s_id
stringlengths
10
10
p_id
stringlengths
6
6
u_id
stringlengths
10
10
date
stringlengths
10
10
language
stringclasses
1 value
original_language
stringclasses
11 values
filename_ext
stringclasses
1 value
status
stringclasses
1 value
cpu_time
int64
0
100
memory
stringlengths
4
6
code_size
int64
15
14.7k
code
stringlengths
15
14.7k
problem_id
stringlengths
6
6
problem_description
stringlengths
358
9.83k
input
stringlengths
2
4.87k
output
stringclasses
807 values
__index_level_0__
int64
1.1k
1.22M
s517837582
p00021
u912237403
1394223031
Python
Python
py
Accepted
10
4360
156
import math for i in range(int(raw_input())): a,w,b,x,c,y,d,z=map(float, raw_input().split()) print ["NO","YES"][abs((w-x)*(c-d)-(y-z)*(a-b))<1e-10]
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,402
s731217604
p00021
u491763171
1401139355
Python
Python
py
Accepted
10
4236
317
n = input() for i in xrange(n): x1, y1, x2, y2, x3, y3, x4, y4 = map(float, raw_input().split()) Ax = x1 - x2 Ay = y1 - y2 Bx = x3 - x4 By = y3 - y4 if Ax == Bx == 0 or Ay == By == 0: print "YES" elif abs(Ay * Bx - By * Ax) < 1e-10: print "YES" else: print "NO"
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,403
s274804603
p00021
u436634575
1401142983
Python
Python3
py
Accepted
30
6744
185
n = int(input()) for i in range(n): x1, y1, x2, y2, x3, y3, x4, y4 = map(float, input().split()) print('YES' if abs((x2 - x1)*(y4 - y3) - (x4 - x3)*(y2 - y1)) < 1e-10 else 'NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,404
s485761665
p00021
u557208833
1402209471
Python
Python
py
Accepted
10
4392
381
import math DELTA = 1e-10 def readnums(): return raw_input().split() def cross(v1,v2): return v1[0]*v2[1]-v1[1]*v2[0] [n] = readnums() for i in range(0,int(n)): [xa,ya,xb,yb,xc,yc,xd,yd] = map(float,readnums()) vab = (xb-xa,yb-ya) vcd = (xd-xc,yd-yc) prod = cross(vab,vcd) if math.fabs(prod) < DELTA: print "YES" else: print "NO"
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,405
s964401687
p00021
u187074069
1594902198
Python
Python3
py
Accepted
20
5616
376
num = int(input()) l = [] for i in range(num): lst = list(map(float, input().split())) x1, y1 = lst[0], lst[1] x2, y2 = lst[2], lst[3] x3, y3 = lst[4], lst[5] x4, y4 = lst[6], lst[7] d = (x2 - x1) * (y4 - y3) - (x4 - x3) * (y2 - y1) k = abs(d) if k <= 1e-11: l.append('YES') else: l.append('NO') for i in l: print(i)
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,406
s889770793
p00021
u903393228
1594628969
Python
Python3
py
Accepted
30
5616
776
def cross_product(a,b): return (a.conjugate()*b).imag n = int(input()) for i in range(n): A = list(input().split()) B = [] for i in A: #print(i) if '.' not in i: #print('you',i) j = int(i)*(10**5) elif '-' not in i: #print('meiyou',i) p,q = i.split('.') j = int(p)*(10**5)+int(q)*10**(5-len(q)) else: #print('youmeiyou',i) p,q = i.split('.') j = int(p)*(10**5)-int(q)*10**(5-len(q)) #print(j) B.append(j) #print(B) u = complex(B[2]-B[0],B[3]-B[1]) v = complex(B[6]-B[4],B[7]-B[5]) #print(abs(cross_product(u,v))) if abs(cross_product(u,v)) == 0: print('YES') else: print('NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,407
s041757100
p00021
u913305001
1594444967
Python
Python3
py
Accepted
20
5604
150
N = int(input()) for _ in range(N): a,e,b,f,c,g,d,h=map(float,input().split()) print("YES" if abs((b-a)*(h-g)-(d-c)*(f-e)) < 1e-10 else "NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,408
s123297418
p00021
u742290340
1594027988
Python
Python3
py
Accepted
20
5624
240
N = int(input()) for _ in range(N): P = list(map(float,input().split())) a, b, c, d = [complex(P[i*2],P[i*2+1])*1000000 for i in range(4)] parallel = ((a-b).conjugate() *(c-d)).imag ==0 print("YES" if parallel else "NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,409
s352655272
p00021
u515473089
1594025343
Python
Python3
py
Accepted
30
5748
349
import math import cmath def dot(a:complex,b:complex): return (a.conjugate()*b).real def cross(a:complex,b:complex): return (a.conjugate()*b).imag eps=10**(-11) n=int(input()) for i in range(n): l=list(map(float,input().split())) p=[complex(l[2*j],l[2*j+1]) for j in range(4)] print('YES' if abs(cross(p[1]-p[0],p[3]-p[2]))<eps else 'NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,410
s675053232
p00021
u260980560
1588731750
Python
Python3
py
Accepted
20
5612
205
N = int(input()) for i in range(N): x1, y1, x2, y2, x3, y3, x4, y4 = map(float, input().split()) x2 -= x1; y2 -= y1 x4 -= x3; y4 -= y3 print("YES" if abs(x2*y4 - x4*y2) < 1e-10 else "NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,411
s112152519
p00021
u808372529
1584063899
Python
Python3
py
Accepted
20
5628
207
n = int(input()) s1 = 0 s2 = 0 for i in range(n): x1, y1, x2, y2, x3, y3, x4, y4 = map(float,input().split()) if abs((x2-x1)*(y4-y3)-(x4-x3)*(y2-y1)) <= 10**(-10): print("YES") else: print("NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,412
s842928571
p00021
u350155409
1575088436
Python
Python3
py
Accepted
20
5624
246
n = int(input()) for i in range(n): x1,y1,x2,y2,x3,y3,x4,y4 = [ float(s) for s in input().split() ] diff = (x2-x1)*(y4-y3) - (x4-x3)*(y2-y1) if diff < 1e-10 and diff > -1*(1e-10): print('YES') else: print('NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,413
s506218964
p00021
u803862921
1571456814
Python
Python3
py
Accepted
20
5612
388
num = int(input()) EPS = 0.00000000001 for _ in range(num): x1, y1, x2, y2, x3, y3, x4, y4 = [float(x) for x in input().split()] abx = x2 - x1 aby = y2 - y1 cdx = x4 - x3 cdy = y4 - y3 # abx : aby = cdx : cdy # aby * cdx - abx * cdy = 0 ( < EPSilon) if abs(aby * cdx - abx * cdy) < EPS: print("YES") else: print("NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,414
s465194507
p00021
u511231264
1566343186
Python
Python3
py
Accepted
20
5604
217
EPS = 1e-10 for q in range(int(input())): l = list(map(float, input().split())) if abs((l[3] - l[1]) * (l[6] - l[4]) - (l[7] - l[5]) * (l[2] - l[0])) < EPS: print('YES') else: print('NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,415
s380382423
p00021
u108130680
1564804339
Python
Python3
py
Accepted
20
5604
190
for _ in range(int(input())): x1,y1,x2,y2,x3,y3,x4,y4=map(float,input().split()) if abs((x2 - x1)*(y4 - y3) - (y2 - y1)*(x4 - x3)) < 1e-10: print("YES") else: print("NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,416
s285258894
p00021
u528682978
1562997708
Python
Python3
py
Accepted
30
5812
434
import math import cmath def area(x): theta = cmath.phase(x[1]-x[0]) C = (x[3]-x[2])*complex(math.cos(-theta),math.sin(-theta)) return C.imag def parallel(P): x = [] for i in range(4): x.append(complex(P[i*2],P[i*2+1])) return True if abs(area(x))<eps else False n = int(input()) eps = 0.0000001 for _ in range(n): P = list(map(float,input().split())) print("YES" if parallel(P) else "NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,417
s095954164
p00021
u026821956
1562584823
Python
Python3
py
Accepted
30
5720
350
import math import cmath def cross_product(a,b): return (a.conjugate()*b).imag n = int(input()) for i in range(n): L = list(map(float,input().split())) a,b,c,d = [complex(L[j*2],L[j*2+1]) for j in range(4)] vec_A = b-a vec_B = d-c if abs(cross_product(vec_A,vec_B)) < 1e-11: print('YES') else: print('NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,418
s423228856
p00021
u481944101
1562584101
Python
Python3
py
Accepted
20
5628
206
N=int(input()) for _ in range(N): p=list(map(float,input().split())) a,b,c,d=map(lambda x:complex(*x),[p[:2],p[2:4],p[4:6],p[6:]]) print(['NO','YES'][abs(((a-b).conjugate()*(c-d)).imag)<1e-11])
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,419
s696588558
p00021
u506537276
1560158646
Python
Python3
py
Accepted
20
5628
250
n = int(input()) for i in range(n): x1, y1, x2, y2, x3, y3, x4, y4 = map(float, input().split()) v1x = x1 - x2 v1y = y1 - y2 v2x = x3 - x4 v2y = y3 - y4 if abs(v1x * v2y - v2x * v1y) < 10 ** -10 : print("YES") else: print("NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,420
s850229956
p00021
u625806423
1557113148
Python
Python3
py
Accepted
20
5644
340
EPS = 10**-10 n = int(input()) pos = [] for _ in range(n): pos.append(list(map(float, input().split()))) for i in range(n): vec_ax = pos[i][2]-pos[i][0] vec_ay = pos[i][3]-pos[i][1] vec_bx = pos[i][6]-pos[i][4] vec_by = pos[i][7]-pos[i][5] if abs(vec_bx*vec_ay - vec_by*vec_ax) < EPS: print("YES") else: print("NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,421
s547067113
p00021
u647694976
1555493902
Python
Python3
py
Accepted
20
5604
225
n = int(input()) for i in range(n): x1, y1, x2, y2, x3, y3, x4, y4 = map(float, input().split()) if abs( (x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3) ) < 1e-10: print('YES') else: print('NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,422
s619754681
p00021
u998437062
1554719542
Python
Python3
py
Accepted
20
5620
407
n = int(input()) for _ in range(n): x1, y1, x2, y2, x3, y3, x4, y4 = map(float, input().split()) abx = x2 - x1 aby = y2 - y1 cdx = x4 - x3 cdy = y4 - y3 if abs(aby * cdx) < 1e-10 and abs(cdy * abx) < 1e-10: print(['NO', 'YES'][abs(abx - cdx) < 1e-10 or abs(aby - cdy) < 1e-10]) elif abs(aby * cdx - cdy * abx) < 1e-10: print('YES') else: print('NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,423
s273671745
p00021
u025180675
1544697798
Python
Python3
py
Accepted
20
5624
375
def cross_product(a,b): return (a.conjugate()*b).imag N = int(input().strip()) for _ in range(N): P = list(map(float,input().strip().split())) for i in range(len(P)): P[i] = int(P[i]*1000000.0) z = complex(P[0]-P[2],P[1]-P[3]) w = complex(P[4]-P[6],P[5]-P[7]) if abs(cross_product(z,w)) < 1: print("YES") else: print("NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,424
s958666411
p00021
u291570764
1543496775
Python
Python3
py
Accepted
20
5608
260
for i in range(int(input())): ax, ay, bx, by, cx, cy, dx, dy = map(float, input().split()) if ax==bx or cx==dx: print("YES" if ax==bx and cx==dx and ay!=by and cy!=dy else "NO") else: print("YES" if abs((ay-by)/(ax-bx)-(cy-dy)/(cx-dx))<1e-10 else "NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,425
s377203476
p00021
u563075864
1542687317
Python
Python3
py
Accepted
20
5636
217
n = int(input()) E = 10**-10 for _ in range(n): x1,y1,x2,y2,x3,y3,x4,y4 = [float(i) for i in input().split()] if abs((x2-x1)*(y4-y3) - (y2-y1)*(x4-x3)) < E: print("YES") else: print("NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,426
s941044904
p00021
u067299340
1542176243
Python
Python3
py
Accepted
30
5620
292
for i in range(int(input())): x1, y1, x2, y2, x3, y3, x4, y4 = [float(x) for x in input().split()] s1 = round((y2 - y1) / (x2 - x1), 10) if x1 != x2 else float('inf') s2 = round((y4 - y3) / (x4 - x3), 10) if x3 != x4 else float('inf') print("YES" if s1 == s2 else "NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,427
s181339204
p00021
u717526540
1541652957
Python
Python3
py
Accepted
30
5664
242
import math n = int(input()) for _ in range(n): x1, y1, x2, y2, x3, y3, x4, y4 = map(float, input().split()) var = abs((x2-x1) * (y4-y3) - (x4-x3) * (y2-y1)) if var < 1e-10: print("YES") else: print("NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,428
s442440929
p00021
u536280367
1537799858
Python
Python3
py
Accepted
20
5604
339
for i in range(int(input())): x1, y1, x2, y2, x3, y3, x4, y4 = map(float, input().split()) if x2 == x1 and x4 == x3: print('YES') continue if x2 == x1 or x4 == x3: print('NO') continue if abs((y2-y1)/(x2-x1) - (y4-y3)/(x4-x3)) < 1e-10: print('YES') else: print('NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,429
s724403257
p00021
u219940997
1537453232
Python
Python3
py
Accepted
20
5616
259
n = int(input()) cordinates = [list(map(float, input().split())) for _ in range(n)] for cod in cordinates: x1, y1, x2, y2, x3, y3, x4, y4 = cod if abs((x2-x1) * (y4-y3) - (y2-y1) * (x4-x3)) < 1e-10: print('YES') else: print('NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,430
s910492294
p00021
u252700163
1534610465
Python
Python3
py
Accepted
20
5660
220
import math n = int(input()) for i in range(n): x1, y1, x2, y2, x3, y3, x4, y4 = map(float, input().split()) if abs((x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3)) < 1e-10: print('YES') else: print('NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,431
s396269245
p00021
u319725914
1534226987
Python
Python3
py
Accepted
30
5632
186
n = int(input()) for _ in range(n): x1,y1,x2,y2,x3,y3,x4,y4 = map(float,input().split()) if abs((x2-x1)*(y4-y3)-(x4-x3)*(y2-y1)) <= 10**(-10): print("YES") else: print("NO")
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,432
s484992752
p00021
u995990363
1533800127
Python
Python3
py
Accepted
20
5664
453
import math epsilon = 1e-10 def get_grad(v1, v2): return v1[0] * v2[1] - v1[1] * v2[0] def run(): N = int(input()) for _ in range(N): x1, y1, x2, y2, x3, y3, x4, y4 = map(float, input().split()) _v1 = (x2 - x1, y2 - y1) _v2 = (x4 - x3, y4 - y3) grad = get_grad(_v1, _v2) if abs(grad) < epsilon: print('YES') else: print('NO') if __name__ == '__main__': run()
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,433
s224110311
p00021
u079141094
1467464078
Python
Python3
py
Accepted
30
7612
208
# Parallelism for _ in range(int(input())): x1,y1,x2,y2,x3,y3,x4,y4 = map(float, input().split()) if abs((x2-x1)*(y4-y3) - (y2-y1)*(x4-x3)) < 1e-10: print('YES') else: print('NO')
p00021
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Parallelism</H1> <p> There are four points: $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, and $D(x_4, y_4)$. Write a program which determines whether the line $AB$ and the line $CD$ are parallel. If those two lines are parallel, your program should prints "<span>YES</span>" and if not prints "<span>NO</span>". </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, you are given the number of datasets $n$ ($n \leq 100$). There will be $n$ lines where each line correspondgs to each dataset. Each dataset consists of eight real numbers:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$ $x_4$ $y_4$<br/> </p> <p> You can assume that $-100 \leq x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4 \leq 100$. Each value is a real number with at most 5 digits after the decimal point. </p> <H2>Output</H2> <p> For each dataset, print "<span>YES</span>" or "<span>NO</span>" in a line. </p> <H2>Sample Input</H2> <pre> 2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0 </pre> <H2>Output for the Sample Input</H2> <pre> YES NO </pre>
2 0.0 0.0 1.0 1.0 1.0 0.0 2.0 1.0 3.0 2.0 9.0 6.0 13.0 5.0 7.0 9.0
YES NO
7,434
s546492824
p00022
u990228206
1551343089
Python
Python3
py
Accepted
40
5636
326
while 1: n=int(input()) if n==0:break nlist=[] nans=-100001 for i in range(n): nlist.append(int(input())) nkeep=0 for i in nlist: if nkeep<0: nkeep=i else: nkeep+=i if nans<nkeep:nans=nkeep if max(nlist)<0:nans=max(nlist) print(nans)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,435
s395291099
p00022
u647694976
1555923351
Python
Python3
py
Accepted
40
5604
251
while True: N=int(input()) if N==0: break num=0 res=-11111111 for i in range(N): a=int(input()) num=max(num+a, a) #print(num) res=max(num, res) #print(res) print(res)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,436
s275288565
p00022
u506132575
1416132067
Python
Python
py
Accepted
50
4412
252
#!/usr/bin/env python # -*- coding: utf-8 -*- while True: num = input() if num == 0: break lis = [0]*num for i in range(num): n = input() if i == 0: lis[0] = n else: lis[i] = max( lis[i-1] + n , n ) print max(lis)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,437
s636158077
p00022
u342537066
1420712819
Python
Python3
py
Accepted
40
6764
199
while True: n=int(input()) if n==0: break a=[] for i in range(n): a.append(int(input())) for i in range(1,n): a[i]=max(a[i-1]+a[i],a[i]) print(max(a))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,438
s009802789
p00022
u567380442
1422882764
Python
Python3
py
Accepted
40
6788
286
import sys f = sys.stdin while True: n = int(f.readline()) if n == 0: break a = [int(f.readline()) for i in range(n)] sum_max = now = 0 for ai in a: now = max(0, now + ai) sum_max = max(sum_max, now) print(sum_max if sum_max else max(a))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,439
s413367097
p00022
u540744789
1426006462
Python
Python
py
Accepted
20
4404
348
while True: sequence = [] n = input() if n ==0: break for i in range(n): sequence.append(int(raw_input())) max_sum=-100000 sum=0 while len(sequence)!=0: sum+=sequence.pop(0) if max_sum<sum: max_sum=sum if sum<0: sum=0 print max_sum
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,440
s373140197
p00022
u067299340
1433498947
Python
Python
py
Accepted
40
4432
121
while 1: n=input() if n==0:break m=0 r=-1e5 for x in[input()for i in range(n)]: m=max(m,0)+x r=max(m,r) print r
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,441
s145768713
p00022
u067299340
1433498970
Python
Python
py
Accepted
40
4336
122
while 1: n=input() if n==0:break m=0 r=-1e5 for x in[input()for i in xrange(n)]: m=max(m,0)+x r=max(m,r) print r
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,442
s865348907
p00022
u067299340
1433499250
Python
Python
py
Accepted
40
4456
133
while 1: n=input() if n==0:break m=0 r=[-10**5]*n for x in[input()for i in range(n)]: m=max(m,0)+x r.append(m) print max(r)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,443
s108710604
p00022
u067299340
1433499601
Python
Python
py
Accepted
40
4448
129
while 1: n=input() if n==0:break r=[input()for i in range(n)] for i in range(1,n): r[i]=max(r[i-1]+r[i],r[i]) print max(r)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,444
s486892717
p00022
u067299340
1433499898
Python
Python
py
Accepted
40
4360
152
while 1: n=input() if n==0:break r=[input()for i in xrange(n)] #print r for i in xrange(1,n): r[i]=max(r[i-1]+r[i],r[i]) #print r print max(r)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,445
s130928034
p00022
u067299340
1433499950
Python
Python
py
Accepted
20
4436
138
while 1: n=input() if n==0:break r=[int(raw_input())for i in range(n)] for i in range(1,n): r[i]=max(r[i-1]+r[i],r[i]) print max(r)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,446
s831725593
p00022
u379956761
1434986660
Python
Python3
py
Accepted
40
6860
251
while 1: n = int(input()) if n == 0: break a = [] for _ in range(n): a.append(int(input())) dp = [] dp.append(a[0]) for i in range(1,len(a)): dp.append(max(dp[i-1] + a[i], a[i])) print(max(dp))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,447
s923405856
p00022
u334031393
1437638694
Python
Python3
py
Accepted
50
6720
172
while True: n = int(input()) if n == 0: break res = -1111111111 s = 0 for i in range(n): a = int(input()) s = max(s + a, a) res = max(s, res) print(res)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,448
s242437737
p00022
u775586391
1448335085
Python
Python3
py
Accepted
60
7576
213
while True: n = int(input()) if n == 0: break a = 0 max_c = -200000 while n > 0: i = int(input()) a += i if max_c < a: max_c = a if a <= 0: a = 0 n -= 1 print(max_c)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,449
s513589858
p00022
u461370825
1449743071
Python
Python
py
Accepted
60
6528
338
from math import * PI = 3.1415926535898 while True: try: n = input() if n == 0: break res = [] arr = [] su = 0 for i in range(n): arr.append(input()) res.append(arr[0]) ans = arr[0] for i in range(1, n): res.append(max(res[i-1] + arr[i], arr[i])) ans = max(ans, res[i]) print ans except EOFError: break
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,450
s090493823
p00022
u463990569
1452882954
Python
Python3
py
Accepted
40
7632
218
while True: num = int(input()) if not num: break result, tmp = -1e6, 0 for _ in range(num): new = int(input()) tmp = max(new, new+tmp) result = max(tmp, result) print(result)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,451
s546092748
p00022
u797673668
1456641552
Python
Python3
py
Accepted
40
7600
208
while True: n = int(input()) if not n: break a = [0] * n a[0] = int(input()) for i in range(1, n): an = int(input()) a[i] = max(an, a[i - 1] + an) print(max(a))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,452
s830464009
p00022
u777299405
1456650804
Python
Python3
py
Accepted
40
7728
214
while True: n = int(input()) if n == 0: break else: a = [int(input()) for i in range(n)] for i in range(1, n): a[i] = max(a[i - 1] + a[i], a[i]) print(max(a))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,453
s764463657
p00022
u650459696
1458710604
Python
Python3
py
Accepted
40
7668
181
while True: n = int(input()) if n == 0: break dp = [-1e6] for i in range(n): a = int(input()) dp.append(max(dp[i] + a, a)) print(max(dp))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,454
s919856206
p00022
u075836834
1458950266
Python
Python3
py
Accepted
40
7796
229
while True: n=int(input()) if n==0: break A=[] for i in range(n): x=int(input()) A.append(x) B=[int()]*n B[0]=A[0] for i in range(1,n): if A[i]>=A[i]+B[i-1]: B[i]=A[i] else: B[i]=A[i]+B[i-1] print(max(B))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,455
s420211351
p00022
u572790226
1460606298
Python
Python3
py
Accepted
40
7632
331
def maxsum(A): smax = A[0] ssum = max(A[0], 0) for a in A[1:]: ssum += a smax = max(ssum, smax) ssum = max(ssum, 0) return smax while True: n = int(input()) if not n: break A = [] for i in range(n): a = int(input()) A.append(a) print(maxsum(A))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,456
s930966343
p00022
u935184340
1467126969
Python
Python3
py
Accepted
40
7564
381
import sys for i in sys.stdin: n = int(i) if n == 0: break max = -100000 sum = int(input()) for i in range(n-1): m = int(input()) if sum < 0 and sum < m: sum = m elif m < 0 and max < sum: max = sum sum += m else: sum += m if sum > max: max = sum print(max)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,457
s595366720
p00022
u935184340
1467127264
Python
Python3
py
Accepted
30
7632
425
import sys s = "" for i in sys.stdin: n = int(i) if n == 0: break max = -100000 sum = int(input()) for i in range(n-1): m = int(input()) if sum < 0 and sum < m: sum = m else: if m < 0 and max < sum: max = sum sum += m if sum > max: s += str(sum) + "\n" else: s += str(max) + "\n" print(s,end="")
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,458
s474073786
p00022
u358919705
1471986442
Python
Python3
py
Accepted
60
7712
199
while True: n = int(input()) if not n: break a = [int(input()) for _ in range(n)] for i in range(1, n): if a[i - 1] > 0: a[i] += a[i - 1] print(max(a))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,459
s215708591
p00022
u589886885
1472126522
Python
Python3
py
Accepted
50
7736
184
while True: n = int(input()) if n == 0: break dp = [-100000] for i in range(n): a = int(input()) dp.append(max(dp[i] + a, a)) print(max(dp))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,460
s549890932
p00022
u379499530
1473065310
Python
Python
py
Accepted
60
6376
178
while 1: n = input() if n == 0: break sums = [-100000] for i in xrange(n): num = input() sums.append(max(sums[-1] + num, num)) print max(sums)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,461
s061365714
p00022
u964040941
1479225794
Python
Python3
py
Accepted
40
7744
217
while True: N = int(input()) if N == 0: break A = [int(input()) for i in range(N)] ans = A [0] cur = 0 for i in A: cur = max(cur + i,i) ans = max(ans,cur) print(ans)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,462
s831822783
p00022
u922871577
1479344310
Python
Python
py
Accepted
20
6444
381
while True: n = input() if n == 0: exit() A = [int(raw_input()) for _ in xrange(n)] if all(a <= 0 for a in A): print max(A) continue r = 0 tmp = 0 ans = 0 while r < n: tmp += A[r] if tmp < 0: l = r tmp = 0 else: ans = max(ans, tmp) r += 1 print ans
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,463
s559884937
p00022
u252368621
1481341120
Python
Python3
py
Accepted
40
7620
203
n=int(input()) while(n!=0): list=[] list.append(int(input())) for i in range(1,n): num=int(input()) list.append(max(num,num+list[i-1])) print(max(list)) n=int(input())
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,464
s155424244
p00022
u811733736
1481606551
Python
Python3
py
Accepted
40
7720
1,210
if __name__ == '__main__': while True: # ??????????????\??? loop = int(input()) if loop == 0: break data = [int(input()) for _ in range(loop)] # ??????????????? max_total = max(data) # ??£?¶?????????°???????????§????¨???? total = 0 for d in data: if d > 0: # ??°??????+??§????????°?????±????°???? total += d # ????¨?????¶???????????¨?????????´??°????????????????¢???????????????? if total > max_total: max_total = total else: # ??°??????-?????´?????????????????§????????£???????????????????????§?????????????????? if total > abs(d): # ???????????§??????????????????????????§????????°???total???????????????????¶??¶??????? total += d # ???????????????????????????????????§???max_total?????´??°??????????????§????????? else: total = 0 # ???????????????????????§??????????????????????????§??????????????§????¨??????????????????????????¬?????????????????????????????????? # ???????????¨??? print(max_total)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,465
s320965266
p00022
u901080241
1488969708
Python
Python3
py
Accepted
40
7544
278
while True: n = int(input()) if n==0 : break a = [] for i in range(n): a.append(int(input())) maxp = -100001 maxcont = -100001 for i in range(n): maxcont = max(a[i], maxcont + a[i]) maxp = max(maxp, maxcont) print(maxp)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,466
s683625575
p00022
u462831976
1492721311
Python
Python3
py
Accepted
40
7736
192
while True: n = int(input()) if n == 0: break s = [int(input())] for i in range(1, n): a = int(input()) s.append(max(a, a + s[i - 1])) print(max(s))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,467
s535213106
p00022
u462831976
1492721426
Python
Python3
py
Accepted
50
7748
192
while True: n = int(input()) if n == 0: break s = [int(input())] for i in range(1, n): a = int(input()) s.append(max(a, a + s[i - 1])) print(max(s))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,468
s097337122
p00022
u462831976
1492721722
Python
Python3
py
Accepted
40
7800
385
# -*- coding: utf-8 -*- import sys import os def max_seq(A): s = [] s.append(A[0]) for i in range(1, len(A)): v = max(A[i], A[i] + s[i-1]) s.append(v) return max(s) while True: s = input().strip() if s == '0': break N = int(s) A = [] for i in range(N): v = int(input()) A.append(v) print(max_seq(A))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,469
s958759608
p00022
u119127920
1494412458
Python
Python3
py
Accepted
40
7832
471
def solve(a_list): if len(list(filter(lambda x: x >= 0, a_list))) == 0: return max(a_list) dp = [0] * len(a_list) dp[0] = max(0, a_list[0]) for i in range(1, len(dp)): dp[i] = max(0, a_list[i] + dp[i - 1]) return max(dp) def main(): while True: n = int(input()) if n == 0: break a_list = [int(input()) for _ in range(n)] print(solve(a_list)) if __name__ == '__main__': main()
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,470
s346174729
p00022
u119127920
1494413290
Python
Python3
py
Accepted
40
7804
470
def solve(a_list): if len(list(filter(lambda x: x >= 0, a_list))) == 0: return max(a_list) dp = [0] * len(a_list) dp[0] = a_list[0] for i in range(1, len(dp)): dp[i] = max(a_list[i], a_list[i] + dp[i - 1]) return max(dp) def main(): while True: n = int(input()) if n == 0: break a_list = [int(input()) for _ in range(n)] print(solve(a_list)) if __name__ == '__main__': main()
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,471
s692414721
p00022
u618637847
1494901510
Python
Python3
py
Accepted
50
7576
252
while True: num = int(input()) if num == 0: break list = [] for i in range(num): list.append(int(input())) for i in range(1, num): list[i] = max(list[i - 1] + list[i], list[i]) print(max(list))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,472
s828605266
p00022
u905313459
1496463333
Python
Python3
py
Accepted
30
7792
203
while True: n = int(input()) if not n: break l = [int(input()) for j in range(n)] s = [l[0]] for k, v in enumerate(l[1:]): s.append(max(v, v + s[k])) print(max(s))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,473
s990987879
p00022
u519227872
1497274093
Python
Python3
py
Accepted
30
7724
387
from sys import stdin def getMax(array): mx = mx2 = array[0] for i in array[1:]: mx2 = max(i, mx2 + i) mx = max(mx, mx2) return mx for line in stdin: n = int(line) if n == 0: break array = [] for line in stdin: line = int(line) array.append(line) if len(array) == n: break print(getMax(array))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,474
s407978663
p00022
u236679854
1507672850
Python
Python3
py
Accepted
40
7556
278
while True: n = int(input()) if n == 0: break max_sum = max_ending_here = int(input()) for i in range(1, n): a = int(input()) max_ending_here = max(a, max_ending_here + a) max_sum = max(max_sum, max_ending_here) print(max_sum)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,475
s020896341
p00022
u546285759
1509277220
Python
Python3
py
Accepted
40
7776
266
while True: n = int(input()) if n == 0: break a = [int(input()) for _ in range(n)] minv = tmp = 0 maxv = -500000 for i in range(n): tmp += a[i] maxv = max(maxv, tmp - minv) minv = min(minv, tmp) print(maxv)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,476
s893307477
p00022
u926657458
1509309013
Python
Python3
py
Accepted
40
7804
253
import sys n = int(sys.stdin.readline()) while n: l = list() for _ in range(n): l.append(int(input())) a = l.copy() for i in range(1,n): a[i] = max(a[i-1] + l[i], l[i]) print(max(a)) n = int(sys.stdin.readline())
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,477
s403880096
p00022
u203261375
1513085885
Python
Python3
py
Accepted
40
5640
265
while True: n = int(input()) if n == 0: break dp = [] for _ in range(n): if len(dp) == 0: dp.append(int(input())) else: x = int(input()) dp.append(max(dp[-1] + x, x)) print(max(dp))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,478
s738439384
p00022
u024715419
1515642396
Python
Python3
py
Accepted
40
5632
204
while True: n = int(input()) if n == 0: break dp = [int(input())] for i in range(1, n): a_i = int(input()) dp.append(max(dp[i - 1] + a_i, a_i)) print(max(dp))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,479
s443909071
p00022
u150984829
1517599218
Python
Python3
py
Accepted
40
5716
134
while 1: n=int(input()) if n==0:break a=[int(input())for _ in[0]*n] for i in range(1,n):a[i]=max(a[i],a[i]+a[i-1]) print(max(a))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,480
s104503036
p00022
u166871988
1523772407
Python
Python3
py
Accepted
40
5712
192
while True: n=int(input()) if n==0:break l=[int(input()) for i in range(n)] s=0 m=0 for li in l: s=max(0,s+li) m=max(m,s) print(m if m else max(l))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,481
s532752154
p00022
u898097781
1525325517
Python
Python3
py
Accepted
40
5712
301
while(1): N = int(input()) if N==0: break sums = [] nums = [] s = 0 for i in range(N): n = int(input()) nums.append(n) s += n if s<0: s=0 sums.append(s) if max(nums) >= 0: print(max(sums)) else: print(max(nums))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,482
s338937924
p00022
u847467233
1529130058
Python
Python3
py
Accepted
40
5680
268
# AOJ 0022 Maximum Sum Sequence # Python3 2018.6.16 bal4u while 1: n = int(input()) if n == 0: break s = [0]*5001 ans = s[0] = int(input()) for i in range(1, n): v = int(input()) s[i] = v if s[i-1]+v < v else s[i-1]+v if s[i] > ans: ans = s[i] print(ans)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,483
s411081981
p00022
u136916346
1529203341
Python
Python3
py
Accepted
40
5636
198
while 1: n=int(input()) if not n:break dp=[0 for _ in range(n)] dp[0]=int(input()) for i in range(1,n): v=int(input()) dp[i]=max(dp[i-1]+v,v) print(max(dp))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,484
s376197132
p00022
u650035614
1530635653
Python
Python3
py
Accepted
40
5712
337
def max_sub(array): x = max(array[0], 0) ans = 0 for a in array[1:]: x = max(0, x+a) ans = max(ans, x) return ans while True: n = int(input()) if n == 0: break array = [int(input()) for _ in range(n)] ans = max_sub(array) ans = max(array) if ans <= 0 else ans print(ans)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,485
s213687571
p00022
u647766105
1354431537
Python
Python
py
Accepted
40
4452
258
while True: n=input() if n == 0: break a=[input() for i in range(n)] m=max(a) if m<=0: print m else: ans,temp=0,0 for i in a: temp=max(0,temp+i) ans=max(ans,temp) print ans #temp
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,486
s858177098
p00022
u782850731
1362173989
Python
Python
py
Accepted
20
4420
795
from __future__ import (division, absolute_import, print_function, unicode_literals) from sys import stdin from array import array def grouping(nums): sign = None L = array(b'i') for s, n in ((i < 0, i) for i in nums): if sign is s: L[-1] += n else: sign = s L.append(n) if len(L) and L[-1] <= 0: del L[-1] if len(L) and L[0] <= 0: del L[0] return L while True: n = int(stdin.readline()) if not n: break L = array(b'i', (int(stdin.readline()) for _ in xrange(n))) val = max(L) if val <= 0: print(val) continue ans, temp = 0, 0 for i in grouping(L): temp = max(0, temp+i) ans = max(ans, temp) print(ans)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,487
s134327682
p00022
u813384600
1380541066
Python
Python
py
Accepted
20
4472
273
while True: n = int(raw_input()) if n == 0: break a = [0] * n dp = [0] * n for i in range(n): a[i] = int(raw_input()) if i == 0: dp[0] = a[0] else: dp[i] = max(dp[i-1]+a[i], a[i]) print max(dp)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,488
s239022934
p00022
u912237403
1394287602
Python
Python
py
Accepted
40
4204
158
n=input() while n: x=-100000 m=x s=0 while n: a=input() x=max(x,0)+a m=max(m,x) n-=1 print m n=input()
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,489
s579695492
p00022
u912237403
1394288311
Python
Python
py
Accepted
40
4200
146
n=input() while n: x=-100000 m=x s=0 while n: x=input()+max(0,x) m=max(m,x) n-=1 print m n=input()
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,490
s783483968
p00022
u708217907
1398563755
Python
Python
py
Accepted
20
4288
263
while True: n = int(raw_input()) if n == 0: break max_n = max_m = -100000 r = 0 for i in range(n): m = int(raw_input()) max_n = max(max_n, m) r = max(r+m, 0) max_m = max(max_m, r) if max_n > 0: print max_m else: print max_n
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,491
s916866619
p00022
u491763171
1401138260
Python
Python
py
Accepted
30
4388
257
while 1: n = input() if n == 0: break A = [] for i in xrange(n): A.append(int(raw_input())) dp = [0] * len(A) dp[0] = A[0] for i in xrange(1, len(A)): dp[i] = max(dp[i - 1] + A[i], A[i]) print max(dp)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,492
s645525929
p00022
u491763171
1401138327
Python
Python
py
Accepted
20
4288
225
while 1: n = int(raw_input()) if n == 0: break A = [0] * n for i in xrange(n): A[i] = int(raw_input()) for i in xrange(1, len(A)): A[i] = max(A[i - 1] + A[i], A[i]) print max(A)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,493
s796560757
p00022
u436634575
1401143659
Python
Python3
py
Accepted
50
6768
204
while True: n = int(input()) if n == 0: break a = [] for i in range(n): a.append(int(input())) for i in range(1, n): a[i] = max(a[i - 1] + a[i], a[i]) print(max(a))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,494
s910280607
p00022
u877347085
1591527699
Python
Python3
py
Accepted
40
5720
410
def maximumSubArray(array): n = len(array) dp = [0]*n # dp[i]: i番目までの全ての部分配列の中の最大の総和 dp[0] = array[0] for i in range(1, n): dp[i] = max(dp[i - 1] + array[i], array[i]) return max(dp) while True: n = int(input()) a = [] if n == 0: break for _ in range(n): a.append(int(input())) print(maximumSubArray(a))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,495
s727284774
p00022
u176870835
1589575861
Python
Python3
py
Accepted
30
5676
349
# INF = float("inf") import sys,bisect sys.setrecursionlimit(15000) st = [] ar = 0 while True: n = int(sys.stdin.readline()) if n == 0: break a = [int(sys.stdin.readline()) for _ in range(n)] ml = mg = a[0] #print(a) for i in range(1,n): ml = max(ml+a[i],a[i]) mg = max(mg,ml) #print(ml,mg,a[i]) print(mg)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,496
s557076824
p00022
u260980560
1588731956
Python
Python3
py
Accepted
30
5612
352
import sys readline = sys.stdin.readline write = sys.stdout.write def solve(): N = int(readline()) if N == 0: return False mi = su = 0 ans = -10**9 for i in range(N): a = int(readline()) su += a ans = max(ans, su - mi) mi = min(su, mi) print(ans) return True while solve(): ...
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,497
s091337145
p00022
u630911389
1575642526
Python
Python3
py
Accepted
40
5636
1,100
while 1: try: n = int(input()) except:break if(n == 0):break sum = 0 arr = [] isPlus = True maxValue = -100000 for i in range (n): try: arr.append(int(input())) except:break if arr[i] < 0: # 合計が0以下になってしまった場合はこれ以上計算しても意味がないのでスルーする if sum > 0: # plusが連続して続いていた場合 if(isPlus): # 最大値を更新 maxValue = max(maxValue,sum) isPlus = False sum += arr[i] # 0未満になったら、1から計算し直す if sum < 0 : sum = 0 else : sum += arr[i] isPlus = True if sum != 0 : maxValue = max(maxValue,sum) # 入力値が全てminusなので、入力値から最大のものを探す else : for i in arr: maxValue = max(maxValue,i) print(maxValue)
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,498
s734854953
p00022
u013648252
1563752952
Python
Python3
py
Accepted
40
5716
134
while 1: n=int(input()) if n==0:break a=[int(input())for _ in[0]*n] for i in range(1,n):a[i]=max(a[i],a[i]+a[i-1]) print(max(a))
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,499
s876793346
p00022
u072053884
1563176196
Python
Python3
py
Accepted
30
5620
433
def solve(): from sys import stdin f_i = stdin while True: n = int(f_i.readline()) if n == 0: break ans = int(f_i.readline()) s = ans for i in range(n - 1): if s > 0: s += int(f_i.readline()) else: s = int(f_i.readline()) if s > ans: ans = s print(ans) solve()
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,500
s783030403
p00022
u350155409
1553155310
Python
Python3
py
Accepted
40
5620
600
import sys n = int(input()) while n != 0: max_seq = [] max_val = int(input()) for i in range(n-1): num = int(input()) if num >= 0 and max_val >= 0: max_val += num else: if max_val >= 0: max_seq.append(max_val) if max_val >= 0 and max_val+num >= 0: max_val += num elif max_val >= 0 and max_val+num < 0: max_val = num elif max_val < 0 and max_val < num: max_val = num max_seq.append(max_val) print(max(max_seq)) n = int(input())
p00022
<H1>Maximum Sum Sequence</H1> <p> Given a sequence of numbers <var>a<sub>1</sub></var>, <var>a<sub>2</sub></var>, <var>a<sub>3</sub></var>, ..., <var>a<sub>n</sub></var>, find the maximum sum of a contiguous subsequence of those numbers. Note that, a subsequence of one element is also a <i>contiquous</i> subsequence. </p> <H2>Input</H2> <p> The input consists of multiple datasets. Each data set consists of: <pre> <var>n</var> <var>a<sub>1</sub></var> <var>a<sub>2</sub></var> . . <var>a<sub>n</sub></var> </pre> <p> You can assume that 1 &le; <var>n</var> &le; 5000 and -100000 &le; <var>a<sub>i</sub></var> &le; 100000. </p> <p> The input end with a line consisting of a single 0. </p> <H2>Output</H2> <p> For each dataset, print the maximum sum in a line. </p> <H2>Sample Input</H2> <pre> 7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0 </pre> <H2>Output for the Sample Input</H2> <pre> 19 14 1001 </pre>
7 -5 -1 6 4 9 -6 -7 13 1 2 3 2 -2 -1 1 2 3 2 1 -2 1 3 1000 -200 201 0
19 14 1001
7,501