'data', 0), ('norskregnesentral/skweak', 0.5448392033576965, 'nlp', 1), ('explosion/spacy-streamlit', 0.5445199012756348, 'nlp', 2), ('jbesomi/texthero', 0.5416422486305237, 'nlp', 1), ('ddbourgin/numpy-ml', 0.5411363244056702, 'ml', 0), ('thilinarajapakse/simpletransformers', 0.5410082936286926, 'nlp', 0), ('ranaroussi/quantstats', 0.5343949794769287, 'finance', 0), ('milvus-io/bootcamp', 0.5331091284751892, 'data', 1), ('thealgorithms/python', 0.531756579875946, 'study', 0), ('plotly/dash', 0.5282818078994751, 'viz', 0), ('alibaba/easynlp', 0.5273472666740417, 'nlp', 1), ('explosion/spacy-llm', 0.5245431065559387, 'llm', 2), ('rasahq/rasa', 0.5231644511222839, 'llm', 2), ('allenai/allennlp', 0.5219146013259888, 'nlp', 2), ('rare-technologies/gensim', 0.5176156759262085, 'nlp', 2), ('gradio-app/gradio', 0.5139216780662537, 'viz', 0), ('graykode/nlp-tutorial', 0.5135754942893982, 'study', 2), ('dylanhogg/awesome-python', 0.5117655992507935, 'study', 2), ('fatiando/verde', 0.5090445876121521, 'gis', 0), ('rasbt/mlxtend', 0.5048877596855164, 'ml', 0), ('scikit-learn/scikit-learn', 0.5042425990104675, 'ml', 0), ('evhub/coconut', 0.5033293962478638, 'util', 0)]
36
4
null
0.02
7
1
128
10
0
4
4
7
4
90
0.6
43
107
ml
https://github.com/nicolashug/surprise
[]
null
[]
[]
null
null
null
nicolashug/surprise
Surprise
6,098
1,043
146
Python
http://surpriselib.com
A Python scikit for building and analyzing recommender systems
nicolashug
2024-01-13
2016-10-23
379
16.077589
null
A Python scikit for building and analyzing recommender systems
['factorization', 'machine-learning', 'matrix', 'recommendation', 'recommender', 'svd', 'systems']
['factorization', 'machine-learning', 'matrix', 'recommendation', 'recommender', 'svd', 'systems']
2023-01-27
[('rucaibox/recbole', 0.5934752821922302, 'ml', 1), ('jacopotagliabue/reclist', 0.5908733010292053, 'ml', 1), ('microsoft/recommenders', 0.5881096720695496, 'study', 3), ('pytorch/torchrec', 0.5874725580215454, 'ml-dl', 0), ('rasbt/mlxtend', 0.5660281777381897, 'ml', 1), ('scikit-learn-contrib/metric-learn', 0.5304577946662903, 'ml', 1)]
45
3
null
0.02
7
3
88
12
0
2
2
7
10
90
1.4
43
379
data
https://github.com/alirezamika/autoscraper
[]
null
[]
[]
null
null
null
alirezamika/autoscraper
autoscraper
5,757
618
125
Python
null
A Smart, Automatic, Fast and Lightweight Web Scraper for Python
alirezamika
2024-01-14
2020-08-31
178
32.31676
null
A Smart, Automatic, Fast and Lightweight Web Scraper for Python
['ai', 'artificial-intelligence', 'automation', 'crawler', 'machine-learning', 'scrape', 'scraper', 'scraping', 'web-scraping', 'webautomation', 'webscraping']
['ai', 'artificial-intelligence', 'automation', 'crawler', 'machine-learning', 'scrape', 'scraper', 'scraping', 'web-scraping', 'webautomation', 'webscraping']
2022-07-17
[('scrapy/scrapy', 0.8083213567733765, 'data', 3), ('roniemartinez/dude', 0.781152606010437, 'util', 5), ('nv7-github/googlesearch', 0.7142531275749207, 'util', 0), ('clips/pattern', 0.7112637758255005, 'nlp', 1), ('binux/pyspider', 0.6465148329734802, 'data', 1), ('requests/toolbelt', 0.5791863799095154, 'util', 0), ('twintproject/twint', 0.5726699233055115, 'data', 1), ('webpy/webpy', 0.5700419545173645, 'web', 0), ('seleniumbase/seleniumbase', 0.5415842533111572, 'testing', 0), ('psf/requests', 0.5295840501785278, 'web', 0), ('cobrateam/splinter', 0.5292969346046448, 'testing', 1), ('serpapi/google-search-results-python', 0.5220003724098206, 'util', 2), ('jovianml/opendatasets', 0.5161617398262024, 'data', 1), ('falconry/falcon', 0.513289749622345, 'web', 0), ('masoniteframework/masonite', 0.5066377520561218, 'web', 0)]
8
2
null
0
1
0
41
18
0
5
5
1
1
90
1
43
1,023
finance
https://github.com/kernc/backtesting.py
[]
null
[]
[]
null
null
null
kernc/backtesting.py
backtesting.py
4,436
875
109
Python
https://kernc.github.io/backtesting.py/
:mag_right: :chart_with_upwards_trend: :snake: :moneybag: Backtest trading strategies in Python.
kernc
2024-01-14
2019-01-02
264
16.748652
null
:mag_right: :chart_with_upwards_trend: 🐍 :moneybag: Backtest trading strategies in Python.
['algo-trading', 'algorithmic-trading', 'backtesting', 'backtesting-engine', 'backtesting-frameworks', 'backtesting-trading-strategies', 'finance', 'financial-markets', 'forex', 'forex-trading', 'framework', 'investing', 'investment', 'investment-strategies', 'stocks', 'trading', 'trading-algorithms', 'trading-simulator', 'trading-strategies']
['algo-trading', 'algorithmic-trading', 'backtesting', 'backtesting-engine', 'backtesting-frameworks', 'backtesting-trading-strategies', 'finance', 'financial-markets', 'forex', 'forex-trading', 'framework', 'investing', 'investment', 'investment-strategies', 'stocks', 'trading', 'trading-algorithms', 'trading-simulator', 'trading-strategies']
2023-01-15
[('cuemacro/finmarketpy', 0.6904587149620056, 'finance', 2), ('mementum/backtrader', 0.6531647443771362, 'finance', 2), ('polakowo/vectorbt', 0.6390688419342041, 'finance', 5), ('ranaroussi/quantstats', 0.62286376953125, 'finance', 3), ('quantconnect/lean', 0.5955772995948792, 'finance', 5), ('blankly-finance/blankly', 0.5919058918952942, 'finance', 5), ('goldmansachs/gs-quant', 0.5561110377311707, 'finance', 1), ('gbeced/pyalgotrade', 0.5535092949867249, 'finance', 0), ('robcarver17/pysystemtrade', 0.5506398677825928, 'finance', 0), ('gbeced/basana', 0.5409364700317383, 'finance', 2), ('quantopian/zipline', 0.540707528591156, 'finance', 1), ('zvtvz/zvt', 0.5392759442329407, 'finance', 3), ('bashtage/arch', 0.5312038064002991, 'time-series', 1), ('ai4finance-foundation/finrl', 0.5252265334129333, 'finance', 2), ('idanya/algo-trader', 0.522881269454956, 'finance', 3), ('ta-lib/ta-lib-python', 0.512697160243988, 'finance', 1), ('firmai/atspy', 0.5046423673629761, 'time-series', 1)]
19
4
null
0
30
3
61
12
0
4
4
30
23
90
0.8
43
1,840
finance
https://github.com/twopirllc/pandas-ta
[]
null
[]
[]
null
null
null
twopirllc/pandas-ta
pandas-ta
4,335
871
92
Python
https://twopirllc.github.io/pandas-ta/
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators
twopirllc
2024-01-14
2019-02-19
258
16.802326
null
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators
['dataframe', 'finance', 'fundamental-analysis', 'jupyter-notebook', 'pandas', 'pandas-dataframe-extension', 'pandas-extension', 'pandas-ta', 'stock-market', 'technical', 'technical-analysis', 'technical-analysis-indicators', 'technical-analysis-library', 'technical-indicators', 'trading', 'trading-algorithms']
['dataframe', 'finance', 'fundamental-analysis', 'jupyter-notebook', 'pandas', 'pandas-dataframe-extension', 'pandas-extension', 'pandas-ta', 'stock-market', 'technical', 'technical-analysis', 'technical-analysis-indicators', 'technical-analysis-library', 'technical-indicators', 'trading', 'trading-algorithms']
2022-09-24
[('mementum/bta-lib', 0.6815423369407654, 'finance', 0), ('ta-lib/ta-lib-python', 0.6217855215072632, 'finance', 2), ('adamerose/pandasgui', 0.5920196771621704, 'pandas', 2), ('pydata/pandas-datareader', 0.5820935368537903, 'pandas', 2), ('lux-org/lux', 0.5814751386642456, 'viz', 1), ('tkrabel/bamboolib', 0.5758503675460815, 'pandas', 2), ('rapidsai/cudf', 0.542910099029541, 'pandas', 2), ('mito-ds/monorepo', 0.5410447716712952, 'jupyter', 1), ('jmcarpenter2/swifter', 0.539636492729187, 'pandas', 1), ('goldmansachs/gs-quant', 0.5390924215316772, 'finance', 0), ('kanaries/pygwalker', 0.5264495611190796, 'pandas', 2), ('ranaroussi/quantstats', 0.5218469500541687, 'finance', 1), ('nalepae/pandarallel', 0.517140805721283, 'pandas', 1), ('man-group/dtale', 0.5126270651817322, 'viz', 2), ('alkaline-ml/pmdarima', 0.5053380131721497, 'time-series', 0), ('stefmolin/stock-analysis', 0.5048727989196777, 'finance', 2), ('pandas-dev/pandas', 0.5036715269088745, 'pandas', 2), ('wesm/pydata-book', 0.5033674240112305, 'study', 0), ('holoviz/panel', 0.5016809105873108, 'viz', 0)]
45
1
null
0
45
32
60
16
0
1
1
46
136
90
3
43
1,025
finance
https://github.com/ranaroussi/quantstats
[]
null
[]
[]
null
null
null
ranaroussi/quantstats
quantstats
3,886
748
93
Python
null
Portfolio analytics for quants, written in Python
ranaroussi
2024-01-14
2019-05-01
247
15.678386
null
Portfolio analytics for quants, written in Python
['algo-trading', 'algorithmic-trading', 'algotrading', 'finance', 'plotting', 'quant', 'quantitative-analysis', 'quantitative-finance', 'quantitative-trading', 'visualization']
['algo-trading', 'algorithmic-trading', 'algotrading', 'finance', 'plotting', 'quant', 'quantitative-analysis', 'quantitative-finance', 'quantitative-trading', 'visualization']
2023-07-06
[('goldmansachs/gs-quant', 0.7339354157447815, 'finance', 0), ('plotly/dash', 0.6857461333274841, 'viz', 1), ('quantconnect/lean', 0.6603469848632812, 'finance', 1), ('quantopian/pyfolio', 0.6542462706565857, 'finance', 0), ('zvtvz/zvt', 0.6442165970802307, 'finance', 4), ('polakowo/vectorbt', 0.6319853663444519, 'finance', 4), ('statsmodels/statsmodels', 0.6285594701766968, 'ml', 0), ('kernc/backtesting.py', 0.62286376953125, 'finance', 3), ('gbeced/pyalgotrade', 0.6159399747848511, 'finance', 0), ('scikit-mobility/scikit-mobility', 0.6154873967170715, 'gis', 0), ('polyaxon/datatile', 0.6079445481300354, 'pandas', 0), ('cuemacro/finmarketpy', 0.6077700853347778, 'finance', 0), ('quantopian/zipline', 0.5925479531288147, 'finance', 2), ('holoviz/panel', 0.5793597102165222, 'viz', 0), ('krzjoa/awesome-python-data-science', 0.5782219767570496, 'study', 0), ('thealgorithms/python', 0.5772646069526672, 'study', 0), ('firmai/atspy', 0.5767538547515869, 'time-series', 1), ('ta-lib/ta-lib-python', 0.566260814666748, 'finance', 2), ('pandas-dev/pandas', 0.5643635988235474, 'pandas', 0), ('man-group/dtale', 0.55287766456604, 'viz', 1), ('google/tf-quant-finance', 0.5515581369400024, 'finance', 2), ('scikit-learn/scikit-learn', 0.5498625636100769, 'ml', 0), ('clips/pattern', 0.5454891324043274, 'nlp', 0), ('wesm/pydata-book', 0.5430867671966553, 'study', 0), ('robcarver17/pysystemtrade', 0.5409232378005981, 'finance', 0), ('sloria/textblob', 0.5343949794769287, 'nlp', 0), ('eleutherai/pyfra', 0.5325418710708618, 'ml', 0), ('openbb-finance/openbbterminal', 0.53244549036026, 'finance', 2), ('stefmolin/stock-analysis', 0.5322091579437256, 'finance', 0), ('networkx/networkx', 0.5321804881095886, 'graph', 0), ('1200wd/bitcoinlib', 0.5297749638557434, 'crypto', 0), ('gbeced/basana', 0.5287092328071594, 'finance', 1), ('bokeh/bokeh', 0.5271790027618408, 'viz', 2), ('dagworks-inc/hamilton', 0.5268656015396118, 'ml-ops', 0), ('domokane/financepy', 0.526004433631897, 'finance', 1), ('dylanhogg/awesome-python', 0.5245246887207031, 'study', 0), ('ydataai/ydata-profiling', 0.5242244005203247, 'pandas', 0), ('alkaline-ml/pmdarima', 0.522229790687561, 'time-series', 0), ('twopirllc/pandas-ta', 0.5218469500541687, 'finance', 1), ('plotly/plotly.py', 0.5214852094650269, 'viz', 1), ('malloydata/malloy-py', 0.5185449123382568, 'data', 0), ('numerai/example-scripts', 0.5179154872894287, 'finance', 0), ('hydrosquall/tiingo-python', 0.5174421072006226, 'finance', 1), ('microsoft/qlib', 0.5154274702072144, 'finance', 5), ('quantecon/quantecon.py', 0.513916015625, 'sim', 0), ('gradio-app/gradio', 0.5128483176231384, 'viz', 0), ('keon/algorithms', 0.5114973187446594, 'util', 0), ('mementum/bta-lib', 0.5088109970092773, 'finance', 0), ('ai4finance-foundation/finrl', 0.5057669878005981, 'finance', 2), ('matplotlib/mplfinance', 0.5049977898597717, 'finance', 1), ('bashtage/arch', 0.5018336772918701, 'time-series', 1), ('federicoceratto/dashing', 0.5010005235671997, 'term', 0), ('online-ml/river', 0.5004301071166992, 'ml', 0)]
32
3
null
0.52
25
6
57
6
3
3
3
25
20
90
0.8
43
1,112
web
https://github.com/pylons/pyramid
[]
null
[]
[]
null
null
null
pylons/pyramid
pyramid
3,875
931
161
Python
https://trypyramid.com/
Pyramid - A Python web framework
pylons
2024-01-13
2010-10-24
692
5.5974
https://avatars.githubusercontent.com/u/452227?v=4
Pyramid - A Python web framework
['pylons', 'pyramid', 'web-framework', 'wsgi']
['pylons', 'pyramid', 'web-framework', 'wsgi']
2023-09-14
[('pallets/flask', 0.7600159049034119, 'web', 2), ('pallets/werkzeug', 0.7471210360527039, 'web', 1), ('bottlepy/bottle', 0.7196846008300781, 'web', 2), ('masoniteframework/masonite', 0.6714824438095093, 'web', 0), ('webpy/webpy', 0.6500197052955627, 'web', 0), ('klen/muffin', 0.6305515766143799, 'web', 0), ('falconry/falcon', 0.6222757697105408, 'web', 1), ('neoteroi/blacksheep', 0.5955870151519775, 'web', 0), ('pallets/quart', 0.5922417640686035, 'web', 0), ('scrapy/scrapy', 0.5863667726516724, 'data', 0), ('eleutherai/pyfra', 0.5796028971672058, 'ml', 0), ('reflex-dev/reflex', 0.5728359818458557, 'web', 0), ('pypy/pypy', 0.5644940137863159, 'util', 0), ('encode/uvicorn', 0.5620464086532593, 'web', 0), ('benoitc/gunicorn', 0.5611777305603027, 'web', 1), ('timofurrer/awesome-asyncio', 0.5598770380020142, 'study', 0), ('cherrypy/cherrypy', 0.5556930303573608, 'web', 0), ('feincms/feincms', 0.5519199371337891, 'web', 0), ('willmcgugan/textual', 0.5482103228569031, 'term', 0), ('emmett-framework/emmett', 0.5466519594192505, 'web', 1), ('pyglet/pyglet', 0.5355060696601868, 'gamedev', 0), ('pyodide/pyodide', 0.5352792739868164, 'util', 0), ('pylons/waitress', 0.5299732089042664, 'web', 0), ('python/cpython', 0.5238844752311707, 'util', 0), ('django/django', 0.5236054062843323, 'web', 0), ('pycqa/pylint-django', 0.5214040279388428, 'util', 0), ('r0x0r/pywebview', 0.5202688574790955, 'gui', 0), ('sqlalchemy/mako', 0.5201253890991211, 'template', 0), ('encode/httpx', 0.5153858661651611, 'web', 0), ('clips/pattern', 0.5145288705825806, 'nlp', 0), ('starlite-api/starlite', 0.5109481811523438, 'web', 0), ('holoviz/panel', 0.507599949836731, 'viz', 0), ('python-restx/flask-restx', 0.5075467824935913, 'web', 0), ('alirn76/panther', 0.5073546767234802, 'web', 0), ('pyston/pyston', 0.5057663321495056, 'util', 0), ('dylanhogg/awesome-python', 0.5040434002876282, 'study', 0), ('pytoolz/toolz', 0.5017217993736267, 'util', 0), ('requests/toolbelt', 0.5011575222015381, 'util', 0)]
349
4
null
0.48
8
0
161
4
0
11
11
8
12
90
1.5
43
928
ml-dl
https://github.com/williamyang1991/vtoonify
[]
null
[]
[]
null
null
null
williamyang1991/vtoonify
VToonify
3,408
434
64
Jupyter Notebook
null
[SIGGRAPH Asia 2022] VToonify: Controllable High-Resolution Portrait Video Style Transfer
williamyang1991
2024-01-12
2022-09-09
72
46.96063
null
[SIGGRAPH Asia 2022] VToonify: Controllable High-Resolution Portrait Video Style Transfer
['face', 'siggraph-asia', 'style-transfer', 'stylegan2', 'toonify', 'video-style-transfer']
['face', 'siggraph-asia', 'style-transfer', 'stylegan2', 'toonify', 'video-style-transfer']
2023-02-24
[('chenyangqiqi/fatezero', 0.5721680521965027, 'diffusion', 1), ('thudm/cogvideo', 0.5548344850540161, 'ml', 0), ('mchong6/jojogan', 0.515015184879303, 'data', 0)]
4
3
null
0.04
5
1
16
11
0
0
0
5
4
90
0.8
43
1,708
util
https://github.com/tartley/colorama
['terminal', 'ansi']
null
[]
[]
null
null
null
tartley/colorama
colorama
3,328
239
45
Python
null
Simple cross-platform colored terminal text in Python
tartley
2024-01-12
2014-04-17
510
6.516364
null
Simple cross-platform colored terminal text in Python
[]
['ansi', 'terminal']
2023-12-01
[('willmcgugan/rich', 0.7069451808929443, 'term', 1), ('jquast/blessed', 0.5634984970092773, 'term', 1), ('carpedm20/emoji', 0.5459503531455994, 'util', 0), ('urwid/urwid', 0.5115954279899597, 'term', 0)]
51
5
null
0.06
3
2
119
1
0
2
2
3
7
90
2.3
43
1,180
nlp
https://github.com/errbotio/errbot
[]
null
[]
[]
null
null
null
errbotio/errbot
errbot
3,012
612
74
Python
http://errbot.io
Errbot is a chatbot, a daemon that connects to your favorite chat service and bring your tools and some fun into the conversation.
errbotio
2024-01-12
2012-05-20
610
4.935393
https://avatars.githubusercontent.com/u/15802630?v=4
Errbot is a chatbot, a daemon that connects to your favorite chat service and bring your tools and some fun into the conversation.
['automation', 'chat', 'chatbot', 'chatbots', 'chatops', 'devops', 'hacktoberfest2020']
['automation', 'chat', 'chatbot', 'chatbots', 'chatops', 'devops', 'hacktoberfest2020']
2024-01-01
[('gunthercox/chatterbot', 0.5522263646125793, 'nlp', 1), ('togethercomputer/openchatkit', 0.5380634665489197, 'nlp', 1), ('deep-diver/llm-as-chatbot', 0.5012304186820984, 'llm', 1)]
214
5
null
0.56
44
38
142
0
1
7
1
44
40
90
0.9
43
968
ml
https://github.com/lucidrains/musiclm-pytorch
[]
null
[]
[]
1
null
null
lucidrains/musiclm-pytorch
musiclm-pytorch
2,873
240
96
Python
null
Implementation of MusicLM, Google's new SOTA model for music generation using attention networks, in Pytorch
lucidrains
2024-01-13
2023-01-27
52
54.649457
null
Implementation of MusicLM, Google's new SOTA model for music generation using attention networks, in Pytorch
['artificial-intelligence', 'attention-mechanisms', 'deep-learning', 'music-synthesis', 'transformers']
['artificial-intelligence', 'attention-mechanisms', 'deep-learning', 'music-synthesis', 'transformers']
2023-09-06
[('huggingface/diffusers', 0.54345703125, 'diffusion', 1)]
2
0
null
1.37
3
1
12
4
38
39
38
3
1
90
0.3
43
95
term
https://github.com/urwid/urwid
[]
null
[]
[]
null
null
null
urwid/urwid
urwid
2,681
313
61
Python
urwid.org
Console user interface library for Python (official repo)
urwid
2024-01-13
2010-02-25
726
3.689208
https://avatars.githubusercontent.com/u/6749304?v=4
Console user interface library for Python (official repo)
[]
[]
2024-01-12
[('jquast/blessed', 0.7145931720733643, 'term', 0), ('pygamelib/pygamelib', 0.700258731842041, 'gamedev', 0), ('hoffstadt/dearpygui', 0.6700049042701721, 'gui', 0), ('beeware/toga', 0.6368706822395325, 'gui', 0), ('pytoolz/toolz', 0.6324057579040527, 'util', 0), ('r0x0r/pywebview', 0.6302554607391357, 'gui', 0), ('google/python-fire', 0.6262136101722717, 'term', 0), ('pypy/pypy', 0.6176603436470032, 'util', 0), ('python/cpython', 0.613335907459259, 'util', 0), ('willmcgugan/textual', 0.6095877885818481, 'term', 0), ('samuelcolvin/python-devtools', 0.5885550379753113, 'debug', 0), ('landscapeio/prospector', 0.586963951587677, 'util', 0), ('pyglet/pyglet', 0.5836073160171509, 'gamedev', 0), ('openai/openai-python', 0.5712311267852783, 'util', 0), ('tmbo/questionary', 0.5709437727928162, 'term', 0), ('pyscript/pyscript-cli', 0.5667005181312561, 'web', 0), ('rockhopper-technologies/enlighten', 0.5648614764213562, 'term', 0), ('federicoceratto/dashing', 0.5645572543144226, 'term', 0), ('kivy/kivy', 0.5640290975570679, 'util', 0), ('pdm-project/pdm', 0.5620359778404236, 'util', 0), ('dddomodossola/remi', 0.5620279312133789, 'gui', 0), ('alexmojaki/snoop', 0.5546684265136719, 'debug', 0), ('pexpect/pexpect', 0.553383469581604, 'util', 0), ('inducer/pudb', 0.5516170859336853, 'debug', 0), ('hugovk/pypistats', 0.5486549735069275, 'util', 0), ('parthjadhav/tkinter-designer', 0.5480352640151978, 'gui', 0), ('ethereum/web3.py', 0.5449756979942322, 'crypto', 0), ('googleapis/google-api-python-client', 0.54488605260849, 'util', 0), ('ipython/ipython', 0.5444232821464539, 'util', 0), ('prompt-toolkit/ptpython', 0.5443150997161865, 'util', 0), ('tiangolo/typer', 0.5432376861572266, 'term', 0), ('pypa/hatch', 0.5425727963447571, 'util', 0), ('xonsh/xonsh', 0.5422582030296326, 'util', 0), ('eleutherai/pyfra', 0.5409858822822571, 'ml', 0), ('masoniteframework/masonite', 0.5398597121238708, 'web', 0), ('jiffyclub/snakeviz', 0.5396429300308228, 'profiling', 0), ('willmcgugan/rich', 0.538774847984314, 'term', 0), ('pyston/pyston', 0.5381410121917725, 'util', 0), ('paramiko/paramiko', 0.5337045192718506, 'util', 0), ('webpy/webpy', 0.533157467842102, 'web', 0), ('simple-salesforce/simple-salesforce', 0.5318827629089355, 'data', 0), ('pypi/warehouse', 0.5293185710906982, 'util', 0), ('pysimplegui/pysimplegui', 0.5266430974006653, 'gui', 0), ('plotly/plotly.py', 0.5260567665100098, 'viz', 0), ('pallets/click', 0.5238144993782043, 'term', 0), ('reactive-python/reactpy', 0.5233248472213745, 'web', 0), ('irmen/pyminiaudio', 0.51679927110672, 'util', 0), ('pygame/pygame', 0.5163580775260925, 'gamedev', 0), ('pythonarcade/arcade', 0.5146381258964539, 'gamedev', 0), ('tartley/colorama', 0.5115954279899597, 'util', 0), ('kellyjonbrazil/jc', 0.5103952884674072, 'util', 0), ('indygreg/pyoxidizer', 0.5094347596168518, 'util', 0), ('microsoft/playwright-python', 0.5090146660804749, 'testing', 0), ('bottlepy/bottle', 0.5075056552886963, 'web', 0), ('bokeh/bokeh', 0.5072845816612244, 'viz', 0), ('amaargiru/pyroad', 0.5068714618682861, 'study', 0), ('brandtbucher/specialist', 0.5062293410301208, 'perf', 0), ('connorferster/handcalcs', 0.5055436491966248, 'jupyter', 0), ('asacristani/fastapi-rocket-boilerplate', 0.5037996172904968, 'template', 0), ('pypa/pipenv', 0.5031107664108276, 'util', 0), ('plotly/dash', 0.5028428435325623, 'viz', 0), ('pypa/installer', 0.5019884705543518, 'util', 0), ('agronholm/apscheduler', 0.501419186592102, 'util', 0), ('cython/cython', 0.5010424852371216, 'util', 0), ('hugapi/hug', 0.5001529455184937, 'util', 0)]
138
1
null
3.56
117
104
169
0
7
4
7
117
159
90
1.4
43
198
ml
https://github.com/maif/shapash
[]
null
[]
[]
null
null
null
maif/shapash
shapash
2,555
311
39
Jupyter Notebook
https://maif.github.io/shapash/
🔅 Shapash: User-friendly Explainability and Interpretability to Develop Reliable and Transparent Machine Learning Models
maif
2024-01-14
2020-04-29
195
13.045222
https://avatars.githubusercontent.com/u/33632930?v=4
🔅 Shapash: User-friendly Explainability and Interpretability to Develop Reliable and Transparent Machine Learning Models
['ethical-artificial-intelligence', 'explainability', 'explainable-ml', 'interpretability', 'lime', 'machine-learning', 'shap', 'transparency']
['ethical-artificial-intelligence', 'explainability', 'explainable-ml', 'interpretability', 'lime', 'machine-learning', 'shap', 'transparency']
2023-12-08
[('seldonio/alibi', 0.6979689002037048, 'ml-interpretability', 2), ('slundberg/shap', 0.67304927110672, 'ml-interpretability', 4), ('csinva/imodels', 0.6528401374816895, 'ml', 3), ('interpretml/interpret', 0.6510236859321594, 'ml-interpretability', 5), ('marcotcr/lime', 0.6499969363212585, 'ml-interpretability', 0), ('linkedin/fasttreeshap', 0.6388174295425415, 'ml', 3), ('pair-code/lit', 0.62184739112854, 'ml-interpretability', 1), ('oegedijk/explainerdashboard', 0.5845269560813904, 'ml-interpretability', 1), ('tensorflow/lucid', 0.5549944639205933, 'ml-interpretability', 2), ('xplainable/xplainable', 0.551527738571167, 'ml-interpretability', 3), ('ml-for-high-risk-apps-book/machine-learning-for-high-risk-applications-book', 0.5307745337486267, 'study', 1), ('huggingface/evaluate', 0.5302979946136475, 'ml', 1), ('selfexplainml/piml-toolbox', 0.527449905872345, 'ml-interpretability', 0), ('carla-recourse/carla', 0.5270743370056152, 'ml', 3), ('teamhg-memex/eli5', 0.5209477543830872, 'ml', 1), ('tensorflow/data-validation', 0.5037372708320618, 'ml-ops', 0), ('eleutherai/pythia', 0.5036888122558594, 'ml-interpretability', 1), ('microsoft/robustlearn', 0.5023934841156006, 'time-series', 0)]
35
1
null
2.33
29
17
45
1
10
9
10
29
6
90
0.2
43
792
web
https://github.com/pallets/quart
[]
null
[]
[]
null
null
null
pallets/quart
quart
2,431
137
30
Python
https://quart.palletsprojects.com
An async Python micro framework for building web applications.
pallets
2024-01-12
2017-11-10
324
7.489877
https://avatars.githubusercontent.com/u/16748505?v=4
An async Python micro framework for building web applications.
['asgi', 'asyncio', 'http-server', 'quart']
['asgi', 'asyncio', 'http-server', 'quart']
2024-01-03
[('neoteroi/blacksheep', 0.8334370851516724, 'web', 3), ('encode/uvicorn', 0.8250173926353455, 'web', 3), ('aio-libs/aiohttp', 0.7800691723823547, 'web', 2), ('alirn76/panther', 0.7484593391418457, 'web', 0), ('encode/httpx', 0.748035192489624, 'web', 1), ('pallets/flask', 0.7176867127418518, 'web', 0), ('klen/muffin', 0.7141019701957703, 'web', 2), ('encode/starlette', 0.7032433152198792, 'web', 0), ('huge-success/sanic', 0.7020831108093262, 'web', 2), ('falconry/falcon', 0.6842796206474304, 'web', 1), ('timofurrer/awesome-asyncio', 0.6550799608230591, 'study', 1), ('python-trio/trio', 0.6473005414009094, 'perf', 0), ('starlite-api/starlite', 0.6257473230361938, 'web', 2), ('jordaneremieff/mangum', 0.6127312183380127, 'web', 3), ('masoniteframework/masonite', 0.607140302658081, 'web', 0), ('agronholm/anyio', 0.6049391627311707, 'perf', 1), ('bottlepy/bottle', 0.5997056365013123, 'web', 0), ('magicstack/uvloop', 0.5947157740592957, 'util', 1), ('pylons/pyramid', 0.5922417640686035, 'web', 0), ('sumerc/yappi', 0.5867199897766113, 'profiling', 2), ('samuelcolvin/aioaws', 0.5853649377822876, 'data', 1), ('aws/chalice', 0.5842033624649048, 'web', 0), ('cherrypy/cherrypy', 0.5793529748916626, 'web', 1), ('pylons/waitress', 0.5782569050788879, 'web', 1), ('geeogi/async-python-lambda-template', 0.5774820446968079, 'template', 0), ('tiangolo/asyncer', 0.5767269134521484, 'perf', 1), ('emmett-framework/emmett', 0.5764337778091431, 'web', 2), ('tornadoweb/tornado', 0.5757850408554077, 'web', 0), ('samuelcolvin/arq', 0.5751336216926575, 'data', 1), ('miguelgrinberg/python-socketio', 0.5742831826210022, 'util', 1), ('nficano/python-lambda', 0.5740982890129089, 'util', 0), ('reflex-dev/reflex', 0.5711527466773987, 'web', 0), ('flet-dev/flet', 0.5679628252983093, 'web', 0), ('airtai/faststream', 0.5664022564888, 'perf', 1), ('micropython/micropython', 0.5557764768600464, 'util', 0), ('webpy/webpy', 0.5523453950881958, 'web', 0), ('willmcgugan/textual', 0.5513238906860352, 'term', 0), ('pallets/werkzeug', 0.5403130054473877, 'web', 0), ('python-restx/flask-restx', 0.5398460626602173, 'web', 0), ('pyinfra-dev/pyinfra', 0.5390889048576355, 'util', 0), ('psf/requests', 0.5377407670021057, 'web', 0), ('aio-libs/aiobotocore', 0.5356045961380005, 'util', 1), ('hugapi/hug', 0.533208429813385, 'util', 1), ('ets-labs/python-dependency-injector', 0.5255832672119141, 'util', 1), ('backtick-se/cowait', 0.5232675671577454, 'util', 0), ('ajndkr/lanarky', 0.5203720331192017, 'llm', 0), ('fastai/fastcore', 0.5118736624717712, 'util', 0), ('locustio/locust', 0.5093166828155518, 'testing', 0), ('r0x0r/pywebview', 0.5082329511642456, 'gui', 0), ('requests/toolbelt', 0.5077387094497681, 'util', 0), ('gbeced/basana', 0.5044360160827637, 'finance', 1), ('eleutherai/pyfra', 0.5026024580001831, 'ml', 0)]
99
2
null
1.56
35
19
75
1
0
10
10
35
21
90
0.6
43
1,535
util
https://github.com/chaostoolkit/chaostoolkit
['devops']
null
[]
[]
null
null
null
chaostoolkit/chaostoolkit
chaostoolkit
1,805
184
42
Python
https://chaostoolkit.org
Chaos Engineering Toolkit & Orchestration for Developers
chaostoolkit
2024-01-13
2017-09-24
331
5.448469
https://avatars.githubusercontent.com/u/32068152?v=4
Chaos Engineering Toolkit & Orchestration for Developers
['automation', 'chaos-engineering', 'chaostoolkit', 'devops-tools', 'reliability', 'reliability-engineering', 'resiliency', 'sre']
['automation', 'chaos-engineering', 'chaostoolkit', 'devops', 'devops-tools', 'reliability', 'reliability-engineering', 'resiliency', 'sre']
2024-01-11
[('flyteorg/flyte', 0.5509274005889893, 'ml-ops', 0), ('dagster-io/dagster', 0.5302633047103882, 'ml-ops', 0), ('pydoit/doit', 0.5246021747589111, 'util', 0), ('zenml-io/zenml', 0.5238291621208191, 'ml-ops', 1), ('tiiuae/sbomnix', 0.5200450420379639, 'util', 0), ('avaiga/taipy', 0.5186023712158203, 'data', 1), ('polyaxon/polyaxon', 0.5090064406394958, 'ml-ops', 0), ('aquasecurity/trivy', 0.5057849287986755, 'security', 0), ('pytest-dev/pytest-testinfra', 0.5015678405761719, 'testing', 2)]
20
4
null
0.87
4
2
77
0
7
11
7
4
11
90
2.8
43
1,850
util
https://github.com/python-rope/rope
[]
null
[]
[]
null
null
null
python-rope/rope
rope
1,782
210
28
Python
null
a python refactoring library
python-rope
2024-01-12
2013-11-30
530
3.359548
https://avatars.githubusercontent.com/u/6073454?v=4
a python refactoring library
['ast', 'refactoring', 'refactoring-tools']
['ast', 'refactoring', 'refactoring-tools']
2024-01-11
[('facebookincubator/bowler', 0.7546546459197998, 'util', 1), ('pytoolz/toolz', 0.649603009223938, 'util', 0), ('asottile/reorder-python-imports', 0.5853264331817627, 'util', 1), ('instagram/libcst', 0.5846632719039917, 'util', 1), ('instagram/fixit', 0.5731984972953796, 'util', 0), ('dosisod/refurb', 0.5674479007720947, 'util', 0), ('landscapeio/prospector', 0.5660980939865112, 'util', 0), ('grahamdumpleton/wrapt', 0.5636062026023865, 'util', 0), ('google/pyglove', 0.5538163781166077, 'util', 0), ('eugeneyan/python-collab-template', 0.5535590648651123, 'template', 0), ('pypy/pypy', 0.5428261160850525, 'util', 0), ('eleutherai/pyfra', 0.5410192608833313, 'ml', 0), ('pyston/pyston', 0.5357602834701538, 'util', 0), ('amaargiru/pyroad', 0.528800904750824, 'study', 0), ('google/latexify_py', 0.5269980430603027, 'util', 0), ('python/cpython', 0.5254427194595337, 'util', 0), ('hhatto/autopep8', 0.5218623876571655, 'util', 0), ('reloadware/reloadium', 0.5215712785720825, 'profiling', 0), ('xrudelis/pytrait', 0.5170307159423828, 'util', 0), ('facebook/pyre-check', 0.5157984495162964, 'typing', 0), ('fastai/fastcore', 0.5134739875793457, 'util', 0), ('google/pytype', 0.5130378603935242, 'typing', 0), ('pandas-dev/pandas', 0.5107076168060303, 'pandas', 0), ('pympler/pympler', 0.5101566910743713, 'perf', 0), ('beeware/toga', 0.5071592330932617, 'gui', 0), ('mkdocstrings/griffe', 0.5066107511520386, 'util', 0), ('psf/black', 0.504595935344696, 'util', 0), ('pdm-project/pdm', 0.5023258328437805, 'util', 0), ('mementum/backtrader', 0.50078284740448, 'finance', 0), ('timofurrer/awesome-asyncio', 0.5005401968955994, 'study', 0)]
81
3
null
2.19
35
23
123
0
0
5
5
35
77
90
2.2
43
395
web
https://github.com/neoteroi/blacksheep
[]
null
[]
[]
null
null
null
neoteroi/blacksheep
BlackSheep
1,584
68
28
Python
https://www.neoteroi.dev/blacksheep/
Fast ASGI web framework for Python
neoteroi
2024-01-13
2018-11-22
270
5.851187
https://avatars.githubusercontent.com/u/72765587?v=4
Fast ASGI web framework for Python
['asgi', 'asyncio', 'blacksheep', 'framework', 'http', 'http-server', 'server', 'web']
['asgi', 'asyncio', 'blacksheep', 'framework', 'http', 'http-server', 'server', 'web']
2024-01-12
[('encode/uvicorn', 0.8586666584014893, 'web', 4), ('pallets/quart', 0.8334370851516724, 'web', 3), ('klen/muffin', 0.7668511271476746, 'web', 2), ('huge-success/sanic', 0.7380421161651611, 'web', 4), ('aio-libs/aiohttp', 0.7317296862602234, 'web', 3), ('encode/httpx', 0.7281930446624756, 'web', 2), ('alirn76/panther', 0.7121951580047607, 'web', 1), ('falconry/falcon', 0.6875892877578735, 'web', 4), ('encode/starlette', 0.6760811805725098, 'web', 1), ('starlite-api/starlite', 0.6740537881851196, 'web', 2), ('pallets/flask', 0.6553666591644287, 'web', 0), ('jordaneremieff/mangum', 0.6414300203323364, 'web', 2), ('cherrypy/cherrypy', 0.6155569553375244, 'web', 2), ('timofurrer/awesome-asyncio', 0.6109622716903687, 'study', 1), ('pallets/werkzeug', 0.5996673703193665, 'web', 1), ('masoniteframework/masonite', 0.5978954434394836, 'web', 2), ('klen/py-frameworks-bench', 0.5975432395935059, 'perf', 0), ('pylons/pyramid', 0.5955870151519775, 'web', 0), ('bottlepy/bottle', 0.5855295062065125, 'web', 0), ('magicstack/uvloop', 0.5796182155609131, 'util', 1), ('sumerc/yappi', 0.577142596244812, 'profiling', 2), ('geeogi/async-python-lambda-template', 0.5758123397827148, 'template', 0), ('locustio/locust', 0.5740907192230225, 'testing', 1), ('pylons/waitress', 0.5685455799102783, 'web', 1), ('emmett-framework/emmett', 0.5676200985908508, 'web', 2), ('webpy/webpy', 0.5648735761642456, 'web', 0), ('fastai/fastcore', 0.5601794719696045, 'util', 0), ('psf/requests', 0.551236629486084, 'web', 1), ('miguelgrinberg/python-socketio', 0.5502622127532959, 'util', 1), ('python-trio/trio', 0.5497913956642151, 'perf', 0), ('benoitc/gunicorn', 0.542283296585083, 'web', 2), ('reflex-dev/reflex', 0.5400927066802979, 'web', 1), ('samuelcolvin/arq', 0.5355557799339294, 'data', 1), ('ets-labs/python-dependency-injector', 0.5310226678848267, 'util', 1), ('scrapy/scrapy', 0.53035569190979, 'data', 1), ('requests/toolbelt', 0.5285502672195435, 'util', 1), ('agronholm/anyio', 0.5259332656860352, 'perf', 1), ('airtai/faststream', 0.5211659073829651, 'perf', 1), ('tornadoweb/tornado', 0.5203468203544617, 'web', 0), ('python-restx/flask-restx', 0.519770085811615, 'web', 0), ('tiangolo/fastapi', 0.5194063782691956, 'web', 3), ('pypy/pypy', 0.5189310908317566, 'util', 0), ('aminalaee/sqladmin', 0.5168036818504333, 'data', 3), ('aws/chalice', 0.5133174657821655, 'web', 0), ('flet-dev/flet', 0.5072730183601379, 'web', 1), ('pyinfra-dev/pyinfra', 0.5058210492134094, 'util', 0), ('grantjenks/python-diskcache', 0.5029258728027344, 'util', 0)]
16
2
null
0.96
49
46
63
0
29
12
29
49
80
90
1.6
43
1,366
ml
https://github.com/microsoft/i-code
[]
The ambition of the i-Code project is to build integrative and composable multimodal AI. The "i" stands for integrative multimodal learning.
[]
[]
null
null
null
microsoft/i-code
i-Code
1,551
159
39
Jupyter Notebook
null
null
microsoft
2024-01-12
2022-12-07
59
25.911695
https://avatars.githubusercontent.com/u/6154722?v=4
The ambition of the i-Code project is to build integrative and composable multimodal AI. The "i" stands for integrative multimodal learning.
[]
[]
2023-11-30
[('facebookresearch/mmf', 0.5485939383506775, 'ml-dl', 0), ('invoke-ai/invokeai', 0.5126618146896362, 'diffusion', 0)]
13
2
null
3.71
11
4
13
1
0
0
0
11
6
90
0.5
43
1,593
data
https://github.com/milvus-io/bootcamp
['vector-database', 'question-answering', 'embeddings']
null
[]
[]
1
null
null
milvus-io/bootcamp
bootcamp
1,510
519
30
HTML
https://milvus.io
Dealing with all unstructured data, such as reverse image search, audio search, molecular search, video analysis, question and answer systems, NLP, etc.
milvus-io
2024-01-13
2019-08-09
233
6.464832
https://avatars.githubusercontent.com/u/51735404?v=4
Dealing with all unstructured data, such as reverse image search, audio search, molecular search, video analysis, question and answer systems, NLP, etc.
['audio-search', 'benchmark-testing', 'deep-learning', 'image-classification', 'image-recognition', 'image-search', 'milvus', 'nlp', 'question-answering', 'unstructured-data']
['audio-search', 'benchmark-testing', 'deep-learning', 'embeddings', 'image-classification', 'image-recognition', 'image-search', 'milvus', 'nlp', 'question-answering', 'unstructured-data', 'vector-database']
2024-01-09
[('docarray/docarray', 0.677416205406189, 'data', 1), ('jina-ai/vectordb', 0.6278480887413025, 'data', 1), ('activeloopai/deeplake', 0.6203997731208801, 'ml-ops', 2), ('neuml/txtai', 0.6126426458358765, 'nlp', 3), ('nomic-ai/nomic', 0.6042595505714417, 'nlp', 0), ('koaning/embetter', 0.6010968089103699, 'data', 0), ('qdrant/qdrant', 0.5713267922401428, 'data', 2), ('marqo-ai/marqo', 0.5712332725524902, 'ml', 1), ('lancedb/lancedb', 0.566419780254364, 'data', 2), ('chroma-core/chroma', 0.5605462789535522, 'data', 1), ('awslabs/autogluon', 0.5507424473762512, 'ml', 2), ('huggingface/datasets', 0.545052170753479, 'nlp', 2), ('sloria/textblob', 0.5331091284751892, 'nlp', 1), ('microsoft/semi-supervised-learning', 0.5314620733261108, 'ml', 1), ('ddbourgin/numpy-ml', 0.5297070741653442, 'ml', 0), ('paddlepaddle/paddlenlp', 0.528664767742157, 'llm', 2), ('featureform/embeddinghub', 0.5258285403251648, 'nlp', 2), ('explosion/thinc', 0.5245603919029236, 'ml-dl', 2), ('feast-dev/feast', 0.5231591463088989, 'ml-ops', 0), ('thilinarajapakse/simpletransformers', 0.5199248790740967, 'nlp', 1), ('qdrant/fastembed', 0.5193023681640625, 'ml', 1), ('llmware-ai/llmware', 0.518172025680542, 'llm', 4), ('koaning/human-learn', 0.5165793895721436, 'data', 0), ('fatiando/verde', 0.5155651569366455, 'gis', 0), ('koaning/whatlies', 0.5146546363830566, 'nlp', 2), ('amanchadha/coursera-deep-learning-specialization', 0.5138573050498962, 'study', 1), ('jina-ai/clip-as-service', 0.5121859312057495, 'nlp', 1), ('rare-technologies/gensim', 0.5120472311973572, 'nlp', 1), ('onnx/onnx', 0.5098041892051697, 'ml', 1), ('qdrant/vector-db-benchmark', 0.5074758529663086, 'perf', 1), ('alibaba/easynlp', 0.5068036317825317, 'nlp', 2), ('superduperdb/superduperdb', 0.5059596300125122, 'data', 0), ('firmai/industry-machine-learning', 0.5041669011116028, 'study', 0), ('mosaicml/composer', 0.5024623870849609, 'ml-dl', 1), ('tensorflow/tensorflow', 0.5004434585571289, 'ml-dl', 1)]
80
3
null
2.42
79
73
54
0
1
3
1
79
85
90
1.1
43
653
ml-dl
https://github.com/tensorly/tensorly
[]
null
[]
[]
null
null
null
tensorly/tensorly
tensorly
1,466
324
45
Python
http://tensorly.org
TensorLy: Tensor Learning in Python.
tensorly
2024-01-12
2016-10-21
379
3.862251
https://avatars.githubusercontent.com/u/22989719?v=4
TensorLy: Tensor Learning in Python.
['cupy', 'decomposition', 'jax', 'machine-learning', 'mxnet', 'numpy', 'pytorch', 'regression', 'tensor', 'tensor-algebra', 'tensor-decomposition', 'tensor-factorization', 'tensor-learning', 'tensor-methods', 'tensor-regression', 'tensorflow', 'tensorly']
['cupy', 'decomposition', 'jax', 'machine-learning', 'mxnet', 'numpy', 'pytorch', 'regression', 'tensor', 'tensor-algebra', 'tensor-decomposition', 'tensor-factorization', 'tensor-learning', 'tensor-methods', 'tensor-regression', 'tensorflow', 'tensorly']
2024-01-08
[('arogozhnikov/einops', 0.7486700415611267, 'ml-dl', 6), ('ggerganov/ggml', 0.7053402066230774, 'ml', 2), ('google/tf-quant-finance', 0.636419951915741, 'finance', 1), ('pytorch/pytorch', 0.6296373605728149, 'ml-dl', 3), ('huggingface/transformers', 0.6177733540534973, 'nlp', 4), ('xl0/lovely-tensors', 0.61644446849823, 'ml-dl', 1), ('rafiqhasan/auto-tensorflow', 0.6096346974372864, 'ml-dl', 2), ('tensorflow/similarity', 0.6049955487251282, 'ml-dl', 2), ('ddbourgin/numpy-ml', 0.6033033728599548, 'ml', 1), ('horovod/horovod', 0.5948300361633301, 'ml-ops', 4), ('patrick-kidger/torchtyping', 0.5934515595436096, 'typing', 1), ('explosion/thinc', 0.5860464572906494, 'ml-dl', 5), ('keras-team/keras', 0.5832876563072205, 'ml-dl', 4), ('huggingface/exporters', 0.5597980618476868, 'ml', 3), ('tensorflow/addons', 0.5590072274208069, 'ml', 2), ('nvidia/tensorrt-llm', 0.5586928129196167, 'viz', 0), ('ageron/handson-ml2', 0.5573654770851135, 'ml', 0), ('dylanhogg/awesome-python', 0.5549004673957825, 'study', 1), ('online-ml/river', 0.5535548329353333, 'ml', 1), ('intel/intel-extension-for-pytorch', 0.5494438409805298, 'perf', 2), ('tensorflow/tensorflow', 0.5459080934524536, 'ml-dl', 2), ('huggingface/huggingface_hub', 0.5400019884109497, 'ml', 2), ('pytorch/ignite', 0.5390286445617676, 'ml-dl', 2), ('gradio-app/gradio', 0.5336702466011047, 'viz', 1), ('mrdbourke/tensorflow-deep-learning', 0.5285704731941223, 'study', 1), ('onnx/onnx', 0.5244054198265076, 'ml', 4), ('skorch-dev/skorch', 0.5220605134963989, 'ml-dl', 2), ('d2l-ai/d2l-en', 0.5216432213783264, 'study', 5), ('google/gin-config', 0.5206177830696106, 'util', 1), ('probml/pyprobml', 0.5191105604171753, 'ml', 4), ('explosion/spacy', 0.5184281468391418, 'nlp', 1), ('nyandwi/modernconvnets', 0.5165544748306274, 'ml-dl', 1), ('mosaicml/composer', 0.5158124566078186, 'ml-dl', 2), ('neuralmagic/sparseml', 0.5156332850456238, 'ml-dl', 2), ('adap/flower', 0.5153002142906189, 'ml-ops', 3), ('ta-lib/ta-lib-python', 0.5138649344444275, 'finance', 0), ('fchollet/deep-learning-with-python-notebooks', 0.5126520395278931, 'study', 0), ('tensorflow/lucid', 0.5121048092842102, 'ml-interpretability', 2), ('nvidia/deeplearningexamples', 0.5106650590896606, 'ml-dl', 3), ('cupy/cupy', 0.5093604922294617, 'math', 3), ('rasbt/mlxtend', 0.5090686082839966, 'ml', 1), ('tensorlayer/tensorlayer', 0.508705198764801, 'ml-rl', 1), ('huggingface/datasets', 0.50432950258255, 'nlp', 4), ('danielegrattarola/spektral', 0.5032951831817627, 'ml-dl', 1), ('merantix-momentum/squirrel-core', 0.5030725002288818, 'ml', 4), ('lutzroeder/netron', 0.5027545094490051, 'ml', 4), ('activeloopai/deeplake', 0.5025835037231445, 'ml-ops', 3), ('keras-team/keras-nlp', 0.5025812387466431, 'nlp', 2), ('nccr-itmo/fedot', 0.5016763806343079, 'ml-ops', 1), ('ai4finance-foundation/finrl', 0.5015732645988464, 'finance', 0), ('goldmansachs/gs-quant', 0.5013471841812134, 'finance', 0), ('graykode/nlp-tutorial', 0.5011732578277588, 'study', 2)]
66
6
null
1.58
18
11
88
0
1
3
1
18
48
90
2.7
43
920
util
https://github.com/p0dalirius/coercer
[]
null
[]
[]
null
null
null
p0dalirius/coercer
Coercer
1,465
169
21
Python
https://podalirius.net/
A python script to automatically coerce a Windows server to authenticate on an arbitrary machine through 12 methods.
p0dalirius
2024-01-12
2022-06-30
82
17.711572
null
A python script to automatically coerce a Windows server to authenticate on an arbitrary machine through 12 methods.
['authentication', 'automatic', 'call', 'coerce', 'fuzzing', 'ntlm', 'privilege-escalation', 'rpc']
['authentication', 'automatic', 'call', 'coerce', 'fuzzing', 'ntlm', 'privilege-escalation', 'rpc']
2023-12-24
[]
7
3
null
0.52
9
6
19
1
2
7
2
9
9
90
1
43
1,904
math
https://github.com/google-deepmind/alphageometry
['geometry', 'theorem-prover']
Solving Olympiad Geometry without Human Demonstrations
[]
[]
null
null
null
google-deepmind/alphageometry
alphageometry
1,134
96
16
Python
null
null
google-deepmind
2024-01-18
2023-10-09
16
70.247788
https://avatars.githubusercontent.com/u/8596759?v=4
Solving Olympiad Geometry without Human Demonstrations
[]
['geometry', 'theorem-prover']
2024-01-12
[('shapely/shapely', 0.5421801805496216, 'gis', 1)]
2
0
null
0.08
11
3
3
0
0
0
0
11
5
90
0.5
43