s_id
stringlengths
10
10
p_id
stringlengths
6
6
u_id
stringlengths
10
10
date
stringlengths
10
10
language
stringclasses
1 value
original_language
stringclasses
11 values
filename_ext
stringclasses
1 value
status
stringclasses
1 value
cpu_time
int64
0
100
memory
stringlengths
4
6
code_size
int64
15
14.7k
code
stringlengths
15
14.7k
problem_id
stringlengths
6
6
problem_description
stringlengths
358
9.83k
input
stringlengths
2
4.87k
output
stringclasses
807 values
__index_level_0__
int64
1.1k
1.22M
s655711077
p00010
u150984829
1525319480
Python
Python3
py
Accepted
20
5676
268
for _ in[0]*int(input()): a,b,c,d,e,f=map(float,input().split()) s,t,u=a*a+b*b,c*c+d*d,e*e+f*f x=(s*(d-f)+t*(f-b)+u*(b-d))/2/(a*(d-f)+c*(f-b)+e*(b-d)) y=(s*(c-e)+t*(e-a)+u*(a-c))/2/(b*(c-e)+d*(e-a)+f*(a-c)) print(f'{x:.3f} {y:.3f} {((x-a)**2+(y-b)**2)**.5:.3f}')
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,202
s514957818
p00010
u724548524
1525742872
Python
Python3
py
Accepted
20
5692
526
import math for _ in range(int(input())): x1, y1, x2, y2, x3, y3 = map(float, input().split()) p = ((y1-y3)*(y1**2 -y2**2 +x1**2 -x2**2) -(y1-y2)*(y1**2 -y3**2 +x1**2 -x3**2)) / 2/ ((y1-y3)*(x1-x2)-(y1-y2)*(x1-x3)) q = ((x1-x3)*(x1**2 -x2**2 +y1**2 -y2**2) -(x1-x2)*(x1**2 -x3**2 +y1**2 -y3**2)) / 2/ ((x1-x3)*(y1-y2)-(x1-x2)*(y1-y3)) r = math.sqrt((x1 - p) ** 2 + (y1 - q) ** 2) p = abs(p) if abs(p) < 10e-5 else p q = abs(q) if abs(q) < 10e-5 else q print("{:.3f} {:.3f} {:.3f}".format(p, q, r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,203
s441020577
p00010
u724548524
1525742882
Python
Python3
py
Accepted
20
5676
446
import math for _ in range(int(input())): x1, y1, x2, y2, x3, y3 = map(float, input().split()) p = ((y1-y3)*(y1**2 -y2**2 +x1**2 -x2**2) -(y1-y2)*(y1**2 -y3**2 +x1**2 -x3**2)) / 2/ ((y1-y3)*(x1-x2)-(y1-y2)*(x1-x3)) q = ((x1-x3)*(x1**2 -x2**2 +y1**2 -y2**2) -(x1-x2)*(x1**2 -x3**2 +y1**2 -y3**2)) / 2/ ((x1-x3)*(y1-y2)-(x1-x2)*(y1-y3)) r = math.sqrt((x1 - p) ** 2 + (y1 - q) ** 2) print("{:.3f} {:.3f} {:.3f}".format(p, q, r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,204
s642943574
p00010
u326929999
1527147886
Python
Python3
py
Accepted
20
5708
1,196
# -*- coding: utf-8 -*- from math import sqrt # import numpy as np n = int(input()) for i in range(n): tmp = input().split(' ') a, b, c = [(float(tmp[i]), float(tmp[i+1])) for i in range(0, len(tmp), 2)] #A = np.array(((a[0], a[1], 1), # (b[0], b[1], 1), # (c[0], c[1], 1))) A_tmp1 = 1/(a[0]*b[1] + a[1]*c[0] + b[0]*c[1] - b[1]*c[0] - a[1]*b[0] - a[0]*c[1]) A_tmp2 = [[b[1]-c[1], -(a[1]-c[1]), a[1]-b[1]], [-(b[0]-c[0]), (a[0]-c[0]), -(a[0]-b[0])], [b[0]*c[1] - b[1]*c[0], -(a[0]*c[1] - a[1]*c[0]), a[0]*b[1] - a[1]*b[0]]] A = [list(map(lambda x: A_tmp1*x, A_tmp2[i])) for i in range(3)] #B = np.array((((-(a[0]**2 + a[1]**2))), # ((-(b[0]**2 + b[1]**2))), # ((-(c[0]**2 + c[1]**2))))) B = [[-(a[0]**2 + a[1]**2)], [-(b[0]**2 + b[1]**2)], [-(c[0]**2 + c[1]**2)]] tmp = [sum([A[i][j]*B[j][0] for j in range(3)]) for i in range(3)] # tmp = np.dot(np.linalg.inv(A), B) x = -tmp[0]/2 y = -tmp[1]/2 r = sqrt((tmp[0]**2 + tmp[1]**2 - 4*tmp[2])/4) print('{:.3f} {:.3f} {:.3f}'.format(x, y, r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,205
s975589080
p00010
u467175809
1528378439
Python
Python3
py
Accepted
20
5700
679
#!/usr/bin/env python from math import * def g(x): y = (int((1000 * abs(x)) * 2 + 1) // 2) / 1000 if x < 0: y *= -1 return y def func(x): x1, y1, x2, y2, x3, y3 = x a = x1 - x2 b = y1 - y2 c = (x1 * x1 + y1 * y1 - x2 * x2 - y2 * y2) / 2 d = x1 - x3 e = y1 - y3 f = (x1 * x1 + y1 * y1 - x3 * x3 - y3 * y3) / 2 x = (e * c - b * f) / (a * e - b * d) y = (a * f - d * c) / (a * e - b * d) r = sqrt((x1 - x) * (x1 - x) + (y1 - y) * (y1 - y)) x = "{0:.3f}".format(g(x)) y = "{0:.3f}".format(g(y)) r = "{0:.3f}".format(g(r)) print(x + " " + y + " " + r) n = int(input()) a = [] for _ in range(n): a.append(list((map(float, input().split())))) for i in a: func(i)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,206
s051503729
p00010
u467175809
1528379662
Python
Python3
py
Accepted
20
5692
647
#!/usr/bin/env python from math import * def g(x): y = (int((1000 * abs(x)) * 2 + 1) // 2) / 1000 if x < 0: y *= -1 return y def func(x): x1, y1, x2, y2, x3, y3 = x vx1 = x2 - x1 vy1 = y2 - y1 vx2 = x3 - x1 vy2 = y3 - y1 k = (vx2 ** 2 + vy2 ** 2 - vx1 * vx2 - vy1 * vy2) / (vy1 * vx2 - vx1 * vy2) / 2 x = vx1 / 2 + k * vy1 + x1 y = vy1 / 2 - k * vx1 + y1 r = sqrt((x1 - x) * (x1 - x) + (y1 - y) * (y1 - y)) x = "{0:.3f}".format(g(x)) y = "{0:.3f}".format(g(y)) r = "{0:.3f}".format(g(r)) print(x + " " + y + " " + r) n = int(input()) a = [] for _ in range(n): a.append(list((map(float, input().split())))) for i in a: func(i)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,207
s478922477
p00010
u458530128
1528379879
Python
Python3
py
Accepted
20
5704
1,042
from math import * def g(x): y = (int((1000 * abs(x)) * 2 + 1) // 2) / 1000 if x < 0: y *= -1 return y ''' def f(x): a = (x[2] - x[4]) * (x[1] - x[3]) - (x[0] - x[2]) * (x[3] - x[5]) b = (x[0] - x[2]) * (x[4] - x[0]) - (x[5] - x[1]) * (x[1] - x[3]) l = 0.5 * b / a X = 0.5 * x[2] + 0.5 * x[4] + l * (x[3] - x[5]) Y = 0.5 * x[3] + 0.5 * x[5] + l * (x[4] - x[2]) R = sqrt((X - x[0]) ** 2 + (Y - x[1]) ** 2) X = g(X) Y = g(Y) R = g(R) print("{0:.3f} {1:.3f} {2:.3f}".format(X, Y, R)) ''' def f(x): x1, y1, x2, y2, x3, y3 = x X1 = x1 - x3 Y1 = y1 - y3 X2 = x2 - x3 Y2 = y2 - y3 k = (X2 ** 2 + Y2 ** 2 -X1 * X2 - Y1 * Y2) / (2 * (X2 * Y1 - X1 * Y2)) X = X1 / 2 + k * Y1 + x3 Y = Y1 / 2 - k * X1 + y3 R = sqrt((X - x1) ** 2 + (Y - y1) ** 2) X = g(X) Y = g(Y) R = g(R) print("{0:.3f} {1:.3f} {2:.3f}".format(X, Y, R)) n = int(input()) a = [] for _ in range(n): a.append(list((map(float, input().split())))) for i in a: f(i)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,208
s609033297
p00010
u467175809
1528380125
Python
Python3
py
Accepted
30
5680
546
#!/usr/bin/env python from math import * def g(x): y = (int((1000 * abs(x)) * 2 + 1) // 2) / 1000 if x < 0: y *= -1 return y def func(x): x1, y1, x2, y2, x3, y3 = x vx1 = x2 - x1 vy1 = y2 - y1 vx2 = x3 - x1 vy2 = y3 - y1 k = (vx2 ** 2 + vy2 ** 2 - vx1 * vx2 - vy1 * vy2) / (vy1 * vx2 - vx1 * vy2) / 2 x = vx1 / 2 + k * vy1 + x1 y = vy1 / 2 - k * vx1 + y1 r = sqrt((x1 - x) ** 2 + (y1 - y) ** 2) print("{0:.3f} {1:.3f} {2:.3f}".format(g(x), g(y), g(r))) n = int(input()) for _ in range(n): func(list(map(float, input().split())))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,209
s759661770
p00010
u136916346
1528899810
Python
Python3
py
Accepted
30
6484
436
from decimal import Decimal import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=list(map(Decimal,input().split())) a=x1-x3 b=y2-y3 c=x2-x3 d=y1-y3 e=y1-y2 f=x1+x3 g=x2+x3 X=(b*d*e+a*b*f-c*d*g)/2/(a*b-c*d) try: Y=-(a/d)*(X-f/2)+(y1+y3)/2 except: Y=-(c/b)*(X-g/2)+(y2+y3)/2 R=math.sqrt((x1-X)**2+(y1-Y)**2) print(" ".join(["{:.3f}".format(i) for i in [X,Y,R]]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,210
s534621106
p00010
u136916346
1528899823
Python
Python3
py
Accepted
30
6480
436
from decimal import Decimal import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=list(map(Decimal,input().split())) a=x1-x3 b=y2-y3 c=x2-x3 d=y1-y3 e=y1-y2 f=x1+x3 g=x2+x3 X=(b*d*e+a*b*f-c*d*g)/2/(a*b-c*d) try: Y=-(a/d)*(X-f/2)+(y1+y3)/2 except: Y=-(c/b)*(X-g/2)+(y2+y3)/2 R=math.sqrt((x1-X)**2+(y1-Y)**2) print(" ".join(["{:.3f}".format(i) for i in [X,Y,R]]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,211
s698981463
p00010
u136916346
1528899828
Python
Python3
py
Accepted
30
6480
436
from decimal import Decimal import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=list(map(Decimal,input().split())) a=x1-x3 b=y2-y3 c=x2-x3 d=y1-y3 e=y1-y2 f=x1+x3 g=x2+x3 X=(b*d*e+a*b*f-c*d*g)/2/(a*b-c*d) try: Y=-(a/d)*(X-f/2)+(y1+y3)/2 except: Y=-(c/b)*(X-g/2)+(y2+y3)/2 R=math.sqrt((x1-X)**2+(y1-Y)**2) print(" ".join(["{:.3f}".format(i) for i in [X,Y,R]]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,212
s538044268
p00010
u136916346
1528899829
Python
Python3
py
Accepted
40
6480
436
from decimal import Decimal import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=list(map(Decimal,input().split())) a=x1-x3 b=y2-y3 c=x2-x3 d=y1-y3 e=y1-y2 f=x1+x3 g=x2+x3 X=(b*d*e+a*b*f-c*d*g)/2/(a*b-c*d) try: Y=-(a/d)*(X-f/2)+(y1+y3)/2 except: Y=-(c/b)*(X-g/2)+(y2+y3)/2 R=math.sqrt((x1-X)**2+(y1-Y)**2) print(" ".join(["{:.3f}".format(i) for i in [X,Y,R]]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,213
s311413797
p00010
u136916346
1528899829
Python
Python3
py
Accepted
30
6484
436
from decimal import Decimal import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=list(map(Decimal,input().split())) a=x1-x3 b=y2-y3 c=x2-x3 d=y1-y3 e=y1-y2 f=x1+x3 g=x2+x3 X=(b*d*e+a*b*f-c*d*g)/2/(a*b-c*d) try: Y=-(a/d)*(X-f/2)+(y1+y3)/2 except: Y=-(c/b)*(X-g/2)+(y2+y3)/2 R=math.sqrt((x1-X)**2+(y1-Y)**2) print(" ".join(["{:.3f}".format(i) for i in [X,Y,R]]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,214
s692554708
p00010
u136916346
1528899829
Python
Python3
py
Accepted
30
6480
436
from decimal import Decimal import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=list(map(Decimal,input().split())) a=x1-x3 b=y2-y3 c=x2-x3 d=y1-y3 e=y1-y2 f=x1+x3 g=x2+x3 X=(b*d*e+a*b*f-c*d*g)/2/(a*b-c*d) try: Y=-(a/d)*(X-f/2)+(y1+y3)/2 except: Y=-(c/b)*(X-g/2)+(y2+y3)/2 R=math.sqrt((x1-X)**2+(y1-Y)**2) print(" ".join(["{:.3f}".format(i) for i in [X,Y,R]]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,215
s496620189
p00010
u136916346
1528899833
Python
Python3
py
Accepted
30
6484
436
from decimal import Decimal import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=list(map(Decimal,input().split())) a=x1-x3 b=y2-y3 c=x2-x3 d=y1-y3 e=y1-y2 f=x1+x3 g=x2+x3 X=(b*d*e+a*b*f-c*d*g)/2/(a*b-c*d) try: Y=-(a/d)*(X-f/2)+(y1+y3)/2 except: Y=-(c/b)*(X-g/2)+(y2+y3)/2 R=math.sqrt((x1-X)**2+(y1-Y)**2) print(" ".join(["{:.3f}".format(i) for i in [X,Y,R]]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,216
s250104826
p00010
u136916346
1528899833
Python
Python3
py
Accepted
30
6480
436
from decimal import Decimal import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=list(map(Decimal,input().split())) a=x1-x3 b=y2-y3 c=x2-x3 d=y1-y3 e=y1-y2 f=x1+x3 g=x2+x3 X=(b*d*e+a*b*f-c*d*g)/2/(a*b-c*d) try: Y=-(a/d)*(X-f/2)+(y1+y3)/2 except: Y=-(c/b)*(X-g/2)+(y2+y3)/2 R=math.sqrt((x1-X)**2+(y1-Y)**2) print(" ".join(["{:.3f}".format(i) for i in [X,Y,R]]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,217
s456613937
p00010
u136916346
1528899833
Python
Python3
py
Accepted
30
6480
436
from decimal import Decimal import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=list(map(Decimal,input().split())) a=x1-x3 b=y2-y3 c=x2-x3 d=y1-y3 e=y1-y2 f=x1+x3 g=x2+x3 X=(b*d*e+a*b*f-c*d*g)/2/(a*b-c*d) try: Y=-(a/d)*(X-f/2)+(y1+y3)/2 except: Y=-(c/b)*(X-g/2)+(y2+y3)/2 R=math.sqrt((x1-X)**2+(y1-Y)**2) print(" ".join(["{:.3f}".format(i) for i in [X,Y,R]]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,218
s120419056
p00010
u136916346
1528899833
Python
Python3
py
Accepted
40
6484
436
from decimal import Decimal import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=list(map(Decimal,input().split())) a=x1-x3 b=y2-y3 c=x2-x3 d=y1-y3 e=y1-y2 f=x1+x3 g=x2+x3 X=(b*d*e+a*b*f-c*d*g)/2/(a*b-c*d) try: Y=-(a/d)*(X-f/2)+(y1+y3)/2 except: Y=-(c/b)*(X-g/2)+(y2+y3)/2 R=math.sqrt((x1-X)**2+(y1-Y)**2) print(" ".join(["{:.3f}".format(i) for i in [X,Y,R]]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,219
s959923226
p00010
u847467233
1529634902
Python
Python3
py
Accepted
20
5692
945
# AOJ 0010 Circumscribed Circle of a Triangle # Python3 2018.6.22 bal4u import math EPS = 1e-8 def cross(a, b): return a.real*b.imag - a.imag*b.real def dist(a, b): return math.hypot(a.real-b.real, a.imag-b.imag) # 両直線の交点 def crossPointLL(ln1, ln2): u = ln1[1]-ln1[0] v = ln2[1]-ln2[0] return ln1[0] + u*(cross(v, ln2[0]-ln1[0])/cross(v, u)) # 入力:3点座標、リターン:外接円の円心座標、半径を表すリスト def circumscribed_circle(p1, p2, p3): p12 = (p1+p2)/2 p23 = (p2+p3)/2 ln1 = [p12, p12+(p1-p2)*complex(0, 1)] ln2 = [p23, p23+(p2-p3)*complex(0, 1)] c = crossPointLL(ln1, ln2) return [c, dist(c, p1)] for i in range(int(input())): p = list(map(float, input().split())) p1 = complex(p[0], p[1]) p2 = complex(p[2], p[3]) p3 = complex(p[4], p[5]) ans = circumscribed_circle(p1, p2, p3) print(format(ans[0].real+EPS, ".3f"), format(ans[0].imag+EPS, ".3f"), format(ans[1]+EPS, ".3f"))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,220
s259787433
p00010
u650035614
1530633618
Python
Python3
py
Accepted
20
5836
2,681
import math PI = math.pi EPS = 10**-10 def edge(a, b): return ((a[0]-b[0])**2+(a[1]-b[1])**2)**.5 def area(a, b, c): s = (a+b+c)/2 return (s*(s-a)*(s-b)*(s-c))**.5 def LawOfCosines(a, b, c): #余弦定理 return math.acos( (b*b+c*c-a*a) / (2.0*b*c) ); def is_same(x, y): return abs(x-y) < EPS class Triangle: def __init__(self, p): a, b, c = p self.a = a self.b = b self.c = c self.edgeA = edge(b, c) self.edgeB = edge(c, a) self.edgeC = edge(a, b) self.area = area(self.edgeA, self.edgeB, self.edgeC) self.angleA = LawOfCosines(self.edgeA, self.edgeB, self.edgeC) self.angleB = LawOfCosines(self.edgeB, self.edgeC, self.edgeA) self.angleC = LawOfCosines(self.edgeC, self.edgeA, self.edgeB) def circumscribeadCircleRadius(self): #外接円の半径を返す return self.edgeA / math.sin(self.angleA) / 2.0 def circumscribedCircleCenter(self): #外接円の中心の座標を返す a = math.sin(2.0*self.angleA); b = math.sin(2.0*self.angleB); c = math.sin(2.0*self.angleC); X = (self.a[0] * a + self.b[0] * b + self.c[0] * c) / (a+b+c); Y = (self.a[1] * a + self.b[1] * b + self.c[1] * c) / (a+b+c); return X, Y def inscribedCircleRadius(self): #内接円の半径 return 2 * self.area / (self.edgeA + self.edgeB + self.edgeC) def inscribedCircleCenter(self): #内接円の中心の座標 points = [self.a, self.b, self.c] edges = [self.edgeA, self.edgeB, self.edgeC] s = sum(edges) return [sum([points[j][i]*edges[j] for j in range(3)])/s for i in range(2)] def isInner(self, p): #点が三角形の内側か判定 cross = lambda a, b: a[0]*b[1]-a[1]*b[0] c1 = 0 c2 = 0 points = [self.a, self.b, self.c] for i in range(3): a = [points[i][0]-points[(i+1)%3][0], points[i][1]-points[(i+1)%3][1]] b = [points[i][0]-p[0], points[i][1]-p[1]] c = cross(a, b) if c > 0: c1 += 1 elif c < 0: c2 += 1 if c1 == 3 or c2 == 3: return True else: return c1+c2 != 3 and (c1 == 0 or c2 == 0) if __name__ == "__main__": n = int(input()) for _ in range(n): points = [] c = list(map(float, input().split())) points = [(c[i], c[i+1]) for i in range(0, 6, 2)] t = Triangle(points) #外接円 x, y = t.circumscribedCircleCenter() r = t.circumscribeadCircleRadius() print("{:.3f} {:.3f} {:.3f}".format(x,y,r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,221
s684388383
p00010
u719737030
1350999617
Python
Python
py
Accepted
10
5012
738
import math def calc(x, y): s = math.fabs((x[1]-x[0])*(y[2]-y[0]) - (x[2]-x[0])*(y[1]-y[0]))/2 a = ((x[2]-x[1])**2 + (y[2]-y[1])**2)**0.5 b = ((x[0]-x[2])**2 + (y[0]-y[2])**2)**0.5 c = ((x[1]-x[0])**2 + (y[1]-y[0])**2)**0.5 r = a*b*c/(4*s) a = [2*(x[1]-x[0]), 2*(x[2]-x[0])] b = [2*(y[1]-y[0]), 2*(y[2]-y[0])] c = [x[0]**2 - x[1]**2 + y[0]**2 -y[1]**2, x[0]**2 - x[2]**2 + y[0]**2 -y[2]**2] x = (b[0]*c[1]-b[1]*c[0])/(a[0]*b[1]-a[1]*b[0]) y = (c[0]*a[1]-c[1]*a[0])/(a[0]*b[1]-a[1]*b[0]) return [x,y,r] for i in range(int(input())): list = [float(l) for l in raw_input().split()] x,y = [list[0::2],list[1::2]] ans = calc(x,y) print "%.3f %.3f %.3f" % (ans[0],ans[1],ans[2])
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,222
s639938597
p00010
u647766105
1351000052
Python
Python
py
Accepted
10
5012
450
import sys n=input() for line in sys.stdin: x=map(float,line.split())[0::2]; y=map(float,line.split())[1::2]; #guilty... A=x[0]-x[1] B=y[0]-y[1] C=x[1]-x[2] D=y[1]-y[2] E=-(x[0]**2+y[0]**2)+(x[1]**2+y[1]**2) F=-(x[1]**2+y[1]**2)+(x[2]**2+y[2]**2) l=(D*E-B*F)/(A*D-B*C) m=(-C*E+A*F)/(A*D-B*C) n=-(x[0]**2+y[0]**2+l*x[0]+m*y[0]) print "{:.3f} {:.3f} {:.3f}".format(-l/2,-m/2,(l**2+m**2-4*n)**0.5/2)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,223
s199572648
p00010
u779627195
1352473054
Python
Python
py
Accepted
10
52000
1,322
#coding: utf-8 def solve(a, b, c, d, e, f): agn = a*e - b*d x = (e*c - b*f)/float(agn) y = (-d*c + a*f)/float(agn) if x == 0.: x = 0. if y == 0.: y = 0. return (x, y) while 1: try: n = input() for i in xrange(n): x = [0 for i in xrange(3)] y = [0 for i in xrange(3)] a,b,t = [[0 for i in xrange(2)] for i in xrange(3)] p,q,s = [[0 for i in xrange(2)] for i in xrange(3)] x[0],y[0],x[1],y[1],x[2],y[2] = map(float, raw_input().split()) for j in xrange(2): a[j] = (x[j+1] + x[j])/2 b[j] = (y[j+1] + y[j])/2 if x[j+1] - x[j] == 0.: p[j] = 0. q[j] = -1. s[j] = -b[j] elif y[j+1] - y[j] == 0.: p[j] = -1. q[j] = 0. s[j] = -a[j] else: t[j] = (y[j+1] - y[j]) / (x[j+1] - x[j]) p[j] = -1./t[j] q[j] = -1. s[j] = -(a[j]/t[j])-b[j] c = solve(p[0], q[0], s[0], p[1], q[1], s[1]) r = ((x[0]-c[0])**2 + (y[0]-c[1])**2)**0.5 print "%.3f %.3f %.3f" % (c[0], c[1], r) except EOFError: break
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,224
s354229444
p00010
u504990413
1353585518
Python
Python
py
Accepted
20
4368
635
def heron(a,b,c): s = 0.5*(a+b+c) return (s*(s-a)*(s-b)*(s-c))**0.5 def gaishin(a,b,c,z1,z2,z3,s): p = (a**2*(b**2 + c**2 - a**2)*z1 + \ b**2*(c**2 + a**2 - b**2)*z2 + \ c**2*(a**2 + b**2 - c**2)*z3)/(16*s**2) return p n = input() for i in range(n): x1,y1,x2,y2,x3,y3 = map(float, raw_input().split(' ')) l1 = ((x2-x3)**2+(y2-y3)**2)**0.5 l2 = ((x3-x1)**2+(y3-y1)**2)**0.5 l3 = ((x1-x2)**2+(y1-y2)**2)**0.5 s = heron(l1,l2,l3) px = gaishin(l1,l2,l3,x1,x2,x3,s) py = gaishin(l1,l2,l3,y1,y2,y3,s) r = ((px-x1)**2+(py-y1)**2)**0.5 print '%.3f %.3f %.3f' % (px,py,r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,225
s455473437
p00010
u419407022
1355379547
Python
Python
py
Accepted
20
5068
502
import math from math import * for i in range(int(raw_input())): (x1, y1, x2, y2, x3, y3) = map(float, raw_input().split()) a1 = 2 * (x2 - x1) b1 = 2 * (y2 - y1) c1 = x1 ** 2 - x2 ** 2 + y1 ** 2 - y2 ** 2 a2 = 2 * (x3 - x1) b2 = 2 * (y3 - y1) c2 = x1 ** 2 - x3 ** 2 + y1 ** 2 - y3 ** 2 xp = (b1 * c2 - b2 * c1) / (a1 * b2 - a2 * b1) yp = (c1 * a2 - c2 * a1) / (a1 * b2 - a2 * b1) r = sqrt((x1 - xp) ** 2 + (y1 - yp) ** 2) print '%.3f %.3f %.3f' % (xp, yp, r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,226
s009430967
p00010
u560838141
1356696972
Python
Python
py
Accepted
10
4588
744
import math def calc(x, y): s = math.fabs((x[1]-x[0])*(y[2]-y[0]) - (x[2]-x[0])*(y[1]-y[0]))/2 a = ((x[2]-x[1])**2 + (y[2]-y[1])**2)**0.5 b = ((x[0]-x[2])**2 + (y[0]-y[2])**2)**0.5 c = ((x[1]-x[0])**2 + (y[1]-y[0])**2)**0.5 r = a*b*c/(4*s) a = [2*(x[1]-x[0]), 2*(x[2]-x[0])] b = [2*(y[1]-y[0]), 2*(y[2]-y[0])] c = [x[0]**2 - x[1]**2 + y[0]**2 -y[1]**2, x[0]**2 - x[2]**2 + y[0]**2 -y[2]**2] x = (b[0]*c[1]-b[1]*c[0])/(a[0]*b[1]-a[1]*b[0]) y = (c[0]*a[1]-c[1]*a[0])/(a[0]*b[1]-a[1]*b[0]) return [x,y,r] for i in range(int(input())): list = [float(l) for l in raw_input().split()] x,y = [list[0::2],list[1::2]] ans = calc(x,y) print "%.3f %.3f %.3f" % (ans[0],ans[1],ans[2])
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,227
s390661659
p00010
u560838141
1356697593
Python
Python
py
Accepted
20
4584
744
import math def calc(x, y): s = math.fabs((x[1]-x[0])*(y[2]-y[0]) - (x[2]-x[0])*(y[1]-y[0]))/2 a = ((x[2]-x[1])**2 + (y[2]-y[1])**2)**0.5 b = ((x[0]-x[2])**2 + (y[0]-y[2])**2)**0.5 c = ((x[1]-x[0])**2 + (y[1]-y[0])**2)**0.5 r = a*b*c/(4*s) a = [2*(x[1]-x[0]), 2*(x[2]-x[0])] b = [2*(y[1]-y[0]), 2*(y[2]-y[0])] c = [x[0]**2 - x[1]**2 + y[0]**2 -y[1]**2, x[0]**2 - x[2]**2 + y[0]**2 -y[2]**2] x = (b[0]*c[1]-b[1]*c[0])/(a[0]*b[1]-a[1]*b[0]) y = (c[0]*a[1]-c[1]*a[0])/(a[0]*b[1]-a[1]*b[0]) return [x,y,r] for i in range(int(input())): list = [float(l) for l in raw_input().split()] x,y = [list[0::2],list[1::2]] ans = calc(x,y) print "%.3f %.3f %.3f" % (ans[0],ans[1],ans[2])
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,228
s582779443
p00010
u560838141
1356697682
Python
Python
py
Accepted
10
4584
744
import math def calc(x, y): s = math.fabs((x[1]-x[0])*(y[2]-y[0]) - (x[2]-x[0])*(y[1]-y[0]))/2 a = ((x[2]-x[1])**2 + (y[2]-y[1])**2)**0.5 b = ((x[0]-x[2])**2 + (y[0]-y[2])**2)**0.5 c = ((x[1]-x[0])**2 + (y[1]-y[0])**2)**0.5 r = a*b*c/(4*s) a = [2*(x[1]-x[0]), 2*(x[2]-x[0])] b = [2*(y[1]-y[0]), 2*(y[2]-y[0])] c = [x[0]**2 - x[1]**2 + y[0]**2 -y[1]**2, x[0]**2 - x[2]**2 + y[0]**2 -y[2]**2] x = (b[0]*c[1]-b[1]*c[0])/(a[0]*b[1]-a[1]*b[0]) y = (c[0]*a[1]-c[1]*a[0])/(a[0]*b[1]-a[1]*b[0]) return [x,y,r] for i in range(int(input())): list = [float(l) for l in raw_input().split()] x,y = [list[0::2],list[1::2]] ans = calc(x,y) print "%.3f %.3f %.3f" % (ans[0],ans[1],ans[2])
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,229
s192876141
p00010
u560838141
1356699621
Python
Python
py
Accepted
10
4584
744
import math def calc(x, y): s = math.fabs((x[1]-x[0])*(y[2]-y[0]) - (x[2]-x[0])*(y[1]-y[0]))/2 a = ((x[2]-x[1])**2 + (y[2]-y[1])**2)**0.5 b = ((x[0]-x[2])**2 + (y[0]-y[2])**2)**0.5 c = ((x[1]-x[0])**2 + (y[1]-y[0])**2)**0.5 r = a*b*c/(4*s) a = [2*(x[1]-x[0]), 2*(x[2]-x[0])] b = [2*(y[1]-y[0]), 2*(y[2]-y[0])] c = [x[0]**2 - x[1]**2 + y[0]**2 -y[1]**2, x[0]**2 - x[2]**2 + y[0]**2 -y[2]**2] x = (b[0]*c[1]-b[1]*c[0])/(a[0]*b[1]-a[1]*b[0]) y = (c[0]*a[1]-c[1]*a[0])/(a[0]*b[1]-a[1]*b[0]) return [x,y,r] for i in range(int(input())): list = [float(l) for l in raw_input().split()] x,y = [list[0::2],list[1::2]] ans = calc(x,y) print "%.3f %.3f %.3f" % (ans[0],ans[1],ans[2])
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,230
s725673573
p00010
u782850731
1361937074
Python
Python
py
Accepted
10
4472
707
from __future__ import (division, absolute_import, print_function, unicode_literals) from sys import stdin from math import sqrt N = int(stdin.readline()) for i in xrange(N): x1, y1, x2, y2, x3, y3 = (float(n) for n in stdin.readline().split()) det = x1*y2 + x2*y3 + x3*y1 - x1*y3 - x2*y1 - x3*y2 a = x1**2 + y1**2 b = x2**2 + y2**2 c = x3**2 + y3**2 L = (a*y2 + b*y3 + c*y1 - a*y3 - b*y1 - c*y2) / det M = (x1*b + x2*c + x3*a - x1*c - x2*a - x3*b) / det N = (x1*y2*c + x2*y3*a + x3*y1*b - x1*y3*b - x2*y1*c - x3*y2*a) / det xp = L / 2.0 yp = M / 2.0 r = sqrt(abs(N + xp**2.0 + yp**2.0)) print('{:.3f} {:.3f} {:.3f}'.format(xp, yp, r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,231
s574348966
p00010
u575065019
1362255903
Python
Python
py
Accepted
20
4440
431
from math import sqrt ans=[] n=input() for i in xrange(n): x1,y1,x2,y2,x3,y3=map(float,raw_input().split()) A1=2*(x2-x1) A2=2*(x3-x1) B1=2*(y2-y1) B2=2*(y3-y1) C1=x1**2-x2**2+y1**2-y2**2 C2=x1**2-x3**2+y1**2-y3**2 x=(B1*C2-B2*C1)/(A1*B2-A2*B1) y=(C1*A2-C2*A1)/(A1*B2-A2*B1) r=sqrt((x-x1)**2 + (y-y1)**2) ansstr='%.3f %.3f %.3f' % (x,y,r) ans.append(ansstr) for i in ans: print i
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,232
s526999589
p00010
u585414111
1365788031
Python
Python
py
Accepted
10
4452
546
import sys from math import sqrt n = input() for line in sys.stdin: [x1,y1,x2,y2,x3,y3] = [float(x) for x in line.split()] a1 = 2*(x2-x1) b1 = 2*(y2-y1) c1 = x1**2-x2**2+y1**2-y2**2 a2 = 2*(x3-x1) b2 = 2*(y3-y1) c2 = x1**2-x3**2+y1**2-y3**2 x = (b1*c2-b2*c1)/(a1*b2-a2*b1) y = (c1*a2-c2*a1)/(a1*b2-a2*b1) a = sqrt((x2-x1)**2 + (y2-y1)**2) b = sqrt((x3-x1)**2 + (y3-y1)**2) c = sqrt((x3-x2)**2 + (y3-y2)**2) r = (a*b*c)/sqrt((a+b+c)*(-a+b+c)*(a-b+c)*(a+b-c)) print "%.3f %.3f %.3f" % (x,y,r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,233
s911748786
p00010
u350508326
1368049459
Python
Python
py
Accepted
10
4416
464
import math a = int(raw_input()) while a > 0: a -= 1 x1,y1,x2,y2,x3,y3 = map(float,raw_input().split()) a1 = 2*(x2-x1) b1 = 2*(y2-y1) c1 = x1*x1-x2*x2+y1*y1-y2*y2 a2 = 2*(x3-x1) b2 = 2*(y3-y1) c2 = x1*x1-x3*x3+y1*y1-y3*y3 X = (b1*c2-b2*c1)/(a1*b2-a2*b1) Y = (c1*a2-c2*a1)/(a1*b2-a2*b1) R = math.sqrt((X-x1)*(X-x1)+(Y-y1)*(Y-y1)) print "%.3f %.3f %.3f" % (X,Y,R)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,234
s904662742
p00010
u454358619
1377381157
Python
Python
py
Accepted
20
4412
415
import math a = int(raw_input()) while a > 0: a -= 1 x1,y1,x2,y2,x3,y3 = map(float,raw_input().split()) a1 = 2*(x2-x1) b1 = 2*(y2-y1) c1 = x1*x1-x2*x2+y1*y1-y2*y2 a2 = 2*(x3-x1) b2 = 2*(y3-y1) c2 = x1*x1-x3*x3+y1*y1-y3*y3 X = (b1*c2-b2*c1)/(a1*b2-a2*b1) Y = (c1*a2-c2*a1)/(a1*b2-a2*b1) R = math.sqrt((X-x1)*(X-x1)+(Y-y1)*(Y-y1)) print "%.3f %.3f %.3f" % (X,Y,R)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,235
s241429082
p00010
u912237403
1377393344
Python
Python
py
Accepted
10
4484
686
import math def equation(A): n = len(A) for i in range(n): j=i while A[j][i]==0: j+= 1 A[i], A[j] = A[j], A[i] A[i] = [e / A[i][i] for e in A[i]] for j in range(n): if j==i: continue tmp = A[j][i] for k in range(n+1): A[j][k] -= tmp * A[i][k] return n=input() for i in range(n): A=[] seq = map(float, raw_input().split()) for j in range(3): x = seq.pop(0) y = seq.pop(0) A.append([x, y, 1, -(x**2+y**2)]) equation(A) x0, y0 = -A[0][3]/2, -A[1][3]/2 r =((x-x0)**2 + (y-y0)**2)**.5 print "%.3f %.3f %.3f" %(x0, y0, r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,236
s336615626
p00010
u813384600
1379493227
Python
Python
py
Accepted
20
4432
466
import math n = int(raw_input()) for _ in range(n): (x1, y1, x2, y2, x3, y3) = map(float, raw_input().split()) a1 = (x2 - x1) * 2 a2 = (x3 - x1) * 2 b1 = (y2 - y1) * 2 b2 = (y3 - y1) * 2 c1 = x1**2 - x2**2 + y1**2 - y2**2 c2 = x1**2 - x3**2 + y1**2 - y3**2 x = (b1*c2 - b2*c1) / (a1*b2 - a2*b1) y = (c1*a2 - c2*a1) / (a1*b2 - a2*b1) r = math.sqrt((x-x1)**2 + (y-y1)**2) print '{0:.3f} {1:.3f} {2:.3f}'.format(x, y, r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,237
s831575306
p00010
u492005863
1381406358
Python
Python
py
Accepted
10
4420
570
# -*- coding: utf-8 -*- import sys import math n = 0 datas = [] for (i, line) in enumerate(sys.stdin): if i == 0: n = int(line) else: datas.append(map(float, line.split())) for data in datas: x1, y1, x2, y2, x3, y3 = data a1 = x2 - x1 b1 = y2 - y1 a2 = x3 - x1 b2 = y3 - y1 px = (b2 * (a1 * a1 + b1 * b1) - b1 * (a2 * a2 + b2 * b2)) / (2 * (a1 * b2 - a2 * b1)) py = (a1 * (a2 * a2 + b2 * b2) - a2 * (a1 * a1 + b1 * b1)) / (2 * (a1 * b2 - a2 * b1)) r = math.sqrt(px * px + py * py) px += x1 py += y1 print "{0:.3f} {1:.3f} {2:.3f}".format(px, py, r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,238
s678331748
p00010
u492005863
1381406942
Python
Python
py
Accepted
20
4416
583
# Circumscribed Circle of a Triangle import sys import math n = 0 datas = [] for (i, line) in enumerate(sys.stdin): if i == 0: n = int(line) else: datas.append(map(float, line.split())) for data in datas: x1, y1, x2, y2, x3, y3 = data a1 = x2 - x1 b1 = y2 - y1 a2 = x3 - x1 b2 = y3 - y1 px = (b2 * (a1 * a1 + b1 * b1) - b1 * (a2 * a2 + b2 * b2)) / (2 * (a1 * b2 - a2 * b1)) py = (a1 * (a2 * a2 + b2 * b2) - a2 * (a1 * a1 + b1 * b1)) / (2 * (a1 * b2 - a2 * b1)) r = math.sqrt(px * px + py * py) px += x1 py += y1 print "{0:.3f} {1:.3f} {2:.3f}".format(px, py, r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,239
s001056118
p00010
u621997536
1388943330
Python
Python
py
Accepted
10
4412
496
import math n = input() for i in range(n): x1, y1, x2, y2, x3, y3 = map(float, raw_input().split()) d1 = x1 * x1 + y1 * y1; d2 = x2 * x2 + y2 * y2; d3 = x3 * x3 + y3 * y3; u = 0.5 / ( x1 * y2 - x2 * y1 + x2 * y3 - x3 * y2 + x3 * y1 - x1 * y3) xp = u* (d1 * y2 - d2 * y1 + d2 * y3 - d3 * y2 + d3 * y1 - d1 * y3) yp = u * (x1 * d2 - x2 * d1 + x2 * d3 - x3 * d2 + x3 * d1 - x1 * d3) r = math.sqrt((xp - x1) * (xp - x1) + (yp - y1) * (yp - y1)) print "%.3f %.3f %.3f" % (xp, yp, r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,240
s148157877
p00010
u912237403
1390145097
Python
Python
py
Accepted
10
4500
534
import math def equation(A): n=len(A) for i in range(n): j=i while A[j][i]==0:j+=1 A[i],A[j]= A[j],A[i] A[i]=[e/A[i][i] for e in A[i]] for j in range(n): if j==i: continue tmp=A[j][i] for k in range(n+1):A[j][k]-=tmp*A[i][k] return n=input() for i in range(n): A=[] seq=map(float,raw_input().split()) for j in range(0,6,2): x,y=seq[j:j+2] A+=[[x,y,1,-(x**2+y**2)]] equation(A) x0=-A[0][3]/2 y0=-A[1][3]/2 r=((x-x0)**2+(y-y0)**2)**.5 print "%.3f %.3f %.3f" %(x0,y0,r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,241
s460236051
p00010
u230836528
1392272869
Python
Python
py
Accepted
10
4464
1,731
# -*- coding: utf-8 -*- import sys def prod_mat_vec(A, vec): ret = [0 for i in xrange(3)] for i in xrange(3): for j in xrange(3): ret[i] += A[i][j] * vec[j] return ret def changerow(A, i1, i2): for j in xrange(3): buf = A[i1][j] A[i1][j] = A[i2][j] A[i2][j] = buf return A def MatrixInverse3x3(A_src): A = [ [A_src[i][j] for j in xrange(3)] for i in xrange(3) ] # deepcopy A_src -> A B = [ [1, 0, 0], \ [0, 1, 0], \ [0, 0, 1] ] for i in xrange(3): if A[i][i] == 0: for k in xrange(i+1, 3): if A[k][k] != 0: A = changerow(A, i, k) B = changerow(B, i, k) a = A[i][i] for j in xrange(3): A[i][j] /= a B[i][j] /= a for k in xrange(3): if i == k: continue a = A[k][i] for j in xrange(3): A[k][j] -= A[i][j] * a B[k][j] -= B[i][j] * a return B def output3x3(A): for i in xrange(3): print "%7.3f %7.3f %7.3f" % (A[i][0], A[i][1], A[i][2]) return #for line in ["0.0 3.0 -1.0 0.0 -3.0 4.0"]: # expected [-2.000, 2.000, 2.236] for line in sys.stdin.readlines(): List = map(float, line.strip().split()) if len(List) == 1: continue [x1, y1, x2, y2, x3, y3] = List A = [ [x1, y1, 1.0] ,\ [x2, y2, 1.0] ,\ [x3, y3, 1.0] ] vec = [x1**2+y1**2, x2**2+y2**2, x3**2+y3**2] B = MatrixInverse3x3(A) lmn = prod_mat_vec(B, vec) ans = [0.5*lmn[0], 0.5*lmn[1], (lmn[2]+0.25*lmn[0]**2+0.25*lmn[1]**2)**0.5] print "%.3f %.3f %.3f" % (ans[0], ans[1], ans[2])
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,242
s813095975
p00010
u300645821
1392570850
Python
Python
py
Accepted
10
4408
382
import sys,math if sys.version_info[0]>=3: raw_input=input N=int(raw_input()) for i in range(N): x1,y1,x2,y2,x3,y3=[float(e) for e in raw_input().split()] a1=2*x2-2*x1 b1=2*y2-2*y1 c1=x1*x1-x2*x2+y1*y1-y2*y2 a2=2*x3-2*x1 b2=2*y3-2*y1 c2=x1*x1-x3*x3+y1*y1-y3*y3 x=(b1*c2-b2*c1)/(a1*b2-a2*b1) y=(c1*a2-c2*a1)/(a1*b2-a2*b1) print('%.3f %.3f %.3f'%(x,y,math.hypot(x1-x,y1-y)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,243
s612749846
p00010
u633068244
1393356107
Python
Python
py
Accepted
10
4444
676
import math n = int(raw_input()) while True: try: x1, y1, x2, y2, x3, y3 = map(float, raw_input().split()) a = math.sqrt((x1-x2)**2+(y1-y2)**2) b = math.sqrt((x1-x3)**2+(y1-y3)**2) c = math.sqrt((x2-x3)**2+(y2-y3)**2) s = (a+b+c)/2 ss = math.sqrt(s*(s-a)*(s-b)*(s-c)) sina = 2*ss/b/c sinb = 2*ss/a/c sinc = 2*ss/a/b r = a/sina/2 a = a*a b = b*b c = c*c px = (a*(b+c-a)*x3 + b*(a+c-b)*x2+c*(a+b-c)*x1)/16/ss**2 py =(a*(b+c-a)*y3 + b*(a+c-b)*y2+c*(a+b-c)*y1)/16/ss**2 print "%.3f %.3f %.3f" % (px, py, r) except: break
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,244
s380242787
p00010
u633068244
1393356248
Python
Python
py
Accepted
10
4444
532
import math n = int(raw_input()) for i in range(n): x1, y1, x2, y2, x3, y3 = map(float, raw_input().split()) a = math.sqrt((x1-x2)**2+(y1-y2)**2) b = math.sqrt((x1-x3)**2+(y1-y3)**2) c = math.sqrt((x2-x3)**2+(y2-y3)**2) s = (a+b+c)/2 ss = math.sqrt(s*(s-a)*(s-b)*(s-c)) sina = 2*ss/b/c r = a/sina/2 a = a*a b = b*b c = c*c px = (a*(b+c-a)*x3 + b*(a+c-b)*x2+c*(a+b-c)*x1)/16/ss**2 py =(a*(b+c-a)*y3 + b*(a+c-b)*y2+c*(a+b-c)*y1)/16/ss**2 print "%.3f %.3f %.3f" % (px, py, r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,245
s243207823
p00010
u708217907
1398121408
Python
Python
py
Accepted
20
4392
467
import sys import math n = int(raw_input()) for data in sys.stdin: x1, y1, x2, y2, x3, y3 = map(float, data.split()) a1 = x2 - x1 b1 = y2 - y1 a2 = x3 - x1 b2 = y3 - y1 px = (b2 * (a1 * a1 + b1 * b1) - b1 * (a2 * a2 + b2 * b2)) / (2 * (a1 * b2 - a2 * b1)) py = (a1 * (a2 * a2 + b2 * b2) - a2 * (a1 * a1 + b1 * b1)) / (2 * (a1 * b2 - a2 * b1)) r = math.sqrt(px * px + py * py) px += x1 py += y1 print "{0:.3f} {1:.3f} {2:.3f}".format(px, py, r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,246
s591258207
p00010
u491763171
1400539773
Python
Python
py
Accepted
10
4432
560
from math import hypot T = input() for t in xrange(1, T + 1): x1, y1, x2, y2, x3, y3 = map(float, raw_input().split()) x4 = (((y1 - y3) * (y1 ** 2 - y2 ** 2 + x1 ** 2 - x2 ** 2) - (y1 - y2) * (y1 ** 2 - y3 ** 2 + x1 ** 2 - x3 ** 2)) / (2 * (y1 - y3) * (x1 - x2) - 2 * (y1 - y2) * (x1 - x3))) y4 = (((x1 - x3) * (x1 ** 2 - x2 ** 2 + y1 ** 2 - y2 ** 2) - (x1 - x2) * (x1 ** 2 - x3 ** 2 + y1 ** 2 - y3 ** 2)) / (2 * (x1 - x3) * (y1 - y2) - 2 * (x1 - x2) * (y1 - y3))) print "%.3f %.3f %.3f" % (x4, y4, hypot(x1 - x4, y1 - y4))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,247
s954505556
p00010
u300645821
1400580204
Python
Python3
py
Accepted
30
6828
400
#!/usr/bin/python import sys,math if sys.version_info[0]>=3: raw_input=input N=int(raw_input()) for i in range(N): x1,y1,x2,y2,x3,y3=[float(e) for e in raw_input().split()] a1=2*x2-2*x1 b1=2*y2-2*y1 c1=x1*x1-x2*x2+y1*y1-y2*y2 a2=2*x3-2*x1 b2=2*y3-2*y1 c2=x1*x1-x3*x3+y1*y1-y3*y3 x=(b1*c2-b2*c1)/(a1*b2-a2*b1) y=(c1*a2-c2*a1)/(a1*b2-a2*b1) print('%.3f %.3f %.3f'%(x,y,math.hypot(x1-x,y1-y)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,248
s479244965
p00010
u300645821
1400580241
Python
Python3
py
Accepted
30
6828
382
import sys,math if sys.version_info[0]>=3: raw_input=input N=int(raw_input()) for i in range(N): x1,y1,x2,y2,x3,y3=[float(e) for e in raw_input().split()] a1=2*x2-2*x1 b1=2*y2-2*y1 c1=x1*x1-x2*x2+y1*y1-y2*y2 a2=2*x3-2*x1 b2=2*y3-2*y1 c2=x1*x1-x3*x3+y1*y1-y3*y3 x=(b1*c2-b2*c1)/(a1*b2-a2*b1) y=(c1*a2-c2*a1)/(a1*b2-a2*b1) print('%.3f %.3f %.3f'%(x,y,math.hypot(x1-x,y1-y)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,249
s532964118
p00010
u436634575
1401130872
Python
Python3
py
Accepted
30
6836
451
from math import hypot n = int(input()) for i in range(n): x1, y1, x2, y2, x3, y3 = map(float, input().strip().split()) d = lambda x, y: x*x + y*y t21 = [2*(x2-x1), 2*(y2-y1), d(x2,y2) - d(x1,y1)] t31 = [2*(x3-x1), 2*(y3-y1), d(x3,y3) - d(x1,y1)] det = lambda i, j: t21[i]*t31[j] - t21[j]*t31[i] a = det(2,1) / det(0,1) b = det(0,2) / det(0,1) r = hypot(x1-a, y1-b) print('{:.3f} {:.3f} {:.3f}'.format(a, b, r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,250
s240476404
p00010
u813197825
1596184640
Python
Python3
py
Accepted
20
5696
911
def f1(a, b, c, d): # 2点の中心を通り垂直な線の傾きと切片 k = (a - c) / (d - b) h = ((b + d) - k * (a + c)) / 2 return k, h def f2(a, b, c, d): # 2直線との交点 x = (d - b) / (a - c) y = a * x + b return x, y def f3(a, b, c, d): return ((c - a) ** 2 + (d - b) ** 2) ** 0.5 def main(): N = int(input()) for i in range(N): a, b, c, d, e, f = map(float, input().split()) T = [] if not b == d: k, h = f1(a, b, c, d) T.append((k, h)) if not d == f: k, h = f1(c, d, e, f) T.append((k, h)) if not f == b: k, h = f1(e, f, a, b) T.append((k, h)) x, y = f2(T[0][0], T[0][1], T[1][0], T[1][1]) r = f3(x, y, a, b) print(f'{round(x, 3):.3f} {round(y, 3):.3f} {round(r, 3):.3f}') if __name__ == '__main__': main()
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,251
s353335724
p00010
u187074069
1592413271
Python
Python3
py
Accepted
20
5672
504
n = int(input()) for i in range(n): lst = list(map(float, input().split())) a, b = lst[0], lst[1] c, d = lst[2], lst[3] e, f = lst[4], lst[5] px = ((a+c)*(a-c)*(b-f)-(a+e)*(a-e)*(b-d)+(b-d)*(b-f)*(d-f))/(2*((a-c)*(b-f)-(a-e)*(b-d))) py = ((a-c)*(a-e)*(c-e)+(b+d)*(b-d)*(a-e)-(b+f)*(b-f)*(a-c))/(2*((b-d)*(a-e)-(b-f)*(a-c))) r = ((a-px)**2 + (b-py)**2)**0.5 print('{:.3f}'.format(px), end= " ") print('{:.3f}'.format(py), end= " ") print('{:.3f}'.format(r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,252
s120875423
p00010
u814278309
1592268993
Python
Python3
py
Accepted
20
5696
432
import math for i in range(int(input())): x1,y1,x2,y2,x3,y3 = map(float,input().split()) a = 2*(x2 - x1) b = 2*(y2 - y1) c = x1**2 - x2**2 + y1**2 - y2**2 aa = 2*(x3 - x1) bb = 2*(y3 - y1) cc = x1**2 - x3**2 + y1**2 - y3**2 x = (b*cc - bb*c) / (a*bb - aa*b) y = (c*aa - cc*a) / (a*bb - aa*b) r = math.hypot(x1 - x,y1 - y) print(f'{x:.03f} {y:.03f} {r:.03f}')
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,253
s378328852
p00010
u245861861
1592051350
Python
Python3
py
Accepted
20
5688
328
import math N=int(input()) for i in range(N): x1,y1,x2,y2,x3,y3=[float(e) for e in input().split()] a1=2*x2-2*x1 b1=2*y2-2*y1 c1=x1*x1-x2*x2+y1*y1-y2*y2 a2=2*x3-2*x1 b2=2*y3-2*y1 c2=x1*x1-x3*x3+y1*y1-y3*y3 x=(b1*c2-b2*c1)/(a1*b2-a2*b1) y=(c1*a2-c2*a1)/(a1*b2-a2*b1) print('%.3f %.3f %.3f'%(x,y,math.hypot(x1-x,y1-y)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,254
s097941839
p00010
u240091169
1589154162
Python
Python3
py
Accepted
20
5688
546
import math n = int(input()) for i in range(n) : x1, y1, x2, y2, x3, y3 = map(float, input().split()) py = ((x3-x1)*(x1**2 + y1**2 - x2**2 - y2**2) - (x2-x1)*(x1**2 + y1**2 - x3**2 - y3**2)) / (2*(x3-x1)*(y1-y2) - 2*(x2-x1)*(y1-y3)) if x1 == x2 : px = (2*(y1-y3)*py - x1**2 - y1**2 + x3**2 + y3**2) / (2*(x3 - x1)) else : px = (2*(y1-y2)*py - x1**2 - y1**2 + x2**2 + y2**2) / (2*(x2 - x1)) r = math.sqrt((px - x1)**2 + (py -y1)**2) print('{:.3f}'.format(px), '{:.3f}'.format(py), '{:.3f}'.format(r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,255
s311774112
p00010
u260980560
1588729240
Python
Python3
py
Accepted
20
5656
448
N = int(input()) for i in range(N): x1, y1, x2, y2, x3, y3 = map(float, input().split()) a = 2*(x1 - x2); b = 2*(y1 - y2); p = x1**2 - x2**2 + y1**2 - y2**2 c = 2*(x1 - x3); d = 2*(y1 - y3); q = x1**2 - x3**2 + y1**2 - y3**2 det = a*d - b*c x = d*p - b*q; y = a*q - c*p if det < 0: x = -x; y = -y; det = -det x /= det; y /= det r = ((x - x1)**2 + (y - y1)**2)**.5 print("%.03f %.03f %.03f" % (x, y, r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,256
s713460365
p00010
u630911389
1576894361
Python
Python3
py
Accepted
20
5692
917
import math class Circle: def __init__(self,x,y,r): self.x = x self.y = y self.r = r def getCircle(x1, y1, x2, y2, x3, y3): d = 2 * (x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) px = ((x1**2 + y1**2) * (y2 - y3) + (x2**2 + y2**2) * (y3 - y1) + (x3**2 + y3**2) * (y1 - y2) ) / d py = ((x1**2 + y1**2) * (x3 - x2) + (x2**2 + y2**2) * (x1 - x3) + (x3**2 + y3**2) * (x2 - x1) ) / d a = math.sqrt((x1 - x2)**2 + (y1 - y2)**2) b = math.sqrt((x1 - x3)**2 + (y1 - y3)**2) c = math.sqrt((x2 - x3)**2 + (y2 - y3)**2) s = (a + b + c) / 2 A = math.sqrt(s * (s - a) * (s - b) * (s - c)) r = a * b * c / (4 * A) return Circle(px,py,r) n = int(input()) for k in range(n): x1, y1, x2, y2, x3, y3 = [float(x) for x in input().split()] circle = getCircle(x1, y1, x2, y2, x3, y3) print("%.3f %.3f %.3f" % (circle.x, circle.y, circle.r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,257
s518087770
p00010
u942532706
1575467363
Python
Python3
py
Accepted
20
5628
419
n = int(input()) for i in range(n): x1, y1, x2, y2, x3, y3 = list(map(float, input().split())) a = complex(x1, y1) b = complex(x2, y2) c = complex(x3, y3) a -= c b -= c z0 = abs(a)**2 * b - abs(b)**2 * a z0 /= a.conjugate() * b - a * b.conjugate() z = z0 + c zx = "{0:.3f}".format(z.real) zy = "{0:.3f}".format(z.imag) r = "{0:.3f}".format(abs(z0)) print(zx, zy, r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,258
s590285760
p00010
u350155409
1574869000
Python
Python3
py
Accepted
20
5700
701
import math n = int(input()) round = lambda x:(x*1000*2+1)//2/1000 for i in range(n): x1,y1,x2,y2,x3,y3 = [ float(s) for s in input().split() ] r1 = x1*x1 + y1*y1 r2 = x2*x2 + y2*y2 r3 = x3*x3 + y3*y3 x1_x2 = x1 - x2 y1_y2 = y1 - y2 x1_x3 = x1 - x3 y1_y3 = y1 - y3 r1_r2 = r1 - r2 r1_r3 = r1 - r3 if x1_x2 == 0: py = r1_r2 / (2*y1_y2) px = (r1_r3 - 2*y1_y3*py) / (2*x1_x3) else: py = (r1_r2 * x1_x3 - r1_r3 * x1_x2) / (2*(y1_y2 * x1_x3 - y1_y3 * x1_x2)) px = (r1_r2 - 2*y1_y2*py) / (2*x1_x2) r = math.sqrt((x1-px)**2 + (y1-py)**2) print('{:.3f}'.format(0+px),'{:.3f}'.format(0+py),'{:.3f}'.format(0+round(r)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,259
s810921843
p00010
u072053884
1573481484
Python
Python3
py
Accepted
20
5644
616
def solve(): from sys import stdin f_i = stdin n = int(f_i.readline()) for i in range(n): x1, y1, x2, y2, x3, y3 = map(float, f_i.readline().split()) A = x1 + y1 * 1j B = x2 + y2 * 1j C = x3 + y3 * 1j a = abs(C - B) b = abs(A - C) c = abs(B - A) c1 = a**2 * (b**2 + c**2 - a**2) c2 = b**2 * (c**2 + a**2 - b**2) c3 = c**2 * (a**2 + b**2 - c**2) U = (c1 * A + c2 * B + c3 * C) / (c1 + c2 + c3) R = abs(U - A) print('{:.3f} {:.3f} {:.3f}'.format(U.real, U.imag, R)) solve()
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,260
s983247562
p00010
u128808587
1571110045
Python
Python3
py
Accepted
20
5672
541
n = int(input()) for i in range(n): x1, y1, x2, y2, x3, y3 = list(map(float, input().split())) a = 2*(x1-x2) b = 2*(y1-y2) c = x1**2 - x2**2 + y1**2 - y2**2 d = 2*(x1-x3) e = 2*(y1-y3) f = x1**2 - x3**2 + y1**2 - y3**2 y = (c*d - a*f) / (b*d - a*e) if a==0: x = (f - e*y) / d else: x = (c - b*y) / a r = ((x1 - x)**2 + (y1 - y)**2)**0.5 print('{:.3f}'.format(round(x, 3)), end=" ") print('{:.3f}'.format(round(y, 3)), end=" ") print('{:.3f}'.format(round(r, 3)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,261
s253801764
p00010
u586792237
1564930121
Python
Python3
py
Accepted
20
5688
684
import math n = int(input()) positions = [] for i in range(n): positions.append(list(map(float, input().split()))) for i in range(n): ra = [positions[i][0],positions[i][1]] rb = [positions[i][2],positions[i][3]] rc = [positions[i][4],positions[i][5]] A = (rb[0]-rc[0])**2+(rb[1]-rc[1])**2 B = (rc[0]-ra[0])**2+(rc[1]-ra[1])**2 C = (ra[0]-rb[0])**2+(ra[1]-rb[1])**2 P = A * (B+C-A) Q = B * (C+A-B) R = C * (A+B-C) rcc_x = (P*ra[0] + Q*rb[0] + R*rc[0]) / (P+Q+R) rcc_y = (P*ra[1] + Q*rb[1] + R*rc[1]) / (P+Q+R) radius = math.sqrt((rcc_x-positions[i][0])**2+(rcc_y-positions[i][1])**2) print("{0:.3f} {1:.3f} {2:.3f}".format(rcc_x,rcc_y,radius))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,262
s063542268
p00010
u821561321
1564924113
Python
Python3
py
Accepted
20
5680
304
import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=map(float,input().split()) a,b,c=2*(x2-x1),2*(y2-y1),x1**2-x2**2+y1**2-y2**2 aa,bb,cc=2*(x3-x1),2*(y3-y1),x1**2-x3**2+y1**2-y3**2 x,y=(b*cc-bb*c)/(a*bb-aa*b),(c*aa-cc*a)/(a*bb-aa*b) print('%.3f %.3f %.3f'%(x,y,math.hypot(x1-x,y1-y)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,263
s083090877
p00010
u427219397
1564893135
Python
Python3
py
Accepted
20
5684
447
import math for _ in range(int(input())): x1, y1, x2, y2, x3, y3 = map(float, input().split()) p = ((y1-y3)*(y1**2 -y2**2 +x1**2 -x2**2) -(y1-y2)*(y1**2 -y3**2 +x1**2 -x3**2)) / 2/ ((y1-y3)*(x1-x2)-(y1-y2)*(x1-x3)) q = ((x1-x3)*(x1**2 -x2**2 +y1**2 -y2**2) -(x1-x2)*(x1**2 -x3**2 +y1**2 -y3**2)) / 2/ ((x1-x3)*(y1-y2)-(x1-x2)*(y1-y3)) r = math.sqrt((x1 - p) ** 2 + (y1 - q) ** 2) print("{:.3f} {:.3f} {:.3f}".format(p, q, r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,264
s610729218
p00010
u678843586
1564643799
Python
Python3
py
Accepted
20
5680
314
import math for _ in range(int(input())): x1,y1,x2,y2,x3,y3=map(float,input().split()) a,b,c=2*(x2-x1),2*(y2-y1),x1**2-x2**2+y1**2-y2**2 aa,bb,cc=2*(x3-x1),2*(y3-y1),x1**2-x3**2+y1**2-y3**2 x,y=(b*cc-bb*c)/(a*bb-aa*b),(c*aa-cc*a)/(a*bb-aa*b) print('%.3f %.3f %.3f'%(x,y,math.hypot(x1-x,y1-y)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,265
s024363287
p00010
u647694976
1564453627
Python
Python3
py
Accepted
20
5680
413
import sys,math if sys.version_info[0]>=3: raw_input=input N=int(raw_input()) for i in range(N): x1,y1,x2,y2,x3,y3=[float(e) for e in raw_input().split()] a1=2*x2-2*x1 b1=2*y2-2*y1 c1=x1*x1-x2*x2+y1*y1-y2*y2 a2=2*x3-2*x1 b2=2*y3-2*y1 c2=x1*x1-x3*x3+y1*y1-y3*y3 x=(b1*c2-b2*c1)/(a1*b2-a2*b1) y=(c1*a2-c2*a1)/(a1*b2-a2*b1) print('%.3f %.3f %.3f'%(x,y,math.hypot(x1-x,y1-y)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,266
s655021020
p00010
u264450287
1561506812
Python
Python3
py
Accepted
20
5704
434
import math n=int(input()) for i in range(n): x1,y1,x2,y2,x3,y3=map(float,input().split()) a=(x3-x1)*(x1**2+y1**2-x2**2-y2**2)-(x2-x1)*(x1**2+y1**2-x3**2-y3**2) b=2*(x3-x1)*(y1-y2)-2*(x2-x1)*(y1-y3) py=a/b if x2-x1!=0: px=(2*(y1-y2)*py-x1**2-y1**2+x2**2+y2**2)/(2*(x2-x1)) else: px=(2*(y1-y3)*py-x1**2-y1**2+x3**2+y3**2)/(2*(x3-x1)) r=math.sqrt((px-x1)**2+(py-y1)**2) print(f"{px:.3f}",f"{py:.3f}",f"{r:.3f}")
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,267
s064594237
p00010
u625806423
1553686965
Python
Python3
py
Accepted
20
5692
677
import math n = int(input()) positions = [] for i in range(n): positions.append(list(map(float, input().split()))) for i in range(n): ra = [positions[i][0],positions[i][1]] rb = [positions[i][2],positions[i][3]] rc = [positions[i][4],positions[i][5]] A = (rb[0]-rc[0])**2+(rb[1]-rc[1])**2 B = (rc[0]-ra[0])**2+(rc[1]-ra[1])**2 C = (ra[0]-rb[0])**2+(ra[1]-rb[1])**2 P = A * (B+C-A) Q = B * (C+A-B) R = C * (A+B-C) rcc_x = (P*ra[0] + Q*rb[0] + R*rc[0]) / (P+Q+R) rcc_y = (P*ra[1] + Q*rb[1] + R*rc[1]) / (P+Q+R) radius = math.sqrt((rcc_x-positions[i][0])**2+(rcc_y-positions[i][1])**2) print("{0:.3f} {1:.3f} {2:.3f}".format(rcc_x,rcc_y,radius))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,268
s405716502
p00010
u990228206
1553159380
Python
Python3
py
Accepted
30
6452
555
from decimal import Decimal, ROUND_HALF_UP n=int(input()) for i in range(n): x1,y1,x2,y2,x3,y3=map(float,input().split()) a=2*(x1-x2) b=2*(y1-y2) c=x1**2+y1**2-x2**2-y2**2 d=2*(x1-x3) e=2*(y1-y3) f=x1**2+y1**2-x3**2-y3**2 x=(c*e-b*f)/(a*e-b*d)+0.0 y=(c*d-a*f)/(b*d-a*e)+0.0 r=((x-x1)**2+(y-y1)**2)**0.5 print(Decimal(str(x)).quantize(Decimal('0.001'), rounding=ROUND_HALF_UP),Decimal(str(y)).quantize(Decimal('0.001'), rounding=ROUND_HALF_UP),Decimal(str(r)).quantize(Decimal('0.001'), rounding=ROUND_HALF_UP))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,269
s214732147
p00010
u563075864
1542255049
Python
Python3
py
Accepted
20
5716
846
n = int(input()) import math for _ in range(n): ax,ay,bx,by,cx,cy = [float(i) for i in input().split()] ab = math.sqrt((ax-bx)**2+(ay-by)**2) bc = math.sqrt((bx-cx)**2+(by-cy)**2) ca = math.sqrt((cx-ax)**2+(cy-ay)**2) cos_a = (ab**2+ca**2-bc**2)/(2*ab*ca) sin_a = math.sqrt(1-cos_a**2) r = bc/(2*sin_a) px = ((ay-cy)*(ay**2 -by**2 +ax**2 -bx**2) -(ay-by)*(ay**2 -cy**2 +ax**2 -cx**2)) / (2*(ay-cy)*(ax-bx)-2*(ay-by)*(ax-cx)) py = ((ax-cx)*(ax**2 -bx**2 +ay**2 -by**2) -(ax-bx)*(ax**2 -cx**2 +ay**2 -cy**2)) / (2*(ax-cx)*(ay-by)-2*(ax-bx)*(ay-cy)) def round3(x): x_ = x*10**3 if x_%1 < 0.5: x_ = math.floor(x_) else: x_ = math.ceil(x_) return x_*10**(-3) print("{:.3f} {:.3f} {:.3f}".format(round3(px),round3(py),round3(r)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,270
s460477095
p00010
u717526540
1541638764
Python
Python3
py
Accepted
30
6504
793
import math from decimal import Decimal, ROUND_HALF_EVEN, ROUND_HALF_UP n = int(input()) for _ in range(n): x1, y1, x2, y2, x3, y3 = map(float, input().split()) a2 = (x2-x3)**2 + (y2-y3)**2 b2 = (x1-x3)**2 + (y1-y3)**2 c2 = (x1-x2)**2 + (y1-y2)**2 area = ((x2-x1) * (y3-y1) - (x3-x1) * (y2-y1)) / 2 x = (a2*(b2+c2-a2)*x1 + b2*(c2+a2-b2) * x2 + c2*(a2+b2-c2)*x3) / (16*area*area) y = (a2*(b2+c2-a2)*y1 + b2*(c2+a2-b2) * y2 + c2*(a2+b2-c2)*y3) / (16*area*area) r = ((x1-x)**2 + (y1-y)**2)**0.5 x = Decimal(str(x)).quantize(Decimal("0.001"), rounding=ROUND_HALF_UP) y = Decimal(str(y)).quantize(Decimal("0.001"), rounding=ROUND_HALF_UP) r = Decimal(str(r)).quantize(Decimal("0.001"), rounding=ROUND_HALF_UP) print(x, y, r)
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,271
s889700742
p00010
u509278866
1536567358
Python
Python3
py
Accepted
70
9056
1,944
import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,random,time,copy,functools sys.setrecursionlimit(10**7) inf = 10**20 eps = 1.0 / 10**13 mod = 10**9+7 dd = [(-1,0),(0,1),(1,0),(0,-1)] ddn = [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)] def LI(): return [int(x) for x in sys.stdin.readline().split()] def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()] def LF(): return [float(x) for x in sys.stdin.readline().split()] def LS(): return sys.stdin.readline().split() def I(): return int(sys.stdin.readline()) def F(): return float(sys.stdin.readline()) def S(): return input() def pf(s): return print(s, flush=True) def distance(x1, y1, x2, y2): return math.sqrt((x1-x2)**2 + (y1-y2)**2) def intersection(a1, a2, b1, b2): x1,y1 = a1 x2,y2 = a2 x3,y3 = b1 x4,y4 = b2 ksi = (y4 - y3) * (x4 - x1) - (x4 - x3) * (y4 - y1) eta = (x2 - x1) * (y4 - y1) - (y2 - y1) * (x4 - x1) delta = (x2 - x1) * (y4 - y3) - (y2 - y1) * (x4 - x3) if delta == 0: return None ramda = ksi / delta; mu = eta / delta; if ramda >= 0 and ramda <= 1 and mu >= 0 and mu <= 1: return (x1 + ramda * (x2 - x1), y1 + ramda * (y2 - y1)) return None def circumcenters(a,b,c): t1 = [(a[0]+b[0])/2, (a[1]+b[1])/2] s1 = [t1[1]-a[1], a[0]-t1[0]] t2 = [(a[0]+c[0])/2, (a[1]+c[1])/2] s2 = [t2[1]-a[1], a[0]-t2[0]] p1 = [t1[0]+s1[0]*1e7, t1[1]+s1[1]*1e7] p2 = [t1[0]-s1[0]*1e7, t1[1]-s1[1]*1e7] p3 = [t2[0]+s2[0]*1e7, t2[1]+s2[1]*1e7] p4 = [t2[0]-s2[0]*1e7, t2[1]-s2[1]*1e7] return intersection(p1,p2,p3,p4) def main(): n = I() rr = [] for _ in range(n): x1,y1,x2,y2,x3,y3 = LF() a = [x1,y1] b = [x2,y2] c = [x3,y3] t = circumcenters(a,b,c) rr.append('{:0.3f} {:0.3f} {:0.3f}'.format(t[0], t[1], distance(t[0],t[1],x1,y1))) return '\n'.join(rr) print(main())
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,272
s685092580
p00010
u319725914
1534213490
Python
Python3
py
Accepted
20
5660
446
n = int(input()) for _ in range(n): x1,y1,x2,y2,x3,y3 = map(float, input().split()) gx = (x1+x2+x3)/3 gy = (y1+y2+y3)/3 G=( y2*x1-y1*x2 +y3*x2-y2*x3 +y1*x3-y3*x1 ) Xc= ((x1*x1+y1*y1)*(y2-y3)+(x2*x2+y2*y2)*(y3-y1)+(x3*x3+y3*y3)*(y1-y2))/(2*G) Yc=-((x1*x1+y1*y1)*(x2-x3)+(x2*x2+y2*y2)*(x3-x1)+(x3*x3+y3*y3)*(x1-x2))/(2*G) r = ( (x1 - Xc) * (x1 - Xc) + (y1 - Yc) * (y1 - Yc) )**0.5 print("%.3f %.3f %.3f"%(Xc,Yc,r))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,273
s492145493
p00010
u252700163
1532751394
Python
Python3
py
Accepted
20
5688
789
def circumcenter(vert1, vert2, vert3): # H/T: wikipedia.org/wiki/Circumscribed_circle # refer from https://gist.github.com/dhermes/9ce057da49df63345c33 Ax, Ay = vert1 Bx, By = vert2 Cx, Cy = vert3 D = 2 * (Ax * (By - Cy) + Bx * (Cy - Ay) + Cx * (Ay - By)) norm_A = Ax**2 + Ay**2 norm_B = Bx**2 + By**2 norm_C = Cx**2 + Cy**2 Ux = norm_A * (By - Cy) + norm_B * (Cy - Ay) + norm_C * (Ay - By) Uy = -(norm_A * (Bx - Cx) + norm_B * (Cx - Ax) + norm_C * (Ax - Bx)) r = (Ax - Ux/D)*(Ax - Ux/D) + (Ay - Uy/D)* (Ay - Uy/D) r = float(r)**0.5 return [Ux/D, Uy/D, r] n = int(input()) for i in range(n): xs = list(map(float, input().split())) a = circumcenter(xs[0:2], xs[2:4], xs[4:6]) print(' '.join(map(lambda x:f'{x:0.03f}', a)))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,274
s545516481
p00010
u853158149
1521969543
Python
Python3
py
Accepted
20
5676
552
n = int(input()) ans = [] for i in range(n): ax,ay,bx,by,cx,cy = map(float, input().split(" ")) a,b,c = 2*(ax-bx),2*(ay-by),(ax+bx)*(ax-bx)+(ay+by)*(ay-by) d,e,f = 2*(ax-cx),2*(ay-cy),(ax+cx)*(ax-cx)+(ay+cy)*(ay-cy) det = a*e-b*d px = (c*e-b*f)/det py = (a*f-c*d)/det if abs(px) < 1e-4: px = 0.0 if abs(py) < 1e-4: py = 0.0 r = ((ax-px)**2+(ay-py)**2)**(1/2) ans.append([px,py,r]) for i in range(n): print("{0:.3f}".format(ans[i][0]),"{0:.3f}".format(ans[i][1]),"{0:.3f}".format(ans[i][2]))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,275
s412598109
p00010
u079141094
1467343394
Python
Python3
py
Accepted
30
7748
967
# Circumscribed Circle of a Triangle import math def simul_eq(a,b,c,d,e,f): # A = [[a,b],[d,e]] C = [c,f] detA = a*e - b*d # if detA == 0: raise # det(A) == 0. At = [[e,-b],[-d,a]] x = sum(map((lambda x,y: x*y), At[0], C)) / detA y = sum(map((lambda x,y: x*y), At[1], C)) / detA fx,fy = '{0:.3f}'.format(x), '{0:.3f}'.format(y) if fx == '-0.000': fx = fx[1:] if fy == '-0.000': fy = fy[1:] return (fx,fy) n = int(input()) for _ in range(n): x1,y1,x2,y2,x3,y3 = map(float, input().split()) a = math.sqrt(pow(x2-x3, 2) + pow(y2-y3, 2)) b = math.sqrt(pow(x1-x3, 2) + pow(y1-y3, 2)) c = math.sqrt(pow(x2-x1, 2) + pow(y2-y1, 2)) cosA = (pow(b,2) + pow(c,2) - pow(a,2)) / (2*b*c) sinA = math.sqrt(1 - pow(cosA,2)) R = a / (2 * sinA) cen = simul_eq(x2-x1, y2-y1, (y2**2 - y1**2 + x2**2 - x1**2) / 2, x3-x1, y3-y1, (y3**2 - y1**2 + x3**2 - x1**2) / 2) print(' '.join(cen), '{0:.3f}'.format(R))
p00010
<script type="text/x-mathjax-config"> MathJax.Hub.Config({ tex2jax: { inlineMath: [["$","$"], ["\\(","\\)"]], processEscapes: true }}); </script> <script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script> <H1>Circumscribed Circle of A Triangle.</H1> <p> Write a program which prints the central coordinate $(p_x, p_y)$ and the radius $r$ of a circumscribed circle of a triangle which is constructed by three points $(x_1, y_1)$, $(x_2, y_2)$ and $(x_3, y_3)$ on the plane surface. </p> <H2>Input</H2> <p> Input consists of several datasets. In the first line, the number of datasets $n$ is given. Each dataset consists of:<br/> <br/> $x_1$ $y_1$ $x_2$ $y_2$ $x_3$ $y_3$<br/> <br/> in a line. All the input are real numbers. </p> <H2>Output</H2> <p> For each dataset, print $p_x$, $p_y$ and $r$ separated by a space in a line. Print the solution to three places of decimals. Round off the solution to three decimal places. </p> <h2>Constraints</h2> <ul> <li>$-100 \leq x_1, y_1, x_2, y_2, x_3, y_3 \leq 100$</li> <li>$ n \leq 20$</li> </ul> <H2>Sample Input</H2> <pre> 1 0.0 0.0 2.0 0.0 2.0 2.0 </pre> <H2>Output for the Sample Input</H2> <pre> 1.000 1.000 1.414 </pre>
1 0.0 0.0 2.0 0.0 2.0 2.0
1.000 1.000 1.414
5,276
s665570502
p00011
u995990363
1530849871
Python
Python3
py
Accepted
20
5604
280
def run(): w = [i + 1 for i in range(int(input()))] n = int(input()) for _ in range(n): s1, s2 = list(map(int, input().split(','))) w[s1-1], w[s2-1] = w[s2-1], w[s1-1] print('\n'.join([str(_w) for _w in w])) if __name__ == '__main__': run()
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,277
s003690790
p00011
u733620181
1408923815
Python
Python
py
Accepted
10
4208
203
import sys n = int(sys.stdin.readline()) sys.stdin.readline() l = range(1, n+1) for line in sys.stdin: a,b = map(int, line.strip().split(',')) l[a-1], l[b-1] = l[b-1], l[a-1] for x in l: print x
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,278
s064140726
p00011
u506132575
1416115425
Python
Python
py
Accepted
20
4204
236
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys num_v = input() num_h = input() lis = range(num_v+1) for s in sys.stdin: d = map(int , s.split(",") ) lis[d[0]], lis[d[1]] = lis[d[1]], lis[d[0]] for e in lis[1:]: print e
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,279
s813196864
p00011
u342537066
1420705243
Python
Python3
py
Accepted
40
6720
219
w=int(input()) n=int(input()) lis=[i+1 for i in range(w)] for _ in range(n): a,b=map(int,input().split(",")) a-=1 b-=1 x=lis[a] lis[a]=lis[b] lis[b]=x for i in range(w): print(lis[i])
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,280
s334682831
p00011
u567380442
1422616474
Python
Python3
py
Accepted
30
6724
252
import sys f = sys.stdin w = int(f.readline()) lots = [i + 1for i in range(w)] n = int(f.readline()) for _ in range(n): a, b = map(int , f.readline().split(',')) lots[a - 1], lots[b - 1] = lots[b - 1], lots[a - 1] for i in lots: print(i)
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,281
s289426333
p00011
u879226672
1423675636
Python
Python
py
Accepted
10
4220
330
while True: try: w = int(raw_input()) n = int(raw_input()) ans = [j for j in range(1,w+1)] for k in range(n): a,b = map(int,(raw_input().split(","))) ans[a-1],ans[b-1] = ans[b-1],ans[a-1] for item in ans: print item except EOFError: break
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,282
s715890618
p00011
u744114948
1425202024
Python
Python3
py
Accepted
30
6720
295
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright : @Huki_Hara # Created : 2015-03-01 s=[] W=int(input()) n=int(input()) for i in range(W): s.append(i+1) for _ in range(n): a , b = map(int, input().split(",")) s[a-1], s[b-1] = s[b-1], s[a-1] for i in s: print(i)
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,283
s049657401
p00011
u744114948
1425202265
Python
Python3
py
Accepted
30
6720
178
s = [i + 1 for i in range(int(input()))] n = int(input()) for _ in range(n): a , b = map(int, input().split(",")) s[a-1], s[b-1] = s[b-1], s[a-1] for i in s: print(i)
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,284
s238303604
p00011
u540744789
1425660999
Python
Python
py
Accepted
10
4212
208
w=int(raw_input()) number = range(1,w+1) for i in xrange(input()): a,b=map(int,raw_input().split(",")) tmp=number[a-1] number[a-1]=number[b-1] number[b-1]=tmp print '\n'.join(map(str,number))
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,285
s057086523
p00011
u009961299
1431069745
Python
Python3
py
Accepted
30
6720
269
# -*- coding: utf-8 -*- w = int ( input ( ) ) n = int ( input ( ) ) lis = list ( range ( 1, w + 1 ) ) for i in range ( n ): ( a, b ) = map ( int, input ( ).split ( "," ) ) ( lis[ a - 1 ], lis[ b - 1 ] ) = ( lis[ b - 1 ], lis[ a - 1 ] ) for x in lis: print ( x )
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,286
s388861957
p00011
u067299340
1432874527
Python
Python
py
Accepted
10
4208
145
l=[i+1 for i in range(input())] for a,b in[map(int,raw_input().split(","))for i in range(input())]:l[a-1],l[b-1]=l[b-1],l[a-1] for i in l:print i
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,287
s476977566
p00011
u067299340
1432874601
Python
Python
py
Accepted
10
4200
134
l=range(1,input()+1) for a,b in[map(int,raw_input().split(","))for i in range(input())]:l[a-1],l[b-1]=l[b-1],l[a-1] for i in l:print i
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,288
s551812272
p00011
u067299340
1432874712
Python
Python
py
Accepted
20
4204
134
l=range(1,input()+1) for a,b in[map(int,raw_input().split(","))for i in range(input())]:l[a-1],l[b-1]=l[b-1],l[a-1] for i in l:print i
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,289
s909284868
p00011
u067299340
1432874770
Python
Python
py
Accepted
20
4200
135
l=range(1,input()+1) for a,b in[map(int,raw_input().split(","))for i in xrange(input())]:l[a-1],l[b-1]=l[b-1],l[a-1] for i in l:print i
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,290
s878015530
p00011
u067299340
1432874836
Python
Python
py
Accepted
10
4200
134
l=range(1,input()+1) for a,b in[map(int,raw_input().split(","))for i in range(input())]:l[a-1],l[b-1]=l[b-1],l[a-1] for i in l:print i
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,291
s784448983
p00011
u067299340
1432874955
Python
Python
py
Accepted
10
4200
141
l=range(1,input()+1) for x in[raw_input().split(",")for i in range(input())]: a,b=map(int,x) l[a-1],l[b-1]=l[b-1],l[a-1] for i in l:print i
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,292
s531529181
p00011
u067299340
1432874978
Python
Python
py
Accepted
10
4200
134
l=range(1,input()+1) for a,b in[map(int,raw_input().split(","))for i in range(input())]:l[a-1],l[b-1]=l[b-1],l[a-1] for i in l:print i
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,293
s563667379
p00011
u379956761
1434727827
Python
Python3
py
Accepted
30
6784
333
#!/usr/bin/env python #-*- coding:utf-8 -*- import sys import math w = int(input()) n = int(input()) s = [] for _ in range(n): x = input().split(',') s.append((int(x[0]), int(x[1]))) result = [i for i in range(1, w+1)] for x, y in s: result[x-1], result[y-1] = result[y-1], result[x-1] for x in result: print(x)
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,294
s179096825
p00011
u749493116
1436406358
Python
Python
py
Accepted
10
4232
352
#!/usr/bin/env python # -*- coding: utf-8 -*- n = input() m = input() line = [] for i in range(0, n): line.append(i) for i in range(0, m): change = map(int, raw_input().split(',')) change[0] -= 1 change[1] -= 1 line[change[0]], line[change[1]] = line[change[1]], line[change[0]] for i in range(0, n): print line[i] + 1
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,295
s869094245
p00011
u873482706
1437290751
Python
Python
py
Accepted
10
4212
206
ans = [i+1 for i in range(int(raw_input()))] for i in range(int(raw_input())): a, b = map(int, raw_input().split(',')) ans[b-1], ans[a-1] = ans[a-1], ans[b-1] else: for a in ans: print a
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,296
s142371054
p00011
u883062308
1438517996
Python
Python3
py
Accepted
30
6720
254
w = int(input()) n = int(input()) nums = list(range(1, w + 1)) for i in range(n): ab = input().split(",") a = int(ab[0]) - 1 b = int(ab[1]) - 1 _a = nums[a] nums[a] = nums[b] nums[b] = _a print("\n".join([str(n) for n in nums]))
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,297
s415285912
p00011
u722431421
1439560708
Python
Python
py
Accepted
20
4212
326
# coding: utf-8 #Problem Name: Drawing Lots #ID: tabris #Mail: t123037@kaiyodai.ac.jp w = int(raw_input()) n = int(raw_input()) change = [0 for _ in xrange(n)] for i in xrange(n): change[i] = eval(raw_input()) List = range(1,w+1) for i,j in change: List[i-1],List[j-1] = List[j-1],List[i-1] for i in List: print i
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,298
s133164859
p00011
u271261336
1442977081
Python
Python
py
Accepted
10
6324
209
w=int(raw_input()) number = range(1,w+1) for i in xrange(input()): a,b=map(int,raw_input().split(",")) tmp=number[a-1] number[a-1]=number[b-1] number[b-1]=tmp print '\n'.join(map(str,number))
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,299
s273769318
p00011
u140201022
1443016480
Python
Python
py
Accepted
10
6244
171
w=int(raw_input()) l=range(w+1) n=int(raw_input()) for i in range(n): x,y=map(int,raw_input().split(',')) l[x],l[y]=l[y],l[x] for i in range(1,w+1): print l[i]
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,300
s131693188
p00011
u071010747
1445228227
Python
Python3
py
Accepted
20
7720
303
def main(): LIST=[] for i in range(int(input())): LIST.append(i+1) for j in range(int(input())): a,b=map(int,input().split(",")) LIST[a-1],LIST[b-1]=LIST[b-1],LIST[a-1] for i in LIST: print(str(i)) if __name__ == '__main__': main()
p00011
<H1>Drawing Lots</H1> <p> Let's play Amidakuji. </p> <p> In the following example, there are five vertical lines and four horizontal lines. The horizontal lines can intersect (jump across) the vertical lines. </p> <center> <img src="https://judgeapi.u-aizu.ac.jp/resources/images/IMAGE1_amida1"> </center> <br> <p> In the starting points (top of the figure), numbers are assigned to vertical lines in ascending order from left to right. At the first step, 2 and 4 are swaped by the first horizontal line which connects second and fourth vertical lines (we call this operation (2, 4)). Likewise, we perform (3, 5), (1, 2) and (3, 4), then obtain "4 1 2 5 3" in the bottom. </p> <p> Your task is to write a program which reads the number of vertical lines <var>w</var> and configurations of horizontal lines and prints the final state of the Amidakuji. In the starting pints, numbers 1, 2, 3, ..., <var>w</var> are assigne to the vertical lines from left to right. </p> <H2>Input</H2> <pre> <var>w</var> <var>n</var> <var>a<sub>1</sub></var>,<var>b<sub>1</sub></var> <var>a<sub>2</sub></var>,<var>b<sub>2</sub></var> . . <var>a<sub>n</sub></var>,<var>b<sub>n</sub></var> </pre> <p> <var>w</var> (<var>w</var> &le; 30) is the number of vertical lines. <var>n</var> (<var>n</var> &le; 30) is the number of horizontal lines. A pair of two integers <var>a<sub>i</sub></var> and <var>b<sub>i</sub></var> delimited by a comma represents the <var>i</var>-th horizontal line. </p> <H2>Output</H2> <p> The number which should be under the 1st (leftmost) vertical line<br> The number which should be under the 2nd vertical line<br> :<br> The number which should be under the <var>w</var>-th vertical line<br> </p> <H2>Sample Input</H2> <pre> 5 4 2,4 3,5 1,2 3,4 </pre> <H2>Output for the Sample Input</H2> <pre> 4 1 2 5 3 </pre> <!-- <H2>Hint</H2> <a href="IMAGE1/lots.gif">Try it.</a> -->
5 4 2,4 3,5 1,2 3,4
4 1 2 5 3
5,301