source
stringlengths
200
2.98k
target
stringlengths
18
668
We introduce and study minimax curriculum learning (MCL), a new method for adaptively selecting a sequence of training subsets for a succession of stages in machine learning. The subsets are encouraged to be small and diverse early on, and then larger, harder, and allowably more homogeneous in later stages. At each stage, model weights and training sets are chosen by solving a joint continuous-discrete minimax optimization, whose objective is composed of a continuous loss (reflecting training set hardness) and a discrete submodular promoter of diversity for the chosen subset. MCL repeatedly solves a sequence of such optimizations with a schedule of increasing training set size and decreasing pressure on diversity encouragement. We reduce MCL to the minimization of a surrogate function handled by submodular maximization and continuous gradient methods. We show that MCL achieves better performance and, with a clustering trick, uses fewer labeled samples for both shallow and deep models while achieving the same performance. Our method involves repeatedly solving constrained submodular maximization of an only slowly varying function on the same ground set. Therefore, we develop a heuristic method that utilizes the previous submodular maximization solution as a warm start for the current submodular maximization process to reduce computation while still yielding a guarantee.
Minimax Curriculum Learning is a machine teaching method involving increasing desirable hardness and scheduled reducing diversity.
Progress in probabilistic generative models has accelerated, developing richer models with neural architectures, implicit densities, and with scalable algorithms for their Bayesian inference. However, there has been limited progress in models that capture causal relationships, for example, how individual genetic factors cause major human diseases. In this work, we focus on two challenges in particular: How do we build richer causal models, which can capture highly nonlinear relationships and interactions between multiple causes? How do we adjust for latent confounders, which are variables influencing both cause and effect and which prevent learning of causal relationships? To address these challenges, we synthesize ideas from causality and modern probabilistic modeling. For the first, we describe implicit causal models, a class of causal models that leverages neural architectures with an implicit density. For the second, we describe an implicit causal model that adjusts for confounders by sharing strength across examples. In experiments, we scale Bayesian inference on up to a billion genetic measurements. We achieve state of the art accuracy for identifying causal factors: we significantly outperform the second best result by an absolute difference of 15-45.3%.
Implicit models applied to causality and genetics
Few-shot learning trains image classifiers over datasets with few examples per category. It poses challenges for the optimization algorithms, which typically require many examples to fine-tune the model parameters for new categories. Distance-learning-based approaches avoid the optimization issue by embedding the images into a metric space and applying the nearest neighbor classifier for new categories. In this paper, we propose to exploit the object-level relation to learn the image relation feature, which is converted into a distance directly. For a new category, even though its images are not seen by the model, some objects may appear in the training images. Hence, object-level relation is useful for inferring the relation of images from unseen categories. Consequently, our model generalizes well for new categories without fine-tuning. Experimental results on benchmark datasets show that our approach outperforms state-of-the-art methods.
Few-shot learning by exploiting the object-level relation to learn the image-level relation (similarity)
Word embeddings are widely used in machine learning based natural language processing systems. It is common to use pre-trained word embeddings which provide benefits such as reduced training time and improved overall performance. There has been a recent interest in applying natural language processing techniques to programming languages. However, none of this recent work uses pre-trained embeddings on code tokens. Using extreme summarization as the downstream task, we show that using pre-trained embeddings on code tokens provides the same benefits as it does to natural languages, achieving: over 1.9x speedup, 5\% improvement in test loss, 4\% improvement in F1 scores, and resistance to over-fitting. We also show that the choice of language used for the embeddings does not have to match that of the task to achieve these benefits and that even embeddings pre-trained on human languages provide these benefits to programming languages.
Researchers exploring natural language processing techniques applied to source code are not using any form of pre-trained embeddings, we show that they should be.
Recently, Approximate Policy Iteration (API) algorithms have achieved super-human proficiency in two-player zero-sum games such as Go, Chess, and Shogi without human data. These API algorithms iterate between two policies: a slow policy (tree search), and a fast policy (a neural network). In these two-player games, a reward is always received at the end of the game. However, the Rubik’s Cube has only a single solved state, and episodes are not guaranteed to terminate. This poses a major problem for these API algorithms since they rely on the reward received at the end of the game. We introduce Autodidactic Iteration: an API algorithm that overcomes the problem of sparse rewards by training on a distribution of states that allows the reward to propagate from the goal state to states farther away. Autodidactic Iteration is able to learn how to solve the Rubik’s Cube and the 15-puzzle without relying on human data. Our algorithm is able to solve 100% of randomly scrambled cubes while achieving a median solve length of 30 moves — less than or equal to solvers that employ human domain knowledge.
We solve the Rubik's Cube with pure reinforcement learning
Answering compositional questions requiring multi-step reasoning is challenging for current models. We introduce an end-to-end differentiable model for interpreting questions, which is inspired by formal approaches to semantics. Each span of text is represented by a denotation in a knowledge graph, together with a vector that captures ungrounded aspects of meaning. Learned composition modules recursively combine constituents, culminating in a grounding for the complete sentence which is an answer to the question. For example, to interpret ‘not green’, the model will represent ‘green’ as a set of entities, ‘not’ as a trainable ungrounded vector, and then use this vector to parametrize a composition function to perform a complement operation. For each sentence, we build a parse chart subsuming all possible parses, allowing the model to jointly learn both the composition operators and output structure by gradient descent. We show the model can learn to represent a variety of challenging semantic operators, such as quantifiers, negation, disjunctions and composed relations on a synthetic question answering task. The model also generalizes well to longer sentences than seen in its training data, in contrast to LSTM and RelNet baselines. We will release our code.
We describe an end-to-end differentiable model for QA that learns to represent spans of text in the question as denotations in knowledge graph, by learning both neural modules for composition and the syntactic structure of the sentence.
Deep learning software demands reliability and performance. However, many of the existing deep learning frameworks are software libraries that act as an unsafe DSL in Python and a computation graph interpreter. We present DLVM, a design and implementation of a compiler infrastructure with a linear algebra intermediate representation, algorithmic differentiation by adjoint code generation, domain- specific optimizations and a code generator targeting GPU via LLVM. Designed as a modern compiler infrastructure inspired by LLVM, DLVM is more modular and more generic than existing deep learning compiler frameworks, and supports tensor DSLs with high expressivity. With our prototypical staged DSL embedded in Swift, we argue that the DLVM system enables a form of modular, safe and performant frameworks for deep learning.
We introduce a novel compiler infrastructure that addresses shortcomings of existing deep learning frameworks.
In this work, we focus on the problem of grounding language by training an agent to follow a set of natural language instructions and navigate to a target object in a 2D grid environment. The agent receives visual information through raw pixels and a natural language instruction telling what task needs to be achieved. Other than these two sources of information, our model does not have any prior information of both the visual and textual modalities and is end-to-end trainable. We develop an attention mechanism for multi-modal fusion of visual and textual modalities that allows the agent to learn to complete the navigation tasks and also achieve language grounding. Our experimental results show that our attention mechanism outperforms the existing multi-modal fusion mechanisms proposed in order to solve the above mentioned navigation task. We demonstrate through the visualization of attention weights that our model learns to correlate attributes of the object referred in the instruction with visual representations and also show that the learnt textual representations are semantically meaningful as they follow vector arithmetic and are also consistent enough to induce translation between instructions in different natural languages. We also show that our model generalizes effectively to unseen scenarios and exhibit zero-shot generalization capabilities. In order to simulate the above described challenges, we introduce a new 2D environment for an agent to jointly learn visual and textual modalities
Attention based architecture for language grounding via reinforcement learning in a new customizable 2D grid environment
Current end-to-end machine reading and question answering (Q\&A) models are primarily based on recurrent neural networks (RNNs) with attention. Despite their success, these models are often slow for both training and inference due to the sequential nature of RNNs. We propose a new Q\&A architecture called QANet, which does not require recurrent networks: Its encoder consists exclusively of convolution and self-attention, where convolution models local interactions and self-attention models global interactions. On the SQuAD dataset, our model is 3x to 13x faster in training and 4x to 9x faster in inference, while achieving equivalent accuracy to recurrent models. The speed-up gain allows us to train the model with much more data. We hence combine our model with data generated by backtranslation from a neural machine translation model. On the SQuAD dataset, our single model, trained with augmented data, achieves 84.6 F1 score on the test set, which is significantly better than the best published F1 score of 81.8.
A simple architecture consisting of convolutions and attention achieves results on par with the best documented recurrent models.
Convolutional Neural Networks (CNNs) have become the method of choice for learning problems involving 2D planar images. However, a number of problems of recent interest have created a demand for models that can analyze spherical images. Examples include omnidirectional vision for drones, robots, and autonomous cars, molecular regression problems, and global weather and climate modelling. A naive application of convolutional networks to a planar projection of the spherical signal is destined to fail, because the space-varying distortions introduced by such a projection will make translational weight sharing ineffective. In this paper we introduce the building blocks for constructing spherical CNNs. We propose a definition for the spherical cross-correlation that is both expressive and rotation-equivariant. The spherical correlation satisfies a generalized Fourier theorem, which allows us to compute it efficiently using a generalized (non-commutative) Fast Fourier Transform (FFT) algorithm. We demonstrate the computational efficiency, numerical accuracy, and effectiveness of spherical CNNs applied to 3D model recognition and atomization energy regression.
We introduce Spherical CNNs, a convolutional network for spherical signals, and apply it to 3D model recognition and molecular energy regression.
We propose a novel method that makes use of deep neural networks and gradient decent to perform automated design on complex real world engineering tasks. Our approach works by training a neural network to mimic the fitness function of a design optimization task and then, using the differential nature of the neural network, perform gradient decent to maximize the fitness. We demonstrate this methods effectiveness by designing an optimized heat sink and both 2D and 3D airfoils that maximize the lift drag ratio under steady state flow conditions. We highlight that our method has two distinct benefits over other automated design approaches. First, evaluating the neural networks prediction of fitness can be orders of magnitude faster then simulating the system of interest. Second, using gradient decent allows the design space to be searched much more efficiently then other gradient free methods. These two strengths work together to overcome some of the current shortcomings of automated design.
A method for performing automated design on real world objects such as heat sinks and wing airfoils that makes use of neural networks and gradient descent.
Methods that align distributions by minimizing an adversarial distance between them have recently achieved impressive results. However, these approaches are difficult to optimize with gradient descent and they often do not converge well without careful hyperparameter tuning and proper initialization. We investigate whether turning the adversarial min-max problem into an optimization problem by replacing the maximization part with its dual improves the quality of the resulting alignment and explore its connections to Maximum Mean Discrepancy. Our empirical results suggest that using the dual formulation for the restricted family of linear discriminators results in a more stable convergence to a desirable solution when compared with the performance of a primal min-max GAN-like objective and an MMD objective under the same restrictions. We test our hypothesis on the problem of aligning two synthetic point clouds on a plane and on a real-image domain adaptation problem on digits. In both cases, the dual formulation yields an iterative procedure that gives more stable and monotonic improvement over time.
We propose a dual version of the logistic adversarial distance for feature alignment and show that it yields more stable gradient step iterations than the min-max objective.
There are many applications scenarios for which the computational performance and memory footprint of the prediction phase of Deep Neural Networks (DNNs) need to be optimized. Binary Deep Neural Networks (BDNNs) have been shown to be an effective way of achieving this objective. In this paper, we show how Convolutional Neural Networks (CNNs) can be implemented using binary representations. Espresso is a compact, yet powerful library written in C/CUDA that features all the functionalities required for the forward propagation of CNNs, in a binary file less than 400KB, without any external dependencies. Although it is mainly designed to take advantage of massive GPU parallelism, Espresso also provides an equivalent CPU implementation for CNNs. Espresso provides special convolutional and dense layers for BCNNs, leveraging bit-packing and bit-wise computations for efficient execution. These techniques provide a speed-up of matrix-multiplication routines, and at the same time, reduce memory usage when storing parameters and activations. We experimentally show that Espresso is significantly faster than existing implementations of optimized binary neural networks (~ 2 orders of magnitude). Espresso is released under the Apache 2.0 license and is available at http://github.com/organization/project.
state-of-the-art computational performance implementation of binary neural networks
Optimal selection of a subset of items from a given set is a hard problem that requires combinatorial optimization. In this paper, we propose a subset selection algorithm that is trainable with gradient based methods yet achieves near optimal performance via submodular optimization. We focus on the task of identifying a relevant set of sentences for claim verification in the context of the FEVER task. Conventional methods for this task look at sentences on their individual merit and thus do not optimize the informativeness of sentences as a set. We show that our proposed method which builds on the idea of unfolding a greedy algorithm into a computational graph allows both interpretability and gradient based training. The proposed differentiable greedy network (DGN) outperforms discrete optimization algorithms as well as other baseline methods in terms of precision and recall.
We propose a subset selection algorithm that is trainable with gradient based methods yet achieves near optimal performance via submodular optimization.
The joint optimization of representation learning and clustering in the embedding space has experienced a breakthrough in recent years. In spite of the advance, clustering with representation learning has been limited to flat-level categories, which oftentimes involves cohesive clustering with a focus on instance relations. To overcome the limitations of flat clustering, we introduce hierarchically clustered representation learning (HCRL), which simultaneously optimizes representation learning and hierarchical clustering in the embedding space. Specifically, we place a nonparametric Bayesian prior on embeddings to handle dynamic mixture hierarchies under the variational autoencoder framework, and to adopt the generative process of a hierarchical-versioned Gaussian mixture model. Compared with a few prior works focusing on unifying representation learning and hierarchical clustering, HCRL is the first model to consider a generation of deep embeddings from every component of the hierarchy, not just leaf components. This generation process enables more meaningful separations and mergers of clusters via branches in a hierarchy. In addition to obtaining hierarchically clustered embeddings, we can reconstruct data by the various abstraction levels, infer the intrinsic hierarchical structure, and learn the level-proportion features. We conducted evaluations with image and text domains, and our quantitative analyses showed competent likelihoods and the best accuracies compared with the baselines.
We introduce hierarchically clustered representation learning (HCRL), which simultaneously optimizes representation learning and hierarchical clustering in the embedding space.
We introduce a novel geometric perspective and unsupervised model augmentation framework for transforming traditional deep (convolutional) neural networks into adversarially robust classifiers. Class-conditional probability densities based on Bayesian nonparametric mixtures of factor analyzers (BNP-MFA) over the input space are used to design soft decision labels for feature to label isometry. Classconditional distributions over features are also learned using BNP-MFA to develop plug-in maximum a posterior (MAP) classifiers to replace the traditional multinomial logistic softmax classification layers. This novel unsupervised augmented framework, which we call geometrically robust networks (GRN), is applied to CIFAR-10, CIFAR-100, and to Radio-ML (a time series dataset for radio modulation recognition). We demonstrate the robustness of GRN models to adversarial attacks from fast gradient sign method, Carlini-Wagner, and projected gradient descent.
We develop a statistical-geometric unsupervised learning augmentation framework for deep neural networks to make them robust to adversarial attacks.
Reinforcement learning in environments with large state-action spaces is challenging, as exploration can be highly inefficient. Even if the dynamics are simple, the optimal policy can be combinatorially hard to discover. In this work, we propose a hierarchical approach to structured exploration to improve the sample efficiency of on-policy exploration in large state-action spaces. The key idea is to model a stochastic policy as a hierarchical latent variable model, which can learn low-dimensional structure in the state-action space, and to define exploration by sampling from the low-dimensional latent space. This approach enables lower sample complexity, while preserving policy expressivity. In order to make learning tractable, we derive a joint learning and exploration strategy by combining hierarchical variational inference with actor-critic learning. The benefits of our learning approach are that 1) it is principled, 2) simple to implement, 3) easily scalable to settings with many actions and 4) easily composable with existing deep learning approaches. We demonstrate the effectiveness of our approach on learning a deep centralized multi-agent policy, as multi-agent environments naturally have an exponentially large state-action space. In this setting, the latent hierarchy implements a form of multi-agent coordination during exploration and execution (MACE). We demonstrate empirically that MACE can more efficiently learn optimal policies in challenging multi-agent games with a large number (~20) of agents, compared to conventional baselines. Moreover, we show that our hierarchical structure leads to meaningful agent coordination.
Make deep reinforcement learning in large state-action spaces more efficient using structured exploration with deep hierarchical policies.
Much attention has been devoted recently to the generalization puzzle in deep learning: large, deep networks can generalize well, but existing theories bounding generalization error are exceedingly loose, and thus cannot explain this striking performance. Furthermore, a major hope is that knowledge may transfer across tasks, so that multi-task learning can improve generalization on individual tasks. However we lack analytic theories that can quantitatively predict how the degree of knowledge transfer depends on the relationship between the tasks. We develop an analytic theory of the nonlinear dynamics of generalization in deep linear networks, both within and across tasks. In particular, our theory provides analytic solutions to the training and testing error of deep networks as a function of training time, number of examples, network size and initialization, and the task structure and SNR. Our theory reveals that deep networks progressively learn the most important task structure first, so that generalization error at the early stopping time primarily depends on task structure and is independent of network size. This suggests any tight bound on generalization error must take into account task structure, and explains observations about real data being learned faster than random data. Intriguingly our theory also reveals the existence of a learning algorithm that proveably out-performs neural network training through gradient descent. Finally, for transfer learning, our theory reveals that knowledge transfer depends sensitively, but computably, on the SNRs and input feature alignments of pairs of tasks.
We provide many insights into neural network generalization from the theoretically tractable linear case.
We conduct a mathematical analysis on the Batch normalization (BN) effect on gradient backpropagation in residual network training in this work, which is believed to play a critical role in addressing the gradient vanishing/explosion problem. Specifically, by analyzing the mean and variance behavior of the input and the gradient in the forward and backward passes through the BN and residual branches, respectively, we show that they work together to confine the gradient variance to a certain range across residual blocks in backpropagation. As a result, the gradient vanishing/explosion problem is avoided. Furthermore, we use the same analysis to discuss the tradeoff between depth and width of a residual network and demonstrate that shallower yet wider resnets have stronger learning performance than deeper yet thinner resnets.
Batch normalisation maintains gradient variance throughout training, thus stabilizing optimization.
To study how mental object representations are related to behavior, we estimated sparse, non-negative representations of objects using human behavioral judgments on images representative of 1,854 object categories. These representations predicted a latent similarity structure between objects, which captured most of the explainable variance in human behavioral judgments. Individual dimensions in the low-dimensional embedding were found to be highly reproducible and interpretable as conveying degrees of taxonomic membership, functionality, and perceptual attributes. We further demonstrated the predictive power of the embeddings for explaining other forms of human behavior, including categorization, typicality judgments, and feature ratings, suggesting that the dimensions reflect human conceptual representations of objects beyond the specific task.
Human behavioral judgments are used to obtain sparse and interpretable representations of objects that generalize to other tasks
We frame Question Answering (QA) as a Reinforcement Learning task, an approach that we call Active Question Answering. We propose an agent that sits between the user and a black box QA system and learns to reformulate questions to elicit the best possible answers. The agent probes the system with, potentially many, natural language reformulations of an initial question and aggregates the returned evidence to yield the best answer. The reformulation system is trained end-to-end to maximize answer quality using policy gradient. We evaluate on SearchQA, a dataset of complex questions extracted from Jeopardy!. The agent outperforms a state-of-the-art base model, playing the role of the environment, and other benchmarks. We also analyze the language that the agent has learned while interacting with the question answering system. We find that successful question reformulations look quite different from natural language paraphrases. The agent is able to discover non-trivial reformulation strategies that resemble classic information retrieval techniques such as term re-weighting (tf-idf) and stemming.
We propose an agent that sits between the user and a black box question-answering system and which learns to reformulate questions to elicit the best possible answers
Most deep latent factor models choose simple priors for simplicity, tractability or not knowing what prior to use. Recent studies show that the choice of the prior may have a profound effect on the expressiveness of the model, especially when its generative network has limited capacity. In this paper, we propose to learn a proper prior from data for adversarial autoencoders (AAEs). We introduce the notion of code generators to transform manually selected simple priors into ones that can better characterize the data distribution. Experimental results show that the proposed model can generate better image quality and learn better disentangled representations than AAEs in both supervised and unsupervised settings. Lastly, we present its ability to do cross-domain translation in a text-to-image synthesis task.
Learning Priors for Adversarial Autoencoders
In the past few years, various advancements have been made in generative models owing to the formulation of Generative Adversarial Networks (GANs). GANs have been shown to perform exceedingly well on a wide variety of tasks pertaining to image generation and style transfer. In the field of Natural Language Processing, word embeddings such as word2vec and GLoVe are state-of-the-art methods for applying neural network models on textual data. Attempts have been made for utilizing GANs with word embeddings for text generation. This work presents an approach to text generation using Skip-Thought sentence embeddings in conjunction with GANs based on gradient penalty functions and f-measures. The results of using sentence embeddings with GANs for generating text conditioned on input information are comparable to the approaches where word embeddings are used.
Generating text using sentence embeddings from Skip-Thought Vectors with the help of Generative Adversarial Networks.
The novel \emph{Unbiased Online Recurrent Optimization} (UORO) algorithm allows for online learning of general recurrent computational graphs such as recurrent network models. It works in a streaming fashion and avoids backtracking through past activations and inputs. UORO is computationally as costly as \emph{Truncated Backpropagation Through Time} (truncated BPTT), a widespread algorithm for online learning of recurrent networks \cite{jaeger2002tutorial}. UORO is a modification of \emph{NoBackTrack} \cite{DBLP:journals/corr/OllivierC15} that bypasses the need for model sparsity and makes implementation easy in current deep learning frameworks, even for complex models. Like NoBackTrack, UORO provides unbiased gradient estimates; unbiasedness is the core hypothesis in stochastic gradient descent theory, without which convergence to a local optimum is not guaranteed. On the contrary, truncated BPTT does not provide this property, leading to possible divergence. On synthetic tasks where truncated BPTT is shown to diverge, UORO converges. For instance, when a parameter has a positive short-term but negative long-term influence, truncated BPTT diverges unless the truncation span is very significantly longer than the intrinsic temporal range of the interactions, while UORO performs well thanks to the unbiasedness of its gradients.
Introduces an online, unbiased and easily implementable gradient estimate for recurrent models.
We present a deep learning-based method for super-resolving coarse (low-resolution) labels assigned to groups of image pixels into pixel-level (high-resolution) labels, given the joint distribution between those low- and high-resolution labels. This method involves a novel loss function that minimizes the distance between a distribution determined by a set of model outputs and the corresponding distribution given by low-resolution labels over the same set of outputs. This setup does not require that the high-resolution classes match the low-resolution classes and can be used in high-resolution semantic segmentation tasks where high-resolution labeled data is not available. Furthermore, our proposed method is able to utilize both data with low-resolution labels and any available high-resolution labels, which we show improves performance compared to a network trained only with the same amount of high-resolution data. We test our proposed algorithm in a challenging land cover mapping task to super-resolve labels at a 30m resolution to a separate set of labels at a 1m resolution. We compare our algorithm with models that are trained on high-resolution data and show that 1) we can achieve similar performance using only low-resolution data; and 2) we can achieve better performance when we incorporate a small amount of high-resolution data in our training. We also test our approach on a medical imaging problem, resolving low-resolution probability maps into high-resolution segmentation of lymphocytes with accuracy equal to that of fully supervised models.
Super-resolving coarse labels into pixel-level labels, applied to aerial imagery and medical scans.
We propose a novel framework for combining datasets via alignment of their associated intrinsic dimensions. Our approach assumes that the two datasets are sampled from a common latent space, i.e., they measure equivalent systems. Thus, we expect there to exist a natural (albeit unknown) alignment of the data manifolds associated with the intrinsic geometry of these datasets, which are perturbed by measurement artifacts in the sampling process. Importantly, we do not assume any individual correspondence (partial or complete) between data points. Instead, we rely on our assumption that a subset of data features have correspondence across datasets. We leverage this assumption to estimate relations between intrinsic manifold dimensions, which are given by diffusion map coordinates over each of the datasets. We compute a correlation matrix between diffusion coordinates of the datasets by considering graph (or manifold) Fourier coefficients of corresponding data features. We then orthogonalize this correlation matrix to form an isometric transformation between the diffusion maps of the datasets. Finally, we apply this transformation to the diffusion coordinates and construct a unified diffusion geometry of the datasets together. We show that this approach successfully corrects misalignment artifacts, and allows for integrated data.
We propose a method for aligning the latent features learned from different datasets using harmonic correlations.
Reinforcement learning (RL) has proven to be a powerful paradigm for deriving complex behaviors from simple reward signals in a wide range of environments. When applying RL to continuous control agents in simulated physics environments, the body is usually considered to be part of the environment. However, during evolution the physical body of biological organisms and their controlling brains are co-evolved, thus exploring a much larger space of actuator/controller configurations. Put differently, the intelligence does not reside only in the agent's mind, but also in the design of their body. We propose a method for uncovering strong agents, consisting of a good combination of a body and policy, based on combining RL with an evolutionary procedure. Given the resulting agent, we also propose an approach for identifying the body changes that contributed the most to the agent performance. We use the Shapley value from cooperative game theory to find the fair contribution of individual components, taking into account synergies between components. We evaluate our methods in an environment similar to the the recently proposed Robo-Sumo task, where agents in a 3D environment with simulated physics compete in tipping over their opponent or pushing them out of the arena. Our results show that the proposed methods are indeed capable of generating strong agents, significantly outperforming baselines that focus on optimizing the agent policy alone. A video is available at: www.youtube.com/watch?v=eei6Rgom3YY
Evolving the shape of the body in RL controlled agents improves their performance (and help learning)
Many practical reinforcement learning problems contain catastrophic states that the optimal policy visits infrequently or never. Even on toy problems, deep reinforcement learners periodically revisit these states, once they are forgotten under a new policy. In this paper, we introduce intrinsic fear, a learned reward shaping that accelerates deep reinforcement learning and guards oscillating policies against periodic catastrophes. Our approach incorporates a second model trained via supervised learning to predict the probability of imminent catastrophe. This score acts as a penalty on the Q-learning objective. Our theoretical analysis demonstrates that the perturbed objective yields the same average return under strong assumptions and an $\epsilon$-close average return under weaker assumptions. Our analysis also shows robustness to classification errors. Equipped with intrinsic fear, our DQNs solve the toy environments and improve on the Atari games Seaquest, Asteroids, and Freeway.
Shape reward with intrinsic motivation to avoid catastrophic states and mitigate catastrophic forgetting.
Convolution is an efficient technique to obtain abstract feature representations using hierarchical layers in deep networks. Although performing convolution in Euclidean geometries is fairly straightforward, its extension to other topological spaces---such as a sphere S^2 or a unit ball B^3---entails unique challenges. In this work, we propose a novel `"volumetric convolution" operation that can effectively convolve arbitrary functions in B^3. We develop a theoretical framework for "volumetric convolution" based on Zernike polynomials and efficiently implement it as a differentiable and an easily pluggable layer for deep networks. Furthermore, our formulation leads to derivation of a novel formula to measure the symmetry of a function in B^3 around an arbitrary axis, that is useful in 3D shape analysis tasks. We demonstrate the efficacy of proposed volumetric convolution operation on a possible use-case i.e., 3D object recognition task.
A novel convolution operator for automatic representation learning inside unit ball
Learning in environments with large state and action spaces, and sparse rewards, can hinder a Reinforcement Learning (RL) agent’s learning through trial-and-error. For instance, following natural language instructions on the Web (such as booking a flight ticket) leads to RL settings where input vocabulary and number of actionable elements on a page can grow very large. Even though recent approaches improve the success rate on relatively simple environments with the help of human demonstrations to guide the exploration, they still fail in environments where the set of possible instructions can reach millions. We approach the aforementioned problems from a different perspective and propose guided RL approaches that can generate unbounded amount of experience for an agent to learn from. Instead of learning from a complicated instruction with a large vocabulary, we decompose it into multiple sub-instructions and schedule a curriculum in which an agent is tasked with a gradually increasing subset of these relatively easier sub-instructions. In addition, when the expert demonstrations are not available, we propose a novel meta-learning framework that generates new instruction following tasks and trains the agent more effectively. We train DQN, deep reinforcement learning agent, with Q-value function approximated with a novel QWeb neural network architecture on these smaller, synthetic instructions. We evaluate the ability of our agent to generalize to new instructions onWorld of Bits benchmark, on forms with up to 100 elements, supporting 14 million possible instructions. The QWeb agent outperforms the baseline without using any human demonstration achieving 100% success rate on several difficult environments.
We train reinforcement learning policies using reward augmentation, curriculum learning, and meta-learning to successfully navigate web pages.
Labeled text classification datasets are typically only available in a few select languages. In order to train a model for e.g news categorization in a language $L_t$ without a suitable text classification dataset there are two options. The first option is to create a new labeled dataset by hand, and the second option is to transfer label information from an existing labeled dataset in a source language $L_s$ to the target language $L_t$. In this paper we propose a method for sharing label information across languages by means of a language independent text encoder. The encoder will give almost identical representations to multilingual versions of the same text. This means that labeled data in one language can be used to train a classifier that works for the rest of the languages. The encoder is trained independently of any concrete classification task and can therefore subsequently be used for any classification task. We show that it is possible to obtain good performance even in the case where only a comparable corpus of texts is available.
Cross Language Text Classification by universal encoding
Syntax is a powerful abstraction for language understanding. Many downstream tasks require segmenting input text into meaningful constituent chunks (e.g., noun phrases or entities); more generally, models for learning semantic representations of text benefit from integrating syntax in the form of parse trees (e.g., tree-LSTMs). Supervised parsers have traditionally been used to obtain these trees, but lately interest has increased in unsupervised methods that induce syntactic representations directly from unlabeled text. To this end, we propose the deep inside-outside recursive autoencoder (DIORA), a fully-unsupervised method for discovering syntax that simultaneously learns representations for constituents within the induced tree. Unlike many prior approaches, DIORA does not rely on supervision from auxiliary downstream tasks and is thus not constrained to particular domains. Furthermore, competing approaches do not learn explicit phrase representations along with tree structures, which limits their applicability to phrase-based tasks. Extensive experiments on unsupervised parsing, segmentation, and phrase clustering demonstrate the efficacy of our method. DIORA achieves the state of the art in unsupervised parsing (46.9 F1) on the benchmark WSJ dataset.
In this work we propose deep inside-outside recursive auto-encoders(DIORA) a fully unsupervised method of discovering syntax while simultaneously learning representations for discovered constituents.
Careful tuning of the learning rate, or even schedules thereof, can be crucial to effective neural net training. There has been much recent interest in gradient-based meta-optimization, where one tunes hyperparameters, or even learns an optimizer, in order to minimize the expected loss when the training procedure is unrolled. But because the training procedure must be unrolled thousands of times, the meta-objective must be defined with an orders-of-magnitude shorter time horizon than is typical for neural net training. We show that such short-horizon meta-objectives cause a serious bias towards small step sizes, an effect we term short-horizon bias. We introduce a toy problem, a noisy quadratic cost function, on which we analyze short-horizon bias by deriving and comparing the optimal schedules for short and long time horizons. We then run meta-optimization experiments (both offline and online) on standard benchmark datasets, showing that meta-optimization chooses too small a learning rate by multiple orders of magnitude, even when run with a moderately long time horizon (100 steps) typical of work in the area. We believe short-horizon bias is a fundamental problem that needs to be addressed if meta-optimization is to scale to practical neural net training regimes.
We investigate the bias in the short-horizon meta-optimization objective.
Mainstream captioning models often follow a sequential structure to generate cap- tions, leading to issues such as introduction of irrelevant semantics, lack of diversity in the generated captions, and inadequate generalization performance. In this paper, we present an alternative paradigm for image captioning, which factorizes the captioning procedure into two stages: (1) extracting an explicit semantic represen- tation from the given image; and (2) constructing the caption based on a recursive compositional procedure in a bottom-up manner. Compared to conventional ones, our paradigm better preserves the semantic content through an explicit factorization of semantics and syntax. By using the compositional generation procedure, caption construction follows a recursive structure, which naturally fits the properties of human language. Moreover, the proposed compositional procedure requires less data to train, generalizes better, and yields more diverse captions.
a hierarchical and compositional way to generate captions
While many approaches to make neural networks more fathomable have been proposed, they are restricted to interrogating the network with input data. Measures for characterizing and monitoring structural properties, however, have not been developed. In this work, we propose neural persistence, a complexity measure for neural network architectures based on topological data analysis on weighted stratified graphs. To demonstrate the usefulness of our approach, we show that neural persistence reflects best practices developed in the deep learning community such as dropout and batch normalization. Moreover, we derive a neural persistence-based stopping criterion that shortens the training process while achieving comparable accuracies as early stopping based on validation loss.
We develop a new topological complexity measure for deep neural networks and demonstrate that it captures their salient properties.
Deep neural networks (DNNs) are vulnerable to adversarial examples, which are carefully crafted instances aiming to cause prediction errors for DNNs. Recent research on adversarial examples has examined local neighborhoods in the input space of DNN models. However, previous work has limited what regions to consider, focusing either on low-dimensional subspaces or small balls. In this paper, we argue that information from larger neighborhoods, such as from more directions and from greater distances, will better characterize the relationship between adversarial examples and the DNN models. First, we introduce an attack, OPTMARGIN, which generates adversarial examples robust to small perturbations. These examples successfully evade a defense that only considers a small ball around an input instance. Second, we analyze a larger neighborhood around input instances by looking at properties of surrounding decision boundaries, namely the distances to the boundaries and the adjacent classes. We find that the boundaries around these adversarial examples do not resemble the boundaries around benign examples. Finally, we show that, under scrutiny of the surrounding decision boundaries, our OPTMARGIN examples do not convincingly mimic benign examples. Although our experiments are limited to a few specific attacks, we hope these findings will motivate new, more evasive attacks and ultimately, effective defenses.
Looking at decision boundaries around an input gives you more information than a fixed small neighborhood
Machine learning models are usually tuned by nesting optimization of model weights inside the optimization of hyperparameters. We give a method to collapse this nested optimization into joint stochastic optimization of both weights and hyperparameters. Our method trains a neural network to output approximately optimal weights as a function of hyperparameters. We show that our method converges to locally optimal weights and hyperparameters for sufficiently large hypernets. We compare this method to standard hyperparameter optimization strategies and demonstrate its effectiveness for tuning thousands of hyperparameters.
We train a neural network to output approximately optimal weights as a function of hyperparameters.
Estimating covariances between financial assets plays an important role in risk management. In practice, when the sample size is small compared to the number of variables, the empirical estimate is known to be very unstable. Here, we propose a novel covariance estimator based on the Gaussian Process Latent Variable Model (GP-LVM). Our estimator can be considered as a non-linear extension of standard factor models with readily interpretable parameters reminiscent of market betas. Furthermore, our Bayesian treatment naturally shrinks the sample covariance matrix towards a more structured matrix given by the prior and thereby systematically reduces estimation errors. Finally, we discuss some financial applications of the GP-LVM model.
Covariance matrix estimation of financial assets with Gaussian Process Latent Variable Models
We study how, in generative adversarial networks, variance in the discriminator's output affects the generator's ability to learn the data distribution. In particular, we contrast the results from various well-known techniques for training GANs when the discriminator is near-optimal and updated multiple times per update to the generator. As an alternative, we propose an additional method to train GANs by explicitly modeling the discriminator's output as a bi-modal Gaussian distribution over the real/fake indicator variables. In order to do this, we train the Gaussian classifier to match the target bi-modal distribution implicitly through meta-adversarial training. We observe that our new method, when trained together with a strong discriminator, provides meaningful, non-vanishing gradients.
We introduce meta-adversarial learning, a new technique to regularize GANs, and propose a training method by explicitly controlling the discriminator's output distribution.
We introduce NoisyNet, a deep reinforcement learning agent with parametric noise added to its weights, and show that the induced stochasticity of the agent’s policy can be used to aid efficient exploration. The parameters of the noise are learned with gradient descent along with the remaining network weights. NoisyNet is straightforward to implement and adds little computational overhead. We find that replacing the conventional exploration heuristics for A3C, DQN and Dueling agents (entropy reward and epsilon-greedy respectively) with NoisyNet yields substantially higher scores for a wide range of Atari games, in some cases advancing the agent from sub to super-human performance.
A deep reinforcement learning agent with parametric noise added to its weights can be used to aid efficient exploration.
Localization is the problem of estimating the location of an autonomous agent from an observation and a map of the environment. Traditional methods of localization, which filter the belief based on the observations, are sub-optimal in the number of steps required, as they do not decide the actions taken by the agent. We propose "Active Neural Localizer", a fully differentiable neural network that learns to localize efficiently. The proposed model incorporates ideas of traditional filtering-based localization methods, by using a structured belief of the state with multiplicative interactions to propagate belief, and combines it with a policy model to minimize the number of steps required for localization. Active Neural Localizer is trained end-to-end with reinforcement learning. We use a variety of simulation environments for our experiments which include random 2D mazes, random mazes in the Doom game engine and a photo-realistic environment in the Unreal game engine. The results on the 2D environments show the effectiveness of the learned policy in an idealistic setting while results on the 3D environments demonstrate the model's capability of learning the policy and perceptual model jointly from raw-pixel based RGB observations. We also show that a model trained on random textures in the Doom environment generalizes well to a photo-realistic office space environment in the Unreal engine.
"Active Neural Localizer", a fully differentiable neural network that learns to localize efficiently using deep reinforcement learning.
Machine translation is an important real-world application, and neural network-based AutoRegressive Translation (ART) models have achieved very promising accuracy. Due to the unparallelizable nature of the autoregressive factorization, ART models have to generate tokens one by one during decoding and thus suffer from high inference latency. Recently, Non-AutoRegressive Translation (NART) models were proposed to reduce the inference time. However, they could only achieve inferior accuracy compared with ART models. To improve the accuracy of NART models, in this paper, we propose to leverage the hints from a well-trained ART model to train the NART model. We define two hints for the machine translation task: hints from hidden states and hints from word alignments, and use such hints to regularize the optimization of NART models. Experimental results show that the NART model trained with hints could achieve significantly better translation performance than previous NART models on several tasks. In particular, for the WMT14 En-De and De-En task, we obtain BLEU scores of 25.20 and 29.52 respectively, which largely outperforms the previous non-autoregressive baselines. It is even comparable to a strong LSTM-based ART model (24.60 on WMT14 En-De), but one order of magnitude faster in inference.
We develop a training algorithm for non-autoregressive machine translation models, achieving comparable accuracy to strong autoregressive baselines, but one order of magnitude faster in inference.
Artificial neural networks are built on the basic operation of linear combination and non-linear activation function. Theoretically this structure can approximate any continuous function with three layer architecture. But in practice learning the parameters of such network can be hard. Also the choice of activation function can greatly impact the performance of the network. In this paper we are proposing to replace the basic linear combination operation with non-linear operations that do away with the need of additional non-linear activation function. To this end we are proposing the use of elementary morphological operations (dilation and erosion) as the basic operation in neurons. We show that these networks (Denoted as Morph-Net) with morphological operations can approximate any smooth function requiring less number of parameters than what is necessary for normal neural networks. The results show that our network perform favorably when compared with similar structured network. We have carried out our experiments on MNIST, Fashion-MNIST, CIFAR10 and CIFAR100.
Using mophological operation (dilation and erosion) we have defined a class of network which can approximate any continious function.
With the rapidly scaling up of deep neural networks (DNNs), extensive research studies on network model compression such as weight pruning have been performed for efficient deployment. This work aims to advance the compression beyond the weights to the activations of DNNs. We propose the Integral Pruning (IP) technique which integrates the activation pruning with the weight pruning. Through the learning on the different importance of neuron responses and connections, the generated network, namely IPnet, balances the sparsity between activations and weights and therefore further improves execution efficiency. The feasibility and effectiveness of IPnet are thoroughly evaluated through various network models with different activation functions and on different datasets. With <0.5% disturbance on the testing accuracy, IPnet saves 71.1% ~ 96.35% of computation cost, compared to the original dense models with up to 5.8x and 10x reductions in activation and weight numbers, respectively.
This work advances DNN compression beyond the weights to the activations by integrating the activation pruning with the weight pruning.
The Variational Auto Encoder (VAE) is a popular generative latent variable model that is often applied for representation learning. Standard VAEs assume continuous valued latent variables and are trained by maximization of the evidence lower bound (ELBO). Conventional methods obtain a differentiable estimate of the ELBO with reparametrized sampling and optimize it with Stochastic Gradient Descend (SGD). However, this is not possible if we want to train VAEs with discrete valued latent variables, since reparametrized sampling is not possible. Till now, there exist no simple solutions to circumvent this problem. In this paper, we propose an easy method to train VAEs with binary or categorically valued latent representations. Therefore, we use a differentiable estimator for the ELBO which is based on importance sampling. In experiments, we verify the approach and train two different VAEs architectures with Bernoulli and Categorically distributed latent representations on two different benchmark datasets.
We propose an easy method to train Variational Auto Encoders (VAE) with discrete latent representations, using importance sampling
Distributed computing can significantly reduce the training time of neural networks. Despite its potential, however, distributed training has not been widely adopted: scaling the training process is difficult, and existing SGD methods require substantial tuning of hyperparameters and learning schedules to achieve sufficient accuracy when increasing the number of workers. In practice, such tuning can be prohibitively expensive given the huge number of potential hyperparameter configurations and the effort required to test each one. We propose DANA, a novel approach that scales out-of-the-box to large clusters using the same hyperparameters and learning schedule optimized for training on a single worker, while maintaining similar final accuracy without additional overhead. DANA estimates the future value of model parameters by adapting Nesterov Accelerated Gradient to a distributed setting, and so mitigates the effect of gradient staleness, one of the main difficulties in scaling SGD to more workers. Evaluation on three state-of-the-art network architectures and three datasets shows that DANA scales as well as or better than existing work without having to tune any hyperparameters or tweak the learning schedule. For example, DANA achieves 75.73% accuracy on ImageNet when training ResNet-50 with 16 workers, similar to the non-distributed baseline.
A new distributed asynchronous SGD algorithm that achieves state-of-the-art accuracy on existing architectures without any additional tuning or overhead.
This paper proposes a novel approach to train deep neural networks by unlocking the layer-wise dependency of backpropagation training. The approach employs additional modules called local critic networks besides the main network model to be trained, which are used to obtain error gradients without complete feedforward and backward propagation processes. We propose a cascaded learning strategy for these local networks. In addition, the approach is also useful from multi-model perspectives, including structural optimization of neural networks, computationally efficient progressive inference, and ensemble classification for performance improvement. Experimental results show the effectiveness of the proposed approach and suggest guidelines for determining appropriate algorithm parameters.
We propose a new learning algorithm of deep neural networks, which unlocks the layer-wise dependency of backpropagation.
\emph{Truncated Backpropagation Through Time} (truncated BPTT, \cite{jaeger2002tutorial}) is a widespread method for learning recurrent computational graphs. Truncated BPTT keeps the computational benefits of \emph{Backpropagation Through Time} (BPTT \cite{werbos:bptt}) while relieving the need for a complete backtrack through the whole data sequence at every step. However, truncation favors short-term dependencies: the gradient estimate of truncated BPTT is biased, so that it does not benefit from the convergence guarantees from stochastic gradient theory. We introduce \emph{Anticipated Reweighted Truncated Backpropagation} (ARTBP), an algorithm that keeps the computational benefits of truncated BPTT, while providing unbiasedness. ARTBP works by using variable truncation lengths together with carefully chosen compensation factors in the backpropagation equation. We check the viability of ARTBP on two tasks. First, a simple synthetic task where careful balancing of temporal dependencies at different scales is needed: truncated BPTT displays unreliable performance, and in worst case scenarios, divergence, while ARTBP converges reliably. Second, on Penn Treebank character-level language modelling \cite{ptb_proc}, ARTBP slightly outperforms truncated BPTT.
Provides an unbiased version of truncated backpropagation by sampling truncation lengths and reweighting accordingly.
Graph convolutional networks (GCNs) have been widely used for classifying graph nodes in the semi-supervised setting. Previous works have shown that GCNs are vulnerable to the perturbation on adjacency and feature matrices of existing nodes. However, it is unrealistic to change the connections of existing nodes in many applications, such as existing users in social networks. In this paper, we investigate methods attacking GCNs by adding fake nodes. A greedy algorithm is proposed to generate adjacency and feature matrices of fake nodes, aiming to minimize the classification accuracy on the existing ones. In additional, we introduce a discriminator to classify fake nodes from real nodes, and propose a Greedy-GAN algorithm to simultaneously update the discriminator and the attacker, to make fake nodes indistinguishable to the real ones. Our non-targeted attack decreases the accuracy of GCN down to 0.10, and our targeted attack reaches a success rate of 0.99 for attacking the whole datasets, and 0.94 on average for attacking a single node.
non-targeted and targeted attack on GCN by adding fake nodes
Transfer learning aims to solve the data sparsity for a specific domain by applying information of another domain. Given a sequence (e.g. a natural language sentence), the transfer learning, usually enabled by recurrent neural network (RNN), represent the sequential information transfer. RNN uses a chain of repeating cells to model the sequence data. However, previous studies of neural network based transfer learning simply transfer the information across the whole layers, which are unfeasible for seq2seq and sequence labeling. Meanwhile, such layer-wise transfer learning mechanisms also lose the fine-grained cell-level information from the source domain. In this paper, we proposed the aligned recurrent transfer, ART, to achieve cell-level information transfer. ART is in a recurrent manner that different cells share the same parameters. Besides transferring the corresponding information at the same position, ART transfers information from all collocated words in the source domain. This strategy enables ART to capture the word collocation across domains in a more flexible way. We conducted extensive experiments on both sequence labeling tasks (POS tagging, NER) and sentence classification (sentiment analysis). ART outperforms the state-of-the-arts over all experiments.
Transfer learning for sequence via learning to align cell-level information across domains.
Addressing uncertainty is critical for autonomous systems to robustly adapt to the real world. We formulate the problem of model uncertainty as a continuous Bayes-Adaptive Markov Decision Process (BAMDP), where an agent maintains a posterior distribution over latent model parameters given a history of observations and maximizes its expected long-term reward with respect to this belief distribution. Our algorithm, Bayesian Policy Optimization, builds on recent policy optimization algorithms to learn a universal policy that navigates the exploration-exploitation trade-off to maximize the Bayesian value function. To address challenges from discretizing the continuous latent parameter space, we propose a new policy network architecture that encodes the belief distribution independently from the observable state. Our method significantly outperforms algorithms that address model uncertainty without explicitly reasoning about belief distributions and is competitive with state-of-the-art Partially Observable Markov Decision Process solvers.
We formulate model uncertainty in Reinforcement Learning as a continuous Bayes-Adaptive Markov Decision Process and present a method for practical and scalable Bayesian policy optimization.
For many evaluation metrics commonly used as benchmarks for unconditional image generation, trivially memorizing the training set attains a better score than models which are considered state-of-the-art; we consider this problematic. We clarify a necessary condition for an evaluation metric not to behave this way: estimating the function must require a large sample from the model. In search of such a metric, we turn to neural network divergences (NNDs), which are defined in terms of a neural network trained to distinguish between distributions. The resulting benchmarks cannot be ``won'' by training set memorization, while still being perceptually correlated and computable only from samples. We survey past work on using NNDs for evaluation, implement an example black-box metric based on these ideas, and validate experimentally that it can measure a notion of generalization.
We argue that GAN benchmarks must require a large sample from the model to penalize memorization and investigate whether neural network divergences have this property.
Conventional methods model open domain dialogue generation as a black box through end-to-end learning from large scale conversation data. In this work, we make the first step to open the black box by introducing dialogue acts into open domain dialogue generation. The dialogue acts are generally designed and reveal how people engage in social chat. Inspired by analysis on real data, we propose jointly modeling dialogue act selection and response generation, and perform learning with human-human conversations tagged with a dialogue act classifier and a reinforcement approach to further optimizing the model for long-term conversation. With the dialogue acts, we not only achieve significant improvement over state-of-the-art methods on response quality for given contexts and long-term conversation in both machine-machine simulation and human-machine conversation, but also are capable of explaining why such achievements can be made.
open domain dialogue generation with dialogue acts
We discuss the feasibility of the following learning problem: given unmatched samples from two domains and nothing else, learn a mapping between the two, which preserves semantics. Due to the lack of paired samples and without any definition of the semantic information, the problem might seem ill-posed. Specifically, in typical cases, it seems possible to build infinitely many alternative mappings from every target mapping. This apparent ambiguity stands in sharp contrast to the recent empirical success in solving this problem. We identify the abstract notion of aligning two domains in a semantic way with concrete terms of minimal relative complexity. A theoretical framework for measuring the complexity of compositions of functions is developed in order to show that it is reasonable to expect the minimal complexity mapping to be unique. The measured complexity used is directly related to the depth of the neural networks being learned and a semantically aligned mapping could then be captured simply by learning using architectures that are not much bigger than the minimal architecture. Various predictions are made based on the hypothesis that semantic alignment can be captured by the minimal mapping. These are verified extensively. In addition, a new mapping algorithm is proposed and shown to lead to better mapping results.
Our hypothesis is that given two domains, the lowest complexity mapping that has a low discrepancy approximates the target mapping.
We present a novel approach for the certification of neural networks against adversarial perturbations which combines scalable overapproximation methods with precise (mixed integer) linear programming. This results in significantly better precision than state-of-the-art verifiers on challenging feedforward and convolutional neural networks with piecewise linear activation functions.
We refine the over-approximation results from incomplete verifiers using MILP solvers to prove more robustness properties than state-of-the-art.
A distinct commonality between HMMs and RNNs is that they both learn hidden representations for sequential data. In addition, it has been noted that the backward computation of the Baum-Welch algorithm for HMMs is a special case of the back-propagation algorithm used for neural networks (Eisner (2016)). Do these observations suggest that, despite their many apparent differences, HMMs are a special case of RNNs? In this paper, we show that that is indeed the case, and investigate a series of architectural transformations between HMMs and RNNs, both through theoretical derivations and empirical hybridization. In particular, we investigate three key design factors—independence assumptions between the hidden states and the observation, the placement of softmaxes, and the use of non-linearities—in order to pin down their empirical effects. We present a comprehensive empirical study to provide insights into the interplay between expressivity and interpretability in this model family with respect to language modeling and parts-of-speech induction.
Are HMMs a special case of RNNs? We investigate a series of architectural transformations between HMMs and RNNs, both through theoretical derivations and empirical hybridization and provide new insights.
Deep neural networks have been tremendously successful in a number of tasks. One of the main reasons for this is their capability to automatically learn representations of data in levels of abstraction, increasingly disentangling the data as the internal transformations are applied. In this paper we propose a novel regularization method that penalize covariance between dimensions of the hidden layers in a network, something that benefits the disentanglement. This makes the network learn nonlinear representations that are linearly uncorrelated, yet allows the model to obtain good results on a number of tasks, as demonstrated by our experimental evaluation. The proposed technique can be used to find the dimensionality of the underlying data, because it effectively disables dimensions that aren't needed. Our approach is simple and computationally cheap, as it can be applied as a regularizer to any gradient-based learning model.
We propose a novel regularization method that penalize covariance between dimensions of the hidden layers in a network.
This report introduces a training and recognition scheme, in which classification is realized via class-wise discerning. Trained with datasets whose labels are randomly shuffled except for one class of interest, a neural network learns class-wise parameter values, and remolds itself from a feature sorter into feature filters, each of which discerns objects belonging to one of the classes only. Classification of an input can be inferred from the maximum response of the filters. A multiple check with multiple versions of filters can diminish fluctuation and yields better performance. This scheme of discerning, maximum response and multiple check is a method of general viability to improve performance of feedforward networks, and the filter training itself is a promising feature abstraction procedure. In contrast to the direct sorting, the scheme mimics the classification process mediated by a series of one component picking.
The proposed scheme mimics the classification process mediated by a series of one component picking.
A long-held conventional wisdom states that larger models train more slowly when using gradient descent. This work challenges this widely-held belief, showing that larger models can potentially train faster despite the increasing computational requirements of each training step. In particular, we study the effect of network structure (depth and width) on halting time and show that larger models---wider models in particular---take fewer training steps to converge. We design simple experiments to quantitatively characterize the effect of overparametrization on weight space traversal. Results show that halting time improves when growing model's width for three different applications, and the improvement comes from each factor: The distance from initialized weights to converged weights shrinks with a power-law-like relationship, the average step size grows with a power-law-like relationship, and gradient vectors become more aligned with each other during traversal.
Empirically shows that larger models train in fewer training steps, because all factors in weight space traversal improve.
Due to its potential to improve programmer productivity and software quality, automated program repair has been an active topic of research. Newer techniques harness neural networks to learn directly from examples of buggy programs and their fixes. In this work, we consider a recently identified class of bugs called variable-misuse bugs. The state-of-the-art solution for variable misuse enumerates potential fixes for all possible bug locations in a program, before selecting the best prediction. We show that it is beneficial to train a model that jointly and directly localizes and repairs variable-misuse bugs. We present multi-headed pointer networks for this purpose, with one head each for localization and repair. The experimental results show that the joint model significantly outperforms an enumerative solution that uses a pointer based model for repair alone.
Multi-headed Pointer Networks for jointly learning to localize and repair Variable Misuse bugs
Classification and clustering have been studied separately in machine learning and computer vision. Inspired by the recent success of deep learning models in solving various vision problems (e.g., object recognition, semantic segmentation) and the fact that humans serve as the gold standard in assessing clustering algorithms, here, we advocate for a unified treatment of the two problems and suggest that hierarchical frameworks that progressively build complex patterns on top of the simpler ones (e.g., convolutional neural networks) offer a promising solution. We do not dwell much on the learning mechanisms in these frameworks as they are still a matter of debate, with respect to biological constraints. Instead, we emphasize on the compositionality of the real world structures and objects. In particular, we show that CNNs, trained end to end using back propagation with noisy labels, are able to cluster data points belonging to several overlapping shapes, and do so much better than the state of the art algorithms. The main takeaway lesson from our study is that mechanisms of human vision, particularly the hierarchal organization of the visual ventral stream should be taken into account in clustering algorithms (e.g., for learning representations in an unsupervised manner or with minimum supervision) to reach human level clustering performance. This, by no means, suggests that other methods do not hold merits. For example, methods relying on pairwise affinities (e.g., spectral clustering) have been very successful in many cases but still fail in some cases (e.g., overlapping clusters).
Human-like Clustering with CNNs
Instancewise feature scoring is a method for model interpretation, which yields, for each test instance, a vector of importance scores associated with features. Methods based on the Shapley score have been proposed as a fair way of computing feature attributions, but incur an exponential complexity in the number of features. This combinatorial explosion arises from the definition of Shapley value and prevents these methods from being scalable to large data sets and complex models. We focus on settings in which the data have a graph structure, and the contribution of features to the target variable is well-approximated by a graph-structured factorization. In such settings, we develop two algorithms with linear complexity for instancewise feature importance scoring on black-box models. We establish the relationship of our methods to the Shapley value and a closely related concept known as the Myerson value from cooperative game theory. We demonstrate on both language and image data that our algorithms compare favorably with other methods using both quantitative metrics and human evaluation.
We develop two linear-complexity algorithms for model-agnostic model interpretation based on the Shapley value, in the settings where the contribution of features to the target is well-approximated by a graph-structured factorization.
According to parallel distributed processing (PDP) theory in psychology, neural networks (NN) learn distributed rather than interpretable localist representations. This view has been held so strongly that few researchers have analysed single units to determine if this assumption is correct. However, recent results from psychology, neuroscience and computer science have shown the occasional existence of local codes emerging in artificial and biological neural networks. In this paper, we undertake the first systematic survey of when local codes emerge in a feed-forward neural network, using generated input and output data with known qualities. We find that the number of local codes that emerge from a NN follows a well-defined distribution across the number of hidden layer neurons, with a peak determined by the size of input data, number of examples presented and the sparsity of input data. Using a 1-hot output code drastically decreases the number of local codes on the hidden layer. The number of emergent local codes increases with the percentage of dropout applied to the hidden layer, suggesting that the localist encoding may offer a resilience to noisy networks. This data suggests that localist coding can emerge from feed-forward PDP networks and suggests some of the conditions that may lead to interpretable localist representations in the cortex. The findings highlight how local codes should not be dismissed out of hand.
Local codes have been found in feed-forward neural networks
Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches however primarily focus on simple link structure between a finite set of entities, ignoring the variety of data types that are often used in relational databases, such as text, images, and numerical values. In our approach, we propose a multimodal embedding using different neural encoders for this variety of data, and combine with existing models to learn embeddings of the entities. We extend existing datasets to create two novel benchmarks, YAGO-10-plus and MovieLens-100k-plus, that contain additional relations such as textual descriptions and images of the original entities. We demonstrate that our model utilizes the additional information effectively to provide further gains in accuracy. Moreover, we test our learned multimodal embeddings by using them to predict missing multimodal attributes.
Extending relational modeling to support multimodal data using neural encoders.
An ensemble of neural networks is known to be more robust and accurate than an individual network, however usually with linearly-increased cost in both training and testing. In this work, we propose a two-stage method to learn Sparse Structured Ensembles (SSEs) for neural networks. In the first stage, we run SG-MCMC with group sparse priors to draw an ensemble of samples from the posterior distribution of network parameters. In the second stage, we apply weight-pruning to each sampled network and then perform retraining over the remained connections. In this way of learning SSEs with SG-MCMC and pruning, we not only achieve high prediction accuracy since SG-MCMC enhances exploration of the model-parameter space, but also reduce memory and computation cost significantly in both training and testing of NN ensembles. This is thoroughly evaluated in the experiments of learning SSE ensembles of both FNNs and LSTMs. For example, in LSTM based language modeling (LM), we obtain 21\% relative reduction in LM perplexity by learning a SSE of 4 large LSTM models, which has only 30\% of model parameters and 70\% of computations in total, as compared to the baseline large LSTM LM. To the best of our knowledge, this work represents the first methodology and empirical study of integrating SG-MCMC, group sparse prior and network pruning together for learning NN ensembles.
Propose a novel method by integrating SG-MCMC sampling, group sparse prior and network pruning to learn Sparse Structured Ensemble (SSE) with improved performance and significantly reduced cost than traditional methods.
This paper introduces a new framework for data efficient and versatile learning. Specifically: 1) We develop ML-PIP, a general framework for Meta-Learning approximate Probabilistic Inference for Prediction. ML-PIP extends existing probabilistic interpretations of meta-learning to cover a broad class of methods. 2) We introduce \Versa{}, an instance of the framework employing a flexible and versatile amortization network that takes few-shot learning datasets as inputs, with arbitrary numbers of shots, and outputs a distribution over task-specific parameters in a single forward pass. \Versa{} substitutes optimization at test time with forward passes through inference networks, amortizing the cost of inference and relieving the need for second derivatives during training. 3) We evaluate \Versa{} on benchmark datasets where the method sets new state-of-the-art results, and can handle arbitrary number of shots, and for classification, arbitrary numbers of classes at train and test time. The power of the approach is then demonstrated through a challenging few-shot ShapeNet view reconstruction task.
Novel framework for meta-learning that unifies and extends a broad class of existing few-shot learning methods. Achieves strong performance on few-shot learning benchmarks without requiring iterative test-time inference.
In recent years, softmax together with its fast approximations has become the de-facto loss function for deep neural networks with multiclass predictions. However, softmax is used in many problems that do not fully fit the multiclass framework and where the softmax assumption of mutually exclusive outcomes can lead to biased results. This is often the case for applications such as language modeling, next event prediction and matrix factorization, where many of the potential outcomes are not mutually exclusive, but are more likely to be independent conditionally on the state. To this end, for the set of problems with positive and unlabeled data, we propose a relaxation of the original softmax formulation, where, given the observed state, each of the outcomes are conditionally independent but share a common set of negatives. Since we operate in a regime where explicit negatives are missing, we create an adversarially-trained model of negatives and derive a new negative sampling and weighting scheme which we denote as Cooperative Importance Sampling (CIS). We show empirically the advantages of our newly introduced negative sampling scheme by pluging it in the Word2Vec algorithm and benching it extensively against other negative sampling schemes on both language modeling and matrix factorization tasks and show large lifts in performance.
Defining a partially mutual exclusive softmax loss for postive data and implementing a cooperative based sampling scheme
Over the past few years, various tasks involving videos such as classification, description, summarization and question answering have received a lot of attention. Current models for these tasks compute an encoding of the video by treating it as a sequence of images and going over every image in the sequence, which becomes computationally expensive for longer videos. In this paper, we focus on the task of video classification and aim to reduce the computational cost by using the idea of distillation. Specifically, we propose a Teacher-Student network wherein the teacher looks at all the frames in the video but the student looks at only a small fraction of the frames in the video. The idea is to then train the student to minimize (i) the difference between the final representation computed by the student and the teacher and/or (ii) the difference between the distributions predicted by the teacher and the student. This smaller student network which involves fewer computations but still learns to mimic the teacher can then be employed at inference time for video classification. We experiment with the YouTube-8M dataset and show that the proposed student network can reduce the inference time by upto 30% with a negligent drop in the performance.
Teacher-Student framework for efficient video classification using fewer frames
Deep generative models have achieved impressive success in recent years. Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), as powerful frameworks for deep generative model learning, have largely been considered as two distinct paradigms and received extensive independent studies respectively. This paper aims to establish formal connections between GANs and VAEs through a new formulation of them. We interpret sample generation in GANs as performing posterior inference, and show that GANs and VAEs involve minimizing KL divergences of respective posterior and inference distributions with opposite directions, extending the two learning phases of classic wake-sleep algorithm, respectively. The unified view provides a powerful tool to analyze a diverse set of existing model variants, and enables to transfer techniques across research lines in a principled way. For example, we apply the importance weighting method in VAE literatures for improved GAN learning, and enhance VAEs with an adversarial mechanism that leverages generated samples. Experiments show generality and effectiveness of the transfered techniques.
A unified statistical view of the broad class of deep generative models
Deep neural networks have demonstrated promising prediction and classification performance on many healthcare applications. However, the interpretability of those models are often lacking. On the other hand, classical interpretable models such as rule lists or decision trees do not lead to the same level of accuracy as deep neural networks and can often be too complex to interpret (due to the potentially large depth of rule lists). In this work, we present PEARL, Prototype lEArning via Rule Lists, which iteratively uses rule lists to guide a neural network to learn representative data prototypes. The resulting prototype neural network provides accurate prediction, and the prediction can be easily explained by prototype and its guiding rule lists. Thanks to the prediction power of neural networks, the rule lists from prototypes are more concise and hence provide better interpretability. On two real-world electronic healthcare records (EHR) datasets, PEARL consistently outperforms all baselines across both datasets, especially achieving performance improvement over conventional rule learning by up to 28% and over prototype learning by up to 3%. Experimental results also show the resulting interpretation of PEARL is simpler than the standard rule learning.
a method combining rule list learning and prototype learning
Generative Adversarial Networks (GANs) are powerful tools for realistic image generation. However, a major drawback of GANs is that they are especially hard to train, often requiring large amounts of data and long training time. In this paper we propose the Deli-Fisher GAN, a GAN that generates photo-realistic images by enforcing structure on the latent generative space using similar approaches in \cite{deligan}. The structure of the latent space we consider in this paper is modeled as a mixture of Gaussians, whose parameters are learned in the training process. Furthermore, to improve stability and efficiency, we use the Fisher Integral Probability Metric as the divergence measure in our GAN model, instead of the Jensen-Shannon divergence. We show by experiments that the Deli-Fisher GAN performs better than DCGAN, WGAN, and the Fisher GAN as measured by inception score.
This paper proposes a new Generative Adversarial Network that is more stable, more efficient, and produces better images than those of status-quo
Recent work on encoder-decoder models for sequence-to-sequence mapping has shown that integrating both temporal and spatial attentional mechanisms into neural networks increases the performance of the system substantially. We report on a new modular network architecture that applies an attentional mechanism not on temporal and spatial regions of the input, but on sensor selection for multi-sensor setups. This network called the sensor transformation attention network (STAN) is evaluated in scenarios which include the presence of natural noise or synthetic dynamic noise. We demonstrate how the attentional signal responds dynamically to changing noise levels and sensor-specific noise, leading to reduced word error rates (WERs) on both audio and visual tasks using TIDIGITS and GRID; and also on CHiME-3, a multi-microphone real-world noisy dataset. The improvement grows as more channels are corrupted as demonstrated on the CHiME-3 dataset. Moreover, the proposed STAN architecture naturally introduces a number of advantages including ease of removing sensors from existing architectures, attentional interpretability, and increased robustness to a variety of noise environments.
We introduce a modular multi-sensor network architecture with an attentional mechanism that enables dynamic sensor selection on real-world noisy data from CHiME-3.
Massive data exist among user local platforms that usually cannot support deep neural network (DNN) training due to computation and storage resource constraints. Cloud-based training schemes provide beneficial services but suffer from potential privacy risks due to excessive user data collection. To enable cloud-based DNN training while protecting the data privacy simultaneously, we propose to leverage the intermediate representations of the data, which is achieved by splitting the DNNs and deploying them separately onto local platforms and the cloud. The local neural network (NN) is used to generate the feature representations. To avoid local training and protect data privacy, the local NN is derived from pre-trained NNs. The cloud NN is then trained based on the extracted intermediate representations for the target learning task. We validate the idea of DNN splitting by characterizing the dependency of privacy loss and classification accuracy on the local NN topology for a convolutional NN (CNN) based image classification task. Based on the characterization, we further propose PrivyNet to determine the local NN topology, which optimizes the accuracy of the target learning task under the constraints on privacy loss, local computation, and storage. The efficiency and effectiveness of PrivyNet are demonstrated with CIFAR-10 dataset.
To enable cloud-based DNN training while protecting the data privacy simultaneously, we propose to leverage the intermediate data representations, which is achieved by splitting the DNNs and deploying them separately onto local platforms and the cloud.
Generative Adversarial Networks (GANs) have shown remarkable success as a framework for training models to produce realistic-looking data. In this work, we propose a Recurrent GAN (RGAN) and Recurrent Conditional GAN (RCGAN) to produce realistic real-valued multi-dimensional time series, with an emphasis on their application to medical data. RGANs make use of recurrent neural networks (RNNs) in the generator and the discriminator. In the case of RCGANs, both of these RNNs are conditioned on auxiliary information. We demonstrate our models in a set of toy datasets, where we show visually and quantitatively (using sample likelihood and maximum mean discrepancy) that they can successfully generate realistic time-series. We also describe novel evaluation methods for GANs, where we generate a synthetic labelled training dataset, and evaluate on a real test set the performance of a model trained on the synthetic data, and vice-versa. We illustrate with these metrics that RCGANs can generate time-series data useful for supervised training, with only minor degradation in performance on real test data. This is demonstrated on digit classification from ‘serialised’ MNIST and by training an early warning system on a medical dataset of 17,000 patients from an intensive care unit. We further discuss and analyse the privacy concerns that may arise when using RCGANs to generate realistic synthetic medical time series data, and demonstrate results from differentially private training of the RCGAN.
Conditional recurrent GANs for real-valued medical sequences generation, showing novel evaluation approaches and an empirical privacy analysis.
Emphasis effects – visual changes that make certain elements more prominent – are commonly used in information visualization to draw the user’s attention or to indicate importance. Although theoretical frameworks of emphasis exist (that link visually diverse emphasis effects through the idea of visual prominence compared to background elements), most metrics for predicting how emphasis effects will be perceived by users come from abstract models of human vision which may not apply to visualization design. In particular, it is difficult for designers to know, when designing a visualization, how different emphasis effects will compare and what level of one effect is equivalent to what level of another. To address this gap, we carried out two studies that provide empirical evidence about how users perceive different emphasis effects, using three visual variables (colour, size, and blur/focus) and eight strength levels. Results from gaze tracking, mouse clicks, and subjective responses show that there are significant differences between visual variables and between levels, and allow us to develop an initial understanding of perceptual equivalence. We developed a model from the data in our first study, and used it to predict the results in the second; the model was accurate, with high correlations between predictions and real values. Our studies and empirical models provide valuable new information for designers who want to understand and control how emphasis effects will be perceived by users.
Our studies and empirical models provide valuable new information for designers who want to understand and control how emphasis effects will be perceived by users
Memory Network based models have shown a remarkable progress on the task of relational reasoning. Recently, a simpler yet powerful neural network module called Relation Network (RN) has been introduced. Despite its architectural simplicity, the time complexity of relation network grows quadratically with data, hence limiting its application to tasks with a large-scaled memory. We introduce Related Memory Network, an end-to-end neural network architecture exploiting both memory network and relation network structures. We follow memory network's four components while each component operates similar to the relation network without taking a pair of objects. As a result, our model is as simple as RN but the computational complexity is reduced to linear time. It achieves the state-of-the-art results in jointly trained bAbI-10k story-based question answering and bAbI dialog dataset.
A simple reasoning architecture based on the memory network (MemNN) and relation network (RN), reducing the time complexity compared to the RN and achieving state-of-the-are result on bAbI story based QA and bAbI dialog.
We investigate in this paper the architecture of deep convolutional networks. Building on existing state of the art models, we propose a reconfiguration of the model parameters into several parallel branches at the global network level, with each branch being a standalone CNN. We show that this arrangement is an efficient way to significantly reduce the number of parameters while at the same time improving the performance. The use of branches brings an additional form of regularization. In addition to splitting the parameters into parallel branches, we propose a tighter coupling of these branches by averaging their log-probabilities. The tighter coupling favours the learning of better representations, even at the level of the individual branches, as compared to when each branch is trained independently. We refer to this branched architecture as "coupled ensembles". The approach is very generic and can be applied with almost any neural network architecture. With coupled ensembles of DenseNet-BC and parameter budget of 25M, we obtain error rates of 2.92%, 15.68% and 1.50% respectively on CIFAR-10, CIFAR-100 and SVHN tasks. For the same parameter budget, DenseNet-BC has an error rate of 3.46%, 17.18%, and 1.8% respectively. With ensembles of coupled ensembles, of DenseNet-BC networks, with 50M total parameters, we obtain error rates of 2.72%, 15.13% and 1.42% respectively on these tasks.
We show that splitting a neural network into parallel branches improves performance and that proper coupling of the branches improves performance even further.
Convolutional Neural Networks (CNN) are very popular in many fields including computer vision, speech recognition, natural language processing, to name a few. Though deep learning leads to groundbreaking performance in these domains, the networks used are very demanding computationally and are far from real-time even on a GPU, which is not power efficient and therefore does not suit low power systems such as mobile devices. To overcome this challenge, some solutions have been proposed for quantizing the weights and activations of these networks, which accelerate the runtime significantly. Yet, this acceleration comes at the cost of a larger error. The NICE method proposed in this work trains quantized neural networks by noise injection and a learned clamping, which improve the accuracy. This leads to state-of-the-art results on various regression and classification tasks, e.g., ImageNet classification with architectures such as ResNet-18/34/50 with low as 3-bit weights and 3 -bit activations. We implement the proposed solution on an FPGA to demonstrate its applicability for low power real-time applications.
Combine noise injection, gradual quantization and activation clamping learning to achieve state-of-the-art 3,4 and 5 bit quantization
In complex transfer learning scenarios new tasks might not be tightly linked to previous tasks. Approaches that transfer information contained only in the final parameters of a source model will therefore struggle. Instead, transfer learning at at higher level of abstraction is needed. We propose Leap, a framework that achieves this by transferring knowledge across learning processes. We associate each task with a manifold on which the training process travels from initialization to final parameters and construct a meta-learning objective that minimizes the expected length of this path. Our framework leverages only information obtained during training and can be computed on the fly at negligible cost. We demonstrate that our framework outperforms competing methods, both in meta-learning and transfer learning, on a set of computer vision tasks. Finally, we demonstrate that Leap can transfer knowledge across learning processes in demanding reinforcement learning environments (Atari) that involve millions of gradient steps.
We propose Leap, a framework that transfers knowledge across learning processes by minimizing the expected distance the training process travels on a task's loss surface.
Given an existing trained neural network, it is often desirable to learn new capabilities without hindering performance of those already learned. Existing approaches either learn sub-optimal solutions, require joint training, or incur a substantial increment in the number of parameters for each added task, typically as many as the original network. We propose a method called Deep Adaptation Networks (DAN) that constrains newly learned filters to be linear combinations of existing ones. DANs preserve performance on the original task, require a fraction (typically 13%) of the number of parameters compared to standard fine-tuning procedures and converge in less cycles of training to a comparable or better level of performance. When coupled with standard network quantization techniques, we further reduce the parameter cost to around 3% of the original with negligible or no loss in accuracy. The learned architecture can be controlled to switch between various learned representations, enabling a single network to solve a task from multiple different domains. We conduct extensive experiments showing the effectiveness of our method on a range of image classification tasks and explore different aspects of its behavior.
An alternative to transfer learning that learns faster, requires much less parameters (3-13 %), usually achieves better results and precisely preserves performance on old tasks.
High throughput and low latency inference of deep neural networks are critical for the deployment of deep learning applications. This paper presents a general technique toward 8-bit low precision inference of convolutional neural networks, including 1) channel-wise scale factors of weights, especially for depthwise convolution, 2) Winograd convolution, and 3) topology-wise 8-bit support. We experiment the techniques on top of a widely-used deep learning framework. The 8-bit optimized model is automatically generated with a calibration process from FP32 model without the need of fine-tuning or retraining. We perform a systematical and comprehensive study on 18 widely-used convolutional neural networks and demonstrate the effectiveness of 8-bit low precision inference across a wide range of applications and use cases, including image classification, object detection, image segmentation, and super resolution. We show that the inference throughput and latency are improved by 1.6X and 1.5X respectively with minimal within 0.6%1to no loss in accuracy from FP32 baseline. We believe the methodology can provide the guidance and reference design of 8-bit low precision inference for other frameworks. All the code and models will be publicly available soon.
We present a general technique toward 8-bit low precision inference of convolutional neural networks.
Recent approaches have successfully demonstrated the benefits of learning the parameters of shallow networks in hyperbolic space. We extend this line of work by imposing hyperbolic geometry on the embeddings used to compute the ubiquitous attention mechanisms for different neural networks architectures. By only changing the geometry of embedding of object representations, we can use the embedding space more efficiently without increasing the number of parameters of the model. Mainly as the number of objects grows exponentially for any semantic distance from the query, hyperbolic geometry --as opposed to Euclidean geometry-- can encode those objects without having any interference. Our method shows improvements in generalization on neural machine translation on WMT'14 (English to German), learning on graphs (both on synthetic and real-world graph tasks) and visual question answering (CLEVR) tasks while keeping the neural representations compact.
We propose to incorporate inductive biases and operations coming from hyperbolic geometry to improve the attention mechanism of the neural networks.
We present a method for evaluating the sensitivity of deep reinforcement learning (RL) policies. We also formulate a zero-sum dynamic game for designing robust deep reinforcement learning policies. Our approach mitigates the brittleness of policies when agents are trained in a simulated environment and are later exposed to the real world where it is hazardous to employ RL policies. This framework for training deep RL policies involve a zero-sum dynamic game against an adversarial agent, where the goal is to drive the system dynamics to a saddle region. Using a variant of the guided policy search algorithm, our agent learns to adopt robust policies that require less samples for learning the dynamics and performs better than the GPS algorithm. Without loss of generality, we demonstrate that deep RL policies trained in this fashion will be maximally robust to a ``worst" possible adversarial disturbances.
This paper demonstrates how H-infinity control theory can help better design robust deep policies for robot motor taks
Deep networks have recently been shown to be vulnerable to universal perturbations: there exist very small image-agnostic perturbations that cause most natural images to be misclassified by such classifiers. In this paper, we provide a quantitative analysis of the robustness of classifiers to universal perturbations, and draw a formal link between the robustness to universal perturbations, and the geometry of the decision boundary. Specifically, we establish theoretical bounds on the robustness of classifiers under two decision boundary models (flat and curved models). We show in particular that the robustness of deep networks to universal perturbations is driven by a key property of their curvature: there exist shared directions along which the decision boundary of deep networks is systematically positively curved. Under such conditions, we prove the existence of small universal perturbations. Our analysis further provides a novel geometric method for computing universal perturbations, in addition to explaining their properties.
Analysis of vulnerability of classifiers to universal perturbations and relation to the curvature of the decision boundary.
Behavioral skills or policies for autonomous agents are conventionally learned from reward functions, via reinforcement learning, or from demonstrations, via imitation learning. However, both modes of task specification have their disadvantages: reward functions require manual engineering, while demonstrations require a human expert to be able to actually perform the task in order to generate the demonstration. Instruction following from natural language instructions provides an appealing alternative: in the same way that we can specify goals to other humans simply by speaking or writing, we would like to be able to specify tasks for our machines. However, a single instruction may be insufficient to fully communicate our intent or, even if it is, may be insufficient for an autonomous agent to actually understand how to perform the desired task. In this work, we propose an interactive formulation of the task specification problem, where iterative language corrections are provided to an autonomous agent, guiding it in acquiring the desired skill. Our proposed language-guided policy learning algorithm can integrate an instruction and a sequence of corrections to acquire new skills very quickly. In our experiments, we show that this method can enable a policy to follow instructions and corrections for simulated navigation and manipulation tasks, substantially outperforming direct, non-interactive instruction following.
We propose a meta-learning method for interactively correcting policies with natural language.
Deep generative models such as Generative Adversarial Networks (GANs) and Variational Auto-Encoders (VAEs) are important tools to capture and investigate the properties of complex empirical data. However, the complexity of their inner elements makes their functionment challenging to assess and modify. In this respect, these architectures behave as black box models. In order to better understand the function of such networks, we analyze their modularity based on the counterfactual manipulation of their internal variables. Our experiments on the generation of human faces with VAEs and GANs support that modularity between activation maps distributed over channels of generator architectures is achieved to some degree, can be used to better understand how these systems operate and allow meaningful transformations of the generated images without further training. erate and edit the content of generated images.
We investigate the modularity of deep generative models.
Relational databases store a significant amount of the worlds data. However, accessing this data currently requires users to understand a query language such as SQL. We propose Seq2SQL, a deep neural network for translating natural language questions to corresponding SQL queries. Our model uses rewards from in the loop query execution over the database to learn a policy to generate the query, which contains unordered parts that are less suitable for optimization via cross entropy loss. Moreover, Seq2SQL leverages the structure of SQL to prune the space of generated queries and significantly simplify the generation problem. In addition to the model, we release WikiSQL, a dataset of 80654 hand-annotated examples of questions and SQL queries distributed across 24241 tables fromWikipedia that is an order of magnitude larger than comparable datasets. By applying policy based reinforcement learning with a query execution environment to WikiSQL, Seq2SQL outperforms a state-of-the-art semantic parser, improving execution accuracy from 35.9% to 59.4% and logical form accuracy from 23.4% to 48.3%.
We introduce Seq2SQL, which translates questions to SQL queries using rewards from online query execution, and WikiSQL, a SQL table/question/query dataset orders of magnitude larger than existing datasets.
We introduce Explainable Adversarial Learning, ExL, an approach for training neural networks that are intrinsically robust to adversarial attacks. We find that the implicit generative modeling of random noise with the same loss function used during posterior maximization, improves a model's understanding of the data manifold furthering adversarial robustness. We prove our approach's efficacy and provide a simplistic visualization tool for understanding adversarial data, using Principal Component Analysis. Our analysis reveals that adversarial robustness, in general, manifests in models with higher variance along the high-ranked principal components. We show that models learnt with our approach perform remarkably well against a wide-range of attacks. Furthermore, combining ExL with state-of-the-art adversarial training extends the robustness of a model, even beyond what it is adversarially trained for, in both white-box and black-box attack scenarios.
Noise modeling at the input during discriminative training improves adversarial robustness. Propose PCA based evaluation metric for adversarial robustness
We propose a method which can visually explain the classification decision of deep neural networks (DNNs). There are many proposed methods in machine learning and computer vision seeking to clarify the decision of machine learning black boxes, specifically DNNs. All of these methods try to gain insight into why the network "chose class A" as an answer. Humans, when searching for explanations, ask two types of questions. The first question is, "Why did you choose this answer? " The second question asks, "Why did you not choose answer B over A?" The previously proposed methods are either not able to provide the latter directly or efficiently. We introduce a method capable of answering the second question both directly and efficiently. In this work, we limit the inputs to be images. In general, the proposed method generates explanations in the input space of any model capable of efficient evaluation and gradient evaluation. We provide results, showing the superiority of this approach for gaining insight into the inner representation of machine learning models.
A method to answer "why not class B?" for explaining deep networks
We flip the usual approach to study invariance and robustness of neural networks by considering the non-uniqueness and instability of the inverse mapping. We provide theoretical and numerical results on the inverse of ReLU-layers. First, we derive a necessary and sufficient condition on the existence of invariance that provides a geometric interpretation. Next, we move to robustness via analyzing local effects on the inverse. To conclude, we show how this reverse point of view not only provides insights into key effects, but also enables to view adversarial examples from different perspectives.
We analyze the invertibility of deep neural networks by studying preimages of ReLU-layers and the stability of the inverse.
While deep learning has led to remarkable results on a number of challenging problems, researchers have discovered a vulnerability of neural networks in adversarial settings, where small but carefully chosen perturbations to the input can make the models produce extremely inaccurate outputs. This makes these models particularly unsuitable for safety-critical application domains (e.g. self-driving cars) where robustness is extremely important. Recent work has shown that augmenting training with adversarially generated data provides some degree of robustness against test-time attacks. In this paper we investigate how this approach scales as we increase the computational budget given to the defender. We show that increasing the number of parameters in adversarially-trained models increases their robustness, and in particular that ensembling smaller models while adversarially training the entire ensemble as a single model is a more efficient way of spending said budget than simply using a larger single model. Crucially, we show that it is the adversarial training of the ensemble, rather than the ensembling of adversarially trained models, which provides robustness.
Adversarial training of ensembles provides robustness to adversarial examples beyond that observed in adversarially trained models and independently-trained ensembles thereof.
Multi-task learning (MTL) with neural networks leverages commonalities in tasks to improve performance, but often suffers from task interference which reduces the benefits of transfer. To address this issue we introduce the routing network paradigm, a novel neural network and training algorithm. A routing network is a kind of self-organizing neural network consisting of two components: a router and a set of one or more function blocks. A function block may be any neural network – for example a fully-connected or a convolutional layer. Given an input the router makes a routing decision, choosing a function block to apply and passing the output back to the router recursively, terminating when a fixed recursion depth is reached. In this way the routing network dynamically composes different function blocks for each input. We employ a collaborative multi-agent reinforcement learning (MARL) approach to jointly train the router and function blocks. We evaluate our model against cross-stitch networks and shared-layer baselines on multi-task settings of the MNIST, mini-imagenet, and CIFAR-100 datasets. Our experiments demonstrate a significant improvement in accuracy, with sharper convergence. In addition, routing networks have nearly constant per-task training cost while cross-stitch networks scale linearly with the number of tasks. On CIFAR100 (20 tasks) we obtain cross-stitch performance levels with an 85% average reduction in training time.
routing networks: a new kind of neural network which learns to adaptively route its input for multi-task learning
We propose a practical method for $L_0$ norm regularization for neural networks: pruning the network during training by encouraging weights to become exactly zero. Such regularization is interesting since (1) it can greatly speed up training and inference, and (2) it can improve generalization. AIC and BIC, well-known model selection criteria, are special cases of $L_0$ regularization. However, since the $L_0$ norm of weights is non-differentiable, we cannot incorporate it directly as a regularization term in the objective function. We propose a solution through the inclusion of a collection of non-negative stochastic gates, which collectively determine which weights to set to zero. We show that, somewhat surprisingly, for certain distributions over the gates, the expected $L_0$ regularized objective is differentiable with respect to the distribution parameters. We further propose the \emph{hard concrete} distribution for the gates, which is obtained by ``stretching'' a binary concrete distribution and then transforming its samples with a hard-sigmoid. The parameters of the distribution over the gates can then be jointly optimized with the original network parameters. As a result our method allows for straightforward and efficient learning of model structures with stochastic gradient descent and allows for conditional computation in a principled way. We perform various experiments to demonstrate the effectiveness of the resulting approach and regularizer.
We show how to optimize the expected L_0 norm of parametric models with gradient descent and introduce a new distribution that facilitates hard gating.
Recently popularized graph neural networks achieve the state-of-the-art accuracy on a number of standard benchmark datasets for graph-based semi-supervised learning, improving significantly over existing approaches. These architectures alternate between a propagation layer that aggregates the hidden states of the local neighborhood and a fully-connected layer. Perhaps surprisingly, we show that a linear model, that removes all the intermediate fully-connected layers, is still able to achieve a performance comparable to the state-of-the-art models. This significantly reduces the number of parameters, which is critical for semi-supervised learning where number of labeled examples are small. This in turn allows a room for designing more innovative propagation layers. Based on this insight, we propose a novel graph neural network that removes all the intermediate fully-connected layers, and replaces the propagation layers with attention mechanisms that respect the structure of the graph. The attention mechanism allows us to learn a dynamic and adaptive local summary of the neighborhood to achieve more accurate predictions. In a number of experiments on benchmark citation networks datasets, we demonstrate that our approach outperforms competing methods. By examining the attention weights among neighbors, we show that our model provides some interesting insights on how neighbors influence each other.
We propose a novel attention-based interpretable Graph Neural Network architecture which outperforms the current state-of-the-art Graph Neural Networks in standard benchmark datasets
Modern generative models are usually designed to match target distributions directly in the data space, where the intrinsic dimensionality of data can be much lower than the ambient dimensionality. We argue that this discrepancy may contribute to the difficulties in training generative models. We therefore propose to map both the generated and target distributions to the latent space using the encoder of a standard autoencoder, and train the generator (or decoder) to match the target distribution in the latent space. The resulting method, perceptual generative autoencoder (PGA), is then incorporated with maximum likelihood or variational autoencoder (VAE) objective to train the generative model. With maximum likelihood, PGA generalizes the idea of reversible generative models to unrestricted neural network architectures and arbitrary latent dimensionalities. When combined with VAE, PGA can generate sharper samples than vanilla VAE.
A framework for training autoencoder-based generative models, with non-adversarial losses and unrestricted neural network architectures.
The quality of the representations achieved by embeddings is determined by how well the geometry of the embedding space matches the structure of the data. Euclidean space has been the workhorse for embeddings; recently hyperbolic and spherical spaces have gained popularity due to their ability to better embed new types of structured data---such as hierarchical data---but most data is not structured so uniformly. We address this problem by proposing learning embeddings in a product manifold combining multiple copies of these model spaces (spherical, hyperbolic, Euclidean), providing a space of heterogeneous curvature suitable for a wide variety of structures. We introduce a heuristic to estimate the sectional curvature of graph data and directly determine an appropriate signature---the number of component spaces and their dimensions---of the product manifold. Empirically, we jointly learn the curvature and the embedding in the product space via Riemannian optimization. We discuss how to define and compute intrinsic quantities such as means---a challenging notion for product manifolds---and provably learnable optimization functions. On a range of datasets and reconstruction tasks, our product space embeddings outperform single Euclidean or hyperbolic spaces used in previous works, reducing distortion by 32.55% on a Facebook social network dataset. We learn word embeddings and find that a product of hyperbolic spaces in 50 dimensions consistently improves on baseline Euclidean and hyperbolic embeddings, by 2.6 points in Spearman rank correlation on similarity tasks and 3.4 points on analogy accuracy.
Product manifold embedding spaces with heterogenous curvature yield improved representations compared to traditional embedding spaces for a variety of structures.
Synthesizing user-intended programs from a small number of input-output exam- ples is a challenging problem with several important applications like spreadsheet manipulation, data wrangling and code refactoring. Existing synthesis systems either completely rely on deductive logic techniques that are extensively hand- engineered or on purely statistical models that need massive amounts of data, and in general fail to provide real-time synthesis on challenging benchmarks. In this work, we propose Neural Guided Deductive Search (NGDS), a hybrid synthesis technique that combines the best of both symbolic logic techniques and statistical models. Thus, it produces programs that satisfy the provided specifications by construction and generalize well on unseen examples, similar to data-driven systems. Our technique effectively utilizes the deductive search framework to reduce the learning problem of the neural component to a simple supervised learning setup. Further, this allows us to both train on sparingly available real-world data and still leverage powerful recurrent neural network encoders. We demonstrate the effectiveness of our method by evaluating on real-world customer scenarios by synthesizing accurate programs with up to 12× speed-up compared to state-of-the-art systems.
We integrate symbolic (deductive) and statistical (neural-based) methods to enable real-time program synthesis with almost perfect generalization from 1 input-output example.
Variational auto-encoders (VAEs) offer a tractable approach when performing approximate inference in otherwise intractable generative models. However, standard VAEs often produce latent codes that are disperse and lack interpretability, thus making the resulting representations unsuitable for auxiliary tasks (e.g. classification) and human interpretation. We address these issues by merging ideas from variational auto-encoders and sparse coding, and propose to explicitly model sparsity in the latent space of a VAE with a Spike and Slab prior distribution. We derive the evidence lower bound using a discrete mixture recognition function thereby making approximate posterior inference as computational efficient as in the standard VAE case. With the new approach, we are able to infer truly sparse representations with generally intractable non-linear probabilistic models. We show that these sparse representations are advantageous over standard VAE representations on two benchmark classification tasks (MNIST and Fashion-MNIST) by demonstrating improved classification accuracy and significantly increased robustness to the number of latent dimensions. Furthermore, we demonstrate qualitatively that the sparse elements capture subjectively understandable sources of variation.
We explore the intersection of VAEs and sparse coding.
A widely observed phenomenon in deep learning is the degradation problem: increasing the depth of a network leads to a decrease in performance on both test and training data. Novel architectures such as ResNets and Highway networks have addressed this issue by introducing various flavors of skip-connections or gating mechanisms. However, the degradation problem persists in the context of plain feed-forward networks. In this work we propose a simple method to address this issue. The proposed method poses the learning of weights in deep networks as a constrained optimization problem where the presence of skip-connections is penalized by Lagrange multipliers. This allows for skip-connections to be introduced during the early stages of training and subsequently phased out in a principled manner. We demonstrate the benefits of such an approach with experiments on MNIST, fashion-MNIST, CIFAR-10 and CIFAR-100 where the proposed method is shown to greatly decrease the degradation effect (compared to plain networks) and is often competitive with ResNets.
Phasing out skip-connections in a principled manner avoids degradation in deep feed-forward networks.
Deep learning is becoming more widespread in its application due to its power in solving complex classification problems. However, deep learning models often require large memory and energy consumption, which may prevent them from being deployed effectively on embedded platforms, limiting their applications. This work addresses the problem by proposing methods {\em Weight Reduction Quantisation} for compressing the memory footprint of the models, including reducing the number of weights and the number of bits to store each weight. Beside, applying with sparsity-inducing regularization, our work focuses on speeding up stochastic variance reduced gradients (SVRG) optimization on non-convex problem. Our method that mini-batch SVRG with $\ell$1 regularization on non-convex problem has faster and smoother convergence rates than SGD by using adaptive learning rates. Experimental evaluation of our approach uses MNIST and CIFAR-10 datasets on LeNet-300-100 and LeNet-5 models, showing our approach can reduce the memory requirements both in the convolutional and fully connected layers by up to 60$\times$ without affecting their test accuracy.
Compression of Deep neural networks deployed on embedded device.