problem
stringlengths
16
4.31k
level
stringclasses
6 values
type
stringclasses
7 values
solution
stringlengths
29
6.77k
Compute $\begin{pmatrix} 2 & 3 \\ 7 & -1 \end{pmatrix} \begin{pmatrix} 1 & -5 \\ 0 & 4 \end{pmatrix}.$
Level 1
Precalculus
We have that \[\begin{pmatrix} 2 & 3 \\ 7 & -1 \end{pmatrix} \begin{pmatrix} 1 & -5 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} (2)(1) + (3)(0) & (2)(-5) + (3)(4) \\ (7)(1) + (-1)(0) & (7)(-5) + (-1)(4) \end{pmatrix} = \boxed{\begin{pmatrix} 2 & 2 \\ 7 & -39 \end{pmatrix}}.\]
Find the integer $n,$ $0 \le n \le 180,$ such that $\cos n^\circ = \cos 758^\circ.$
Level 1
Precalculus
Since the cosine function has period $360^\circ,$ \[\cos 758^\circ = \cos (758^\circ - 2 \cdot 360^\circ) = \cos 38^\circ,\]so $n = \boxed{38}.$
Let $\mathcal{T}$ be the set of ordered triples $(x,y,z)$ of nonnegative real numbers that lie in the plane $x+y+z=1.$ Let us say that $(x,y,z)$ supports $(a,b,c)$ when exactly two of the following are true: $x\ge a, y\ge b, z\ge c.$ Let $\mathcal{S}$ consist of those triples in $\mathcal{T}$ that support $\left(\frac 12,\frac 13,\frac 16\right).$ Find the area of $\mathcal{S}$ divided by the area of $\mathcal{T}.$
Level 3
Precalculus
We see that $\mathcal{T}$ is the triangle whose vertices are $(1,0,0),$ $(0,1,0),$ and $(0,0,1).$ We are looking for the points $(x,y,z) \in \mathcal{T}$ such that exactly two of the following inequalities hold: $x \ge \frac{1}{2},$ $y \ge \frac{1}{3},$ and $z \ge \frac{1}{6}.$ The plane $x = \frac{1}{2}$ cuts triangle $\mathcal{T}$ in a line that is parallel to one of its sides. The same holds for the planes $y = \frac{1}{3}$ and $z = \frac{1}{6}.$ Let $\mathcal{A}$ be the set of points in $\mathcal{T}$ such that $x \ge \frac{1}{2}$ and $y \ge \frac{1}{3}.$ Then the inequality $z \le \frac{1}{6}$ is automatically satisfied, and $z = \frac{1}{6}$ only for the point $\left( \frac{1}{2}, \frac{1}{3}, \frac{1}{6} \right).$ Thus, $\mathcal{A}$ is a triangle which is similar to $\mathcal{T},$ and the ratio of their areas is $\frac{1}{6^2} = \frac{1}{36}.$ [asy] import three; size(220); currentprojection = perspective(6,3,2); triple P = (1/2,1/3,1/6), Q = (5/6,0,1/6), R = (1/2,0,1/2), S = (0,1/3,2/3), T = (0,5/6,1/6), U = (1/2,1/2,0), V = (2/3,1/3,0); draw(surface(P--Q--R--cycle),paleyellow,nolight); draw(surface(P--S--T--cycle),paleyellow,nolight); draw(surface(P--U--V--cycle),paleyellow,nolight); draw((1,0,0)--(0,1,0)--(0,0,1)--cycle); draw((0,0,0)--(1,0,0),dashed); draw((0,0,0)--(0,1,0),dashed); draw((0,0,0)--(0,0,1),dashed); draw(Q--T); draw(R--U); draw(S--V); draw((1,0,0)--(1.2,0,0),Arrow3(6)); draw((0,1,0)--(0,1.2,0),Arrow3(6)); draw((0,0,1)--(0,0,1.2),Arrow3(6)); label("$x$", (1.3,0,0)); label("$y$", (0,1.3,0)); label("$z$", (0,0,1.3)); label("$x = \frac{1}{2}$", R, W); label("$y = \frac{1}{3}$", S, NE); label("$z = \frac{1}{6}$", T, NE); label("$\mathcal{A}$", (P + U + V)/3); label("$\mathcal{B}$", (P + Q + R)/3); label("$\mathcal{C}$", (P + S + T)/3); [/asy] Likewise, let $\mathcal{B}$ be the set of points in $\mathcal{T}$ such that $x \ge \frac{1}{2}$ and $z \ge \frac{1}{6},$ and let $\mathcal{C}$ be the set of points in $\mathcal{T}$ such that $y \ge \frac{1}{3}$ and $z \ge \frac{1}{6}.$ Then $\mathcal{B}$ and $\mathcal{C}$ are triangles that are also similar to $\mathcal{T},$ and the ratio of their areas to the area of $\mathcal{T}$ are $\frac{1}{3^2} = \frac{1}{9}$ and $\frac{1}{2^2} = \frac{1}{4},$ respectively. Therefore, the area of $\mathcal{S}$ divided by the area of $\mathcal{T}$ is $\frac{1}{36} + \frac{1}{9} + \frac{1}{4} = \boxed{\frac{7}{18}}.$
In equilateral triangle $ABC,$ let points $D$ and $E$ trisect $\overline{BC}$. Find $\sin \angle DAE.$
Level 3
Precalculus
Without loss of generality, let the triangle sides have length 6. [asy] pair A = (1, sqrt(3)), B = (0, 0), C= (2, 0); pair M = (1, 0); pair D = (2/3, 0), E = (4/3, 0); draw(A--B--C--cycle); label("$A$", A, N); label("$B$", B, SW); label("$C$", C, SE); label("$D$", D, S); label("$E$", E, S); label("$M$", M, S); draw(A--D); draw(A--E); draw(A--M);[/asy] Let $M$ be the midpoint of $\overline{DE}$. Then triangle $ACM$ is a $30^\circ$-$60^\circ$-$90^\circ$ triangle with $MC = 3$, $AC = 6,$ and $AM = 3\sqrt{3}.$ Since triangle $AME$ is right, we use the Pythagorean Theorem to find $AE = 2 \sqrt{7}$. The area of triangle $DAE$ is \[\frac{1}{2} \cdot DE \cdot AM = \frac{1}{2} \cdot 2 \cdot 3 \sqrt{3} = 3 \sqrt{3}.\]The area of triangle $DAE$ is also \[\frac{1}{2} \cdot AD \cdot AE \cdot \sin \angle DAE = 14 \sin \angle DAE.\]Therefore, $\sin \angle DAE = \boxed{\frac{3 \sqrt{3}}{14}}.$
A line is parameterized by \[\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \end{pmatrix}.\]A second line is parameterized by \[\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -8 \\ 12 \end{pmatrix} + u \begin{pmatrix} 1 \\ 3 \end{pmatrix}.\]If $\theta$ is the acute angle formed by the two lines, then find $\cos \theta.$
Level 3
Precalculus
The direction vectors of the lines are $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 3 \end{pmatrix}.$ The cosine of the angle between these direction vectors is \[\frac{\begin{pmatrix} 3 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \end{pmatrix}}{\left\| \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| \left\| \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\|} = \frac{15}{\sqrt{25} \sqrt{10}} = \frac{3}{\sqrt{10}}.\]Hence, $\cos \theta = \boxed{\frac{3}{\sqrt{10}}}.$
Let $x$, $y$, and $z$ be real numbers such that \[\cos x + \cos y + \cos z = \sin x + \sin y + \sin z = 0.\]Find the sum of all possible values of $\cos 2x + \cos 2y + \cos 2z.$
Level 3
Precalculus
Let $a = e^{ix}$, $b = e^{iy}$, and $c = e^{iz}$. Then \begin{align*} a + b + c &= e^{ix} + e^{iy} + e^{iz} \\ &= (\cos x + \cos y + \cos z) + i (\sin x + \sin y + \sin z) \\ &= 0. \end{align*}Also, \begin{align*} \frac{1}{a} + \frac{1}{b} + \frac{1}{c} &= \frac{1}{e^{ix}} + \frac{1}{e^{iy}} + \frac{1}{e^{iz}} \\ &= e^{-ix} + e^{-iy} + e^{-iz} \\ &= [\cos (-x) + \cos (-y) + \cos (-z)] + i [\sin (-x) + \sin (-y) + \sin (-z)] \\ &= (\cos x + \cos y + \cos z) - i (\sin x + \sin y + \sin z) \\ &= 0. \end{align*}Hence, \[abc \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right) = ab + ac + bc = 0.\]Now, \begin{align*} a^2 + b^2 + c^2 &= e^{2ix} + e^{2iy} + e^{2iz} \\ &= (\cos 2x + \cos 2y + \cos 2z) + i (\sin 2x + \sin 2y + \sin 2z). \end{align*}Squaring $a + b + c = 0,$ we get \[(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) = 0.\]Therefore, $a^2 + b^2 + c^2 = 0,$ which means the only possible value of $\cos 2x + \cos 2y + \cos 2z$ is $\boxed{0}.$
Let $A = (3, \theta_1)$ and $B = (9, \theta_2)$ in polar coordinates. If $\theta_1 - \theta_2 = \frac{\pi}{2},$ then find the distance $AB.$
Level 2
Precalculus
Let $O$ be the origin. Then $\angle AOB = \frac{\pi}{2},$ so by Pythagoras, \[AB = \sqrt{3^2 + 9^2} = \boxed{3 \sqrt{10}}.\][asy] unitsize(0.5 cm); pair A, B, O; A = 3*dir(100); B = 9*dir(10); O = (0,0); draw(A--O--B--cycle); draw((-2,0)--(10,0)); draw((0,-1)--(0,4)); label("$A$", A, NW); label("$B$", B, E); label("$O$", O, SW); [/asy]
Let $z_1$ and $z_2$ be the complex roots of $z^2 + az + b = 0,$ where $a$ and $b$ are complex numbers. In the complex plane, 0, $z_1,$ and $z_2$ form the vertices of an equilateral triangle. Find $\frac{a^2}{b}.$
Level 3
Precalculus
Let $z_2 = \omega z_1,$ where $\omega = e^{\pi i/3}.$ Then by Vieta's formulas, \begin{align*} -a &= z_1 + z_2 = (1 + \omega) z_1, \\ b &= z_1 z_2 = \omega z_1^2. \end{align*}Hence, \begin{align*} \frac{a^2}{b} &= \frac{(1 + \omega)^2 z_1^2}{\omega z_1^2} \\ &= \frac{\omega^2 + 2 \omega + 1}{\omega} \\ &= \omega + 2 + \frac{1}{\omega} \\ &= e^{\pi i/3} + 2 + e^{-\pi i/3} \\ &= \frac{1}{2} + i \frac{\sqrt{3}}{2} + 2 + \frac{1}{2} - i \frac{\sqrt{3}}{2} \\ &= \boxed{3}. \end{align*}
Find the curve defined by the equation \[r = 2.\](A) Line (B) Circle (C) Parabola (D) Ellipse (E) Hyperbola Enter the letter of the correct option.
Level 1
Precalculus
Every point on the graph has a distance of 2 from the origin, so the graph is a circle. [asy] unitsize(2 cm); draw(Circle((0,0),1),red); draw((-1.2,0)--(1.2,0)); draw((0,-1.2)--(0,1.2)); label("$r = 2$", (1.2,0.8), red); [/asy] The answer is $\boxed{\text{(B)}}.$
Find the matrix $\mathbf{M}$ such that \[\mathbf{M} \mathbf{v} = \begin{pmatrix} 5 \\ 2 \\ -8 \end{pmatrix} \times \mathbf{v}\]for all vectors $\mathbf{v}.$
Level 5
Precalculus
Let $\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$ Then \[\begin{pmatrix} 5 \\ 2 \\ -8 \end{pmatrix} \times \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 8y + 2z \\ -8x - 5z \\ -2x + 5y \end{pmatrix} = \begin{pmatrix} 0 & 8 & 2 \\ -8 & 0 & -5 \\ -2 & 5 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.\]Thus, \[\mathbf{M} = \boxed{\begin{pmatrix} 0 & 8 & 2 \\ -8 & 0 & -5 \\ -2 & 5 & 0 \end{pmatrix}}.\]
What is the period of $y = \sin 5x $?
Level 1
Precalculus
The graph of $y = \sin 5x$ passes through one full period as $5x$ ranges from $0$ to $2\pi$, which means $x$ ranges from $0$ to $\boxed{\frac{2\pi}{5}}.$ The graph of $y = \sin 5x$ is shown below: [asy] import TrigMacros; size(400); real g(real x) { return sin(5*x); } draw(graph(g,-3*pi,3*pi,n=700,join=operator ..),red); trig_axes(-3*pi,3*pi+.4,-2,2,pi,1); layer(); rm_trig_labels(-3, 3, 1); [/asy]
If the matrix $\mathbf{A}$ has an inverse and $(\mathbf{A} - 2 \mathbf{I})(\mathbf{A} - 4 \mathbf{I}) = \mathbf{0},$ then find \[\mathbf{A} + 8 \mathbf{A}^{-1}.\]
Level 4
Precalculus
Expanding $(\mathbf{A} - 2 \mathbf{I})(\mathbf{A} - 4 \mathbf{I}) = \mathbf{0},$ we get \[\mathbf{A}^2 - 6 \mathbf{A} + 8 \mathbf{I} = \mathbf{0}.\]Multiplying both sides by $\mathbf{A}^{-1},$ we get \[\mathbf{A} - 6 \mathbf{I} + 8 \mathbf{A}^{-1} = \mathbf{0}.\]Then \[\mathbf{A} + 8 \mathbf{A}^{-1} = 6 \mathbf{I} = \boxed{\begin{pmatrix} 6 & 0 \\ 0 & 6 \end{pmatrix}}.\]
Find the unit vector $\mathbf{v},$ lying in the $xz$-plane, which makes an angle of $45^\circ$ with $\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix},$ and an angle of $60^\circ$ with $\begin{pmatrix} 0 \\ 1 \\ - 1 \end{pmatrix}.$
Level 4
Precalculus
Since $\mathbf{v}$ is a unit vector lying in the $xz$-plane, it is of the form $\begin{pmatrix} x \\ 0 \\ z \end{pmatrix},$ where $x^2 + z^2 = 1.$ Since it makes an angle of $45^\circ$ with $\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix},$ \[\frac{\begin{pmatrix} x \\ 0 \\ z \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}}{\left\| \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} \right\| \left\| \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \right\|} = \cos 45^\circ = \frac{1}{\sqrt{2}}.\]Then \[\frac{2x - z}{3} = \frac{1}{\sqrt{2}},\]so $2x - z = \frac{3}{\sqrt{2}}.$ Since $\mathbf{v}$ makes an angle of $60^\circ$ with $\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix},$ \[\frac{\begin{pmatrix} x \\ 0 \\ z \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}}{\left\| \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} \right\| \left\| \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\|} = \cos 60^\circ = \frac{1}{2}.\]Then \[\frac{-z}{\sqrt{2}} = \frac{1}{2},\]so $z = -\frac{\sqrt{2}}{2}.$ Then we can solve for $x,$ to get $x = \frac{\sqrt{2}}{2}.$ Thus, $\mathbf{v} = \boxed{\begin{pmatrix} \sqrt{2}/2 \\ 0 \\ -\sqrt{2}/2 \end{pmatrix}}.$
Find the inverse of the matrix \[\begin{pmatrix} 2 & 3 \\ -1 & 7 \end{pmatrix}.\]If the inverse does not exist, then enter the zero matrix.
Level 2
Precalculus
From the formula, \[\begin{pmatrix} 2 & 3 \\ -1 & 7 \end{pmatrix}^{-1} = \frac{1}{(2)(7) - (3)(-1)} \begin{pmatrix} 7 & -3 \\ 1 & 2 \end{pmatrix} = \boxed{\begin{pmatrix} 7/17 & -3/17 \\ 1/17 & 2/17 \end{pmatrix}}.\]
Two transformations are applied to the complex number $-3 - 8i$: A $45^\circ$ rotation around the origin in the counter-clockwise direction. A dilation, centered at the origin, with scale factor $\sqrt{2}.$ What is the resulting complex number?
Level 4
Precalculus
A $45^\circ$ rotation in the counter-clockwise direction corresponds to multiplication by $\operatorname{cis} 45^\circ = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}},$ and the dilation corresponds to multiplication by $\sqrt{2}.$ Therefore, both transformations correspond to multiplication by $\left( \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} \right) \sqrt{2} = 1 + i.$ [asy] unitsize(0.5 cm); pair A = (-3,-8), B = (5,-11); draw((-4,0)--(6,0)); draw((0,-12)--(0,2)); draw((0,0)--A,dashed); draw((0,0)--B,dashed); dot("$-3 - 8i$", A, SW); dot("$5 - 11i$", B, SE); [/asy] This means the image of $-3 - 8i$ is $(-3 - 8i)(1 + i) = \boxed{5 - 11i}.$
Find the distance from the point $(1,-1,2)$ to the line passing through $(-2,2,1)$ and $(-1,-1,3).$
Level 4
Precalculus
Let $\mathbf{a} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}.$ The line can be parameterized by \[\bold{v} = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 + t \\ 2 - 3t \\ 1 + 2t \end{pmatrix}.\]If $\bold{v}$ is the vector that is closest to $\bold{a}$, then the vector joining $\bold{v}$ and $\bold{a}$ is orthogonal to the direction vector of the line. This vector is \[\mathbf{v} - \mathbf{a} = \begin{pmatrix} -2 + t \\ 2 - 3t \\ 1 + 2t \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 + t \\ 3 - 3t \\ -1 + 2t \end{pmatrix}.\][asy] unitsize (0.6 cm); pair A, B, C, D, E, F, H; A = (2,5); B = (0,0); C = (8,0); D = (A + reflect(B,C)*(A))/2; draw(A--D); draw((0,0)--(8,0)); dot("$\mathbf{a}$", A, N); dot("$\mathbf{v}$", D, S); [/asy] Hence, \[\begin{pmatrix} -3 + t \\ 3 - 3t \\ -1 + 2t \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = 0,\]so $(-3 + t)(1) + (3 - 3t)(-3) + (-1 + 2t)(2) = 0.$ Solving for $t$, we find $t = 1.$ Then the distance between the point and the line is \[\| \mathbf{v} - \mathbf{a} \| = \left\| \begin{pmatrix} -2 \\ 0 \\ -1 \end{pmatrix} \right\| = \boxed{\sqrt{5}}.\]
A line is expressed in the form \[\begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \left( \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} -2 \\ 8 \end{pmatrix} \right) = 0.\]The equation of the line can be expressed in the form $y = mx + b.$ Enter the ordered pair $(m,b).$
Level 3
Precalculus
Expanding, we get \[\begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \left( \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} -2 \\ 8 \end{pmatrix} \right) = \begin{pmatrix} 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} x + 2 \\ y - 8 \end{pmatrix} = (x + 2) + 3(y - 8) = 0.\]Solving for $y,$ we find \[y = -\frac{1}{3} x + \frac{22}{3}.\]Thus, $(m,b) = \boxed{\left( -\frac{1}{3}, \frac{22}{3} \right)}.$
Find the equation of the plane which passes through the point $(1,4,-2),$ and which is parallel to the plane $-2x + y - 3z = 7.$ Enter your answer in the form \[Ax + By + Cz + D = 0,\]where $A,$ $B,$ $C,$ $D$ are integers such that $A > 0$ and $\gcd(|A|,|B|,|C|,|D|) = 1.$
Level 4
Precalculus
The plane $-2x + y - 3z = 7$ has normal vector $\begin{pmatrix} -2 \\ 1 \\ -3 \end{pmatrix},$ so the plane we seek will also have this normal vector. In other words, the plane will have an equation of the form \[-2x + y - 3z + D = 0.\]Since we want the coefficient of $x$ to be positive, we can multiply by $-1$ to get \[2x - y + 3z - D = 0.\]Setting $x = 1,$ $y = 4,$ and $z = -2,$ we get $-8 - D = 0,$ so $D = -8.$ Thus, the equation we seek is \[\boxed{2x - y + 3z + 8 = 0}.\]
Find the matrix $\mathbf{M},$ with real entries, such that \[\mathbf{M}^3 - 4 \mathbf{M}^2 + 5 \mathbf{M} = \begin{pmatrix} 10 & 20 \\ 5 & 10 \end{pmatrix}.\]
Level 5
Precalculus
Let $\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$ Note that \[\mathbf{M} (\mathbf{M}^3 - 4 \mathbf{M}^2 + 5 \mathbf{M}) = \mathbf{M}^4 - 4 \mathbf{M}^3 + 5 \mathbf{M}^2 = (\mathbf{M}^3 - 4 \mathbf{M}^2 + 5 \mathbf{M}) \mathbf{M},\]so \[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 10 & 20 \\ 5 & 10 \end{pmatrix} = \begin{pmatrix} 10 & 20 \\ 5 & 10 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}.\]This becomes \[\begin{pmatrix} 10a + 5b & 20a + 10b \\ 10c + 5d & 20c + 10d \end{pmatrix} = \begin{pmatrix} 10a + 20c & 10b + 20d \\ 5a + 10c & 5b + 10d \end{pmatrix}.\]Comparing entries, we get \begin{align*} 10a + 5b &= 10a + 20c, \\ 20a + 10b &= 10b + 20d, \\ 10c + 5d &= 5a + 10c, \\ 20c + 10d &= 5b + 10d. \end{align*}Then from the first and second equations, $5b = 20c$ and $20a = 20d,$ so $b = 4c$ and $a = d.$ (The other equations give us the same information.) Thus, \[\mathbf{M} = \begin{pmatrix} a & 4c \\ c & a \end{pmatrix}.\]Then \[\mathbf{M}^2 = \begin{pmatrix} a & 4c \\ c & a \end{pmatrix} \begin{pmatrix} a & 4c \\ c & a \end{pmatrix} = \begin{pmatrix} a^2 + 4c^2 & 8ac \\ 2ac & a^2 + 4c^2 \end{pmatrix},\]and \[\mathbf{M}^3 = \begin{pmatrix} a & 4c \\ c & a \end{pmatrix} \begin{pmatrix} a^2 + 4c^2 & 8ac \\ 2ac & a^2 + 4c^2 \end{pmatrix} = \begin{pmatrix} a^3 + 12ac^2 & 12a^2 c + 16c^3 \\ 3a^2 c + 4c^3 & a^3 + 12ac^2 \end{pmatrix}.\]Hence, \begin{align*} \mathbf{M}^3 - 4 \mathbf{M}^2 + 5 \mathbf{M} &= \begin{pmatrix} a^3 + 12ac^2 & 12a^2 c + 16c^3 \\ 3a^2 c + 4c^3 & a^3 + 12ac^2 \end{pmatrix} - 4 \begin{pmatrix} a^2 + 4c^2 & 8ac \\ 2ac & a^2 + 4c^2 \end{pmatrix} + 5 \begin{pmatrix} a & 4c \\ c & a \end{pmatrix} \\ &= \begin{pmatrix} a^3 + 12ac^2 - 4a^2 - 16c^2 + 5a & 12a^2 c + 16c^3 - 32ac + 20c \\ 3a^2 c + 4c^3 - 8ac + 5c & a^3 + 12ac^2 - 4a^2 - 16c^2 + 5a \end{pmatrix} \end{align*}Again comparing entries, we get \begin{align*} a^3 + 12ac^2 - 4a^2 - 16c^2 + 5a &= 10, \\ 3a^2 c + 4c^3 - 8ac + 5c &= 5. \end{align*}Then \[(a^3 + 12ac^2 - 4a^2 - 16c^2 + 5a) - 2 (3a^2 c + 4c^3 - 8ac + 5c) = 0.\]Expanding, we get \[a^3 - 6a^2 c + 12ac^2 - 8c^3 - 4a^2 + 16ac - 16c^2 + 5a - 10c = 0,\]which we can write as \[(a - 2c)^3 - 4(a - 2c)^2 + 5(a - 2c) = 0.\]Let $x = a - 2c,$ so \[x^3 - 4x^2 + 5x = 0,\]which factors as $x(x^2 - 4x + 5) = 0.$ The quadratic factor has no real roots, so $x = 0,$ which means $a = 2c.$ Substituting into the equation $3a^2 c + 4c^3 - 8ac + 5c = 5,$ we get \[3(2c)^2 c + 4c^3 - 8(2c) c + 5c = 5,\]which simplifies to $16c^3 - 16c^2 + 5c - 5 = 0.$ This factors as $(c - 1)(16c^2 + 5) = 0,$ so $c = 1.$ It follows that $a = 2,$ $b = 4,$ and $d = 2,$ so \[\mathbf{M} = \boxed{\begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}}.\]
If $e^{i \alpha} + e^{i \beta} = \frac{1}{4} + \frac{3}{7} i,$ then find $e^{-i \alpha} + e^{-i \beta}.$
Level 2
Precalculus
We can write \[\cos \alpha + i \sin \alpha + \cos \beta + i \sin \beta = \frac{1}{4} + \frac{3}{7} i,\]so $\cos \alpha + \cos \beta = \frac{1}{4}$ and $\sin \alpha + \sin \beta = \frac{3}{7}.$ Therefore, \begin{align*} e^{-i \alpha} + e^{-i \beta} &= \cos (-\alpha) + i \sin (-\alpha) + \cos (-\beta) + i \sin (-\beta) \\ &= \cos \alpha - i \sin \alpha + \cos \beta - i \sin \beta \\ &= \boxed{\frac{1}{4} - \frac{3}{7} i}. \end{align*}
The dilation, centered at $-1 + 4i,$ with scale factor $-2,$ takes $2i$ to which complex number?
Level 3
Precalculus
Let $z$ be the image of $2i$ under the dilation. [asy] unitsize(0.5 cm); pair C, P, Q; C = (-1,4); P = (0,2); Q = (-3,8); draw((-5,0)--(5,0)); draw((0,-1)--(0,10)); draw(P--Q,dashed); dot("$-1 + 4i$", C, SW); dot("$2i$", P, E); dot("$-3 + 8i$", Q, NW); [/asy] Since the dilation is centered at $-1 + 4i,$ with scale factor $-2,$ \[z - (-1 + 4i) = (-2)(2i - (-1 + 4i)).\]Solving, we find $z = \boxed{-3 + 8i}.$
Compute the distance between the parallel lines given by \[\begin{pmatrix} 2 \\ -3 \end{pmatrix} + t \begin{pmatrix} 1 \\ -7 \end{pmatrix}\]and \[\begin{pmatrix} 1 \\ -5 \end{pmatrix} + s \begin{pmatrix} 1 \\ -7 \end{pmatrix}.\]
Level 5
Precalculus
To find the distance between the lines, we find a vector from a point on one line to a point on the other. Below, we have the two lines, and the projection: [asy] usepackage("amsmath"); unitsize(0.4 cm); pair A, B, P; A = (1,4); B = (-5,6); P = (A + reflect(B, B + (4,3))*(A))/2; draw((A + (4,3))--(A - 2*(4,3))); draw((B + 2*(4,3))--(B - (4,3))); draw(B--P,linewidth(2*bp),Arrow(8)); draw(B--A,Arrow(8)); draw(A--P,dashed); draw((-5,10)--((-5,10) + (4,3)),Arrow(8)); dot("$\mathbf{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$", A, SE); dot("$\mathbf{b} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$", B, NW); label("$\mathbf{a} + t \mathbf{d}$", A + (4,3), E); label("$\mathbf{b} + s \mathbf{d}$", B + 2*(4,3), E); label("$\mathbf{v}$", (A + B)/2, S); label("$\mathbf{p}$", (B + P)/2, NW); label("$\mathbf{d}$", (-5,10) + 0.5*(4,3), NW); dot("$\mathbf{c}$", P, NW); [/asy] Let $\bold{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$, $\bold{b} = \begin{pmatrix} 1 \\ -5 \end{pmatrix}$, and $\bold{d} = \begin{pmatrix} 1 \\ -7 \end{pmatrix}$. Let $\bold{v} = \bold{a} - \bold{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Letting $\bold{p}$ be the projection of $\bold{v}$ onto $\bold{d}$, we have \begin{align*} \bold{p} &= \text{proj}_{\bold{d}} \bold{v} \\ &= \frac{\bold{v} \cdot \bold{d}}{\bold{d} \cdot \bold{d}} \bold{d} \\ &= \frac{\begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -7 \end{pmatrix}}{\begin{pmatrix} 1 \\ -7 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -7 \end{pmatrix}} \begin{pmatrix} 1 \\ -7 \end{pmatrix} \\ &= -\frac{13}{50} \begin{pmatrix} 1 \\ -7 \end{pmatrix} \\ &= \begin{pmatrix} -\frac{13}{50} \\ \frac{91}{50} \end{pmatrix}. \end{align*}Thus, if $\bold{c} = \bold{b} + \bold{p}$, then the vector joining $\bold{a}$ and $\bold{c}$ is orthogonal to $\bold{d}$. We have that \[\bold{c} = \begin{pmatrix} 1 \\ -5 \end{pmatrix} + \begin{pmatrix} -\frac{13}{50} \\ \frac{91}{50} \end{pmatrix} = \begin{pmatrix} \frac{37}{50} \\ -\frac{159}{50} \end{pmatrix},\]so the distance between the two parallel lines is \[\left\| \begin{pmatrix} 2 \\ -3 \end{pmatrix} - \begin{pmatrix} \frac{37}{50} \\ -\frac{159}{50} \end{pmatrix} \right\| = \left\| \begin{pmatrix} \frac{63}{50} \\ \frac{9}{50} \end{pmatrix} \right\| = \boxed{\frac{9 \sqrt{2}}{10}}.\]
Find the equation of the plane passing through the point $(0,7,-7)$ and containing the line \[\frac{x + 1}{-3} = \frac{y - 3}{2} = \frac{z + 2}{1}.\]Enter your answer in the form \[Ax + By + Cz + D = 0,\]where $A,$ $B,$ $C,$ $D$ are integers such that $A > 0$ and $\gcd(|A|,|B|,|C|,|D|) = 1.$
Level 4
Precalculus
From the equation, $\frac{x + 1}{-3} = \frac{y - 3}{2},$ \[2x + 3y - 7 = 0.\]From the equation $\frac{y - 3}{2} = \frac{z + 2}{1},$ \[y - 2z - 7 = 0.\]So, any point on the line given in the problem will satisfy $2x + 3y - 7 = 0$ and $y - 2z - 7 = 0,$ which means it will also satisfy any equation of the form \[a(2x + 3y - 7) + b(y - 2z - 7) = 0,\]where $a$ and $b$ are constants. We also want the plane to contain $(0,7,-7).$ Plugging in these values, we get \[14a + 14b = 0.\]Thus, we can take $a = 1$ and $b = -1.$ This gives us \[(2x + 3y - 7) - (y - 2z - 7) = 0,\]which simplifies to $2x + 2y + 2z = 0.$ Thus, the equation of the plane is $\boxed{x + y + z = 0}.$
What is the volume of the region in three-dimensional space defined by the inequalities $|x|+|y|+|z|\le1$ and $|x|+|y|+|z-1|\le1$?
Level 4
Precalculus
In the octant where $x \ge 0,$ $y \ge 0,$ and $z \ge 0,$ the inequality $|x| + |y| + |z| \le 1$ becomes \[x + y + z \le 1.\]Thus, the region in this octant is the tetrahedron with vertices $(0,0,0),$ $(1,0,0),$ $(0,1,0),$ and $(1,0,0).$ By symmetry, the region defined by $|x| + |y| + |z| \le 1$ is the octahedron with vertices $(\pm 1,0,0),$ $(0,\pm 1,0),$ and $(0,0,\pm 1).$ Let the base of the upper-half of the octahedron be $ABCD,$ and let $E = (0,0,1).$ Similarly, the region defined by $|x| + |y| + |z - 1| \le 1$ is also an octahedron, centered at $(0,0,1).$ Let the base of the lower-half of the octahedron be $A'B'C'D',$ and let $E' = (0,0,0).$ [asy] import three; size(250); currentprojection = perspective(6,3,2); triple A, B, C, D, E, Ap, Bp, Cp, Dp, Ep, M, N, P, Q; A = (1,0,0); B = (0,1,0); C = (-1,0,0); D = (0,-1,0); E = (0,0,1); Ap = (1,0,1); Bp = (0,1,1); Cp = (-1,0,1); Dp = (0,-1,1); Ep = (0,0,0); M = (A + E)/2; N = (B + E)/2; P = (C + E)/2; Q = (D + E)/2; draw(D--A--B); draw(D--C--B,dashed); draw(C--E,dashed); draw(A--M); draw(M--E,dashed); draw(B--N); draw(N--E,dashed); draw(D--Q); draw(Q--E,dashed); draw(Ap--Bp--Cp--Dp--cycle); draw(Ap--M); draw(M--Ep,dashed); draw(Bp--N); draw(N--Ep,dashed); draw(Cp--Ep,dashed); draw(Dp--Q); draw(Q--Ep,dashed); draw(Q--M--N); draw(Q--P--N,dashed); label("$A$", A, SW); label("$B$", B, dir(0)); label("$C$", C, S); label("$D$", D, W); label("$E$", E, dir(90)); label("$A'$", Ap, dir(90)); label("$B'$", Bp, dir(0)); label("$C'$", Cp, dir(90)); label("$D'$", Dp, W); label("$E'$", Ep, S); label("$M$", M, SW); label("$N$", N, dir(0)); label("$P$", P, NE); label("$Q$", Q, W); [/asy] Faces $ABE$ and $A'B'E'$ intersect in line segment $\overline{MN},$ where $M$ is the midpoint of $\overline{AE},$ and $N$ is the midpoint of $\overline{BE}.$ Thus, the intersection of the two octahedra is another octahedra, consisting of the upper-half of pyramid $ABCDE,$ and the lower-half of pyramid $A'B'C'D'E'.$ The volume of pyramid $ABCDE$ is \[\frac{1}{3} \cdot (\sqrt{2})^2 \cdot 1 = \frac{2}{3},\]so the volume of its upper half is $\left( \frac{1}{2} \right)^3 \cdot \frac{2}{3} = \frac{1}{12}.$ Then the volume of the smaller octahedron is $\frac{2}{12} = \boxed{\frac{1}{6}}.$
If \[\begin{pmatrix} 1 & 2 & a \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & 18 & 2007 \\ 0 & 1 & 36 \\ 0 & 0 & 1 \end{pmatrix},\]then find $a + n.$
Level 3
Precalculus
Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & a \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}.$ Then we can write $\mathbf{A} = \mathbf{I} + \mathbf{B},$ where \[\mathbf{B} = \begin{pmatrix} 0 & 2 & a \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}.\]Note that \[\mathbf{B}^2 = \begin{pmatrix} 0 & 2 & a \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 & a \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}\]and \[\mathbf{B}^3 = \mathbf{B} \mathbf{B}^2 = \begin{pmatrix} 0 & 2 & a \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{0}.\]Then by the Binomial Theorem, \begin{align*} \mathbf{A}^n &= (\mathbf{I} + \mathbf{B})^n \\ &= \mathbf{I}^n + \binom{n}{1} \mathbf{I}^{n - 1} \mathbf{B} + \binom{n}{2} \mathbf{I}^{n - 2} \mathbf{B}^2 + \binom{n}{3} \mathbf{I}^{n - 3} \mathbf{B}^3 + \dots + \mathbf{B}^n \\ &= \mathbf{I} + n \mathbf{B} + \frac{n(n - 1)}{2} \mathbf{B}^2 \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + n \begin{pmatrix} 0 & 2 & a \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} + \frac{n(n - 1)}{2} \begin{pmatrix} 0 & 0 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 2n & an + 4n(n - 1) \\ 0 & 1 & 4n \\ 0 & 0 & 1 \end{pmatrix}. \end{align*}Hence, $2n = 18,$ $an + 4n(n - 1) = 2007,$ and $4n = 36.$ Solving, we find $a = 191$ and $n = 9,$ so $a + n = \boxed{200}.$ Note: We can expand $(\mathbf{I} + \mathbf{B})^{2016}$ using the Binomial Theorem because the matrices $\mathbf{B}$ and $\mathbf{I}$ commute, i.e. $\mathbf{B} \mathbf{I} = \mathbf{I} \mathbf{B}.$ In general, expanding a power of $\mathbf{A} + \mathbf{B}$ is difficult. For example, \[(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{A} + \mathbf{B}^2,\]and without knowing more about $\mathbf{A}$ and $\mathbf{B},$ this cannot be simplified.
Given that $\cos x - 4 \sin x = 1,$ find all possible values of $\sin x + 4 \cos x.$
Level 4
Precalculus
From the equation $\cos x - 4 \sin x = 1,$ \[\cos x - 1 = 4 \sin x.\]Squaring both sides, we get \[\cos^2 x - 2 \cos x + 1 = 16 \sin^2 x = 16 - 16 \cos^2 x.\]This simplifies to $17 \cos^2 x - 2 \cos x - 15 = 0,$ which factors as \[(\cos x - 1)(17 \cos x + 15) = 0.\]Hence, $\cos x = 1$ or $\cos x = -\frac{15}{17}.$ If $\cos x = 1,$ then $\sin x = \frac{\cos x - 1}{4} = 0,$ so \[\sin x + 4 \cos x = 0 + 4(1) = \boxed{4}.\]If $\cos x = -\frac{15}{17},$ then $\sin x = \frac{\cos x - 1}{4} = -\frac{8}{17},$ so \[\sin x + 4 \cos x = -\frac{8}{17} + 4 \left( -\frac{15}{17} \right) = \boxed{-4}.\]
Let $\theta$ be the angle between the planes $2x + y - 2z + 3 = 0$ and $6x + 3y + 2z - 5 = 0.$ Find $\cos \theta.$
Level 3
Precalculus
The two planes intersect at a line, as shown below. [asy] unitsize(0.4 cm); pair[] A, B, C, P; pair M; A[1] = (3,3); A[2] = (13,3); A[3] = (10,0); A[4] = (0,0); P[1] = (A[1] + A[2])/2; P[2] = (A[3] + A[4])/2; B[1] = P[1] + 4*dir(-45); B[4] = B[1] + P[2] - P[1]; B[2] = 2*P[1] - B[1]; B[3] = 2*P[2] - B[4]; C[1] = P[1] + 4*dir(75); C[4] = C[1] + P[2] - P[1]; C[2] = 2*P[1] - C[1]; C[3] = 2*P[2] - C[4]; M = (P[1] + P[2])/2; draw((M + 2*dir(75))--M--(M + (2,0))); draw(P[1]--P[2]); draw(extension(P[2],C[4],A[1],A[2])--A[1]--A[4]--A[3]--A[2]--P[1]); draw(P[1]--C[1]--C[4]--C[3]--C[2]--extension(C[2],C[1],A[3],P[2])); label("$\theta$", M + (1,1), UnFill); [/asy] Then the angle between the planes is equal to the angle between their normal vectors. [asy] unitsize(0.8 cm); draw((-0.5,0)--(3,0)); draw(-0.5*dir(75)--3*dir(75)); draw((2,0)--(2,2.5),Arrow(6)); draw(2*dir(75)--(2*dir(75) + 2.5*dir(-15)),Arrow(6)); draw(rightanglemark((0,0),(2,0),(2,2),10)); draw(rightanglemark((0,0),2*dir(75),2*dir(75) + 2*dir(-15),10)); label("$\theta$", (0.5,0.4)); label("$\theta$", (1.7,2)); [/asy] The direction vectors of the planes are $\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix},$ so \[\cos \theta = \frac{\begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix}}{\left\| \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \right\| \left\| \begin{pmatrix} 6 \\ 3 \\ 2 \end{pmatrix} \right\|} = \boxed{\frac{11}{21}}.\]
Let $x$ and $y$ be distinct real numbers such that \[ \begin{vmatrix} 1 & 4 & 9 \\ 3 & x & y \\ 3 & y & x \end{vmatrix} = 0.\]Find $x + y.$
Level 3
Precalculus
Expanding the determinant, we obtain \begin{align*} \begin{vmatrix} 1 & 4 & 9 \\ 3 & x & y \\ 3 & y & x \end{vmatrix} &= \begin{vmatrix} x & y \\ y & x \end{vmatrix} - 4 \begin{vmatrix} 3 & y \\ 3 & x \end{vmatrix} + 9 \begin{vmatrix} 3 & x \\ 3 & y \end{vmatrix} \\ &= (x^2 - y^2) - 4(3x - 3y) + 9(3y - 3x) \\ &= x^2 - y^2 - 39x + 39y \\ &= (x - y)(x + y) - 39(x - y) \\ &= (x - y)(x + y - 39). \end{align*}Since this is 0, either $x - y = 0$ or $x + y - 39 = 0.$ But $x$ and $y$ are distinct, so $x + y = \boxed{39}.$
Let $\mathbf{a},$ $\mathbf{b},$ and $\mathbf{c}$ be unit vectors such that \[\mathbf{a} + \mathbf{b} + \sqrt{3} \mathbf{c} = \mathbf{0}.\]Find the angle between $\mathbf{a}$ and $\mathbf{b},$ in degrees. Note: A unit vector is a vector of magnitude 1.
Level 2
Precalculus
From the given equation, \[\mathbf{a} + \mathbf{b} = -\sqrt{3} \mathbf{c}.\]Then $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = 3 \mathbf{c} \cdot \mathbf{c} = 3.$ Expanding, we get \[\mathbf{a} \cdot \mathbf{a} + 2 \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b} = 3.\]Then $2 \mathbf{a} \cdot \mathbf{b} = 1,$ so $\mathbf{a} \cdot \mathbf{b} = \frac{1}{2}.$ If $\theta$ is the angle between $\mathbf{a}$ and $\mathbf{b},$ then \[\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{1/2}{1 \cdot 1} = \frac{1}{2},\]so $\theta = \boxed{60^\circ}.$
The matrices \[\begin{pmatrix} a & 2 \\ 1 & 4 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} -\frac{2}{7} & \frac{1}{7} \\ b & \frac{3}{14} \end{pmatrix}\]are inverses. Enter the ordered pair $(a,b).$
Level 2
Precalculus
The product of the matrices is \[\begin{pmatrix} a & 2 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} -\frac{2}{7} & \frac{1}{7} \\ b & \frac{3}{14} \end{pmatrix} = \begin{pmatrix} 2b - \frac{2a}{7} & \frac{a + 3}{7} \\ 4b - \frac{2}{7} & 1 \end{pmatrix}.\]We want this to be the identity matrix, so $2b - \frac{2a}{7} = 1,$ $\frac{a + 3}{7} = 0,$ and $4b - \frac{2}{7} = 0.$ Solving, we find $(a,b) = \boxed{\left( -3, \frac{1}{14} \right)}.$
The quantity \[\frac{\tan \frac{\pi}{5} + i}{\tan \frac{\pi}{5} - i}\]is a tenth root of unity. In other words, it is equal to $\cos \frac{2n \pi}{10} + i \sin \frac{2n \pi}{10}$ for some integer $n$ between 0 and 9 inclusive. Which value of $n$?
Level 4
Precalculus
We have that \begin{align*} \frac{\tan \frac{\pi}{5} + i}{\tan \frac{\pi}{5} - i} &= \frac{\frac{\sin \frac{\pi}{5}}{\cos \frac{\pi}{5}} + i}{\frac{\sin \frac{\pi}{5}}{\cos \frac{\pi}{5}} - i} \\ &= \frac{\sin \frac{\pi}{5} + i \cos \frac{\pi}{5}}{\sin \frac{\pi}{5} - i \cos \frac{\pi}{5}} \\ &= \frac{i \sin \frac{\pi}{5} - \cos \frac{\pi}{5}}{i \sin \frac{\pi}{5} + \cos \frac{\pi}{5}} \\ &= \frac{\cos \frac{4 \pi}{5} + i \sin \frac{4 \pi}{5}}{\cos \frac{\pi}{5} + i \sin \frac{\pi}{5}} \\ &= \cos \frac{3 \pi}{5} + i \sin \frac{3 \pi}{5} \\ &= \cos \frac{6 \pi}{10} + i \sin \frac{6 \pi}{10}. \end{align*}Thus, $n = \boxed{3}.$
Let $\alpha$ and $\beta$ be real numbers. Find the minimum value of \[(2 \cos \alpha + 5 \sin \beta - 8)^2 + (2 \sin \alpha + 5 \cos \beta - 15)^2.\]
Level 5
Precalculus
Let $x = 2 \cos \alpha + 5 \sin \beta$ and $y = 2 \sin \alpha + 5 \cos \beta.$ Then \begin{align*} x^2 + y^2 &= (2 \cos \alpha + 5 \sin \beta)^2 + (2 \sin \alpha + 5 \cos \beta)^2 \\ &= 4 \cos^2 \alpha + 20 \cos \alpha \sin \beta + 25 \sin^2 \beta + 4 \sin^2 \alpha + 20 \sin \alpha \cos \beta + 25 \cos^2 \beta \\ &= 29 + 20 \cos \alpha \sin \beta + 20 \sin \alpha \cos \beta. \end{align*}From the angle addition formula, this is equal to $29 + 20 \sin (\alpha + \beta),$ which is at most $29 + 20 = 49.$ In the coordinate plane, let $O = (0,0),$ $P = (8,15),$ and $Q = (x,y).$ Then by the Triangle Inequality, \[OQ + PQ \ge OP,\]so $PQ \ge OP - OQ = 17 - \sqrt{x^2 + y^2} \ge 10.$ Therefore, \[(2 \cos \alpha + 5 \sin \beta - 8)^2 + (2 \sin \alpha + 5 \cos \beta - 15)^2 \ge 100.\]Equality occurs when $\alpha$ is the angle such that $\cos \alpha = \frac{8}{17}$ and $\sin \alpha = \frac{15}{17},$ and $\beta = 90^\circ - \alpha.$ Thus, the minimum value of the expression is $\boxed{100}.$
Let \[\mathbf{A} = \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\ 0 & -1 & 0 \\ \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \end{pmatrix} \renewcommand{\arraystretch}{1}.\]Compute $\mathbf{A}^{2018}.$
Level 4
Precalculus
We compute the first few powers of $\mathbf{A}$: \begin{align*} \mathbf{A}^2 &= \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\ 0 & -1 & 0 \\ \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \end{pmatrix} \renewcommand{\arraystretch}{1} \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\ 0 & -1 & 0 \\ \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \end{pmatrix} \renewcommand{\arraystretch}{1} = \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{pmatrix} \renewcommand{\arraystretch}{1}, \\ \mathbf{A}^3 &= \mathbf{A} \mathbf{A}^2 = \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\ 0 & -1 & 0 \\ \frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \end{pmatrix} \renewcommand{\arraystretch}{1} \renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{pmatrix} \renewcommand{\arraystretch}{1} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}. \end{align*}Then \[\mathbf{A}^6 = \mathbf{A}^3 \mathbf{A}^3 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}\]and \[\mathbf{A}^{12} = \mathbf{A}^6 \mathbf{A}^6 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}.\]Therefore, \[\mathbf{A}^{2018} = (\mathbf{A}^{12})^{168} \mathbf{A}^2 = \mathbf{A}^2 = \renewcommand{\arraystretch}{1.5} \boxed{\begin{pmatrix} \frac{1}{2} & 0 & -\frac{\sqrt{3}}{2} \\ 0 & 1 & 0 \\ \frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \end{pmatrix}} \renewcommand{\arraystretch}{1}.\]
The matrix for projecting onto a certain line $\ell,$ which passes through the origin, is given by \[\renewcommand{\arraystretch}{1.5} \begin{pmatrix} \frac{2}{15} & -\frac{1}{15} & -\frac{1}{3} \\ -\frac{1}{15} & \frac{1}{30} & \frac{1}{6} \\ -\frac{1}{3} & \frac{1}{6} & \frac{5}{6} \end{pmatrix} \renewcommand{\arraystretch}{1}.\]Find the direction vector of line $\ell.$ Enter your answer in the form $\begin{pmatrix} a \\ b \\ c \end{pmatrix},$ where $a,$ $b,$ and $c$ are integers, $a > 0,$ and $\gcd(|a|,|b|,|c|) = 1.$
Level 5
Precalculus
Let $\mathbf{P}$ denote the given matrix, so $\mathbf{P} \mathbf{v}$ is the projection of $\mathbf{v}$ onto $\ell.$ In particular, $\mathbf{P} \mathbf{v}$ lies on $\ell$ for any vector $\mathbf{v}.$ So, we can take $\mathbf{v} = \mathbf{i}.$ Then \[\mathbf{P} \mathbf{i} = \begin{pmatrix} \frac{2}{15} \\ -\frac{1}{15} \\ -\frac{1}{3} \end{pmatrix} = \frac{1}{15} \begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix}.\]Thus, the direction vector we seek is $\boxed{\begin{pmatrix} 2 \\ -1 \\ -5 \end{pmatrix}}.$
Convert the point $( -2, -2 \sqrt{3}, -1)$ in rectangular coordinates to cylindrical coordinates. Enter your answer in the form $(r,\theta,z),$ where $r > 0$ and $0 \le \theta < 2 \pi.$
Level 4
Precalculus
We have that $r = \sqrt{(-2)^2 + (-2 \sqrt{3})^2} = 4.$ We want $\theta$ to satisfy \begin{align*} -2 &= 4 \cos \theta, \\ -2 \sqrt{3} &= 4 \sin \theta. \end{align*}Thus, $\theta = \frac{4 \pi}{3},$ so the cylindrical coordinates are $\boxed{\left( 4, \frac{4 \pi}{3}, -1 \right)}.$
A square pyramid with base $ABCD$ and vertex $E$ has eight edges of length 4. A plane passes through the midpoints of $\overline{AE}$, $\overline{BC}$, and $\overline{CD}$. The plane's intersection with the pyramid has an area that can be expressed as $\sqrt{p}$. Find $p$.
Level 4
Precalculus
Place the pyramid on a coordinate system with $A$ at $(0,0,0)$, $B$ at $(4,0,0)$, $C$ at $(4,4,0)$, $D$ at $(0,4,0)$ and with $E$ at $(2,2,2\sqrt{2})$. Let $R$, $S$, and $T$ be the midpoints of $\overline{AE}$, $\overline{BC}$, and $\overline{CD}$ respectively. The coordinates of $R$, $S$, and $T$ are respectively $(1,1,\sqrt{2})$, $(4,2,0)$ and $(2,4,0)$. [asy] import three; size(250); currentprojection = perspective(6,3,2); // calculate intersection of line and plane // p = point on line // d = direction of line // q = point in plane // n = normal to plane triple lineintersectplan(triple p, triple d, triple q, triple n) { return (p + dot(n,q - p)/dot(n,d)*d); } triple I = (1,0,0), J = (0,1,0), K = (0,0,1), O = (0,0,0); triple A = (0,0,0), B = (4,0,0), C = (4,4,0), D = (0,4,0), E = (2, 2, 2*sqrt(2)); triple R = (A + E)/2, S = (B + C)/2, T = (C + D)/2; triple U = lineintersectplan(B, E - B, R, cross(R - S, R - T)); triple V = lineintersectplan(D, E - D, R, cross(R - S, R - T)); draw(E--B--C--D--cycle); draw(C--E); draw(A--B,dashed); draw(A--D,dashed); draw(A--E,dashed); draw(U--R--V,dashed); draw(U--S); draw(V--T); draw(S--T,dashed); label("$A$", A, dir(270)); label("$B$", B, W); label("$C$", C, dir(270)); label("$D$", D, dir(0)); label("$E$", E, N); label("$R$", R, NW); label("$S$", S, dir(270)); label("$T$", T, SE); label("$U$", U, NW); label("$V$", V, NE); [/asy] Note that $S = (4,2,0)$ and $T = (4,2,0)$ satisfy any equation of the form \[x + y + kz = 6.\]Substituting $x = y = 1$ and $z = \sqrt{2},$ we get $2 + k \sqrt{2} = 6,$ so $k = 2 \sqrt{2}.$ Thus, the equation of plane $RST$ is \[x + y + 2z \sqrt{2} = 6.\]Let $U$ and $V$ be the points of intersection of the plane with $\overline{BE}$ and $\overline{DE}$ respectively. Points on $\overline{BE}$ have coordinates of the form $(4-t, t, t\sqrt{2}).$ Substituting into the equation of the plane, we get \[4 - t + t + 4t = 6.\]Then $t = \frac{1}{2},$ so $U = \left(\dfrac{7}{2},\dfrac{1}{2},\dfrac{\sqrt{2}}{2}\right).$ Similarly, points on $\overline{DE}$ have coordinates of the form $(t,4-t,t\sqrt{2}).$ Substituting into the equation of the plane, we get \[t + 4 - t + 4t = 6.\]Then $t = \frac{1}{2},$ so $V = \left(\dfrac{1}{2},\dfrac{7}{2},\dfrac{\sqrt{2}}{2}\right).$ Then $RU=RV=\sqrt{7}$, $US=VT=\sqrt{3}$ and $ST = 2\sqrt{2}$. Note also that $UV = 3\sqrt{2}$. Thus the pentagon formed by the intersection of the plane and the pyramid can be partitioned into isosceles triangle $RUV$ and isosceles trapezoid $USTV.$ [asy] unitsize(1 cm); pair R, S, T, U, V; R = (0,2*sqrt(5/2)); S = (-sqrt(2),0); T = (sqrt(2),0); U = (-3/2*sqrt(2),sqrt(5/2)); V = (3/2*sqrt(2),sqrt(5/2)); draw(R--U--S--T--V--cycle); draw(U--V); label("$R$", R, N); label("$S$", S, SW); label("$T$", T, SE); label("$U$", U, W); label("$V$", V, E); label("$\sqrt{7}$", (R + U)/2, NW); label("$\sqrt{7}$", (R + V)/2, NE); label("$\sqrt{3}$", (U + S)/2, SW); label("$\sqrt{3}$", (V + T)/2, SE); label("$2 \sqrt{2}$", (S + T)/2, dir(270)); label("$3 \sqrt{2}$", (U + V)/2, dir(270)); [/asy] Dropping the altitude from $R$ to $\overline{UV}$ and applying Pythagoras, we find that the altitude of triangle $RUV$ is $\frac{\sqrt{10}}{2}.$ Therefore, the area of triangle $RUV$ is \[\frac{1}{2} \cdot 3 \sqrt{2} \cdot \frac{\sqrt{10}}{2} = \frac{3 \sqrt{5}}{2}.\][asy] unitsize(1 cm); pair M, R, S, T, U, V; R = (0,2*sqrt(5/2)); S = (-sqrt(2),0); T = (sqrt(2),0); U = (-3/2*sqrt(2),sqrt(5/2)); V = (3/2*sqrt(2),sqrt(5/2)); M = (U + V)/2; draw(R--U--V--cycle); draw(R--M); label("$R$", R, N); label("$U$", U, W); label("$V$", V, E); label("$\sqrt{7}$", (R + U)/2, NW); label("$\sqrt{7}$", (R + V)/2, NE); label("$\frac{3 \sqrt{2}}{2}$", (M + V)/2, dir(270)); label("$\frac{\sqrt{10}}{2}$", (R + M)/2, W); [/asy] Dropping the altitude from $V$ to $\overline{ST},$ we find that the altitude of trapezoid $USTV$ is $\frac{\sqrt{10}}{2}.$ Thus, the area of trapezoid $USTV$ is \[\frac{3 \sqrt{2} + 2 \sqrt{2}}{2} \cdot \frac{\sqrt{10}}{2} = \frac{5 \sqrt{5}}{2}.\][asy] unitsize(1 cm); pair P, R, S, T, U, V; R = (0,2*sqrt(5/2)); S = (-sqrt(2),0); T = (sqrt(2),0); U = (-3/2*sqrt(2),sqrt(5/2)); V = (3/2*sqrt(2),sqrt(5/2)); P = (3/2*sqrt(2),0); draw(U--S--T--V--cycle); draw(T--P--V); label("$\sqrt{3}$", (T + V)/2, NW); label("$2 \sqrt{2}$", (S + T)/2, dir(270)); label("$3 \sqrt{2}$", (U + V)/2, N); label("$\frac{\sqrt{2}}{2}$", (P + T)/2, dir(270)); label("$\frac{\sqrt{10}}{2}$", (V + P)/2, E); label("$S$", S, dir(270)); label("$T$", T, dir(270)); label("$U$", U, NW); label("$V$", V, NE); [/asy] Therefore the total area of the pentagon is $\frac{3 \sqrt{5}}{2} + \frac{5 \sqrt{5}}{2} = 4\sqrt{5}$ or $\sqrt{80}$, and $p = \boxed{80}$.
Let $a,$ $b,$ $c$ be integers such that \[\mathbf{A} = \frac{1}{5} \begin{pmatrix} -3 & a \\ b & c \end{pmatrix}\]and $\mathbf{A}^2 = \mathbf{I}.$ Find the largest possible value of $a + b + c.$
Level 5
Precalculus
We have that \begin{align*} \mathbf{A}^2 &= \frac{1}{25} \begin{pmatrix} -3 & a \\ b & c \end{pmatrix} \begin{pmatrix} -3 & a \\ b & c \end{pmatrix} \\ &= \frac{1}{25} \begin{pmatrix} 9 + ab & -3a + ac \\ -3b + bc & ab + c^2 \end{pmatrix}. \end{align*}Thus, $9 + ab = ab + c^2 = 25$ and $-3a + ac = -3b + bc = 0.$ From $9 + ab = ab + c^2 = 25,$ $ab = 16$ and $c^2 = 9,$ so $c = \pm 3.$ If $c = -3,$ then $-6a = -6b = 0,$ so $a = b = 0.$ But then $ab = 0,$ contradiction, so $c = 3.$ Thus, any values of $a,$ $b,$ and $c$ such that $ab = 16$ and $c = 3$ work. We want to maximize $a + b + c = a + \frac{16}{a} + 3.$ Since $a$ is an integer, $a$ must divide 16. We can then check that $a + \frac{16}{a} + 3$ is maximized when $a = 1$ or $a = 16,$ which gives a maximum value of $\boxed{20}.$
Lines $l_1^{}$ and $l_2^{}$ both pass through the origin and make first-quadrant angles of $\frac{\pi}{70}$ and $\frac{\pi}{54}$ radians, respectively, with the positive $x$-axis. For any line $l$, the transformation $R(l)$ produces another line as follows: $l$ is reflected in $l_1$, and the resulting line is reflected in $l_2$. Let $R^{(1)}(l)=R(l)$ and $R^{(n)}(l)=R\left(R^{(n-1)}(l)\right)$. Given that $l$ is the line $y=\frac{19}{92}x$, find the smallest positive integer $m$ for which $R^{(m)}(l)=l$.
Level 3
Precalculus
More generally, suppose we have a line $l$ that is reflect across line $l_1$ to obtain line $l'.$ [asy] unitsize(3 cm); draw(-0.2*dir(35)--dir(35)); draw(-0.2*dir(60)--dir(60)); draw(-0.2*dir(10)--dir(10)); draw((-0.2,0)--(1,0)); draw((0,-0.2)--(0,1)); label("$l$", dir(60), NE); label("$l_1$", dir(35), NE); label("$l'$", dir(10), E); [/asy] Also, suppose line $l$ makes angle $\theta$ with the $x$-axis, and line $l_1$ makes angle $\alpha$ with the $x$-axis. Then line $l'$ makes angle $2 \alpha - \theta$ with the $x$-axis. (This should make sense, because line $l_1$ is "half-way" between lines $l$ and $l',$ so the angle of line $l_1$ is the average of the angles of line $l$ and $l'$.) So, if $l$ makes an angle of $\theta$ with the $x$-axis, then its reflection $l'$ across line $l_1$ makes an angle of \[2 \cdot \frac{\pi}{70} - \theta = \frac{\pi}{35} - \theta\]with the $x$-axis. Then the reflection of $l'$ across line $l_2$ makes an angle of \[2 \cdot \frac{\pi}{54} - \left( \frac{\pi}{35} - \theta \right) = \theta + \frac{8 \pi}{945}\]with the $x$-axis. Therefore, the line $R^{(n)}(l)$ makes an angle of \[\theta + \frac{8 \pi}{945} \cdot n\]with the $x$-axis. For this line to coincide with the original line $l,$ \[\frac{8 \pi}{945} \cdot n\]must be an integer multiple of $2 \pi.$ The smallest such positive integer for which this happens is $n = \boxed{945}.$
One line is described by \[\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ -k \end{pmatrix}.\]Another line is described by \[\begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} + u \begin{pmatrix} k \\ 2 \\ 1 \end{pmatrix}.\]If the lines are coplanar (i.e. there is a plane that contains both lines), then find all possible values of $k.$
Level 5
Precalculus
The direction vectors of the lines are $\begin{pmatrix} 1 \\ 1 \\ -k \end{pmatrix}$ and $\begin{pmatrix} k \\ 2 \\ 1 \end{pmatrix}.$ Suppose these vectors are proportional. Then comparing $y$-coordinates, we can get the second vector by multiplying the first vector by 2. But then $2 = k$ and $-2k = 1,$ which is not possible. So the vectors cannot be proportional, which means that the lines cannot be parallel. Therefore, the only way that the lines can be coplanar is if they intersect. Equating the representations for both lines, and comparing entries, we get \begin{align*} 2 + t &= 1 + ku, \\ 3 + t &= 4 + 2u, \\ 4 - kt &= 5 + u. \end{align*}Then $t = 2u + 1.$ Substituting into the first equation, we get $2u + 3 = 1 + ku,$ so $ku = 2u + 2.$ Substituting into the second equation, we get $4 - k(2u + 1) = 5 + u,$ so $2ku = -k - u - 1.$ Hence, $4u + 4 = -k - u - 1,$ so $k = -5u - 5.$ Then \[(-5u - 5)u = 2u + 2,\]which simplifies to $5u^2 + 7u + 2 = 0.$ This factors as $(u + 1)(5u + 2) = 0,$ so $u = -1$ or $u = -\frac{2}{5}.$ This leads to the possible values $\boxed{0,-3}$ for $k.$
Express $\sin (a + b) - \sin (a - b)$ as the product of trigonometric functions.
Level 2
Precalculus
By sum-to-product, \[\sin (a + b) - \sin (a - b) = \boxed{2 \sin b \cos a}.\]
In coordinate space, a particle starts at the point $(2,3,4)$ and ends at the point $(-1,-3,-3),$ along the line connecting the two points. Along the way, the particle intersects the unit sphere centered at the origin at two points. Then the distance between these two points can be expressed in the form $\frac{a}{\sqrt{b}},$ where $a$ and $b$ are positive integers, and $b$ is not divisible by the square of a prime. Find $a + b.$
Level 5
Precalculus
The line can be parameterized by \[\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + t \left( \begin{pmatrix} -1 \\ -3 \\ -3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \right) = \begin{pmatrix} 2 - 3t \\ 3 - 6t \\ 4 - 7t \end{pmatrix}.\]Then the particle intersects the sphere when \[(2 - 3t)^2 + (3 - 6t)^2 + (4 - 7t)^2 = 1.\]This simplifies to $94t^2 - 104t + 28 = 0.$ Let $t_1$ and $t_2$ be the roots, so by Vieta's formulas, $t_1 + t_2 = \frac{104}{94} = \frac{52}{47}$ and $t_1 t_2 = \frac{28}{94} = \frac{14}{47}.$ Then \[(t_1 - t_2)^2 = (t_1 + t_2)^2 - 4t_1 t_2 = \frac{72}{2209},\]so $|t_1 - t_2| = \sqrt{\frac{72}{2209}} = \frac{6 \sqrt{2}}{47}.$ The two points of intersection are then $(2 - 3t_1, 3 - 6t_1, 4 - 7t_1)$ and $(2 - 3t_2, 3 - 6t_2, 4 - 7t_2),$ so the distance between them is \[\sqrt{3^2 (t_1 - t_2)^2 + 6^2 (t_1 - t_2)^2 + 7^2 (t_1 - t_2)^2} = \sqrt{94} \cdot \frac{6 \sqrt{2}}{47} = \frac{12}{\sqrt{47}}.\]Thus, $a + b = 12 + 47 = \boxed{59}.$
Find the area of the triangle with vertices $(-1,4),$ $(7,0),$ and $(11,5).$
Level 2
Precalculus
Let $A = (-1,4),$ $B = (7,0),$ and $C = (11,5).$ Let $\mathbf{v} = \overrightarrow{CA} = \begin{pmatrix} -1 - 11 \\ 4 - 5 \end{pmatrix} = \begin{pmatrix} -12 \\ -1 \end{pmatrix}$ and $\mathbf{w} = \overrightarrow{CB} = \begin{pmatrix} 7 - 11 \\ 0 - 5 \end{pmatrix} = \begin{pmatrix} -4 \\ -5 \end{pmatrix}.$ The area of triangle $ABC$ is half the area of the parallelogram determined by $\mathbf{v}$ and $\mathbf{w}.$ [asy] unitsize(0.4 cm); pair A, B, C; A = (-1,4); B = (7,0); C = (11,5); draw(A--B); draw(C--A,Arrow(6)); draw(C--B,Arrow(6)); draw(A--(A + B - C)--B,dashed); label("$\mathbf{v}$", (A + C)/2, N); label("$\mathbf{w}$", (B + C)/2, SE); dot("$A$", A, NW); dot("$B$", B, SE); dot("$C$", C, NE); [/asy] The area of the parallelogram determined by $\mathbf{v}$ and $\mathbf{w}$ is \[|(-12)(-5) - (-4)(-1)| = 56,\]so the area of triangle $ABC$ is $56/2 = \boxed{28}.$
Find the cross product of $\begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}.$
Level 2
Precalculus
The cross product of $\begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ -1 \\ 7 \end{pmatrix}$ is \[\begin{pmatrix} (0)(7) - (-1)(3) \\ (3)(5) - (7)(2) \\ (2)(-1) - (5)(0) \end{pmatrix} = \boxed{\begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}}.\]
If $\det \mathbf{A} = 5,$ then find $\det (\mathbf{A^3}).$
Level 1
Precalculus
We have that $\det (\mathbf{A}^3) = (\det \mathbf{A})^3 = \boxed{125}.$
Let $D$ be the determinant of the matrix whose column vectors are $\mathbf{a},$ $\mathbf{b},$ and $\mathbf{c}.$ Find the determinant of the matrix whose column vectors are $\mathbf{a} + \mathbf{b},$ $\mathbf{b} + \mathbf{c},$ and $\mathbf{c} + \mathbf{a},$ in terms of $D.$
Level 3
Precalculus
The determinant $D$ is given by $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}).$ Then the determinant of the matrix whose column vectors are $\mathbf{a} + \mathbf{b},$ $\mathbf{b} + \mathbf{c},$ and $\mathbf{c} + \mathbf{a}$ is given by \[(\mathbf{a} + \mathbf{b}) \cdot ((\mathbf{b} + \mathbf{c}) \times (\mathbf{c} + \mathbf{a})).\]We can first expand the cross product: \begin{align*} (\mathbf{b} + \mathbf{c}) \times (\mathbf{c} + \mathbf{a}) &= \mathbf{b} \times \mathbf{c} + \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{c} + \mathbf{c} \times \mathbf{a} \\ &= \mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a} + \mathbf{b} \times \mathbf{c}. \end{align*}Then \begin{align*} (\mathbf{a} + \mathbf{b}) \cdot ((\mathbf{b} + \mathbf{c}) \times (\mathbf{c} + \mathbf{a})) &= (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{b} \times \mathbf{a} + \mathbf{c} \times \mathbf{a} + \mathbf{b} \times \mathbf{c}) \\ &= \mathbf{a} \cdot (\mathbf{b} \times \mathbf{a}) + \mathbf{a} \cdot (\mathbf{c} \times \mathbf{a}) + \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) \\ &\quad + \mathbf{b} \cdot (\mathbf{b} \times \mathbf{a}) + \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) + \mathbf{b} \cdot (\mathbf{b} \times \mathbf{c}). \end{align*}Since $\mathbf{a}$ and $\mathbf{b} \times \mathbf{a}$ are orthogonal, their dot product is 0. Similarly, most of these dot products vanish, and we are left with \[\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}).\]By the scalar triple product, $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = D,$ so the determinant of the matrix whose column vectors are $\mathbf{a} + \mathbf{b},$ $\mathbf{b} + \mathbf{c},$ and $\mathbf{c} + \mathbf{a}$ is $\boxed{2D}.$
It can be shown that for any positive integer $n,$ \[\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n + 1} & F_n \\ F_n & F_{n - 1} \end{pmatrix},\]where $F_n$ denotes the $n$th Fibonacci number. Compute $F_{784} F_{786} - F_{785}^2.$
Level 3
Precalculus
Since $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \begin{pmatrix} F_{n + 1} & F_n \\ F_n & F_{n - 1} \end{pmatrix},$ \[\det \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \det \begin{pmatrix} F_{n + 1} & F_n \\ F_n & F_{n - 1} \end{pmatrix}.\]Now, \[\det \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n = \left( \det \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right)^n = (-1)^n,\]and \[\det \begin{pmatrix} F_{n + 1} & F_n \\ F_n & F_{n - 1} \end{pmatrix} = F_{n + 1} F_{n - 1} - F_n^2,\]so \[F_{n + 1} F_{n - 1} - F_n^2 = (-1)^n.\]In particular, taking $n = 785,$ we get $F_{784} F_{786} - F_{785}^2 = \boxed{-1}.$
Compute $\arccos \frac{\sqrt{3}}{2}.$ Express your answer in radians.
Level 1
Precalculus
Since $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2},$ $\arccos \frac{\sqrt{3}}{2} = \boxed{\frac{\pi}{6}}.$
Let $\mathbf{u},$ $\mathbf{v},$ and $\mathbf{w}$ be vectors such that $\|\mathbf{u}\| = 3,$ $\|\mathbf{v}\| = 4,$ and $\|\mathbf{w}\| = 5,$ and \[\mathbf{u} + \mathbf{v} + \mathbf{w} = \mathbf{0}.\]Compute $\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}.$
Level 4
Precalculus
From $\mathbf{u} + \mathbf{v} + \mathbf{w} = \mathbf{0},$ we have $(\mathbf{u} + \mathbf{v} + \mathbf{w}) \cdot (\mathbf{u} + \mathbf{v} + \mathbf{w}) = 0.$ Expanding, we get \[\mathbf{u} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v} + \mathbf{w} \cdot \mathbf{w} + 2 (\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}) = 0.\]Note that $\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2 = 9,$ $\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2 = 16,$ and $\mathbf{w} \cdot \mathbf{w} = \|\mathbf{w}\|^2 = 25,$ so \[2 (\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}) + 50 = 0.\]Therefore, $\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w} = \boxed{-25}.$
Triangle $ABC$ has a right angle at $B$, and contains a point $P$ for which $PA = 10$, $PB = 6$, and $\angle APB = \angle BPC = \angle CPA$. Find $PC$. [asy] unitsize(0.2 cm); pair A, B, C, P; A = (0,14); B = (0,0); C = (21*sqrt(3),0); P = intersectionpoint(arc(B,6,0,180),arc(C,33,0,180)); draw(A--B--C--cycle); draw(A--P); draw(B--P); draw(C--P); label("$A$", A, NW); label("$B$", B, SW); label("$C$", C, SE); label("$P$", P, NE); [/asy]
Level 3
Precalculus
Since $\angle APB = \angle BPC = \angle CPA,$ they are all equal to $120^\circ.$ Let $z = PC.$ By the Law of Cosines on triangles $BPC,$ $APB,$ and $APC,$ \begin{align*} BC^2 &= z^2 + 6z + 36, \\ AB^2 &= 196, \\ AC^2 &= z^2 + 10z + 100. \end{align*}By the Pythagorean Theorem, $AB^2 + BC^2 = AC^2,$ so \[196 + z^2 + 6z + 36 = z^2 + 10z + 100.\]Solving, we find $z = \boxed{33}.$
As $t$ takes on all real values, the set of points $(x,y)$ defined by \begin{align*} x &= t^2 - 2, \\ y &= t^3 - 9t + 5 \end{align*}forms a curve that crosses itself. Compute the ordered pair $(x,y)$ where this crossing occurs.
Level 3
Precalculus
Suppose the curve intersects itself when $t = a$ and $t = b,$ so $a^2 - 2 = b^2 - 2$ and $a^3 - 9a + 5 = b^3 - 9b + 5.$ Then $a^2 = b^2,$ so $a = \pm b.$ We assume that $a \neq b,$ so $a = -b,$ or $b = -a.$ Then \[a^3 - 9a + 5 = (-a)^3 - 9(-a) + 5 = -a^3 + 9a + 5,\]or $2a^3 - 18a = 0.$ This factors as $2a (a - 3)(a + 3) = 0.$ If $a = 0,$ then $b = 0,$ so we reject this solution. Otherwise, $a = \pm 3.$ For either value, $(x,y) = \boxed{(7,5)}.$
Let $ABCD$ be a convex quadrilateral, and let $G_A,$ $G_B,$ $G_C,$ $G_D$ denote the centroids of triangles $BCD,$ $ACD,$ $ABD,$ and $ABC,$ respectively. Find $\frac{[G_A G_B G_C G_D]}{[ABCD]}.$ [asy] unitsize(0.6 cm); pair A, B, C, D; pair[] G; A = (0,0); B = (7,1); C = (5,-5); D = (1,-3); G[1] = (B + C + D)/3; G[2] = (A + C + D)/3; G[3] = (A + B + D)/3; G[4] = (A + B + C)/3; draw(A--B--C--D--cycle); draw(G[1]--G[2]--G[3]--G[4]--cycle,red); label("$A$", A, W); label("$B$", B, NE); label("$C$", C, SE); label("$D$", D, SW); dot("$G_A$", G[1], SE); dot("$G_B$", G[2], W); dot("$G_C$", G[3], NW); dot("$G_D$", G[4], NE); [/asy]
Level 3
Precalculus
We have that \begin{align*} \overrightarrow{G}_A &= \frac{\overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D}}{3}, \\ \overrightarrow{G}_B &= \frac{\overrightarrow{A} + \overrightarrow{C} + \overrightarrow{D}}{3}, \\ \overrightarrow{G}_C &= \frac{\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{D}}{3}, \\ \overrightarrow{G}_D &= \frac{\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}}{3}. \end{align*}Then \begin{align*} \overrightarrow{G_B G_A} &= \overrightarrow{G_A} - \overrightarrow{G_B} \\ &= \frac{\overrightarrow{B} + \overrightarrow{C} + \overrightarrow{D}}{3} - \frac{\overrightarrow{A} + \overrightarrow{C} + \overrightarrow{D}}{3} \\ &= \frac{1}{3} (\overrightarrow{B} - \overrightarrow{A}) \\ &= \frac{1}{3} \overrightarrow{AB}. \end{align*}It follows that $\overline{G_B G_A}$ is parallel to $\overline{AB},$ and $\frac{1}{3}$ in length. Similarly, \[\overrightarrow{G_B G_C} = \frac{1}{3} \overrightarrow{CB}.\]It follows that $\overline{G_B G_C}$ is parallel to $\overline{BC},$ and $\frac{1}{3}$ in length. Therefore, triangles $ABC$ and $G_A G_B G_C$ are similar, and \[[G_A G_B G_C] = \frac{1}{9} [ABC].\]In the same way, we can show that \[[G_C G_D G_A] = \frac{1}{9} [CDA].\]Therefore, $[G_A G_B G_C G_C] = \frac{1}{9} [ABCD],$ so $\frac{[G_A G_B G_C G_D]}{[ABCD]} = \boxed{\frac{1}{9}}.$
The set of vectors $\mathbf{v}$ such that \[\mathbf{v} \cdot \mathbf{v} = \mathbf{v} \cdot \begin{pmatrix} 10 \\ -40 \\ 8 \end{pmatrix}\]forms a solid in space. Find the volume of this solid.
Level 4
Precalculus
Let $\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$ Then from the given equation, \[x^2 + y^2 + z^2 = 10x - 40y + 8z.\]Completing the square in $x,$ $y,$ and $z,$ we get \[(x - 5)^2 + (y + 20)^2 + (z - 4)^2 = 441.\]This represents the equation of a sphere with radius 21, and its volume is \[\frac{4}{3} \pi \cdot 21^3 = \boxed{12348 \pi}.\]
In triangle $ABC,$ $AC = BC = 7.$ Let $D$ be a point on $\overline{AB}$ so that $AD = 8$ and $CD = 3.$ Find $BD.$
Level 3
Precalculus
By the Law of Cosines on triangle $ACD,$ \[\cos \angle ADC = \frac{3^2 + 8^2 - 7^2}{2 \cdot 3 \cdot 8} = \frac{1}{2},\]so $\angle ADC = 60^\circ.$ [asy] unitsize(0.5 cm); pair A, B, C, D; A = (0,0); B = (13,0); C = intersectionpoint(arc(A,7,0,180),arc(B,7,0,180)); D = (8,0); draw(A--B--C--cycle); draw(C--D); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$D$", D, S); label("$8$", (A + D)/2, S); label("$7$", (A + C)/2, NW); label("$7$", (B + C)/2, NE); label("$3$", interp(D,C,1/3), NE); label("$x$", (B + D)/2, S); [/asy] Then $\angle BDC = 120^\circ.$ Let $x = BD.$ Then by the Law of Cosines on triangle $BCD,$ \begin{align*} 49 &= 9 + x^2 - 6x \cos 120^\circ \\ &= x^2 + 3x + 9, \end{align*}so $x^2 + 3x - 40 = 0.$ This factors as $(x - 5)(x + 8) = 0,$ so $x = \boxed{5}.$
Let $\mathbf{a}$ and $\mathbf{b}$ be orthogonal vectors. If $\operatorname{proj}_{\mathbf{a}} \begin{pmatrix} 3 \\ -3 \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} \\ -\frac{6}{5} \end{pmatrix},$ then find $\operatorname{proj}_{\mathbf{b}} \begin{pmatrix} 3 \\ -3 \end{pmatrix}.$
Level 4
Precalculus
Since $\begin{pmatrix} -\frac{3}{5} \\ -\frac{6}{5} \end{pmatrix}$ is the projection of $\begin{pmatrix} 3 \\ -3 \end{pmatrix}$ onto $\mathbf{a},$ \[\begin{pmatrix} 3 \\ -3 \end{pmatrix} - \begin{pmatrix} -\frac{3}{5} \\ -\frac{6}{5} \end{pmatrix} = \begin{pmatrix} \frac{18}{5} \\ -\frac{9}{5} \end{pmatrix}\]is orthogonal to $\mathbf{a}.$ But since $\mathbf{a}$ and $\mathbf{b}$ are orthogonal, $\begin{pmatrix} \frac{18}{5} \\ -\frac{9}{5} \end{pmatrix}$ is a scalar multiple of $\mathbf{b}.$ [asy] usepackage("amsmath"); unitsize(1 cm); pair A, B, O, P, Q, V; A = (1,2); B = (2,-1); O = (0,0); V = (3,-3); P = (V + reflect(O,A)*(V))/2; draw(O--V,Arrow(6)); draw(O--P,Arrow(6)); draw(P--V,Arrow(6)); draw((-1,0)--(4,0)); draw((0,-4)--(0,1)); label("$\begin{pmatrix} 3 \\ -3 \end{pmatrix}$", V, SE); label("$\begin{pmatrix} -\frac{3}{5} \\ -\frac{6}{5} \end{pmatrix}$", P, W); [/asy] Furthermore, \[\begin{pmatrix} 3 \\ -3 \end{pmatrix} - \begin{pmatrix} \frac{18}{5} \\ -\frac{9}{5} \end{pmatrix} = \begin{pmatrix} -\frac{3}{5} \\ -\frac{6}{5} \end{pmatrix}\]is a scalar multiple of $\mathbf{a},$ and therefore orthogonal to $\mathbf{b}.$ Hence, $\operatorname{proj}_{\mathbf{b}} \begin{pmatrix} 3 \\ -3 \end{pmatrix} = \boxed{\begin{pmatrix} \frac{18}{5} \\ -\frac{9}{5} \end{pmatrix}}.$
Find the equation of the plane passing through $(-1,1,1)$ and $(1,-1,1),$ and which is perpendicular to the plane $x + 2y + 3z = 5.$ Enter your answer in the form \[Ax + By + Cz + D = 0,\]where $A,$ $B,$ $C,$ $D$ are integers such that $A > 0$ and $\gcd(|A|,|B|,|C|,|D|) = 1.$
Level 5
Precalculus
The vector pointing from $(-1,1,1)$ to $(1,-1,1)$ is $\begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}.$ Since the plane we are interested in is perpendicular to the plane $x + 2y + 3z = 5,$ its normal vector must be orthogonal to $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$ But the normal vector of the plane is also orthogonal to $\begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix}.$ So, to find the normal vector of the plane we are interested in, we take the cross product of these vectors: \[\begin{pmatrix} 2 \\ -2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -6 \\ -6 \\ 6 \end{pmatrix}.\]Scaling, we take $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ as the normal vector. Therefore, the equation of the plane is of the form \[x + y - z + D = 0.\]Substituting the coordinates of $(-1,1,1),$ we find that the equation of the plane is $\boxed{x + y - z + 1 = 0}.$
Simplify \[\frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x}.\]
Level 2
Precalculus
We can write \begin{align*} \frac{\sin x + \sin 2x}{1 + \cos x + \cos 2x} &= \frac{\sin x + 2 \sin x \cos x}{1 + \cos x + 2 \cos^2 x - 1} \\ &= \frac{\sin x + 2 \sin x \cos x}{\cos x + 2 \cos^2 x} \\ &= \frac{\sin x (1 + 2 \cos x)}{\cos x (1 + 2 \cos x)} \\ &= \frac{\sin x}{\cos x} = \boxed{\tan x}. \end{align*}
If \[\frac{\sin^4 \theta}{a} + \frac{\cos^4 \theta}{b} = \frac{1}{a + b},\]then find the value of \[\frac{\sin^8 \theta}{a^3} + \frac{\cos^8 \theta}{b^3}\]in terms of $a$ and $b.$
Level 5
Precalculus
Let $x = \sin^2 \theta$ and $y = \cos^2 \theta,$ so $x + y = 1.$ Also, \[\frac{x^2}{a} + \frac{y^2}{b} = \frac{1}{a + b}.\]Substituting $y = 1 - x,$ we get \[\frac{x^2}{a} + \frac{(1 - x)^2}{b} = \frac{1}{a + b}.\]This simplifies to \[(a^2 + 2ab + b^2) x^2 - (2a^2 + 2ab) x + a^2 = 0,\]which nicely factors as $((a + b) x - a)^2 = 0.$ Hence, $(a + b)x - a = 0,$ so $x = \frac{a}{a + b}.$ Then $y = \frac{b}{a + b},$ so \begin{align*} \frac{\sin^8 \theta}{a^3} + \frac{\cos^8 \theta}{b^3} &= \frac{x^4}{a^3} + \frac{y^4}{b^3} \\ &= \frac{a^4/(a + b)^4}{a^3} + \frac{b^4/(a + b)^4}{b^3} \\ &= \frac{a}{(a + b)^4} + \frac{b}{(a + b)^4} \\ &= \frac{a + b}{(a + b)^4} \\ &= \boxed{\frac{1}{(a + b)^3}}. \end{align*}
Let $z = \cos \frac{4 \pi}{7} + i \sin \frac{4 \pi}{7}.$ Compute \[\frac{z}{1 + z^2} + \frac{z^2}{1 + z^4} + \frac{z^3}{1 + z^6}.\]
Level 5
Precalculus
Note $z^7 - 1 = \cos 4 \pi + i \sin 4 \pi - 1 = 0,$ so \[(z - 1)(z^6 + z^5 + z^4 + z^3 + z^2 + z + 1) = 0.\]Since $z \neq 1,$ $z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0.$ Then \begin{align*} \frac{z}{1 + z^2} + \frac{z^2}{1 + z^4} + \frac{z^3}{1 + z^6} &= \frac{z}{1 + z^2} + \frac{z^2}{1 + z^4} + \frac{z^3}{(1 + z^2)(1 - z^2 + z^4)} \\ &= \frac{z (1 + z^4)(1 - z^2 + z^4)}{(1 + z^4)(1 + z^6)} + \frac{z^2 (1 + z^6)}{(1 + z^4)(1 + z^6)} + \frac{(1 + z^4) z^3}{(1 + z^4)(1 + z^6)} \\ &= \frac{z^9 + z^8 + 2z^5 + z^2 + z}{(1 + z^4)(1 + z^6)} \\ &= \frac{z^2 + z + 2z^5 + z^2 + z}{1 + z^4 + z^6 + z^{10}} \\ &= \frac{2z^5 + 2z^2 + 2z}{z^6 + z^4 + z^3 + 1} \\ &= \frac{2(z^5 + z^2 + z)}{z^6 + z^4 + z^3 + 1}. \end{align*}Since $z^7 + z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0,$ $z^5 + z^2 + z = -(z^6 + z^4 + z^3 + 1).$ Therefore, the given expression is equal to $\boxed{-2}.$
Compute \[\cos^6 0^\circ + \cos^6 1^\circ + \cos^6 2^\circ + \dots + \cos^6 90^\circ.\]
Level 5
Precalculus
Let $S = \cos^6 0^\circ + \cos^6 1^\circ + \cos^6 2^\circ + \dots + \cos^6 90^\circ.$ Then \begin{align*} S &= \cos^6 0^\circ + \cos^6 1^\circ + \cos^6 2^\circ + \dots + \cos^6 90^\circ \\ &= \cos^6 90^\circ + \cos^6 89^\circ + \cos^6 88^\circ + \dots + \cos^6 0^\circ \\ &= \sin^6 0^\circ + \sin^6 1^\circ + \sin^6 2^\circ + \dots + \sin^6 90^\circ. \end{align*}Thus, \[2S = \sum_{n = 0}^{90} (\cos^6 k^\circ + \sin^6 k^\circ).\]We have that \begin{align*} \cos^6 x + \sin^6 x &= (\cos^2 x + \sin^2 x)(\cos^4 x - \cos^2 x \sin^2 x + \sin^4 x) \\ &= \cos^4 x - \cos^2 x \sin^2 x + \sin^4 x \\ &= (\cos^4 x + 2 \cos^2 x \sin^2 x + \sin^4 x) - 3 \cos^2 x \sin^2 x \\ &= (\cos^2 x + \sin^2 x)^2 - 3 \cos^2 x \sin^2 x \\ &= 1 - \frac{3}{4} \sin^2 2x \\ &= 1 - \frac{3}{4} \cdot \frac{1 - \cos 4x}{2} \\ &= \frac{5}{8} + \frac{3}{8} \cos 4x. \end{align*}Hence, \begin{align*} 2S &= \sum_{n = 0}^{90} \left( \frac{5}{8} + \frac{3}{8} \cos 4x \right) \\ &= \frac{455}{8} + \frac{3}{8} (\cos 0^\circ + \cos 4^\circ + \cos 8^\circ + \dots + \cos 356^\circ + \cos 360^\circ). \end{align*}In $\cos 0^\circ + \cos 4^\circ + \cos 8^\circ + \dots + \cos 356^\circ + \cos 360^\circ,$ we can pair $\cos k^\circ$ with $\cos (k^\circ + 180^\circ),$ for $k = 0,$ $4,$ $8,$ $\dots,$ $176,$ and we are left with $\cos 360^\circ = 1.$ Therefore, \[2S = \frac{455}{8} + \frac{3}{8} = \frac{229}{4},\]so $S = \boxed{\frac{229}{8}}.$
Let $a,$ $b,$ $c,$ $d$ be nonzero integers such that \[\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}.\]Find the smallest possible value of $|a| + |b| + |c| + |d|.$
Level 3
Precalculus
We have that \[\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix},\]so $a^2 + bc = bc + d^2 = 7$ and $ab + bd = ac + cd = 0.$ Then $b(a + d) = c(a + d) = 0.$ Since $b$ and $c$ are nonzero, $a + d = 0.$ If $|a| = |d| = 1,$ then \[bc = 7 - a^2 = 6.\]To minimize $|a| + |b| + |c| + |d| = |b| + |c| + 2,$ we take $b = 2$ and $c = 3,$ so $|a| + |b| + |c| + |d| = 7.$ If $|a| = |d| = 2,$ then \[bc = 7 - a^2 = 3.\]Then $|b|$ and $|c|$ must be equal to 1 and 3 in some order, so $|a| + |b| + |c| + |d| = 8.$ If $|a| = |d| \ge 3,$ then $|a| + |b| + |c| + |d| \ge 8.$ Therefore, the minimum value of $|a| + |b| + |c| + |d|$ is $\boxed{7}.$
A line is parameterized by a parameter $t,$ so that the vector on the line at $t = -1$ is $\begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix},$ and the vector on the line at $t = 2$ is $\begin{pmatrix} 0 \\ -2 \\ -4 \end{pmatrix}.$ Find the vector on the line at $t = 3.$
Level 3
Precalculus
Let the line be \[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mathbf{a} + t \mathbf{d}.\]Then from the given information, \begin{align*} \begin{pmatrix} 1 \\ 3 \\ 8 \end{pmatrix} = \mathbf{a} - \mathbf{d}, \\ \begin{pmatrix} 0 \\ -2 \\ -4 \end{pmatrix} = \mathbf{a} + 2 \mathbf{d}. \end{align*}We can treat this system as a linear set of equations in $\mathbf{a}$ and $\mathbf{d}.$ Accordingly, we can solve to get $\mathbf{a} = \begin{pmatrix} 2/3 \\ 4/3 \\ 4 \end{pmatrix}$ and $\mathbf{d} = \begin{pmatrix} -1/3 \\ -5/3 \\ -4 \end{pmatrix}.$ Hence, \[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2/3 \\ 4/3 \\ 4 \end{pmatrix} + t \begin{pmatrix} -1/3 \\ -5/3 \\ -4 \end{pmatrix}.\]Taking $t = 3,$ we get \[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2/3 \\ 4/3 \\ 4 \end{pmatrix} + 3 \begin{pmatrix} -1/3 \\ -5/3 \\ -4 \end{pmatrix} = \boxed{\begin{pmatrix} -1/3 \\ -11/3 \\ -8 \end{pmatrix}}.\]
In triangle $ABC,$ $AB = 3,$ $AC = 6,$ and $\cos \angle A = \frac{1}{8}.$ Find the length of angle bisector $\overline{AD}.$
Level 3
Precalculus
By the Law of Cosines on triangle $ABC,$ \[BC = \sqrt{3^2 + 6^2 - 2 \cdot 3 \cdot 6 \cdot \frac{1}{8}} = \frac{9}{\sqrt{2}}.\][asy] unitsize (1 cm); pair A, B, C, D; B = (0,0); C = (9/sqrt(2),0); A = intersectionpoint(arc(B,3,0,180),arc(C,6,0,180)); D = interp(B,C,3/9); draw(A--B--C--cycle); draw(A--D); label("$A$", A, N); label("$B$", B, SW); label("$C$", C, SE); label("$D$", D, S); [/asy] By the Angle Bisector Theorem, $\frac{BD}{AB} = \frac{CD}{AC},$ so $\frac{BD}{3} = \frac{CD}{6}.$ Also, $BD + CD = \frac{9}{\sqrt{2}},$ so $BD = \frac{3}{\sqrt{2}}$ and $CD = \frac{6}{\sqrt{2}}.$ By the Law of Cosines on triangle $ABC,$ \[\cos B = \frac{9 + \frac{81}{2} - 36}{2 \cdot 3\cdot \frac{9}{\sqrt{2}}} = \frac{\sqrt{2}}{4}.\]Then by the Law of Cosines on triangle $ABD,$ \[AD = \sqrt{9 + \frac{9}{2} - 2 \cdot 3 \cdot \frac{3}{\sqrt{2}} \cdot \frac{\sqrt{2}}{4}} = \boxed{3}.\]
In tetrahedron $ABCD,$ \[\angle ADB = \angle ADC = \angle BDC = 90^\circ.\]Also, $x = \sin \angle CAD$ and $y = \sin \angle CBD.$ Express $\cos \angle ACB$ in terms of $x$ and $y.$
Level 5
Precalculus
By the Law of Cosines on triangle $ABC,$ \[\cos \angle ACB = \frac{AC^2 + BC^2 - AB^2}{2 \cdot AC \cdot BC}.\][asy] unitsize(1 cm); pair A, B, C, D; A = (0,2); B = 2*dir(240); C = (3,0); D = (0,0); draw(A--B--C--cycle); draw(A--D,dashed); draw(B--D,dashed); draw(C--D,dashed); label("$A$", A, N); label("$B$", B, SW); label("$C$", C, E); label("$D$", D, SE); [/asy] By Pythagoras on right triangle $ABD,$ \[AB^2 = AD^2 + BD^2.\]By Pythagoras on right triangles $ACD$ and $BCD,$ \begin{align*} AD^2 &= AC^2 - CD^2, \\ BD^2 &= BC^2 - CD^2, \end{align*}so \begin{align*} \cos \angle ACB &= \frac{AC^2 + BC^2 - AB^2}{2 \cdot AC \cdot BC} \\ &= \frac{AC^2 + BC^2 - (AD^2 + BD^2)}{2 \cdot AC \cdot BC} \\ &= \frac{(AC^2 - AD^2) + (BC^2 - BD^2)}{2 \cdot AC \cdot BC} \\ &= \frac{2 \cdot CD^2}{2 \cdot AC \cdot BC} \\ &= \frac{CD}{AC} \cdot \frac{CD}{BC} \\ &= (\sin \angle CAD)(\sin \angle CBD) \\ &= \boxed{xy}. \end{align*}
Compute $\begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix}^6.$
Level 2
Precalculus
We see that \[\begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix} = 2 \begin{pmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{pmatrix} = 2 \begin{pmatrix} \cos \frac{\pi}{6} & -\sin \frac{\pi}{6} \\ \sin \frac{\pi}{6} & \cos \frac{\pi}{6} \end{pmatrix}.\]Note that $\begin{pmatrix} \cos \frac{\pi}{6} & -\sin \frac{\pi}{6} \\ \sin \frac{\pi}{6} & \cos \frac{\pi}{6} \end{pmatrix}$ corresponds to a rotation of $\frac{\pi}{6}$ around the origin. In general, for a rotation matrix, $$ \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}^k = \begin{pmatrix} \cos k\theta & -\sin k\theta \\ \sin k\theta & \cos k\theta \end{pmatrix}. $$Hence, $$ \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix}^6 = 2^6 \begin{pmatrix} \cos \frac{\pi}{6} & -\sin \frac{\pi}{6} \\ \sin \frac{\pi}{6} & \cos \frac{\pi}{6} \end{pmatrix}^6 = 2^6 \begin{pmatrix} \cos {\pi} & -\sin {\pi} \\ \sin {\pi} & \cos {\pi}\end{pmatrix} = \boxed{ \begin{pmatrix} -64 & 0 \\ 0 & -64 \end{pmatrix} }. $$
Compute \[\left( 1 + \cos \frac {\pi}{8} \right) \left( 1 + \cos \frac {3 \pi}{8} \right) \left( 1 + \cos \frac {5 \pi}{8} \right) \left( 1 + \cos \frac {7 \pi}{8} \right).\]
Level 2
Precalculus
First, we have that $\cos \frac{7 \pi}{8} = -\cos \frac{\pi}{8}$ and $\cos \frac{5 \pi}{8} = -\cos \frac{3 \pi}{8},$ so \begin{align*} \left( 1 + \cos \frac {\pi}{8} \right) \left( 1 + \cos \frac {3 \pi}{8} \right) \left( 1 + \cos \frac {5 \pi}{8} \right) \left( 1 + \cos \frac {7 \pi}{8} \right) &= \left( 1 + \cos \frac {\pi}{8} \right) \left( 1 + \cos \frac {3 \pi}{8} \right) \left( 1 - \cos \frac {3 \pi}{8} \right) \left( 1 - \cos \frac {\pi}{8} \right) \\ &= \left( 1 - \cos^2 \frac{\pi}{8} \right) \left( 1 - \cos^2 \frac{3 \pi}{8} \right) \\ &= \sin^2 \frac{\pi}{8} \sin^2 \frac{3 \pi}{8} \\ &= \sin^2 \frac{\pi}{8} \cos^2 \frac{\pi}{8}. \end{align*}By the double angle formula, \[2 \sin \frac{\pi}{8} \cos \frac{\pi}{8} = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}},\]so $\sin^2 \frac{\pi}{8} \cos^2 \frac{\pi}{8} = \left( \frac{1}{2 \sqrt{2}} \right)^2 = \boxed{\frac{1}{8}}.$
The solutions to the equation $(z+6)^8=81$ are connected in the complex plane to form a convex regular polygon, three of whose vertices are labeled $A,B,$ and $C$. What is the least possible area of triangle $ABC$? Enter your answer in the form $\frac{a \sqrt{b} - c}{d},$ and simplified as usual.
Level 3
Precalculus
We can translate the solutions, to obtain the equation $z^8 = 81 = 3^4.$ Thus, the solutions are of the form \[z = \sqrt{3} \operatorname{cis} \frac{2 \pi k}{8},\]where $0 \le k \le 7.$ The solutions are equally spaced on the circle with radius $\sqrt{3},$ forming an octagon. [asy] unitsize(1 cm); int i; draw(Circle((0,0),sqrt(3))); draw((-2,0)--(2,0)); draw((0,-2)--(0,2)); for (i = 0; i <= 7; ++i) { dot(sqrt(3)*dir(45*i)); draw(sqrt(3)*dir(45*i)--sqrt(3)*dir(45*(i + 1))); } label("$\sqrt{3}$", (sqrt(3)/2,0), S); [/asy] We obtain the triangle with minimal area when the vertices are as close as possible to each other, so we take consecutive vertices of the octagon. Thus, we can take $\left( \frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2} \right),$ $(\sqrt{3},0),$ and $\left( \frac{\sqrt{6}}{2}, -\frac{\sqrt{6}}{2} \right).$ [asy] unitsize(1 cm); int i; pair A, B, C; A = (sqrt(6)/2,sqrt(6)/2); B = (sqrt(3),0); C = (sqrt(6)/2,-sqrt(6)/2); fill(A--B--C--cycle,gray(0.7)); draw(Circle((0,0),sqrt(3))); draw((-2,0)--(2,0)); draw((0,-2)--(0,2)); draw(A--C); for (i = 0; i <= 7; ++i) { dot(sqrt(3)*dir(45*i)); draw(sqrt(3)*dir(45*i)--sqrt(3)*dir(45*(i + 1))); } label("$(\frac{\sqrt{6}}{2}, \frac{\sqrt{6}}{2})$", A, A); label("$(\sqrt{3},0)$", B, NE); label("$(\frac{\sqrt{6}}{2}, -\frac{\sqrt{6}}{2})$", C, C); [/asy] The triangle has base $\sqrt{6}$ and height $\sqrt{3} - \frac{\sqrt{6}}{2},$ so its area is \[\frac{1}{2} \cdot \sqrt{6} \cdot \left( \sqrt{3} - \frac{\sqrt{6}}{2} \right) = \boxed{\frac{3 \sqrt{2} - 3}{2}}.\]
Let $O$ be the origin, and let $(a,b,c)$ be a fixed point. A plane passes through $(a,b,c)$ and intersects the $x$-axis, $y$-axis, and $z$-axis at $A,$ $B,$ and $C,$ respectively, all distinct from $O.$ Let $(p,q,r)$ be the center of the sphere passing through $A,$ $B,$ $C,$ and $O.$ Find \[\frac{a}{p} + \frac{b}{q} + \frac{c}{r}.\]
Level 2
Precalculus
Let $A = (\alpha,0,0),$ $B = (0,\beta,0),$ and $C = (0,0,\gamma).$ Since $(p,q,r)$ is equidistant from $O,$ $A,$ $B,$ and $C,$ \begin{align*} p^2 + q^2 + r^2 &= (p - \alpha)^2 + q^2 + r^2, \\ p^2 + q^2 + r^2 &= p^2 + (q - \beta)^2 + r^2, \\ p^2 + q^2 + r^2 &= p^2 + q^2 + (r - \gamma)^2. \end{align*}The first equation simplifies to $2 \alpha p = \alpha^2.$ Since $\alpha \neq 0,$ \[\alpha = 2p.\]Similarly, $\beta = 2q$ and $\gamma = 2r.$ Since $A = (\alpha,0,0),$ $B = (0,\beta,0),$ and $C = (0,0,\gamma),$ the equation of plane $ABC$ is given by \[\frac{x}{\alpha} + \frac{y}{\beta} + \frac{z}{\gamma} = 1.\]We can also write the equation of the plane as \[\frac{x}{2p} + \frac{y}{2q} + \frac{z}{2r} = 1.\]Since $(a,b,c)$ lies on this plane, \[\frac{a}{2p} + \frac{b}{2q} + \frac{c}{2r} = 1,\]so \[\frac{a}{p} + \frac{b}{q} + \frac{c}{r} = \boxed{2}.\]
If $\sqrt2 \sin 10^\circ$ can be written as $\cos \theta - \sin\theta$ for some acute angle $\theta,$ what is $\theta?$ (Give your answer in degrees, not radians.)
Level 4
Precalculus
We have $\sin\theta = \cos(90^\circ - \theta),$ so $$\cos \theta - \sin\theta = \cos\theta -\cos(90^\circ-\theta).$$Applying the difference of cosines formula gives \begin{align*} \cos \theta - \cos(90^\circ - \theta) &= 2\sin\frac{\theta + (90^\circ - \theta)}{2}\sin\frac{(90^\circ-\theta) - \theta}{2} \\ &= 2\sin45^\circ\sin\frac{90^\circ - 2\theta}{2} \\ &= \sqrt{2}\sin\frac{90^\circ - 2\theta}{2}. \end{align*}We have $\sqrt{2}\sin10^\circ = \sqrt{2}\sin\frac{90^\circ - 2\theta}{2}$ when $10^\circ = \frac{90^\circ - 2\theta}{2}.$ Therefore, $90^\circ - 2\theta = 20^\circ$, and $\theta = \boxed{35^\circ}.$ Although $\sin 10^\circ = \sin 170^\circ = \sin (-190^\circ)$ etc., because $\theta$ is acute, $-45^\circ < \frac{90^\circ - 2\theta}{2} < 45^\circ$ and so none of these other possibilities result in an acute $\theta$.
Find the matrix that corresponds to a dilation centered at the origin with scale factor $-3.$
Level 2
Precalculus
The dilation centered at the origin with scale factor $-3$ takes $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to $\begin{pmatrix} -3 \\ 0 \end{pmatrix},$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ to $\begin{pmatrix} 0 \\ -3 \end{pmatrix},$ so the matrix is \[\boxed{\begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}}.\]
Below is the graph of $y = a \sin (bx + c)$ for some positive constants $a,$ $b,$ and $c.$ Find the smallest possible value of $c.$ [asy]import TrigMacros; size(300); real f(real x) { return 2*sin(4*x + pi/2); } draw(graph(f,-pi,pi,n=700,join=operator ..),red); trig_axes(-pi,pi,-3,3,pi/2,1); layer(); rm_trig_labels(-2,2, 2); label("$1$", (0,1), E); label("$2$", (0,2), E); label("$-1$", (0,-1), E); label("$-2$", (0,-2), E); [/asy]
Level 3
Precalculus
We see that the graph reaches a maximum at $x = 0.$ The graph of $y = \sin x$ first reaches a maximum at $x = \frac{\pi}{2}$ for positive values of $x,$ so $c = \boxed{\frac{\pi}{2}}.$
Given that \[2^{-\frac{3}{2} + 2 \cos \theta} + 1 = 2^{\frac{1}{4} + \cos \theta},\]compute $\cos 2 \theta.$
Level 4
Precalculus
Let $x = 2^{\cos \theta}.$ Then the given equation becomes \[2^{-\frac{3}{2}} x^2 + 1 = 2^{\frac{1}{4}} x.\]We can re-write this as \[2^{-\frac{3}{2}} x^2 - 2^{\frac{1}{4}} x + 1 = 0.\]Since $2^{-\frac{3}{2}} = (2^{-\frac{3}{4}})^2$ and $2^{\frac{1}{4}} = 2 \cdot 2^{-\frac{3}{4}},$ this quadratic factors as \[(2^{-\frac{3}{4}} x - 1)^2 = 0.\]Then $2^{-\frac{3}{4}} x = 1,$ so $x = 2^{\frac{3}{4}}.$ Hence, \[\cos \theta = \frac{3}{4},\]so $\cos 2 \theta = 2 \cos^2 \theta - 1 = 2 \left( \frac{3}{4} \right)^2 - 1 = \boxed{\frac{1}{8}}.$
If $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$ then its transpose is given by \[\mathbf{A}^T = \begin{pmatrix} a & c \\ b & d \end{pmatrix}.\]Given that $\mathbf{A}^T = \mathbf{A}^{-1},$ find $a^2 + b^2 + c^2 + d^2.$
Level 4
Precalculus
From $\mathbf{A}^T = \mathbf{A}^{-1},$ $\mathbf{A}^T \mathbf{A} = \mathbf{I}.$ Hence, \[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.\]Then $a^2 + b^2 = 1$ and $c^2 + d^2 = 1,$ so $a^2 + b^2 + c^2 + d^2 = \boxed{2}.$
Find $x$ so that the vectors $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} x \\ -3 \end{pmatrix}$ are orthogonal.
Level 2
Precalculus
For the vectors $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} x \\ -3 \end{pmatrix}$ to be orthogonal, their dot product should be 0: \[(2)(x) + (5)(-3) = 0.\]Solving, we find $x = \boxed{\frac{15}{2}}.$
Let $\mathbf{a},$ $\mathbf{b},$ and $\mathbf{c}$ be nonzero vectors, no two of which are parallel, such that \[(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = \frac{1}{3} \|\mathbf{b}\| \|\mathbf{c}\| \mathbf{a}.\]Let $\theta$ be the angle between $\mathbf{b}$ and $\mathbf{c}.$ Find $\sin \theta.$
Level 5
Precalculus
By the vector triple product, for any vectors $\mathbf{p},$ $\mathbf{q},$ and $\mathbf{r},$ \[\mathbf{p} \times (\mathbf{q} \times \mathbf{r}) = (\mathbf{p} \cdot \mathbf{r}) \mathbf{q} - (\mathbf{p} \cdot \mathbf{q}) \mathbf{r}.\]Thus, $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c} = -\mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} + (\mathbf{a} \cdot \mathbf{c}) \mathbf{b}.$ Hence, \[(\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} = \frac{1}{3} \|\mathbf{b}\| \|\mathbf{c}\| \mathbf{a}.\]Then \[(\mathbf{a} \cdot \mathbf{c}) \mathbf{b} = \left( \mathbf{b} \cdot \mathbf{c} + \frac{1}{3} \|\mathbf{b}\| \|\mathbf{c}\| \right) \mathbf{a}.\]Since the vectors $\mathbf{a}$ and $\mathbf{b}$ are not parallel, the only way that the equation above can hold is if both sides are equal to the zero vector. Hence, \[\mathbf{b} \cdot \mathbf{c} + \frac{1}{3} \|\mathbf{b}\| \|\mathbf{c}\| = 0.\]Since $\mathbf{b} \cdot \mathbf{c} = \|\mathbf{b}\| \|\mathbf{c}\| \cos \theta,$ \[\|\mathbf{b}\| \|\mathbf{c}\| \cos \theta + \frac{1}{3} \|\mathbf{b}\| \|\mathbf{c}\| = 0.\]Since $\mathbf{b}$ and $\mathbf{c}$ are nonzero, it follows that $\cos \theta = -\frac{1}{3}.$ Then \[\sin \theta = \sqrt{1 - \cos^2 \theta} = \boxed{\frac{2 \sqrt{2}}{3}}.\]
If $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 4,$ then find \[\begin{vmatrix} a & 7a + 3b \\ c & 7c +3d \end{vmatrix}.\]
Level 2
Precalculus
Since $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = 4,$ $ad - bc = 4.$ Then \[\begin{vmatrix} a & 7a + 3b \\ c & 7c +3d \end{vmatrix} = a(7c + 3d) - (7a + 3b)c = 3ad - 3bc = 3(ad - bc) = \boxed{12}.\]
Compute $\cos \left( \arcsin \frac{2}{3} \right).$
Level 1
Precalculus
Consider a right triangle where the opposite side is 2 and the hypotenuse is 3. [asy] unitsize (1 cm); draw((0,0)--(sqrt(5),0)--(sqrt(5),2)--cycle); label("$\sqrt{5}$", (sqrt(5)/2,0), S); label("$3$", (sqrt(5)/2,1), NW); label("$2$", (sqrt(5),1), E); label("$\theta$", (0.7,0.3)); [/asy] Then $\sin \theta = \frac{2}{3},$ so $\theta = \arcsin \frac{2}{3}.$ By Pythagoras, the adjacent side is $\sqrt{5},$ so $\cos \theta = \boxed{\frac{\sqrt{5}}{3}}.$
Find the matrix $\mathbf{M}$ such that \[\mathbf{M} \begin{pmatrix} -3 & 4 & 0 \\ 5 & -7 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}.\]
Level 3
Precalculus
Let $\mathbf{M} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}.$ Then \[\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} -3 & 4 & 0 \\ 5 & -7 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 5b - 3a & 4a - 7b & c \\ 5e - 3d & 4d - 7e & f \\ 5h - 3g & 4g - 7h & i \end{pmatrix}.\]We want this to equal $\mathbf{I},$ so $c = f = 0$ and $i = 1.$ Also, $5h - 3g = 4g - 7h = 0,$ which forces $g = 0$ and $h = 0.$ Note that the remaining part of the matrix can be expressed as the product of two $2 \times 2$ matrices: \[\begin{pmatrix} 5b - 3a & 4a - 7b \\ 5e - 3d & 4d - 7e \end{pmatrix} = \begin{pmatrix} a & b \\ d & e \end{pmatrix} \begin{pmatrix} -3 & 4 \\ 5 & -7 \end{pmatrix}.\]We want this to equal $\mathbf{I},$ so $\begin{pmatrix} a & b \\ d & e \end{pmatrix}$ is the inverse of $\begin{pmatrix} -3 & 4 \\ 5 & -7 \end{pmatrix},$ which is $\begin{pmatrix} -7 & -4 \\ -5 & -3 \end{pmatrix}.$ Therefore, \[\mathbf{M} = \boxed{\begin{pmatrix} -7 & -4 & 0 \\ -5 & -3 & 0 \\ 0 & 0 & 1 \end{pmatrix}}.\]
Compute \[\cos^2 0^\circ + \cos^2 1^\circ + \cos^2 2^\circ + \dots + \cos^2 90^\circ.\]
Level 4
Precalculus
Let $S = \cos^2 0^\circ + \cos^2 1^\circ + \cos^2 2^\circ + \dots + \cos^2 90^\circ.$ Then \begin{align*} S &= \cos^2 0^\circ + \cos^2 1^\circ + \cos^2 2^\circ + \dots + \cos^2 90^\circ \\ &= \cos^2 90^\circ + \cos^2 89^\circ + \cos^2 88^\circ + \dots + \cos^2 0^\circ \\ &= \sin^2 0^\circ + \sin^2 1^\circ + \sin^2 2^\circ + \dots + \sin^2 90^\circ, \end{align*}so \begin{align*} 2S &= (\cos^2 0^\circ + \sin^2 0^\circ) + (\cos^2 1^\circ + \sin^2 1^\circ) + (\cos^2 2^\circ + \sin^2 2^\circ) + \dots + (\cos^2 90^\circ + \sin^2 90^\circ) \\ &= 91, \end{align*}which means $S = \boxed{\frac{91}{2}}.$
Find the distance from the point $(1,2,3)$ to the line described by \[\begin{pmatrix} 6 \\ 7 \\ 7 \end{pmatrix} + t \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}.\]
Level 4
Precalculus
A point on the line is given by \[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \\ 7 \end{pmatrix} + t \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 3t + 6 \\ 2t + 7 \\ -2t + 7 \end{pmatrix}.\][asy] unitsize (0.6 cm); pair A, B, C, D, E, F, H; A = (2,5); B = (0,0); C = (8,0); D = (A + reflect(B,C)*(A))/2; draw(A--D); draw((0,0)--(8,0)); draw((2,5)--(2,0)); dot("$(1,2,3)$", A, N); dot("$(3t + 6,2t + 7,-2t + 7)$", (2,0), S); [/asy] The vector pointing from $(1,2,3)$ to $(3t + 6, 2t + 7, -2t + 7)$ is then \[\begin{pmatrix} 3t + 5 \\ 2t + 5 \\ -2t + 4 \end{pmatrix}.\]For the point on the line that is closest to $(1,2,3),$ this vector will be orthogonal to the direction vector of the second line, which is $\begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix}.$ Thus, \[\begin{pmatrix} 3t + 5 \\ 2t + 5 \\ -2t + 4 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 2 \\ -2 \end{pmatrix} = 0.\]This gives us $(3t + 5)(3) + (2t + 5)(2) + (-2t + 4)(-2) = 0.$ Solving, we find $t = -1.$ The distance from the point to the line is then \[\left\| \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} \right\| = \boxed{7}.\]
If $\mathbf{a},$ $\mathbf{b},$ and $\mathbf{c}$ are unit vectors, then find the largest possible value of \[\|\mathbf{a} - \mathbf{b}\|^2 + \|\mathbf{a} - \mathbf{c}\|^2 + \|\mathbf{b} - \mathbf{c}\|^2.\]Note: A unit vector is a vector of magnitude 1.
Level 5
Precalculus
We can write \begin{align*} \|\mathbf{a} - \mathbf{b}\|^2 &= (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) \\ &= \mathbf{a} \cdot \mathbf{a} - 2 \mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b} \\ &= \|\mathbf{a}\|^2 - 2 \mathbf{a} \cdot \mathbf{b} + \|\mathbf{b}\|^2 \\ &= 2 - 2 \mathbf{a} \cdot \mathbf{b}. \end{align*}Similarly, $\|\mathbf{a} - \mathbf{c}\|^2 = 2 - 2 \mathbf{a} \cdot \mathbf{c}$ and $\|\mathbf{b} - \mathbf{c}\|^2 = 2 - 2 \mathbf{b} \cdot \mathbf{c},$ so \[\|\mathbf{a} - \mathbf{b}\|^2 + \|\mathbf{a} - \mathbf{c}\|^2 + \|\mathbf{b} - \mathbf{c}\|^2 = 6 - 2 (\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}).\]Now, \[\|\mathbf{a} + \mathbf{b} + \mathbf{c}\|^2 \ge 0.\]We can expand this as \[\|\mathbf{a}\|^2 + \|\mathbf{b}\|^2 + \|\mathbf{c}\|^2 + 2 \mathbf{a} \cdot \mathbf{b} + 2 \mathbf{a} \cdot \mathbf{c} + 2 \mathbf{b} \cdot \mathbf{c} \ge 0.\]Then $2 (\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}) \ge -3,$ so \[\|\mathbf{a} - \mathbf{b}\|^2 + \|\mathbf{a} - \mathbf{c}\|^2 + \|\mathbf{b} - \mathbf{c}\|^2 = 6 - 2 (\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{c}) \le 9.\]Equality occurs when $\mathbf{a},$ $\mathbf{b},$ and $\mathbf{c}$ are equally spaced on a circle with radius 1 (where $\|\mathbf{a} - \mathbf{b}\| = \|\mathbf{a} - \mathbf{c}\| = \|\mathbf{b} - \mathbf{c}\| = \sqrt{3}$), so the largest possible value is $\boxed{9}.$ [asy] unitsize(2 cm); pair A, B, C; A = dir(20); B = dir(20 + 120); C = dir(20 + 240); //draw((-1.5,0)--(1.5,0)); //draw((0,-1.5)--(0,1.5)); draw(Circle((0,0),1)); draw((0,0)--A,Arrow(6)); draw((0,0)--B,Arrow(6)); draw((0,0)--C,Arrow(6)); draw(A--B--C--cycle,dashed); label("$\mathbf{a}$", A, A); label("$\mathbf{b}$", B, B); label("$\mathbf{c}$", C, C); [/asy]
The point $(1,1,1)$ is rotated $180^\circ$ about the $y$-axis, then reflected through the $yz$-plane, reflected through the $xz$-plane, rotated $180^\circ$ about the $y$-axis, and reflected through the $xz$-plane. Find the coordinates of the point now.
Level 3
Precalculus
After $(1,1,1)$ is rotated $180^\circ$ about the $y$-axis, it goes to $(-1,1,-1).$ After $(-1,1,-1)$ is reflected through the $yz$-plane, it goes to $(1,1,-1).$ After $(1,1,-1)$ is reflected through the $xz$-plane, it goes to $(1,-1,-1).$ After $(1,-1,-1)$ is rotated $180^\circ$ about the $y$-axis, it goes to $(-1,-1,1).$ Finally, after $(-1,-1,1)$ is reflected through the $xz$-plane, it goes to $\boxed{(-1,1,1)}.$ [asy] import three; size(250); currentprojection = perspective(6,3,2); triple I = (1,0,0), J = (0,1,0), K = (0,0,1), O = (0,0,0); triple P = (1,1,1), Q = (-1,1,-1), R = (1,1,-1), S = (1,-1,-1), T = (-1,-1,1), U = (-1,1,1); draw(O--2*I, Arrow3(6)); draw((-2)*J--2*J, Arrow3(6)); draw(O--2*K, Arrow3(6)); draw(O--P); draw(O--Q); draw(O--R); draw(O--S); draw(O--T); draw(O--U); draw(P--Q--R--S--T--U,dashed); label("$x$", 2.2*I); label("$y$", 2.2*J); label("$z$", 2.2*K); dot("$(1,1,1)$", P, N); dot("$(-1,1,-1)$", Q, SE); dot("$(1,1,-1)$", R, dir(270)); dot("$(1,-1,-1)$", S, W); dot("$(-1,-1,1)$", T, NW); dot("$(-1,1,1)$", U, NE); [/asy]
What is the period of $y = \cos \frac{x}{2}$?
Level 1
Precalculus
The graph of $y=\cos \frac{x}{2}$ passes through one full period as $\frac{x}{2}$ ranges from $0$ to $2\pi,$ which means $x$ ranges from $0$ to $\boxed{4 \pi}.$ The graph of $y=\cos \frac{x}{2}$ is shown below: [asy]import TrigMacros; size(400); real g(real x) { return cos(x/2); } draw(graph(g,-3*pi,3*pi,n=700,join=operator ..),red); trig_axes(-3*pi,3*pi,-2,2,pi/2,1); layer(); rm_trig_labels(-5, 5, 2); [/asy]
The transformation $T,$ taking vectors to vectors, has the following properties: (i) $T(a \mathbf{v} + b \mathbf{w}) = a T(\mathbf{v}) + b T(\mathbf{w})$ for all vectors $\mathbf{v}$ and $\mathbf{w},$ and for all scalars $a$ and $b.$ (ii) $T(\mathbf{v} \times \mathbf{w}) = T(\mathbf{v}) \times T(\mathbf{w})$ for all vectors $\mathbf{v}$ and $\mathbf{w}.$ (iii) $T \begin{pmatrix} 6 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix}.$ (iv) $T \begin{pmatrix} -6 \\ 3 \\ 6 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ -1 \end{pmatrix}.$ Find $T \begin{pmatrix} 3 \\ 9 \\ 12 \end{pmatrix}.$
Level 5
Precalculus
From (ii), (iii), and (iv), \[T \left( \begin{pmatrix} 6 \\ 6 \\ 3 \end{pmatrix} \times \begin{pmatrix} -6 \\ 3 \\ 6 \end{pmatrix} \right) = \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix} \times \begin{pmatrix} 4 \\ 8 \\ -1 \end{pmatrix}.\]This reduces to \[T \begin{pmatrix} 27 \\ -54 \\ 54 \end{pmatrix} = \begin{pmatrix} -63 \\ 36 \\ 36 \end{pmatrix}.\]In particular, from (i), $T (a \mathbf{v}) = a T(\mathbf{v}).$ Thus, we can divide both vectors by 9, to get \[T \begin{pmatrix} 3 \\ -6 \\ 6 \end{pmatrix} = \begin{pmatrix} -7 \\ 4 \\ 4 \end{pmatrix}.\]Now, we can try to express $\begin{pmatrix} 3 \\ 9 \\ 12 \end{pmatrix}$ as the following linear combination: \[\begin{pmatrix} 3 \\ 9 \\ 12 \end{pmatrix} = a \begin{pmatrix} 6 \\ 6 \\ 3 \end{pmatrix} + b \begin{pmatrix} -6 \\ 3 \\ 6 \end{pmatrix} + c \begin{pmatrix} 3 \\ -6 \\ 6 \end{pmatrix} = \begin{pmatrix} 6a - 6b + 3c \\ 6a + 3b - 6c \\ 3a + 6b + 6c \end{pmatrix}.\]Solving $6a - 6b + 3c = 3,$ $6a + 3b - 6c = 9,$ and $3a + 6b + 6c = 12,$ we obtain $a = \frac{4}{3},$ $b = 1,$ and $c = \frac{1}{3}.$ Thus, \[\begin{pmatrix} 3 \\ 9 \\ 12 \end{pmatrix} = \frac{4}{3} \begin{pmatrix} 6 \\ 6 \\ 3 \end{pmatrix} + \begin{pmatrix} -6 \\ 3 \\ 6 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 3 \\ -6 \\ 6 \end{pmatrix}.\]Then by (i), \[T \begin{pmatrix} 3 \\ 9 \\ 12 \end{pmatrix} = \frac{4}{3} \begin{pmatrix} 4 \\ -1 \\ 8 \end{pmatrix} + \begin{pmatrix} 4 \\ 8 \\ -1 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -7 \\ 4 \\ 4 \end{pmatrix} = \boxed{\begin{pmatrix} 7 \\ 8 \\ 11 \end{pmatrix}}.\]With more work, it can be shown that \[T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \renewcommand{\arraystretch}{1.5} \begin{pmatrix} -\frac{7}{27} & \frac{26}{27} & -\frac{2}{27} \\ -\frac{14}{27} & -\frac{2}{27} & \frac{23}{27} \\ \frac{22}{27} & \frac{7}{27} & \frac{14}{27} \end{pmatrix} \renewcommand{\arraystretch}{1} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.\]With even more work, it can be shown that $T$ is a rotation in space.
A line passes through $(2,2,1)$ and $(5,1,-2).$ A point on this line has an $x$-coordinate of 4. Find the $z$-coordinate of the point.
Level 2
Precalculus
The direction vector of the line is given by \[\begin{pmatrix} 5 - 2 \\ 1 - 2 \\ -2 - 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ -3 \end{pmatrix},\]so the line is parameterized by \[\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 3 \\ -1 \\ - 3 \end{pmatrix} = \begin{pmatrix} 2 + 3t \\ 2 - t \\ 1 - 3t \end{pmatrix}.\]We want the $x$-coordinate to be 4, so $2 + 3t = 4.$ Solving, we find $t = \frac{2}{3}.$ Then the $z$-coordinate is $1 - 3t = \boxed{-1}.$
The number \[e^{7\pi i/60} + e^{17\pi i/60} + e^{27 \pi i/60} + e^{37\pi i /60} + e^{47 \pi i /60}\]is expressed in the form $r e^{i \theta}$, where $0 \le \theta < 2\pi$. Find $\theta$.
Level 5
Precalculus
Let's locate these numbers in the complex plane before adding them. Since $e^{i \theta}$ is the terminal point for angle $\theta$ on the unit circle, here are the numbers: [asy] size(200); import TrigMacros; rr_cartesian_axes(-2,2,-1,3,complexplane=true, usegrid = false); pair O = (0,0); pair[] Z; for (int i = 0; i < 5; ++i) { Z[i] = dir(30i)*dir(12); draw(O--Z[i]); dot(Z[i]); } label("$e^{7\pi i/60}$", Z[0], dir(Z[0])); label("$e^{17\pi i/60}$", Z[1], dir(Z[1])); label("$e^{27\pi i/60}$", Z[2], dir(Z[2])); label("$e^{37\pi i/60}$", Z[3], NNW); label("$e^{47\pi i/60}$", Z[4], NW); [/asy] We need to add all $5$ numbers. However, we don't actually need to find the exponential form of the answer: we just need to know argument of our sum, that is, the angle that our sum makes with the positive $x$-axis. The symmetry of the above picture suggest that we consider what happens if we add up pairs of numbers. For example, let's try adding $e^{7\pi i/60}$ and $e^{47\pi i /60}$ head to tail: [asy] size(200); import TrigMacros; rr_cartesian_axes(-2,2,-1,3,complexplane=true, usegrid = false); pair O = (0,0); pair[] Z; for (int i = 0; i < 5; ++i) { Z[i] = dir(30i)*dir(12); } draw(O--Z[0], blue); draw(O--Z[4]); draw(Z[4]--Z[0]+Z[4], blue); draw(O--Z[0]+Z[4]); dot("$e^{7\pi i/60}$", Z[0], dir(Z[0])); dot("$e^{47\pi i/60}$", Z[4], NW); dot("$e^{7\pi i/60} + e^{47\pi i/60}$", Z[4]+Z[0], N); [/asy] Since $|e^{7\pi i/60}| = |e^{47\pi i/60}| = 1$, the parallelogram with vertices at $0, e^{7\pi i/60}, e^{47 \pi i/60}$ and $e^{7\pi i/ 60} + e^{47 \pi i/60}$ is a rhombus. That means that the line segment from $0$ to $e^{7\pi i/ 60} + e^{47 \pi i/60}$ splits the angle at $0$ in half, which means that the argument of $e^{7\pi i/60} + e^{47 \pi i/60}$ is the average of the arguments of the numbers being added, or in other words is \[\dfrac{1}{2} \left( \dfrac{7\pi}{60} + \dfrac{47\pi}{60}\right) = \dfrac{27 \pi}{60} = \dfrac{9\pi}{20}.\]That means that \[ e^{7\pi i/ 60} + e^{47 \pi i/60} = r_1 e^{9 \pi i/20},\]for some nonnegative $r_1$. Similarly, we can consider the sum $e^{17\pi i/60} + e^{37\pi i/60}$. Here it is in the picture: [asy] size(200); import TrigMacros; rr_cartesian_axes(-2,2,-1,3,complexplane=true, usegrid = false); pair O = (0,0); pair[] Z; for (int i = 0; i < 5; ++i) { Z[i] = dir(30i)*dir(12); } draw(O--Z[1], blue); draw(O--Z[3]); draw(Z[3]--Z[1]+Z[3], blue); draw(O--Z[1]+Z[3]); dot("$e^{17\pi i/60}$", Z[1], dir(Z[1])); dot("$e^{37\pi i/60}$", Z[3], NW); dot("$e^{17\pi i/60} + e^{37\pi i/60}$", Z[3]+Z[1], N); [/asy]We again have a rhombus, which again means that the sum of the pair has an argument equal to the average of the arguments. That means that the argument of $e^{17\pi i/60} + e^{37 \pi i/60}$ is the average of the arguments of the numbers being added, or in other words is \[\dfrac{1}{2} \left( \dfrac{17\pi}{60} + \dfrac{37\pi}{60}\right) = \dfrac{27 \pi}{60} = \dfrac{9\pi}{20}.\]Therefore, \[ e^{17\pi i/ 60} + e^{37 \pi i/60} = r_2 e^{9 \pi i/20},\]for some nonnegative $r_2$. Finally, our middle number is $e^{27\pi i/60} = e^{9\pi i/20}$, simplifying the fraction. Now we're adding up three numbers with argument $e^{9\pi i/20}$, which gives another number with the same argument. To be more precise, we have that \begin{align*} e^{7\pi i/60} + e^{17\pi i/60} + e^{27 \pi i/60} + e^{37\pi i /60} + e^{47 \pi i /60} &= (e^{7\pi i/60} + e^{47\pi i/60}) + e^{27 \pi i/60} + (e^{37\pi i /60} + e^{47 \pi i /60}) \\ &= r_1 e^{9\pi i/20} + e^{9\pi i/20} + r_2 e^{9\pi i/20} \\ &= (r_1 +r_2 + 1) e^{9\pi i/20}, \end{align*}which gives that the argument of our sum is $\boxed{\dfrac{9\pi}{20}}$.
A point has rectangular coordinates $(x,y,z)$ and spherical coordinates $\left(2, \frac{8 \pi}{7}, \frac{2 \pi}{9} \right).$ Find the spherical coordinates of the point with rectangular coordinates $(x,y,-z).$ Enter your answer in the form $(\rho,\theta,\phi),$ where $\rho > 0,$ $0 \le \theta < 2 \pi,$ and $0 \le \phi \le \pi.$
Level 4
Precalculus
We have that \begin{align*} x &= \rho \sin \frac{2 \pi}{9} \cos \frac{8 \pi}{7}, \\ y &= \rho \sin \frac{2 \pi}{9} \sin \frac{8 \pi}{7}, \\ z &= \rho \cos \frac{2 \pi}{9}. \end{align*}We want to negate the $z$-coordinate. We can accomplish this by replacing $\frac{2 \pi}{9}$ with $\pi - \frac{2 \pi}{9} = \frac{7 \pi}{9}$: \begin{align*} \rho \sin \frac{7 \pi}{9} \cos \frac{8 \pi}{7} &= \rho \sin \frac{2 \pi}{9} \cos \frac{8 \pi}{7} = x, \\ \rho \sin \frac{7 \pi}{9} \sin \frac{8 \pi}{7} &= \rho \sin \frac{2 \pi}{9} \sin \frac{8 \pi}{7} = y, \\ \rho \cos \frac{7 \pi}{9} &= -\rho \cos \frac{2 \pi}{9} = -z. \end{align*}Thus, the spherical coordinates of $(x,y,z)$ are $\boxed{\left( 2, \frac{8 \pi}{7}, \frac{7 \pi}{9} \right)}.$
If $\mathbf{A}^{-1} = \begin{pmatrix} 2 & 5 \\ -1 & -3 \end{pmatrix},$ then find the inverse of $\mathbf{A}^2.$
Level 2
Precalculus
Note that $(\mathbf{A}^{-1})^2 \mathbf{A}^2 = \mathbf{A}^{-1} \mathbf{A}^{-1} \mathbf{A} \mathbf{A} = \mathbf{I},$ so the inverse of $\mathbf{A}^2$ is \[(\mathbf{A}^{-1})^2 = \begin{pmatrix} 2 & 5 \\ -1 & -3 \end{pmatrix}^2 = \boxed{\begin{pmatrix} -1 & -5 \\ 1 & 4 \end{pmatrix}}.\]
Convert the point $(-2,-2)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$
Level 2
Precalculus
We have that $r = \sqrt{(-2)^2 + (-2)^2} = 2 \sqrt{2}.$ Also, if we draw the line connecting the origin and $(-2,2),$ this line makes an angle of $\frac{5 \pi}{4}$ with the positive $x$-axis. [asy] unitsize(0.8 cm); draw((-3.5,0)--(3.5,0)); draw((0,-3.5)--(0,3.5)); draw(arc((0,0),2*sqrt(2),0,225),red,Arrow(6)); draw((0,0)--(-2,-2)); dot((-2,-2), red); label("$(-2,-2)$", (-2,-2), SE, UnFill); dot((2*sqrt(2),0), red); [/asy] Therefore, the polar coordinates are $\boxed{\left( 2 \sqrt{2}, \frac{5 \pi}{4} \right)}.$
The perpendicular bisectors of the sides of triangle $ABC$ meet its circumcircle at points $A',$ $B',$ and $C',$ as shown. If the perimeter of triangle $ABC$ is 35 and the radius of the circumcircle is 8, then find the area of hexagon $AB'CA'BC'.$ [asy] unitsize(2 cm); pair A, B, C, Ap, Bp, Cp, O; O = (0,0); A = dir(210); B = dir(60); C = dir(330); Ap = dir(15); Bp = dir(270); Cp = dir(135); draw(Circle(O,1)); draw(A--B--C--cycle); draw((B + C)/2--Ap); draw((A + C)/2--Bp); draw((A + B)/2--Cp); label("$A$", A, A); label("$B$", B, B); label("$C$", C, C); label("$A'$", Ap, Ap); label("$B'$", Bp, Bp); label("$C'$", Cp, Cp); [/asy]
Level 5
Precalculus
Note that the perpendicular bisectors meet at $O,$ the circumcenter of triangle $ABC.$ [asy] unitsize(2 cm); pair A, B, C, Ap, Bp, Cp, O; O = (0,0); A = dir(210); B = dir(60); C = dir(330); Ap = dir(15); Bp = dir(270); Cp = dir(135); draw(Circle(O,1)); draw(A--B--C--cycle); draw(O--Ap); draw(O--Bp); draw(O--Cp); draw(A--Bp--C--Ap--B--Cp--A--cycle); draw(A--O); draw(B--O); draw(C--O); label("$A$", A, A); label("$B$", B, B); label("$C$", C, C); label("$A'$", Ap, Ap); label("$B'$", Bp, Bp); label("$C'$", Cp, Cp); label("$O$", O, N, UnFill); [/asy] As usual, let $a = BC,$ $b = AC,$ and $c = AB.$ In triangle $OAB',$ taking $\overline{OB'}$ as the base, the height is $\frac{b}{2},$ so \[[OAB'] = \frac{1}{2} \cdot R \cdot \frac{b}{2} = \frac{bR}{4}.\]Similarly, $[OCB'] = \frac{bR}{4},$ so $[OAB'C] = \frac{bR}{2}.$ Similarly, $[OCA'B] = \frac{aR}{2}$ and $[OBC'A] = \frac{cR}{2},$ so \[[AB'CA'BC'] = [OCA'B] + [OAB'C] + [OBC'A] = \frac{aR}{2} + \frac{bR}{2} + \frac{cR}{2} = \frac{(a + b + c)R}{2} = \frac{35 \cdot 8}{2} = \boxed{140}.\]
Solve \[\arccos 2x - \arccos x = \frac{\pi}{3}.\]Enter all the solutions, separated by commas.
Level 3
Precalculus
From the given equation, \[\arccos 2x = \arccos x + \frac{\pi}{3}.\]Then \[\cos (\arccos 2x) = \cos \left( \arccos x + \frac{\pi}{3} \right).\]Hence, from the angle addition formula, \begin{align*} 2x &= \cos (\arccos x) \cos \frac{\pi}{3} - \sin (\arccos x) \sin \frac{\pi}{3} \\ &= \frac{x}{2} - \frac{\sqrt{3}}{2} \sqrt{1 - x^2}, \end{align*}so \[-3x = \sqrt{3} \cdot \sqrt{1 - x^2}.\]Squaring both sides, we get $9x^2 = 3 - 3x^2.$ Then $12x^2 = 3,$ so $x^2 = \frac{1}{4},$ and $x = \pm \frac{1}{2}.$ Checking, we find only $x = \boxed{-\frac{1}{2}}$ works.
Compute \[\frac{\tan^2 20^\circ - \sin^2 20^\circ}{\tan^2 20^\circ \sin^2 20^\circ}.\]
Level 1
Precalculus
We have that \begin{align*} \frac{\tan^2 20^\circ - \sin^2 20^\circ}{\tan^2 20^\circ \sin^2 20^\circ} &= \frac{\frac{\sin^2 20^\circ}{\cos^2 20^\circ} - \sin^2 20^\circ}{\frac{\sin^2 20^\circ}{\cos^2 20^\circ} \cdot \sin^2 20^\circ} \\ &= \frac{\sin^2 20^\circ - \cos^2 20^\circ \sin^2 20^\circ}{\sin^4 20^\circ} \\ &= \frac{1 - \cos^2 20^\circ}{\sin^2 20^\circ} = \boxed{1}. \end{align*}
Let $x$ be an angle such that $\tan x = \frac{a}{b}$ and $\tan 2x = \frac{b}{a + b}.$ Then the least positive value of $x$ equals $\tan^{-1} k.$ Compute $k.$
Level 4
Precalculus
We have that \[\tan 2x = \frac{b}{a + b} = \frac{1}{\frac{a}{b} + 1} = \frac{1}{\tan x + 1},\]so $(\tan x + 1) \tan 2x = 1.$ Then from the double angle formula, \[(\tan x + 1) \cdot \frac{2 \tan x}{1 - \tan^2 x} = 1,\]so $2 \tan x (\tan x + 1) = 1 - \tan^2 x,$ or \[2 \tan x (\tan x + 1) + \tan^2 x - 1 = 0.\]We can factor as \[2 \tan x (\tan x + 1) + (\tan x + 1)(\tan x - 1) = (\tan x + 1)(3 \tan x - 1) = 0.\]Thus, $\tan x = -1$ or $\tan x = \frac{1}{3}.$ The smallest positive solution is then $\tan^{-1} \frac{1}{3},$ so $k = \boxed{\frac{1}{3}}.$
Find the length of the parametric curve described by \[(x,y) = (2 \sin t, 2 \cos t)\]from $t = 0$ to $t = \pi.$
Level 2
Precalculus
The curve describes a semicircle with radius 2. Therefore, the length of the curve is \[\frac{1}{2} \cdot 2 \pi \cdot 2 = \boxed{2 \pi}.\][asy] unitsize(1 cm); pair moo (real t) { return (2*sin(t),2*cos(t)); } real t; path foo = moo(0); for (t = 0; t <= pi; t = t + 0.01) { foo = foo--moo(t); } draw((-2.5,0)--(2.5,0)); draw((0,-2.5)--(0,2.5)); draw(foo,red); label("$2$", (1,0), S); dot("$t = 0$", moo(0), W); dot("$t = \pi$", moo(pi), W); [/asy]
Let $\mathbf{a},$ $\mathbf{b},$ $\mathbf{c}$ be vectors such that $\|\mathbf{a}\| = \|\mathbf{b}\| = 1,$ $\|\mathbf{c}\| = 2,$ and \[\mathbf{a} \times (\mathbf{a} \times \mathbf{c}) + \mathbf{b} = \mathbf{0}.\]Find the smallest possible angle between $\mathbf{a}$ and $\mathbf{c},$ in degrees.
Level 2
Precalculus
By the vector triple product, for any vectors $\mathbf{u},$ $\mathbf{v},$ and $\mathbf{w},$ \[\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w}.\]Thus, \[(\mathbf{a} \cdot \mathbf{c}) \mathbf{a} - (\mathbf{a} \cdot \mathbf{a}) \mathbf{c} + \mathbf{b} = 0.\]Since $\|\mathbf{a}\| = 1,$ \[(\mathbf{a} \cdot \mathbf{c}) \mathbf{a} - \mathbf{c} + \mathbf{b} = 0,\]so $(\mathbf{a} \cdot \mathbf{c}) \mathbf{a} - \mathbf{c} = -\mathbf{b}.$ Then \[\|(\mathbf{a} \cdot \mathbf{c}) \mathbf{a} - \mathbf{c}\| = \|-\mathbf{b}\| = 1.\]We can then say $\|(\mathbf{a} \cdot \mathbf{c}) \mathbf{a} - \mathbf{c}\|^2 = 1,$ which expands as \[(\mathbf{a} \cdot \mathbf{c})^2 \|\mathbf{a}\|^2 - 2 (\mathbf{a} \cdot \mathbf{c})^2 + \|\mathbf{c}\|^2 = 1.\]We can simplify this to \[-(\mathbf{a} \cdot \mathbf{c})^2 + 4 = 1,\]so $(\mathbf{a} \cdot \mathbf{c})^2 = 3.$ Hence, $\mathbf{a} \cdot \mathbf{c} = \pm \sqrt{3}.$ If $\theta$ is the angle between $\mathbf{a}$ and $\mathbf{c},$ then \[\cos \theta = \frac{\mathbf{a} \cdot \mathbf{c}}{\|\mathbf{a}\| \|\mathbf{c}\|} = \pm \frac{\sqrt{3}}{2}.\]The smallest possible angle $\theta$ satisfying this equation is $30^\circ.$ We can achieve $\boxed{30^\circ}$ by taking $\mathbf{a} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},$ $\mathbf{b} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},$ and $\mathbf{c} = \begin{pmatrix} \sqrt{3} \\ 1 \\ 0 \end{pmatrix},$ so this is the smallest possible angle.
On the complex plane, the parallelogram formed by the points 0, $z,$ $\frac{1}{z},$ and $z + \frac{1}{z}$ has area $\frac{35}{37}.$ If the real part of $z$ is positive, let $d$ be the smallest possible value of $\left| z + \frac{1}{z} \right|.$ Compute $d^2.$
Level 5
Precalculus
Let $z = r (\cos \theta + i \sin \theta).$ Then \[\frac{1}{z} = \frac{1}{r (\cos \theta + i \sin \theta)} = \frac{1}{r} (\cos (-\theta) + i \sin (-\theta)) = \frac{1}{r} (\cos \theta - i \sin \theta).\]By the shoelace formula, the area of the triangle formed by 0, $z = r \cos \theta + ir \sin \theta$ and $\frac{1}{z} = \frac{1}{r} \cos \theta - \frac{i}{r} \sin \theta$ is \[\frac{1}{2} \left| (r \cos \theta) \left( -\frac{1}{r} \sin \theta \right) - (r \sin \theta) \left( \frac{1}{r} \cos \theta \right) \right| = |\sin \theta \cos \theta|,\]so the area of the parallelogram is \[2 |\sin \theta \cos \theta| = |\sin 2 \theta|.\]Thus, $|\sin 2 \theta| = \frac{35}{37}.$ We want to find the smallest possible value of \begin{align*} \left| z + \frac{1}{z} \right| &= \left| r \cos \theta + ir \sin \theta + \frac{1}{r} \cos \theta - \frac{i}{r} \sin \theta \right| \\ &= \left| r \cos \theta + \frac{1}{r} \cos \theta + i \left( r \sin \theta - \frac{1}{r} \sin \theta \right) \right|. \end{align*}The square of this magnitude is \begin{align*} \left( r \cos \theta + \frac{1}{r} \cos \theta \right)^2 + \left( r \sin \theta - \frac{1}{r} \sin \theta \right)^2 &= r^2 \cos^2 \theta + 2 \cos^2 \theta + \frac{1}{r} \cos^2 \theta + r^2 \sin^2 \theta - 2 \sin^2 \theta + \frac{1}{r^2} \sin^2 \theta \\ &= r^2 + \frac{1}{r^2} + 2 (\cos^2 \theta - \sin^2 \theta) \\ &= r^2 + \frac{1}{r^2} + 2 \cos 2 \theta. \end{align*}By AM-GM, $r^2 + \frac{1}{r^2} \ge 2.$ Also, \[\cos^2 2 \theta = 1 - \sin^2 2 \theta = 1 - \left( \frac{35}{37} \right)^2 = \frac{144}{1369},\]so $\cos 2 \theta = \pm \frac{12}{37}.$ To minimize the expression above, we take $\cos 2 \theta = -\frac{12}{37},$ so \[d^2 = 2 - 2 \cdot \frac{12}{37} = \boxed{\frac{50}{37}}.\]
Let $G$ be the centroid of triangle $ABC.$ If $GA^2 + GB^2 + GC^2 = 58,$ then find $AB^2 + AC^2 + BC^2.$
Level 3
Precalculus
Let $\mathbf{a}$ denote $\overrightarrow{A},$ etc. Then \[\mathbf{g} = \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3},\]so \begin{align*} GA^2 &= \|\mathbf{g} - \mathbf{a}\|^2 \\ &= \left\| \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3} - \mathbf{a} \right\|^2 \\ &= \frac{1}{9} \|\mathbf{b} + \mathbf{c} - 2 \mathbf{a}\|^2 \\ &= \frac{1}{9} (\mathbf{b} + \mathbf{c} - 2 \mathbf{a}) \cdot (\mathbf{b} + \mathbf{c} - 2 \mathbf{a}) \\ &= \frac{1}{9} (4 \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{c} \cdot \mathbf{c} - 4 \mathbf{a} \cdot \mathbf{b} - 4 \mathbf{a} \cdot \mathbf{c} + 2 \mathbf{b} \cdot \mathbf{c}). \end{align*}Hence, \[GA^2 + GB^2 + GC^2 = \frac{1}{9} (6 \mathbf{a} \cdot \mathbf{a} + 6 \mathbf{b} \cdot \mathbf{b} + 6 \mathbf{c} \cdot \mathbf{c} - 6 \mathbf{a} \cdot \mathbf{b} - 6 \mathbf{a} \cdot \mathbf{c} - 6 \mathbf{b} \cdot \mathbf{c}) = 58,\]so \[\mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{c} \cdot \mathbf{c} - \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{c} = 87.\]Then \begin{align*} AB^2 + AC^2 + BC^2 &= \|\mathbf{a} - \mathbf{b}\|^2 + \|\mathbf{a} - \mathbf{c}\|^2 + \|\mathbf{b} - \mathbf{c}\|^2 \\ &= (\mathbf{a} \cdot \mathbf{a} - 2 \mathbf{a} \cdot \mathbf{b} + \mathbf{b} + \mathbf{b}) \\ &\quad + (\mathbf{a} \cdot \mathbf{a} - 2 \mathbf{a} \cdot \mathbf{c} + \mathbf{c} + \mathbf{c}) \\ &\quad + (\mathbf{b} \cdot \mathbf{b} - 2 \mathbf{b} \cdot \mathbf{c} + \mathbf{c} + \mathbf{c}) \\ &= 2 (\mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + \mathbf{c} \cdot \mathbf{c} - \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{c}) \\ &= \boxed{174}. \end{align*}
For real numbers $t,$ the point \[(x,y) = \left( e^t + e^{-t}, 3 (e^t - e^{-t}) \right)\]is plotted. All the plotted points lie on what kind of curve? (A) Line (B) Circle (C) Parabola (D) Ellipse (E) Hyperbola Enter the letter of the correct option. Note: $e$ is a mathematical constant that is approximately $2.71828.$
Level 2
Precalculus
We have that \[x^2 = (e^t + e^{-t})^2 = e^{2t} + 2 + e^{-2t},\]and \begin{align*} \frac{y^2}{9} &= (e^t - e^{-t})^2 \\ &= e^{2t} - 2 + e^{-2t}. \end{align*}Then \[x^2 - \frac{y^2}{9} = 4,\]so \[\frac{x^2}{4} - \frac{y^2}{36} = 1.\]Thus, all plotted points lie on a hyperbola. The answer is $\boxed{\text{(E)}}.$
Let $ABCD$ be a tetrahedron such that edges $AB$, $AC$, and $AD$ are mutually perpendicular. Let the areas of triangles $ABC$, $ACD$, and $ADB$ be denoted by $x$, $y$, and $z$, respectively. In terms of $x$, $y$, and $z$, find the area of triangle $BCD$.
Level 5
Precalculus
Place $A$, $B$, $C$, and $D$ at $(0,0,0)$, $(b,0,0)$, $(0,c,0)$, and $(0,0,d)$ in Cartesian coordinate space, with $b$, $c$, and $d$ positive. Then the plane through $B$, $C$, and $D$ is given by the equation $\frac{x}{b}+\frac{y}{c}+\frac{z}{d}=1$. [asy] import three; size(250); currentprojection = perspective(6,3,2); triple A, B, C, D; A = (0,0,0); B = (1,0,0); C = (0,2,0); D = (0,0,3); draw(A--(4,0,0)); draw(A--(0,4,0)); draw(A--(0,0,4)); draw(B--C--D--cycle); label("$A$", A, NE); label("$B$", B, S); label("$C$", C, S); label("$D$", D, NE); [/asy] From the formula for the distance between a point and a plane, the distance from the origin to plane $BCD$ is $$\frac{|\frac{0}{a} + \frac{0}{b} + \frac{0}{c} - 1|}{\sqrt{\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}}} = \frac{1}{\sqrt{\frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{d^2}}} = \frac{bcd}{\sqrt{b^2c^2+c^2d^2+d^2b^2}}.$$Since $x$ is the area of triangle $ABC,$ $x = \frac{1}{2} bc,$ so $bc = 2x.$ Similarly, $cd = 2y,$ and $bd = 2z,$ so the distance can be expressed as \[\frac{bcd}{\sqrt{4x^2 + 4y^2 + 4z^2}} = \frac{bcd}{2 \sqrt{x^2 + y^2 + z^2}}.\]Let $K$ be the area of triangle $BCD.$ Using triangle $ABC$ as a base, the volume of the tetrahedron is $\frac{bcd}{6}.$ Using triangle $BCD$ as a base, the volume of the tetrahedron is $\frac{bcdK}{6\sqrt{x^2+y^2+z^2}},$ so $$\frac{bcd}{6}=\frac{bcdK}{6\sqrt{x^2+y^2+z^2}},$$implying $K=\boxed{\sqrt{x^2+y^2+z^2}}$. Alternatively, the area of $BCD$ is also half the length of the cross product of the vectors $\overrightarrow{BC}= \begin{pmatrix} 0 \\ -c \\ d \end{pmatrix}$ and $\overrightarrow{BD} = \begin{pmatrix} -b \\ 0 \\ d \end{pmatrix}.$ This cross product is $\begin{pmatrix} -cd \\ -bd \\ -bc \end{pmatrix} = -2 \begin{pmatrix} y \\ z \\ x \end{pmatrix}$, which has length $2\sqrt{x^2+y^2+z^2}$. Thus the area of $BCD$ is $\boxed{\sqrt{x^2+y^2+z^2}}$.
Let $\mathbf{a},$ $\mathbf{b},$ and $\mathbf{c}$ be three mutually orthogonal unit vectors, such that \[\mathbf{a} = p (\mathbf{a} \times \mathbf{b}) + q (\mathbf{b} \times \mathbf{c}) + r (\mathbf{c} \times \mathbf{a})\]for some scalars $p,$ $q,$ and $r,$ and $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 1.$ Find $p + q + r.$
Level 3
Precalculus
Taking the dot product of the given equation with $\mathbf{a},$ we get \[\mathbf{a} \cdot \mathbf{a} = p (\mathbf{a} \cdot (\mathbf{a} \times \mathbf{b})) + q (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})) + r (\mathbf{a} \cdot (\mathbf{c} \times \mathbf{a})).\]Since $\mathbf{a}$ is orthogonal to both $\mathbf{a} \times \mathbf{c}$ and $\mathbf{c} \times \mathbf{a},$ we are left with \[\mathbf{a} \cdot \mathbf{a} = q (\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})) = q.\]Then $q = \mathbf{a} \cdot \mathbf{a} = 1.$ Similarly, if we take the dot product of the given equation with $\mathbf{b},$ we get \[\mathbf{b} \cdot \mathbf{a} = p (\mathbf{b} \cdot (\mathbf{a} \times \mathbf{b})) + q (\mathbf{b} \cdot (\mathbf{b} \times \mathbf{c})) + r (\mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})).\]Since $\mathbf{a}$ and $\mathbf{b}$ are orthogonal, we are left with \[0 = r (\mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})).\]By the scalar triple product, $\mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})) = \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 1,$ so $r = 0.$ Similarly, by taking the dot product of both sides with $\mathbf{c},$ we are left with $p = 0.$ Therefore, $p + q + r = \boxed{1}.$
The set of points with spherical coordinates of the form \[(\rho, \theta, \phi) = \left( 1, \theta, \frac{\pi}{6} \right)\]forms a circle. Find the radius of this circle.
Level 4
Precalculus
If $P = \left( 1, \theta, \frac{\pi}{6} \right),$ and $P$ has rectangular coordinates $(x,y,z),$ then \[\sqrt{x^2 + y^2} = \sqrt{\rho^2 \sin^2 \phi \cos^2 \theta + \rho^2 \sin^2 \phi \sin^2 \theta} = |\rho \sin \phi| = \frac{1}{2}.\]Hence, the radius of the circle is $\boxed{\frac{1}{2}}.$ [asy] import three; size(180); currentprojection = perspective(6,3,2); triple sphericaltorectangular (real rho, real theta, real phi) { return ((rho*Sin(phi)*Cos(theta),rho*Sin(phi)*Sin(theta),rho*Cos(phi))); } real t; triple O, P; path3 circ; O = (0,0,0); P = sphericaltorectangular(1,60,30); circ = sphericaltorectangular(1,0,30); for (t = 0; t <= 360; t = t + 5) { circ = circ--sphericaltorectangular(1,t,30); } draw(circ,red); draw((0,0,0)--(1,0,0),Arrow3(6)); draw((0,0,0)--(0,1,0),Arrow3(6)); draw((0,0,0)--(0,0,1),Arrow3(6)); draw(surface(O--P--(P.x,P.y,0)--cycle),gray(0.7),nolight); draw(O--P--(P.x,P.y,0)--cycle); draw((0,0,0.5)..sphericaltorectangular(0.5,60,15)..sphericaltorectangular(0.5,60,30),Arrow3(6)); draw((0.4,0,0)..sphericaltorectangular(0.4,30,90)..sphericaltorectangular(0.4,60,90),Arrow3(6)); label("$x$", (1.1,0,0)); label("$y$", (0,1.1,0)); label("$z$", (0,0,1.1)); label("$\phi$", (0.2,0.2,0.6)); label("$\theta$", (0.6,0.3,0)); label("$P$", P, N); [/asy]