text
stringlengths
7
3.71M
id
stringlengths
12
166
metadata
dict
__index_level_0__
int64
0
658
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. python finetune_trainer.py \ --model_name_or_path=facebook/mbart-large-cc25 \ --data_dir $ENRO_DIR \ --output_dir mbart_cc25_enro --overwrite_output_dir \ --learning_rate=3e-5 \ --warmup_steps 500 \ --fp16 \ --label_smoothing 0.1 \ --adam_eps 1e-06 \ --src_lang en_XX --tgt_lang ro_RO \ --freeze_embeds \ --per_device_train_batch_size=4 --per_device_eval_batch_size=4 \ --max_source_length 128 --max_target_length 128 --val_max_target_length 128 --test_max_target_length 128\ --sortish_sampler \ --num_train_epochs 6 \ --save_steps 25000 --eval_steps 25000 --logging_steps 1000 \ --do_train --do_eval --do_predict \ --eval_strategy steps \ --predict_with_generate --logging_first_step \ --task translation \ "$@"
transformers/examples/legacy/seq2seq/train_mbart_cc25_enro.sh/0
{ "file_path": "transformers/examples/legacy/seq2seq/train_mbart_cc25_enro.sh", "repo_id": "transformers", "token_count": 500 }
490
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # `pip install -e '.[dev]'` when switching between checkouts and running tests. git_repo_path = abspath(join(dirname(dirname(dirname(__file__))), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def pytest_addoption(parser): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(parser) def pytest_terminal_summary(terminalreporter): from transformers.testing_utils import pytest_terminal_summary_main make_reports = terminalreporter.config.getoption("--make-reports") if make_reports: pytest_terminal_summary_main(terminalreporter, id=make_reports)
transformers/examples/pytorch/conftest.py/0
{ "file_path": "transformers/examples/pytorch/conftest.py", "repo_id": "transformers", "token_count": 480 }
491
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Question answering This folder contains several scripts that showcase how to fine-tune a 🤗 Transformers model on a question answering dataset, like SQuAD. ## Trainer-based scripts The [`run_qa.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa.py), [`run_qa_beam_search.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa_beam_search.py) and [`run_seq2seq_qa.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_seq2seq_qa.py) leverage the 🤗 [Trainer](https://huggingface.co/transformers/main_classes/trainer.html) for fine-tuning. ### Fine-tuning BERT on SQuAD1.0 The [`run_qa.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa.py) script allows to fine-tune any model from our [hub](https://huggingface.co/models) (as long as its architecture has a `ForQuestionAnswering` version in the library) on a question-answering dataset (such as SQuAD, or any other QA dataset available in the `datasets` library, or your own csv/jsonlines files) as long as they are structured the same way as SQuAD. You might need to tweak the data processing inside the script if your data is structured differently. **Note:** This script only works with models that have a fast tokenizer (backed by the 🤗 Tokenizers library) as it uses special features of those tokenizers. You can check if your favorite model has a fast tokenizer in [this table](https://huggingface.co/transformers/index.html#supported-frameworks), if it doesn't you can still use the old version of the script which can be found [here](https://github.com/huggingface/transformers/tree/main/examples/legacy/question-answering). Note that if your dataset contains samples with no possible answers (like SQuAD version 2), you need to pass along the flag `--version_2_with_negative`. This example code fine-tunes BERT on the SQuAD1.0 dataset. It runs in 24 min (with BERT-base) or 68 min (with BERT-large) on a single tesla V100 16GB. ```bash python run_qa.py \ --model_name_or_path google-bert/bert-base-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ ``` Training with the previously defined hyper-parameters yields the following results: ```bash f1 = 88.52 exact_match = 81.22 ``` ### Fine-tuning XLNet with beam search on SQuAD The [`run_qa_beam_search.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_qa_beam_search.py) script is only meant to fine-tune XLNet, which is a special encoder-only Transformer model. The example code below fine-tunes XLNet on the SQuAD1.0 and SQuAD2.0 datasets. #### Command for SQuAD1.0: ```bash python run_qa_beam_search.py \ --model_name_or_path xlnet/xlnet-large-cased \ --dataset_name squad \ --do_train \ --do_eval \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./wwm_cased_finetuned_squad/ \ --per_device_eval_batch_size=4 \ --per_device_train_batch_size=4 \ --save_steps 5000 ``` #### Command for SQuAD2.0: ```bash export SQUAD_DIR=/path/to/SQUAD python run_qa_beam_search.py \ --model_name_or_path xlnet/xlnet-large-cased \ --dataset_name squad_v2 \ --do_train \ --do_eval \ --version_2_with_negative \ --learning_rate 3e-5 \ --num_train_epochs 4 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ./wwm_cased_finetuned_squad/ \ --per_device_eval_batch_size=2 \ --per_device_train_batch_size=2 \ --save_steps 5000 ``` ### Fine-tuning T5 on SQuAD2.0 The [`run_seq2seq_qa.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/question-answering/run_seq2seq_qa.py) script is meant for encoder-decoder (also called seq2seq) Transformer models, such as T5 or BART. These models are generative, rather than discriminative. This means that they learn to generate the correct answer, rather than predicting the start and end position of the tokens of the answer. This example code fine-tunes T5 on the SQuAD2.0 dataset. ```bash python run_seq2seq_qa.py \ --model_name_or_path google-t5/t5-small \ --dataset_name squad_v2 \ --context_column context \ --question_column question \ --answer_column answers \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_seq2seq_squad/ ``` ## Accelerate-based scripts Based on the scripts `run_qa_no_trainer.py` and `run_qa_beam_search_no_trainer.py`. Like `run_qa.py` and `run_qa_beam_search.py`, these scripts allow you to fine-tune any of the models supported on a SQuAD or a similar dataset, the main difference is that this script exposes the bare training loop, to allow you to quickly experiment and add any customization you would like. It offers less options than the script with `Trainer` (for instance you can easily change the options for the optimizer or the dataloaders directly in the script), but still run in a distributed setup, on TPU and supports mixed precision by leveraging the [🤗 `Accelerate`](https://github.com/huggingface/accelerate) library. You can use the script normally after installing it: ```bash pip install git+https://github.com/huggingface/accelerate ``` then ```bash python run_qa_no_trainer.py \ --model_name_or_path google-bert/bert-base-uncased \ --dataset_name squad \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ~/tmp/debug_squad ``` You can then use your usual launchers to run in it in a distributed environment, but the easiest way is to run ```bash accelerate config ``` and reply to the questions asked. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash accelerate launch run_qa_no_trainer.py \ --model_name_or_path google-bert/bert-base-uncased \ --dataset_name squad \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir ~/tmp/debug_squad ``` This command is the same and will work for: - a CPU-only setup - a setup with one GPU - a distributed training with several GPUs (single or multi node) - a training on TPUs Note that this library is in alpha release so your feedback is more than welcome if you encounter any problem using it.
transformers/examples/pytorch/question-answering/README.md/0
{ "file_path": "transformers/examples/pytorch/question-answering/README.md", "repo_id": "transformers", "token_count": 2435 }
492
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and """ Pre-Training a 🤗 Wav2Vec2 model on unlabeled audio data """ import argparse import math import os from dataclasses import dataclass from pathlib import Path from typing import Dict, List, Optional, Union import datasets import torch from accelerate import Accelerator from accelerate.logging import get_logger from datasets import DatasetDict, concatenate_datasets, load_dataset from huggingface_hub import HfApi from torch.utils.data.dataloader import DataLoader from tqdm.auto import tqdm import transformers from transformers import ( AdamW, SchedulerType, Wav2Vec2Config, Wav2Vec2FeatureExtractor, Wav2Vec2ForPreTraining, get_scheduler, is_wandb_available, set_seed, ) from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices, _sample_negative_indices from transformers.utils import send_example_telemetry logger = get_logger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_names", nargs="+", type=str, required=True, help="The configuration names of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_split_names", nargs="+", type=str, required=True, help="The names of the training data set splits to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=None, help="The number of processes to use for the preprocessing.", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--preprocessing_only", action="store_true", help="Only run the preprocessing script to be cached for future use", ) parser.add_argument( "--cache_dir", type=str, default=None, help="Where do you want to store the pretrained models downloaded from huggingface.co", ) parser.add_argument( "--validation_split_percentage", type=int, default=1, help="Percentage of training data that should be used for validation if no validation is present in dataset.", ) parser.add_argument( "--logging_steps", type=int, default=500, help="Number of steps between each logging", ) parser.add_argument( "--saving_steps", type=int, default=500, help="Number of steps between each logging", ) parser.add_argument( "--audio_column_name", type=str, default="audio", help="Column in the dataset that contains speech file path. Defaults to 'audio'", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=True, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--train_cache_file_name", type=str, default=None, help="Path to the train cached file name", ) parser.add_argument( "--validation_cache_file_name", type=str, default=None, help="Path to the validation cached file name", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--gradient_checkpointing", action="store_true", help="If True, use gradient checkpointing to save memory at the expense of slower backward pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") parser.add_argument( "--max_gumbel_temperature", type=float, default=2.0, help="Maximum temperature for gumbel softmax.", ) parser.add_argument( "--min_gumbel_temperature", type=float, default=0.5, help="Minimum temperature for gumbel softmax.", ) parser.add_argument( "--gumbel_temperature_decay", type=float, default=0.999995, help="Decay of gumbel temperature during training." ) parser.add_argument( "--max_duration_in_seconds", type=float, default=5.0, help="Filter out audio files that are longer than `max_duration_in_seconds` seconds", ) parser.add_argument( "--min_duration_in_seconds", type=float, default=3.0, help="Filter out audio files that are shorter than `min_duration_in_seconds` seconds", ) parser.add_argument( "--pad_to_multiple_of", type=int, default=None, help=( "If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the" " use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta)." ), ) parser.add_argument( "--adam_beta1", type=float, default=0.9, help="Beta1 for AdamW optimizer", ) parser.add_argument( "--adam_beta2", type=float, default=0.999, help="Beta2 for AdamW optimizer", ) parser.add_argument( "--adam_epsilon", type=float, default=1e-8, help="Epsilon for AdamW optimizer", ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--mask_time_prob", type=float, default=None, help=( "Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked in the" " contrastive task. If omitted, will pull value from model config." ), ) parser.add_argument( "--mask_time_length", type=int, default=None, help=( "Length of each vector mask span to mask along the time axis in the contrastive task." " If omitted, will pull value from model config." ), ) args = parser.parse_args() if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) return args @dataclass class DataCollatorForWav2Vec2Pretraining: """ Data collator that will dynamically pad the inputs received and prepare masked indices for self-supervised pretraining. Args: model (:class:`~transformers.Wav2Vec2ForPreTraining`): The Wav2Vec2 model used for pretraining. The data collator needs to have access to config and ``_get_feat_extract_output_lengths`` function for correct padding. feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`): The processor used for proccessing the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). mask_time_prob (:obj:`float`, `optional`, defaults to :obj:`0.65`): Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked for the contrastive task. Note that overlap between masked sequences may decrease the actual percentage of masked vectors. The default value is taken from the original wav2vec 2.0 article (https://arxiv.org/abs/2006.11477), and results in about 49 percent of each sequence being masked on average. mask_time_length (:obj:`int`, `optional`, defaults to :obj:`10`): Length of each vector mask span to mask along the time axis in the contrastive task. The default value originates from the original wav2vec 2.0 article and corresponds to the ``M`` variable mentioned there. """ model: Wav2Vec2ForPreTraining feature_extractor: Wav2Vec2FeatureExtractor padding: Union[bool, str] = "longest" pad_to_multiple_of: Optional[int] = None mask_time_prob: Optional[float] = 0.65 mask_time_length: Optional[int] = 10 def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format batch = self.feature_extractor.pad( features, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) device = batch["input_values"].device batch_size = batch["input_values"].shape[0] mask_indices_seq_length = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) # make sure masked sequence length is a Python scalar mask_indices_seq_length = int(mask_indices_seq_length) # make sure that no loss is computed on padded inputs if batch.get("attention_mask") is not None: # compute real output lengths according to convolution formula batch["sub_attention_mask"] = self.model._get_feature_vector_attention_mask( mask_indices_seq_length, batch["attention_mask"] ) features_shape = (batch_size, mask_indices_seq_length) # sample randomly masked indices mask_time_indices = _compute_mask_indices( features_shape, self.mask_time_prob, self.mask_time_length, attention_mask=batch.get("sub_attention_mask"), ) # sample negative indices sampled_negative_indices = _sample_negative_indices( features_shape, self.model.config.num_negatives, mask_time_indices=mask_time_indices, ) batch["mask_time_indices"] = torch.tensor(mask_time_indices, dtype=torch.long, device=device) batch["sampled_negative_indices"] = torch.tensor(sampled_negative_indices, dtype=torch.long, device=device) return batch def multiply_grads(params, c): """Multiplies grads by a constant *c*.""" for p in params: if p.grad is not None: if torch.is_tensor(c): c = c.to(p.grad.device) p.grad.data.mul_(c) def get_grad_norm(params, scale=1): """Compute grad norm given a gradient scale.""" total_norm = 0.0 for p in params: if p.grad is not None: param_norm = (p.grad.detach().data / scale).norm(2) total_norm += param_norm.item() ** 2 total_norm = total_norm**0.5 return total_norm def main(): # See all possible arguments in src/transformers/args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_wav2vec2_pretraining_no_trainer", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. accelerator = Accelerator() logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() # set up weights and biases if available if is_wandb_available(): import wandb wandb.init(project=args.output_dir.split("/")[-1]) else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub and not args.preprocessing_only: # Retrieve of infer repo_name repo_name = args.hub_model_id if repo_name is None: repo_name = Path(args.output_dir).absolute().name # Create repo and retrieve repo_id api = HfApi() repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # 1. Download and create train, validation dataset # We load all dataset configuration and datset split pairs passed in # ``args.dataset_config_names`` and ``args.dataset_split_names`` datasets_splits = [] for dataset_config_name, train_split_name in zip(args.dataset_config_names, args.dataset_split_names): # load dataset dataset_split = load_dataset( args.dataset_name, dataset_config_name, split=train_split_name, cache_dir=args.cache_dir, ) datasets_splits.append(dataset_split) # Next, we concatenate all configurations and splits into a single training dataset raw_datasets = DatasetDict() if len(datasets_splits) > 1: raw_datasets["train"] = concatenate_datasets(datasets_splits).shuffle(seed=args.seed) else: raw_datasets["train"] = datasets_splits[0] # Take ``args.validation_split_percentage`` from the training dataset for the validation_split_percentage num_validation_samples = raw_datasets["train"].num_rows * args.validation_split_percentage // 100 if num_validation_samples == 0: raise ValueError( "`args.validation_split_percentage` is less than a single sample " f"for {len(raw_datasets['train'])} training samples. Increase " "`args.num_validation_split_percentage`. " ) raw_datasets["validation"] = raw_datasets["train"].select(range(num_validation_samples)) raw_datasets["train"] = raw_datasets["train"].select(range(num_validation_samples, raw_datasets["train"].num_rows)) # 2. Now we preprocess the datasets including loading the audio, resampling and normalization # Thankfully, `datasets` takes care of automatically loading and resampling the audio, # so that we just need to set the correct target sampling rate and normalize the input # via the `feature_extractor` feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(args.model_name_or_path) # make sure that dataset decodes audio with correct sampling rate raw_datasets = raw_datasets.cast_column( args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) ) # only normalized-inputs-training is supported if not feature_extractor.do_normalize: raise ValueError( "Training is only supported for normalized inputs. Make sure ``feature_extractor.do_normalize == True``" ) # set max & min audio length in number of samples max_length = int(args.max_duration_in_seconds * feature_extractor.sampling_rate) min_length = int(args.min_duration_in_seconds * feature_extractor.sampling_rate) def prepare_dataset(batch): sample = batch[args.audio_column_name] inputs = feature_extractor( sample["array"], sampling_rate=sample["sampling_rate"], max_length=max_length, truncation=True ) batch["input_values"] = inputs.input_values[0] batch["input_length"] = len(inputs.input_values[0]) return batch # load via mapped files via path cache_file_names = None if args.train_cache_file_name is not None: cache_file_names = {"train": args.train_cache_file_name, "validation": args.validation_cache_file_name} # load audio files into numpy arrays with accelerator.main_process_first(): vectorized_datasets = raw_datasets.map( prepare_dataset, num_proc=args.preprocessing_num_workers, remove_columns=raw_datasets["train"].column_names, cache_file_names=cache_file_names, ) if min_length > 0.0: vectorized_datasets = vectorized_datasets.filter( lambda x: x > min_length, num_proc=args.preprocessing_num_workers, input_columns=["input_length"], ) vectorized_datasets = vectorized_datasets.remove_columns("input_length") # for large datasets it is advised to run the preprocessing on a # single machine first with ``args.preprocessing_only`` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step ``args.preprocessing_only`` can then be set to `False` to load the # cached dataset if args.preprocessing_only: return # 3. Load model config = Wav2Vec2Config.from_pretrained(args.model_name_or_path) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) # initialize random model model = Wav2Vec2ForPreTraining(config) # Activate gradient checkpointing if needed if args.gradient_checkpointing: model.gradient_checkpointing_enable() # 4. Define data collator, optimizer and scheduler mask_time_prob = config.mask_time_prob if args.mask_time_prob is None else args.mask_time_prob mask_time_length = config.mask_time_length if args.mask_time_length is None else args.mask_time_length data_collator = DataCollatorForWav2Vec2Pretraining( model=model, feature_extractor=feature_extractor, pad_to_multiple_of=args.pad_to_multiple_of, mask_time_prob=mask_time_prob, mask_time_length=mask_time_length, ) train_dataloader = DataLoader( vectorized_datasets["train"], shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size, ) eval_dataloader = DataLoader( vectorized_datasets["validation"], collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) # Optimizer optimizer = AdamW( list(model.parameters()), lr=args.learning_rate, betas=[args.adam_beta1, args.adam_beta2], eps=args.adam_epsilon, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # Scheduler and math around the number of training steps. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # 5. Train total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(vectorized_datasets['train'])}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") completed_steps = 0 starting_epoch = 0 # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 for epoch in range(starting_epoch, args.num_train_epochs): model.train() for step, batch in enumerate(train_dataloader): # compute num of losses num_losses = batch["mask_time_indices"].sum() sub_attention_mask = batch.pop("sub_attention_mask", None) sub_attention_mask = ( sub_attention_mask if sub_attention_mask is not None else torch.ones_like(batch["mask_time_indices"]) ) percent_masked = num_losses / sub_attention_mask.sum() # forward outputs = model(**batch) # divide loss by gradient accumulation steps since gradients # are accumulated for multiple backward passes in PyTorch loss = outputs.loss / args.gradient_accumulation_steps accelerator.backward(loss) # make sure that `num_losses` is summed for distributed training # and average gradients over losses of all devices if accelerator.state.num_processes > 1: num_losses = accelerator.gather_for_metrics(num_losses).sum() gradient_multiplier = accelerator.state.num_processes / num_losses multiply_grads(model.module.parameters(), gradient_multiplier) else: multiply_grads(model.parameters(), 1 / num_losses) # update step if (step + 1) % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: # compute grad norm for monitoring scale = ( accelerator.scaler._scale.item() if hasattr(accelerator, "scaler") and accelerator.scaler is not None else 1 ) if accelerator.state.num_processes > 1: grad_norm = get_grad_norm(model.module.parameters(), scale) else: grad_norm = get_grad_norm(model.parameters(), scale) # update parameters optimizer.step() optimizer.zero_grad() if not accelerator.optimizer_step_was_skipped: lr_scheduler.step() elif accelerator.is_local_main_process: progress_bar.write( f"Gradients have overflown - skipping update step... Updating gradient scale to {scale}..." ) # update gumbel temperature gumbel_temperature = max( args.max_gumbel_temperature * args.gumbel_temperature_decay**completed_steps, args.min_gumbel_temperature, ) if hasattr(model, "module"): model.module.set_gumbel_temperature(gumbel_temperature) else: model.set_gumbel_temperature(gumbel_temperature) progress_bar.update(1) completed_steps += 1 # 6. Log all results if (step + 1) % (args.gradient_accumulation_steps * args.logging_steps) == 0: loss.detach() outputs.contrastive_loss.detach() outputs.diversity_loss.detach() if accelerator.state.num_processes > 1: loss = accelerator.gather_for_metrics(loss).sum() outputs.contrastive_loss = accelerator.gather_for_metrics(outputs.contrastive_loss).sum() outputs.diversity_loss = accelerator.gather_for_metrics(outputs.diversity_loss).sum() percent_masked = accelerator.gather_for_metrics(percent_masked).sum() train_logs = { "loss": (loss * args.gradient_accumulation_steps) / num_losses, "constrast_loss": outputs.contrastive_loss / num_losses, "div_loss": outputs.diversity_loss / num_losses, "%_mask_idx": percent_masked / accelerator.num_processes, "ppl": outputs.codevector_perplexity, "lr": torch.tensor(optimizer.param_groups[0]["lr"]), "temp": torch.tensor(gumbel_temperature), "grad_norm": torch.tensor(grad_norm), } log_str = "" for k, v in train_logs.items(): log_str += "| {}: {:.3e}".format(k, v.item()) if accelerator.is_local_main_process: progress_bar.write(log_str) if is_wandb_available(): wandb.log(train_logs) # save model every `args.saving_steps` steps if (step + 1) % (args.gradient_accumulation_steps * args.saving_steps) == 0: if (args.push_to_hub and epoch < args.num_train_epochs - 1) or args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if (args.push_to_hub and epoch < args.num_train_epochs - 1) and accelerator.is_main_process: api.upload_folder( commit_message=f"Training in progress epoch {epoch}", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) # if completed steps > `args.max_train_steps` stop if completed_steps >= args.max_train_steps: break # 7. Validate! model.eval() # init logs val_logs = { "val_loss": 0, "val_contrastive_loss": 0, "val_diversity_loss": 0, "val_num_losses": 0, } for step, batch in enumerate(eval_dataloader): with torch.no_grad(): batch.pop("sub_attention_mask", None) outputs = model(**batch) val_logs["val_loss"] += outputs.loss val_logs["val_contrastive_loss"] += outputs.contrastive_loss val_logs["val_diversity_loss"] += outputs.diversity_loss val_logs["val_num_losses"] += batch["mask_time_indices"].sum() # sum over devices in multi-processing if accelerator.num_processes > 1: val_logs = {k: accelerator.gather_for_metrics(v).sum() for k, v in val_logs.items()} val_logs = {k: v / val_logs["val_num_losses"] for k, v in val_logs.items()} log_str = "" for k, v in val_logs.items(): log_str += "| {}: {:.3e}".format(k, v.item()) if accelerator.is_local_main_process: progress_bar.write(log_str) if is_wandb_available(): wandb.log(val_logs) if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: if args.push_to_hub: api.upload_folder( commit_message="End of training", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) if __name__ == "__main__": main()
transformers/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py/0
{ "file_path": "transformers/examples/pytorch/speech-pretraining/run_wav2vec2_pretraining_no_trainer.py", "repo_id": "transformers", "token_count": 13872 }
493
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A simple launcher script for TPU training Inspired by https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py :: >>> python xla_spawn.py --num_cores=NUM_CORES_YOU_HAVE YOUR_TRAINING_SCRIPT.py (--arg1 --arg2 --arg3 and all other arguments of your training script) """ import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def parse_args(): """ Helper function parsing the command line options @retval ArgumentParser """ parser = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores", type=int, default=1, help="Number of TPU cores to use (1 or 8).") # positional parser.add_argument( "training_script", type=str, help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ), ) # rest from the training program parser.add_argument("training_script_args", nargs=REMAINDER) return parser.parse_args() def main(): args = parse_args() # Import training_script as a module. script_fpath = Path(args.training_script) sys.path.append(str(script_fpath.parent.resolve())) mod_name = script_fpath.stem mod = importlib.import_module(mod_name) # Patch sys.argv sys.argv = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores)] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores) if __name__ == "__main__": main()
transformers/examples/pytorch/xla_spawn.py/0
{ "file_path": "transformers/examples/pytorch/xla_spawn.py", "repo_id": "transformers", "token_count": 887 }
494
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert BertExtAbs's checkpoints. The script looks like it is doing something trivial but it is not. The "weights" proposed by the authors are actually the entire model pickled. We need to load the model within the original codebase to be able to only save its `state_dict`. """ import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) SAMPLE_TEXT = "Hello world! cécé herlolip" BertAbsConfig = namedtuple( "BertAbsConfig", [ "temp_dir", "large", "use_bert_emb", "finetune_bert", "encoder", "share_emb", "max_pos", "enc_layers", "enc_hidden_size", "enc_heads", "enc_ff_size", "enc_dropout", "dec_layers", "dec_hidden_size", "dec_heads", "dec_ff_size", "dec_dropout", ], ) def convert_bertabs_checkpoints(path_to_checkpoints, dump_path): """Copy/paste and tweak the pre-trained weights provided by the creators of BertAbs for the internal architecture. """ # Instantiate the authors' model with the pre-trained weights config = BertAbsConfig( temp_dir=".", finetune_bert=False, large=False, share_emb=True, use_bert_emb=False, encoder="bert", max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2048, dec_dropout=0.2, ) checkpoints = torch.load(path_to_checkpoints, lambda storage, loc: storage) original = AbsSummarizer(config, torch.device("cpu"), checkpoints) original.eval() new_model = BertAbsSummarizer(config, torch.device("cpu")) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info("convert the model") new_model.bert.load_state_dict(original.bert.state_dict()) new_model.decoder.load_state_dict(original.decoder.state_dict()) new_model.generator.load_state_dict(original.generator.state_dict()) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info("Make sure that the models' outputs are identical") tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") # prepare the model inputs encoder_input_ids = tokenizer.encode("This is sample éàalj'-.") encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(encoder_input_ids))) encoder_input_ids = torch.tensor(encoder_input_ids).unsqueeze(0) decoder_input_ids = tokenizer.encode("This is sample 3 éàalj'-.") decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(decoder_input_ids))) decoder_input_ids = torch.tensor(decoder_input_ids).unsqueeze(0) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight)) == 0 # forward pass src = encoder_input_ids tgt = decoder_input_ids segs = token_type_ids = None clss = None mask_src = encoder_attention_mask = None mask_tgt = decoder_attention_mask = None mask_cls = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical output_original_model = original(src, tgt, segs, clss, mask_src, mask_tgt, mask_cls)[0] output_original_generator = original.generator(output_original_model) output_converted_model = new_model( encoder_input_ids, decoder_input_ids, token_type_ids, encoder_attention_mask, decoder_attention_mask )[0] output_converted_generator = new_model.generator(output_converted_model) maximum_absolute_difference = torch.max(torch.abs(output_converted_model - output_original_model)).item() print("Maximum absolute difference beween weights: {:.2f}".format(maximum_absolute_difference)) maximum_absolute_difference = torch.max(torch.abs(output_converted_generator - output_original_generator)).item() print("Maximum absolute difference beween weights: {:.2f}".format(maximum_absolute_difference)) are_identical = torch.allclose(output_converted_model, output_original_model, atol=1e-3) if are_identical: logging.info("all weights are equal up to 1e-3") else: raise ValueError("the weights are different. The new model is likely different from the original one.") # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info("saving the model's state dictionary") torch.save( new_model.state_dict(), "./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin" ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--bertabs_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model.", ) args = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
transformers/examples/research_projects/bertabs/convert_bertabs_original_pytorch_checkpoint.py/0
{ "file_path": "transformers/examples/research_projects/bertabs/convert_bertabs_original_pytorch_checkpoint.py", "repo_id": "transformers", "token_count": 2416 }
495
import logging import os import time from argparse import Namespace from pathlib import Path import datasets import torch from accelerate import Accelerator, DistributedType from accelerate.utils import ProjectConfiguration from arguments import TrainingArguments from datasets import load_dataset from huggingface_hub import Repository from torch.optim import AdamW from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from torch.utils.data.datapipes.iter.combinatorics import ShufflerIterDataPipe import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, get_scheduler, set_seed class ConstantLengthDataset(IterableDataset): """ Iterable dataset that returns constant length chunks of tokens from stream of text files. Args: tokenizer (Tokenizer): The processor used for proccessing the data. dataset (dataset.Dataset): Dataset with text files. infinite (bool): If True the iterator is reset after dataset reaches end else stops. seq_length (int): Length of token sequences to return. num_of_sequences (int): Number of token sequences to keep in buffer. chars_per_token (int): Number of characters per token used to estimate number of tokens in text buffer. tokenized (bool): If true we use a pretokenized dataset. """ def __init__( self, tokenizer, dataset, infinite=False, seq_length=1024, num_of_sequences=1024, chars_per_token=3.6, tokenized=False, ): self.tokenizer = tokenizer self.concat_token_id = tokenizer.bos_token_id self.dataset = dataset self.seq_length = seq_length self.epoch = 0 self.infinite = infinite self.current_size = 0 self.tokenized = tokenized if self.tokenized: self.max_buffer_size = seq_length * num_of_sequences self.content_field = "input_ids" else: self.max_buffer_size = seq_length * chars_per_token * num_of_sequences self.content_field = "content" def __iter__(self): iterator = iter(self.dataset) more_examples = True while more_examples: buffer, buffer_len = [], 0 while True: if buffer_len >= self.max_buffer_size: break try: buffer.append(next(iterator)[self.content_field]) buffer_len += len(buffer[-1]) except StopIteration: if self.infinite: iterator = iter(self.dataset) self.epoch += 1 logger.info(f"Dataset epoch: {self.epoch}") else: more_examples = False break if self.tokenized: tokenized_inputs = buffer else: tokenized_inputs = self.tokenizer(buffer, truncation=False)["input_ids"] all_token_ids = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id]) for i in range(0, len(all_token_ids), self.seq_length): input_ids = all_token_ids[i : i + self.seq_length] if len(input_ids) == self.seq_length: self.current_size += 1 yield torch.tensor(input_ids) def shuffle(self, buffer_size=1000): return ShufflerIterDataPipe(self, buffer_size=buffer_size) def setup_logging(args): project_name = args.model_ckpt.split("/")[-1] logger = logging.getLogger(__name__) log_dir = Path(args.save_dir) / "log/" log_dir.mkdir(exist_ok=True) filename = f"debug_{accelerator.process_index}.log" logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, handlers=[logging.FileHandler(log_dir / filename), logging.StreamHandler()], ) if accelerator.is_main_process: # we only want to setup logging once accelerator.init_trackers(project_name, vars(args)) run_name = accelerator.trackers[0].run.name logger.setLevel(logging.INFO) datasets.utils.logging.set_verbosity_info() transformers.utils.logging.set_verbosity_info() else: run_name = "" logger.setLevel(logging.ERROR) datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() return logger, run_name def create_dataloaders(args): ds_kwargs = {"streaming": True} train_data = load_dataset(args.dataset_name_train, split="train", **ds_kwargs) train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed) valid_data = load_dataset(args.dataset_name_valid, split="train", **ds_kwargs) train_dataset = ConstantLengthDataset( tokenizer, train_data, infinite=True, seq_length=args.seq_length, tokenized=args.tokenized ) valid_dataset = ConstantLengthDataset( tokenizer, valid_data, infinite=False, seq_length=args.seq_length, tokenized=args.tokenized ) train_dataset = train_dataset.shuffle(buffer_size=args.shuffle_buffer) train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True) eval_dataloader = DataLoader(valid_dataset, batch_size=args.valid_batch_size) return train_dataloader, eval_dataloader def get_grouped_params(model, args, no_decay=["bias", "ln_1.weight", "ln_2.weight", "ln_f.weight"]): params_with_wd, params_without_wd = [], [] for n, p in model.named_parameters(): if any(nd in n for nd in no_decay): params_without_wd.append(p) else: params_with_wd.append(p) return [ {"params": params_with_wd, "weight_decay": args.weight_decay}, {"params": params_without_wd, "weight_decay": 0.0}, ] def log_metrics(step, metrics): logger.info(f"Step {step}: {metrics}") if accelerator.is_main_process: accelerator.log(metrics, step) def compute_tflops(elapsed_time, accelerator, args): # TFLOPs formula (from Equation 3 in Section 5.1 of https://arxiv.org/pdf/2104.04473.pdf). config_model = accelerator.unwrap_model(model).config checkpoint_factor = 4 if args.gradient_checkpointing else 3 batch_size = args.train_batch_size * accelerator.state.num_processes * args.gradient_accumulation_steps factor = 24 * checkpoint_factor * batch_size * args.seq_length * config_model.n_layer * (config_model.n_embd**2) flops_per_iteration = factor * ( 1.0 + (args.seq_length / (6.0 * config_model.n_embd)) + (tokenizer.vocab_size / (16.0 * config_model.n_layer * config_model.n_embd)) ) tflops = flops_per_iteration / (elapsed_time * accelerator.state.num_processes * (10**12)) return tflops def evaluate(args): model.eval() losses = [] for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(batch, labels=batch) loss = outputs.loss.repeat(args.valid_batch_size) losses.append(accelerator.gather(loss)) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break losses = torch.cat(losses) loss = losses[: eval_dataloader.dataset.current_size].mean() try: perplexity = torch.exp(loss) except OverflowError: perplexity = float("inf") return loss.item(), perplexity.item() # Settings parser = HfArgumentParser(TrainingArguments) args = parser.parse_args() # Accelerator config = ProjectConfiguration(project_dir=args.save_dir, logging_dir="log") accelerator = Accelerator(log_with=["wandb", "tensorboard"], project_config=config) acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()} args = Namespace(**vars(args), **acc_state) samples_per_step = accelerator.state.num_processes * args.train_batch_size set_seed(args.seed) # Clone model repository if accelerator.is_main_process: hf_repo = Repository(args.save_dir, clone_from=args.model_ckpt) # Logging logger, run_name = setup_logging(args) logger.info(accelerator.state) # Checkout new branch on repo if accelerator.is_main_process: hf_repo.git_checkout(run_name, create_branch_ok=True) # Load model and tokenizer model = AutoModelForCausalLM.from_pretrained(args.save_dir) if args.gradient_checkpointing: model.gradient_checkpointing_enable() tokenizer = AutoTokenizer.from_pretrained(args.save_dir) # Load dataset and dataloader train_dataloader, eval_dataloader = create_dataloaders(args) # Prepare the optimizer and learning rate scheduler optimizer = AdamW(get_grouped_params(model, args), lr=args.learning_rate) lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) accelerator.register_for_checkpointing(lr_scheduler) def get_lr(): return optimizer.param_groups[0]["lr"] # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader ) # load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"Resumed from checkpoint: {args.resume_from_checkpoint}") accelerator.load_state(args.resume_from_checkpoint) path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(args.save_dir) if f.is_dir() and "step" in str(f)] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract the step of the checkpoint to continue from there training_difference = os.path.splitext(path)[0] resume_step = int(training_difference.replace("step_", "")) # Train model model.train() completed_steps = 0 t_start = time.time() loss_tracking = 0 for step, batch in enumerate(train_dataloader, start=1): if args.resume_from_checkpoint and step < resume_step: continue # we need to skip steps until we reach the resumed step loss = model(batch, labels=batch, use_cache=False).loss avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() loss_tracking += avg_loss.item() / args.gradient_accumulation_steps log_metrics(step, {"samples": step * samples_per_step, "loss_per_step/train": loss.item()}) loss = loss / args.gradient_accumulation_steps if step % args.gradient_accumulation_steps != 0: # Prevent backward from doing gradient all_reduce in every step if accelerator.distributed_type == DistributedType.MULTI_GPU: with model.no_sync(): accelerator.backward(loss) else: accelerator.backward(loss) else: lr = get_lr() accelerator.backward(loss) accelerator.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() elapsed_time = time.time() - t_start tflops = compute_tflops(elapsed_time, accelerator, args) log_metrics( step, { "steps": completed_steps, "loss/train": loss_tracking, "lr": lr, "tflops": tflops, "time_per_iteration": elapsed_time, }, ) t_start = time.time() loss_tracking = 0 completed_steps += 1 if step % args.save_checkpoint_steps == 0: logger.info("Evaluating and saving model checkpoint") eval_loss, perplexity = evaluate(args) log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity}) accelerator.wait_for_everyone() save_dir = os.path.join(args.save_dir, f"step_{step}") accelerator.save_state(save_dir) if accelerator.is_main_process: hf_repo.push_to_hub(commit_message=f"step {step}") model.train() if completed_steps >= args.max_train_steps: break # Evaluate and save the last checkpoint logger.info("Evaluating and saving model after training") eval_loss, perplexity = evaluate(args) log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity}) accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained(args.save_dir, save_function=accelerator.save) save_dir = os.path.join(args.save_dir, f"step_{step}") accelerator.save_state(save_dir) if accelerator.is_main_process: hf_repo.push_to_hub(commit_message="final model")
transformers/examples/research_projects/codeparrot/scripts/codeparrot_training.py/0
{ "file_path": "transformers/examples/research_projects/codeparrot/scripts/codeparrot_training.py", "repo_id": "transformers", "token_count": 5418 }
496
{ "activation": "gelu", "attention_dropout": 0.1, "dim": 768, "dropout": 0.1, "hidden_dim": 3072, "initializer_range": 0.02, "max_position_embeddings": 512, "n_heads": 12, "n_layers": 6, "sinusoidal_pos_embds": true, "tie_weights_": true, "vocab_size": 28996 }
transformers/examples/research_projects/distillation/training_configs/distilbert-base-cased.json/0
{ "file_path": "transformers/examples/research_projects/distillation/training_configs/distilbert-base-cased.json", "repo_id": "transformers", "token_count": 134 }
497
# coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp from configuration_hybrid_clip import HybridCLIPConfig from flax.core.frozen_dict import FrozenDict from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel from transformers.modeling_flax_utils import FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPOutput from transformers.utils import logging logger = logging.get_logger(__name__) class FlaxHybridCLIPModule(nn.Module): config: HybridCLIPConfig dtype: jnp.dtype = jnp.float32 def setup(self): text_config = self.config.text_config vision_config = self.config.vision_config self.projection_dim = self.config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class vision_module = FLAX_MODEL_MAPPING.get(self.config.vision_config.__class__, FlaxCLIPVisionModel).module_class self.text_model = text_module(text_config, dtype=self.dtype) self.vision_model = vision_module(vision_config, dtype=self.dtype) self.visual_projection = nn.Dense( self.projection_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.02), use_bias=False, ) self.text_projection = nn.Dense( self.projection_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(0.02), use_bias=False, ) self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, []) def __call__( self, input_ids=None, pixel_values=None, attention_mask=None, position_ids=None, token_type_ids=None, deterministic: bool = True, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = return_dict if return_dict is not None else self.config.return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True) text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True) # cosine similarity as logits logit_scale = jnp.exp(self.logit_scale) logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale logits_per_image = logits_per_text.T if not return_dict: return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return FlaxCLIPOutput( logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) class FlaxHybridCLIP(FlaxPreTrainedModel): config_class = HybridCLIPConfig module_class = FlaxHybridCLIPModule def __init__( self, config: HybridCLIPConfig, input_shape: Optional[Tuple] = None, seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs, ): if input_shape is None: input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3)) module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensor input_ids = jnp.zeros(input_shape[0], dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0]) token_type_ids = jnp.ones_like(input_ids) attention_mask = jnp.ones_like(input_ids) pixel_values = jax.random.normal(rng, input_shape[1]) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} return self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids)["params"] def __call__( self, input_ids, pixel_values, attention_mask=None, position_ids=None, token_type_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(pixel_values, dtype=jnp.float32), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), jnp.array(token_type_ids, dtype="i4"), not train, output_attentions, output_hidden_states, return_dict, rngs=rngs, ) def get_text_features( self, input_ids, attention_mask=None, position_ids=None, token_type_ids=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False, ): r""" Args: input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ Returns: text_features (:obj:`jnp.ndarray` of shape :obj:`(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of text model. """ if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if token_type_ids is None: token_type_ids = jnp.zeros_like(input_ids) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _get_features(module, input_ids, attention_mask, position_ids, token_type_ids, deterministic): text_outputs = module.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, token_type_ids=token_type_ids, deterministic=deterministic, ) pooled_output = text_outputs[1] text_features = module.text_projection(pooled_output) return text_features return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(position_ids, dtype="i4"), jnp.array(token_type_ids, dtype="i4"), not train, method=_get_features, rngs=rngs, ) def get_image_features( self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False ): r""" Args: pixel_values (:obj:`numpy.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using :class:`~transformers.ImageFeatureExtractionMixin`. See :meth:`transformers.ImageFeatureExtractionMixin.__call__` for details. Returns: image_features (:obj:`jnp.ndarray` of shape :obj:`(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of vision model. """ # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _get_features(module, pixel_values, deterministic): vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic) pooled_output = vision_outputs[1] # pooled_output image_features = module.visual_projection(pooled_output) return image_features return self.module.apply( {"params": params or self.params}, jnp.array(pixel_values, dtype=jnp.float32), not train, method=_get_features, rngs=rngs, ) @classmethod def from_text_vision_pretrained( cls, text_model_name_or_path: str = None, vision_model_name_or_path: str = None, *model_args, **kwargs, ) -> FlaxPreTrainedModel: """ Params: text_model_name_or_path (:obj: `str`, `optional`): Information necessary to initiate the text model. Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. - A path to a `directory` containing model weights saved using :func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided conversion scripts and loading the Flax model afterwards. vision_model_name_or_path (:obj: `str`, `optional`, defaults to `None`): Information necessary to initiate the vision model. Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. - A path to a `directory` containing model weights saved using :func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``. - A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided conversion scripts and loading the Flax model afterwards. model_args (remaining positional arguments, `optional`): All remaning positional arguments will be passed to the underlying model's ``__init__`` method. kwargs (remaining dictionary of keyword arguments, `optional`): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., :obj:`output_attentions=True`). - To update the text configuration, use the prefix `text_` for each configuration parameter. - To update the vision configuration, use the prefix `vision_` for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a :obj:`config` is provided or automatically loaded. Example:: >>> from transformers import FlaxHybridCLIP >>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized. >>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights >>> model = FlaxHybridCLIP.from_text_vision_pretrained('google-bert/bert-base-uncased', 'openai/clip-vit-base-patch32') >>> # saving model after fine-tuning >>> model.save_pretrained("./bert-clip") >>> # load fine-tuned model >>> model = FlaxHybridCLIP.from_pretrained("./bert-clip") """ kwargs_text = { argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_") } kwargs_vision = { argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_") } # remove text, vision kwargs from kwargs for key in kwargs_text.keys(): del kwargs["text_" + key] for key in kwargs_vision.keys(): del kwargs["vision_" + key] # Load and initialize the text and vision model text_model = kwargs_text.pop("model", None) if text_model is None: assert ( text_model_name_or_path is not None ), "If `model` is not defined as an argument, a `text_model_name_or_path` has to be defined" from transformers import FlaxAutoModel if "config" not in kwargs_text: from transformers import AutoConfig text_config = AutoConfig.from_pretrained(text_model_name_or_path) kwargs_text["config"] = text_config text_model = FlaxAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text) vision_model = kwargs_vision.pop("model", None) if vision_model is None: assert ( vision_model_name_or_path is not None ), "If `model` is not defined as an argument, a `vision_model_name_or_path` has to be defined" from transformers import FlaxAutoModel if "config" not in kwargs_vision: from transformers import AutoConfig vision_config = AutoConfig.from_pretrained(vision_model_name_or_path) kwargs_vision["config"] = vision_config vision_model = FlaxAutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision) # instantiate config with corresponding kwargs dtype = kwargs.pop("dtype", jnp.float32) config = HybridCLIPConfig.from_text_vision_configs(text_model.config, vision_model.config, **kwargs) # init model model = cls(config, *model_args, dtype=dtype, **kwargs) if vision_config.model_type == "clip": model.params["vision_model"]["vision_model"] = vision_model.params["vision_model"] model.params["visual_projection"]["kernel"] = vision_model.params["visual_projection"]["kernel"] else: model.params["vision_model"] = vision_model.params model.params["text_model"] = text_model.params return model
transformers/examples/research_projects/jax-projects/hybrid_clip/modeling_hybrid_clip.py/0
{ "file_path": "transformers/examples/research_projects/jax-projects/hybrid_clip/modeling_hybrid_clip.py", "repo_id": "transformers", "token_count": 7791 }
498
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def padding_tensor(sequences, padding_value, padding_side, sequence_length): if isinstance(padding_value, tuple): out_tensor = np.full((len(sequences), sequence_length, 2), padding_value) else: out_tensor = np.full((len(sequences), sequence_length), padding_value) for i, tensor in enumerate(sequences): if padding_side == "right": if isinstance(padding_value, tuple): out_tensor[i, : len(tensor[:sequence_length]), :2] = tensor[:sequence_length] else: out_tensor[i, : len(tensor[:sequence_length])] = tensor[:sequence_length] else: if isinstance(padding_value, tuple): out_tensor[i, len(tensor[:sequence_length]) - 1 :, :2] = tensor[:sequence_length] else: out_tensor[i, len(tensor[:sequence_length]) - 1 :] = tensor[:sequence_length] return out_tensor.tolist() def is_punctuation(char): cp = ord(char) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True cat = unicodedata.category(char) if cat.startswith("P"): return True return False @dataclass class DataCollatorForLukeTokenClassification(DataCollatorMixin): """ Data collator that will dynamically pad the inputs received, as well as the labels. Args: tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): The tokenizer used for encoding the data. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). label_pad_token_id (`int`, *optional*, defaults to -100): The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions). return_tensors (`str`): The type of Tensor to return. Allowable values are "np", "pt" and "tf". """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None label_pad_token_id: int = -100 return_tensors: str = "pt" def torch_call(self, features): import torch label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None batch = self.tokenizer.pad( features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, # Conversion to tensors will fail if we have labels as they are not of the same length yet. return_tensors="pt" if labels is None else None, ) if labels is None: return batch sequence_length = torch.tensor(batch["entity_ids"]).shape[1] padding_side = self.tokenizer.padding_side if padding_side == "right": batch[label_name] = [ list(label) + [self.label_pad_token_id] * (sequence_length - len(label)) for label in labels ] else: batch[label_name] = [ [self.label_pad_token_id] * (sequence_length - len(label)) + list(label) for label in labels ] ner_tags = [feature["ner_tags"] for feature in features] batch["ner_tags"] = padding_tensor(ner_tags, -1, padding_side, sequence_length) original_entity_spans = [feature["original_entity_spans"] for feature in features] batch["original_entity_spans"] = padding_tensor(original_entity_spans, (-1, -1), padding_side, sequence_length) batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()} return batch
transformers/examples/research_projects/luke/luke_utils.py/0
{ "file_path": "transformers/examples/research_projects/luke/luke_utils.py", "repo_id": "transformers", "token_count": 2049 }
499
# coding=utf-8 # Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset POOLING_BREAKDOWN = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class ImageEncoder(nn.Module): def __init__(self, args): super().__init__() model = torchvision.models.resnet152(pretrained=True) modules = list(model.children())[:-2] self.model = nn.Sequential(*modules) self.pool = nn.AdaptiveAvgPool2d(POOLING_BREAKDOWN[args.num_image_embeds]) def forward(self, x): # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 out = self.pool(self.model(x)) out = torch.flatten(out, start_dim=2) out = out.transpose(1, 2).contiguous() return out # BxNx2048 class JsonlDataset(Dataset): def __init__(self, data_path, tokenizer, transforms, labels, max_seq_length): self.data = [json.loads(l) for l in open(data_path)] self.data_dir = os.path.dirname(data_path) self.tokenizer = tokenizer self.labels = labels self.n_classes = len(labels) self.max_seq_length = max_seq_length self.transforms = transforms def __len__(self): return len(self.data) def __getitem__(self, index): sentence = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"], add_special_tokens=True)) start_token, sentence, end_token = sentence[0], sentence[1:-1], sentence[-1] sentence = sentence[: self.max_seq_length] label = torch.zeros(self.n_classes) label[[self.labels.index(tgt) for tgt in self.data[index]["label"]]] = 1 image = Image.open(os.path.join(self.data_dir, self.data[index]["img"])).convert("RGB") image = self.transforms(image) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def get_label_frequencies(self): label_freqs = Counter() for row in self.data: label_freqs.update(row["label"]) return label_freqs def collate_fn(batch): lens = [len(row["sentence"]) for row in batch] bsz, max_seq_len = len(batch), max(lens) mask_tensor = torch.zeros(bsz, max_seq_len, dtype=torch.long) text_tensor = torch.zeros(bsz, max_seq_len, dtype=torch.long) for i_batch, (input_row, length) in enumerate(zip(batch, lens)): text_tensor[i_batch, :length] = input_row["sentence"] mask_tensor[i_batch, :length] = 1 img_tensor = torch.stack([row["image"] for row in batch]) tgt_tensor = torch.stack([row["label"] for row in batch]) img_start_token = torch.stack([row["image_start_token"] for row in batch]) img_end_token = torch.stack([row["image_end_token"] for row in batch]) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def get_mmimdb_labels(): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def get_image_transforms(): return transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017], std=[0.12221994, 0.12145835, 0.14380469], ), ] )
transformers/examples/research_projects/mm-imdb/utils_mmimdb.py/0
{ "file_path": "transformers/examples/research_projects/mm-imdb/utils_mmimdb.py", "repo_id": "transformers", "token_count": 2030 }
500
""" Code to remove duplicate initializers to reduce ONNX model size. """ import os import numpy import onnx def _is_equal_tensor_proto(a, b): name_a = a.name name_b = b.name a.name = "" b.name = "" res = a == b a.name = name_a b.name = name_b return res def _node_replace_input_with(node_proto, name, new_name): for i, input_name in enumerate(node_proto.input): if input_name == name: node_proto.input.insert(i, new_name) node_proto.input.pop(i + 1) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g, name, new_name) _graph_replace_input_with(node_proto.attribute[1].g, name, new_name) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g, name, new_name) def _graph_replace_input_with(graph_proto, name, new_name): for n in graph_proto.node: _node_replace_input_with(n, name, new_name) def _remove_dup_initializers_from_model(model, model_without_ext, ind_to_replace): inits_with_data = list(model.graph.initializer) inits = list(model_without_ext.graph.initializer) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i name_i = inits[i].name name_ref = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i]) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph, name_i, name_ref) def remove_dup_initializers(onnx_file_path): """ Removes duplicate initializers from the model to reduce its size. Writes a new file in the same directory as onnx_file_path and returns the path to that file. """ model_file_folder = os.path.dirname(onnx_file_path) model_file_name = os.path.basename(onnx_file_path) model = onnx.load(os.path.join(model_file_folder, model_file_name)) inits = list(model.graph.initializer) dup_set = set() dup_map = {} ind_to_replace = [] total_reduced_size = 0 for i in range(len(inits)): if i in dup_set: continue for j in range(i + 1, len(inits)): if j in dup_set: continue if _is_equal_tensor_proto(inits[i], inits[j]): dup_set.add(i) dup_set.add(j) dtype = inits[j].data_type mem_size = numpy.prod(inits[j].dims) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: ", dtype) total_reduced_size += mem_size name_i = inits[i].name name_j = inits[j].name if name_i in dup_map: dup_map[name_i].append(name_j) else: dup_map[name_i] = [name_j] ind_to_replace.append((j, i)) print("total reduced size: ", total_reduced_size / 1024 / 1024 / 1024, "GB") ind_to_replace = sorted(ind_to_replace) _remove_dup_initializers_from_model(model, model, ind_to_replace) optimized_model_file_name = "optimized_" + model_file_name new_model = os.path.join(model_file_folder, optimized_model_file_name) onnx.save(model, new_model) return new_model
transformers/examples/research_projects/onnx/summarization/bart_onnx/reduce_onnx_size.py/0
{ "file_path": "transformers/examples/research_projects/onnx/summarization/bart_onnx/reduce_onnx_size.py", "repo_id": "transformers", "token_count": 1732 }
501
# coding=utf-8 # Copyright 2021 NVIDIA Corporation. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. FROM nvcr.io/nvidia/pytorch:22.02-py3 LABEL maintainer="Hugging Face" LABEL repository="transformers" RUN apt-get update RUN apt-get install sudo RUN python3 -m pip install --no-cache-dir --upgrade pip RUN python3 -m pip install --no-cache-dir --ignore-installed pycuda RUN python3 -m pip install --no-cache-dir \ pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com RUN python3 -m pip install --no-cache-dir onnxruntime-gpu==1.11 WORKDIR /workspace COPY . transformers/ RUN cd transformers/ && \ python3 -m pip install --no-cache-dir . RUN python3 -m pip install --no-cache-dir datasets \ accelerate
transformers/examples/research_projects/quantization-qdqbert/Dockerfile/0
{ "file_path": "transformers/examples/research_projects/quantization-qdqbert/Dockerfile", "repo_id": "transformers", "token_count": 392 }
502
""" A script creating a RAG checkpoint from a generator and a question encoder checkpoints. """ import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def consolidate( model_type, generator_name_or_path: str, question_encoder_name_or_path: str, dest_dir: Path, config_name_or_path: str = None, generator_tokenizer_name_or_path: str = None, question_encoder_tokenizer_name_or_path: str = None, ): if config_name_or_path is None: config_name_or_path = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: generator_tokenizer_name_or_path = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: question_encoder_tokenizer_name_or_path = question_encoder_name_or_path model_class = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. rag_config = RagConfig.from_pretrained(config_name_or_path) gen_config = AutoConfig.from_pretrained(generator_name_or_path) question_encoder_config = AutoConfig.from_pretrained(question_encoder_name_or_path) rag_config.generator = gen_config rag_config.question_encoder = question_encoder_config rag_model = model_class.from_pretrained_question_encoder_generator( question_encoder_name_or_path, generator_name_or_path, config=rag_config ) rag_model.save_pretrained(dest_dir) # Sanity check. model_class.from_pretrained(dest_dir) # Save tokenizers. gen_tokenizer = AutoTokenizer.from_pretrained(generator_tokenizer_name_or_path) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/") question_encoder_tokenizer = AutoTokenizer.from_pretrained(question_encoder_tokenizer_name_or_path) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) args = parser.parse_args() dest_dir = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
transformers/examples/research_projects/rag/consolidate_rag_checkpoint.py/0
{ "file_path": "transformers/examples/research_projects/rag/consolidate_rag_checkpoint.py", "repo_id": "transformers", "token_count": 1425 }
503
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition""" import functools import json import logging import os import re import sys import warnings from dataclasses import dataclass, field from typing import Dict, List, Optional, Union import bitsandbytes as bnb import datasets import numpy as np import torch from datasets import DatasetDict, load_dataset, load_metric import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForCTC, AutoProcessor, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, Wav2Vec2Processor, set_seed, ) from transformers.trainer_pt_utils import get_parameter_names from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.16.0.dev0") require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") logger = logging.getLogger(__name__) def list_field(default=None, metadata=None): return field(default_factory=lambda: default, metadata=metadata) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) tokenizer_name_or_path: Optional[str] = field( default=None, metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) freeze_feature_encoder: bool = field( default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) attention_dropout: float = field( default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."} ) activation_dropout: float = field( default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."}) hidden_dropout: float = field( default=0.0, metadata={ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." }, ) final_dropout: float = field( default=0.0, metadata={"help": "The dropout probability for the final projection layer."}, ) mask_time_prob: float = field( default=0.05, metadata={ "help": ( "Probability of each feature vector along the time axis to be chosen as the start of the vector " "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature " "vectors will be masked along the time axis." ) }, ) mask_time_length: int = field( default=10, metadata={"help": "Length of vector span to mask along the time axis."}, ) mask_feature_prob: float = field( default=0.0, metadata={ "help": ( "Probability of each feature vector along the feature axis to be chosen as the start of the vectorspan" " to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature" " bins will be masked along the time axis." ) }, ) mask_feature_length: int = field( default=10, metadata={"help": "Length of vector span to mask along the feature axis."}, ) layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."}) ctc_loss_reduction: Optional[str] = field( default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."} ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: str = field( metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) dataset_config_name: str = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_split_name: str = field( default="train+validation", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) eval_split_name: str = field( default="test", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) audio_column_name: str = field( default="audio", metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, ) text_column_name: str = field( default="text", metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) chars_to_ignore: Optional[List[str]] = list_field( default=None, metadata={"help": "A list of characters to remove from the transcripts."}, ) eval_metrics: List[str] = list_field( default=["wer"], metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"}, ) max_duration_in_seconds: float = field( default=20.0, metadata={ "help": ( "Filter audio files that are longer than `max_duration_in_seconds` seconds to" " 'max_duration_in_seconds`" ) }, ) min_duration_in_seconds: float = field( default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} ) preprocessing_only: bool = field( default=False, metadata={ "help": ( "Whether to only do data preprocessing and skip training. This is especially useful when data" " preprocessing errors out in distributed training due to timeout. In this case, one should run the" " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets" " can consequently be loaded in distributed training" ) }, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "If :obj:`True`, will use the token generated when running" ":obj:`huggingface-cli login` as HTTP bearer authorization for remote files." ) }, ) unk_token: str = field( default="[UNK]", metadata={"help": "The unk token for the tokenizer"}, ) pad_token: str = field( default="[PAD]", metadata={"help": "The padding token for the tokenizer"}, ) word_delimiter_token: str = field( default="|", metadata={"help": "The word delimiter token for the tokenizer"}, ) phoneme_language: Optional[str] = field( default=None, metadata={ "help": ( "The target language that should be used be" " passed to the tokenizer for tokenization. Note that" " this is only relevant if the model classifies the" " input audio to a sequence of phoneme sequences." ) }, ) @dataclass class DataCollatorCTCWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor (:class:`~transformers.AutoProcessor`) The processor used for proccessing the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). max_length_labels (:obj:`int`, `optional`): Maximum length of the ``labels`` returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ processor: AutoProcessor padding: Union[bool, str] = "longest" pad_to_multiple_of: Optional[int] = None pad_to_multiple_of_labels: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lengths and need # different padding methods input_features = [{"input_values": feature["input_values"]} for feature in features] label_features = [{"input_ids": feature["labels"]} for feature in features] batch = self.processor.pad( input_features, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) labels_batch = self.processor.pad( labels=label_features, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of_labels, return_tensors="pt", ) # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) batch["labels"] = labels return batch def create_vocabulary_from_data( datasets: DatasetDict, word_delimiter_token: Optional[str] = None, unk_token: Optional[str] = None, pad_token: Optional[str] = None, ): # Given training and test labels create vocabulary def extract_all_chars(batch): all_text = " ".join(batch["target_text"]) vocab = list(set(all_text)) return {"vocab": [vocab], "all_text": [all_text]} vocabs = datasets.map( extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=datasets["train"].column_names, ) # take union of all unique characters in each dataset vocab_set = functools.reduce( lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values() ) vocab_dict = {v: k for k, v in enumerate(sorted(vocab_set))} # replace white space with delimiter token if word_delimiter_token is not None: vocab_dict[word_delimiter_token] = vocab_dict[" "] del vocab_dict[" "] # add unk and pad token if unk_token is not None: vocab_dict[unk_token] = len(vocab_dict) if pad_token is not None: vocab_dict[pad_token] = len(vocab_dict) return vocab_dict def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed before initializing model. set_seed(training_args.seed) # 1. First, let's load the dataset raw_datasets = DatasetDict() if training_args.do_train: raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, token=data_args.use_auth_token, ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'." " Make sure to set `--audio_column_name` to the correct audio column - one of" f" {', '.join(raw_datasets['train'].column_names)}." ) if data_args.text_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--text_column_name` to the correct text column - one of " f"{', '.join(raw_datasets['train'].column_names)}." ) if data_args.max_train_samples is not None: raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) if training_args.do_eval: raw_datasets["eval"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, token=data_args.use_auth_token, ) if data_args.max_eval_samples is not None: raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) # 2. We remove some special characters from the datasets # that make training complicated and do not help in transcribing the speech # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic # that could be easily picked up by the model chars_to_ignore_regex = ( f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None ) text_column_name = data_args.text_column_name def remove_special_characters(batch): if chars_to_ignore_regex is not None: batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " " else: batch["target_text"] = batch[text_column_name].lower() + " " return batch with training_args.main_process_first(desc="dataset map special characters removal"): raw_datasets = raw_datasets.map( remove_special_characters, remove_columns=[text_column_name], desc="remove special characters from datasets", ) # save special tokens for tokenizer word_delimiter_token = data_args.word_delimiter_token unk_token = data_args.unk_token pad_token = data_args.pad_token # 3. Next, let's load the config as we might need it to create # the tokenizer # load config config = AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.use_auth_token ) # 4. Next, if no tokenizer file is defined, # we create the vocabulary of the model by extracting all unique characters from # the training and evaluation datasets # We need to make sure that only first rank saves vocabulary # make sure all processes wait until vocab is created tokenizer_name_or_path = model_args.tokenizer_name_or_path tokenizer_kwargs = {} if tokenizer_name_or_path is None: # save vocab in training output dir tokenizer_name_or_path = training_args.output_dir vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json") with training_args.main_process_first(): if training_args.overwrite_output_dir and os.path.isfile(vocab_file): os.remove(vocab_file) with training_args.main_process_first(desc="dataset map vocabulary creation"): if not os.path.isfile(vocab_file): os.makedirs(tokenizer_name_or_path, exist_ok=True) vocab_dict = create_vocabulary_from_data( raw_datasets, word_delimiter_token=word_delimiter_token, unk_token=unk_token, pad_token=pad_token, ) # save vocab dict to be loaded into tokenizer with open(vocab_file, "w") as file: json.dump(vocab_dict, file) # if tokenizer has just been created # it is defined by `tokenizer_class` if present in config else by `model_type` tokenizer_kwargs = { "config": config if config.tokenizer_class is not None else None, "tokenizer_type": config.model_type if config.tokenizer_class is None else None, "unk_token": unk_token, "pad_token": pad_token, "word_delimiter_token": word_delimiter_token, } # 5. Now we can instantiate the feature extractor, tokenizer and model # Note for distributed training, the .from_pretrained methods guarantee that only # one local process can concurrently download model & vocab. # load feature_extractor and tokenizer tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, token=data_args.use_auth_token, **tokenizer_kwargs, ) feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, token=data_args.use_auth_token ) # adapt config config.update( { "feat_proj_dropout": model_args.feat_proj_dropout, "attention_dropout": model_args.attention_dropout, "hidden_dropout": model_args.hidden_dropout, "final_dropout": model_args.final_dropout, "mask_time_prob": model_args.mask_time_prob, "mask_time_length": model_args.mask_time_length, "mask_feature_prob": model_args.mask_feature_prob, "mask_feature_length": model_args.mask_feature_length, "gradient_checkpointing": training_args.gradient_checkpointing, "layerdrop": model_args.layerdrop, "ctc_loss_reduction": model_args.ctc_loss_reduction, "pad_token_id": tokenizer.pad_token_id, "vocab_size": len(tokenizer), "activation_dropout": model_args.activation_dropout, } ) # create model model = AutoModelForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, config=config, token=data_args.use_auth_token, ) # freeze encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() # 6. Now we preprocess the datasets including loading the audio, resampling and normalization # Thankfully, `datasets` takes care of automatically loading and resampling the audio, # so that we just need to set the correct target sampling rate and normalize the input # via the `feature_extractor` # make sure that dataset decodes audio with correct sampling rate dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate if dataset_sampling_rate != feature_extractor.sampling_rate: raw_datasets = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) ) # derive max & min input length for sample rate & max duration max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate audio_column_name = data_args.audio_column_name num_workers = data_args.preprocessing_num_workers # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification phoneme_language = data_args.phoneme_language # Preprocessing the datasets. # We need to read the audio files as arrays and tokenize the targets. def prepare_dataset(batch): # load audio sample = batch[audio_column_name] inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) batch["input_values"] = inputs.input_values[0] batch["input_length"] = len(batch["input_values"]) # encode targets additional_kwargs = {} if phoneme_language is not None: additional_kwargs["phonemizer_lang"] = phoneme_language batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids return batch with training_args.main_process_first(desc="dataset map preprocessing"): vectorized_datasets = raw_datasets.map( prepare_dataset, remove_columns=next(iter(raw_datasets.values())).column_names, num_proc=num_workers, desc="preprocess datasets", ) def is_audio_in_length_range(length): return length > min_input_length and length < max_input_length # filter data that is shorter than min_input_length vectorized_datasets = vectorized_datasets.filter( is_audio_in_length_range, num_proc=num_workers, input_columns=["input_length"], ) # 7. Next, we can prepare the training. # Let's use word error rate (WER) as our evaluation metric, # instantiate a data collator and the trainer # Define evaluation metrics during training, *i.e.* word error rate, character error rate eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics} # for large datasets it is advised to run the preprocessing on a # single machine first with ``args.preprocessing_only`` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step ``args.preprocessing_only`` can then be set to `False` to load the # cached dataset if data_args.preprocessing_only: logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}") return def compute_metrics(pred): pred_logits = pred.predictions pred_ids = np.argmax(pred_logits, axis=-1) pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id pred_str = tokenizer.batch_decode(pred_ids) # we do not want to group tokens when computing the metrics label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False) metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()} return metrics # Now save everything to be able to create a single processor later if is_main_process(training_args.local_rank): # save feature extractor, tokenizer and config feature_extractor.save_pretrained(training_args.output_dir) tokenizer.save_pretrained(training_args.output_dir) config.save_pretrained(training_args.output_dir) try: processor = AutoProcessor.from_pretrained(training_args.output_dir) except (OSError, KeyError): warnings.warn( "Loading a processor from a feature extractor config that does not" " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following " " attribute to your `preprocessor_config.json` file to suppress this warning: " " `'processor_class': 'Wav2Vec2Processor'`", FutureWarning, ) processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir) # Instantiate custom data collator data_collator = DataCollatorCTCWithPadding(processor=processor) decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm]) decay_parameters = [name for name in decay_parameters if "bias" not in name] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if n in decay_parameters], "weight_decay": training_args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if n not in decay_parameters], "weight_decay": 0.0, }, ] optimizer = bnb.optim.Adam8bit( params=optimizer_grouped_parameters, lr=training_args.learning_rate, betas=(training_args.adam_beta1, training_args.adam_beta2), eps=training_args.adam_epsilon, ) optimizers = (optimizer, None) # Initialize Trainer trainer = Trainer( model=model, data_collator=data_collator, args=training_args, compute_metrics=compute_metrics, train_dataset=vectorized_datasets["train"] if training_args.do_train else None, eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, tokenizer=feature_extractor, optimizers=optimizers, ) # 8. Finally, we can start training # Training if training_args.do_train: # use last checkpoint if exist if last_checkpoint is not None: checkpoint = last_checkpoint elif os.path.isdir(model_args.model_name_or_path): checkpoint = model_args.model_name_or_path else: checkpoint = None train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(vectorized_datasets["train"]) ) metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = ( data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"]) ) metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"])) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Write model card and (optionally) push to hub config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na" kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": "automatic-speech-recognition", "tags": ["automatic-speech-recognition", data_args.dataset_name], "dataset_args": ( f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split:" f" {data_args.eval_split_name}" ), "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}", } if "common_voice" in data_args.dataset_name: kwargs["language"] = config_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) return results if __name__ == "__main__": main()
transformers/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py/0
{ "file_path": "transformers/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py", "repo_id": "transformers", "token_count": 12694 }
504
#!/usr/bin/env python import argparse import gc import os import sys from pathlib import Path from typing import List # noqa: F401 import pytorch_lightning as pl import torch from finetune import SummarizationModule, TranslationModule from finetune import main as ft_main from make_student import create_student_by_copying_alternating_layers, get_layers_to_supervise from torch import nn from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5ForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import calculate_bleu, check_output_dir, freeze_params, label_smoothed_nll_loss, use_task_specific_params # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import generic_train # noqa class SummarizationDistiller(SummarizationModule): """Supports T5, Bart, Pegasus and other models that inherit from Bart.""" loss_names = ["loss", "ce_loss", "mlm_loss", "hid_loss_enc", "hid_loss_dec"] def __init__(self, hparams): assert Path(hparams.data_dir).exists() self.output_dir = Path(hparams.output_dir) self.output_dir.mkdir(exist_ok=True) save_dir = self.output_dir.joinpath("student") hparams.model_name_or_path = str(save_dir) # Tell lightning we are training the student teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval() use_task_specific_params(teacher, hparams.task) # We copy good generation parameters to student by default if hparams.student is not None: student = AutoModelForSeq2SeqLM.from_pretrained(hparams.student) use_task_specific_params(student, hparams.task) e_layer_ids, d_layer_ids = None, None else: student, e_layer_ids, d_layer_ids = create_student_by_copying_alternating_layers( teacher, e=hparams.student_encoder_layers, d=hparams.student_decoder_layers, save_path=save_dir ) if hparams.length_penalty != -1: student.config.length_penalty = hparams.length_penalty hparams.tokenizer_name = hparams.teacher # Use teacher's tokenizer super().__init__(hparams, model=student, config=student.config) assert student.config.model_type == teacher.config.model_type, ( f"teacher, student model types should be the same, got {student.config.model_type} !=" f" {teacher.config.model_type}" ) if student.config.model_type == "t5": student_encoder_layers = len(student.get_encoder().block) student_decoder_layers = len(student.get_decoder().block) teacher_encoder_layers = len(teacher.get_encoder().block) teacher_decoder_layers = len(teacher.get_decoder().block) else: student_encoder_layers = student.config.encoder_layers student_decoder_layers = student.config.decoder_layers teacher_encoder_layers = teacher.config.encoder_layers teacher_decoder_layers = teacher.config.decoder_layers self.different_base_models = not (hparams.student is None or hparams.teacher == hparams.student) self.do_calc_hidden_loss = (not self.different_base_models) and hparams.alpha_hid > 0 self.different_encoder = self.different_base_models or (student_encoder_layers != teacher_encoder_layers) # self.different_encoder determines whether we need to run the teacher encoder self.teacher = teacher freeze_params(self.teacher) if not self.different_encoder: # To save RAM, delete teacher encoder and freeze student encoder. try: del self.teacher.model.encoder except AttributeError: # T5 del self.teacher.encoder if e_layer_ids is None: e_layer_ids = list(range(student_encoder_layers)) if d_layer_ids is None: d_layer_ids = list(range(student_decoder_layers)) self.e_layer_ids, self.d_layer_ids = e_layer_ids, d_layer_ids # type: List[int], List[int] if self.do_calc_hidden_loss: # Intermediate supervision: Decide which layers to supervise if hparams.supervise_forward: self.e_matches = get_layers_to_supervise( n_student=len(self.e_layer_ids), n_teacher=teacher_encoder_layers ) self.d_matches = get_layers_to_supervise( n_student=len(self.d_layer_ids), n_teacher=teacher_decoder_layers ) else: # student layer should emulate hidden states of the teacher layer it was copied from self.e_matches = self.e_layer_ids self.d_matches = self.d_layer_ids else: self.e_matches = None self.d_matches = None self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean") self.temperature = 2.0 self.alpha_mlm = hparams.alpha_mlm self.alpha_ce = hparams.alpha_ce self.alpha_hid = hparams.alpha_hid gc.collect() torch.cuda.empty_cache() def calc_ce_loss(self, mask, s_logits, t_logits): """Copy pasted from distillbert (transformers/examples/distillation/)""" # mask has False at padding_idx sel_mask = mask[:, :, None].expand_as(s_logits) vocab_size = s_logits.size(-1) s_logits_slct = torch.masked_select(s_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask t_logits_slct = torch.masked_select(t_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask s_logits_slct = s_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask t_logits_slct = t_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask assert t_logits_slct.size() == s_logits_slct.size() loss_ce = ( self.ce_loss_fct( nn.functional.log_softmax(s_logits_slct / self.temperature, dim=-1), nn.functional.softmax(t_logits_slct / self.temperature, dim=-1), ) * (self.temperature) ** 2 ) return loss_ce @staticmethod def add_model_specific_args(parser, root_dir): SummarizationModule.add_model_specific_args(parser, root_dir) add_distill_args(parser) return parser def _step(self, batch: dict) -> tuple: """Compute the loss for a batch""" pad_token_id = self.tokenizer.pad_token_id input_ids, src_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"] if isinstance(self.model, T5ForConditionalGeneration): decoder_input_ids = self.model._shift_right(labels) else: decoder_input_ids = shift_tokens_right(labels, pad_token_id) # noinspection PyCallingNonCallable student_outputs = self( input_ids, attention_mask=src_mask, decoder_input_ids=decoder_input_ids, output_hidden_states=self.do_calc_hidden_loss, output_attentions=False, use_cache=False, ) lm_logits = student_outputs["logits"] # Same cross entropy vs. label smoothing logic as finetune.py assert lm_logits.shape[-1] == self.model.config.vocab_size if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id loss_fct = nn.CrossEntropyLoss(ignore_index=pad_token_id) student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1)) else: lprobs = nn.functional.log_softmax(lm_logits, dim=-1) student_lm_loss, _ = label_smoothed_nll_loss( lprobs, labels, self.hparams.label_smoothing, ignore_index=pad_token_id ) def zero_tensor(): return torch.tensor(0.0).type_as(student_lm_loss) teacher_enc_outputs = student_outputs[ "encoder_last_hidden_state" ] # use this unless self.different_base_models hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor() if self.different_encoder: # compute encoder hidden state loss all_teacher_encoder_outputs = self.teacher.get_encoder()( input_ids, attention_mask=src_mask, output_hidden_states=self.do_calc_hidden_loss, ) if self.different_base_models: teacher_enc_outputs = all_teacher_encoder_outputs["last_hidden_state"] elif self.do_calc_hidden_loss: hid_loss_enc = self.calc_hidden_loss( src_mask, student_outputs["encoder_hidden_states"], all_teacher_encoder_outputs["hidden_states"], self.e_matches, normalize_hidden=self.hparams.normalize_hidden, ) teacher_outputs = self.teacher( input_ids, attention_mask=src_mask, encoder_outputs=(teacher_enc_outputs,), decoder_input_ids=decoder_input_ids, output_hidden_states=self.do_calc_hidden_loss, use_cache=False, # since we are not passing labels, never let this default to True ) dec_mask = decoder_input_ids.ne(pad_token_id) loss_ce = self.calc_ce_loss(dec_mask, lm_logits, teacher_outputs["logits"]) if self.do_calc_hidden_loss: # Intermediate supervision of decoder hidden states hid_loss_dec = self.calc_hidden_loss( dec_mask, student_outputs["decoder_hidden_states"], teacher_outputs["decoder_hidden_states"], self.d_matches, normalize_hidden=self.hparams.normalize_hidden, ) blended_loss = ( self.alpha_ce * loss_ce + self.alpha_mlm * student_lm_loss + self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec) ) return blended_loss, loss_ce, student_lm_loss, hid_loss_enc, hid_loss_dec @staticmethod def calc_hidden_loss(attention_mask, hidden_states, hidden_states_T, matches, normalize_hidden): """MSE(student_hid, teacher_hid[matches]). Called "Intermediate supervision" in paper. Inspired by TinyBERT.""" msg = "expected list or tuple for hidden_states, got tensor of shape: " assert not isinstance(hidden_states, torch.Tensor), f"{msg}{hidden_states.shape}" assert not isinstance(hidden_states_T, torch.Tensor), f"{msg}{hidden_states_T.shape}" mask = attention_mask.to(hidden_states[0]) valid_count = mask.sum() * hidden_states[0].size(-1) student_states = torch.stack([hidden_states[i] for i in range(len(matches))]) teacher_states = torch.stack([hidden_states_T[j] for j in matches]) assert student_states.shape == teacher_states.shape, f"{student_states.shape} != {teacher_states.shape}" if normalize_hidden: student_states = nn.functional.layer_norm(student_states, student_states.shape[1:]) teacher_states = nn.functional.layer_norm(teacher_states, teacher_states.shape[1:]) mse = nn.functional.mse_loss(student_states, teacher_states, reduction="none") masked_mse = (mse * mask.unsqueeze(0).unsqueeze(-1)).sum() / valid_count return masked_mse def add_distill_args(parser): # NOTE: if --student argument was specified and the teacher and student base models # are different, the models still have to have the same tokenizer, specified by # --tokenizer_name. So, for example, you can distill from t5_large to t5_small but not # from bart to t5. This s because if the tokenizers are different, the output space # for the two models is also different and their logits are not comparable. parser.add_argument("--teacher", type=str) parser.add_argument("--alpha_ce", default=0.8, type=float) parser.add_argument("--alpha_mlm", default=0.2, type=float) parser.add_argument("--alpha_hid", default=0.0, type=float, required=False) parser.add_argument("--student", type=str, required=False) parser.add_argument("--student_decoder_layers", default=12, type=int, required=False) parser.add_argument("--student_encoder_layers", default=12, type=int, required=False) parser.add_argument("--no_teacher", action="store_true", default=False) parser.add_argument("--length_penalty", type=float, default=-1) parser.add_argument("--supervise_forward", action="store_true", default=False) parser.add_argument("--normalize_hidden", action="store_true", default=False) class TranslationDistiller(SummarizationDistiller): """Supports T5, mBART, Marian, other models that inherit from Bart.""" mode = "translation" metric_names = ["bleu"] default_val_metric = "bleu" def __init__(self, hparams, **kwargs): super().__init__(hparams, **kwargs) assert hparams.src_lang is not None assert hparams.tgt_lang is not None self.dataset_kwargs["src_lang"] = hparams.src_lang self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer): self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang] def calc_generative_metrics(self, preds, target) -> dict: return calculate_bleu(preds, target) @staticmethod def add_model_specific_args(parser, root_dir): TranslationModule.add_model_specific_args(parser, root_dir) add_distill_args(parser) return parser def create_module(args): if args.no_teacher: module_cls = TranslationModule if "translation" in args.task else SummarizationModule else: # DISTILL WITH TEACHER module_cls = TranslationDistiller if "translation" in args.task else SummarizationDistiller args.setup_cls: str = module_cls.__name__ print(f"using module {args.setup_cls}") model = module_cls(args) return model def distill_main(args): Path(args.output_dir).mkdir(exist_ok=True) check_output_dir(args, expected_items=3) model = create_module(args) return ft_main(args, model=model) if __name__ == "__main__": parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = SummarizationDistiller.add_model_specific_args(parser, os.getcwd()) args = parser.parse_args() distill_main(args)
transformers/examples/research_projects/seq2seq-distillation/distillation.py/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/distillation.py", "repo_id": "transformers", "token_count": 6315 }
505
import itertools import json import linecache import math import os import pickle import socket from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List, Tuple, Union import git import numpy as np import torch import torch.distributed as dist from rouge_score import rouge_scorer, scoring from sacrebleu import corpus_bleu from sentence_splitter import add_newline_to_end_of_each_sentence from torch import nn from torch.utils.data import Dataset, Sampler from transformers import BartTokenizer, EvalPrediction, PreTrainedTokenizer, T5Tokenizer from transformers.file_utils import cached_property from transformers.models.bart.modeling_bart import shift_tokens_right try: from fairseq.data.data_utils import batch_by_size FAIRSEQ_AVAILABLE = True except (ImportError, ModuleNotFoundError): FAIRSEQ_AVAILABLE = False def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100): """From fairseq""" if target.dim() == lprobs.dim() - 1: target = target.unsqueeze(-1) nll_loss = -lprobs.gather(dim=-1, index=target) smooth_loss = -lprobs.sum(dim=-1, keepdim=True) if ignore_index is not None: pad_mask = target.eq(ignore_index) nll_loss.masked_fill_(pad_mask, 0.0) smooth_loss.masked_fill_(pad_mask, 0.0) else: nll_loss = nll_loss.squeeze(-1) smooth_loss = smooth_loss.squeeze(-1) nll_loss = nll_loss.sum() # mean()? Scared to break other math. smooth_loss = smooth_loss.sum() eps_i = epsilon / lprobs.size(-1) loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss, nll_loss def lmap(f: Callable, x: Iterable) -> List: """list(map(f, x))""" return list(map(f, x)) def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict: """Uses sacrebleu's corpus_bleu implementation.""" return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)} def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) -> Callable[[EvalPrediction], Dict]: def non_pad_len(tokens: np.ndarray) -> int: return np.count_nonzero(tokens != tokenizer.pad_token_id) def decode_pred(pred: EvalPrediction) -> Tuple[List[str], List[str]]: pred_str = tokenizer.batch_decode(pred.predictions, skip_special_tokens=True) label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True) pred_str = lmap(str.strip, pred_str) label_str = lmap(str.strip, label_str) return pred_str, label_str def summarization_metrics(pred: EvalPrediction) -> Dict: pred_str, label_str = decode_pred(pred) rouge: Dict = calculate_rouge(pred_str, label_str) summ_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1) rouge.update({"gen_len": summ_len}) return rouge def translation_metrics(pred: EvalPrediction) -> Dict: pred_str, label_str = decode_pred(pred) bleu: Dict = calculate_bleu(pred_str, label_str) gen_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1) bleu.update({"gen_len": gen_len}) return bleu compute_metrics_fn = summarization_metrics if "summarization" in task_name else translation_metrics return compute_metrics_fn def trim_batch( input_ids, pad_token_id, attention_mask=None, ): """Remove columns that are populated exclusively by pad_token_id""" keep_column_mask = input_ids.ne(pad_token_id).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class AbstractSeq2SeqDataset(Dataset): def __init__( self, tokenizer, data_dir, max_source_length, max_target_length, type_path="train", n_obs=None, prefix="", **dataset_kwargs, ): super().__init__() self.src_file = Path(data_dir).joinpath(type_path + ".source") self.tgt_file = Path(data_dir).joinpath(type_path + ".target") self.len_file = Path(data_dir).joinpath(type_path + ".len") if os.path.exists(self.len_file): self.src_lens = pickle_load(self.len_file) self.used_char_len = False else: self.src_lens = self.get_char_lens(self.src_file) self.used_char_len = True self.max_source_length = max_source_length self.max_target_length = max_target_length assert min(self.src_lens) > 0, f"found empty line in {self.src_file}" self.tokenizer = tokenizer self.prefix = prefix if prefix is not None else "" if n_obs is not None: self.src_lens = self.src_lens[:n_obs] self.pad_token_id = self.tokenizer.pad_token_id self.dataset_kwargs = dataset_kwargs dataset_kwargs.update({"add_prefix_space": True} if isinstance(self.tokenizer, BartTokenizer) else {}) def __len__(self): return len(self.src_lens) @staticmethod def get_char_lens(data_file): return [len(x) for x in Path(data_file).open().readlines()] @cached_property def tgt_lens(self): """Length in characters of target documents""" return self.get_char_lens(self.tgt_file) def make_sortish_sampler(self, batch_size, distributed=False, shuffle=True, **kwargs): if distributed: return DistributedSortishSampler(self, batch_size, shuffle=shuffle, **kwargs) else: return SortishSampler(self.src_lens, batch_size, shuffle=shuffle) def make_dynamic_sampler(self, max_tokens_per_batch=1024, **kwargs): assert FAIRSEQ_AVAILABLE, "Dynamic batch size requires `pip install fairseq`" assert not self.used_char_len, "You must call python make_len_file.py before calling make_dynamic_sampler" sorted_indices = list(self.make_sortish_sampler(1024, shuffle=False)) def num_tokens_in_example(i): return min(self.src_lens[i], self.max_target_length) # call fairseq cython function batch_sampler: List[List[int]] = batch_by_size( sorted_indices, num_tokens_fn=num_tokens_in_example, max_tokens=max_tokens_per_batch, required_batch_size_multiple=64, ) shuffled_batches = [batch_sampler[i] for i in np.random.permutation(range(len(batch_sampler)))] # move the largest batch to the front to OOM quickly (uses an approximation for padding) approximate_toks_per_batch = [max(self.src_lens[i] for i in batch) * len(batch) for batch in shuffled_batches] largest_batch_idx = np.argmax(approximate_toks_per_batch) shuffled_batches[0], shuffled_batches[largest_batch_idx] = ( shuffled_batches[largest_batch_idx], shuffled_batches[0], ) return shuffled_batches def __getitem__(self, item): raise NotImplementedError("You must implement this") def collate_fn(self, batch): raise NotImplementedError("You must implement this") class LegacySeq2SeqDataset(AbstractSeq2SeqDataset): def __getitem__(self, index) -> Dict[str, torch.Tensor]: """Call tokenizer on src and tgt_lines""" index = index + 1 # linecache starts at 1 source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n") tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n") assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" source_inputs = self.encode_line(self.tokenizer, source_line, self.max_source_length) target_inputs = self.encode_line(self.tokenizer, tgt_line, self.max_target_length) source_ids = source_inputs["input_ids"].squeeze() target_ids = target_inputs["input_ids"].squeeze() src_mask = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "labels": target_ids, } def encode_line(self, tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"): """Only used by LegacyDataset""" return tokenizer( [line], max_length=max_length, padding="max_length" if pad_to_max_length else None, truncation=True, return_tensors=return_tensors, **self.dataset_kwargs, ) def collate_fn(self, batch) -> Dict[str, torch.Tensor]: input_ids = torch.stack([x["input_ids"] for x in batch]) masks = torch.stack([x["attention_mask"] for x in batch]) target_ids = torch.stack([x["labels"] for x in batch]) pad_token_id = self.pad_token_id y = trim_batch(target_ids, pad_token_id) source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks) batch = { "input_ids": source_ids, "attention_mask": source_mask, "labels": y, } return batch class Seq2SeqDataset(AbstractSeq2SeqDataset): """A dataset that calls prepare_seq2seq_batch.""" def __getitem__(self, index) -> Dict[str, str]: index = index + 1 # linecache starts at 1 source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n") tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n") assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1} def collate_fn(self, batch) -> Dict[str, torch.Tensor]: """Call prepare_seq2seq_batch.""" batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch( [x["src_texts"] for x in batch], tgt_texts=[x["tgt_texts"] for x in batch], max_length=self.max_source_length, max_target_length=self.max_target_length, return_tensors="pt", **self.dataset_kwargs, ).data batch_encoding["ids"] = torch.tensor([x["id"] for x in batch]) return batch_encoding class Seq2SeqDataCollator: def __init__(self, tokenizer, data_args, tpu_num_cores=None): self.tokenizer = tokenizer self.pad_token_id = tokenizer.pad_token_id assert ( self.pad_token_id is not None ), f"pad_token_id is not defined for ({self.tokenizer.__class__.__name__}), it must be defined." self.data_args = data_args self.tpu_num_cores = tpu_num_cores self.dataset_kwargs = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {} if data_args.src_lang is not None: self.dataset_kwargs["src_lang"] = data_args.src_lang if data_args.tgt_lang is not None: self.dataset_kwargs["tgt_lang"] = data_args.tgt_lang def __call__(self, batch) -> Dict[str, torch.Tensor]: if hasattr(self.tokenizer, "prepare_seq2seq_batch"): batch = self._encode(batch) input_ids, attention_mask, labels = ( batch["input_ids"], batch["attention_mask"], batch["labels"], ) else: input_ids = torch.stack([x["input_ids"] for x in batch]) attention_mask = torch.stack([x["attention_mask"] for x in batch]) labels = torch.stack([x["labels"] for x in batch]) labels = trim_batch(labels, self.pad_token_id) input_ids, attention_mask = trim_batch(input_ids, self.pad_token_id, attention_mask=attention_mask) if isinstance(self.tokenizer, T5Tokenizer): decoder_input_ids = self._shift_right_t5(labels) else: decoder_input_ids = shift_tokens_right(labels, self.pad_token_id) batch = { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "labels": labels, } return batch def _shift_right_t5(self, input_ids): # shift inputs to the right shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = self.pad_token_id return shifted_input_ids def _encode(self, batch) -> Dict[str, torch.Tensor]: batch_encoding = self.tokenizer.prepare_seq2seq_batch( [x["src_texts"] for x in batch], tgt_texts=[x["tgt_texts"] for x in batch], max_length=self.data_args.max_source_length, max_target_length=self.data_args.max_target_length, padding="max_length" if self.tpu_num_cores is not None else "longest", # TPU hack return_tensors="pt", **self.dataset_kwargs, ) return batch_encoding.data class SortishSampler(Sampler): "Go through the text data by order of src length with a bit of randomness. From fastai repo." def __init__(self, data, batch_size, shuffle=True): self.data, self.bs, self.shuffle = data, batch_size, shuffle def __len__(self) -> int: return len(self.data) def __iter__(self): return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle)) def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array: "Go through the text data by order of src length with a bit of randomness. From fastai repo." if not shuffle: return np.argsort(np.array(data) * -1) def key_fn(i): return data[i] idxs = np.random.permutation(len(data)) sz = bs * 50 ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)] sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx]) sz = bs ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)] max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx]) # find the chunk with the largest key, ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0] # then make sure it goes first. sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=int) sort_idx = np.concatenate((ck_idx[0], sort_idx)) return sort_idx class DistributedSortishSampler(Sampler): """Copied from torch DistributedSampler""" def __init__(self, dataset, batch_size, num_replicas=None, rank=None, add_extra_examples=True, shuffle=True): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 if add_extra_examples: self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas else: self.total_size = len(dataset) self.num_samples = len(self.available_indices) self.batch_size = batch_size self.add_extra_examples = add_extra_examples self.shuffle = shuffle def __iter__(self) -> Iterable: g = torch.Generator() g.manual_seed(self.epoch) sortish_data = [self.dataset.src_lens[i] for i in self.available_indices] sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size, shuffle=self.shuffle) indices = [self.available_indices[i] for i in sortish_indices] assert len(indices) == self.num_samples return iter(indices) @cached_property def available_indices(self) -> np.array: indices = list(range(len(self.dataset))) # add extra samples to make it evenly divisible indices += indices[: (self.total_size - len(indices))] assert len(indices) == self.total_size # subsample available_indices = indices[self.rank : self.total_size : self.num_replicas] return available_indices def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch logger = getLogger(__name__) def use_task_specific_params(model, task): """Update config with summarization specific params.""" task_specific_params = model.config.task_specific_params if task_specific_params is not None: pars = task_specific_params.get(task, {}) logger.info(f"using task specific params for {task}: {pars}") model.config.update(pars) def pickle_load(path): """pickle.load(path)""" with open(path, "rb") as f: return pickle.load(f) def pickle_save(obj, path): """pickle.dump(obj, path)""" with open(path, "wb") as f: return pickle.dump(obj, f) def flatten_list(summary_ids: List[List]): return list(itertools.chain.from_iterable(summary_ids)) def save_git_info(folder_path: str) -> None: """Save git information to output_dir/git_log.json""" repo_infos = get_git_info() save_json(repo_infos, os.path.join(folder_path, "git_log.json")) def save_json(content, path, indent=4, **json_dump_kwargs): with open(path, "w") as f: json.dump(content, f, indent=indent, **json_dump_kwargs) def load_json(path): with open(path) as f: return json.load(f) def get_git_info(): try: repo = git.Repo(search_parent_directories=True) repo_infos = { "repo_id": str(repo), "repo_sha": str(repo.head.object.hexsha), "repo_branch": str(repo.active_branch), "hostname": str(socket.gethostname()), } return repo_infos except TypeError: return { "repo_id": None, "repo_sha": None, "repo_branch": None, "hostname": None, } ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"] def extract_rouge_mid_statistics(dct): new_dict = {} for k1, v1 in dct.items(): mid = v1.mid new_dict[k1] = {stat: round(getattr(mid, stat), 4) for stat in ["precision", "recall", "fmeasure"]} return new_dict def calculate_rouge( pred_lns: List[str], tgt_lns: List[str], use_stemmer=True, rouge_keys=ROUGE_KEYS, return_precision_and_recall=False, bootstrap_aggregation=True, newline_sep=True, ) -> Dict: """Calculate rouge using rouge_scorer package. Args: pred_lns: list of summaries generated by model tgt_lns: list of groundtruth summaries (e.g. contents of val.target) use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes to improve matching. rouge_keys: which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum return_precision_and_recall: (False) whether to also return precision and recall. bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]`` newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL on multi sentence summaries (CNN/DM dataset). Returns: Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys """ scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer) aggregator = scoring.BootstrapAggregator() for pred, tgt in zip(tgt_lns, pred_lns): # rougeLsum expects "\n" separated sentences within a summary if newline_sep: pred = add_newline_to_end_of_each_sentence(pred) tgt = add_newline_to_end_of_each_sentence(tgt) scores = scorer.score(pred, tgt) aggregator.add_scores(scores) if bootstrap_aggregation: result = aggregator.aggregate() if return_precision_and_recall: return extract_rouge_mid_statistics(result) # here we return dict else: return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()} else: return aggregator._scores # here we return defaultdict(list) # Utilities for freezing parameters and checking whether they are frozen def freeze_params(model: nn.Module): """Set requires_grad=False for each of model.parameters()""" for par in model.parameters(): par.requires_grad = False def freeze_embeds(model): """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5.""" model_type = model.config.model_type if model_type == "t5": freeze_params(model.shared) for d in [model.encoder, model.decoder]: freeze_params(d.embed_tokens) elif model_type == "fsmt": for d in [model.model.encoder, model.model.decoder]: freeze_params(d.embed_positions) freeze_params(d.embed_tokens) else: freeze_params(model.model.shared) for d in [model.model.encoder, model.model.decoder]: freeze_params(d.embed_positions) freeze_params(d.embed_tokens) def grad_status(model: nn.Module) -> Iterable: return (par.requires_grad for par in model.parameters()) def any_requires_grad(model: nn.Module) -> bool: return any(grad_status(model)) def assert_all_frozen(model): model_grads: List[bool] = list(grad_status(model)) n_require_grad = sum(lmap(int, model_grads)) npars = len(model_grads) assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad" def assert_not_all_frozen(model): model_grads: List[bool] = list(grad_status(model)) npars = len(model_grads) assert any(model_grads), f"none of {npars} weights require grad" def parse_numeric_n_bool_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float, bool]]: """ Parse an argv list of unspecified command line args to a dict. Assumes all values are either numeric or boolean in the form of true/false. """ result = {} assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}" num_pairs = len(unparsed_args) // 2 for pair_num in range(num_pairs): i = 2 * pair_num assert unparsed_args[i].startswith("--") if unparsed_args[i + 1].lower() == "true": value = True elif unparsed_args[i + 1].lower() == "false": value = False else: try: value = int(unparsed_args[i + 1]) except ValueError: value = float(unparsed_args[i + 1]) # this can raise another informative ValueError result[unparsed_args[i][2:]] = value return result def write_txt_file(ordered_tgt, path): f = Path(path).open("w") for ln in ordered_tgt: f.write(ln + "\n") f.flush() def chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i : i + n] def check_output_dir(args, expected_items=0): """ Checks whether to bail out if output_dir already exists and has more than expected_items in it `args`: needs to have the following attributes of `args`: - output_dir - do_train - overwrite_output_dir `expected_items`: normally 0 (default) - i.e. empty dir, but in some cases a few files are expected (e.g. recovery from OOM) """ if ( os.path.exists(args.output_dir) and len(os.listdir(args.output_dir)) > expected_items and args.do_train and not args.overwrite_output_dir ): raise ValueError( f"Output directory ({args.output_dir}) already exists and " f"has {len(os.listdir(args.output_dir))} items in it (expected {expected_items} items). " "Use --overwrite_output_dir to overcome." )
transformers/examples/research_projects/seq2seq-distillation/utils.py/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/utils.py", "repo_id": "transformers", "token_count": 10620 }
506
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class ProcessorGradientFlow: """ This wraps the huggingface CLIP processor to allow backprop through the image processing step. The original processor forces conversion to PIL images, which is faster for image processing but breaks gradient flow. We call the original processor to get the text embeddings, but use our own image processing to keep images as torch tensors. """ def __init__(self, device: str = "cpu", clip_model: str = "openai/clip-vit-large-patch14") -> None: self.device = device self.tokenizer = CLIPTokenizerFast.from_pretrained(clip_model) self.image_mean = [0.48145466, 0.4578275, 0.40821073] self.image_std = [0.26862954, 0.26130258, 0.27577711] self.normalize = torchvision.transforms.Normalize(self.image_mean, self.image_std) self.resize = torchvision.transforms.Resize(224) self.center_crop = torchvision.transforms.CenterCrop(224) def preprocess_img(self, images): images = self.resize(images) images = self.center_crop(images) images = self.normalize(images) return images def __call__(self, text=None, images=None, **kwargs): encoding = self.tokenizer(text=text, **kwargs) encoding["pixel_values"] = self.preprocess_img(images) encoding = {key: value.to(self.device) for (key, value) in encoding.items()} return encoding class VQGAN_CLIP(nn.Module): def __init__( self, iterations=10, lr=0.01, vqgan=None, vqgan_config=None, vqgan_checkpoint=None, clip=None, clip_preprocessor=None, device=None, log=False, save_vector=True, return_val="image", quantize=True, save_intermediate=False, show_intermediate=False, make_grid=False, ) -> None: """ Instantiate a VQGAN_CLIP model. If you want to use a custom VQGAN model, pass it as vqgan. """ super().__init__() self.latent = None self.device = device if device else get_device() if vqgan: self.vqgan = vqgan else: self.vqgan = load_vqgan(self.device, conf_path=vqgan_config, ckpt_path=vqgan_checkpoint) self.vqgan.eval() if clip: self.clip = clip else: self.clip = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") self.clip.to(self.device) self.clip_preprocessor = ProcessorGradientFlow(device=self.device) self.iterations = iterations self.lr = lr self.log = log self.make_grid = make_grid self.return_val = return_val self.quantize = quantize self.latent_dim = self.vqgan.decoder.z_shape def make_animation(self, input_path=None, output_path=None, total_duration=5, extend_frames=True): """ Make an animation from the intermediate images saved during generation. By default, uses the images from the most recent generation created by the generate function. If you want to use images from a different generation, pass the path to the folder containing the images as input_path. """ images = [] if output_path is None: output_path = "./animation.gif" if input_path is None: input_path = self.save_path paths = sorted(glob(input_path + "/*")) if not len(paths): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(paths) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)") frame_duration = total_duration / len(paths) durations = [frame_duration] * len(paths) if extend_frames: durations[0] = 1.5 durations[-1] = 3 for file_name in paths: if file_name.endswith(".png"): images.append(imageio.imread(file_name)) imageio.mimsave(output_path, images, duration=durations) print(f"gif saved to {output_path}") def _get_latent(self, path=None, img=None): if not (path or img): raise ValueError("Input either path or tensor") if img is not None: raise NotImplementedError x = preprocess(Image.open(path), target_image_size=256).to(self.device) x_processed = preprocess_vqgan(x) z, *_ = self.vqgan.encode(x_processed) return z def _add_vector(self, transform_vector): """Add a vector transform to the base latent and returns the resulting image.""" base_latent = self.latent.detach().requires_grad_() trans_latent = base_latent + transform_vector if self.quantize: z_q, *_ = self.vqgan.quantize(trans_latent) else: z_q = trans_latent return self.vqgan.decode(z_q) def _get_clip_similarity(self, prompts, image, weights=None): clip_inputs = self.clip_preprocessor(text=prompts, images=image, return_tensors="pt", padding=True) clip_outputs = self.clip(**clip_inputs) similarity_logits = clip_outputs.logits_per_image if weights is not None: similarity_logits = similarity_logits * weights return similarity_logits.sum() def _get_clip_loss(self, pos_prompts, neg_prompts, image): pos_logits = self._get_clip_similarity(pos_prompts["prompts"], image, weights=(1 / pos_prompts["weights"])) if neg_prompts: neg_logits = self._get_clip_similarity(neg_prompts["prompts"], image, weights=neg_prompts["weights"]) else: neg_logits = torch.tensor([1], device=self.device) loss = -torch.log(pos_logits) + torch.log(neg_logits) return loss def _optimize_CLIP(self, original_img, pos_prompts, neg_prompts): vector = torch.randn_like(self.latent, requires_grad=True, device=self.device) optim = torch.optim.Adam([vector], lr=self.lr) for i in range(self.iterations): optim.zero_grad() transformed_img = self._add_vector(vector) processed_img = loop_post_process(transformed_img) clip_loss = self._get_CLIP_loss(pos_prompts, neg_prompts, processed_img) print("CLIP loss", clip_loss) if self.log: wandb.log({"CLIP Loss": clip_loss}) clip_loss.backward(retain_graph=True) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0]) else: yield vector def _init_logging(self, positive_prompts, negative_prompts, image_path): wandb.init(reinit=True, project="face-editor") wandb.config.update({"Positive Prompts": positive_prompts}) wandb.config.update({"Negative Prompts": negative_prompts}) wandb.config.update({"lr": self.lr, "iterations": self.iterations}) if image_path: image = Image.open(image_path) image = image.resize((256, 256)) wandb.log("Original Image", wandb.Image(image)) def process_prompts(self, prompts): if not prompts: return [] processed_prompts = [] weights = [] if isinstance(prompts, str): prompts = [prompt.strip() for prompt in prompts.split("|")] for prompt in prompts: if isinstance(prompt, (tuple, list)): processed_prompt = prompt[0] weight = float(prompt[1]) elif ":" in prompt: processed_prompt, weight = prompt.split(":") weight = float(weight) else: processed_prompt = prompt weight = 1.0 processed_prompts.append(processed_prompt) weights.append(weight) return { "prompts": processed_prompts, "weights": torch.tensor(weights, device=self.device), } def generate( self, pos_prompts, neg_prompts=None, image_path=None, show_intermediate=True, save_intermediate=False, show_final=True, save_final=True, save_path=None, ): """Generate an image from the given prompts. If image_path is provided, the image is used as a starting point for the optimization. If image_path is not provided, a random latent vector is used as a starting point. You must provide at least one positive prompt, and optionally provide negative prompts. Prompts must be formatted in one of the following ways: - A single prompt as a string, e.g "A smiling woman" - A set of prompts separated by pipes: "A smiling woman | a woman with brown hair" - A set of prompts and their weights separated by colons: "A smiling woman:1 | a woman with brown hair: 3" (default weight is 1) - A list of prompts, e.g ["A smiling woman", "a woman with brown hair"] - A list of prompts and weights, e.g [("A smiling woman", 1), ("a woman with brown hair", 3)] """ if image_path: self.latent = self._get_latent(image_path) else: self.latent = torch.randn(self.latent_dim, device=self.device) if self.log: self._init_logging(pos_prompts, neg_prompts, image_path) assert pos_prompts, "You must provide at least one positive prompt." pos_prompts = self.process_prompts(pos_prompts) neg_prompts = self.process_prompts(neg_prompts) if save_final and save_path is None: save_path = os.path.join("./outputs/", "_".join(pos_prompts["prompts"])) if not os.path.exists(save_path): os.makedirs(save_path) else: save_path = save_path + "_" + get_timestamp() os.makedirs(save_path) self.save_path = save_path original_img = self.vqgan.decode(self.latent)[0] if show_intermediate: print("Original Image") show_pil(custom_to_pil(original_img)) original_img = loop_post_process(original_img) for iter, transformed_img in enumerate(self._optimize_CLIP(original_img, pos_prompts, neg_prompts)): if show_intermediate: show_pil(transformed_img) if save_intermediate: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}.png")) if self.log: wandb.log({"Image": wandb.Image(transformed_img)}) if show_final: show_pil(transformed_img) if save_final: transformed_img.save(os.path.join(self.save_path, f"iter_{iter:03d}_final.png"))
transformers/examples/research_projects/vqgan-clip/VQGAN_CLIP.py/0
{ "file_path": "transformers/examples/research_projects/vqgan-clip/VQGAN_CLIP.py", "repo_id": "transformers", "token_count": 4997 }
507
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def list_field(default=None, metadata=None): return field(default_factory=lambda: default, metadata=metadata) @dataclass class PlotArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ csv_file: str = field( metadata={"help": "The csv file to plot."}, ) plot_along_batch: bool = field( default=False, metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."}, ) is_time: bool = field( default=False, metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."}, ) no_log_scale: bool = field( default=False, metadata={"help": "Disable logarithmic scale when plotting"}, ) is_train: bool = field( default=False, metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." }, ) figure_png_file: Optional[str] = field( default=None, metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."}, ) short_model_names: Optional[List[str]] = list_field( default=None, metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def can_convert_to_int(string): try: int(string) return True except ValueError: return False def can_convert_to_float(string): try: float(string) return True except ValueError: return False class Plot: def __init__(self, args): self.args = args self.result_dict = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}}) with open(self.args.csv_file, newline="") as csv_file: reader = csv.DictReader(csv_file) for row in reader: model_name = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"])) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"])) if can_convert_to_int(row["result"]): # value is not None self.result_dict[model_name]["result"][ (int(row["batch_size"]), int(row["sequence_length"])) ] = int(row["result"]) elif can_convert_to_float(row["result"]): # value is not None self.result_dict[model_name]["result"][ (int(row["batch_size"]), int(row["sequence_length"])) ] = float(row["result"]) def plot(self): fig, ax = plt.subplots() title_str = "Time usage" if self.args.is_time else "Memory usage" title_str = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log") ax.set_yscale("log") for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter()) for model_name_idx, model_name in enumerate(self.result_dict.keys()): batch_sizes = sorted(set(self.result_dict[model_name]["bsz"])) sequence_lengths = sorted(set(self.result_dict[model_name]["seq_len"])) results = self.result_dict[model_name]["result"] (x_axis_array, inner_loop_array) = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) label_model_name = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: y_axis_array = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results], dtype=int, ) else: y_axis_array = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results], dtype=np.float32, ) (x_axis_label, inner_loop_label) = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) x_axis_array = np.asarray(x_axis_array, int)[: len(y_axis_array)] plt.scatter( x_axis_array, y_axis_array, label=f"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(x_axis_array, y_axis_array, "--") title_str += f" {label_model_name} vs." title_str = title_str[:-4] y_axis_label = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(title_str) plt.xlabel(x_axis_label) plt.ylabel(y_axis_label) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file) else: plt.show() def main(): parser = HfArgumentParser(PlotArguments) plot_args = parser.parse_args_into_dataclasses()[0] plot = Plot(args=plot_args) plot.plot() if __name__ == "__main__": main()
transformers/examples/tensorflow/benchmarking/plot_csv_file.py/0
{ "file_path": "transformers/examples/tensorflow/benchmarking/plot_csv_file.py", "repo_id": "transformers", "token_count": 2905 }
508
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for causal language modeling (GPT-2, GPT-Neo...) on a text file or a dataset without using HuggingFace Trainer. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=text-generation """ # You can also adapt this script on your own clm task. Pointers for this are left as comments. import json # region Imports import logging import math import os import random import sys import warnings from dataclasses import dataclass, field from itertools import chain from pathlib import Path from typing import Optional import datasets import tensorflow as tf from datasets import load_dataset from sklearn.model_selection import train_test_split import transformers from transformers import ( CONFIG_MAPPING, CONFIG_NAME, TF2_WEIGHTS_NAME, TF_MODEL_FOR_CAUSAL_LM_MAPPING, AutoConfig, AutoTokenizer, HfArgumentParser, PushToHubCallback, TFAutoModelForCausalLM, TFTrainingArguments, create_optimizer, set_seed, ) from transformers.utils import send_example_telemetry from transformers.utils.versions import require_version logger = logging.getLogger(__name__) require_version("datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/language-modeling/requirements.txt") MODEL_CONFIG_CLASSES = list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) # endregion # region Command-line arguments @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_overrides: Optional[str] = field( default=None, metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) }, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) def __post_init__(self): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) block_size: Optional[int] = field( default=None, metadata={ "help": ( "Optional input sequence length after tokenization. " "The training dataset will be truncated in block of this size for training. " "Default to the model max input length for single sentence inputs (take into account special tokens)." ) }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) line_by_line: bool = field( default=False, metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) keep_linebreaks: bool = field( default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." # endregion def main(): # region Argument Parsing parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_clm", model_args, data_args, framework="tensorflow") # Sanity checks if data_args.dataset_name is None and data_args.train_file is None and data_args.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if data_args.train_file is not None: extension = data_args.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file." if data_args.validation_file is not None: extension = data_args.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file." if training_args.output_dir is not None: training_args.output_dir = Path(training_args.output_dir) os.makedirs(training_args.output_dir, exist_ok=True) # endregion # region Checkpoints # Detecting last checkpoint. checkpoint = None if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir: config_path = training_args.output_dir / CONFIG_NAME weights_path = training_args.output_dir / TF2_WEIGHTS_NAME if config_path.is_file() and weights_path.is_file(): checkpoint = training_args.output_dir logger.info( f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) else: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to continue regardless." ) # endregion # region Setup logging # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO) datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() # endregion # If passed along, set the training seed now. if training_args.seed is not None: set_seed(training_args.seed) # region Load datasets # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, ) if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, ) raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, ) else: data_files = {} dataset_args = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = ( data_args.train_file.split(".")[-1] if data_args.train_file is not None else data_args.validation_file.split(".")[-1] ) if extension == "txt": extension = "text" dataset_args["keep_linebreaks"] = data_args.keep_linebreaks raw_datasets = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, **dataset_args, ) # If no validation data is there, validation_split_percentage will be used to divide the dataset. if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, **dataset_args, ) raw_datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, **dataset_args, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # endregion # region Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: config = AutoConfig.from_pretrained( model_args.config_name, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained( model_args.model_name_or_path, token=model_args.token, trust_remote_code=model_args.trust_remote_code ) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, token=model_args.token, trust_remote_code=model_args.trust_remote_code ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, token=model_args.token, trust_remote_code=model_args.trust_remote_code ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) # endregion # region Dataset preprocessing # First we tokenize all the texts. column_names = raw_datasets["train"].column_names text_column_name = "text" if "text" in column_names else column_names[0] def tokenize_function(examples): return tokenizer(examples[text_column_name]) tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset", ) if data_args.block_size is None: block_size = tokenizer.model_max_length if block_size > config.max_position_embeddings: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " f"Using block_size={min(1024, config.max_position_embeddings)} instead. You can change that default value by passing --block_size xxx." ) block_size = min(1024, config.max_position_embeddings) else: if data_args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model " f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(data_args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/process#map lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc=f"Grouping texts in chunks of {block_size}", ) train_dataset = lm_datasets["train"] if data_args.validation_file is not None: eval_dataset = lm_datasets["validation"] else: logger.info( f"Validation file not found: using {data_args.validation_split_percentage}% of the dataset as validation" " as provided in data_args" ) train_indices, val_indices = train_test_split( list(range(len(train_dataset))), test_size=data_args.validation_split_percentage / 100 ) eval_dataset = train_dataset.select(val_indices) train_dataset = train_dataset.select(train_indices) if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), min(3, len(train_dataset))): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # endregion with training_args.strategy.scope(): # region Prepare model if checkpoint is not None: model = TFAutoModelForCausalLM.from_pretrained( checkpoint, config=config, token=model_args.token, trust_remote_code=model_args.trust_remote_code ) elif model_args.model_name_or_path: model = TFAutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, config=config, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: logger.info("Training new model from scratch") model = TFAutoModelForCausalLM.from_config( config, token=model_args.token, trust_remote_code=model_args.trust_remote_code ) # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embeddings = model.get_input_embeddings() # Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings. # As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and # the weights will always be in embeddings.embeddings. if hasattr(embeddings, "embeddings"): embedding_size = embeddings.embeddings.shape[0] else: embedding_size = embeddings.weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) # endregion # region TF Dataset preparation num_replicas = training_args.strategy.num_replicas_in_sync options = tf.data.Options() options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names # yourself if you use this method, whereas they are automatically inferred from the model input names when # using model.prepare_tf_dataset() # For more info see the docs: # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset tf_train_dataset = model.prepare_tf_dataset( train_dataset, shuffle=True, batch_size=num_replicas * training_args.per_device_train_batch_size, ).with_options(options) tf_eval_dataset = model.prepare_tf_dataset( eval_dataset, shuffle=False, batch_size=num_replicas * training_args.per_device_eval_batch_size, drop_remainder=True, ).with_options(options) # endregion # region Optimizer and loss num_train_steps = len(tf_train_dataset) * int(training_args.num_train_epochs) if training_args.warmup_steps > 0: num_warmup_steps = training_args.warmup_steps elif training_args.warmup_ratio > 0: num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) else: num_warmup_steps = 0 # Bias and layernorm weights are automatically excluded from the decay optimizer, lr_schedule = create_optimizer( init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, adam_beta1=training_args.adam_beta1, adam_beta2=training_args.adam_beta2, adam_epsilon=training_args.adam_epsilon, weight_decay_rate=training_args.weight_decay, adam_global_clipnorm=training_args.max_grad_norm, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=optimizer, jit_compile=training_args.xla) # endregion # region Preparing push_to_hub and model card push_to_hub_model_id = training_args.push_to_hub_model_id model_name = model_args.model_name_or_path.split("/")[-1] if not push_to_hub_model_id: if data_args.dataset_name is not None: push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" else: push_to_hub_model_id = f"{model_name}-finetuned-clm" model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"} if data_args.dataset_name is not None: model_card_kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: model_card_kwargs["dataset_args"] = data_args.dataset_config_name model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: model_card_kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: callbacks = [ PushToHubCallback( output_dir=training_args.output_dir, hub_model_id=push_to_hub_model_id, hub_token=training_args.push_to_hub_token, tokenizer=tokenizer, **model_card_kwargs, ) ] else: callbacks = [] # endregion # region Training and validation logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {training_args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size = {training_args.per_device_train_batch_size * num_replicas}") # For long training runs, you may wish to use the PushToHub() callback here to save intermediate checkpoints # to the Hugging Face Hub rather than just pushing the finished model. # See https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.PushToHubCallback history = model.fit( tf_train_dataset, validation_data=tf_eval_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks, ) train_loss = history.history["loss"][-1] try: train_perplexity = math.exp(train_loss) except OverflowError: train_perplexity = math.inf logger.info(f" Final train loss: {train_loss:.3f}") logger.info(f" Final train perplexity: {train_perplexity:.3f}") validation_loss = history.history["val_loss"][-1] try: validation_perplexity = math.exp(validation_loss) except OverflowError: validation_perplexity = math.inf logger.info(f" Final validation loss: {validation_loss:.3f}") logger.info(f" Final validation perplexity: {validation_perplexity:.3f}") if training_args.output_dir is not None: output_eval_file = os.path.join(training_args.output_dir, "all_results.json") results_dict = {} results_dict["train_loss"] = train_loss results_dict["train_perplexity"] = train_perplexity results_dict["eval_loss"] = validation_loss results_dict["eval_perplexity"] = validation_perplexity with open(output_eval_file, "w") as writer: writer.write(json.dumps(results_dict)) # endregion if training_args.output_dir is not None and not training_args.push_to_hub: # If we're not pushing to hub, at least save a local copy when we're done model.save_pretrained(training_args.output_dir) if __name__ == "__main__": main()
transformers/examples/tensorflow/language-modeling/run_clm.py/0
{ "file_path": "transformers/examples/tensorflow/language-modeling/run_clm.py", "repo_id": "transformers", "token_count": 12297 }
509
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for sequence classification.""" # You can also adapt this script on your own text classification task. Pointers for this are left as comments. import json import logging import os import sys import warnings from dataclasses import dataclass, field from pathlib import Path from typing import Optional import numpy as np from datasets import load_dataset from packaging.version import parse from transformers import ( AutoConfig, AutoTokenizer, HfArgumentParser, PretrainedConfig, PushToHubCallback, TFAutoModelForSequenceClassification, TFTrainingArguments, create_optimizer, set_seed, ) from transformers.utils import CONFIG_NAME, TF2_WEIGHTS_NAME, send_example_telemetry os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" # Reduce the amount of console output from TF import tensorflow as tf # noqa: E402 try: import tf_keras as keras except (ModuleNotFoundError, ImportError): import keras if parse(keras.__version__).major > 2: raise ValueError( "Your currently installed version of Keras is Keras 3, but this is not yet supported in " "Transformers. Please install the backwards-compatible tf-keras package with " "`pip install tf-keras`." ) logger = logging.getLogger(__name__) # region Helper classes class SavePretrainedCallback(keras.callbacks.Callback): # Hugging Face models have a save_pretrained() method that saves both the weights and the necessary # metadata to allow them to be loaded as a pretrained model in future. This is a simple Keras callback # that saves the model with this method after each epoch. def __init__(self, output_dir, **kwargs): super().__init__() self.output_dir = output_dir def on_epoch_end(self, epoch, logs=None): self.model.save_pretrained(self.output_dir) # endregion # region Command-line arguments @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ train_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the training data."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "A csv or a json file containing the validation data."} ) test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."}) max_seq_length: int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) pad_to_max_length: bool = field( default=False, metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. " "Data will always be padded when using TPUs." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_val_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) }, ) max_test_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of test examples to this " "value if set." ) }, ) def __post_init__(self): train_extension = self.train_file.split(".")[-1].lower() if self.train_file is not None else None validation_extension = ( self.validation_file.split(".")[-1].lower() if self.validation_file is not None else None ) test_extension = self.test_file.split(".")[-1].lower() if self.test_file is not None else None extensions = {train_extension, validation_extension, test_extension} extensions.discard(None) assert len(extensions) != 0, "Need to supply at least one of --train_file, --validation_file or --test_file!" assert len(extensions) == 1, "All input files should have the same file extension, either csv or json!" assert "csv" in extensions or "json" in extensions, "Input files should have either .csv or .json extensions!" self.input_file_extension = extensions.pop() @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) # endregion def main(): # region Argument parsing # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_text_classification", model_args, data_args, framework="tensorflow") output_dir = Path(training_args.output_dir) output_dir.mkdir(parents=True, exist_ok=True) # endregion # region Checkpoints # Detecting last checkpoint. checkpoint = None if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir: if (output_dir / CONFIG_NAME).is_file() and (output_dir / TF2_WEIGHTS_NAME).is_file(): checkpoint = output_dir logger.info( f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" " behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) else: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to continue regardless." ) # endregion # region Logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logger.setLevel(logging.INFO) logger.info(f"Training/evaluation parameters {training_args}") # endregion # region Loading data # For CSV/JSON files, this script will use the 'label' field as the label and the 'sentence1' and optionally # 'sentence2' fields as inputs if they exist. If not, the first two fields not named label are used if at least two # columns are provided. Note that the term 'sentence' can be slightly misleading, as they often contain more than # a single grammatical sentence, when the task requires it. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. data_files = {"train": data_args.train_file, "validation": data_args.validation_file, "test": data_args.test_file} data_files = {key: file for key, file in data_files.items() if file is not None} for key in data_files.keys(): logger.info(f"Loading a local file for {key}: {data_files[key]}") if data_args.input_file_extension == "csv": # Loading a dataset from local csv files datasets = load_dataset( "csv", data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) else: # Loading a dataset from local json files datasets = load_dataset("json", data_files=data_files, cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets. # endregion # region Label preprocessing # If you've passed us a training set, we try to infer your labels from it if "train" in datasets: # By default we assume that if your label column looks like a float then you're doing regression, # and if not then you're doing classification. This is something you may want to change! is_regression = datasets["train"].features["label"].dtype in ["float32", "float64"] if is_regression: num_labels = 1 else: # A useful fast method: # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique label_list = datasets["train"].unique("label") label_list.sort() # Let's sort it for determinism num_labels = len(label_list) # If you haven't passed a training set, we read label info from the saved model (this happens later) else: num_labels = None label_list = None is_regression = None # endregion # region Load model config and tokenizer if checkpoint is not None: config_path = training_args.output_dir elif model_args.config_name: config_path = model_args.config_name else: config_path = model_args.model_name_or_path if num_labels is not None: config = AutoConfig.from_pretrained( config_path, num_labels=num_labels, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: config = AutoConfig.from_pretrained( config_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # endregion # region Dataset preprocessing # Again, we try to have some nice defaults but don't hesitate to tweak to your use case. column_names = {col for cols in datasets.column_names.values() for col in cols} non_label_column_names = [name for name in column_names if name != "label"] if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", "sentence2" elif "sentence1" in non_label_column_names: sentence1_key, sentence2_key = "sentence1", None else: if len(non_label_column_names) >= 2: sentence1_key, sentence2_key = non_label_column_names[:2] else: sentence1_key, sentence2_key = non_label_column_names[0], None if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the " f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length) # Ensure that our labels match the model's, if it has some pre-specified if "train" in datasets: if not is_regression and config.label2id != PretrainedConfig(num_labels=num_labels).label2id: label_name_to_id = config.label2id if sorted(label_name_to_id.keys()) == sorted(label_list): label_to_id = label_name_to_id # Use the model's labels else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: ", f"model labels: {sorted(label_name_to_id.keys())}, dataset labels:" f" {sorted(label_list)}.\nIgnoring the model labels as a result.", ) label_to_id = {v: i for i, v in enumerate(label_list)} elif not is_regression: label_to_id = {v: i for i, v in enumerate(label_list)} else: label_to_id = None # Now we've established our label2id, let's overwrite the model config with it. config.label2id = label_to_id if config.label2id is not None: config.id2label = {id: label for label, id in label_to_id.items()} else: config.id2label = None else: label_to_id = config.label2id # Just load the data from the model if "validation" in datasets and config.label2id is not None: validation_label_list = datasets["validation"].unique("label") for val_label in validation_label_list: assert val_label in label_to_id, f"Label {val_label} is in the validation set but not the training set!" def preprocess_function(examples): # Tokenize the texts args = ( (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) ) result = tokenizer(*args, max_length=max_seq_length, truncation=True) # Map labels to IDs if config.label2id is not None and "label" in examples: result["label"] = [(config.label2id[l] if l != -1 else -1) for l in examples["label"]] return result datasets = datasets.map(preprocess_function, batched=True, load_from_cache_file=not data_args.overwrite_cache) # endregion with training_args.strategy.scope(): # region Load pretrained model # Set seed before initializing model set_seed(training_args.seed) # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if checkpoint is None: model_path = model_args.model_name_or_path else: model_path = checkpoint model = TFAutoModelForSequenceClassification.from_pretrained( model_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # endregion # region Convert data to a tf.data.Dataset dataset_options = tf.data.Options() dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF num_replicas = training_args.strategy.num_replicas_in_sync tf_data = {} max_samples = { "train": data_args.max_train_samples, "validation": data_args.max_val_samples, "test": data_args.max_test_samples, } for key in ("train", "validation", "test"): if key not in datasets: tf_data[key] = None continue if ( (key == "train" and not training_args.do_train) or (key == "validation" and not training_args.do_eval) or (key == "test" and not training_args.do_predict) ): tf_data[key] = None continue if key in ("train", "validation"): assert "label" in datasets[key].features, f"Missing labels from {key} data!" if key == "train": shuffle = True batch_size = training_args.per_device_train_batch_size * num_replicas else: shuffle = False batch_size = training_args.per_device_eval_batch_size * num_replicas samples_limit = max_samples[key] dataset = datasets[key] if samples_limit is not None: dataset = dataset.select(range(samples_limit)) # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names # yourself if you use this method, whereas they are automatically inferred from the model input names when # using model.prepare_tf_dataset() # For more info see the docs: # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset data = model.prepare_tf_dataset( dataset, shuffle=shuffle, batch_size=batch_size, tokenizer=tokenizer, ) data = data.with_options(dataset_options) tf_data[key] = data # endregion # region Optimizer, loss and compilation if training_args.do_train: num_train_steps = len(tf_data["train"]) * training_args.num_train_epochs if training_args.warmup_steps > 0: num_warmup_steps = training_args.warmup_steps elif training_args.warmup_ratio > 0: num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) else: num_warmup_steps = 0 optimizer, schedule = create_optimizer( init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, adam_beta1=training_args.adam_beta1, adam_beta2=training_args.adam_beta2, adam_epsilon=training_args.adam_epsilon, weight_decay_rate=training_args.weight_decay, adam_global_clipnorm=training_args.max_grad_norm, ) else: optimizer = "sgd" # Just use any default if is_regression: metrics = [] else: metrics = ["accuracy"] # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=optimizer, metrics=metrics) # endregion # region Preparing push_to_hub and model card push_to_hub_model_id = training_args.push_to_hub_model_id model_name = model_args.model_name_or_path.split("/")[-1] if not push_to_hub_model_id: push_to_hub_model_id = f"{model_name}-finetuned-text-classification" model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: callbacks = [ PushToHubCallback( output_dir=training_args.output_dir, hub_model_id=push_to_hub_model_id, hub_token=training_args.push_to_hub_token, tokenizer=tokenizer, **model_card_kwargs, ) ] else: callbacks = [] # endregion # region Training and validation if tf_data["train"] is not None: model.fit( tf_data["train"], validation_data=tf_data["validation"], epochs=int(training_args.num_train_epochs), callbacks=callbacks, ) if tf_data["validation"] is not None: logger.info("Computing metrics on validation data...") if is_regression: loss = model.evaluate(tf_data["validation"]) logger.info(f"Eval loss: {loss:.5f}") else: loss, accuracy = model.evaluate(tf_data["validation"]) logger.info(f"Eval loss: {loss:.5f}, Eval accuracy: {accuracy * 100:.4f}%") if training_args.output_dir is not None: output_eval_file = os.path.join(training_args.output_dir, "all_results.json") eval_dict = {"eval_loss": loss} if not is_regression: eval_dict["eval_accuracy"] = accuracy with open(output_eval_file, "w") as writer: writer.write(json.dumps(eval_dict)) # endregion # region Prediction if tf_data["test"] is not None: logger.info("Doing predictions on test dataset...") predictions = model.predict(tf_data["test"])["logits"] predicted_class = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1) output_test_file = os.path.join(training_args.output_dir, "test_results.txt") with open(output_test_file, "w") as writer: writer.write("index\tprediction\n") for index, item in enumerate(predicted_class): if is_regression: writer.write(f"{index}\t{item:3.3f}\n") else: item = config.id2label[item] writer.write(f"{index}\t{item}\n") logger.info(f"Wrote predictions to {output_test_file}!") # endregion if training_args.output_dir is not None and not training_args.push_to_hub: # If we're not pushing to hub, at least save a local copy when we're done model.save_pretrained(training_args.output_dir) if __name__ == "__main__": main()
transformers/examples/tensorflow/text-classification/run_text_classification.py/0
{ "file_path": "transformers/examples/tensorflow/text-classification/run_text_classification.py", "repo_id": "transformers", "token_count": 10869 }
510
#!/usr/bin/env bash # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script acquires data and converts it to fsmt model # it covers: # - facebook/wmt19-ru-en # - facebook/wmt19-en-ru # - facebook/wmt19-de-en # - facebook/wmt19-en-de # this script needs to be run from the top level of the transformers repo if [ ! -d "src/transformers" ]; then echo "Error: This script needs to be run from the top of the transformers repo" exit 1 fi mkdir data # get data (run once) cd data wget https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-de.joined-dict.ensemble.tar.gz wget https://dl.fbaipublicfiles.com/fairseq/models/wmt19.de-en.joined-dict.ensemble.tar.gz wget https://dl.fbaipublicfiles.com/fairseq/models/wmt19.en-ru.ensemble.tar.gz wget https://dl.fbaipublicfiles.com/fairseq/models/wmt19.ru-en.ensemble.tar.gz tar -xvzf wmt19.en-de.joined-dict.ensemble.tar.gz tar -xvzf wmt19.de-en.joined-dict.ensemble.tar.gz tar -xvzf wmt19.en-ru.ensemble.tar.gz tar -xvzf wmt19.ru-en.ensemble.tar.gz cd - # run conversions and uploads export PAIR=ru-en PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19.$PAIR.ensemble/model4.pt --pytorch_dump_folder_path data/wmt19-$PAIR export PAIR=en-ru PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19.$PAIR.ensemble/model4.pt --pytorch_dump_folder_path data/wmt19-$PAIR export PAIR=de-en PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19.$PAIR.joined-dict.ensemble/model4.pt --pytorch_dump_folder_path data/wmt19-$PAIR export PAIR=en-de PYTHONPATH="src" python src/transformers/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py --fsmt_checkpoint_path data/wmt19.$PAIR.joined-dict.ensemble/model4.pt --pytorch_dump_folder_path data/wmt19-$PAIR # upload cd data transformers-cli upload -y wmt19-ru-en transformers-cli upload -y wmt19-en-ru transformers-cli upload -y wmt19-de-en transformers-cli upload -y wmt19-en-de cd - # if updating just small files and not the large models, here is a script to generate the right commands: perl -le 'for $f (@ARGV) { print qq[transformers-cli upload -y $_/$f --filename $_/$f] for map { "wmt19-$_" } ("en-ru", "ru-en", "de-en", "en-de")}' vocab-src.json vocab-tgt.json tokenizer_config.json config.json # add/remove files as needed
transformers/scripts/fsmt/convert-facebook-wmt19.sh/0
{ "file_path": "transformers/scripts/fsmt/convert-facebook-wmt19.sh", "repo_id": "transformers", "token_count": 1121 }
511
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # When adding a new object to this init, remember to add it twice: once inside the `_import_structure` dictionary and # once inside the `if TYPE_CHECKING` branch. The `TYPE_CHECKING` should have import statements as usual, but they are # only there for type checking. The `_import_structure` is a dictionary submodule to list of object names, and is used # to defer the actual importing for when the objects are requested. This way `import transformers` provides the names # in the namespace without actually importing anything (and especially none of the backends). __version__ = "4.41.0.dev0" from typing import TYPE_CHECKING # Check the dependencies satisfy the minimal versions required. from . import dependency_versions_check from .utils import ( OptionalDependencyNotAvailable, _LazyModule, is_bitsandbytes_available, is_essentia_available, is_flax_available, is_g2p_en_available, is_keras_nlp_available, is_librosa_available, is_pretty_midi_available, is_scipy_available, is_sentencepiece_available, is_speech_available, is_tensorflow_text_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torchaudio_available, is_torchvision_available, is_vision_available, logging, ) logger = logging.get_logger(__name__) # pylint: disable=invalid-name # Base objects, independent of any specific backend _import_structure = { "agents": [ "Agent", "CodeAgent", "HfEngine", "PipelineTool", "ReactAgent", "ReactCodeAgent", "ReactJsonAgent", "Tool", "Toolbox", "ToolCollection", "launch_gradio_demo", "load_tool", ], "audio_utils": [], "benchmark": [], "commands": [], "configuration_utils": ["PretrainedConfig"], "convert_graph_to_onnx": [], "convert_slow_tokenizers_checkpoints_to_fast": [], "convert_tf_hub_seq_to_seq_bert_to_pytorch": [], "data": [ "DataProcessor", "InputExample", "InputFeatures", "SingleSentenceClassificationProcessor", "SquadExample", "SquadFeatures", "SquadV1Processor", "SquadV2Processor", "glue_compute_metrics", "glue_convert_examples_to_features", "glue_output_modes", "glue_processors", "glue_tasks_num_labels", "squad_convert_examples_to_features", "xnli_compute_metrics", "xnli_output_modes", "xnli_processors", "xnli_tasks_num_labels", ], "data.data_collator": [ "DataCollator", "DataCollatorForLanguageModeling", "DataCollatorForPermutationLanguageModeling", "DataCollatorForSeq2Seq", "DataCollatorForSOP", "DataCollatorForTokenClassification", "DataCollatorForWholeWordMask", "DataCollatorWithPadding", "DefaultDataCollator", "default_data_collator", ], "data.metrics": [], "data.processors": [], "debug_utils": [], "deepspeed": [], "dependency_versions_check": [], "dependency_versions_table": [], "dynamic_module_utils": [], "feature_extraction_sequence_utils": ["SequenceFeatureExtractor"], "feature_extraction_utils": ["BatchFeature", "FeatureExtractionMixin"], "file_utils": [], "generation": ["GenerationConfig", "TextIteratorStreamer", "TextStreamer"], "hf_argparser": ["HfArgumentParser"], "hyperparameter_search": [], "image_transforms": [], "integrations": [ "is_clearml_available", "is_comet_available", "is_dvclive_available", "is_neptune_available", "is_optuna_available", "is_ray_available", "is_ray_tune_available", "is_sigopt_available", "is_tensorboard_available", "is_wandb_available", ], "modelcard": ["ModelCard"], "modeling_tf_pytorch_utils": [ "convert_tf_weight_name_to_pt_weight_name", "load_pytorch_checkpoint_in_tf2_model", "load_pytorch_model_in_tf2_model", "load_pytorch_weights_in_tf2_model", "load_tf2_checkpoint_in_pytorch_model", "load_tf2_model_in_pytorch_model", "load_tf2_weights_in_pytorch_model", ], # Models "models": [], "models.albert": ["AlbertConfig"], "models.align": [ "AlignConfig", "AlignProcessor", "AlignTextConfig", "AlignVisionConfig", ], "models.altclip": [ "AltCLIPConfig", "AltCLIPProcessor", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "models.audio_spectrogram_transformer": [ "ASTConfig", "ASTFeatureExtractor", ], "models.auto": [ "CONFIG_MAPPING", "FEATURE_EXTRACTOR_MAPPING", "IMAGE_PROCESSOR_MAPPING", "MODEL_NAMES_MAPPING", "PROCESSOR_MAPPING", "TOKENIZER_MAPPING", "AutoConfig", "AutoFeatureExtractor", "AutoImageProcessor", "AutoProcessor", "AutoTokenizer", ], "models.autoformer": ["AutoformerConfig"], "models.bark": [ "BarkCoarseConfig", "BarkConfig", "BarkFineConfig", "BarkProcessor", "BarkSemanticConfig", ], "models.bart": ["BartConfig", "BartTokenizer"], "models.barthez": [], "models.bartpho": [], "models.beit": ["BeitConfig"], "models.bert": [ "BasicTokenizer", "BertConfig", "BertTokenizer", "WordpieceTokenizer", ], "models.bert_generation": ["BertGenerationConfig"], "models.bert_japanese": [ "BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer", ], "models.bertweet": ["BertweetTokenizer"], "models.big_bird": ["BigBirdConfig"], "models.bigbird_pegasus": ["BigBirdPegasusConfig"], "models.biogpt": [ "BioGptConfig", "BioGptTokenizer", ], "models.bit": ["BitConfig"], "models.blenderbot": [ "BlenderbotConfig", "BlenderbotTokenizer", ], "models.blenderbot_small": [ "BlenderbotSmallConfig", "BlenderbotSmallTokenizer", ], "models.blip": [ "BlipConfig", "BlipProcessor", "BlipTextConfig", "BlipVisionConfig", ], "models.blip_2": [ "Blip2Config", "Blip2Processor", "Blip2QFormerConfig", "Blip2VisionConfig", ], "models.bloom": ["BloomConfig"], "models.bridgetower": [ "BridgeTowerConfig", "BridgeTowerProcessor", "BridgeTowerTextConfig", "BridgeTowerVisionConfig", ], "models.bros": [ "BrosConfig", "BrosProcessor", ], "models.byt5": ["ByT5Tokenizer"], "models.camembert": ["CamembertConfig"], "models.canine": [ "CanineConfig", "CanineTokenizer", ], "models.chinese_clip": [ "ChineseCLIPConfig", "ChineseCLIPProcessor", "ChineseCLIPTextConfig", "ChineseCLIPVisionConfig", ], "models.clap": [ "ClapAudioConfig", "ClapConfig", "ClapProcessor", "ClapTextConfig", ], "models.clip": [ "CLIPConfig", "CLIPProcessor", "CLIPTextConfig", "CLIPTokenizer", "CLIPVisionConfig", ], "models.clipseg": [ "CLIPSegConfig", "CLIPSegProcessor", "CLIPSegTextConfig", "CLIPSegVisionConfig", ], "models.clvp": [ "ClvpConfig", "ClvpDecoderConfig", "ClvpEncoderConfig", "ClvpFeatureExtractor", "ClvpProcessor", "ClvpTokenizer", ], "models.code_llama": [], "models.codegen": [ "CodeGenConfig", "CodeGenTokenizer", ], "models.cohere": ["CohereConfig"], "models.conditional_detr": ["ConditionalDetrConfig"], "models.convbert": [ "ConvBertConfig", "ConvBertTokenizer", ], "models.convnext": ["ConvNextConfig"], "models.convnextv2": ["ConvNextV2Config"], "models.cpm": [], "models.cpmant": [ "CpmAntConfig", "CpmAntTokenizer", ], "models.ctrl": [ "CTRLConfig", "CTRLTokenizer", ], "models.cvt": ["CvtConfig"], "models.data2vec": [ "Data2VecAudioConfig", "Data2VecTextConfig", "Data2VecVisionConfig", ], "models.dbrx": ["DbrxConfig"], "models.deberta": [ "DebertaConfig", "DebertaTokenizer", ], "models.deberta_v2": ["DebertaV2Config"], "models.decision_transformer": ["DecisionTransformerConfig"], "models.deformable_detr": ["DeformableDetrConfig"], "models.deit": ["DeiTConfig"], "models.deprecated": [], "models.deprecated.bort": [], "models.deprecated.mctct": [ "MCTCTConfig", "MCTCTFeatureExtractor", "MCTCTProcessor", ], "models.deprecated.mmbt": ["MMBTConfig"], "models.deprecated.open_llama": ["OpenLlamaConfig"], "models.deprecated.retribert": [ "RetriBertConfig", "RetriBertTokenizer", ], "models.deprecated.tapex": ["TapexTokenizer"], "models.deprecated.trajectory_transformer": ["TrajectoryTransformerConfig"], "models.deprecated.transfo_xl": [ "TransfoXLConfig", "TransfoXLCorpus", "TransfoXLTokenizer", ], "models.deprecated.van": ["VanConfig"], "models.depth_anything": ["DepthAnythingConfig"], "models.deta": ["DetaConfig"], "models.detr": ["DetrConfig"], "models.dialogpt": [], "models.dinat": ["DinatConfig"], "models.dinov2": ["Dinov2Config"], "models.distilbert": [ "DistilBertConfig", "DistilBertTokenizer", ], "models.dit": [], "models.donut": [ "DonutProcessor", "DonutSwinConfig", ], "models.dpr": [ "DPRConfig", "DPRContextEncoderTokenizer", "DPRQuestionEncoderTokenizer", "DPRReaderOutput", "DPRReaderTokenizer", ], "models.dpt": ["DPTConfig"], "models.efficientformer": ["EfficientFormerConfig"], "models.efficientnet": ["EfficientNetConfig"], "models.electra": [ "ElectraConfig", "ElectraTokenizer", ], "models.encodec": [ "EncodecConfig", "EncodecFeatureExtractor", ], "models.encoder_decoder": ["EncoderDecoderConfig"], "models.ernie": ["ErnieConfig"], "models.ernie_m": ["ErnieMConfig"], "models.esm": ["EsmConfig", "EsmTokenizer"], "models.falcon": ["FalconConfig"], "models.fastspeech2_conformer": [ "FastSpeech2ConformerConfig", "FastSpeech2ConformerHifiGanConfig", "FastSpeech2ConformerTokenizer", "FastSpeech2ConformerWithHifiGanConfig", ], "models.flaubert": ["FlaubertConfig", "FlaubertTokenizer"], "models.flava": [ "FlavaConfig", "FlavaImageCodebookConfig", "FlavaImageConfig", "FlavaMultimodalConfig", "FlavaTextConfig", ], "models.fnet": ["FNetConfig"], "models.focalnet": ["FocalNetConfig"], "models.fsmt": [ "FSMTConfig", "FSMTTokenizer", ], "models.funnel": [ "FunnelConfig", "FunnelTokenizer", ], "models.fuyu": ["FuyuConfig"], "models.gemma": ["GemmaConfig"], "models.git": [ "GitConfig", "GitProcessor", "GitVisionConfig", ], "models.glpn": ["GLPNConfig"], "models.gpt2": [ "GPT2Config", "GPT2Tokenizer", ], "models.gpt_bigcode": ["GPTBigCodeConfig"], "models.gpt_neo": ["GPTNeoConfig"], "models.gpt_neox": ["GPTNeoXConfig"], "models.gpt_neox_japanese": ["GPTNeoXJapaneseConfig"], "models.gpt_sw3": [], "models.gptj": ["GPTJConfig"], "models.gptsan_japanese": [ "GPTSanJapaneseConfig", "GPTSanJapaneseTokenizer", ], "models.graphormer": ["GraphormerConfig"], "models.grounding_dino": [ "GroundingDinoConfig", "GroundingDinoProcessor", ], "models.groupvit": [ "GroupViTConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], "models.herbert": ["HerbertTokenizer"], "models.hubert": ["HubertConfig"], "models.ibert": ["IBertConfig"], "models.idefics": ["IdeficsConfig"], "models.idefics2": ["Idefics2Config"], "models.imagegpt": ["ImageGPTConfig"], "models.informer": ["InformerConfig"], "models.instructblip": [ "InstructBlipConfig", "InstructBlipProcessor", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "models.jamba": ["JambaConfig"], "models.jukebox": [ "JukeboxConfig", "JukeboxPriorConfig", "JukeboxTokenizer", "JukeboxVQVAEConfig", ], "models.kosmos2": [ "Kosmos2Config", "Kosmos2Processor", ], "models.layoutlm": [ "LayoutLMConfig", "LayoutLMTokenizer", ], "models.layoutlmv2": [ "LayoutLMv2Config", "LayoutLMv2FeatureExtractor", "LayoutLMv2ImageProcessor", "LayoutLMv2Processor", "LayoutLMv2Tokenizer", ], "models.layoutlmv3": [ "LayoutLMv3Config", "LayoutLMv3FeatureExtractor", "LayoutLMv3ImageProcessor", "LayoutLMv3Processor", "LayoutLMv3Tokenizer", ], "models.layoutxlm": ["LayoutXLMProcessor"], "models.led": ["LEDConfig", "LEDTokenizer"], "models.levit": ["LevitConfig"], "models.lilt": ["LiltConfig"], "models.llama": ["LlamaConfig"], "models.llava": [ "LlavaConfig", "LlavaProcessor", ], "models.llava_next": [ "LlavaNextConfig", "LlavaNextProcessor", ], "models.longformer": [ "LongformerConfig", "LongformerTokenizer", ], "models.longt5": ["LongT5Config"], "models.luke": [ "LukeConfig", "LukeTokenizer", ], "models.lxmert": [ "LxmertConfig", "LxmertTokenizer", ], "models.m2m_100": ["M2M100Config"], "models.mamba": ["MambaConfig"], "models.marian": ["MarianConfig"], "models.markuplm": [ "MarkupLMConfig", "MarkupLMFeatureExtractor", "MarkupLMProcessor", "MarkupLMTokenizer", ], "models.mask2former": ["Mask2FormerConfig"], "models.maskformer": [ "MaskFormerConfig", "MaskFormerSwinConfig", ], "models.mbart": ["MBartConfig"], "models.mbart50": [], "models.mega": ["MegaConfig"], "models.megatron_bert": ["MegatronBertConfig"], "models.megatron_gpt2": [], "models.mgp_str": [ "MgpstrConfig", "MgpstrProcessor", "MgpstrTokenizer", ], "models.mistral": ["MistralConfig"], "models.mixtral": ["MixtralConfig"], "models.mluke": [], "models.mobilebert": [ "MobileBertConfig", "MobileBertTokenizer", ], "models.mobilenet_v1": ["MobileNetV1Config"], "models.mobilenet_v2": ["MobileNetV2Config"], "models.mobilevit": ["MobileViTConfig"], "models.mobilevitv2": ["MobileViTV2Config"], "models.mpnet": [ "MPNetConfig", "MPNetTokenizer", ], "models.mpt": ["MptConfig"], "models.mra": ["MraConfig"], "models.mt5": ["MT5Config"], "models.musicgen": [ "MusicgenConfig", "MusicgenDecoderConfig", ], "models.musicgen_melody": [ "MusicgenMelodyConfig", "MusicgenMelodyDecoderConfig", ], "models.mvp": ["MvpConfig", "MvpTokenizer"], "models.nat": ["NatConfig"], "models.nezha": ["NezhaConfig"], "models.nllb": [], "models.nllb_moe": ["NllbMoeConfig"], "models.nougat": ["NougatProcessor"], "models.nystromformer": ["NystromformerConfig"], "models.olmo": ["OlmoConfig"], "models.oneformer": [ "OneFormerConfig", "OneFormerProcessor", ], "models.openai": [ "OpenAIGPTConfig", "OpenAIGPTTokenizer", ], "models.opt": ["OPTConfig"], "models.owlv2": [ "Owlv2Config", "Owlv2Processor", "Owlv2TextConfig", "Owlv2VisionConfig", ], "models.owlvit": [ "OwlViTConfig", "OwlViTProcessor", "OwlViTTextConfig", "OwlViTVisionConfig", ], "models.patchtsmixer": ["PatchTSMixerConfig"], "models.patchtst": ["PatchTSTConfig"], "models.pegasus": [ "PegasusConfig", "PegasusTokenizer", ], "models.pegasus_x": ["PegasusXConfig"], "models.perceiver": [ "PerceiverConfig", "PerceiverTokenizer", ], "models.persimmon": ["PersimmonConfig"], "models.phi": ["PhiConfig"], "models.phi3": ["Phi3Config"], "models.phobert": ["PhobertTokenizer"], "models.pix2struct": [ "Pix2StructConfig", "Pix2StructProcessor", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "models.plbart": ["PLBartConfig"], "models.poolformer": ["PoolFormerConfig"], "models.pop2piano": ["Pop2PianoConfig"], "models.prophetnet": [ "ProphetNetConfig", "ProphetNetTokenizer", ], "models.pvt": ["PvtConfig"], "models.pvt_v2": ["PvtV2Config"], "models.qdqbert": ["QDQBertConfig"], "models.qwen2": [ "Qwen2Config", "Qwen2Tokenizer", ], "models.qwen2_moe": ["Qwen2MoeConfig"], "models.rag": ["RagConfig", "RagRetriever", "RagTokenizer"], "models.realm": [ "RealmConfig", "RealmTokenizer", ], "models.recurrent_gemma": ["RecurrentGemmaConfig"], "models.reformer": ["ReformerConfig"], "models.regnet": ["RegNetConfig"], "models.rembert": ["RemBertConfig"], "models.resnet": ["ResNetConfig"], "models.roberta": [ "RobertaConfig", "RobertaTokenizer", ], "models.roberta_prelayernorm": ["RobertaPreLayerNormConfig"], "models.roc_bert": [ "RoCBertConfig", "RoCBertTokenizer", ], "models.roformer": [ "RoFormerConfig", "RoFormerTokenizer", ], "models.rwkv": ["RwkvConfig"], "models.sam": [ "SamConfig", "SamMaskDecoderConfig", "SamProcessor", "SamPromptEncoderConfig", "SamVisionConfig", ], "models.seamless_m4t": [ "SeamlessM4TConfig", "SeamlessM4TFeatureExtractor", "SeamlessM4TProcessor", ], "models.seamless_m4t_v2": ["SeamlessM4Tv2Config"], "models.segformer": ["SegformerConfig"], "models.seggpt": ["SegGptConfig"], "models.sew": ["SEWConfig"], "models.sew_d": ["SEWDConfig"], "models.siglip": [ "SiglipConfig", "SiglipProcessor", "SiglipTextConfig", "SiglipVisionConfig", ], "models.speech_encoder_decoder": ["SpeechEncoderDecoderConfig"], "models.speech_to_text": [ "Speech2TextConfig", "Speech2TextFeatureExtractor", "Speech2TextProcessor", ], "models.speech_to_text_2": [ "Speech2Text2Config", "Speech2Text2Processor", "Speech2Text2Tokenizer", ], "models.speecht5": [ "SpeechT5Config", "SpeechT5FeatureExtractor", "SpeechT5HifiGanConfig", "SpeechT5Processor", ], "models.splinter": [ "SplinterConfig", "SplinterTokenizer", ], "models.squeezebert": [ "SqueezeBertConfig", "SqueezeBertTokenizer", ], "models.stablelm": ["StableLmConfig"], "models.starcoder2": ["Starcoder2Config"], "models.superpoint": ["SuperPointConfig"], "models.swiftformer": ["SwiftFormerConfig"], "models.swin": ["SwinConfig"], "models.swin2sr": ["Swin2SRConfig"], "models.swinv2": ["Swinv2Config"], "models.switch_transformers": ["SwitchTransformersConfig"], "models.t5": ["T5Config"], "models.table_transformer": ["TableTransformerConfig"], "models.tapas": [ "TapasConfig", "TapasTokenizer", ], "models.time_series_transformer": ["TimeSeriesTransformerConfig"], "models.timesformer": ["TimesformerConfig"], "models.timm_backbone": ["TimmBackboneConfig"], "models.trocr": [ "TrOCRConfig", "TrOCRProcessor", ], "models.tvlt": [ "TvltConfig", "TvltFeatureExtractor", "TvltProcessor", ], "models.tvp": [ "TvpConfig", "TvpProcessor", ], "models.udop": [ "UdopConfig", "UdopProcessor", ], "models.umt5": ["UMT5Config"], "models.unispeech": ["UniSpeechConfig"], "models.unispeech_sat": ["UniSpeechSatConfig"], "models.univnet": [ "UnivNetConfig", "UnivNetFeatureExtractor", ], "models.upernet": ["UperNetConfig"], "models.videomae": ["VideoMAEConfig"], "models.vilt": [ "ViltConfig", "ViltFeatureExtractor", "ViltImageProcessor", "ViltProcessor", ], "models.vipllava": ["VipLlavaConfig"], "models.vision_encoder_decoder": ["VisionEncoderDecoderConfig"], "models.vision_text_dual_encoder": [ "VisionTextDualEncoderConfig", "VisionTextDualEncoderProcessor", ], "models.visual_bert": ["VisualBertConfig"], "models.vit": ["ViTConfig"], "models.vit_hybrid": ["ViTHybridConfig"], "models.vit_mae": ["ViTMAEConfig"], "models.vit_msn": ["ViTMSNConfig"], "models.vitdet": ["VitDetConfig"], "models.vitmatte": ["VitMatteConfig"], "models.vits": [ "VitsConfig", "VitsTokenizer", ], "models.vivit": ["VivitConfig"], "models.wav2vec2": [ "Wav2Vec2Config", "Wav2Vec2CTCTokenizer", "Wav2Vec2FeatureExtractor", "Wav2Vec2Processor", "Wav2Vec2Tokenizer", ], "models.wav2vec2_bert": [ "Wav2Vec2BertConfig", "Wav2Vec2BertProcessor", ], "models.wav2vec2_conformer": ["Wav2Vec2ConformerConfig"], "models.wav2vec2_phoneme": ["Wav2Vec2PhonemeCTCTokenizer"], "models.wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"], "models.wavlm": ["WavLMConfig"], "models.whisper": [ "WhisperConfig", "WhisperFeatureExtractor", "WhisperProcessor", "WhisperTokenizer", ], "models.x_clip": [ "XCLIPConfig", "XCLIPProcessor", "XCLIPTextConfig", "XCLIPVisionConfig", ], "models.xglm": ["XGLMConfig"], "models.xlm": ["XLMConfig", "XLMTokenizer"], "models.xlm_prophetnet": ["XLMProphetNetConfig"], "models.xlm_roberta": ["XLMRobertaConfig"], "models.xlm_roberta_xl": ["XLMRobertaXLConfig"], "models.xlnet": ["XLNetConfig"], "models.xmod": ["XmodConfig"], "models.yolos": ["YolosConfig"], "models.yoso": ["YosoConfig"], "onnx": [], "pipelines": [ "AudioClassificationPipeline", "AutomaticSpeechRecognitionPipeline", "Conversation", "ConversationalPipeline", "CsvPipelineDataFormat", "DepthEstimationPipeline", "DocumentQuestionAnsweringPipeline", "FeatureExtractionPipeline", "FillMaskPipeline", "ImageClassificationPipeline", "ImageFeatureExtractionPipeline", "ImageSegmentationPipeline", "ImageToImagePipeline", "ImageToTextPipeline", "JsonPipelineDataFormat", "MaskGenerationPipeline", "NerPipeline", "ObjectDetectionPipeline", "PipedPipelineDataFormat", "Pipeline", "PipelineDataFormat", "QuestionAnsweringPipeline", "SummarizationPipeline", "TableQuestionAnsweringPipeline", "Text2TextGenerationPipeline", "TextClassificationPipeline", "TextGenerationPipeline", "TextToAudioPipeline", "TokenClassificationPipeline", "TranslationPipeline", "VideoClassificationPipeline", "VisualQuestionAnsweringPipeline", "ZeroShotAudioClassificationPipeline", "ZeroShotClassificationPipeline", "ZeroShotImageClassificationPipeline", "ZeroShotObjectDetectionPipeline", "pipeline", ], "processing_utils": ["ProcessorMixin"], "quantizers": [], "testing_utils": [], "tokenization_utils": ["PreTrainedTokenizer"], "tokenization_utils_base": [ "AddedToken", "BatchEncoding", "CharSpan", "PreTrainedTokenizerBase", "SpecialTokensMixin", "TokenSpan", ], "trainer_callback": [ "DefaultFlowCallback", "EarlyStoppingCallback", "PrinterCallback", "ProgressCallback", "TrainerCallback", "TrainerControl", "TrainerState", ], "trainer_utils": [ "EvalPrediction", "IntervalStrategy", "SchedulerType", "enable_full_determinism", "set_seed", ], "training_args": ["TrainingArguments"], "training_args_seq2seq": ["Seq2SeqTrainingArguments"], "training_args_tf": ["TFTrainingArguments"], "utils": [ "CONFIG_NAME", "MODEL_CARD_NAME", "PYTORCH_PRETRAINED_BERT_CACHE", "PYTORCH_TRANSFORMERS_CACHE", "SPIECE_UNDERLINE", "TF2_WEIGHTS_NAME", "TF_WEIGHTS_NAME", "TRANSFORMERS_CACHE", "WEIGHTS_NAME", "TensorType", "add_end_docstrings", "add_start_docstrings", "is_apex_available", "is_av_available", "is_bitsandbytes_available", "is_datasets_available", "is_decord_available", "is_faiss_available", "is_flax_available", "is_keras_nlp_available", "is_phonemizer_available", "is_psutil_available", "is_py3nvml_available", "is_pyctcdecode_available", "is_sacremoses_available", "is_safetensors_available", "is_scipy_available", "is_sentencepiece_available", "is_sklearn_available", "is_speech_available", "is_tensorflow_text_available", "is_tf_available", "is_timm_available", "is_tokenizers_available", "is_torch_available", "is_torch_mlu_available", "is_torch_neuroncore_available", "is_torch_npu_available", "is_torch_tpu_available", "is_torchvision_available", "is_torch_xla_available", "is_torch_xpu_available", "is_vision_available", "logging", ], "utils.quantization_config": [ "AqlmConfig", "AwqConfig", "BitsAndBytesConfig", "EetqConfig", "GPTQConfig", "HqqConfig", "QuantoConfig", ], } # sentencepiece-backed objects try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_sentencepiece_objects _import_structure["utils.dummy_sentencepiece_objects"] = [ name for name in dir(dummy_sentencepiece_objects) if not name.startswith("_") ] else: _import_structure["models.albert"].append("AlbertTokenizer") _import_structure["models.barthez"].append("BarthezTokenizer") _import_structure["models.bartpho"].append("BartphoTokenizer") _import_structure["models.bert_generation"].append("BertGenerationTokenizer") _import_structure["models.big_bird"].append("BigBirdTokenizer") _import_structure["models.camembert"].append("CamembertTokenizer") _import_structure["models.code_llama"].append("CodeLlamaTokenizer") _import_structure["models.cpm"].append("CpmTokenizer") _import_structure["models.deberta_v2"].append("DebertaV2Tokenizer") _import_structure["models.ernie_m"].append("ErnieMTokenizer") _import_structure["models.fnet"].append("FNetTokenizer") _import_structure["models.gemma"].append("GemmaTokenizer") _import_structure["models.gpt_sw3"].append("GPTSw3Tokenizer") _import_structure["models.layoutxlm"].append("LayoutXLMTokenizer") _import_structure["models.llama"].append("LlamaTokenizer") _import_structure["models.m2m_100"].append("M2M100Tokenizer") _import_structure["models.marian"].append("MarianTokenizer") _import_structure["models.mbart"].append("MBartTokenizer") _import_structure["models.mbart50"].append("MBart50Tokenizer") _import_structure["models.mluke"].append("MLukeTokenizer") _import_structure["models.mt5"].append("MT5Tokenizer") _import_structure["models.nllb"].append("NllbTokenizer") _import_structure["models.pegasus"].append("PegasusTokenizer") _import_structure["models.plbart"].append("PLBartTokenizer") _import_structure["models.reformer"].append("ReformerTokenizer") _import_structure["models.rembert"].append("RemBertTokenizer") _import_structure["models.seamless_m4t"].append("SeamlessM4TTokenizer") _import_structure["models.siglip"].append("SiglipTokenizer") _import_structure["models.speech_to_text"].append("Speech2TextTokenizer") _import_structure["models.speecht5"].append("SpeechT5Tokenizer") _import_structure["models.t5"].append("T5Tokenizer") _import_structure["models.udop"].append("UdopTokenizer") _import_structure["models.xglm"].append("XGLMTokenizer") _import_structure["models.xlm_prophetnet"].append("XLMProphetNetTokenizer") _import_structure["models.xlm_roberta"].append("XLMRobertaTokenizer") _import_structure["models.xlnet"].append("XLNetTokenizer") # tokenizers-backed objects try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_tokenizers_objects _import_structure["utils.dummy_tokenizers_objects"] = [ name for name in dir(dummy_tokenizers_objects) if not name.startswith("_") ] else: # Fast tokenizers structure _import_structure["models.albert"].append("AlbertTokenizerFast") _import_structure["models.bart"].append("BartTokenizerFast") _import_structure["models.barthez"].append("BarthezTokenizerFast") _import_structure["models.bert"].append("BertTokenizerFast") _import_structure["models.big_bird"].append("BigBirdTokenizerFast") _import_structure["models.blenderbot"].append("BlenderbotTokenizerFast") _import_structure["models.blenderbot_small"].append("BlenderbotSmallTokenizerFast") _import_structure["models.bloom"].append("BloomTokenizerFast") _import_structure["models.camembert"].append("CamembertTokenizerFast") _import_structure["models.clip"].append("CLIPTokenizerFast") _import_structure["models.code_llama"].append("CodeLlamaTokenizerFast") _import_structure["models.codegen"].append("CodeGenTokenizerFast") _import_structure["models.cohere"].append("CohereTokenizerFast") _import_structure["models.convbert"].append("ConvBertTokenizerFast") _import_structure["models.cpm"].append("CpmTokenizerFast") _import_structure["models.deberta"].append("DebertaTokenizerFast") _import_structure["models.deberta_v2"].append("DebertaV2TokenizerFast") _import_structure["models.deprecated.retribert"].append("RetriBertTokenizerFast") _import_structure["models.distilbert"].append("DistilBertTokenizerFast") _import_structure["models.dpr"].extend( [ "DPRContextEncoderTokenizerFast", "DPRQuestionEncoderTokenizerFast", "DPRReaderTokenizerFast", ] ) _import_structure["models.electra"].append("ElectraTokenizerFast") _import_structure["models.fnet"].append("FNetTokenizerFast") _import_structure["models.funnel"].append("FunnelTokenizerFast") _import_structure["models.gemma"].append("GemmaTokenizerFast") _import_structure["models.gpt2"].append("GPT2TokenizerFast") _import_structure["models.gpt_neox"].append("GPTNeoXTokenizerFast") _import_structure["models.gpt_neox_japanese"].append("GPTNeoXJapaneseTokenizer") _import_structure["models.herbert"].append("HerbertTokenizerFast") _import_structure["models.layoutlm"].append("LayoutLMTokenizerFast") _import_structure["models.layoutlmv2"].append("LayoutLMv2TokenizerFast") _import_structure["models.layoutlmv3"].append("LayoutLMv3TokenizerFast") _import_structure["models.layoutxlm"].append("LayoutXLMTokenizerFast") _import_structure["models.led"].append("LEDTokenizerFast") _import_structure["models.llama"].append("LlamaTokenizerFast") _import_structure["models.longformer"].append("LongformerTokenizerFast") _import_structure["models.lxmert"].append("LxmertTokenizerFast") _import_structure["models.markuplm"].append("MarkupLMTokenizerFast") _import_structure["models.mbart"].append("MBartTokenizerFast") _import_structure["models.mbart50"].append("MBart50TokenizerFast") _import_structure["models.mobilebert"].append("MobileBertTokenizerFast") _import_structure["models.mpnet"].append("MPNetTokenizerFast") _import_structure["models.mt5"].append("MT5TokenizerFast") _import_structure["models.mvp"].append("MvpTokenizerFast") _import_structure["models.nllb"].append("NllbTokenizerFast") _import_structure["models.nougat"].append("NougatTokenizerFast") _import_structure["models.openai"].append("OpenAIGPTTokenizerFast") _import_structure["models.pegasus"].append("PegasusTokenizerFast") _import_structure["models.qwen2"].append("Qwen2TokenizerFast") _import_structure["models.realm"].append("RealmTokenizerFast") _import_structure["models.reformer"].append("ReformerTokenizerFast") _import_structure["models.rembert"].append("RemBertTokenizerFast") _import_structure["models.roberta"].append("RobertaTokenizerFast") _import_structure["models.roformer"].append("RoFormerTokenizerFast") _import_structure["models.seamless_m4t"].append("SeamlessM4TTokenizerFast") _import_structure["models.splinter"].append("SplinterTokenizerFast") _import_structure["models.squeezebert"].append("SqueezeBertTokenizerFast") _import_structure["models.t5"].append("T5TokenizerFast") _import_structure["models.udop"].append("UdopTokenizerFast") _import_structure["models.whisper"].append("WhisperTokenizerFast") _import_structure["models.xglm"].append("XGLMTokenizerFast") _import_structure["models.xlm_roberta"].append("XLMRobertaTokenizerFast") _import_structure["models.xlnet"].append("XLNetTokenizerFast") _import_structure["tokenization_utils_fast"] = ["PreTrainedTokenizerFast"] try: if not (is_sentencepiece_available() and is_tokenizers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_sentencepiece_and_tokenizers_objects _import_structure["utils.dummy_sentencepiece_and_tokenizers_objects"] = [ name for name in dir(dummy_sentencepiece_and_tokenizers_objects) if not name.startswith("_") ] else: _import_structure["convert_slow_tokenizer"] = [ "SLOW_TO_FAST_CONVERTERS", "convert_slow_tokenizer", ] # Tensorflow-text-specific objects try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_tensorflow_text_objects _import_structure["utils.dummy_tensorflow_text_objects"] = [ name for name in dir(dummy_tensorflow_text_objects) if not name.startswith("_") ] else: _import_structure["models.bert"].append("TFBertTokenizer") # keras-nlp-specific objects try: if not is_keras_nlp_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_keras_nlp_objects _import_structure["utils.dummy_keras_nlp_objects"] = [ name for name in dir(dummy_keras_nlp_objects) if not name.startswith("_") ] else: _import_structure["models.gpt2"].append("TFGPT2Tokenizer") # Vision-specific objects try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_vision_objects _import_structure["utils.dummy_vision_objects"] = [ name for name in dir(dummy_vision_objects) if not name.startswith("_") ] else: _import_structure["image_processing_utils"] = ["ImageProcessingMixin"] _import_structure["image_utils"] = ["ImageFeatureExtractionMixin"] _import_structure["models.beit"].extend(["BeitFeatureExtractor", "BeitImageProcessor"]) _import_structure["models.bit"].extend(["BitImageProcessor"]) _import_structure["models.blip"].extend(["BlipImageProcessor"]) _import_structure["models.bridgetower"].append("BridgeTowerImageProcessor") _import_structure["models.chinese_clip"].extend(["ChineseCLIPFeatureExtractor", "ChineseCLIPImageProcessor"]) _import_structure["models.clip"].extend(["CLIPFeatureExtractor", "CLIPImageProcessor"]) _import_structure["models.conditional_detr"].extend( ["ConditionalDetrFeatureExtractor", "ConditionalDetrImageProcessor"] ) _import_structure["models.convnext"].extend(["ConvNextFeatureExtractor", "ConvNextImageProcessor"]) _import_structure["models.deformable_detr"].extend( ["DeformableDetrFeatureExtractor", "DeformableDetrImageProcessor"] ) _import_structure["models.deit"].extend(["DeiTFeatureExtractor", "DeiTImageProcessor"]) _import_structure["models.deta"].append("DetaImageProcessor") _import_structure["models.detr"].extend(["DetrFeatureExtractor", "DetrImageProcessor"]) _import_structure["models.donut"].extend(["DonutFeatureExtractor", "DonutImageProcessor"]) _import_structure["models.dpt"].extend(["DPTFeatureExtractor", "DPTImageProcessor"]) _import_structure["models.efficientformer"].append("EfficientFormerImageProcessor") _import_structure["models.efficientnet"].append("EfficientNetImageProcessor") _import_structure["models.flava"].extend(["FlavaFeatureExtractor", "FlavaImageProcessor", "FlavaProcessor"]) _import_structure["models.fuyu"].extend(["FuyuImageProcessor", "FuyuProcessor"]) _import_structure["models.glpn"].extend(["GLPNFeatureExtractor", "GLPNImageProcessor"]) _import_structure["models.grounding_dino"].extend(["GroundingDinoImageProcessor"]) _import_structure["models.idefics"].extend(["IdeficsImageProcessor"]) _import_structure["models.idefics2"].extend(["Idefics2ImageProcessor"]) _import_structure["models.imagegpt"].extend(["ImageGPTFeatureExtractor", "ImageGPTImageProcessor"]) _import_structure["models.layoutlmv2"].extend(["LayoutLMv2FeatureExtractor", "LayoutLMv2ImageProcessor"]) _import_structure["models.layoutlmv3"].extend(["LayoutLMv3FeatureExtractor", "LayoutLMv3ImageProcessor"]) _import_structure["models.levit"].extend(["LevitFeatureExtractor", "LevitImageProcessor"]) _import_structure["models.llava_next"].append("LlavaNextImageProcessor") _import_structure["models.mask2former"].append("Mask2FormerImageProcessor") _import_structure["models.maskformer"].extend(["MaskFormerFeatureExtractor", "MaskFormerImageProcessor"]) _import_structure["models.mobilenet_v1"].extend(["MobileNetV1FeatureExtractor", "MobileNetV1ImageProcessor"]) _import_structure["models.mobilenet_v2"].extend(["MobileNetV2FeatureExtractor", "MobileNetV2ImageProcessor"]) _import_structure["models.mobilevit"].extend(["MobileViTFeatureExtractor", "MobileViTImageProcessor"]) _import_structure["models.nougat"].append("NougatImageProcessor") _import_structure["models.oneformer"].extend(["OneFormerImageProcessor"]) _import_structure["models.owlv2"].append("Owlv2ImageProcessor") _import_structure["models.owlvit"].extend(["OwlViTFeatureExtractor", "OwlViTImageProcessor"]) _import_structure["models.perceiver"].extend(["PerceiverFeatureExtractor", "PerceiverImageProcessor"]) _import_structure["models.pix2struct"].extend(["Pix2StructImageProcessor"]) _import_structure["models.poolformer"].extend(["PoolFormerFeatureExtractor", "PoolFormerImageProcessor"]) _import_structure["models.pvt"].extend(["PvtImageProcessor"]) _import_structure["models.sam"].extend(["SamImageProcessor"]) _import_structure["models.segformer"].extend(["SegformerFeatureExtractor", "SegformerImageProcessor"]) _import_structure["models.seggpt"].extend(["SegGptImageProcessor"]) _import_structure["models.siglip"].append("SiglipImageProcessor") _import_structure["models.superpoint"].extend(["SuperPointImageProcessor"]) _import_structure["models.swin2sr"].append("Swin2SRImageProcessor") _import_structure["models.tvlt"].append("TvltImageProcessor") _import_structure["models.tvp"].append("TvpImageProcessor") _import_structure["models.videomae"].extend(["VideoMAEFeatureExtractor", "VideoMAEImageProcessor"]) _import_structure["models.vilt"].extend(["ViltFeatureExtractor", "ViltImageProcessor", "ViltProcessor"]) _import_structure["models.vit"].extend(["ViTFeatureExtractor", "ViTImageProcessor"]) _import_structure["models.vit_hybrid"].extend(["ViTHybridImageProcessor"]) _import_structure["models.vitmatte"].append("VitMatteImageProcessor") _import_structure["models.vivit"].append("VivitImageProcessor") _import_structure["models.yolos"].extend(["YolosFeatureExtractor", "YolosImageProcessor"]) # PyTorch-backed objects try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_pt_objects _import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")] else: _import_structure["activations"] = [] _import_structure["benchmark.benchmark"] = ["PyTorchBenchmark"] _import_structure["benchmark.benchmark_args"] = ["PyTorchBenchmarkArguments"] _import_structure["cache_utils"] = ["Cache", "DynamicCache", "SinkCache", "StaticCache"] _import_structure["data.datasets"] = [ "GlueDataset", "GlueDataTrainingArguments", "LineByLineTextDataset", "LineByLineWithRefDataset", "LineByLineWithSOPTextDataset", "SquadDataset", "SquadDataTrainingArguments", "TextDataset", "TextDatasetForNextSentencePrediction", ] _import_structure["generation"].extend( [ "AlternatingCodebooksLogitsProcessor", "BeamScorer", "BeamSearchScorer", "ClassifierFreeGuidanceLogitsProcessor", "ConstrainedBeamSearchScorer", "Constraint", "ConstraintListState", "DisjunctiveConstraint", "EncoderNoRepeatNGramLogitsProcessor", "EncoderRepetitionPenaltyLogitsProcessor", "EosTokenCriteria", "EpsilonLogitsWarper", "EtaLogitsWarper", "ExponentialDecayLengthPenalty", "ForcedBOSTokenLogitsProcessor", "ForcedEOSTokenLogitsProcessor", "ForceTokensLogitsProcessor", "GenerationMixin", "HammingDiversityLogitsProcessor", "InfNanRemoveLogitsProcessor", "LogitNormalization", "LogitsProcessor", "LogitsProcessorList", "LogitsWarper", "MaxLengthCriteria", "MaxTimeCriteria", "MinLengthLogitsProcessor", "MinNewTokensLengthLogitsProcessor", "MinPLogitsWarper", "NoBadWordsLogitsProcessor", "NoRepeatNGramLogitsProcessor", "PhrasalConstraint", "PrefixConstrainedLogitsProcessor", "RepetitionPenaltyLogitsProcessor", "SequenceBiasLogitsProcessor", "StoppingCriteria", "StoppingCriteriaList", "StopStringCriteria", "SuppressTokensAtBeginLogitsProcessor", "SuppressTokensLogitsProcessor", "TemperatureLogitsWarper", "TopKLogitsWarper", "TopPLogitsWarper", "TypicalLogitsWarper", "UnbatchedClassifierFreeGuidanceLogitsProcessor", "WhisperTimeStampLogitsProcessor", ] ) _import_structure["modeling_outputs"] = [] _import_structure["modeling_utils"] = ["PreTrainedModel"] # PyTorch models structure _import_structure["models.albert"].extend( [ "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] ) _import_structure["models.align"].extend( [ "AlignModel", "AlignPreTrainedModel", "AlignTextModel", "AlignVisionModel", ] ) _import_structure["models.altclip"].extend( [ "AltCLIPModel", "AltCLIPPreTrainedModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] ) _import_structure["models.audio_spectrogram_transformer"].extend( [ "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] ) _import_structure["models.auto"].extend( [ "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING", "MODEL_FOR_AUDIO_XVECTOR_MAPPING", "MODEL_FOR_BACKBONE_MAPPING", "MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING", "MODEL_FOR_CAUSAL_LM_MAPPING", "MODEL_FOR_CTC_MAPPING", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", "MODEL_FOR_IMAGE_MAPPING", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING", "MODEL_FOR_IMAGE_TO_IMAGE_MAPPING", "MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING", "MODEL_FOR_KEYPOINT_DETECTION_MAPPING", "MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING", "MODEL_FOR_MASKED_LM_MAPPING", "MODEL_FOR_MASK_GENERATION_MAPPING", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", "MODEL_FOR_OBJECT_DETECTION_MAPPING", "MODEL_FOR_PRETRAINING_MAPPING", "MODEL_FOR_QUESTION_ANSWERING_MAPPING", "MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING", "MODEL_FOR_TEXT_ENCODING_MAPPING", "MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING", "MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING", "MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING", "MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING", "MODEL_FOR_VISION_2_SEQ_MAPPING", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING", "MODEL_MAPPING", "MODEL_WITH_LM_HEAD_MAPPING", "AutoBackbone", "AutoModel", "AutoModelForAudioClassification", "AutoModelForAudioFrameClassification", "AutoModelForAudioXVector", "AutoModelForCausalLM", "AutoModelForCTC", "AutoModelForDepthEstimation", "AutoModelForDocumentQuestionAnswering", "AutoModelForImageClassification", "AutoModelForImageSegmentation", "AutoModelForImageToImage", "AutoModelForInstanceSegmentation", "AutoModelForKeypointDetection", "AutoModelForMaskedImageModeling", "AutoModelForMaskedLM", "AutoModelForMaskGeneration", "AutoModelForMultipleChoice", "AutoModelForNextSentencePrediction", "AutoModelForObjectDetection", "AutoModelForPreTraining", "AutoModelForQuestionAnswering", "AutoModelForSemanticSegmentation", "AutoModelForSeq2SeqLM", "AutoModelForSequenceClassification", "AutoModelForSpeechSeq2Seq", "AutoModelForTableQuestionAnswering", "AutoModelForTextEncoding", "AutoModelForTextToSpectrogram", "AutoModelForTextToWaveform", "AutoModelForTokenClassification", "AutoModelForUniversalSegmentation", "AutoModelForVideoClassification", "AutoModelForVision2Seq", "AutoModelForVisualQuestionAnswering", "AutoModelForZeroShotImageClassification", "AutoModelForZeroShotObjectDetection", "AutoModelWithLMHead", ] ) _import_structure["models.autoformer"].extend( [ "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] ) _import_structure["models.bark"].extend( [ "BarkCausalModel", "BarkCoarseModel", "BarkFineModel", "BarkModel", "BarkPreTrainedModel", "BarkSemanticModel", ] ) _import_structure["models.bart"].extend( [ "BartForCausalLM", "BartForConditionalGeneration", "BartForQuestionAnswering", "BartForSequenceClassification", "BartModel", "BartPretrainedModel", "BartPreTrainedModel", "PretrainedBartModel", ] ) _import_structure["models.beit"].extend( [ "BeitBackbone", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] ) _import_structure["models.bert"].extend( [ "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] ) _import_structure["models.bert_generation"].extend( [ "BertGenerationDecoder", "BertGenerationEncoder", "BertGenerationPreTrainedModel", "load_tf_weights_in_bert_generation", ] ) _import_structure["models.big_bird"].extend( [ "BigBirdForCausalLM", "BigBirdForMaskedLM", "BigBirdForMultipleChoice", "BigBirdForPreTraining", "BigBirdForQuestionAnswering", "BigBirdForSequenceClassification", "BigBirdForTokenClassification", "BigBirdLayer", "BigBirdModel", "BigBirdPreTrainedModel", "load_tf_weights_in_big_bird", ] ) _import_structure["models.bigbird_pegasus"].extend( [ "BigBirdPegasusForCausalLM", "BigBirdPegasusForConditionalGeneration", "BigBirdPegasusForQuestionAnswering", "BigBirdPegasusForSequenceClassification", "BigBirdPegasusModel", "BigBirdPegasusPreTrainedModel", ] ) _import_structure["models.biogpt"].extend( [ "BioGptForCausalLM", "BioGptForSequenceClassification", "BioGptForTokenClassification", "BioGptModel", "BioGptPreTrainedModel", ] ) _import_structure["models.bit"].extend( [ "BitBackbone", "BitForImageClassification", "BitModel", "BitPreTrainedModel", ] ) _import_structure["models.blenderbot"].extend( [ "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] ) _import_structure["models.blenderbot_small"].extend( [ "BlenderbotSmallForCausalLM", "BlenderbotSmallForConditionalGeneration", "BlenderbotSmallModel", "BlenderbotSmallPreTrainedModel", ] ) _import_structure["models.blip"].extend( [ "BlipForConditionalGeneration", "BlipForImageTextRetrieval", "BlipForQuestionAnswering", "BlipModel", "BlipPreTrainedModel", "BlipTextModel", "BlipVisionModel", ] ) _import_structure["models.blip_2"].extend( [ "Blip2ForConditionalGeneration", "Blip2Model", "Blip2PreTrainedModel", "Blip2QFormerModel", "Blip2VisionModel", ] ) _import_structure["models.bloom"].extend( [ "BloomForCausalLM", "BloomForQuestionAnswering", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomModel", "BloomPreTrainedModel", ] ) _import_structure["models.bridgetower"].extend( [ "BridgeTowerForContrastiveLearning", "BridgeTowerForImageAndTextRetrieval", "BridgeTowerForMaskedLM", "BridgeTowerModel", "BridgeTowerPreTrainedModel", ] ) _import_structure["models.bros"].extend( [ "BrosForTokenClassification", "BrosModel", "BrosPreTrainedModel", "BrosProcessor", "BrosSpadeEEForTokenClassification", "BrosSpadeELForTokenClassification", ] ) _import_structure["models.camembert"].extend( [ "CamembertForCausalLM", "CamembertForMaskedLM", "CamembertForMultipleChoice", "CamembertForQuestionAnswering", "CamembertForSequenceClassification", "CamembertForTokenClassification", "CamembertModel", "CamembertPreTrainedModel", ] ) _import_structure["models.canine"].extend( [ "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] ) _import_structure["models.chinese_clip"].extend( [ "ChineseCLIPModel", "ChineseCLIPPreTrainedModel", "ChineseCLIPTextModel", "ChineseCLIPVisionModel", ] ) _import_structure["models.clap"].extend( [ "ClapAudioModel", "ClapAudioModelWithProjection", "ClapFeatureExtractor", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", ] ) _import_structure["models.clip"].extend( [ "CLIPForImageClassification", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] ) _import_structure["models.clipseg"].extend( [ "CLIPSegForImageSegmentation", "CLIPSegModel", "CLIPSegPreTrainedModel", "CLIPSegTextModel", "CLIPSegVisionModel", ] ) _import_structure["models.clvp"].extend( [ "ClvpDecoder", "ClvpEncoder", "ClvpForCausalLM", "ClvpModel", "ClvpModelForConditionalGeneration", "ClvpPreTrainedModel", ] ) _import_structure["models.codegen"].extend( [ "CodeGenForCausalLM", "CodeGenModel", "CodeGenPreTrainedModel", ] ) _import_structure["models.cohere"].extend(["CohereForCausalLM", "CohereModel", "CoherePreTrainedModel"]) _import_structure["models.conditional_detr"].extend( [ "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] ) _import_structure["models.convbert"].extend( [ "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] ) _import_structure["models.convnext"].extend( [ "ConvNextBackbone", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", ] ) _import_structure["models.convnextv2"].extend( [ "ConvNextV2Backbone", "ConvNextV2ForImageClassification", "ConvNextV2Model", "ConvNextV2PreTrainedModel", ] ) _import_structure["models.cpmant"].extend( [ "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] ) _import_structure["models.ctrl"].extend( [ "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] ) _import_structure["models.cvt"].extend( [ "CvtForImageClassification", "CvtModel", "CvtPreTrainedModel", ] ) _import_structure["models.data2vec"].extend( [ "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", "Data2VecVisionForImageClassification", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] ) _import_structure["models.dbrx"].extend( [ "DbrxForCausalLM", "DbrxModel", "DbrxPreTrainedModel", ] ) _import_structure["models.deberta"].extend( [ "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] ) _import_structure["models.deberta_v2"].extend( [ "DebertaV2ForMaskedLM", "DebertaV2ForMultipleChoice", "DebertaV2ForQuestionAnswering", "DebertaV2ForSequenceClassification", "DebertaV2ForTokenClassification", "DebertaV2Model", "DebertaV2PreTrainedModel", ] ) _import_structure["models.decision_transformer"].extend( [ "DecisionTransformerGPT2Model", "DecisionTransformerGPT2PreTrainedModel", "DecisionTransformerModel", "DecisionTransformerPreTrainedModel", ] ) _import_structure["models.deformable_detr"].extend( [ "DeformableDetrForObjectDetection", "DeformableDetrModel", "DeformableDetrPreTrainedModel", ] ) _import_structure["models.deit"].extend( [ "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] ) _import_structure["models.deprecated.mctct"].extend( [ "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] ) _import_structure["models.deprecated.mmbt"].extend(["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]) _import_structure["models.deprecated.open_llama"].extend( [ "OpenLlamaForCausalLM", "OpenLlamaForSequenceClassification", "OpenLlamaModel", "OpenLlamaPreTrainedModel", ] ) _import_structure["models.deprecated.retribert"].extend( [ "RetriBertModel", "RetriBertPreTrainedModel", ] ) _import_structure["models.deprecated.trajectory_transformer"].extend( [ "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", ] ) _import_structure["models.deprecated.transfo_xl"].extend( [ "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] ) _import_structure["models.deprecated.van"].extend( [ "VanForImageClassification", "VanModel", "VanPreTrainedModel", ] ) _import_structure["models.depth_anything"].extend( [ "DepthAnythingForDepthEstimation", "DepthAnythingPreTrainedModel", ] ) _import_structure["models.deta"].extend( [ "DetaForObjectDetection", "DetaModel", "DetaPreTrainedModel", ] ) _import_structure["models.detr"].extend( [ "DetrForObjectDetection", "DetrForSegmentation", "DetrModel", "DetrPreTrainedModel", ] ) _import_structure["models.dinat"].extend( [ "DinatBackbone", "DinatForImageClassification", "DinatModel", "DinatPreTrainedModel", ] ) _import_structure["models.dinov2"].extend( [ "Dinov2Backbone", "Dinov2ForImageClassification", "Dinov2Model", "Dinov2PreTrainedModel", ] ) _import_structure["models.distilbert"].extend( [ "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] ) _import_structure["models.donut"].extend( [ "DonutSwinModel", "DonutSwinPreTrainedModel", ] ) _import_structure["models.dpr"].extend( [ "DPRContextEncoder", "DPRPretrainedContextEncoder", "DPRPreTrainedModel", "DPRPretrainedQuestionEncoder", "DPRPretrainedReader", "DPRQuestionEncoder", "DPRReader", ] ) _import_structure["models.dpt"].extend( [ "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] ) _import_structure["models.efficientformer"].extend( [ "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] ) _import_structure["models.efficientnet"].extend( [ "EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel", ] ) _import_structure["models.electra"].extend( [ "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] ) _import_structure["models.encodec"].extend( [ "EncodecModel", "EncodecPreTrainedModel", ] ) _import_structure["models.encoder_decoder"].append("EncoderDecoderModel") _import_structure["models.ernie"].extend( [ "ErnieForCausalLM", "ErnieForMaskedLM", "ErnieForMultipleChoice", "ErnieForNextSentencePrediction", "ErnieForPreTraining", "ErnieForQuestionAnswering", "ErnieForSequenceClassification", "ErnieForTokenClassification", "ErnieModel", "ErniePreTrainedModel", ] ) _import_structure["models.ernie_m"].extend( [ "ErnieMForInformationExtraction", "ErnieMForMultipleChoice", "ErnieMForQuestionAnswering", "ErnieMForSequenceClassification", "ErnieMForTokenClassification", "ErnieMModel", "ErnieMPreTrainedModel", ] ) _import_structure["models.esm"].extend( [ "EsmFoldPreTrainedModel", "EsmForMaskedLM", "EsmForProteinFolding", "EsmForSequenceClassification", "EsmForTokenClassification", "EsmModel", "EsmPreTrainedModel", ] ) _import_structure["models.falcon"].extend( [ "FalconForCausalLM", "FalconForQuestionAnswering", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconModel", "FalconPreTrainedModel", ] ) _import_structure["models.fastspeech2_conformer"].extend( [ "FastSpeech2ConformerHifiGan", "FastSpeech2ConformerModel", "FastSpeech2ConformerPreTrainedModel", "FastSpeech2ConformerWithHifiGan", ] ) _import_structure["models.flaubert"].extend( [ "FlaubertForMultipleChoice", "FlaubertForQuestionAnswering", "FlaubertForQuestionAnsweringSimple", "FlaubertForSequenceClassification", "FlaubertForTokenClassification", "FlaubertModel", "FlaubertPreTrainedModel", "FlaubertWithLMHeadModel", ] ) _import_structure["models.flava"].extend( [ "FlavaForPreTraining", "FlavaImageCodebook", "FlavaImageModel", "FlavaModel", "FlavaMultimodalModel", "FlavaPreTrainedModel", "FlavaTextModel", ] ) _import_structure["models.fnet"].extend( [ "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] ) _import_structure["models.focalnet"].extend( [ "FocalNetBackbone", "FocalNetForImageClassification", "FocalNetForMaskedImageModeling", "FocalNetModel", "FocalNetPreTrainedModel", ] ) _import_structure["models.fsmt"].extend(["FSMTForConditionalGeneration", "FSMTModel", "PretrainedFSMTModel"]) _import_structure["models.funnel"].extend( [ "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] ) _import_structure["models.fuyu"].extend(["FuyuForCausalLM", "FuyuPreTrainedModel"]) _import_structure["models.gemma"].extend( [ "GemmaForCausalLM", "GemmaForSequenceClassification", "GemmaModel", "GemmaPreTrainedModel", ] ) _import_structure["models.git"].extend( [ "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] ) _import_structure["models.glpn"].extend( [ "GLPNForDepthEstimation", "GLPNModel", "GLPNPreTrainedModel", ] ) _import_structure["models.gpt2"].extend( [ "GPT2DoubleHeadsModel", "GPT2ForQuestionAnswering", "GPT2ForSequenceClassification", "GPT2ForTokenClassification", "GPT2LMHeadModel", "GPT2Model", "GPT2PreTrainedModel", "load_tf_weights_in_gpt2", ] ) _import_structure["models.gpt_bigcode"].extend( [ "GPTBigCodeForCausalLM", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] ) _import_structure["models.gpt_neo"].extend( [ "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] ) _import_structure["models.gpt_neox"].extend( [ "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] ) _import_structure["models.gpt_neox_japanese"].extend( [ "GPTNeoXJapaneseForCausalLM", "GPTNeoXJapaneseLayer", "GPTNeoXJapaneseModel", "GPTNeoXJapanesePreTrainedModel", ] ) _import_structure["models.gptj"].extend( [ "GPTJForCausalLM", "GPTJForQuestionAnswering", "GPTJForSequenceClassification", "GPTJModel", "GPTJPreTrainedModel", ] ) _import_structure["models.gptsan_japanese"].extend( [ "GPTSanJapaneseForConditionalGeneration", "GPTSanJapaneseModel", "GPTSanJapanesePreTrainedModel", ] ) _import_structure["models.graphormer"].extend( [ "GraphormerForGraphClassification", "GraphormerModel", "GraphormerPreTrainedModel", ] ) _import_structure["models.grounding_dino"].extend( [ "GroundingDinoForObjectDetection", "GroundingDinoModel", "GroundingDinoPreTrainedModel", ] ) _import_structure["models.groupvit"].extend( [ "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] ) _import_structure["models.hubert"].extend( [ "HubertForCTC", "HubertForSequenceClassification", "HubertModel", "HubertPreTrainedModel", ] ) _import_structure["models.ibert"].extend( [ "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] ) _import_structure["models.idefics"].extend( [ "IdeficsForVisionText2Text", "IdeficsModel", "IdeficsPreTrainedModel", "IdeficsProcessor", ] ) _import_structure["models.idefics2"].extend( [ "Idefics2ForConditionalGeneration", "Idefics2Model", "Idefics2PreTrainedModel", "Idefics2Processor", ] ) _import_structure["models.imagegpt"].extend( [ "ImageGPTForCausalImageModeling", "ImageGPTForImageClassification", "ImageGPTModel", "ImageGPTPreTrainedModel", "load_tf_weights_in_imagegpt", ] ) _import_structure["models.informer"].extend( [ "InformerForPrediction", "InformerModel", "InformerPreTrainedModel", ] ) _import_structure["models.instructblip"].extend( [ "InstructBlipForConditionalGeneration", "InstructBlipPreTrainedModel", "InstructBlipQFormerModel", "InstructBlipVisionModel", ] ) _import_structure["models.jamba"].extend( [ "JambaForCausalLM", "JambaForSequenceClassification", "JambaModel", "JambaPreTrainedModel", ] ) _import_structure["models.jukebox"].extend( [ "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxPrior", "JukeboxVQVAE", ] ) _import_structure["models.kosmos2"].extend( [ "Kosmos2ForConditionalGeneration", "Kosmos2Model", "Kosmos2PreTrainedModel", ] ) _import_structure["models.layoutlm"].extend( [ "LayoutLMForMaskedLM", "LayoutLMForQuestionAnswering", "LayoutLMForSequenceClassification", "LayoutLMForTokenClassification", "LayoutLMModel", "LayoutLMPreTrainedModel", ] ) _import_structure["models.layoutlmv2"].extend( [ "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] ) _import_structure["models.layoutlmv3"].extend( [ "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] ) _import_structure["models.led"].extend( [ "LEDForConditionalGeneration", "LEDForQuestionAnswering", "LEDForSequenceClassification", "LEDModel", "LEDPreTrainedModel", ] ) _import_structure["models.levit"].extend( [ "LevitForImageClassification", "LevitForImageClassificationWithTeacher", "LevitModel", "LevitPreTrainedModel", ] ) _import_structure["models.lilt"].extend( [ "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] ) _import_structure["models.llama"].extend( [ "LlamaForCausalLM", "LlamaForQuestionAnswering", "LlamaForSequenceClassification", "LlamaModel", "LlamaPreTrainedModel", ] ) _import_structure["models.llava"].extend( [ "LlavaForConditionalGeneration", "LlavaPreTrainedModel", ] ) _import_structure["models.llava_next"].extend( [ "LlavaNextForConditionalGeneration", "LlavaNextPreTrainedModel", ] ) _import_structure["models.longformer"].extend( [ "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] ) _import_structure["models.longt5"].extend( [ "LongT5EncoderModel", "LongT5ForConditionalGeneration", "LongT5Model", "LongT5PreTrainedModel", ] ) _import_structure["models.luke"].extend( [ "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMaskedLM", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeModel", "LukePreTrainedModel", ] ) _import_structure["models.lxmert"].extend( [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] ) _import_structure["models.m2m_100"].extend( [ "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] ) _import_structure["models.mamba"].extend( [ "MambaForCausalLM", "MambaModel", "MambaPreTrainedModel", ] ) _import_structure["models.marian"].extend(["MarianForCausalLM", "MarianModel", "MarianMTModel"]) _import_structure["models.markuplm"].extend( [ "MarkupLMForQuestionAnswering", "MarkupLMForSequenceClassification", "MarkupLMForTokenClassification", "MarkupLMModel", "MarkupLMPreTrainedModel", ] ) _import_structure["models.mask2former"].extend( [ "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] ) _import_structure["models.maskformer"].extend( [ "MaskFormerForInstanceSegmentation", "MaskFormerModel", "MaskFormerPreTrainedModel", "MaskFormerSwinBackbone", ] ) _import_structure["models.mbart"].extend( [ "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] ) _import_structure["models.mega"].extend( [ "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] ) _import_structure["models.megatron_bert"].extend( [ "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] ) _import_structure["models.mgp_str"].extend( [ "MgpstrForSceneTextRecognition", "MgpstrModel", "MgpstrPreTrainedModel", ] ) _import_structure["models.mistral"].extend( [ "MistralForCausalLM", "MistralForSequenceClassification", "MistralModel", "MistralPreTrainedModel", ] ) _import_structure["models.mixtral"].extend( ["MixtralForCausalLM", "MixtralForSequenceClassification", "MixtralModel", "MixtralPreTrainedModel"] ) _import_structure["models.mobilebert"].extend( [ "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] ) _import_structure["models.mobilenet_v1"].extend( [ "MobileNetV1ForImageClassification", "MobileNetV1Model", "MobileNetV1PreTrainedModel", "load_tf_weights_in_mobilenet_v1", ] ) _import_structure["models.mobilenet_v2"].extend( [ "MobileNetV2ForImageClassification", "MobileNetV2ForSemanticSegmentation", "MobileNetV2Model", "MobileNetV2PreTrainedModel", "load_tf_weights_in_mobilenet_v2", ] ) _import_structure["models.mobilevit"].extend( [ "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] ) _import_structure["models.mobilevitv2"].extend( [ "MobileViTV2ForImageClassification", "MobileViTV2ForSemanticSegmentation", "MobileViTV2Model", "MobileViTV2PreTrainedModel", ] ) _import_structure["models.mpnet"].extend( [ "MPNetForMaskedLM", "MPNetForMultipleChoice", "MPNetForQuestionAnswering", "MPNetForSequenceClassification", "MPNetForTokenClassification", "MPNetLayer", "MPNetModel", "MPNetPreTrainedModel", ] ) _import_structure["models.mpt"].extend( [ "MptForCausalLM", "MptForQuestionAnswering", "MptForSequenceClassification", "MptForTokenClassification", "MptModel", "MptPreTrainedModel", ] ) _import_structure["models.mra"].extend( [ "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraModel", "MraPreTrainedModel", ] ) _import_structure["models.mt5"].extend( [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5ForSequenceClassification", "MT5ForTokenClassification", "MT5Model", "MT5PreTrainedModel", ] ) _import_structure["models.musicgen"].extend( [ "MusicgenForCausalLM", "MusicgenForConditionalGeneration", "MusicgenModel", "MusicgenPreTrainedModel", "MusicgenProcessor", ] ) _import_structure["models.musicgen_melody"].extend( [ "MusicgenMelodyForCausalLM", "MusicgenMelodyForConditionalGeneration", "MusicgenMelodyModel", "MusicgenMelodyPreTrainedModel", ] ) _import_structure["models.mvp"].extend( [ "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] ) _import_structure["models.nat"].extend( [ "NatBackbone", "NatForImageClassification", "NatModel", "NatPreTrainedModel", ] ) _import_structure["models.nezha"].extend( [ "NezhaForMaskedLM", "NezhaForMultipleChoice", "NezhaForNextSentencePrediction", "NezhaForPreTraining", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] ) _import_structure["models.nllb_moe"].extend( [ "NllbMoeForConditionalGeneration", "NllbMoeModel", "NllbMoePreTrainedModel", "NllbMoeSparseMLP", "NllbMoeTop2Router", ] ) _import_structure["models.nystromformer"].extend( [ "NystromformerForMaskedLM", "NystromformerForMultipleChoice", "NystromformerForQuestionAnswering", "NystromformerForSequenceClassification", "NystromformerForTokenClassification", "NystromformerLayer", "NystromformerModel", "NystromformerPreTrainedModel", ] ) _import_structure["models.olmo"].extend( [ "OlmoForCausalLM", "OlmoModel", "OlmoPreTrainedModel", ] ) _import_structure["models.oneformer"].extend( [ "OneFormerForUniversalSegmentation", "OneFormerModel", "OneFormerPreTrainedModel", ] ) _import_structure["models.openai"].extend( [ "OpenAIGPTDoubleHeadsModel", "OpenAIGPTForSequenceClassification", "OpenAIGPTLMHeadModel", "OpenAIGPTModel", "OpenAIGPTPreTrainedModel", "load_tf_weights_in_openai_gpt", ] ) _import_structure["models.opt"].extend( [ "OPTForCausalLM", "OPTForQuestionAnswering", "OPTForSequenceClassification", "OPTModel", "OPTPreTrainedModel", ] ) _import_structure["models.owlv2"].extend( [ "Owlv2ForObjectDetection", "Owlv2Model", "Owlv2PreTrainedModel", "Owlv2TextModel", "Owlv2VisionModel", ] ) _import_structure["models.owlvit"].extend( [ "OwlViTForObjectDetection", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", ] ) _import_structure["models.patchtsmixer"].extend( [ "PatchTSMixerForPrediction", "PatchTSMixerForPretraining", "PatchTSMixerForRegression", "PatchTSMixerForTimeSeriesClassification", "PatchTSMixerModel", "PatchTSMixerPreTrainedModel", ] ) _import_structure["models.patchtst"].extend( [ "PatchTSTForClassification", "PatchTSTForPrediction", "PatchTSTForPretraining", "PatchTSTForRegression", "PatchTSTModel", "PatchTSTPreTrainedModel", ] ) _import_structure["models.pegasus"].extend( [ "PegasusForCausalLM", "PegasusForConditionalGeneration", "PegasusModel", "PegasusPreTrainedModel", ] ) _import_structure["models.pegasus_x"].extend( [ "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] ) _import_structure["models.perceiver"].extend( [ "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] ) _import_structure["models.persimmon"].extend( [ "PersimmonForCausalLM", "PersimmonForSequenceClassification", "PersimmonModel", "PersimmonPreTrainedModel", ] ) _import_structure["models.phi"].extend( [ "PhiForCausalLM", "PhiForSequenceClassification", "PhiForTokenClassification", "PhiModel", "PhiPreTrainedModel", ] ) _import_structure["models.phi3"].extend( [ "Phi3ForCausalLM", "Phi3ForSequenceClassification", "Phi3ForTokenClassification", "Phi3Model", "Phi3PreTrainedModel", ] ) _import_structure["models.pix2struct"].extend( [ "Pix2StructForConditionalGeneration", "Pix2StructPreTrainedModel", "Pix2StructTextModel", "Pix2StructVisionModel", ] ) _import_structure["models.plbart"].extend( [ "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] ) _import_structure["models.poolformer"].extend( [ "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] ) _import_structure["models.pop2piano"].extend( [ "Pop2PianoForConditionalGeneration", "Pop2PianoPreTrainedModel", ] ) _import_structure["models.prophetnet"].extend( [ "ProphetNetDecoder", "ProphetNetEncoder", "ProphetNetForCausalLM", "ProphetNetForConditionalGeneration", "ProphetNetModel", "ProphetNetPreTrainedModel", ] ) _import_structure["models.pvt"].extend( [ "PvtForImageClassification", "PvtModel", "PvtPreTrainedModel", ] ) _import_structure["models.pvt_v2"].extend( [ "PvtV2Backbone", "PvtV2ForImageClassification", "PvtV2Model", "PvtV2PreTrainedModel", ] ) _import_structure["models.qdqbert"].extend( [ "QDQBertForMaskedLM", "QDQBertForMultipleChoice", "QDQBertForNextSentencePrediction", "QDQBertForQuestionAnswering", "QDQBertForSequenceClassification", "QDQBertForTokenClassification", "QDQBertLayer", "QDQBertLMHeadModel", "QDQBertModel", "QDQBertPreTrainedModel", "load_tf_weights_in_qdqbert", ] ) _import_structure["models.qwen2"].extend( [ "Qwen2ForCausalLM", "Qwen2ForSequenceClassification", "Qwen2Model", "Qwen2PreTrainedModel", ] ) _import_structure["models.qwen2_moe"].extend( [ "Qwen2MoeForCausalLM", "Qwen2MoeForSequenceClassification", "Qwen2MoeModel", "Qwen2MoePreTrainedModel", ] ) _import_structure["models.rag"].extend( [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] ) _import_structure["models.realm"].extend( [ "RealmEmbedder", "RealmForOpenQA", "RealmKnowledgeAugEncoder", "RealmPreTrainedModel", "RealmReader", "RealmRetriever", "RealmScorer", "load_tf_weights_in_realm", ] ) _import_structure["models.recurrent_gemma"].extend( [ "RecurrentGemmaForCausalLM", "RecurrentGemmaModel", "RecurrentGemmaPreTrainedModel", ] ) _import_structure["models.reformer"].extend( [ "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] ) _import_structure["models.regnet"].extend( [ "RegNetForImageClassification", "RegNetModel", "RegNetPreTrainedModel", ] ) _import_structure["models.rembert"].extend( [ "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] ) _import_structure["models.resnet"].extend( [ "ResNetBackbone", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", ] ) _import_structure["models.roberta"].extend( [ "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] ) _import_structure["models.roberta_prelayernorm"].extend( [ "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] ) _import_structure["models.roc_bert"].extend( [ "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] ) _import_structure["models.roformer"].extend( [ "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] ) _import_structure["models.rwkv"].extend( [ "RwkvForCausalLM", "RwkvModel", "RwkvPreTrainedModel", ] ) _import_structure["models.sam"].extend( [ "SamModel", "SamPreTrainedModel", ] ) _import_structure["models.seamless_m4t"].extend( [ "SeamlessM4TCodeHifiGan", "SeamlessM4TForSpeechToSpeech", "SeamlessM4TForSpeechToText", "SeamlessM4TForTextToSpeech", "SeamlessM4TForTextToText", "SeamlessM4THifiGan", "SeamlessM4TModel", "SeamlessM4TPreTrainedModel", "SeamlessM4TTextToUnitForConditionalGeneration", "SeamlessM4TTextToUnitModel", ] ) _import_structure["models.seamless_m4t_v2"].extend( [ "SeamlessM4Tv2ForSpeechToSpeech", "SeamlessM4Tv2ForSpeechToText", "SeamlessM4Tv2ForTextToSpeech", "SeamlessM4Tv2ForTextToText", "SeamlessM4Tv2Model", "SeamlessM4Tv2PreTrainedModel", ] ) _import_structure["models.segformer"].extend( [ "SegformerDecodeHead", "SegformerForImageClassification", "SegformerForSemanticSegmentation", "SegformerLayer", "SegformerModel", "SegformerPreTrainedModel", ] ) _import_structure["models.seggpt"].extend( [ "SegGptForImageSegmentation", "SegGptModel", "SegGptPreTrainedModel", ] ) _import_structure["models.sew"].extend( [ "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] ) _import_structure["models.sew_d"].extend( [ "SEWDForCTC", "SEWDForSequenceClassification", "SEWDModel", "SEWDPreTrainedModel", ] ) _import_structure["models.siglip"].extend( [ "SiglipForImageClassification", "SiglipModel", "SiglipPreTrainedModel", "SiglipTextModel", "SiglipVisionModel", ] ) _import_structure["models.speech_encoder_decoder"].extend(["SpeechEncoderDecoderModel"]) _import_structure["models.speech_to_text"].extend( [ "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] ) _import_structure["models.speech_to_text_2"].extend(["Speech2Text2ForCausalLM", "Speech2Text2PreTrainedModel"]) _import_structure["models.speecht5"].extend( [ "SpeechT5ForSpeechToSpeech", "SpeechT5ForSpeechToText", "SpeechT5ForTextToSpeech", "SpeechT5HifiGan", "SpeechT5Model", "SpeechT5PreTrainedModel", ] ) _import_structure["models.splinter"].extend( [ "SplinterForPreTraining", "SplinterForQuestionAnswering", "SplinterLayer", "SplinterModel", "SplinterPreTrainedModel", ] ) _import_structure["models.squeezebert"].extend( [ "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] ) _import_structure["models.stablelm"].extend( [ "StableLmForCausalLM", "StableLmForSequenceClassification", "StableLmModel", "StableLmPreTrainedModel", ] ) _import_structure["models.starcoder2"].extend( [ "Starcoder2ForCausalLM", "Starcoder2ForSequenceClassification", "Starcoder2Model", "Starcoder2PreTrainedModel", ] ) _import_structure["models.superpoint"].extend( [ "SuperPointForKeypointDetection", "SuperPointPreTrainedModel", ] ) _import_structure["models.swiftformer"].extend( [ "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] ) _import_structure["models.swin"].extend( [ "SwinBackbone", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", ] ) _import_structure["models.swin2sr"].extend( [ "Swin2SRForImageSuperResolution", "Swin2SRModel", "Swin2SRPreTrainedModel", ] ) _import_structure["models.swinv2"].extend( [ "Swinv2Backbone", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] ) _import_structure["models.switch_transformers"].extend( [ "SwitchTransformersEncoderModel", "SwitchTransformersForConditionalGeneration", "SwitchTransformersModel", "SwitchTransformersPreTrainedModel", "SwitchTransformersSparseMLP", "SwitchTransformersTop1Router", ] ) _import_structure["models.t5"].extend( [ "T5EncoderModel", "T5ForConditionalGeneration", "T5ForQuestionAnswering", "T5ForSequenceClassification", "T5ForTokenClassification", "T5Model", "T5PreTrainedModel", "load_tf_weights_in_t5", ] ) _import_structure["models.table_transformer"].extend( [ "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] ) _import_structure["models.tapas"].extend( [ "TapasForMaskedLM", "TapasForQuestionAnswering", "TapasForSequenceClassification", "TapasModel", "TapasPreTrainedModel", "load_tf_weights_in_tapas", ] ) _import_structure["models.time_series_transformer"].extend( [ "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] ) _import_structure["models.timesformer"].extend( [ "TimesformerForVideoClassification", "TimesformerModel", "TimesformerPreTrainedModel", ] ) _import_structure["models.timm_backbone"].extend(["TimmBackbone"]) _import_structure["models.trocr"].extend( [ "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] ) _import_structure["models.tvlt"].extend( [ "TvltForAudioVisualClassification", "TvltForPreTraining", "TvltModel", "TvltPreTrainedModel", ] ) _import_structure["models.tvp"].extend( [ "TvpForVideoGrounding", "TvpModel", "TvpPreTrainedModel", ] ) _import_structure["models.udop"].extend( [ "UdopEncoderModel", "UdopForConditionalGeneration", "UdopModel", "UdopPreTrainedModel", ], ) _import_structure["models.umt5"].extend( [ "UMT5EncoderModel", "UMT5ForConditionalGeneration", "UMT5ForQuestionAnswering", "UMT5ForSequenceClassification", "UMT5ForTokenClassification", "UMT5Model", "UMT5PreTrainedModel", ] ) _import_structure["models.unispeech"].extend( [ "UniSpeechForCTC", "UniSpeechForPreTraining", "UniSpeechForSequenceClassification", "UniSpeechModel", "UniSpeechPreTrainedModel", ] ) _import_structure["models.unispeech_sat"].extend( [ "UniSpeechSatForAudioFrameClassification", "UniSpeechSatForCTC", "UniSpeechSatForPreTraining", "UniSpeechSatForSequenceClassification", "UniSpeechSatForXVector", "UniSpeechSatModel", "UniSpeechSatPreTrainedModel", ] ) _import_structure["models.univnet"].extend( [ "UnivNetModel", ] ) _import_structure["models.upernet"].extend( [ "UperNetForSemanticSegmentation", "UperNetPreTrainedModel", ] ) _import_structure["models.videomae"].extend( [ "VideoMAEForPreTraining", "VideoMAEForVideoClassification", "VideoMAEModel", "VideoMAEPreTrainedModel", ] ) _import_structure["models.vilt"].extend( [ "ViltForImageAndTextRetrieval", "ViltForImagesAndTextClassification", "ViltForMaskedLM", "ViltForQuestionAnswering", "ViltForTokenClassification", "ViltLayer", "ViltModel", "ViltPreTrainedModel", ] ) _import_structure["models.vipllava"].extend( [ "VipLlavaForConditionalGeneration", "VipLlavaPreTrainedModel", ] ) _import_structure["models.vision_encoder_decoder"].extend(["VisionEncoderDecoderModel"]) _import_structure["models.vision_text_dual_encoder"].extend(["VisionTextDualEncoderModel"]) _import_structure["models.visual_bert"].extend( [ "VisualBertForMultipleChoice", "VisualBertForPreTraining", "VisualBertForQuestionAnswering", "VisualBertForRegionToPhraseAlignment", "VisualBertForVisualReasoning", "VisualBertLayer", "VisualBertModel", "VisualBertPreTrainedModel", ] ) _import_structure["models.vit"].extend( [ "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] ) _import_structure["models.vit_hybrid"].extend( [ "ViTHybridForImageClassification", "ViTHybridModel", "ViTHybridPreTrainedModel", ] ) _import_structure["models.vit_mae"].extend( [ "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] ) _import_structure["models.vit_msn"].extend( [ "ViTMSNForImageClassification", "ViTMSNModel", "ViTMSNPreTrainedModel", ] ) _import_structure["models.vitdet"].extend( [ "VitDetBackbone", "VitDetModel", "VitDetPreTrainedModel", ] ) _import_structure["models.vitmatte"].extend( [ "VitMatteForImageMatting", "VitMattePreTrainedModel", ] ) _import_structure["models.vits"].extend( [ "VitsModel", "VitsPreTrainedModel", ] ) _import_structure["models.vivit"].extend( [ "VivitForVideoClassification", "VivitModel", "VivitPreTrainedModel", ] ) _import_structure["models.wav2vec2"].extend( [ "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] ) _import_structure["models.wav2vec2_bert"].extend( [ "Wav2Vec2BertForAudioFrameClassification", "Wav2Vec2BertForCTC", "Wav2Vec2BertForSequenceClassification", "Wav2Vec2BertForXVector", "Wav2Vec2BertModel", "Wav2Vec2BertPreTrainedModel", ] ) _import_structure["models.wav2vec2_conformer"].extend( [ "Wav2Vec2ConformerForAudioFrameClassification", "Wav2Vec2ConformerForCTC", "Wav2Vec2ConformerForPreTraining", "Wav2Vec2ConformerForSequenceClassification", "Wav2Vec2ConformerForXVector", "Wav2Vec2ConformerModel", "Wav2Vec2ConformerPreTrainedModel", ] ) _import_structure["models.wavlm"].extend( [ "WavLMForAudioFrameClassification", "WavLMForCTC", "WavLMForSequenceClassification", "WavLMForXVector", "WavLMModel", "WavLMPreTrainedModel", ] ) _import_structure["models.whisper"].extend( [ "WhisperForAudioClassification", "WhisperForCausalLM", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", ] ) _import_structure["models.x_clip"].extend( [ "XCLIPModel", "XCLIPPreTrainedModel", "XCLIPTextModel", "XCLIPVisionModel", ] ) _import_structure["models.xglm"].extend( [ "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] ) _import_structure["models.xlm"].extend( [ "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] ) _import_structure["models.xlm_prophetnet"].extend( [ "XLMProphetNetDecoder", "XLMProphetNetEncoder", "XLMProphetNetForCausalLM", "XLMProphetNetForConditionalGeneration", "XLMProphetNetModel", "XLMProphetNetPreTrainedModel", ] ) _import_structure["models.xlm_roberta"].extend( [ "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] ) _import_structure["models.xlm_roberta_xl"].extend( [ "XLMRobertaXLForCausalLM", "XLMRobertaXLForMaskedLM", "XLMRobertaXLForMultipleChoice", "XLMRobertaXLForQuestionAnswering", "XLMRobertaXLForSequenceClassification", "XLMRobertaXLForTokenClassification", "XLMRobertaXLModel", "XLMRobertaXLPreTrainedModel", ] ) _import_structure["models.xlnet"].extend( [ "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] ) _import_structure["models.xmod"].extend( [ "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] ) _import_structure["models.yolos"].extend( [ "YolosForObjectDetection", "YolosModel", "YolosPreTrainedModel", ] ) _import_structure["models.yoso"].extend( [ "YosoForMaskedLM", "YosoForMultipleChoice", "YosoForQuestionAnswering", "YosoForSequenceClassification", "YosoForTokenClassification", "YosoLayer", "YosoModel", "YosoPreTrainedModel", ] ) _import_structure["optimization"] = [ "Adafactor", "AdamW", "get_constant_schedule", "get_constant_schedule_with_warmup", "get_cosine_schedule_with_warmup", "get_cosine_with_hard_restarts_schedule_with_warmup", "get_inverse_sqrt_schedule", "get_linear_schedule_with_warmup", "get_polynomial_decay_schedule_with_warmup", "get_scheduler", "get_wsd_schedule", ] _import_structure["pytorch_utils"] = [ "Conv1D", "apply_chunking_to_forward", "prune_layer", ] _import_structure["sagemaker"] = [] _import_structure["time_series_utils"] = [] _import_structure["trainer"] = ["Trainer"] _import_structure["trainer_pt_utils"] = ["torch_distributed_zero_first"] _import_structure["trainer_seq2seq"] = ["Seq2SeqTrainer"] # TensorFlow-backed objects try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_tf_objects _import_structure["utils.dummy_tf_objects"] = [name for name in dir(dummy_tf_objects) if not name.startswith("_")] else: _import_structure["activations_tf"] = [] _import_structure["benchmark.benchmark_args_tf"] = ["TensorFlowBenchmarkArguments"] _import_structure["benchmark.benchmark_tf"] = ["TensorFlowBenchmark"] _import_structure["generation"].extend( [ "TFForcedBOSTokenLogitsProcessor", "TFForcedEOSTokenLogitsProcessor", "TFForceTokensLogitsProcessor", "TFGenerationMixin", "TFLogitsProcessor", "TFLogitsProcessorList", "TFLogitsWarper", "TFMinLengthLogitsProcessor", "TFNoBadWordsLogitsProcessor", "TFNoRepeatNGramLogitsProcessor", "TFRepetitionPenaltyLogitsProcessor", "TFSuppressTokensAtBeginLogitsProcessor", "TFSuppressTokensLogitsProcessor", "TFTemperatureLogitsWarper", "TFTopKLogitsWarper", "TFTopPLogitsWarper", ] ) _import_structure["keras_callbacks"] = ["KerasMetricCallback", "PushToHubCallback"] _import_structure["modeling_tf_outputs"] = [] _import_structure["modeling_tf_utils"] = [ "TFPreTrainedModel", "TFSequenceSummary", "TFSharedEmbeddings", "shape_list", ] # TensorFlow models structure _import_structure["models.albert"].extend( [ "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] ) _import_structure["models.auto"].extend( [ "TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_CAUSAL_LM_MAPPING", "TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING", "TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING", "TF_MODEL_FOR_MASKED_LM_MAPPING", "TF_MODEL_FOR_MASK_GENERATION_MAPPING", "TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING", "TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", "TF_MODEL_FOR_PRETRAINING_MAPPING", "TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING", "TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING", "TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING", "TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING", "TF_MODEL_FOR_TEXT_ENCODING_MAPPING", "TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_VISION_2_SEQ_MAPPING", "TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING", "TF_MODEL_MAPPING", "TF_MODEL_WITH_LM_HEAD_MAPPING", "TFAutoModel", "TFAutoModelForAudioClassification", "TFAutoModelForCausalLM", "TFAutoModelForDocumentQuestionAnswering", "TFAutoModelForImageClassification", "TFAutoModelForMaskedImageModeling", "TFAutoModelForMaskedLM", "TFAutoModelForMaskGeneration", "TFAutoModelForMultipleChoice", "TFAutoModelForNextSentencePrediction", "TFAutoModelForPreTraining", "TFAutoModelForQuestionAnswering", "TFAutoModelForSemanticSegmentation", "TFAutoModelForSeq2SeqLM", "TFAutoModelForSequenceClassification", "TFAutoModelForSpeechSeq2Seq", "TFAutoModelForTableQuestionAnswering", "TFAutoModelForTextEncoding", "TFAutoModelForTokenClassification", "TFAutoModelForVision2Seq", "TFAutoModelForZeroShotImageClassification", "TFAutoModelWithLMHead", ] ) _import_structure["models.bart"].extend( [ "TFBartForConditionalGeneration", "TFBartForSequenceClassification", "TFBartModel", "TFBartPretrainedModel", ] ) _import_structure["models.bert"].extend( [ "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] ) _import_structure["models.blenderbot"].extend( [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] ) _import_structure["models.blenderbot_small"].extend( [ "TFBlenderbotSmallForConditionalGeneration", "TFBlenderbotSmallModel", "TFBlenderbotSmallPreTrainedModel", ] ) _import_structure["models.blip"].extend( [ "TFBlipForConditionalGeneration", "TFBlipForImageTextRetrieval", "TFBlipForQuestionAnswering", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipTextModel", "TFBlipVisionModel", ] ) _import_structure["models.camembert"].extend( [ "TFCamembertForCausalLM", "TFCamembertForMaskedLM", "TFCamembertForMultipleChoice", "TFCamembertForQuestionAnswering", "TFCamembertForSequenceClassification", "TFCamembertForTokenClassification", "TFCamembertModel", "TFCamembertPreTrainedModel", ] ) _import_structure["models.clip"].extend( [ "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] ) _import_structure["models.convbert"].extend( [ "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] ) _import_structure["models.convnext"].extend( [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] ) _import_structure["models.convnextv2"].extend( [ "TFConvNextV2ForImageClassification", "TFConvNextV2Model", "TFConvNextV2PreTrainedModel", ] ) _import_structure["models.ctrl"].extend( [ "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] ) _import_structure["models.cvt"].extend( [ "TFCvtForImageClassification", "TFCvtModel", "TFCvtPreTrainedModel", ] ) _import_structure["models.data2vec"].extend( [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] ) _import_structure["models.deberta"].extend( [ "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] ) _import_structure["models.deberta_v2"].extend( [ "TFDebertaV2ForMaskedLM", "TFDebertaV2ForMultipleChoice", "TFDebertaV2ForQuestionAnswering", "TFDebertaV2ForSequenceClassification", "TFDebertaV2ForTokenClassification", "TFDebertaV2Model", "TFDebertaV2PreTrainedModel", ] ) _import_structure["models.deit"].extend( [ "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] ) _import_structure["models.deprecated.transfo_xl"].extend( [ "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] ) _import_structure["models.distilbert"].extend( [ "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] ) _import_structure["models.dpr"].extend( [ "TFDPRContextEncoder", "TFDPRPretrainedContextEncoder", "TFDPRPretrainedQuestionEncoder", "TFDPRPretrainedReader", "TFDPRQuestionEncoder", "TFDPRReader", ] ) _import_structure["models.efficientformer"].extend( [ "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] ) _import_structure["models.electra"].extend( [ "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] ) _import_structure["models.encoder_decoder"].append("TFEncoderDecoderModel") _import_structure["models.esm"].extend( [ "TFEsmForMaskedLM", "TFEsmForSequenceClassification", "TFEsmForTokenClassification", "TFEsmModel", "TFEsmPreTrainedModel", ] ) _import_structure["models.flaubert"].extend( [ "TFFlaubertForMultipleChoice", "TFFlaubertForQuestionAnsweringSimple", "TFFlaubertForSequenceClassification", "TFFlaubertForTokenClassification", "TFFlaubertModel", "TFFlaubertPreTrainedModel", "TFFlaubertWithLMHeadModel", ] ) _import_structure["models.funnel"].extend( [ "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] ) _import_structure["models.gpt2"].extend( [ "TFGPT2DoubleHeadsModel", "TFGPT2ForSequenceClassification", "TFGPT2LMHeadModel", "TFGPT2MainLayer", "TFGPT2Model", "TFGPT2PreTrainedModel", ] ) _import_structure["models.gptj"].extend( [ "TFGPTJForCausalLM", "TFGPTJForQuestionAnswering", "TFGPTJForSequenceClassification", "TFGPTJModel", "TFGPTJPreTrainedModel", ] ) _import_structure["models.groupvit"].extend( [ "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] ) _import_structure["models.hubert"].extend( [ "TFHubertForCTC", "TFHubertModel", "TFHubertPreTrainedModel", ] ) _import_structure["models.idefics"].extend( [ "TFIdeficsForVisionText2Text", "TFIdeficsModel", "TFIdeficsPreTrainedModel", ] ) _import_structure["models.layoutlm"].extend( [ "TFLayoutLMForMaskedLM", "TFLayoutLMForQuestionAnswering", "TFLayoutLMForSequenceClassification", "TFLayoutLMForTokenClassification", "TFLayoutLMMainLayer", "TFLayoutLMModel", "TFLayoutLMPreTrainedModel", ] ) _import_structure["models.layoutlmv3"].extend( [ "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] ) _import_structure["models.led"].extend(["TFLEDForConditionalGeneration", "TFLEDModel", "TFLEDPreTrainedModel"]) _import_structure["models.longformer"].extend( [ "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] ) _import_structure["models.lxmert"].extend( [ "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] ) _import_structure["models.marian"].extend(["TFMarianModel", "TFMarianMTModel", "TFMarianPreTrainedModel"]) _import_structure["models.mbart"].extend( ["TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel"] ) _import_structure["models.mobilebert"].extend( [ "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] ) _import_structure["models.mobilevit"].extend( [ "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] ) _import_structure["models.mpnet"].extend( [ "TFMPNetForMaskedLM", "TFMPNetForMultipleChoice", "TFMPNetForQuestionAnswering", "TFMPNetForSequenceClassification", "TFMPNetForTokenClassification", "TFMPNetMainLayer", "TFMPNetModel", "TFMPNetPreTrainedModel", ] ) _import_structure["models.mt5"].extend(["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"]) _import_structure["models.openai"].extend( [ "TFOpenAIGPTDoubleHeadsModel", "TFOpenAIGPTForSequenceClassification", "TFOpenAIGPTLMHeadModel", "TFOpenAIGPTMainLayer", "TFOpenAIGPTModel", "TFOpenAIGPTPreTrainedModel", ] ) _import_structure["models.opt"].extend( [ "TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel", ] ) _import_structure["models.pegasus"].extend( [ "TFPegasusForConditionalGeneration", "TFPegasusModel", "TFPegasusPreTrainedModel", ] ) _import_structure["models.rag"].extend( [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] ) _import_structure["models.regnet"].extend( [ "TFRegNetForImageClassification", "TFRegNetModel", "TFRegNetPreTrainedModel", ] ) _import_structure["models.rembert"].extend( [ "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] ) _import_structure["models.resnet"].extend( [ "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] ) _import_structure["models.roberta"].extend( [ "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] ) _import_structure["models.roberta_prelayernorm"].extend( [ "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] ) _import_structure["models.roformer"].extend( [ "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] ) _import_structure["models.sam"].extend( [ "TFSamModel", "TFSamPreTrainedModel", ] ) _import_structure["models.segformer"].extend( [ "TFSegformerDecodeHead", "TFSegformerForImageClassification", "TFSegformerForSemanticSegmentation", "TFSegformerModel", "TFSegformerPreTrainedModel", ] ) _import_structure["models.speech_to_text"].extend( [ "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] ) _import_structure["models.swiftformer"].extend( [ "TFSwiftFormerForImageClassification", "TFSwiftFormerModel", "TFSwiftFormerPreTrainedModel", ] ) _import_structure["models.swin"].extend( [ "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] ) _import_structure["models.t5"].extend( [ "TFT5EncoderModel", "TFT5ForConditionalGeneration", "TFT5Model", "TFT5PreTrainedModel", ] ) _import_structure["models.tapas"].extend( [ "TFTapasForMaskedLM", "TFTapasForQuestionAnswering", "TFTapasForSequenceClassification", "TFTapasModel", "TFTapasPreTrainedModel", ] ) _import_structure["models.vision_encoder_decoder"].extend(["TFVisionEncoderDecoderModel"]) _import_structure["models.vision_text_dual_encoder"].extend(["TFVisionTextDualEncoderModel"]) _import_structure["models.vit"].extend( [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] ) _import_structure["models.vit_mae"].extend( [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] ) _import_structure["models.wav2vec2"].extend( [ "TFWav2Vec2ForCTC", "TFWav2Vec2ForSequenceClassification", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", ] ) _import_structure["models.whisper"].extend( [ "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] ) _import_structure["models.xglm"].extend( [ "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] ) _import_structure["models.xlm"].extend( [ "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] ) _import_structure["models.xlm_roberta"].extend( [ "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] ) _import_structure["models.xlnet"].extend( [ "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] ) _import_structure["optimization_tf"] = [ "AdamWeightDecay", "GradientAccumulator", "WarmUp", "create_optimizer", ] _import_structure["tf_utils"] = [] try: if not ( is_librosa_available() and is_essentia_available() and is_scipy_available() and is_torch_available() and is_pretty_midi_available() ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import ( dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects, ) _import_structure["utils.dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects"] = [ name for name in dir(dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects) if not name.startswith("_") ] else: _import_structure["models.pop2piano"].append("Pop2PianoFeatureExtractor") _import_structure["models.pop2piano"].append("Pop2PianoTokenizer") _import_structure["models.pop2piano"].append("Pop2PianoProcessor") try: if not is_torchaudio_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import ( dummy_torchaudio_objects, ) _import_structure["utils.dummy_torchaudio_objects"] = [ name for name in dir(dummy_torchaudio_objects) if not name.startswith("_") ] else: _import_structure["models.musicgen_melody"].append("MusicgenMelodyFeatureExtractor") _import_structure["models.musicgen_melody"].append("MusicgenMelodyProcessor") # FLAX-backed objects try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils import dummy_flax_objects _import_structure["utils.dummy_flax_objects"] = [ name for name in dir(dummy_flax_objects) if not name.startswith("_") ] else: _import_structure["generation"].extend( [ "FlaxForcedBOSTokenLogitsProcessor", "FlaxForcedEOSTokenLogitsProcessor", "FlaxForceTokensLogitsProcessor", "FlaxGenerationMixin", "FlaxLogitsProcessor", "FlaxLogitsProcessorList", "FlaxLogitsWarper", "FlaxMinLengthLogitsProcessor", "FlaxTemperatureLogitsWarper", "FlaxSuppressTokensAtBeginLogitsProcessor", "FlaxSuppressTokensLogitsProcessor", "FlaxTopKLogitsWarper", "FlaxTopPLogitsWarper", "FlaxWhisperTimeStampLogitsProcessor", ] ) _import_structure["modeling_flax_outputs"] = [] _import_structure["modeling_flax_utils"] = ["FlaxPreTrainedModel"] _import_structure["models.albert"].extend( [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] ) _import_structure["models.auto"].extend( [ "FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_CAUSAL_LM_MAPPING", "FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_MASKED_LM_MAPPING", "FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING", "FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", "FLAX_MODEL_FOR_PRETRAINING_MAPPING", "FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING", "FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING", "FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING", "FLAX_MODEL_MAPPING", "FlaxAutoModel", "FlaxAutoModelForCausalLM", "FlaxAutoModelForImageClassification", "FlaxAutoModelForMaskedLM", "FlaxAutoModelForMultipleChoice", "FlaxAutoModelForNextSentencePrediction", "FlaxAutoModelForPreTraining", "FlaxAutoModelForQuestionAnswering", "FlaxAutoModelForSeq2SeqLM", "FlaxAutoModelForSequenceClassification", "FlaxAutoModelForSpeechSeq2Seq", "FlaxAutoModelForTokenClassification", "FlaxAutoModelForVision2Seq", ] ) # Flax models structure _import_structure["models.bart"].extend( [ "FlaxBartDecoderPreTrainedModel", "FlaxBartForCausalLM", "FlaxBartForConditionalGeneration", "FlaxBartForQuestionAnswering", "FlaxBartForSequenceClassification", "FlaxBartModel", "FlaxBartPreTrainedModel", ] ) _import_structure["models.beit"].extend( [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] ) _import_structure["models.bert"].extend( [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] ) _import_structure["models.big_bird"].extend( [ "FlaxBigBirdForCausalLM", "FlaxBigBirdForMaskedLM", "FlaxBigBirdForMultipleChoice", "FlaxBigBirdForPreTraining", "FlaxBigBirdForQuestionAnswering", "FlaxBigBirdForSequenceClassification", "FlaxBigBirdForTokenClassification", "FlaxBigBirdModel", "FlaxBigBirdPreTrainedModel", ] ) _import_structure["models.blenderbot"].extend( [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] ) _import_structure["models.blenderbot_small"].extend( [ "FlaxBlenderbotSmallForConditionalGeneration", "FlaxBlenderbotSmallModel", "FlaxBlenderbotSmallPreTrainedModel", ] ) _import_structure["models.bloom"].extend( [ "FlaxBloomForCausalLM", "FlaxBloomModel", "FlaxBloomPreTrainedModel", ] ) _import_structure["models.clip"].extend( [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPTextModelWithProjection", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] ) _import_structure["models.distilbert"].extend( [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] ) _import_structure["models.electra"].extend( [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] ) _import_structure["models.encoder_decoder"].append("FlaxEncoderDecoderModel") _import_structure["models.gpt2"].extend(["FlaxGPT2LMHeadModel", "FlaxGPT2Model", "FlaxGPT2PreTrainedModel"]) _import_structure["models.gpt_neo"].extend( ["FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel"] ) _import_structure["models.gptj"].extend(["FlaxGPTJForCausalLM", "FlaxGPTJModel", "FlaxGPTJPreTrainedModel"]) _import_structure["models.llama"].extend(["FlaxLlamaForCausalLM", "FlaxLlamaModel", "FlaxLlamaPreTrainedModel"]) _import_structure["models.gemma"].extend(["FlaxGemmaForCausalLM", "FlaxGemmaModel", "FlaxGemmaPreTrainedModel"]) _import_structure["models.longt5"].extend( [ "FlaxLongT5ForConditionalGeneration", "FlaxLongT5Model", "FlaxLongT5PreTrainedModel", ] ) _import_structure["models.marian"].extend( [ "FlaxMarianModel", "FlaxMarianMTModel", "FlaxMarianPreTrainedModel", ] ) _import_structure["models.mbart"].extend( [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] ) _import_structure["models.mistral"].extend( [ "FlaxMistralForCausalLM", "FlaxMistralModel", "FlaxMistralPreTrainedModel", ] ) _import_structure["models.mt5"].extend(["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]) _import_structure["models.opt"].extend( [ "FlaxOPTForCausalLM", "FlaxOPTModel", "FlaxOPTPreTrainedModel", ] ) _import_structure["models.pegasus"].extend( [ "FlaxPegasusForConditionalGeneration", "FlaxPegasusModel", "FlaxPegasusPreTrainedModel", ] ) _import_structure["models.regnet"].extend( [ "FlaxRegNetForImageClassification", "FlaxRegNetModel", "FlaxRegNetPreTrainedModel", ] ) _import_structure["models.resnet"].extend( [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] ) _import_structure["models.roberta"].extend( [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] ) _import_structure["models.roberta_prelayernorm"].extend( [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] ) _import_structure["models.roformer"].extend( [ "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] ) _import_structure["models.speech_encoder_decoder"].append("FlaxSpeechEncoderDecoderModel") _import_structure["models.t5"].extend( [ "FlaxT5EncoderModel", "FlaxT5ForConditionalGeneration", "FlaxT5Model", "FlaxT5PreTrainedModel", ] ) _import_structure["models.vision_encoder_decoder"].append("FlaxVisionEncoderDecoderModel") _import_structure["models.vision_text_dual_encoder"].extend(["FlaxVisionTextDualEncoderModel"]) _import_structure["models.vit"].extend(["FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel"]) _import_structure["models.wav2vec2"].extend( [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] ) _import_structure["models.whisper"].extend( [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] ) _import_structure["models.xglm"].extend( [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] ) _import_structure["models.xlm_roberta"].extend( [ "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaPreTrainedModel", ] ) # Direct imports for type-checking if TYPE_CHECKING: # Configuration # Agents from .agents import ( Agent, CodeAgent, HfEngine, PipelineTool, ReactAgent, ReactCodeAgent, ReactJsonAgent, Tool, Toolbox, ToolCollection, launch_gradio_demo, load_tool, ) from .configuration_utils import PretrainedConfig # Data from .data import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadV1Processor, SquadV2Processor, glue_compute_metrics, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_compute_metrics, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, ) from .data.data_collator import ( DataCollator, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeq2Seq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .feature_extraction_sequence_utils import SequenceFeatureExtractor # Feature Extractor from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin # Generation from .generation import GenerationConfig, TextIteratorStreamer, TextStreamer from .hf_argparser import HfArgumentParser # Integrations from .integrations import ( is_clearml_available, is_comet_available, is_dvclive_available, is_neptune_available, is_optuna_available, is_ray_available, is_ray_tune_available, is_sigopt_available, is_tensorboard_available, is_wandb_available, ) # Model Cards from .modelcard import ModelCard # TF 2.0 <=> PyTorch conversion utilities from .modeling_tf_pytorch_utils import ( convert_tf_weight_name_to_pt_weight_name, load_pytorch_checkpoint_in_tf2_model, load_pytorch_model_in_tf2_model, load_pytorch_weights_in_tf2_model, load_tf2_checkpoint_in_pytorch_model, load_tf2_model_in_pytorch_model, load_tf2_weights_in_pytorch_model, ) from .models.albert import AlbertConfig from .models.align import ( AlignConfig, AlignProcessor, AlignTextConfig, AlignVisionConfig, ) from .models.altclip import ( AltCLIPConfig, AltCLIPProcessor, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .models.audio_spectrogram_transformer import ( ASTConfig, ASTFeatureExtractor, ) from .models.auto import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_NAMES_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoImageProcessor, AutoProcessor, AutoTokenizer, ) from .models.autoformer import ( AutoformerConfig, ) from .models.bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkProcessor, BarkSemanticConfig, ) from .models.bart import BartConfig, BartTokenizer from .models.beit import BeitConfig from .models.bert import ( BasicTokenizer, BertConfig, BertTokenizer, WordpieceTokenizer, ) from .models.bert_generation import BertGenerationConfig from .models.bert_japanese import ( BertJapaneseTokenizer, CharacterTokenizer, MecabTokenizer, ) from .models.bertweet import BertweetTokenizer from .models.big_bird import BigBirdConfig from .models.bigbird_pegasus import ( BigBirdPegasusConfig, ) from .models.biogpt import ( BioGptConfig, BioGptTokenizer, ) from .models.bit import BitConfig from .models.blenderbot import ( BlenderbotConfig, BlenderbotTokenizer, ) from .models.blenderbot_small import ( BlenderbotSmallConfig, BlenderbotSmallTokenizer, ) from .models.blip import ( BlipConfig, BlipProcessor, BlipTextConfig, BlipVisionConfig, ) from .models.blip_2 import ( Blip2Config, Blip2Processor, Blip2QFormerConfig, Blip2VisionConfig, ) from .models.bloom import BloomConfig from .models.bridgetower import ( BridgeTowerConfig, BridgeTowerProcessor, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .models.bros import ( BrosConfig, BrosProcessor, ) from .models.byt5 import ByT5Tokenizer from .models.camembert import ( CamembertConfig, ) from .models.canine import ( CanineConfig, CanineTokenizer, ) from .models.chinese_clip import ( ChineseCLIPConfig, ChineseCLIPProcessor, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .models.clap import ( ClapAudioConfig, ClapConfig, ClapProcessor, ClapTextConfig, ) from .models.clip import ( CLIPConfig, CLIPProcessor, CLIPTextConfig, CLIPTokenizer, CLIPVisionConfig, ) from .models.clipseg import ( CLIPSegConfig, CLIPSegProcessor, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .models.clvp import ( ClvpConfig, ClvpDecoderConfig, ClvpEncoderConfig, ClvpFeatureExtractor, ClvpProcessor, ClvpTokenizer, ) from .models.codegen import ( CodeGenConfig, CodeGenTokenizer, ) from .models.cohere import CohereConfig from .models.conditional_detr import ( ConditionalDetrConfig, ) from .models.convbert import ( ConvBertConfig, ConvBertTokenizer, ) from .models.convnext import ConvNextConfig from .models.convnextv2 import ( ConvNextV2Config, ) from .models.cpmant import ( CpmAntConfig, CpmAntTokenizer, ) from .models.ctrl import ( CTRLConfig, CTRLTokenizer, ) from .models.cvt import CvtConfig from .models.data2vec import ( Data2VecAudioConfig, Data2VecTextConfig, Data2VecVisionConfig, ) from .models.dbrx import DbrxConfig from .models.deberta import ( DebertaConfig, DebertaTokenizer, ) from .models.deberta_v2 import ( DebertaV2Config, ) from .models.decision_transformer import ( DecisionTransformerConfig, ) from .models.deformable_detr import ( DeformableDetrConfig, ) from .models.deit import DeiTConfig from .models.deprecated.mctct import ( MCTCTConfig, MCTCTFeatureExtractor, MCTCTProcessor, ) from .models.deprecated.mmbt import MMBTConfig from .models.deprecated.open_llama import ( OpenLlamaConfig, ) from .models.deprecated.retribert import ( RetriBertConfig, RetriBertTokenizer, ) from .models.deprecated.tapex import TapexTokenizer from .models.deprecated.trajectory_transformer import ( TrajectoryTransformerConfig, ) from .models.deprecated.transfo_xl import ( TransfoXLConfig, TransfoXLCorpus, TransfoXLTokenizer, ) from .models.deprecated.van import VanConfig from .models.depth_anything import DepthAnythingConfig from .models.deta import DetaConfig from .models.detr import DetrConfig from .models.dinat import DinatConfig from .models.dinov2 import Dinov2Config from .models.distilbert import ( DistilBertConfig, DistilBertTokenizer, ) from .models.donut import ( DonutProcessor, DonutSwinConfig, ) from .models.dpr import ( DPRConfig, DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderOutput, DPRReaderTokenizer, ) from .models.dpt import DPTConfig from .models.efficientformer import ( EfficientFormerConfig, ) from .models.efficientnet import ( EfficientNetConfig, ) from .models.electra import ( ElectraConfig, ElectraTokenizer, ) from .models.encodec import ( EncodecConfig, EncodecFeatureExtractor, ) from .models.encoder_decoder import EncoderDecoderConfig from .models.ernie import ErnieConfig from .models.ernie_m import ErnieMConfig from .models.esm import EsmConfig, EsmTokenizer from .models.falcon import FalconConfig from .models.fastspeech2_conformer import ( FastSpeech2ConformerConfig, FastSpeech2ConformerHifiGanConfig, FastSpeech2ConformerTokenizer, FastSpeech2ConformerWithHifiGanConfig, ) from .models.flaubert import FlaubertConfig, FlaubertTokenizer from .models.flava import ( FlavaConfig, FlavaImageCodebookConfig, FlavaImageConfig, FlavaMultimodalConfig, FlavaTextConfig, ) from .models.fnet import FNetConfig from .models.focalnet import FocalNetConfig from .models.fsmt import ( FSMTConfig, FSMTTokenizer, ) from .models.funnel import ( FunnelConfig, FunnelTokenizer, ) from .models.fuyu import FuyuConfig from .models.gemma import GemmaConfig from .models.git import ( GitConfig, GitProcessor, GitVisionConfig, ) from .models.glpn import GLPNConfig from .models.gpt2 import ( GPT2Config, GPT2Tokenizer, ) from .models.gpt_bigcode import ( GPTBigCodeConfig, ) from .models.gpt_neo import GPTNeoConfig from .models.gpt_neox import GPTNeoXConfig from .models.gpt_neox_japanese import ( GPTNeoXJapaneseConfig, ) from .models.gptj import GPTJConfig from .models.gptsan_japanese import ( GPTSanJapaneseConfig, GPTSanJapaneseTokenizer, ) from .models.graphormer import GraphormerConfig from .models.grounding_dino import ( GroundingDinoConfig, GroundingDinoProcessor, ) from .models.groupvit import ( GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig, ) from .models.herbert import HerbertTokenizer from .models.hubert import HubertConfig from .models.ibert import IBertConfig from .models.idefics import ( IdeficsConfig, ) from .models.idefics2 import Idefics2Config from .models.imagegpt import ImageGPTConfig from .models.informer import InformerConfig from .models.instructblip import ( InstructBlipConfig, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .models.jamba import JambaConfig from .models.jukebox import ( JukeboxConfig, JukeboxPriorConfig, JukeboxTokenizer, JukeboxVQVAEConfig, ) from .models.kosmos2 import ( Kosmos2Config, Kosmos2Processor, ) from .models.layoutlm import ( LayoutLMConfig, LayoutLMTokenizer, ) from .models.layoutlmv2 import ( LayoutLMv2Config, LayoutLMv2FeatureExtractor, LayoutLMv2ImageProcessor, LayoutLMv2Processor, LayoutLMv2Tokenizer, ) from .models.layoutlmv3 import ( LayoutLMv3Config, LayoutLMv3FeatureExtractor, LayoutLMv3ImageProcessor, LayoutLMv3Processor, LayoutLMv3Tokenizer, ) from .models.layoutxlm import LayoutXLMProcessor from .models.led import LEDConfig, LEDTokenizer from .models.levit import LevitConfig from .models.lilt import LiltConfig from .models.llama import LlamaConfig from .models.llava import ( LlavaConfig, LlavaProcessor, ) from .models.llava_next import ( LlavaNextConfig, LlavaNextProcessor, ) from .models.longformer import ( LongformerConfig, LongformerTokenizer, ) from .models.longt5 import LongT5Config from .models.luke import ( LukeConfig, LukeTokenizer, ) from .models.lxmert import ( LxmertConfig, LxmertTokenizer, ) from .models.m2m_100 import M2M100Config from .models.mamba import MambaConfig from .models.marian import MarianConfig from .models.markuplm import ( MarkupLMConfig, MarkupLMFeatureExtractor, MarkupLMProcessor, MarkupLMTokenizer, ) from .models.mask2former import ( Mask2FormerConfig, ) from .models.maskformer import ( MaskFormerConfig, MaskFormerSwinConfig, ) from .models.mbart import MBartConfig from .models.mega import MegaConfig from .models.megatron_bert import ( MegatronBertConfig, ) from .models.mgp_str import ( MgpstrConfig, MgpstrProcessor, MgpstrTokenizer, ) from .models.mistral import MistralConfig from .models.mixtral import MixtralConfig from .models.mobilebert import ( MobileBertConfig, MobileBertTokenizer, ) from .models.mobilenet_v1 import ( MobileNetV1Config, ) from .models.mobilenet_v2 import ( MobileNetV2Config, ) from .models.mobilevit import ( MobileViTConfig, ) from .models.mobilevitv2 import ( MobileViTV2Config, ) from .models.mpnet import ( MPNetConfig, MPNetTokenizer, ) from .models.mpt import MptConfig from .models.mra import MraConfig from .models.mt5 import MT5Config from .models.musicgen import ( MusicgenConfig, MusicgenDecoderConfig, ) from .models.musicgen_melody import ( MusicgenMelodyConfig, MusicgenMelodyDecoderConfig, ) from .models.mvp import MvpConfig, MvpTokenizer from .models.nat import NatConfig from .models.nezha import NezhaConfig from .models.nllb_moe import NllbMoeConfig from .models.nougat import NougatProcessor from .models.nystromformer import ( NystromformerConfig, ) from .models.olmo import OlmoConfig from .models.oneformer import ( OneFormerConfig, OneFormerProcessor, ) from .models.openai import ( OpenAIGPTConfig, OpenAIGPTTokenizer, ) from .models.opt import OPTConfig from .models.owlv2 import ( Owlv2Config, Owlv2Processor, Owlv2TextConfig, Owlv2VisionConfig, ) from .models.owlvit import ( OwlViTConfig, OwlViTProcessor, OwlViTTextConfig, OwlViTVisionConfig, ) from .models.patchtsmixer import ( PatchTSMixerConfig, ) from .models.patchtst import PatchTSTConfig from .models.pegasus import ( PegasusConfig, PegasusTokenizer, ) from .models.pegasus_x import ( PegasusXConfig, ) from .models.perceiver import ( PerceiverConfig, PerceiverTokenizer, ) from .models.persimmon import ( PersimmonConfig, ) from .models.phi import PhiConfig from .models.phi3 import Phi3Config from .models.phobert import PhobertTokenizer from .models.pix2struct import ( Pix2StructConfig, Pix2StructProcessor, Pix2StructTextConfig, Pix2StructVisionConfig, ) from .models.plbart import PLBartConfig from .models.poolformer import ( PoolFormerConfig, ) from .models.pop2piano import ( Pop2PianoConfig, ) from .models.prophetnet import ( ProphetNetConfig, ProphetNetTokenizer, ) from .models.pvt import PvtConfig from .models.pvt_v2 import PvtV2Config from .models.qdqbert import QDQBertConfig from .models.qwen2 import Qwen2Config, Qwen2Tokenizer from .models.qwen2_moe import Qwen2MoeConfig from .models.rag import RagConfig, RagRetriever, RagTokenizer from .models.realm import ( RealmConfig, RealmTokenizer, ) from .models.recurrent_gemma import RecurrentGemmaConfig from .models.reformer import ReformerConfig from .models.regnet import RegNetConfig from .models.rembert import RemBertConfig from .models.resnet import ResNetConfig from .models.roberta import ( RobertaConfig, RobertaTokenizer, ) from .models.roberta_prelayernorm import ( RobertaPreLayerNormConfig, ) from .models.roc_bert import ( RoCBertConfig, RoCBertTokenizer, ) from .models.roformer import ( RoFormerConfig, RoFormerTokenizer, ) from .models.rwkv import RwkvConfig from .models.sam import ( SamConfig, SamMaskDecoderConfig, SamProcessor, SamPromptEncoderConfig, SamVisionConfig, ) from .models.seamless_m4t import ( SeamlessM4TConfig, SeamlessM4TFeatureExtractor, SeamlessM4TProcessor, ) from .models.seamless_m4t_v2 import ( SeamlessM4Tv2Config, ) from .models.segformer import SegformerConfig from .models.seggpt import SegGptConfig from .models.sew import SEWConfig from .models.sew_d import SEWDConfig from .models.siglip import ( SiglipConfig, SiglipProcessor, SiglipTextConfig, SiglipVisionConfig, ) from .models.speech_encoder_decoder import SpeechEncoderDecoderConfig from .models.speech_to_text import ( Speech2TextConfig, Speech2TextFeatureExtractor, Speech2TextProcessor, ) from .models.speech_to_text_2 import ( Speech2Text2Config, Speech2Text2Processor, Speech2Text2Tokenizer, ) from .models.speecht5 import ( SpeechT5Config, SpeechT5FeatureExtractor, SpeechT5HifiGanConfig, SpeechT5Processor, ) from .models.splinter import ( SplinterConfig, SplinterTokenizer, ) from .models.squeezebert import ( SqueezeBertConfig, SqueezeBertTokenizer, ) from .models.stablelm import StableLmConfig from .models.starcoder2 import Starcoder2Config from .models.superpoint import SuperPointConfig from .models.swiftformer import ( SwiftFormerConfig, ) from .models.swin import SwinConfig from .models.swin2sr import Swin2SRConfig from .models.swinv2 import Swinv2Config from .models.switch_transformers import ( SwitchTransformersConfig, ) from .models.t5 import T5Config from .models.table_transformer import ( TableTransformerConfig, ) from .models.tapas import ( TapasConfig, TapasTokenizer, ) from .models.time_series_transformer import ( TimeSeriesTransformerConfig, ) from .models.timesformer import ( TimesformerConfig, ) from .models.timm_backbone import TimmBackboneConfig from .models.trocr import ( TrOCRConfig, TrOCRProcessor, ) from .models.tvlt import ( TvltConfig, TvltFeatureExtractor, TvltProcessor, ) from .models.tvp import ( TvpConfig, TvpProcessor, ) from .models.udop import UdopConfig, UdopProcessor from .models.umt5 import UMT5Config from .models.unispeech import ( UniSpeechConfig, ) from .models.unispeech_sat import ( UniSpeechSatConfig, ) from .models.univnet import ( UnivNetConfig, UnivNetFeatureExtractor, ) from .models.upernet import UperNetConfig from .models.videomae import VideoMAEConfig from .models.vilt import ( ViltConfig, ViltFeatureExtractor, ViltImageProcessor, ViltProcessor, ) from .models.vipllava import ( VipLlavaConfig, ) from .models.vision_encoder_decoder import VisionEncoderDecoderConfig from .models.vision_text_dual_encoder import ( VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from .models.visual_bert import ( VisualBertConfig, ) from .models.vit import ViTConfig from .models.vit_hybrid import ( ViTHybridConfig, ) from .models.vit_mae import ViTMAEConfig from .models.vit_msn import ViTMSNConfig from .models.vitdet import VitDetConfig from .models.vitmatte import VitMatteConfig from .models.vits import ( VitsConfig, VitsTokenizer, ) from .models.vivit import VivitConfig from .models.wav2vec2 import ( Wav2Vec2Config, Wav2Vec2CTCTokenizer, Wav2Vec2FeatureExtractor, Wav2Vec2Processor, Wav2Vec2Tokenizer, ) from .models.wav2vec2_bert import ( Wav2Vec2BertConfig, Wav2Vec2BertProcessor, ) from .models.wav2vec2_conformer import ( Wav2Vec2ConformerConfig, ) from .models.wav2vec2_phoneme import Wav2Vec2PhonemeCTCTokenizer from .models.wav2vec2_with_lm import Wav2Vec2ProcessorWithLM from .models.wavlm import WavLMConfig from .models.whisper import ( WhisperConfig, WhisperFeatureExtractor, WhisperProcessor, WhisperTokenizer, ) from .models.x_clip import ( XCLIPConfig, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) from .models.xglm import XGLMConfig from .models.xlm import XLMConfig, XLMTokenizer from .models.xlm_prophetnet import ( XLMProphetNetConfig, ) from .models.xlm_roberta import ( XLMRobertaConfig, ) from .models.xlm_roberta_xl import ( XLMRobertaXLConfig, ) from .models.xlnet import XLNetConfig from .models.xmod import XmodConfig from .models.yolos import YolosConfig from .models.yoso import YosoConfig # Pipelines from .pipelines import ( AudioClassificationPipeline, AutomaticSpeechRecognitionPipeline, Conversation, ConversationalPipeline, CsvPipelineDataFormat, DepthEstimationPipeline, DocumentQuestionAnsweringPipeline, FeatureExtractionPipeline, FillMaskPipeline, ImageClassificationPipeline, ImageFeatureExtractionPipeline, ImageSegmentationPipeline, ImageToImagePipeline, ImageToTextPipeline, JsonPipelineDataFormat, MaskGenerationPipeline, NerPipeline, ObjectDetectionPipeline, PipedPipelineDataFormat, Pipeline, PipelineDataFormat, QuestionAnsweringPipeline, SummarizationPipeline, TableQuestionAnsweringPipeline, Text2TextGenerationPipeline, TextClassificationPipeline, TextGenerationPipeline, TextToAudioPipeline, TokenClassificationPipeline, TranslationPipeline, VideoClassificationPipeline, VisualQuestionAnsweringPipeline, ZeroShotAudioClassificationPipeline, ZeroShotClassificationPipeline, ZeroShotImageClassificationPipeline, ZeroShotObjectDetectionPipeline, pipeline, ) from .processing_utils import ProcessorMixin # Tokenization from .tokenization_utils import PreTrainedTokenizer from .tokenization_utils_base import ( AddedToken, BatchEncoding, CharSpan, PreTrainedTokenizerBase, SpecialTokensMixin, TokenSpan, ) # Trainer from .trainer_callback import ( DefaultFlowCallback, EarlyStoppingCallback, PrinterCallback, ProgressCallback, TrainerCallback, TrainerControl, TrainerState, ) from .trainer_utils import ( EvalPrediction, IntervalStrategy, SchedulerType, enable_full_determinism, set_seed, ) from .training_args import TrainingArguments from .training_args_seq2seq import Seq2SeqTrainingArguments from .training_args_tf import TFTrainingArguments # Files and general utilities from .utils import ( CONFIG_NAME, MODEL_CARD_NAME, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, TensorType, add_end_docstrings, add_start_docstrings, is_apex_available, is_av_available, is_bitsandbytes_available, is_datasets_available, is_decord_available, is_faiss_available, is_flax_available, is_keras_nlp_available, is_phonemizer_available, is_psutil_available, is_py3nvml_available, is_pyctcdecode_available, is_sacremoses_available, is_safetensors_available, is_scipy_available, is_sentencepiece_available, is_sklearn_available, is_speech_available, is_tensorflow_text_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_mlu_available, is_torch_neuroncore_available, is_torch_npu_available, is_torch_tpu_available, is_torch_xla_available, is_torch_xpu_available, is_torchvision_available, is_vision_available, logging, ) # bitsandbytes config from .utils.quantization_config import ( AqlmConfig, AwqConfig, BitsAndBytesConfig, EetqConfig, GPTQConfig, HqqConfig, QuantoConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_sentencepiece_objects import * else: from .models.albert import AlbertTokenizer from .models.barthez import BarthezTokenizer from .models.bartpho import BartphoTokenizer from .models.bert_generation import BertGenerationTokenizer from .models.big_bird import BigBirdTokenizer from .models.camembert import CamembertTokenizer from .models.code_llama import CodeLlamaTokenizer from .models.cpm import CpmTokenizer from .models.deberta_v2 import DebertaV2Tokenizer from .models.ernie_m import ErnieMTokenizer from .models.fnet import FNetTokenizer from .models.gemma import GemmaTokenizer from .models.gpt_sw3 import GPTSw3Tokenizer from .models.layoutxlm import LayoutXLMTokenizer from .models.llama import LlamaTokenizer from .models.m2m_100 import M2M100Tokenizer from .models.marian import MarianTokenizer from .models.mbart import MBart50Tokenizer, MBartTokenizer from .models.mluke import MLukeTokenizer from .models.mt5 import MT5Tokenizer from .models.nllb import NllbTokenizer from .models.pegasus import PegasusTokenizer from .models.plbart import PLBartTokenizer from .models.reformer import ReformerTokenizer from .models.rembert import RemBertTokenizer from .models.seamless_m4t import SeamlessM4TTokenizer from .models.siglip import SiglipTokenizer from .models.speech_to_text import Speech2TextTokenizer from .models.speecht5 import SpeechT5Tokenizer from .models.t5 import T5Tokenizer from .models.udop import UdopTokenizer from .models.xglm import XGLMTokenizer from .models.xlm_prophetnet import XLMProphetNetTokenizer from .models.xlm_roberta import XLMRobertaTokenizer from .models.xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_tokenizers_objects import * else: # Fast tokenizers imports from .models.albert import AlbertTokenizerFast from .models.bart import BartTokenizerFast from .models.barthez import BarthezTokenizerFast from .models.bert import BertTokenizerFast from .models.big_bird import BigBirdTokenizerFast from .models.blenderbot import BlenderbotTokenizerFast from .models.blenderbot_small import BlenderbotSmallTokenizerFast from .models.bloom import BloomTokenizerFast from .models.camembert import CamembertTokenizerFast from .models.clip import CLIPTokenizerFast from .models.code_llama import CodeLlamaTokenizerFast from .models.codegen import CodeGenTokenizerFast from .models.cohere import CohereTokenizerFast from .models.convbert import ConvBertTokenizerFast from .models.cpm import CpmTokenizerFast from .models.deberta import DebertaTokenizerFast from .models.deberta_v2 import DebertaV2TokenizerFast from .models.deprecated.retribert import RetriBertTokenizerFast from .models.distilbert import DistilBertTokenizerFast from .models.dpr import ( DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizerFast, DPRReaderTokenizerFast, ) from .models.electra import ElectraTokenizerFast from .models.fnet import FNetTokenizerFast from .models.funnel import FunnelTokenizerFast from .models.gemma import GemmaTokenizerFast from .models.gpt2 import GPT2TokenizerFast from .models.gpt_neox import GPTNeoXTokenizerFast from .models.gpt_neox_japanese import GPTNeoXJapaneseTokenizer from .models.herbert import HerbertTokenizerFast from .models.layoutlm import LayoutLMTokenizerFast from .models.layoutlmv2 import LayoutLMv2TokenizerFast from .models.layoutlmv3 import LayoutLMv3TokenizerFast from .models.layoutxlm import LayoutXLMTokenizerFast from .models.led import LEDTokenizerFast from .models.llama import LlamaTokenizerFast from .models.longformer import LongformerTokenizerFast from .models.lxmert import LxmertTokenizerFast from .models.markuplm import MarkupLMTokenizerFast from .models.mbart import MBartTokenizerFast from .models.mbart50 import MBart50TokenizerFast from .models.mobilebert import MobileBertTokenizerFast from .models.mpnet import MPNetTokenizerFast from .models.mt5 import MT5TokenizerFast from .models.mvp import MvpTokenizerFast from .models.nllb import NllbTokenizerFast from .models.nougat import NougatTokenizerFast from .models.openai import OpenAIGPTTokenizerFast from .models.pegasus import PegasusTokenizerFast from .models.qwen2 import Qwen2TokenizerFast from .models.realm import RealmTokenizerFast from .models.reformer import ReformerTokenizerFast from .models.rembert import RemBertTokenizerFast from .models.roberta import RobertaTokenizerFast from .models.roformer import RoFormerTokenizerFast from .models.seamless_m4t import SeamlessM4TTokenizerFast from .models.splinter import SplinterTokenizerFast from .models.squeezebert import SqueezeBertTokenizerFast from .models.t5 import T5TokenizerFast from .models.udop import UdopTokenizerFast from .models.whisper import WhisperTokenizerFast from .models.xglm import XGLMTokenizerFast from .models.xlm_roberta import XLMRobertaTokenizerFast from .models.xlnet import XLNetTokenizerFast from .tokenization_utils_fast import PreTrainedTokenizerFast try: if not (is_sentencepiece_available() and is_tokenizers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummies_sentencepiece_and_tokenizers_objects import * else: from .convert_slow_tokenizer import ( SLOW_TO_FAST_CONVERTERS, convert_slow_tokenizer, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_tensorflow_text_objects import * else: from .models.bert import TFBertTokenizer try: if not is_keras_nlp_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_keras_nlp_objects import * else: from .models.gpt2 import TFGPT2Tokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_vision_objects import * else: from .image_processing_utils import ImageProcessingMixin from .image_utils import ImageFeatureExtractionMixin from .models.beit import BeitFeatureExtractor, BeitImageProcessor from .models.bit import BitImageProcessor from .models.blip import BlipImageProcessor from .models.bridgetower import BridgeTowerImageProcessor from .models.chinese_clip import ( ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor, ) from .models.clip import CLIPFeatureExtractor, CLIPImageProcessor from .models.conditional_detr import ( ConditionalDetrFeatureExtractor, ConditionalDetrImageProcessor, ) from .models.convnext import ConvNextFeatureExtractor, ConvNextImageProcessor from .models.deformable_detr import ( DeformableDetrFeatureExtractor, DeformableDetrImageProcessor, ) from .models.deit import DeiTFeatureExtractor, DeiTImageProcessor from .models.deta import DetaImageProcessor from .models.detr import DetrFeatureExtractor, DetrImageProcessor from .models.donut import DonutFeatureExtractor, DonutImageProcessor from .models.dpt import DPTFeatureExtractor, DPTImageProcessor from .models.efficientformer import EfficientFormerImageProcessor from .models.efficientnet import EfficientNetImageProcessor from .models.flava import ( FlavaFeatureExtractor, FlavaImageProcessor, FlavaProcessor, ) from .models.fuyu import FuyuImageProcessor, FuyuProcessor from .models.glpn import GLPNFeatureExtractor, GLPNImageProcessor from .models.grounding_dino import GroundingDinoImageProcessor from .models.idefics import IdeficsImageProcessor from .models.idefics2 import Idefics2ImageProcessor from .models.imagegpt import ImageGPTFeatureExtractor, ImageGPTImageProcessor from .models.layoutlmv2 import ( LayoutLMv2FeatureExtractor, LayoutLMv2ImageProcessor, ) from .models.layoutlmv3 import ( LayoutLMv3FeatureExtractor, LayoutLMv3ImageProcessor, ) from .models.levit import LevitFeatureExtractor, LevitImageProcessor from .models.llava_next import LlavaNextImageProcessor from .models.mask2former import Mask2FormerImageProcessor from .models.maskformer import ( MaskFormerFeatureExtractor, MaskFormerImageProcessor, ) from .models.mobilenet_v1 import ( MobileNetV1FeatureExtractor, MobileNetV1ImageProcessor, ) from .models.mobilenet_v2 import ( MobileNetV2FeatureExtractor, MobileNetV2ImageProcessor, ) from .models.mobilevit import MobileViTFeatureExtractor, MobileViTImageProcessor from .models.nougat import NougatImageProcessor from .models.oneformer import OneFormerImageProcessor from .models.owlv2 import Owlv2ImageProcessor from .models.owlvit import OwlViTFeatureExtractor, OwlViTImageProcessor from .models.perceiver import PerceiverFeatureExtractor, PerceiverImageProcessor from .models.pix2struct import Pix2StructImageProcessor from .models.poolformer import ( PoolFormerFeatureExtractor, PoolFormerImageProcessor, ) from .models.pvt import PvtImageProcessor from .models.sam import SamImageProcessor from .models.segformer import SegformerFeatureExtractor, SegformerImageProcessor from .models.seggpt import SegGptImageProcessor from .models.siglip import SiglipImageProcessor from .models.superpoint import SuperPointImageProcessor from .models.swin2sr import Swin2SRImageProcessor from .models.tvlt import TvltImageProcessor from .models.tvp import TvpImageProcessor from .models.videomae import VideoMAEFeatureExtractor, VideoMAEImageProcessor from .models.vilt import ViltFeatureExtractor, ViltImageProcessor, ViltProcessor from .models.vit import ViTFeatureExtractor, ViTImageProcessor from .models.vit_hybrid import ViTHybridImageProcessor from .models.vitmatte import VitMatteImageProcessor from .models.vivit import VivitImageProcessor from .models.yolos import YolosFeatureExtractor, YolosImageProcessor # Modeling try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * else: # Benchmarks from .benchmark.benchmark import PyTorchBenchmark from .benchmark.benchmark_args import PyTorchBenchmarkArguments from .cache_utils import Cache, DynamicCache, SinkCache, StaticCache from .data.datasets import ( GlueDataset, GlueDataTrainingArguments, LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, SquadDataset, SquadDataTrainingArguments, TextDataset, TextDatasetForNextSentencePrediction, ) from .generation import ( AlternatingCodebooksLogitsProcessor, BeamScorer, BeamSearchScorer, ClassifierFreeGuidanceLogitsProcessor, ConstrainedBeamSearchScorer, Constraint, ConstraintListState, DisjunctiveConstraint, EncoderNoRepeatNGramLogitsProcessor, EncoderRepetitionPenaltyLogitsProcessor, EosTokenCriteria, EpsilonLogitsWarper, EtaLogitsWarper, ExponentialDecayLengthPenalty, ForcedBOSTokenLogitsProcessor, ForcedEOSTokenLogitsProcessor, ForceTokensLogitsProcessor, GenerationMixin, HammingDiversityLogitsProcessor, InfNanRemoveLogitsProcessor, LogitNormalization, LogitsProcessor, LogitsProcessorList, LogitsWarper, MaxLengthCriteria, MaxTimeCriteria, MinLengthLogitsProcessor, MinNewTokensLengthLogitsProcessor, MinPLogitsWarper, NoBadWordsLogitsProcessor, NoRepeatNGramLogitsProcessor, PhrasalConstraint, PrefixConstrainedLogitsProcessor, RepetitionPenaltyLogitsProcessor, SequenceBiasLogitsProcessor, StoppingCriteria, StoppingCriteriaList, StopStringCriteria, SuppressTokensAtBeginLogitsProcessor, SuppressTokensLogitsProcessor, TemperatureLogitsWarper, TopKLogitsWarper, TopPLogitsWarper, TypicalLogitsWarper, UnbatchedClassifierFreeGuidanceLogitsProcessor, WhisperTimeStampLogitsProcessor, ) from .modeling_utils import PreTrainedModel from .models.albert import ( AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) from .models.align import ( AlignModel, AlignPreTrainedModel, AlignTextModel, AlignVisionModel, ) from .models.altclip import ( AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) from .models.audio_spectrogram_transformer import ( ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) from .models.auto import ( MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING, MODEL_FOR_AUDIO_XVECTOR_MAPPING, MODEL_FOR_BACKBONE_MAPPING, MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_CTC_MAPPING, MODEL_FOR_DEPTH_ESTIMATION_MAPPING, MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_IMAGE_MAPPING, MODEL_FOR_IMAGE_SEGMENTATION_MAPPING, MODEL_FOR_IMAGE_TO_IMAGE_MAPPING, MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING, MODEL_FOR_KEYPOINT_DETECTION_MAPPING, MODEL_FOR_MASK_GENERATION_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING, MODEL_FOR_TEXT_ENCODING_MAPPING, MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING, MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING, MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING, MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING, MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, MODEL_FOR_VISION_2_SEQ_MAPPING, MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoBackbone, AutoModel, AutoModelForAudioClassification, AutoModelForAudioFrameClassification, AutoModelForAudioXVector, AutoModelForCausalLM, AutoModelForCTC, AutoModelForDepthEstimation, AutoModelForDocumentQuestionAnswering, AutoModelForImageClassification, AutoModelForImageSegmentation, AutoModelForImageToImage, AutoModelForInstanceSegmentation, AutoModelForKeypointDetection, AutoModelForMaskedImageModeling, AutoModelForMaskedLM, AutoModelForMaskGeneration, AutoModelForMultipleChoice, AutoModelForNextSentencePrediction, AutoModelForObjectDetection, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSemanticSegmentation, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForSpeechSeq2Seq, AutoModelForTableQuestionAnswering, AutoModelForTextEncoding, AutoModelForTextToSpectrogram, AutoModelForTextToWaveform, AutoModelForTokenClassification, AutoModelForUniversalSegmentation, AutoModelForVideoClassification, AutoModelForVision2Seq, AutoModelForVisualQuestionAnswering, AutoModelForZeroShotImageClassification, AutoModelForZeroShotObjectDetection, AutoModelWithLMHead, ) from .models.autoformer import ( AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) from .models.bark import ( BarkCausalModel, BarkCoarseModel, BarkFineModel, BarkModel, BarkPreTrainedModel, BarkSemanticModel, ) from .models.bart import ( BartForCausalLM, BartForConditionalGeneration, BartForQuestionAnswering, BartForSequenceClassification, BartModel, BartPreTrainedModel, BartPretrainedModel, PretrainedBartModel, ) from .models.beit import ( BeitBackbone, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) from .models.bert import ( BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) from .models.bert_generation import ( BertGenerationDecoder, BertGenerationEncoder, BertGenerationPreTrainedModel, load_tf_weights_in_bert_generation, ) from .models.big_bird import ( BigBirdForCausalLM, BigBirdForMaskedLM, BigBirdForMultipleChoice, BigBirdForPreTraining, BigBirdForQuestionAnswering, BigBirdForSequenceClassification, BigBirdForTokenClassification, BigBirdLayer, BigBirdModel, BigBirdPreTrainedModel, load_tf_weights_in_big_bird, ) from .models.bigbird_pegasus import ( BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) from .models.biogpt import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) from .models.bit import ( BitBackbone, BitForImageClassification, BitModel, BitPreTrainedModel, ) from .models.blenderbot import ( BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) from .models.blenderbot_small import ( BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) from .models.blip import ( BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) from .models.blip_2 import ( Blip2ForConditionalGeneration, Blip2Model, Blip2PreTrainedModel, Blip2QFormerModel, Blip2VisionModel, ) from .models.bloom import ( BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) from .models.bridgetower import ( BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) from .models.bros import ( BrosForTokenClassification, BrosModel, BrosPreTrainedModel, BrosProcessor, BrosSpadeEEForTokenClassification, BrosSpadeELForTokenClassification, ) from .models.camembert import ( CamembertForCausalLM, CamembertForMaskedLM, CamembertForMultipleChoice, CamembertForQuestionAnswering, CamembertForSequenceClassification, CamembertForTokenClassification, CamembertModel, CamembertPreTrainedModel, ) from .models.canine import ( CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) from .models.chinese_clip import ( ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) from .models.clap import ( ClapAudioModel, ClapAudioModelWithProjection, ClapFeatureExtractor, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) from .models.clip import ( CLIPForImageClassification, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) from .models.clipseg import ( CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) from .models.clvp import ( ClvpDecoder, ClvpEncoder, ClvpForCausalLM, ClvpModel, ClvpModelForConditionalGeneration, ClvpPreTrainedModel, ) from .models.codegen import ( CodeGenForCausalLM, CodeGenModel, CodeGenPreTrainedModel, ) from .models.cohere import ( CohereForCausalLM, CohereModel, CoherePreTrainedModel, ) from .models.conditional_detr import ( ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) from .models.convbert import ( ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) from .models.convnext import ( ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) from .models.convnextv2 import ( ConvNextV2Backbone, ConvNextV2ForImageClassification, ConvNextV2Model, ConvNextV2PreTrainedModel, ) from .models.cpmant import ( CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) from .models.ctrl import ( CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) from .models.cvt import ( CvtForImageClassification, CvtModel, CvtPreTrainedModel, ) from .models.data2vec import ( Data2VecAudioForAudioFrameClassification, Data2VecAudioForCTC, Data2VecAudioForSequenceClassification, Data2VecAudioForXVector, Data2VecAudioModel, Data2VecAudioPreTrainedModel, Data2VecTextForCausalLM, Data2VecTextForMaskedLM, Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering, Data2VecTextForSequenceClassification, Data2VecTextForTokenClassification, Data2VecTextModel, Data2VecTextPreTrainedModel, Data2VecVisionForImageClassification, Data2VecVisionForSemanticSegmentation, Data2VecVisionModel, Data2VecVisionPreTrainedModel, ) # PyTorch model imports from .models.dbrx import ( DbrxForCausalLM, DbrxModel, DbrxPreTrainedModel, ) from .models.deberta import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) from .models.deberta_v2 import ( DebertaV2ForMaskedLM, DebertaV2ForMultipleChoice, DebertaV2ForQuestionAnswering, DebertaV2ForSequenceClassification, DebertaV2ForTokenClassification, DebertaV2Model, DebertaV2PreTrainedModel, ) from .models.decision_transformer import ( DecisionTransformerGPT2Model, DecisionTransformerGPT2PreTrainedModel, DecisionTransformerModel, DecisionTransformerPreTrainedModel, ) from .models.deformable_detr import ( DeformableDetrForObjectDetection, DeformableDetrModel, DeformableDetrPreTrainedModel, ) from .models.deit import ( DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) from .models.deprecated.mctct import ( MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel, ) from .models.deprecated.mmbt import ( MMBTForClassification, MMBTModel, ModalEmbeddings, ) from .models.deprecated.open_llama import ( OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel, OpenLlamaPreTrainedModel, ) from .models.deprecated.retribert import ( RetriBertModel, RetriBertPreTrainedModel, ) from .models.deprecated.trajectory_transformer import ( TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, ) from .models.deprecated.transfo_xl import ( AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) from .models.deprecated.van import ( VanForImageClassification, VanModel, VanPreTrainedModel, ) from .models.depth_anything import ( DepthAnythingForDepthEstimation, DepthAnythingPreTrainedModel, ) from .models.deta import ( DetaForObjectDetection, DetaModel, DetaPreTrainedModel, ) from .models.detr import ( DetrForObjectDetection, DetrForSegmentation, DetrModel, DetrPreTrainedModel, ) from .models.dinat import ( DinatBackbone, DinatForImageClassification, DinatModel, DinatPreTrainedModel, ) from .models.dinov2 import ( Dinov2Backbone, Dinov2ForImageClassification, Dinov2Model, Dinov2PreTrainedModel, ) from .models.distilbert import ( DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) from .models.donut import ( DonutSwinModel, DonutSwinPreTrainedModel, ) from .models.dpr import ( DPRContextEncoder, DPRPretrainedContextEncoder, DPRPreTrainedModel, DPRPretrainedQuestionEncoder, DPRPretrainedReader, DPRQuestionEncoder, DPRReader, ) from .models.dpt import ( DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) from .models.efficientformer import ( EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) from .models.efficientnet import ( EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) from .models.electra import ( ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) from .models.encodec import ( EncodecModel, EncodecPreTrainedModel, ) from .models.encoder_decoder import EncoderDecoderModel from .models.ernie import ( ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) from .models.ernie_m import ( ErnieMForInformationExtraction, ErnieMForMultipleChoice, ErnieMForQuestionAnswering, ErnieMForSequenceClassification, ErnieMForTokenClassification, ErnieMModel, ErnieMPreTrainedModel, ) from .models.esm import ( EsmFoldPreTrainedModel, EsmForMaskedLM, EsmForProteinFolding, EsmForSequenceClassification, EsmForTokenClassification, EsmModel, EsmPreTrainedModel, ) from .models.falcon import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) from .models.fastspeech2_conformer import ( FastSpeech2ConformerHifiGan, FastSpeech2ConformerModel, FastSpeech2ConformerPreTrainedModel, FastSpeech2ConformerWithHifiGan, ) from .models.flaubert import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertPreTrainedModel, FlaubertWithLMHeadModel, ) from .models.flava import ( FlavaForPreTraining, FlavaImageCodebook, FlavaImageModel, FlavaModel, FlavaMultimodalModel, FlavaPreTrainedModel, FlavaTextModel, ) from .models.fnet import ( FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) from .models.focalnet import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) from .models.fsmt import ( FSMTForConditionalGeneration, FSMTModel, PretrainedFSMTModel, ) from .models.funnel import ( FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) from .models.fuyu import ( FuyuForCausalLM, FuyuPreTrainedModel, ) from .models.gemma import ( GemmaForCausalLM, GemmaForSequenceClassification, GemmaModel, GemmaPreTrainedModel, ) from .models.git import ( GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) from .models.glpn import ( GLPNForDepthEstimation, GLPNModel, GLPNPreTrainedModel, ) from .models.gpt2 import ( GPT2DoubleHeadsModel, GPT2ForQuestionAnswering, GPT2ForSequenceClassification, GPT2ForTokenClassification, GPT2LMHeadModel, GPT2Model, GPT2PreTrainedModel, load_tf_weights_in_gpt2, ) from .models.gpt_bigcode import ( GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) from .models.gpt_neo import ( GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) from .models.gpt_neox import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) from .models.gpt_neox_japanese import ( GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) from .models.gptj import ( GPTJForCausalLM, GPTJForQuestionAnswering, GPTJForSequenceClassification, GPTJModel, GPTJPreTrainedModel, ) from .models.gptsan_japanese import ( GPTSanJapaneseForConditionalGeneration, GPTSanJapaneseModel, GPTSanJapanesePreTrainedModel, ) from .models.graphormer import ( GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) from .models.grounding_dino import ( GroundingDinoForObjectDetection, GroundingDinoModel, GroundingDinoPreTrainedModel, ) from .models.groupvit import ( GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) from .models.hubert import ( HubertForCTC, HubertForSequenceClassification, HubertModel, HubertPreTrainedModel, ) from .models.ibert import ( IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) from .models.idefics import ( IdeficsForVisionText2Text, IdeficsModel, IdeficsPreTrainedModel, IdeficsProcessor, ) from .models.idefics2 import ( Idefics2ForConditionalGeneration, Idefics2Model, Idefics2PreTrainedModel, Idefics2Processor, ) from .models.imagegpt import ( ImageGPTForCausalImageModeling, ImageGPTForImageClassification, ImageGPTModel, ImageGPTPreTrainedModel, load_tf_weights_in_imagegpt, ) from .models.informer import ( InformerForPrediction, InformerModel, InformerPreTrainedModel, ) from .models.instructblip import ( InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) from .models.jamba import ( JambaForCausalLM, JambaForSequenceClassification, JambaModel, JambaPreTrainedModel, ) from .models.jukebox import ( JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) from .models.kosmos2 import ( Kosmos2ForConditionalGeneration, Kosmos2Model, Kosmos2PreTrainedModel, ) from .models.layoutlm import ( LayoutLMForMaskedLM, LayoutLMForQuestionAnswering, LayoutLMForSequenceClassification, LayoutLMForTokenClassification, LayoutLMModel, LayoutLMPreTrainedModel, ) from .models.layoutlmv2 import ( LayoutLMv2ForQuestionAnswering, LayoutLMv2ForSequenceClassification, LayoutLMv2ForTokenClassification, LayoutLMv2Model, LayoutLMv2PreTrainedModel, ) from .models.layoutlmv3 import ( LayoutLMv3ForQuestionAnswering, LayoutLMv3ForSequenceClassification, LayoutLMv3ForTokenClassification, LayoutLMv3Model, LayoutLMv3PreTrainedModel, ) from .models.led import ( LEDForConditionalGeneration, LEDForQuestionAnswering, LEDForSequenceClassification, LEDModel, LEDPreTrainedModel, ) from .models.levit import ( LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, LevitPreTrainedModel, ) from .models.lilt import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) from .models.llama import ( LlamaForCausalLM, LlamaForQuestionAnswering, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel, ) from .models.llava import ( LlavaForConditionalGeneration, LlavaPreTrainedModel, ) from .models.llava_next import ( LlavaNextForConditionalGeneration, LlavaNextPreTrainedModel, ) from .models.longformer import ( LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) from .models.longt5 import ( LongT5EncoderModel, LongT5ForConditionalGeneration, LongT5Model, LongT5PreTrainedModel, ) from .models.luke import ( LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) from .models.lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) from .models.m2m_100 import ( M2M100ForConditionalGeneration, M2M100Model, M2M100PreTrainedModel, ) from .models.mamba import ( MambaForCausalLM, MambaModel, MambaPreTrainedModel, ) from .models.marian import MarianForCausalLM, MarianModel, MarianMTModel from .models.markuplm import ( MarkupLMForQuestionAnswering, MarkupLMForSequenceClassification, MarkupLMForTokenClassification, MarkupLMModel, MarkupLMPreTrainedModel, ) from .models.mask2former import ( Mask2FormerForUniversalSegmentation, Mask2FormerModel, Mask2FormerPreTrainedModel, ) from .models.maskformer import ( MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, MaskFormerSwinBackbone, ) from .models.mbart import ( MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) from .models.mega import ( MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) from .models.megatron_bert import ( MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) from .models.mgp_str import ( MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) from .models.mistral import ( MistralForCausalLM, MistralForSequenceClassification, MistralModel, MistralPreTrainedModel, ) from .models.mixtral import ( MixtralForCausalLM, MixtralForSequenceClassification, MixtralModel, MixtralPreTrainedModel, ) from .models.mobilebert import ( MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) from .models.mobilenet_v1 import ( MobileNetV1ForImageClassification, MobileNetV1Model, MobileNetV1PreTrainedModel, load_tf_weights_in_mobilenet_v1, ) from .models.mobilenet_v2 import ( MobileNetV2ForImageClassification, MobileNetV2ForSemanticSegmentation, MobileNetV2Model, MobileNetV2PreTrainedModel, load_tf_weights_in_mobilenet_v2, ) from .models.mobilevit import ( MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) from .models.mobilevitv2 import ( MobileViTV2ForImageClassification, MobileViTV2ForSemanticSegmentation, MobileViTV2Model, MobileViTV2PreTrainedModel, ) from .models.mpnet import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetLayer, MPNetModel, MPNetPreTrainedModel, ) from .models.mpt import ( MptForCausalLM, MptForQuestionAnswering, MptForSequenceClassification, MptForTokenClassification, MptModel, MptPreTrainedModel, ) from .models.mra import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, MraPreTrainedModel, ) from .models.mt5 import ( MT5EncoderModel, MT5ForConditionalGeneration, MT5ForQuestionAnswering, MT5ForSequenceClassification, MT5ForTokenClassification, MT5Model, MT5PreTrainedModel, ) from .models.musicgen import ( MusicgenForCausalLM, MusicgenForConditionalGeneration, MusicgenModel, MusicgenPreTrainedModel, MusicgenProcessor, ) from .models.musicgen_melody import ( MusicgenMelodyForCausalLM, MusicgenMelodyForConditionalGeneration, MusicgenMelodyModel, MusicgenMelodyPreTrainedModel, ) from .models.mvp import ( MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) from .models.nat import ( NatBackbone, NatForImageClassification, NatModel, NatPreTrainedModel, ) from .models.nezha import ( NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) from .models.nllb_moe import ( NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTop2Router, ) from .models.nystromformer import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerLayer, NystromformerModel, NystromformerPreTrainedModel, ) from .models.olmo import ( OlmoForCausalLM, OlmoModel, OlmoPreTrainedModel, ) from .models.oneformer import ( OneFormerForUniversalSegmentation, OneFormerModel, OneFormerPreTrainedModel, ) from .models.openai import ( OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, OpenAIGPTPreTrainedModel, load_tf_weights_in_openai_gpt, ) from .models.opt import ( OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) from .models.owlv2 import ( Owlv2ForObjectDetection, Owlv2Model, Owlv2PreTrainedModel, Owlv2TextModel, Owlv2VisionModel, ) from .models.owlvit import ( OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) from .models.patchtsmixer import ( PatchTSMixerForPrediction, PatchTSMixerForPretraining, PatchTSMixerForRegression, PatchTSMixerForTimeSeriesClassification, PatchTSMixerModel, PatchTSMixerPreTrainedModel, ) from .models.patchtst import ( PatchTSTForClassification, PatchTSTForPrediction, PatchTSTForPretraining, PatchTSTForRegression, PatchTSTModel, PatchTSTPreTrainedModel, ) from .models.pegasus import ( PegasusForCausalLM, PegasusForConditionalGeneration, PegasusModel, PegasusPreTrainedModel, ) from .models.pegasus_x import ( PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) from .models.perceiver import ( PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) from .models.persimmon import ( PersimmonForCausalLM, PersimmonForSequenceClassification, PersimmonModel, PersimmonPreTrainedModel, ) from .models.phi import ( PhiForCausalLM, PhiForSequenceClassification, PhiForTokenClassification, PhiModel, PhiPreTrainedModel, ) from .models.phi3 import ( Phi3ForCausalLM, Phi3ForSequenceClassification, Phi3ForTokenClassification, Phi3Model, Phi3PreTrainedModel, ) from .models.pix2struct import ( Pix2StructForConditionalGeneration, Pix2StructPreTrainedModel, Pix2StructTextModel, Pix2StructVisionModel, ) from .models.plbart import ( PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) from .models.poolformer import ( PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) from .models.pop2piano import ( Pop2PianoForConditionalGeneration, Pop2PianoPreTrainedModel, ) from .models.prophetnet import ( ProphetNetDecoder, ProphetNetEncoder, ProphetNetForCausalLM, ProphetNetForConditionalGeneration, ProphetNetModel, ProphetNetPreTrainedModel, ) from .models.pvt import ( PvtForImageClassification, PvtModel, PvtPreTrainedModel, ) from .models.pvt_v2 import ( PvtV2Backbone, PvtV2ForImageClassification, PvtV2Model, PvtV2PreTrainedModel, ) from .models.qdqbert import ( QDQBertForMaskedLM, QDQBertForMultipleChoice, QDQBertForNextSentencePrediction, QDQBertForQuestionAnswering, QDQBertForSequenceClassification, QDQBertForTokenClassification, QDQBertLayer, QDQBertLMHeadModel, QDQBertModel, QDQBertPreTrainedModel, load_tf_weights_in_qdqbert, ) from .models.qwen2 import ( Qwen2ForCausalLM, Qwen2ForSequenceClassification, Qwen2Model, Qwen2PreTrainedModel, ) from .models.qwen2_moe import ( Qwen2MoeForCausalLM, Qwen2MoeForSequenceClassification, Qwen2MoeModel, Qwen2MoePreTrainedModel, ) from .models.rag import ( RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration, ) from .models.realm import ( RealmEmbedder, RealmForOpenQA, RealmKnowledgeAugEncoder, RealmPreTrainedModel, RealmReader, RealmRetriever, RealmScorer, load_tf_weights_in_realm, ) from .models.recurrent_gemma import ( RecurrentGemmaForCausalLM, RecurrentGemmaModel, RecurrentGemmaPreTrainedModel, ) from .models.reformer import ( ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) from .models.regnet import ( RegNetForImageClassification, RegNetModel, RegNetPreTrainedModel, ) from .models.rembert import ( RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) from .models.resnet import ( ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) from .models.roberta import ( RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) from .models.roberta_prelayernorm import ( RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) from .models.roc_bert import ( RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) from .models.roformer import ( RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) from .models.rwkv import ( RwkvForCausalLM, RwkvModel, RwkvPreTrainedModel, ) from .models.sam import ( SamModel, SamPreTrainedModel, ) from .models.seamless_m4t import ( SeamlessM4TCodeHifiGan, SeamlessM4TForSpeechToSpeech, SeamlessM4TForSpeechToText, SeamlessM4TForTextToSpeech, SeamlessM4TForTextToText, SeamlessM4THifiGan, SeamlessM4TModel, SeamlessM4TPreTrainedModel, SeamlessM4TTextToUnitForConditionalGeneration, SeamlessM4TTextToUnitModel, ) from .models.seamless_m4t_v2 import ( SeamlessM4Tv2ForSpeechToSpeech, SeamlessM4Tv2ForSpeechToText, SeamlessM4Tv2ForTextToSpeech, SeamlessM4Tv2ForTextToText, SeamlessM4Tv2Model, SeamlessM4Tv2PreTrainedModel, ) from .models.segformer import ( SegformerDecodeHead, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerLayer, SegformerModel, SegformerPreTrainedModel, ) from .models.seggpt import ( SegGptForImageSegmentation, SegGptModel, SegGptPreTrainedModel, ) from .models.sew import ( SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) from .models.sew_d import ( SEWDForCTC, SEWDForSequenceClassification, SEWDModel, SEWDPreTrainedModel, ) from .models.siglip import ( SiglipForImageClassification, SiglipModel, SiglipPreTrainedModel, SiglipTextModel, SiglipVisionModel, ) from .models.speech_encoder_decoder import SpeechEncoderDecoderModel from .models.speech_to_text import ( Speech2TextForConditionalGeneration, Speech2TextModel, Speech2TextPreTrainedModel, ) from .models.speech_to_text_2 import ( Speech2Text2ForCausalLM, Speech2Text2PreTrainedModel, ) from .models.speecht5 import ( SpeechT5ForSpeechToSpeech, SpeechT5ForSpeechToText, SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Model, SpeechT5PreTrainedModel, ) from .models.splinter import ( SplinterForPreTraining, SplinterForQuestionAnswering, SplinterLayer, SplinterModel, SplinterPreTrainedModel, ) from .models.squeezebert import ( SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) from .models.stablelm import ( StableLmForCausalLM, StableLmForSequenceClassification, StableLmModel, StableLmPreTrainedModel, ) from .models.starcoder2 import ( Starcoder2ForCausalLM, Starcoder2ForSequenceClassification, Starcoder2Model, Starcoder2PreTrainedModel, ) from .models.superpoint import ( SuperPointForKeypointDetection, SuperPointPreTrainedModel, ) from .models.swiftformer import ( SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) from .models.swin import ( SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) from .models.swin2sr import ( Swin2SRForImageSuperResolution, Swin2SRModel, Swin2SRPreTrainedModel, ) from .models.swinv2 import ( Swinv2Backbone, Swinv2ForImageClassification, Swinv2ForMaskedImageModeling, Swinv2Model, Swinv2PreTrainedModel, ) from .models.switch_transformers import ( SwitchTransformersEncoderModel, SwitchTransformersForConditionalGeneration, SwitchTransformersModel, SwitchTransformersPreTrainedModel, SwitchTransformersSparseMLP, SwitchTransformersTop1Router, ) from .models.t5 import ( T5EncoderModel, T5ForConditionalGeneration, T5ForQuestionAnswering, T5ForSequenceClassification, T5ForTokenClassification, T5Model, T5PreTrainedModel, load_tf_weights_in_t5, ) from .models.table_transformer import ( TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) from .models.tapas import ( TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) from .models.time_series_transformer import ( TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) from .models.timesformer import ( TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) from .models.timm_backbone import TimmBackbone from .models.trocr import ( TrOCRForCausalLM, TrOCRPreTrainedModel, ) from .models.tvlt import ( TvltForAudioVisualClassification, TvltForPreTraining, TvltModel, TvltPreTrainedModel, ) from .models.tvp import ( TvpForVideoGrounding, TvpModel, TvpPreTrainedModel, ) from .models.udop import ( UdopEncoderModel, UdopForConditionalGeneration, UdopModel, UdopPreTrainedModel, ) from .models.umt5 import ( UMT5EncoderModel, UMT5ForConditionalGeneration, UMT5ForQuestionAnswering, UMT5ForSequenceClassification, UMT5ForTokenClassification, UMT5Model, UMT5PreTrainedModel, ) from .models.unispeech import ( UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) from .models.unispeech_sat import ( UniSpeechSatForAudioFrameClassification, UniSpeechSatForCTC, UniSpeechSatForPreTraining, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, UniSpeechSatModel, UniSpeechSatPreTrainedModel, ) from .models.univnet import UnivNetModel from .models.upernet import ( UperNetForSemanticSegmentation, UperNetPreTrainedModel, ) from .models.videomae import ( VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, VideoMAEPreTrainedModel, ) from .models.vilt import ( ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltForTokenClassification, ViltLayer, ViltModel, ViltPreTrainedModel, ) from .models.vipllava import ( VipLlavaForConditionalGeneration, VipLlavaPreTrainedModel, ) from .models.vision_encoder_decoder import VisionEncoderDecoderModel from .models.vision_text_dual_encoder import VisionTextDualEncoderModel from .models.visual_bert import ( VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForRegionToPhraseAlignment, VisualBertForVisualReasoning, VisualBertLayer, VisualBertModel, VisualBertPreTrainedModel, ) from .models.vit import ( ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) from .models.vit_hybrid import ( ViTHybridForImageClassification, ViTHybridModel, ViTHybridPreTrainedModel, ) from .models.vit_mae import ( ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) from .models.vit_msn import ( ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) from .models.vitdet import ( VitDetBackbone, VitDetModel, VitDetPreTrainedModel, ) from .models.vitmatte import ( VitMatteForImageMatting, VitMattePreTrainedModel, ) from .models.vits import ( VitsModel, VitsPreTrainedModel, ) from .models.vivit import ( VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) from .models.wav2vec2 import ( Wav2Vec2ForAudioFrameClassification, Wav2Vec2ForCTC, Wav2Vec2ForMaskedLM, Wav2Vec2ForPreTraining, Wav2Vec2ForSequenceClassification, Wav2Vec2ForXVector, Wav2Vec2Model, Wav2Vec2PreTrainedModel, ) from .models.wav2vec2_bert import ( Wav2Vec2BertForAudioFrameClassification, Wav2Vec2BertForCTC, Wav2Vec2BertForSequenceClassification, Wav2Vec2BertForXVector, Wav2Vec2BertModel, Wav2Vec2BertPreTrainedModel, ) from .models.wav2vec2_conformer import ( Wav2Vec2ConformerForAudioFrameClassification, Wav2Vec2ConformerForCTC, Wav2Vec2ConformerForPreTraining, Wav2Vec2ConformerForSequenceClassification, Wav2Vec2ConformerForXVector, Wav2Vec2ConformerModel, Wav2Vec2ConformerPreTrainedModel, ) from .models.wavlm import ( WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) from .models.whisper import ( WhisperForAudioClassification, WhisperForCausalLM, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) from .models.x_clip import ( XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) from .models.xglm import ( XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel, ) from .models.xlm import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) from .models.xlm_prophetnet import ( XLMProphetNetDecoder, XLMProphetNetEncoder, XLMProphetNetForCausalLM, XLMProphetNetForConditionalGeneration, XLMProphetNetModel, XLMProphetNetPreTrainedModel, ) from .models.xlm_roberta import ( XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) from .models.xlm_roberta_xl import ( XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) from .models.xlnet import ( XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) from .models.xmod import ( XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) from .models.yolos import ( YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) from .models.yoso import ( YosoForMaskedLM, YosoForMultipleChoice, YosoForQuestionAnswering, YosoForSequenceClassification, YosoForTokenClassification, YosoLayer, YosoModel, YosoPreTrainedModel, ) # Optimization from .optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, get_wsd_schedule, ) from .pytorch_utils import Conv1D, apply_chunking_to_forward, prune_layer # Trainer from .trainer import Trainer from .trainer_pt_utils import torch_distributed_zero_first from .trainer_seq2seq import Seq2SeqTrainer # TensorFlow try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: # Import the same objects as dummies to get them in the namespace. # They will raise an import error if the user tries to instantiate / use them. from .utils.dummy_tf_objects import * else: from .benchmark.benchmark_args_tf import TensorFlowBenchmarkArguments # Benchmarks from .benchmark.benchmark_tf import TensorFlowBenchmark from .generation import ( TFForcedBOSTokenLogitsProcessor, TFForcedEOSTokenLogitsProcessor, TFForceTokensLogitsProcessor, TFGenerationMixin, TFLogitsProcessor, TFLogitsProcessorList, TFLogitsWarper, TFMinLengthLogitsProcessor, TFNoBadWordsLogitsProcessor, TFNoRepeatNGramLogitsProcessor, TFRepetitionPenaltyLogitsProcessor, TFSuppressTokensAtBeginLogitsProcessor, TFSuppressTokensLogitsProcessor, TFTemperatureLogitsWarper, TFTopKLogitsWarper, TFTopPLogitsWarper, ) from .keras_callbacks import KerasMetricCallback, PushToHubCallback from .modeling_tf_utils import ( TFPreTrainedModel, TFSequenceSummary, TFSharedEmbeddings, shape_list, ) # TensorFlow model imports from .models.albert import ( TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) from .models.auto import ( TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_TEXT_ENCODING_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING, TFAutoModel, TFAutoModelForAudioClassification, TFAutoModelForCausalLM, TFAutoModelForDocumentQuestionAnswering, TFAutoModelForImageClassification, TFAutoModelForMaskedImageModeling, TFAutoModelForMaskedLM, TFAutoModelForMaskGeneration, TFAutoModelForMultipleChoice, TFAutoModelForNextSentencePrediction, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSemanticSegmentation, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForSpeechSeq2Seq, TFAutoModelForTableQuestionAnswering, TFAutoModelForTextEncoding, TFAutoModelForTokenClassification, TFAutoModelForVision2Seq, TFAutoModelForZeroShotImageClassification, TFAutoModelWithLMHead, ) from .models.bart import ( TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBartModel, TFBartPretrainedModel, ) from .models.bert import ( TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) from .models.blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) from .models.blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) from .models.blip import ( TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) from .models.camembert import ( TFCamembertForCausalLM, TFCamembertForMaskedLM, TFCamembertForMultipleChoice, TFCamembertForQuestionAnswering, TFCamembertForSequenceClassification, TFCamembertForTokenClassification, TFCamembertModel, TFCamembertPreTrainedModel, ) from .models.clip import ( TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) from .models.convbert import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) from .models.convnext import ( TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel, ) from .models.convnextv2 import ( TFConvNextV2ForImageClassification, TFConvNextV2Model, TFConvNextV2PreTrainedModel, ) from .models.ctrl import ( TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) from .models.cvt import ( TFCvtForImageClassification, TFCvtModel, TFCvtPreTrainedModel, ) from .models.data2vec import ( TFData2VecVisionForImageClassification, TFData2VecVisionForSemanticSegmentation, TFData2VecVisionModel, TFData2VecVisionPreTrainedModel, ) from .models.deberta import ( TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) from .models.deberta_v2 import ( TFDebertaV2ForMaskedLM, TFDebertaV2ForMultipleChoice, TFDebertaV2ForQuestionAnswering, TFDebertaV2ForSequenceClassification, TFDebertaV2ForTokenClassification, TFDebertaV2Model, TFDebertaV2PreTrainedModel, ) from .models.deit import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) from .models.deprecated.transfo_xl import ( TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) from .models.distilbert import ( TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) from .models.dpr import ( TFDPRContextEncoder, TFDPRPretrainedContextEncoder, TFDPRPretrainedQuestionEncoder, TFDPRPretrainedReader, TFDPRQuestionEncoder, TFDPRReader, ) from .models.efficientformer import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) from .models.electra import ( TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) from .models.encoder_decoder import TFEncoderDecoderModel from .models.esm import ( TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, TFEsmPreTrainedModel, ) from .models.flaubert import ( TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertPreTrainedModel, TFFlaubertWithLMHeadModel, ) from .models.funnel import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) from .models.gpt2 import ( TFGPT2DoubleHeadsModel, TFGPT2ForSequenceClassification, TFGPT2LMHeadModel, TFGPT2MainLayer, TFGPT2Model, TFGPT2PreTrainedModel, ) from .models.gptj import ( TFGPTJForCausalLM, TFGPTJForQuestionAnswering, TFGPTJForSequenceClassification, TFGPTJModel, TFGPTJPreTrainedModel, ) from .models.groupvit import ( TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) from .models.hubert import ( TFHubertForCTC, TFHubertModel, TFHubertPreTrainedModel, ) from .models.idefics import ( TFIdeficsForVisionText2Text, TFIdeficsModel, TFIdeficsPreTrainedModel, ) from .models.layoutlm import ( TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMMainLayer, TFLayoutLMModel, TFLayoutLMPreTrainedModel, ) from .models.layoutlmv3 import ( TFLayoutLMv3ForQuestionAnswering, TFLayoutLMv3ForSequenceClassification, TFLayoutLMv3ForTokenClassification, TFLayoutLMv3Model, TFLayoutLMv3PreTrainedModel, ) from .models.led import ( TFLEDForConditionalGeneration, TFLEDModel, TFLEDPreTrainedModel, ) from .models.longformer import ( TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) from .models.lxmert import ( TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) from .models.marian import ( TFMarianModel, TFMarianMTModel, TFMarianPreTrainedModel, ) from .models.mbart import ( TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel, ) from .models.mobilebert import ( TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) from .models.mobilevit import ( TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) from .models.mpnet import ( TFMPNetForMaskedLM, TFMPNetForMultipleChoice, TFMPNetForQuestionAnswering, TFMPNetForSequenceClassification, TFMPNetForTokenClassification, TFMPNetMainLayer, TFMPNetModel, TFMPNetPreTrainedModel, ) from .models.mt5 import ( TFMT5EncoderModel, TFMT5ForConditionalGeneration, TFMT5Model, ) from .models.openai import ( TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTForSequenceClassification, TFOpenAIGPTLMHeadModel, TFOpenAIGPTMainLayer, TFOpenAIGPTModel, TFOpenAIGPTPreTrainedModel, ) from .models.opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel from .models.pegasus import ( TFPegasusForConditionalGeneration, TFPegasusModel, TFPegasusPreTrainedModel, ) from .models.rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) from .models.regnet import ( TFRegNetForImageClassification, TFRegNetModel, TFRegNetPreTrainedModel, ) from .models.rembert import ( TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) from .models.resnet import ( TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) from .models.roberta import ( TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) from .models.roberta_prelayernorm import ( TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) from .models.roformer import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) from .models.sam import ( TFSamModel, TFSamPreTrainedModel, ) from .models.segformer import ( TFSegformerDecodeHead, TFSegformerForImageClassification, TFSegformerForSemanticSegmentation, TFSegformerModel, TFSegformerPreTrainedModel, ) from .models.speech_to_text import ( TFSpeech2TextForConditionalGeneration, TFSpeech2TextModel, TFSpeech2TextPreTrainedModel, ) from .models.swiftformer import ( TFSwiftFormerForImageClassification, TFSwiftFormerModel, TFSwiftFormerPreTrainedModel, ) from .models.swin import ( TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) from .models.t5 import ( TFT5EncoderModel, TFT5ForConditionalGeneration, TFT5Model, TFT5PreTrainedModel, ) from .models.tapas import ( TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) from .models.vision_encoder_decoder import TFVisionEncoderDecoderModel from .models.vision_text_dual_encoder import TFVisionTextDualEncoderModel from .models.vit import ( TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel, ) from .models.vit_mae import ( TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel, ) from .models.wav2vec2 import ( TFWav2Vec2ForCTC, TFWav2Vec2ForSequenceClassification, TFWav2Vec2Model, TFWav2Vec2PreTrainedModel, ) from .models.whisper import ( TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) from .models.xglm import ( TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) from .models.xlm import ( TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) from .models.xlm_roberta import ( TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) from .models.xlnet import ( TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) # Optimization from .optimization_tf import ( AdamWeightDecay, GradientAccumulator, WarmUp, create_optimizer, ) try: if not ( is_librosa_available() and is_essentia_available() and is_scipy_available() and is_torch_available() and is_pretty_midi_available() ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_essentia_and_librosa_and_pretty_midi_and_scipy_and_torch_objects import * else: from .models.pop2piano import ( Pop2PianoFeatureExtractor, Pop2PianoProcessor, Pop2PianoTokenizer, ) try: if not is_torchaudio_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torchaudio_objects import * else: from .models.musicgen_melody import MusicgenMelodyFeatureExtractor, MusicgenMelodyProcessor try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: # Import the same objects as dummies to get them in the namespace. # They will raise an import error if the user tries to instantiate / use them. from .utils.dummy_flax_objects import * else: from .generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxForceTokensLogitsProcessor, FlaxGenerationMixin, FlaxLogitsProcessor, FlaxLogitsProcessorList, FlaxLogitsWarper, FlaxMinLengthLogitsProcessor, FlaxSuppressTokensAtBeginLogitsProcessor, FlaxSuppressTokensLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, FlaxWhisperTimeStampLogitsProcessor, ) from .modeling_flax_utils import FlaxPreTrainedModel # Flax model imports from .models.albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) from .models.auto import ( FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_MASKED_LM_MAPPING, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, FLAX_MODEL_FOR_PRETRAINING_MAPPING, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING, FLAX_MODEL_MAPPING, FlaxAutoModel, FlaxAutoModelForCausalLM, FlaxAutoModelForImageClassification, FlaxAutoModelForMaskedLM, FlaxAutoModelForMultipleChoice, FlaxAutoModelForNextSentencePrediction, FlaxAutoModelForPreTraining, FlaxAutoModelForQuestionAnswering, FlaxAutoModelForSeq2SeqLM, FlaxAutoModelForSequenceClassification, FlaxAutoModelForSpeechSeq2Seq, FlaxAutoModelForTokenClassification, FlaxAutoModelForVision2Seq, ) from .models.bart import ( FlaxBartDecoderPreTrainedModel, FlaxBartForCausalLM, FlaxBartForConditionalGeneration, FlaxBartForQuestionAnswering, FlaxBartForSequenceClassification, FlaxBartModel, FlaxBartPreTrainedModel, ) from .models.beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) from .models.bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) from .models.big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, FlaxBigBirdPreTrainedModel, ) from .models.blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) from .models.blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) from .models.bloom import ( FlaxBloomForCausalLM, FlaxBloomModel, FlaxBloomPreTrainedModel, ) from .models.clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextModelWithProjection, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) from .models.distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) from .models.electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) from .models.encoder_decoder import FlaxEncoderDecoderModel from .models.gemma import ( FlaxGemmaForCausalLM, FlaxGemmaModel, FlaxGemmaPreTrainedModel, ) from .models.gpt2 import ( FlaxGPT2LMHeadModel, FlaxGPT2Model, FlaxGPT2PreTrainedModel, ) from .models.gpt_neo import ( FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel, ) from .models.gptj import ( FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel, ) from .models.llama import ( FlaxLlamaForCausalLM, FlaxLlamaModel, FlaxLlamaPreTrainedModel, ) from .models.longt5 import ( FlaxLongT5ForConditionalGeneration, FlaxLongT5Model, FlaxLongT5PreTrainedModel, ) from .models.marian import ( FlaxMarianModel, FlaxMarianMTModel, FlaxMarianPreTrainedModel, ) from .models.mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) from .models.mistral import ( FlaxMistralForCausalLM, FlaxMistralModel, FlaxMistralPreTrainedModel, ) from .models.mt5 import ( FlaxMT5EncoderModel, FlaxMT5ForConditionalGeneration, FlaxMT5Model, ) from .models.opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel from .models.pegasus import ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, FlaxPegasusPreTrainedModel, ) from .models.regnet import ( FlaxRegNetForImageClassification, FlaxRegNetModel, FlaxRegNetPreTrainedModel, ) from .models.resnet import ( FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel, ) from .models.roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) from .models.roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) from .models.roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) from .models.speech_encoder_decoder import FlaxSpeechEncoderDecoderModel from .models.t5 import ( FlaxT5EncoderModel, FlaxT5ForConditionalGeneration, FlaxT5Model, FlaxT5PreTrainedModel, ) from .models.vision_encoder_decoder import FlaxVisionEncoderDecoderModel from .models.vision_text_dual_encoder import FlaxVisionTextDualEncoderModel from .models.vit import ( FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel, ) from .models.wav2vec2 import ( FlaxWav2Vec2ForCTC, FlaxWav2Vec2ForPreTraining, FlaxWav2Vec2Model, FlaxWav2Vec2PreTrainedModel, ) from .models.whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) from .models.xglm import ( FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel, ) from .models.xlm_roberta import ( FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule( __name__, globals()["__file__"], _import_structure, module_spec=__spec__, extra_objects={"__version__": __version__}, ) if not is_tf_available() and not is_torch_available() and not is_flax_available(): logger.warning_advice( "None of PyTorch, TensorFlow >= 2.0, or Flax have been found. " "Models won't be available and only tokenizers, configuration " "and file/data utilities can be used." )
transformers/src/transformers/__init__.py/0
{ "file_path": "transformers/src/transformers/__init__.py", "repo_id": "transformers", "token_count": 143567 }
512
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeq2SeqLM, AutoTokenizer from .tools import PipelineTool LANGUAGE_CODES = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class TranslationTool(PipelineTool): """ Example: ```py from transformers.agents import TranslationTool translator = TranslationTool() translator("This is a super nice API!", src_lang="English", tgt_lang="French") ``` """ lang_to_code = LANGUAGE_CODES default_checkpoint = "facebook/nllb-200-distilled-600M" description = ( "This is a tool that translates text from a language to another." f"Both `src_lang`and `tgt_lang` should belong to this list of languages: {list(lang_to_code.keys())}." ) name = "translator" pre_processor_class = AutoTokenizer model_class = AutoModelForSeq2SeqLM inputs = { "text": {"type": "text", "description": "The text to translate"}, "src_lang": { "type": "text", "description": "The language of the text to translate. Written in plain English, such as 'Romanian', or 'Albanian'", }, "tgt_lang": { "type": "text", "description": "The language for the desired ouput language. Written in plain English, such as 'Romanian', or 'Albanian'", }, } output_type = "text" def encode(self, text, src_lang, tgt_lang): if src_lang not in self.lang_to_code: raise ValueError(f"{src_lang} is not a supported language.") if tgt_lang not in self.lang_to_code: raise ValueError(f"{tgt_lang} is not a supported language.") src_lang = self.lang_to_code[src_lang] tgt_lang = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( text, return_tensors="pt", src_lang=src_lang, tgt_lang=tgt_lang ) def forward(self, inputs): return self.model.generate(**inputs) def decode(self, outputs): return self.post_processor.decode(outputs[0].tolist(), skip_special_tokens=True)
transformers/src/transformers/agents/translation.py/0
{ "file_path": "transformers/src/transformers/agents/translation.py", "repo_id": "transformers", "token_count": 4239 }
513
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os from argparse import ArgumentParser, Namespace from importlib import import_module import huggingface_hub import numpy as np from packaging import version from .. import ( FEATURE_EXTRACTOR_MAPPING, IMAGE_PROCESSOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoImageProcessor, AutoProcessor, AutoTokenizer, is_datasets_available, is_tf_available, is_torch_available, ) from ..utils import TF2_WEIGHTS_INDEX_NAME, TF2_WEIGHTS_NAME, logging from . import BaseTransformersCLICommand if is_tf_available(): import tensorflow as tf tf.config.experimental.enable_tensor_float_32_execution(False) if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset MAX_ERROR = 5e-5 # larger error tolerance than in our internal tests, to avoid flaky user-facing errors def convert_command_factory(args: Namespace): """ Factory function used to convert a model PyTorch checkpoint in a TensorFlow 2 checkpoint. Returns: ServeCommand """ return PTtoTFCommand( args.model_name, args.local_dir, args.max_error, args.new_weights, args.no_pr, args.push, args.extra_commit_description, args.override_model_class, ) class PTtoTFCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli Args: parser: Root parser to register command-specific arguments """ train_parser = parser.add_parser( "pt-to-tf", help=( "CLI tool to run convert a transformers model from a PyTorch checkpoint to a TensorFlow checkpoint." " Can also be used to validate existing weights without opening PRs, with --no-pr." ), ) train_parser.add_argument( "--model-name", type=str, required=True, help="The model name, including owner/organization, as seen on the hub.", ) train_parser.add_argument( "--local-dir", type=str, default="", help="Optional local directory of the model repository. Defaults to /tmp/{model_name}", ) train_parser.add_argument( "--max-error", type=float, default=MAX_ERROR, help=( f"Maximum error tolerance. Defaults to {MAX_ERROR}. This flag should be avoided, use at your own risk." ), ) train_parser.add_argument( "--new-weights", action="store_true", help="Optional flag to create new TensorFlow weights, even if they already exist.", ) train_parser.add_argument( "--no-pr", action="store_true", help="Optional flag to NOT open a PR with converted weights." ) train_parser.add_argument( "--push", action="store_true", help="Optional flag to push the weights directly to `main` (requires permissions)", ) train_parser.add_argument( "--extra-commit-description", type=str, default="", help="Optional additional commit description to use when opening a PR (e.g. to tag the owner).", ) train_parser.add_argument( "--override-model-class", type=str, default=None, help="If you think you know better than the auto-detector, you can specify the model class here. " "Can be either an AutoModel class or a specific model class like BertForSequenceClassification.", ) train_parser.set_defaults(func=convert_command_factory) @staticmethod def find_pt_tf_differences(pt_outputs, tf_outputs): """ Compares the TensorFlow and PyTorch outputs, returning a dictionary with all tensor differences. """ # 1. All output attributes must be the same pt_out_attrs = set(pt_outputs.keys()) tf_out_attrs = set(tf_outputs.keys()) if pt_out_attrs != tf_out_attrs: raise ValueError( f"The model outputs have different attributes, aborting. (Pytorch: {pt_out_attrs}, TensorFlow:" f" {tf_out_attrs})" ) # 2. For each output attribute, computes the difference def _find_pt_tf_differences(pt_out, tf_out, differences, attr_name=""): # If the current attribute is a tensor, it is a leaf and we make the comparison. Otherwise, we will dig in # recursivelly, keeping the name of the attribute. if isinstance(pt_out, torch.Tensor): tensor_difference = np.max(np.abs(pt_out.numpy() - tf_out.numpy())) differences[attr_name] = tensor_difference else: root_name = attr_name for i, pt_item in enumerate(pt_out): # If it is a named attribute, we keep the name. Otherwise, just its index. if isinstance(pt_item, str): branch_name = root_name + pt_item tf_item = tf_out[pt_item] pt_item = pt_out[pt_item] else: branch_name = root_name + f"[{i}]" tf_item = tf_out[i] differences = _find_pt_tf_differences(pt_item, tf_item, differences, branch_name) return differences return _find_pt_tf_differences(pt_outputs, tf_outputs, {}) def __init__( self, model_name: str, local_dir: str, max_error: float, new_weights: bool, no_pr: bool, push: bool, extra_commit_description: str, override_model_class: str, *args, ): self._logger = logging.get_logger("transformers-cli/pt_to_tf") self._model_name = model_name self._local_dir = local_dir if local_dir else os.path.join("/tmp", model_name) self._max_error = max_error self._new_weights = new_weights self._no_pr = no_pr self._push = push self._extra_commit_description = extra_commit_description self._override_model_class = override_model_class def get_inputs(self, pt_model, tf_dummy_inputs, config): """ Returns the right inputs for the model, based on its signature. """ def _get_audio_input(): ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation") speech_samples = ds.sort("id").select(range(2))[:2]["audio"] raw_samples = [x["array"] for x in speech_samples] return raw_samples model_config_class = type(pt_model.config) if model_config_class in PROCESSOR_MAPPING: processor = AutoProcessor.from_pretrained(self._local_dir) if model_config_class in TOKENIZER_MAPPING and processor.tokenizer.pad_token is None: processor.tokenizer.pad_token = processor.tokenizer.eos_token elif model_config_class in IMAGE_PROCESSOR_MAPPING: processor = AutoImageProcessor.from_pretrained(self._local_dir) elif model_config_class in FEATURE_EXTRACTOR_MAPPING: processor = AutoFeatureExtractor.from_pretrained(self._local_dir) elif model_config_class in TOKENIZER_MAPPING: processor = AutoTokenizer.from_pretrained(self._local_dir) if processor.pad_token is None: processor.pad_token = processor.eos_token else: raise ValueError(f"Unknown data processing type (model config type: {model_config_class})") model_forward_signature = set(inspect.signature(pt_model.forward).parameters.keys()) processor_inputs = {} if "input_ids" in model_forward_signature: processor_inputs.update( { "text": ["Hi there!", "I am a batch with more than one row and different input lengths."], "padding": True, "truncation": True, } ) if "pixel_values" in model_forward_signature: sample_images = load_dataset("cifar10", "plain_text", split="test")[:2]["img"] processor_inputs.update({"images": sample_images}) if "input_features" in model_forward_signature: feature_extractor_signature = inspect.signature(processor.feature_extractor).parameters # Pad to the largest input length by default but take feature extractor default # padding value if it exists e.g. "max_length" and is not False or None if "padding" in feature_extractor_signature: default_strategy = feature_extractor_signature["padding"].default if default_strategy is not False and default_strategy is not None: padding_strategy = default_strategy else: padding_strategy = True else: padding_strategy = True processor_inputs.update({"audio": _get_audio_input(), "padding": padding_strategy}) if "input_values" in model_forward_signature: # Wav2Vec2 audio input processor_inputs.update({"audio": _get_audio_input(), "padding": True}) pt_input = processor(**processor_inputs, return_tensors="pt") tf_input = processor(**processor_inputs, return_tensors="tf") # Extra input requirements, in addition to the input modality if ( config.is_encoder_decoder or (hasattr(pt_model, "encoder") and hasattr(pt_model, "decoder")) or "decoder_input_ids" in tf_dummy_inputs ): decoder_input_ids = np.asarray([[1], [1]], dtype=int) * (pt_model.config.decoder_start_token_id or 0) pt_input.update({"decoder_input_ids": torch.tensor(decoder_input_ids)}) tf_input.update({"decoder_input_ids": tf.convert_to_tensor(decoder_input_ids)}) return pt_input, tf_input def run(self): # hub version 0.9.0 introduced the possibility of programmatically opening PRs with normal write tokens. if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"): raise ImportError( "The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub" " installation." ) else: from huggingface_hub import Repository, create_commit from huggingface_hub._commit_api import CommitOperationAdd # Fetch remote data repo = Repository(local_dir=self._local_dir, clone_from=self._model_name) # Load config and get the appropriate architecture -- the latter is needed to convert the head's weights config = AutoConfig.from_pretrained(self._local_dir) architectures = config.architectures if self._override_model_class is not None: if self._override_model_class.startswith("TF"): architectures = [self._override_model_class[2:]] else: architectures = [self._override_model_class] try: pt_class = getattr(import_module("transformers"), architectures[0]) except AttributeError: raise ValueError(f"Model class {self._override_model_class} not found in transformers.") try: tf_class = getattr(import_module("transformers"), "TF" + architectures[0]) except AttributeError: raise ValueError(f"TF model class TF{self._override_model_class} not found in transformers.") elif architectures is None: # No architecture defined -- use auto classes pt_class = getattr(import_module("transformers"), "AutoModel") tf_class = getattr(import_module("transformers"), "TFAutoModel") self._logger.warning("No detected architecture, using AutoModel/TFAutoModel") else: # Architecture defined -- use it if len(architectures) > 1: raise ValueError(f"More than one architecture was found, aborting. (architectures = {architectures})") self._logger.warning(f"Detected architecture: {architectures[0]}") pt_class = getattr(import_module("transformers"), architectures[0]) try: tf_class = getattr(import_module("transformers"), "TF" + architectures[0]) except AttributeError: raise AttributeError(f"The TensorFlow equivalent of {architectures[0]} doesn't exist in transformers.") # Check the TF dummy inputs to see what keys we need in the forward pass tf_from_pt_model = tf_class.from_config(config) tf_dummy_inputs = tf_from_pt_model.dummy_inputs del tf_from_pt_model # Try to keep only one model in memory at a time # Load the model and get some basic inputs pt_model = pt_class.from_pretrained(self._local_dir) pt_model.eval() pt_input, tf_input = self.get_inputs(pt_model, tf_dummy_inputs, config) with torch.no_grad(): pt_outputs = pt_model(**pt_input, output_hidden_states=True) del pt_model # will no longer be used, and may have a large memory footprint tf_from_pt_model = tf_class.from_pretrained(self._local_dir, from_pt=True) tf_from_pt_outputs = tf_from_pt_model(**tf_input, output_hidden_states=True, training=False) # Confirms that cross loading PT weights into TF worked. crossload_differences = self.find_pt_tf_differences(pt_outputs, tf_from_pt_outputs) output_differences = {k: v for k, v in crossload_differences.items() if "hidden" not in k} hidden_differences = {k: v for k, v in crossload_differences.items() if "hidden" in k} if len(output_differences) == 0 and architectures is not None: raise ValueError( f"Something went wrong -- the config file has architectures ({architectures}), but no model head" " output was found. All outputs start with 'hidden'" ) max_crossload_output_diff = max(output_differences.values()) if output_differences else 0.0 max_crossload_hidden_diff = max(hidden_differences.values()) if max_crossload_output_diff > self._max_error or max_crossload_hidden_diff > self._max_error: raise ValueError( "The cross-loaded TensorFlow model has different outputs, something went wrong!\n" + f"\nList of maximum output differences above the threshold ({self._max_error}):\n" + "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error]) + f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n" + "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error]) ) # Save the weights in a TF format (if needed) and confirms that the results are still good tf_weights_path = os.path.join(self._local_dir, TF2_WEIGHTS_NAME) tf_weights_index_path = os.path.join(self._local_dir, TF2_WEIGHTS_INDEX_NAME) if (not os.path.exists(tf_weights_path) and not os.path.exists(tf_weights_index_path)) or self._new_weights: tf_from_pt_model.save_pretrained(self._local_dir) del tf_from_pt_model # will no longer be used, and may have a large memory footprint tf_model = tf_class.from_pretrained(self._local_dir) tf_outputs = tf_model(**tf_input, output_hidden_states=True) conversion_differences = self.find_pt_tf_differences(pt_outputs, tf_outputs) output_differences = {k: v for k, v in conversion_differences.items() if "hidden" not in k} hidden_differences = {k: v for k, v in conversion_differences.items() if "hidden" in k} if len(output_differences) == 0 and architectures is not None: raise ValueError( f"Something went wrong -- the config file has architectures ({architectures}), but no model head" " output was found. All outputs start with 'hidden'" ) max_conversion_output_diff = max(output_differences.values()) if output_differences else 0.0 max_conversion_hidden_diff = max(hidden_differences.values()) if max_conversion_output_diff > self._max_error or max_conversion_hidden_diff > self._max_error: raise ValueError( "The converted TensorFlow model has different outputs, something went wrong!\n" + f"\nList of maximum output differences above the threshold ({self._max_error}):\n" + "\n".join([f"{k}: {v:.3e}" for k, v in output_differences.items() if v > self._max_error]) + f"\n\nList of maximum hidden layer differences above the threshold ({self._max_error}):\n" + "\n".join([f"{k}: {v:.3e}" for k, v in hidden_differences.items() if v > self._max_error]) ) commit_message = "Update TF weights" if self._new_weights else "Add TF weights" if self._push: repo.git_add(auto_lfs_track=True) repo.git_commit(commit_message) repo.git_push(blocking=True) # this prints a progress bar with the upload self._logger.warning(f"TF weights pushed into {self._model_name}") elif not self._no_pr: self._logger.warning("Uploading the weights into a new PR...") commit_descrition = ( "Model converted by the [`transformers`' `pt_to_tf`" " CLI](https://github.com/huggingface/transformers/blob/main/src/transformers/commands/pt_to_tf.py). " "All converted model outputs and hidden layers were validated against its PyTorch counterpart.\n\n" f"Maximum crossload output difference={max_crossload_output_diff:.3e}; " f"Maximum crossload hidden layer difference={max_crossload_hidden_diff:.3e};\n" f"Maximum conversion output difference={max_conversion_output_diff:.3e}; " f"Maximum conversion hidden layer difference={max_conversion_hidden_diff:.3e};\n" ) if self._max_error > MAX_ERROR: commit_descrition += ( f"\n\nCAUTION: The maximum admissible error was manually increased to {self._max_error}!" ) if self._extra_commit_description: commit_descrition += "\n\n" + self._extra_commit_description # sharded model -> adds all related files (index and .h5 shards) if os.path.exists(tf_weights_index_path): operations = [ CommitOperationAdd(path_in_repo=TF2_WEIGHTS_INDEX_NAME, path_or_fileobj=tf_weights_index_path) ] for shard_path in tf.io.gfile.glob(self._local_dir + "/tf_model-*.h5"): operations += [ CommitOperationAdd(path_in_repo=os.path.basename(shard_path), path_or_fileobj=shard_path) ] else: operations = [CommitOperationAdd(path_in_repo=TF2_WEIGHTS_NAME, path_or_fileobj=tf_weights_path)] hub_pr_url = create_commit( repo_id=self._model_name, operations=operations, commit_message=commit_message, commit_description=commit_descrition, repo_type="model", create_pr=True, ).pr_url self._logger.warning(f"PR open in {hub_pr_url}")
transformers/src/transformers/commands/pt_to_tf.py/0
{ "file_path": "transformers/src/transformers/commands/pt_to_tf.py", "repo_id": "transformers", "token_count": 8900 }
514
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import pickle import random import time import warnings from typing import Dict, List, Optional import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) DEPRECATION_WARNING = ( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: {0}" ) class TextDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ def __init__( self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, overwrite_cache=False, cache_dir: Optional[str] = None, ): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" ), FutureWarning, ) if os.path.isfile(file_path) is False: raise ValueError(f"Input file path {file_path} not found") block_size = block_size - tokenizer.num_special_tokens_to_add(pair=False) directory, filename = os.path.split(file_path) cached_features_file = os.path.join( cache_dir if cache_dir is not None else directory, f"cached_lm_{tokenizer.__class__.__name__}_{block_size}_{filename}", ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" with FileLock(lock_path): if os.path.exists(cached_features_file) and not overwrite_cache: start = time.time() with open(cached_features_file, "rb") as handle: self.examples = pickle.load(handle) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start ) else: logger.info(f"Creating features from dataset file at {directory}") self.examples = [] with open(file_path, encoding="utf-8") as f: text = f.read() tokenized_text = tokenizer.convert_tokens_to_ids(tokenizer.tokenize(text)) for i in range(0, len(tokenized_text) - block_size + 1, block_size): # Truncate in block of block_size self.examples.append( tokenizer.build_inputs_with_special_tokens(tokenized_text[i : i + block_size]) ) # Note that we are losing the last truncated example here for the sake of simplicity (no padding) # If your dataset is small, first you should look for a bigger one :-) and second you # can change this behavior by adding (model specific) padding. start = time.time() with open(cached_features_file, "wb") as handle: pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__(self): return len(self.examples) def __getitem__(self, i) -> torch.Tensor: return torch.tensor(self.examples[i], dtype=torch.long) class LineByLineTextDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" ), FutureWarning, ) if os.path.isfile(file_path) is False: raise ValueError(f"Input file path {file_path} not found") # Here, we do not cache the features, operating under the assumption # that we will soon use fast multithreaded tokenizers from the # `tokenizers` repo everywhere =) logger.info(f"Creating features from dataset file at {file_path}") with open(file_path, encoding="utf-8") as f: lines = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] batch_encoding = tokenizer(lines, add_special_tokens=True, truncation=True, max_length=block_size) self.examples = batch_encoding["input_ids"] self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] def __len__(self): return len(self.examples) def __getitem__(self, i) -> Dict[str, torch.tensor]: return self.examples[i] class LineByLineWithRefDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ def __init__(self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, ref_path: str): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm_wwm.py" ), FutureWarning, ) if os.path.isfile(file_path) is False: raise ValueError(f"Input file path {file_path} not found") if os.path.isfile(ref_path) is False: raise ValueError(f"Ref file path {file_path} not found") # Here, we do not cache the features, operating under the assumption # that we will soon use fast multithreaded tokenizers from the # `tokenizers` repo everywhere =) logger.info(f"Creating features from dataset file at {file_path}") logger.info(f"Use ref segment results at {ref_path}") with open(file_path, encoding="utf-8") as f: data = f.readlines() # use this method to avoid delimiter '\u2029' to split a line data = [line.strip() for line in data if len(line) > 0 and not line.isspace()] # Get ref inf from file with open(ref_path, encoding="utf-8") as f: ref = [json.loads(line) for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())] if len(data) != len(ref): raise ValueError( f"Length of Input file should be equal to Ref file. But the length of {file_path} is {len(data)} " f"while length of {ref_path} is {len(ref)}" ) batch_encoding = tokenizer(data, add_special_tokens=True, truncation=True, max_length=block_size) self.examples = batch_encoding["input_ids"] self.examples = [{"input_ids": torch.tensor(e, dtype=torch.long)} for e in self.examples] n = len(self.examples) for i in range(n): self.examples[i]["chinese_ref"] = torch.tensor(ref[i], dtype=torch.long) def __len__(self): return len(self.examples) def __getitem__(self, i) -> Dict[str, torch.tensor]: return self.examples[i] class LineByLineWithSOPTextDataset(Dataset): """ Dataset for sentence order prediction task, prepare sentence pairs for SOP task """ def __init__(self, tokenizer: PreTrainedTokenizer, file_dir: str, block_size: int): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" ), FutureWarning, ) if os.path.isdir(file_dir) is False: raise ValueError(f"{file_dir} is not a directory") logger.info(f"Creating features from dataset file folder at {file_dir}") self.examples = [] # TODO: randomness could apply a random seed, ex. rng = random.Random(random_seed) # file path looks like ./dataset/wiki_1, ./dataset/wiki_2 for file_name in os.listdir(file_dir): file_path = os.path.join(file_dir, file_name) if os.path.isfile(file_path) is False: raise ValueError(f"{file_path} is not a file") article_open = False with open(file_path, encoding="utf-8") as f: original_lines = f.readlines() article_lines = [] for line in original_lines: if "<doc id=" in line: article_open = True elif "</doc>" in line: article_open = False document = [ tokenizer.convert_tokens_to_ids(tokenizer.tokenize(line)) for line in article_lines[1:] if (len(line) > 0 and not line.isspace()) ] examples = self.create_examples_from_document(document, block_size, tokenizer) self.examples.extend(examples) article_lines = [] else: if article_open: article_lines.append(line) logger.info("Dataset parse finished.") def create_examples_from_document(self, document, block_size, tokenizer, short_seq_prob=0.1): """Creates examples for a single document.""" # Account for special tokens max_num_tokens = block_size - tokenizer.num_special_tokens_to_add(pair=True) # We *usually* want to fill up the entire sequence since we are padding # to `block_size` anyways, so short sequences are generally wasted # computation. However, we *sometimes* # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter # sequences to minimize the mismatch between pretraining and fine-tuning. # The `target_seq_length` is just a rough target however, whereas # `block_size` is a hard limit. target_seq_length = max_num_tokens if random.random() < short_seq_prob: target_seq_length = random.randint(2, max_num_tokens) # We DON'T just concatenate all of the tokens from a document into a long # sequence and choose an arbitrary split point because this would make the # next sentence prediction task too easy. Instead, we split the input into # segments "A" and "B" based on the actual "sentences" provided by the user # input. examples = [] current_chunk = [] # a buffer stored current working segments current_length = 0 i = 0 while i < len(document): segment = document[i] # get a segment if not segment: i += 1 continue current_chunk.append(segment) # add a segment to current chunk current_length += len(segment) # overall token length # if current length goes to the target length or reaches the end of file, start building token a and b if i == len(document) - 1 or current_length >= target_seq_length: if current_chunk: # `a_end` is how many segments from `current_chunk` go into the `A` (first) sentence. a_end = 1 # if current chunk has more than 2 sentences, pick part of it `A` (first) sentence if len(current_chunk) >= 2: a_end = random.randint(1, len(current_chunk) - 1) # token a tokens_a = [] for j in range(a_end): tokens_a.extend(current_chunk[j]) # token b tokens_b = [] for j in range(a_end, len(current_chunk)): tokens_b.extend(current_chunk[j]) if len(tokens_a) == 0 or len(tokens_b) == 0: continue # switch tokens_a and tokens_b randomly if random.random() < 0.5: is_next = False tokens_a, tokens_b = tokens_b, tokens_a else: is_next = True def truncate_seq_pair(tokens_a, tokens_b, max_num_tokens): """Truncates a pair of sequences to a maximum sequence length.""" while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_num_tokens: break trunc_tokens = tokens_a if len(tokens_a) > len(tokens_b) else tokens_b if not (len(trunc_tokens) >= 1): raise ValueError("Sequence length to be truncated must be no less than one") # We want to sometimes truncate from the front and sometimes from the # back to add more randomness and avoid biases. if random.random() < 0.5: del trunc_tokens[0] else: trunc_tokens.pop() truncate_seq_pair(tokens_a, tokens_b, max_num_tokens) if not (len(tokens_a) >= 1): raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1") if not (len(tokens_b) >= 1): raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1") # add special tokens input_ids = tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) # add token type ids, 0 for sentence a, 1 for sentence b token_type_ids = tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) example = { "input_ids": torch.tensor(input_ids, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), "sentence_order_label": torch.tensor(0 if is_next else 1, dtype=torch.long), } examples.append(example) current_chunk = [] # clear current chunk current_length = 0 # reset current text length i += 1 # go to next line return examples def __len__(self): return len(self.examples) def __getitem__(self, i) -> Dict[str, torch.tensor]: return self.examples[i] class TextDatasetForNextSentencePrediction(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ def __init__( self, tokenizer: PreTrainedTokenizer, file_path: str, block_size: int, overwrite_cache=False, short_seq_probability=0.1, nsp_probability=0.5, ): warnings.warn( DEPRECATION_WARNING.format( "https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py" ), FutureWarning, ) if not os.path.isfile(file_path): raise ValueError(f"Input file path {file_path} not found") self.short_seq_probability = short_seq_probability self.nsp_probability = nsp_probability directory, filename = os.path.split(file_path) cached_features_file = os.path.join( directory, f"cached_nsp_{tokenizer.__class__.__name__}_{block_size}_{filename}", ) self.tokenizer = tokenizer # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" # Input file format: # (1) One sentence per line. These should ideally be actual sentences, not # entire paragraphs or arbitrary spans of text. (Because we use the # sentence boundaries for the "next sentence prediction" task). # (2) Blank lines between documents. Document boundaries are needed so # that the "next sentence prediction" task doesn't span between documents. # # Example: # I am very happy. # Here is the second sentence. # # A new document. with FileLock(lock_path): if os.path.exists(cached_features_file) and not overwrite_cache: start = time.time() with open(cached_features_file, "rb") as handle: self.examples = pickle.load(handle) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start ) else: logger.info(f"Creating features from dataset file at {directory}") self.documents = [[]] with open(file_path, encoding="utf-8") as f: while True: line = f.readline() if not line: break line = line.strip() # Empty lines are used as document delimiters if not line and len(self.documents[-1]) != 0: self.documents.append([]) tokens = tokenizer.tokenize(line) tokens = tokenizer.convert_tokens_to_ids(tokens) if tokens: self.documents[-1].append(tokens) logger.info(f"Creating examples from {len(self.documents)} documents.") self.examples = [] for doc_index, document in enumerate(self.documents): self.create_examples_from_document(document, doc_index, block_size) start = time.time() with open(cached_features_file, "wb") as handle: pickle.dump(self.examples, handle, protocol=pickle.HIGHEST_PROTOCOL) logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int): """Creates examples for a single document.""" max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True) # We *usually* want to fill up the entire sequence since we are padding # to `block_size` anyways, so short sequences are generally wasted # computation. However, we *sometimes* # (i.e., short_seq_prob == 0.1 == 10% of the time) want to use shorter # sequences to minimize the mismatch between pretraining and fine-tuning. # The `target_seq_length` is just a rough target however, whereas # `block_size` is a hard limit. target_seq_length = max_num_tokens if random.random() < self.short_seq_probability: target_seq_length = random.randint(2, max_num_tokens) current_chunk = [] # a buffer stored current working segments current_length = 0 i = 0 while i < len(document): segment = document[i] current_chunk.append(segment) current_length += len(segment) if i == len(document) - 1 or current_length >= target_seq_length: if current_chunk: # `a_end` is how many segments from `current_chunk` go into the `A` # (first) sentence. a_end = 1 if len(current_chunk) >= 2: a_end = random.randint(1, len(current_chunk) - 1) tokens_a = [] for j in range(a_end): tokens_a.extend(current_chunk[j]) tokens_b = [] if len(current_chunk) == 1 or random.random() < self.nsp_probability: is_random_next = True target_b_length = target_seq_length - len(tokens_a) # This should rarely go for more than one iteration for large # corpora. However, just to be careful, we try to make sure that # the random document is not the same as the document # we're processing. for _ in range(10): random_document_index = random.randint(0, len(self.documents) - 1) if random_document_index != doc_index: break random_document = self.documents[random_document_index] random_start = random.randint(0, len(random_document) - 1) for j in range(random_start, len(random_document)): tokens_b.extend(random_document[j]) if len(tokens_b) >= target_b_length: break # We didn't actually use these segments so we "put them back" so # they don't go to waste. num_unused_segments = len(current_chunk) - a_end i -= num_unused_segments # Actual next else: is_random_next = False for j in range(a_end, len(current_chunk)): tokens_b.extend(current_chunk[j]) if not (len(tokens_a) >= 1): raise ValueError(f"Length of sequence a is {len(tokens_a)} which must be no less than 1") if not (len(tokens_b) >= 1): raise ValueError(f"Length of sequence b is {len(tokens_b)} which must be no less than 1") # add special tokens input_ids = self.tokenizer.build_inputs_with_special_tokens(tokens_a, tokens_b) # add token type ids, 0 for sentence a, 1 for sentence b token_type_ids = self.tokenizer.create_token_type_ids_from_sequences(tokens_a, tokens_b) example = { "input_ids": torch.tensor(input_ids, dtype=torch.long), "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long), "next_sentence_label": torch.tensor(1 if is_random_next else 0, dtype=torch.long), } self.examples.append(example) current_chunk = [] current_length = 0 i += 1 def __len__(self): return len(self.examples) def __getitem__(self, i): return self.examples[i]
transformers/src/transformers/data/datasets/language_modeling.py/0
{ "file_path": "transformers/src/transformers/data/datasets/language_modeling.py", "repo_id": "transformers", "token_count": 11449 }
515
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ File utilities: utilities related to download and cache models This module should not be update anymore and is only left for backward compatibility. """ from huggingface_hub import get_full_repo_name # for backward compatibility from huggingface_hub.constants import HF_HUB_DISABLE_TELEMETRY as DISABLE_TELEMETRY # for backward compatibility from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_torch_version, has_file, http_user_agent, is_apex_available, is_bs4_available, is_coloredlogs_available, is_datasets_available, is_detectron2_available, is_faiss_available, is_flax_available, is_ftfy_available, is_g2p_en_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_py3nvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tf2onnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bf16_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tf32_available, is_torch_xla_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
transformers/src/transformers/file_utils.py/0
{ "file_path": "transformers/src/transformers/file_utils.py", "repo_id": "transformers", "token_count": 1564 }
516
#define WARP_SIZE 32 #define FULL_MASK 0xffffffff #define OPTIMAL_THREADS 256 __global__ void index_max_cuda_kernel( float *index_vals, // [batch_size, 32, num_block] int *indices, // [batch_size, num_block] float *max_vals, // [batch_size, A_num_block * 32] float *max_vals_scatter, // [batch_size, 32, num_block] long batch_size, long A_num_block, long B_num_block, long num_block ); __global__ void mm_to_sparse_cuda_kernel( float *dense_A, // [batch_size, A_num_block, dim, 32] float *dense_B, // [batch_size, B_num_block, dim, 32] int *indices, // [batch_size, num_block] float *sparse_C, // [batch_size, num_block, 32, 32] long batch_size, long A_num_block, long B_num_block, long dim, long num_block ); __global__ void sparse_dense_mm_cuda_kernel( float *sparse_A, // [batch_size, num_block, 32, 32] int *indices, // [batch_size, num_block] float *dense_B, // [batch_size, B_num_block, dim, 32] float *dense_C, // [batch_size, A_num_block, dim, 32] long batch_size, long A_num_block, long B_num_block, long dim, long num_block ); __global__ void reduce_sum_cuda_kernel( float *sparse_A, // [batch_size, num_block, 32, 32] int *indices, // [batch_size, num_block] float *dense_C, // [batch_size, A_num_block, 32] long batch_size, long A_num_block, long B_num_block, long num_block ); __global__ void scatter_cuda_kernel( float *dense_A, // [batch_size, A_num_block, 32] int *indices, // [batch_size, num_block] float *sparse_C, // [batch_size, num_block, 32, 32] long batch_size, long A_num_block, long B_num_block, long num_block );
transformers/src/transformers/kernels/mra/cuda_kernel.h/0
{ "file_path": "transformers/src/transformers/kernels/mra/cuda_kernel.h", "repo_id": "transformers", "token_count": 729 }
517
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch @dataclass class AttentionMaskConverter: """ A utility attention mask class that allows one to: - Create a causal 4d mask - Create a causal 4d mask with slided window - Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length, key_value_length) that can be multiplied with attention scores Examples: ```python >>> import torch >>> from transformers.modeling_attn_mask_utils import AttentionMaskConverter >>> converter = AttentionMaskConverter(True) >>> converter.to_4d(torch.tensor([[0, 0, 0, 1, 1]]), 5, key_value_length=5, dtype=torch.float32) tensor([[[[-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], [-3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38, -3.4028e+38], [-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, -3.4028e+38], [-3.4028e+38, -3.4028e+38, -3.4028e+38, 0.0000e+00, 0.0000e+00]]]]) ``` Parameters: is_causal (`bool`): Whether the attention mask should be a uni-directional (causal) or bi-directional mask. sliding_window (`int`, *optional*): Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer. """ is_causal: bool sliding_window: int def __init__(self, is_causal: bool, sliding_window: Optional[int] = None): self.is_causal = is_causal self.sliding_window = sliding_window if self.sliding_window is not None and self.sliding_window <= 0: raise ValueError( f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`" ) def to_causal_4d( self, batch_size: int, query_length: int, key_value_length: int, dtype: torch.dtype, device: Union[torch.device, "str"] = "cpu", ) -> Optional[torch.Tensor]: """ Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative bias to upper right hand triangular matrix (causal mask). """ if not self.is_causal: raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.") # If shape is not cached, create a new causal mask and cache it input_shape = (batch_size, query_length) past_key_values_length = key_value_length - query_length # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] causal_4d_mask = None if input_shape[-1] > 1 or self.sliding_window is not None: causal_4d_mask = self._make_causal_mask( input_shape, dtype, device=device, past_key_values_length=past_key_values_length, sliding_window=self.sliding_window, ) return causal_4d_mask def to_4d( self, attention_mask_2d: torch.Tensor, query_length: int, dtype: torch.dtype, key_value_length: Optional[int] = None, ) -> torch.Tensor: """ Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length, key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is causal, a causal mask will be added. """ input_shape = (attention_mask_2d.shape[0], query_length) # create causal mask # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] causal_4d_mask = None if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal: if key_value_length is None: raise ValueError( "This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask." ) past_key_values_length = key_value_length - query_length causal_4d_mask = self._make_causal_mask( input_shape, dtype, device=attention_mask_2d.device, past_key_values_length=past_key_values_length, sliding_window=self.sliding_window, ) elif self.sliding_window is not None: raise NotImplementedError("Sliding window is currently only implemented for causal masking") # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to( attention_mask_2d.device ) if causal_4d_mask is not None: expanded_attn_mask = causal_4d_mask.masked_fill(expanded_attn_mask.bool(), torch.finfo(dtype).min) # expanded_attn_mask + causal_4d_mask can cause some overflow expanded_4d_mask = expanded_attn_mask return expanded_4d_mask @staticmethod def _make_causal_mask( input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0, sliding_window: Optional[int] = None, ): """ Make causal mask used for bi-directional self-attention. """ bsz, tgt_len = input_ids_shape mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) mask_cond = torch.arange(mask.size(-1), device=device) mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) mask = mask.to(dtype) if past_key_values_length > 0: mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) # add lower triangular sliding window mask if necessary if sliding_window is not None: diagonal = past_key_values_length - sliding_window - 1 context_mask = torch.tril(torch.ones_like(mask, dtype=torch.bool), diagonal=diagonal) mask.masked_fill_(context_mask, torch.finfo(dtype).min) return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) @staticmethod def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. """ bsz, src_len = mask.size() tgt_len = tgt_len if tgt_len is not None else src_len expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) inverted_mask = 1.0 - expanded_mask return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) @staticmethod def _unmask_unattended( expanded_mask: torch.FloatTensor, min_dtype: float, ): # fmt: off """ Attend to all tokens in masked rows from the expanded attention mask, for example the relevant first rows when using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. Details: https://github.com/pytorch/pytorch/issues/110213 `expanded_mask` is [bsz, num_masks, tgt_seq_len, src_seq_len] or [bsz, tgt_seq_len, src_seq_len]. `attention_mask` is [bsz, src_seq_len]. The dimension num_masks of `expanded_mask` is most often 1, but it can also be the number of heads in the case of alibi attention bias. For example, if `expanded_mask` is (e.g. here left-padding case) ``` [[[[0, 0, 0], [0, 0, 0], [0, 0, 1]]], [[[1, 0, 0], [1, 1, 0], [1, 1, 1]]], [[[0, 0, 0], [0, 1, 0], [0, 1, 1]]]] ``` then the modified `expanded_mask` will be ``` [[[[1, 1, 1], <-- modified [1, 1, 1], <-- modified [0, 0, 1]]], [[[1, 0, 0], [1, 1, 0], [1, 1, 1]]], [[[1, 1, 1], <-- modified [0, 1, 0], [0, 1, 1]]]] ``` """ # fmt: on if expanded_mask.dtype == torch.bool: raise ValueError( "AttentionMaskConverter._unmask_unattended expects a float `expanded_mask`, got a BoolTensor." ) return expanded_mask.mul(~torch.all(expanded_mask == min_dtype, dim=-1, keepdim=True)) @staticmethod def _ignore_causal_mask_sdpa( attention_mask: Optional[torch.Tensor], inputs_embeds: torch.Tensor, past_key_values_length: int, sliding_window: Optional[int] = None, is_training: bool = False, ) -> bool: """ Detects whether the optional user-specified attention_mask & the automatically created causal mask can be ignored in case PyTorch's SDPA is used, rather relying on SDPA's `is_causal` argument. In case no token is masked in the `attention_mask` argument, if `query_length == 1` or `key_value_length == query_length`, we rather rely on SDPA `is_causal` argument to use causal/non-causal masks, allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed). """ _, query_length = inputs_embeds.shape[0], inputs_embeds.shape[1] key_value_length = query_length + past_key_values_length is_tracing = ( torch.jit.is_tracing() or isinstance(inputs_embeds, torch.fx.Proxy) or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) ) ignore_causal_mask = False if attention_mask is None: # TODO: When tracing with TorchDynamo with fullgraph=True, the model is recompiled depending on the input shape, thus SDPA's `is_causal` argument is rightfully updated (see https://gist.github.com/fxmarty/1313f39037fc1c112508989628c57363). However, when using `torch.export` or # or `torch.onnx.dynamo_export`, we must pass an example input, and `is_causal` behavior is hard-coded. If a user exports a model with q_len > 1, the exported model will hard-code `is_causal=True` which is in general wrong (see https://github.com/pytorch/pytorch/issues/108108). # Thus, we only set `ignore_causal_mask = True` if the model is set to training. # # Besides, jit.trace can not handle the `q_len > 1` condition for `is_causal` (`TypeError: scaled_dot_product_attention(): argument 'is_causal' must be bool, not Tensor`). if ( (is_training or not is_tracing) and (query_length == 1 or key_value_length == query_length) and (sliding_window is None or key_value_length < sliding_window) ): ignore_causal_mask = True elif sliding_window is None or key_value_length < sliding_window: if len(attention_mask.shape) == 4: return False elif (is_training or not is_tracing) and torch.all(attention_mask == 1): if query_length == 1 or key_value_length == query_length: # For query_length == 1, causal attention and bi-directional attention are the same. ignore_causal_mask = True # Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation # may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here. # Reference: https://github.com/pytorch/pytorch/issues/108108 # TODO: maybe revisit this with https://github.com/pytorch/pytorch/pull/114823 in PyTorch 2.3. return ignore_causal_mask def _prepare_4d_causal_attention_mask( attention_mask: Optional[torch.Tensor], input_shape: Union[torch.Size, Tuple, List], inputs_embeds: torch.Tensor, past_key_values_length: int, sliding_window: Optional[int] = None, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)` Args: attention_mask (`torch.Tensor` or `None`): A 2D attention mask of shape `(batch_size, key_value_length)` input_shape (`tuple(int)` or `list(int)` or `torch.Size`): The input shape should be a tuple that defines `(batch_size, query_length)`. inputs_embeds (`torch.Tensor`): The embedded inputs as a torch Tensor. past_key_values_length (`int`): The length of the key value cache. sliding_window (`int`, *optional*): If the model uses windowed attention, a sliding window should be passed. """ attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) key_value_length = input_shape[-1] + past_key_values_length # 4d mask is passed through the layers if attention_mask is not None and len(attention_mask.shape) == 2: attention_mask = attn_mask_converter.to_4d( attention_mask, input_shape[-1], key_value_length=key_value_length, dtype=inputs_embeds.dtype ) elif attention_mask is not None and len(attention_mask.shape) == 4: expected_shape = (input_shape[0], 1, input_shape[1], key_value_length) if tuple(attention_mask.shape) != expected_shape: raise ValueError( f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}." ) else: # if the 4D mask has correct shape - invert it and fill with negative infinity inverted_mask = 1.0 - attention_mask attention_mask = inverted_mask.masked_fill( inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min ) else: attention_mask = attn_mask_converter.to_causal_4d( input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) return attention_mask # Adapted from _prepare_4d_causal_attention_mask def _prepare_4d_causal_attention_mask_for_sdpa( attention_mask: Optional[torch.Tensor], input_shape: Union[torch.Size, Tuple, List], inputs_embeds: torch.Tensor, past_key_values_length: int, sliding_window: Optional[int] = None, ): """ Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`. In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and `key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks, allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed). """ attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) key_value_length = input_shape[-1] + past_key_values_length # torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1` # used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing. # TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400). is_tracing = ( torch.jit.is_tracing() or isinstance(inputs_embeds, torch.fx.Proxy) or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) ) ignore_causal_mask = AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask=attention_mask, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, sliding_window=sliding_window, ) if ignore_causal_mask: expanded_4d_mask = None elif attention_mask is None: expanded_4d_mask = attn_mask_converter.to_causal_4d( input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device ) else: if attention_mask.dim() == 4: # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing if attention_mask.max() != 0: raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") expanded_4d_mask = attention_mask else: expanded_4d_mask = attn_mask_converter.to_4d( attention_mask, input_shape[-1], dtype=inputs_embeds.dtype, key_value_length=key_value_length, ) # Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 if not is_tracing and expanded_4d_mask.device.type == "cuda": expanded_4d_mask = AttentionMaskConverter._unmask_unattended( expanded_4d_mask, min_dtype=torch.finfo(inputs_embeds.dtype).min ) return expanded_4d_mask def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)` Args: mask (`torch.Tensor` or `None`): A 2D attention mask of shape `(batch_size, key_value_length)` dtype (`torch.dtype`): The torch dtype the created mask shall have. tgt_len (`int`): The target length or query length the created mask shall have. """ return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) def _prepare_4d_attention_mask_for_sdpa(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): """ Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)` Args: mask (`torch.Tensor` or `None`): A 2D attention mask of shape `(batch_size, key_value_length)` dtype (`torch.dtype`): The torch dtype the created mask shall have. tgt_len (`int`): The target length or query length the created mask shall have. """ batch_size, key_value_length = mask.shape tgt_len = tgt_len if tgt_len is not None else key_value_length # torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1` # used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing. # TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400). is_tracing = ( torch.jit.is_tracing() or isinstance(mask, torch.fx.Proxy) or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling()) ) if not is_tracing and torch.all(mask == 1): if tgt_len == 1: # For query_length == 1, causal attention and bi-directional attention are the same. return None elif key_value_length == tgt_len: return None else: # Unfortunately, for query_length > 1 and key_value_length != query_length, we can not generally ignore the attention mask, as SDPA causal mask generation # may be wrong. We will set is_causal=False in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here. # Reference: https://github.com/pytorch/pytorch/issues/108108 return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) else: return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) def _create_4d_causal_attention_mask( input_shape: Union[torch.Size, Tuple, List], dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0, sliding_window: Optional[int] = None, ) -> Optional[torch.Tensor]: """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` Args: input_shape (`tuple(int)` or `list(int)` or `torch.Size`): The input shape should be a tuple that defines `(batch_size, query_length)`. dtype (`torch.dtype`): The torch dtype the created mask shall have. device (`int`): The torch device the created mask shall have. sliding_window (`int`, *optional*): If the model uses windowed attention, a sliding window should be passed. """ attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window) key_value_length = past_key_values_length + input_shape[-1] attention_mask = attn_mask_converter.to_causal_4d( input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device ) return attention_mask
transformers/src/transformers/modeling_attn_mask_utils.py/0
{ "file_path": "transformers/src/transformers/modeling_attn_mask_utils.py", "repo_id": "transformers", "token_count": 9562 }
518
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for ALBERT model.""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} SPIECE_UNDERLINE = "▁" class AlbertTokenizer(PreTrainedTokenizer): """ Construct an ALBERT tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether or not to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, do_lower_case=True, remove_space=True, keep_accents=False, bos_token="[CLS]", eos_token="[SEP]", unk_token="<unk>", sep_token="[SEP]", pad_token="<pad>", cls_token="[CLS]", mask_token="[MASK]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. mask_token = ( AddedToken(mask_token, lstrip=True, rstrip=False, normalized=False) if isinstance(mask_token, str) else mask_token ) self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) @property def vocab_size(self) -> int: return len(self.sp_model) def get_vocab(self) -> Dict[str, int]: vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs def _tokenize(self, text: str) -> List[str]: """Tokenize a string.""" text = self.preprocess_text(text) pieces = self.sp_model.encode(text, out_type=str) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): # Logic to handle special cases see https://github.com/google-research/bert/blob/master/README.md#tokenization # `9,9` -> ['▁9', ',', '9'] instead of [`_9,`, '9'] cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An ALBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
transformers/src/transformers/models/albert/tokenization_albert.py/0
{ "file_path": "transformers/src/transformers/models/albert/tokenization_albert.py", "repo_id": "transformers", "token_count": 6246 }
519
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _import_structure = { "auto_factory": ["get_values"], "configuration_auto": ["CONFIG_MAPPING", "MODEL_NAMES_MAPPING", "AutoConfig"], "feature_extraction_auto": ["FEATURE_EXTRACTOR_MAPPING", "AutoFeatureExtractor"], "image_processing_auto": ["IMAGE_PROCESSOR_MAPPING", "AutoImageProcessor"], "processing_auto": ["PROCESSOR_MAPPING", "AutoProcessor"], "tokenization_auto": ["TOKENIZER_MAPPING", "AutoTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_auto"] = [ "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING", "MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING", "MODEL_FOR_AUDIO_XVECTOR_MAPPING", "MODEL_FOR_BACKBONE_MAPPING", "MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING", "MODEL_FOR_CAUSAL_LM_MAPPING", "MODEL_FOR_CTC_MAPPING", "MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING", "MODEL_FOR_DEPTH_ESTIMATION_MAPPING", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", "MODEL_FOR_IMAGE_MAPPING", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING", "MODEL_FOR_IMAGE_TO_IMAGE_MAPPING", "MODEL_FOR_KEYPOINT_DETECTION_MAPPING", "MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING", "MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING", "MODEL_FOR_MASKED_LM_MAPPING", "MODEL_FOR_MASK_GENERATION_MAPPING", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING", "MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", "MODEL_FOR_OBJECT_DETECTION_MAPPING", "MODEL_FOR_PRETRAINING_MAPPING", "MODEL_FOR_QUESTION_ANSWERING_MAPPING", "MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING", "MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING", "MODEL_FOR_TEXT_ENCODING_MAPPING", "MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING", "MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING", "MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING", "MODEL_FOR_VISION_2_SEQ_MAPPING", "MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING", "MODEL_MAPPING", "MODEL_WITH_LM_HEAD_MAPPING", "MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING", "MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING", "MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING", "MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING", "AutoModel", "AutoBackbone", "AutoModelForAudioClassification", "AutoModelForAudioFrameClassification", "AutoModelForAudioXVector", "AutoModelForCausalLM", "AutoModelForCTC", "AutoModelForDepthEstimation", "AutoModelForImageClassification", "AutoModelForImageSegmentation", "AutoModelForImageToImage", "AutoModelForInstanceSegmentation", "AutoModelForKeypointDetection", "AutoModelForMaskGeneration", "AutoModelForTextEncoding", "AutoModelForMaskedImageModeling", "AutoModelForMaskedLM", "AutoModelForMultipleChoice", "AutoModelForNextSentencePrediction", "AutoModelForObjectDetection", "AutoModelForPreTraining", "AutoModelForQuestionAnswering", "AutoModelForSemanticSegmentation", "AutoModelForSeq2SeqLM", "AutoModelForSequenceClassification", "AutoModelForSpeechSeq2Seq", "AutoModelForTableQuestionAnswering", "AutoModelForTextToSpectrogram", "AutoModelForTextToWaveform", "AutoModelForTokenClassification", "AutoModelForUniversalSegmentation", "AutoModelForVideoClassification", "AutoModelForVision2Seq", "AutoModelForVisualQuestionAnswering", "AutoModelForDocumentQuestionAnswering", "AutoModelWithLMHead", "AutoModelForZeroShotImageClassification", "AutoModelForZeroShotObjectDetection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_auto"] = [ "TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_CAUSAL_LM_MAPPING", "TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_MASK_GENERATION_MAPPING", "TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING", "TF_MODEL_FOR_MASKED_LM_MAPPING", "TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING", "TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", "TF_MODEL_FOR_PRETRAINING_MAPPING", "TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING", "TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING", "TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING", "TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING", "TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING", "TF_MODEL_FOR_TEXT_ENCODING_MAPPING", "TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "TF_MODEL_FOR_VISION_2_SEQ_MAPPING", "TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING", "TF_MODEL_MAPPING", "TF_MODEL_WITH_LM_HEAD_MAPPING", "TFAutoModel", "TFAutoModelForAudioClassification", "TFAutoModelForCausalLM", "TFAutoModelForImageClassification", "TFAutoModelForMaskedImageModeling", "TFAutoModelForMaskedLM", "TFAutoModelForMaskGeneration", "TFAutoModelForMultipleChoice", "TFAutoModelForNextSentencePrediction", "TFAutoModelForPreTraining", "TFAutoModelForDocumentQuestionAnswering", "TFAutoModelForQuestionAnswering", "TFAutoModelForSemanticSegmentation", "TFAutoModelForSeq2SeqLM", "TFAutoModelForSequenceClassification", "TFAutoModelForSpeechSeq2Seq", "TFAutoModelForTableQuestionAnswering", "TFAutoModelForTextEncoding", "TFAutoModelForTokenClassification", "TFAutoModelForVision2Seq", "TFAutoModelForZeroShotImageClassification", "TFAutoModelWithLMHead", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_auto"] = [ "FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_CAUSAL_LM_MAPPING", "FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_MASKED_LM_MAPPING", "FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING", "FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING", "FLAX_MODEL_FOR_PRETRAINING_MAPPING", "FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING", "FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING", "FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING", "FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING", "FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING", "FLAX_MODEL_MAPPING", "FlaxAutoModel", "FlaxAutoModelForCausalLM", "FlaxAutoModelForImageClassification", "FlaxAutoModelForMaskedLM", "FlaxAutoModelForMultipleChoice", "FlaxAutoModelForNextSentencePrediction", "FlaxAutoModelForPreTraining", "FlaxAutoModelForQuestionAnswering", "FlaxAutoModelForSeq2SeqLM", "FlaxAutoModelForSequenceClassification", "FlaxAutoModelForSpeechSeq2Seq", "FlaxAutoModelForTokenClassification", "FlaxAutoModelForVision2Seq", ] if TYPE_CHECKING: from .auto_factory import get_values from .configuration_auto import CONFIG_MAPPING, MODEL_NAMES_MAPPING, AutoConfig from .feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING, AutoFeatureExtractor from .image_processing_auto import IMAGE_PROCESSOR_MAPPING, AutoImageProcessor from .processing_auto import PROCESSOR_MAPPING, AutoProcessor from .tokenization_auto import TOKENIZER_MAPPING, AutoTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_auto import ( MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING, MODEL_FOR_AUDIO_XVECTOR_MAPPING, MODEL_FOR_BACKBONE_MAPPING, MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING, MODEL_FOR_CTC_MAPPING, MODEL_FOR_DEPTH_ESTIMATION_MAPPING, MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_IMAGE_MAPPING, MODEL_FOR_IMAGE_SEGMENTATION_MAPPING, MODEL_FOR_IMAGE_TO_IMAGE_MAPPING, MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING, MODEL_FOR_KEYPOINT_DETECTION_MAPPING, MODEL_FOR_MASK_GENERATION_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_PRETRAINING_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING, MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING, MODEL_FOR_TEXT_ENCODING_MAPPING, MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING, MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING, MODEL_FOR_TIME_SERIES_CLASSIFICATION_MAPPING, MODEL_FOR_TIME_SERIES_REGRESSION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING, MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, MODEL_FOR_VISION_2_SEQ_MAPPING, MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoBackbone, AutoModel, AutoModelForAudioClassification, AutoModelForAudioFrameClassification, AutoModelForAudioXVector, AutoModelForCausalLM, AutoModelForCTC, AutoModelForDepthEstimation, AutoModelForDocumentQuestionAnswering, AutoModelForImageClassification, AutoModelForImageSegmentation, AutoModelForImageToImage, AutoModelForInstanceSegmentation, AutoModelForKeypointDetection, AutoModelForMaskedImageModeling, AutoModelForMaskedLM, AutoModelForMaskGeneration, AutoModelForMultipleChoice, AutoModelForNextSentencePrediction, AutoModelForObjectDetection, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSemanticSegmentation, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, AutoModelForSpeechSeq2Seq, AutoModelForTableQuestionAnswering, AutoModelForTextEncoding, AutoModelForTextToSpectrogram, AutoModelForTextToWaveform, AutoModelForTokenClassification, AutoModelForUniversalSegmentation, AutoModelForVideoClassification, AutoModelForVision2Seq, AutoModelForVisualQuestionAnswering, AutoModelForZeroShotImageClassification, AutoModelForZeroShotObjectDetection, AutoModelWithLMHead, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_auto import ( TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_TEXT_ENCODING_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING, TFAutoModel, TFAutoModelForAudioClassification, TFAutoModelForCausalLM, TFAutoModelForDocumentQuestionAnswering, TFAutoModelForImageClassification, TFAutoModelForMaskedImageModeling, TFAutoModelForMaskedLM, TFAutoModelForMaskGeneration, TFAutoModelForMultipleChoice, TFAutoModelForNextSentencePrediction, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSemanticSegmentation, TFAutoModelForSeq2SeqLM, TFAutoModelForSequenceClassification, TFAutoModelForSpeechSeq2Seq, TFAutoModelForTableQuestionAnswering, TFAutoModelForTextEncoding, TFAutoModelForTokenClassification, TFAutoModelForVision2Seq, TFAutoModelForZeroShotImageClassification, TFAutoModelWithLMHead, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_auto import ( FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_MASKED_LM_MAPPING, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, FLAX_MODEL_FOR_PRETRAINING_MAPPING, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING, FLAX_MODEL_MAPPING, FlaxAutoModel, FlaxAutoModelForCausalLM, FlaxAutoModelForImageClassification, FlaxAutoModelForMaskedLM, FlaxAutoModelForMultipleChoice, FlaxAutoModelForNextSentencePrediction, FlaxAutoModelForPreTraining, FlaxAutoModelForQuestionAnswering, FlaxAutoModelForSeq2SeqLM, FlaxAutoModelForSequenceClassification, FlaxAutoModelForSpeechSeq2Seq, FlaxAutoModelForTokenClassification, FlaxAutoModelForVision2Seq, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/auto/__init__.py/0
{ "file_path": "transformers/src/transformers/models/auto/__init__.py", "repo_id": "transformers", "token_count": 8335 }
520
# coding=utf-8 # Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ BARK model generation configuration""" import copy from typing import Dict from ...generation.configuration_utils import GenerationConfig from ...utils import logging logger = logging.get_logger(__name__) class BarkSemanticGenerationConfig(GenerationConfig): model_type = "semantic" def __init__( self, eos_token_id=10_000, renormalize_logits=True, max_new_tokens=768, output_scores=False, return_dict_in_generate=False, output_hidden_states=False, output_attentions=False, temperature=1.0, do_sample=False, text_encoding_offset=10_048, text_pad_token=129_595, semantic_infer_token=129_599, semantic_vocab_size=10_000, max_input_semantic_length=256, semantic_rate_hz=49.9, min_eos_p=None, **kwargs, ): """Class that holds a generation configuration for [`BarkSemanticModel`]. This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the documentation from [`GenerationConfig`] for more information. Args: eos_token_id (`int`, *optional*, defaults to 10_000): The id of the *end-of-sequence* token. renormalize_logits (`bool`, *optional*, defaults to `True`): Whether to renormalize the logits after applying all the logits processors or warpers (including the custom ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the score logits are normalized but some logit processors or warpers break the normalization. max_new_tokens (`int`, *optional*, defaults to 768): The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. temperature (`float`, *optional*, defaults to 1.0): The value used to modulate the next token probabilities. do_sample (`bool`, *optional*, defaults to `False`): Whether or not to use sampling ; use greedy decoding otherwise. text_encoding_offset (`int`, *optional*, defaults to 10_048): Text encoding offset. text_pad_token (`int`, *optional*, defaults to 129_595): Text pad token. semantic_infer_token (`int`, *optional*, defaults to 129_599): Semantic infer token. semantic_vocab_size (`int`, *optional*, defaults to 10_000): Semantic vocab size. max_input_semantic_length (`int`, *optional*, defaults to 256): Max length of semantic input vector. semantic_rate_hz (`float`, *optional*, defaults to 49.9): Semantic rate in Hertz. min_eos_p (`float`, *optional*): Minimum threshold of the probability of the EOS token for it to be sampled. This is an early stopping strategy to mitigate potential unwanted generations at the end of a prompt. The original implementation suggests a default value of 0.2. """ super().__init__( temperature=temperature, do_sample=do_sample, eos_token_id=eos_token_id, renormalize_logits=renormalize_logits, max_new_tokens=max_new_tokens, output_scores=output_scores, return_dict_in_generate=return_dict_in_generate, output_hidden_states=output_hidden_states, output_attentions=output_attentions, **kwargs, ) self.text_encoding_offset = text_encoding_offset self.text_pad_token = text_pad_token self.semantic_pad_token = eos_token_id self.semantic_infer_token = semantic_infer_token self.semantic_vocab_size = semantic_vocab_size self.max_input_semantic_length = max_input_semantic_length self.semantic_rate_hz = semantic_rate_hz self.min_eos_p = min_eos_p class BarkCoarseGenerationConfig(GenerationConfig): model_type = "coarse_acoustics" def __init__( self, renormalize_logits=True, output_scores=False, return_dict_in_generate=False, output_hidden_states=False, output_attentions=False, temperature=1.0, do_sample=False, coarse_semantic_pad_token=12_048, coarse_rate_hz=75, n_coarse_codebooks=2, coarse_infer_token=12_050, max_coarse_input_length=256, max_coarse_history: int = 630, sliding_window_len: int = 60, **kwargs, ): """Class that holds a generation configuration for [`BarkCoarseModel`]. This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the documentation from [`GenerationConfig`] for more information. Args: renormalize_logits (`bool`, *optional*, defaults to `True`): Whether to renormalize the logits after applying all the logits processors or warpers (including the custom ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the score logits are normalized but some logit processors or warpers break the normalization. output_scores (`bool`, *optional*, defaults to `False`): Whether or not to return the prediction scores. See `scores` under returned tensors for more details. return_dict_in_generate (`bool`, *optional*, defaults to `False`): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. output_hidden_states (`bool`, *optional*, defaults to `False`): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more details. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more details. temperature (`float`, *optional*, defaults to 1.0): The value used to modulate the next token probabilities. do_sample (`bool`, *optional*, defaults to `False`): Whether or not to use sampling ; use greedy decoding otherwise. coarse_semantic_pad_token (`int`, *optional*, defaults to 12_048): Coarse semantic pad token. coarse_rate_hz (`int`, *optional*, defaults to 75): Coarse rate in Hertz. n_coarse_codebooks (`int`, *optional*, defaults to 2): Number of coarse codebooks. coarse_infer_token (`int`, *optional*, defaults to 12_050): Coarse infer token. max_coarse_input_length (`int`, *optional*, defaults to 256): Max length of input coarse vector. max_coarse_history (`int`, *optional*, defaults to 630): Max length of the output of the coarse acoustics model used in the fine generation step. sliding_window_len (`int`, *optional*, defaults to 60): The coarse generation step uses a sliding window to generate raw audio. """ super().__init__( temperature=temperature, do_sample=do_sample, renormalize_logits=renormalize_logits, output_scores=output_scores, return_dict_in_generate=return_dict_in_generate, output_hidden_states=output_hidden_states, output_attentions=output_attentions, **kwargs, ) self.coarse_semantic_pad_token = coarse_semantic_pad_token self.coarse_rate_hz = coarse_rate_hz self.n_coarse_codebooks = n_coarse_codebooks self.coarse_infer_token = coarse_infer_token self.max_coarse_input_length = max_coarse_input_length self.max_coarse_history = max_coarse_history self.sliding_window_len = sliding_window_len class BarkFineGenerationConfig(GenerationConfig): model_type = "fine_acoustics" def __init__( self, temperature=1.0, max_fine_history_length=512, max_fine_input_length=1024, n_fine_codebooks=8, **kwargs, ): """Class that holds a generation configuration for [`BarkFineModel`]. [`BarkFineModel`] is an autoencoder model, so should not usually be used for generation. However, under the hood, it uses `temperature` when used by [`BarkModel`] This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the documentation from [`GenerationConfig`] for more information. Args: temperature (`float`, *optional*): The value used to modulate the next token probabilities. max_fine_history_length (`int`, *optional*, defaults to 512): Max length of the fine history vector. max_fine_input_length (`int`, *optional*, defaults to 1024): Max length of fine input vector. n_fine_codebooks (`int`, *optional*, defaults to 8): Number of codebooks used. """ super().__init__(temperature=temperature) self.max_fine_history_length = max_fine_history_length self.max_fine_input_length = max_fine_input_length self.n_fine_codebooks = n_fine_codebooks def validate(self, **kwargs): """ Overrides GenerationConfig.validate because BarkFineGenerationConfig don't use any parameters outside temperature. """ pass class BarkGenerationConfig(GenerationConfig): model_type = "bark" is_composition = True # TODO (joao): nested from_dict def __init__( self, semantic_config: Dict = None, coarse_acoustics_config: Dict = None, fine_acoustics_config: Dict = None, sample_rate=24_000, codebook_size=1024, **kwargs, ): """Class that holds a generation configuration for [`BarkModel`]. The [`BarkModel`] does not have a `generate` method, but uses this class to generate speeches with a nested [`BarkGenerationConfig`] which uses [`BarkSemanticGenerationConfig`], [`BarkCoarseGenerationConfig`], [`BarkFineGenerationConfig`]. This configuration inherit from [`GenerationConfig`] and can be used to control the model generation. Read the documentation from [`GenerationConfig`] for more information. Args: semantic_config (`Dict`, *optional*): Semantic generation configuration. coarse_acoustics_config (`Dict`, *optional*): Coarse generation configuration. fine_acoustics_config (`Dict`, *optional*): Fine generation configuration. sample_rate (`int`, *optional*, defaults to 24_000): Sample rate. codebook_size (`int`, *optional*, defaults to 1024): Vector length for each codebook. """ if semantic_config is None: semantic_config = {} logger.info("semantic_config is None. initializing the semantic model with default values.") if coarse_acoustics_config is None: coarse_acoustics_config = {} logger.info("coarse_acoustics_config is None. initializing the coarse model with default values.") if fine_acoustics_config is None: fine_acoustics_config = {} logger.info("fine_acoustics_config is None. initializing the fine model with default values.") self.semantic_config = BarkSemanticGenerationConfig(**semantic_config) self.coarse_acoustics_config = BarkCoarseGenerationConfig(**coarse_acoustics_config) self.fine_acoustics_config = BarkFineGenerationConfig(**fine_acoustics_config) self.sample_rate = sample_rate self.codebook_size = codebook_size @classmethod def from_sub_model_configs( cls, semantic_config: BarkSemanticGenerationConfig, coarse_acoustics_config: BarkCoarseGenerationConfig, fine_acoustics_config: BarkFineGenerationConfig, **kwargs, ): r""" Instantiate a [`BarkGenerationConfig`] (or a derived class) from bark sub-models generation configuration. Returns: [`BarkGenerationConfig`]: An instance of a configuration object """ return cls( semantic_config=semantic_config.to_dict(), coarse_acoustics_config=coarse_acoustics_config.to_dict(), fine_acoustics_config=fine_acoustics_config.to_dict(), **kwargs, ) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["semantic_config"] = self.semantic_config.to_dict() output["coarse_acoustics_config"] = self.coarse_acoustics_config.to_dict() output["fine_acoustics_config"] = self.fine_acoustics_config.to_dict() output["model_type"] = self.__class__.model_type return output
transformers/src/transformers/models/bark/generation_configuration_bark.py/0
{ "file_path": "transformers/src/transformers/models/bark/generation_configuration_bark.py", "repo_id": "transformers", "token_count": 6156 }
521
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) _import_structure = {"configuration_beit": ["BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_beit"] = ["BeitFeatureExtractor"] _import_structure["image_processing_beit"] = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_beit"] = [ "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", "BeitBackbone", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_beit"] = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BeitBackbone, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/beit/__init__.py/0
{ "file_path": "transformers/src/transformers/models/beit/__init__.py", "repo_id": "transformers", "token_count": 1247 }
522
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Bert.""" import collections import os import unicodedata from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} def load_vocab(vocab_file): """Loads a vocabulary file into a dictionary.""" vocab = collections.OrderedDict() with open(vocab_file, "r", encoding="utf-8") as reader: tokens = reader.readlines() for index, token in enumerate(tokens): token = token.rstrip("\n") vocab[token] = index return vocab def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens class BertTokenizer(PreTrainedTokenizer): r""" Construct a BERT tokenizer. Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. do_basic_tokenize (`bool`, *optional*, defaults to `True`): Whether or not to do basic tokenization before WordPiece. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, do_lower_case=True, do_basic_tokenize=True, never_split=None, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): if not os.path.isfile(vocab_file): raise ValueError( f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) self.vocab = load_vocab(vocab_file) self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) self.do_basic_tokenize = do_basic_tokenize if do_basic_tokenize: self.basic_tokenizer = BasicTokenizer( do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, ) self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) super().__init__( do_lower_case=do_lower_case, do_basic_tokenize=do_basic_tokenize, never_split=never_split, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) @property def do_lower_case(self): return self.basic_tokenizer.do_lower_case @property def vocab_size(self): return len(self.vocab) def get_vocab(self): return dict(self.vocab, **self.added_tokens_encoder) def _tokenize(self, text, split_special_tokens=False): split_tokens = [] if self.do_basic_tokenize: for token in self.basic_tokenizer.tokenize( text, never_split=self.all_special_tokens if not split_special_tokens else None ): # If the token is part of the never_split set if token in self.basic_tokenizer.never_split: split_tokens.append(token) else: split_tokens += self.wordpiece_tokenizer.tokenize(token) else: split_tokens = self.wordpiece_tokenizer.tokenize(text) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.ids_to_tokens.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace(" ##", "").strip() return out_string def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: index = 0 if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." " Please check that the vocabulary is not corrupted!" ) index = token_index writer.write(token + "\n") index += 1 return (vocab_file,) class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = self.never_split.union(set(never_split)) if never_split else self.never_split text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or (never_split is not None and text in never_split): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class WordpieceTokenizer(object): """Runs WordPiece tokenization.""" def __init__(self, vocab, unk_token, max_input_chars_per_word=100): self.vocab = vocab self.unk_token = unk_token self.max_input_chars_per_word = max_input_chars_per_word def tokenize(self, text): """ Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform tokenization using the given vocabulary. For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. Args: text: A single token or whitespace separated tokens. This should have already been passed through *BasicTokenizer*. Returns: A list of wordpiece tokens. """ output_tokens = [] for token in whitespace_tokenize(text): chars = list(token) if len(chars) > self.max_input_chars_per_word: output_tokens.append(self.unk_token) continue is_bad = False start = 0 sub_tokens = [] while start < len(chars): end = len(chars) cur_substr = None while start < end: substr = "".join(chars[start:end]) if start > 0: substr = "##" + substr if substr in self.vocab: cur_substr = substr break end -= 1 if cur_substr is None: is_bad = True break sub_tokens.append(cur_substr) start = end if is_bad: output_tokens.append(self.unk_token) else: output_tokens.extend(sub_tokens) return output_tokens
transformers/src/transformers/models/bert/tokenization_bert.py/0
{ "file_path": "transformers/src/transformers/models/bert/tokenization_bert.py", "repo_id": "transformers", "token_count": 9143 }
523
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for BigBird.""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} class BigBirdTokenizer(PreTrainedTokenizer): """ Construct a BigBird tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The begin of sequence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] prefix_tokens: List[int] = [] def __init__( self, vocab_file, unk_token="<unk>", bos_token="<s>", eos_token="</s>", pad_token="<pad>", sep_token="[SEP]", mask_token="[MASK]", cls_token="[CLS]", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, mask_token=mask_token, cls_token=cls_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) @property def vocab_size(self): return self.sp_model.get_piece_size() def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" prev_is_special = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(current_sub_tokens) + token prev_is_special = True current_sub_tokens = [] else: current_sub_tokens.append(token) prev_is_special = False out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def _decode( self, token_ids: List[int], skip_special_tokens: bool = False, clean_up_tokenization_spaces: bool = None, spaces_between_special_tokens: bool = True, **kwargs, ) -> str: self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False) filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 sub_texts = [] current_sub_text = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) current_sub_text = [] sub_texts.append(token) else: current_sub_text.append(token) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(current_sub_text)) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: text = re.sub(r" (\[(MASK|SEP)\])", r"\1", " ".join(sub_texts)) else: text = "".join(sub_texts) clean_up_tokenization_spaces = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: clean_text = self.clean_up_tokenization(text) return clean_text else: return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A Big Bird sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
transformers/src/transformers/models/big_bird/tokenization_big_bird.py/0
{ "file_path": "transformers/src/transformers/models/big_bird/tokenization_big_bird.py", "repo_id": "transformers", "token_count": 6116 }
524
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_blenderbot": [ "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_blenderbot_fast"] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_blenderbot"] = [ "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_blenderbot"] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_blenderbot"] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/blenderbot/__init__.py/0
{ "file_path": "transformers/src/transformers/models/blenderbot/__init__.py", "repo_id": "transformers", "token_count": 1514 }
525
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Blip model configuration""" import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class BlipTextConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BlipTextModel`]. It is used to instantiate a BLIP text model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the `BlipText` used by the [base architectures](https://huggingface.co/Salesforce/blip-vqa-base). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30524): Vocabulary size of the `Blip` text model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BlipModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. encoder_hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers from the vision model. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer encoder. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. bos_token_id (`int`, *optional*, defaults to 30522): The id of the `beginning-of-sequence` token. eos_token_id (`int`, *optional*, defaults to 2): The id of the `end-of-sequence` token. pad_token_id (`int`, *optional*, defaults to 0): The id of the `padding` token. sep_token_id (`int`, *optional*, defaults to 102): The id of the `separator` token. is_decoder (`bool`, *optional*, defaults to `True`): Whether the model is used as a decoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). label_smoothing (float, *optional*): A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets become a mixture of the original ground truth and a uniform distribution as described in `Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`. Example: ```python >>> from transformers import BlipTextConfig, BlipTextModel >>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration >>> configuration = BlipTextConfig() >>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration >>> model = BlipTextModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "blip_text_model" def __init__( self, vocab_size=30524, hidden_size=768, encoder_hidden_size=768, intermediate_size=3072, projection_dim=768, num_hidden_layers=12, num_attention_heads=8, max_position_embeddings=512, hidden_act="gelu", layer_norm_eps=1e-12, hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, bos_token_id=30522, eos_token_id=2, pad_token_id=0, sep_token_id=102, is_decoder=True, use_cache=True, label_smoothing=0.0, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, sep_token_id=sep_token_id, **kwargs, ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.encoder_hidden_size = encoder_hidden_size self.intermediate_size = intermediate_size self.projection_dim = projection_dim self.hidden_dropout_prob = hidden_dropout_prob self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act self.initializer_range = initializer_range self.attention_probs_dropout_prob = attention_probs_dropout_prob self.is_decoder = is_decoder self.use_cache = use_cache self.label_smoothing = label_smoothing @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type") == "blip": config_dict = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class BlipVisionConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BlipVisionModel`]. It is used to instantiate a BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a configuration defaults will yield a similar configuration to that of the Blip-base [Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. image_size (`int`, *optional*, defaults to 384): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 1e-10): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers import BlipVisionConfig, BlipVisionModel >>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration >>> configuration = BlipVisionConfig() >>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration >>> model = BlipVisionModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "blip_vision_model" def __init__( self, hidden_size=768, intermediate_size=3072, projection_dim=512, num_hidden_layers=12, num_attention_heads=12, image_size=384, patch_size=16, hidden_act="gelu", layer_norm_eps=1e-5, attention_dropout=0.0, initializer_range=1e-10, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.projection_dim = projection_dim self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.patch_size = patch_size self.image_size = image_size self.initializer_range = initializer_range self.attention_dropout = attention_dropout self.layer_norm_eps = layer_norm_eps self.hidden_act = hidden_act @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": cls._set_token_in_kwargs(kwargs) config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type") == "blip": config_dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class BlipConfig(PretrainedConfig): r""" [`BlipConfig`] is the configuration class to store the configuration of a [`BlipModel`]. It is used to instantiate a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the BLIP-base [Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: text_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`BlipTextConfig`]. vision_config (`dict`, *optional*): Dictionary of configuration options used to initialize [`BlipVisionConfig`]. projection_dim (`int`, *optional*, defaults to 512): Dimentionality of text and vision projection layers. logit_scale_init_value (`float`, *optional*, defaults to 2.6592): The inital value of the *logit_scale* paramter. Default is used as per the original BLIP implementation. image_text_hidden_size (`int`, *optional*, defaults to 256): Dimentionality of the hidden state of the image-text fusion layer. label_smoothing (float, optional, *optional*, defaults to 0.0): A float in [0.0, 1.0]. Specifies the amount of smoothing when computing the loss, where 0.0 means no smoothing. The targets become a mixture of the original ground truth and a uniform distribution as described in `Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`. kwargs (*optional*): Dictionary of keyword arguments. Example: ```python >>> from transformers import BlipConfig, BlipModel >>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration >>> configuration = BlipConfig() >>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration >>> model = BlipModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config >>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig >>> # Initializing a BLIPText and BLIPVision configuration >>> config_text = BlipTextConfig() >>> config_vision = BlipVisionConfig() >>> config = BlipConfig.from_text_vision_configs(config_text, config_vision) ```""" model_type = "blip" def __init__( self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, image_text_hidden_size=256, label_smoothing=0.0, **kwargs, ): super().__init__(**kwargs) if text_config is None: text_config = {} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values.") if vision_config is None: vision_config = {} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.") self.text_config = BlipTextConfig(**text_config) self.vision_config = BlipVisionConfig(**vision_config) self.text_config.encoder_hidden_size = self.vision_config.hidden_size self.projection_dim = projection_dim self.logit_scale_init_value = logit_scale_init_value self.initializer_factor = 1.0 self.initializer_range = 0.02 self.image_text_hidden_size = image_text_hidden_size self.label_smoothing = label_smoothing @classmethod def from_text_vision_configs(cls, text_config: BlipTextConfig, vision_config: BlipVisionConfig, **kwargs): r""" Instantiate a [`BlipConfig`] (or a derived class) from blip text model configuration and blip vision model configuration. Returns: [`BlipConfig`]: An instance of a configuration object """ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
transformers/src/transformers/models/blip/configuration_blip.py/0
{ "file_path": "transformers/src/transformers/models/blip/configuration_blip.py", "repo_id": "transformers", "token_count": 6245 }
526
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team and BigScience workshop. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch BLOOM model.""" import math import warnings from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss from torch.nn import functional as F from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_bloom import BloomConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "bigscience/bloom-560m" _CONFIG_FOR_DOC = "BloomConfig" def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: """ Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value `softmax(l+a) = softmax(l)`. Based on https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. Args: Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) attention_mask (`torch.Tensor`): Token-wise attention mask, this should be of shape (batch_size, max_seq_len). num_heads (`int`, *required*): number of heads dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): dtype of the output tensor """ batch_size, seq_length = attention_mask.shape closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) base = torch.tensor( 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) slopes = torch.pow(base, powers) if closest_power_of_2 != num_heads: extra_base = torch.tensor( 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 ) num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) # Note: alibi will added to the attention bias that will be applied to the query, key product of attention # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) # => the query_length dimension will then be broadcasted correctly # This is more or less identical to T5's relative position bias: # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] alibi = slopes[..., None] * arange_tensor return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: """ Dropout add function Args: x (`torch.tensor`, *required*): input tensor residual (`torch.tensor`, *required*): residual tensor prob (`float`, *required*): dropout probability training (`bool`, *required*): training mode """ out = F.dropout(x, p=prob, training=training) out = residual + out return out def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor: """ Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to make the model jitable. Args: x (`torch.tensor`, *required*): input hidden states """ return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor: """ gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x) Args: g (`torch.tensor`, *required*): gradient output tensor x (`torch.tensor`, *required*): input tensor """ x = x[0] # x is a tuple of 1 element, needs to unpack it first tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) return ff * g class GeLUFunction(torch.autograd.Function): @staticmethod def forward(ctx, input: torch.Tensor) -> torch.Tensor: ctx.save_for_backward(input) return bloom_gelu_forward(input) @staticmethod def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: input = ctx.saved_tensors tmp = bloom_gelu_back(grad_output, input) return tmp class BloomGelu(nn.Module): """ BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly copied from Megatron-DeepSpeed code and adapted for our needs See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 """ def __init__(self): super().__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: if self.training: return GeLUFunction.apply(x) else: return bloom_gelu_forward(x) class BloomAttention(nn.Module): def __init__(self, config: BloomConfig): super().__init__() self.pretraining_tp = config.pretraining_tp self.slow_but_exact = config.slow_but_exact self.hidden_size = config.hidden_size self.num_heads = config.n_head self.head_dim = self.hidden_size // self.num_heads self.split_size = self.hidden_size self.hidden_dropout = config.hidden_dropout if self.head_dim * self.num_heads != self.hidden_size: raise ValueError( f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" f" {self.num_heads})." ) # Layer-wise attention scaling self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) self.beta = 1.0 self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True) self.dense = nn.Linear(self.hidden_size, self.hidden_size) self.attention_dropout = nn.Dropout(config.attention_dropout) def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory storage as `fused_qkv` Args: fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] Returns: query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] value: [batch_size, seq_length, num_heads, head_dim] """ batch_size, seq_length, three_times_hidden_size = fused_qkv.shape fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: """ Merge heads together over the last dimension Args: x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] Returns: torch.tensor: [batch_size, seq_length, num_heads * head_dim] """ # What we want to achieve is: # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim batch_size_and_num_heads, seq_length, _ = x.shape batch_size = batch_size_and_num_heads // self.num_heads # First view to decompose the batch size # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim x = x.permute(0, 2, 1, 3) # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) def forward( self, hidden_states: torch.Tensor, residual: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, ): fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] # 3 x [batch_size, seq_length, num_heads, head_dim] (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) batch_size, q_length, _, _ = query_layer.shape query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length) value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) if layer_past is not None: past_key, past_value = layer_past # concatenate along seq_length dimension: # - key: [batch_size * self.num_heads, head_dim, kv_length] # - value: [batch_size * self.num_heads, kv_length, head_dim] key_layer = torch.cat((past_key, key_layer), dim=2) value_layer = torch.cat((past_value, value_layer), dim=1) _, _, kv_length = key_layer.shape if use_cache is True: present = (key_layer, value_layer) else: present = None # [batch_size * num_heads, q_length, kv_length] # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11 matmul_result = alibi.baddbmm( batch1=query_layer, batch2=key_layer, beta=self.beta, alpha=self.inv_norm_factor, ) # change view to [batch_size, num_heads, q_length, kv_length] attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] input_dtype = attention_scores.dtype # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` if input_dtype == torch.float16: attention_scores = attention_scores.to(torch.float) attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype) # [batch_size, num_heads, q_length, kv_length] attention_probs = self.attention_dropout(attention_probs) if head_mask is not None: attention_probs = attention_probs * head_mask # change view [batch_size x num_heads, q_length, kv_length] attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length) # matmul: [batch_size * num_heads, q_length, head_dim] context_layer = torch.bmm(attention_probs_reshaped, value_layer) # change view [batch_size, q_length, num_heads * head_dim] context_layer = self._merge_heads(context_layer) # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 if self.pretraining_tp > 1 and self.slow_but_exact: slices = self.hidden_size / self.pretraining_tp output_tensor = torch.zeros_like(context_layer) for i in range(self.pretraining_tp): output_tensor = output_tensor + F.linear( context_layer[:, :, int(i * slices) : int((i + 1) * slices)], self.dense.weight[:, int(i * slices) : int((i + 1) * slices)], ) else: output_tensor = self.dense(context_layer) output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) outputs = (output_tensor, present) if output_attentions: outputs += (attention_probs,) return outputs class BloomMLP(nn.Module): def __init__(self, config: BloomConfig): super().__init__() hidden_size = config.hidden_size self.pretraining_tp = config.pretraining_tp self.slow_but_exact = config.slow_but_exact self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size) self.gelu_impl = BloomGelu() self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size) self.hidden_dropout = config.hidden_dropout def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states)) if self.pretraining_tp > 1 and self.slow_but_exact: intermediate_output = torch.zeros_like(residual) slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp for i in range(self.pretraining_tp): intermediate_output = intermediate_output + F.linear( hidden_states[:, :, int(i * slices) : int((i + 1) * slices)], self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)], ) else: intermediate_output = self.dense_4h_to_h(hidden_states) output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) return output class BloomBlock(nn.Module): def __init__(self, config: BloomConfig): super().__init__() hidden_size = config.hidden_size self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.num_heads = config.n_head self.self_attention = BloomAttention(config) self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = BloomMLP(config) self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm self.hidden_dropout = config.hidden_dropout def forward( self, hidden_states: torch.Tensor, alibi: torch.Tensor, attention_mask: torch.Tensor, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, head_mask: Optional[torch.Tensor] = None, use_cache: bool = False, output_attentions: bool = False, ): # hidden_states: [batch_size, seq_length, hidden_size] # Layer norm at the beginning of the transformer layer. layernorm_output = self.input_layernorm(hidden_states) # Layer norm post the self attention. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states # Self attention. attn_outputs = self.self_attention( layernorm_output, residual, layer_past=layer_past, attention_mask=attention_mask, alibi=alibi, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attention_output = attn_outputs[0] outputs = attn_outputs[1:] layernorm_output = self.post_attention_layernorm(attention_output) # Get residual if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = attention_output # MLP. output = self.mlp(layernorm_output, residual) if use_cache: outputs = (output,) + outputs else: outputs = (output,) + outputs[1:] return outputs # hidden_states, present, attentions class BloomPreTrainedModel(PreTrainedModel): config_class = BloomConfig base_model_prefix = "transformer" supports_gradient_checkpointing = True _no_split_modules = ["BloomBlock"] _skip_keys_device_placement = "past_key_values" def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module: nn.Module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @staticmethod def _convert_to_standard_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, num_heads, ...])) """ batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape num_heads = batch_size_times_num_heads // batch_size # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length] # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size, num_heads, head_dim, seq_length), layer_past[1].view(batch_size, num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) @staticmethod def _convert_to_bloom_cache( past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: """ Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...])) """ batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape batch_size_times_num_heads = batch_size * num_heads # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] return tuple( ( layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), ) for layer_past in past_key_value ) BLOOM_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`BloomConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ BLOOM_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. Each element of `past_key_values` is a tuple (past_key, past_value): - past_key: [batch_size * num_heads, head_dim, kv_length] - past_value: [batch_size * num_heads, kv_length, head_dim] attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see `past_key_values`). use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.", BLOOM_START_DOCSTRING, ) class BloomModel(BloomPreTrainedModel): def __init__(self, config: BloomConfig): super().__init__(config) self.embed_dim = config.hidden_size self.num_heads = config.n_head # Embedding + LN Embedding self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) # Transformer blocks self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)]) # Final Layer Norm self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: return build_alibi_tensor(attention_mask, num_heads, dtype) def get_input_embeddings(self): return self.word_embeddings def set_input_embeddings(self, new_embeddings: torch.Tensor): self.word_embeddings = new_embeddings @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if past_key_values is None: past_key_values = tuple([None] * len(self.h)) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape batch_size x num_heads x N x N # head_mask has shape n_layer x batch x num_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) hidden_states = self.word_embeddings_layernorm(inputs_embeds) presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # Compute alibi tensor: check build_alibi_tensor documentation seq_length_with_past = seq_length past_key_values_length = 0 if past_key_values[0] is not None: past_key_values_length = past_key_values[0][0].shape[2] seq_length_with_past = seq_length_with_past + past_key_values_length if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) else: attention_mask = attention_mask.to(hidden_states.device) alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) causal_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape=(batch_size, seq_length), inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) causal_mask = causal_mask.bool() for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, alibi, causal_mask, layer_past, head_mask[i], use_cache, output_attentions, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # Add last hidden state hidden_states = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) @add_start_docstrings( """ The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, BLOOM_START_DOCSTRING, ) class BloomForCausalLM(BloomPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: BloomConfig): super().__init__(config) self.transformer = BloomModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings: torch.Tensor): self.lm_head = new_embeddings def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, **kwargs, ) -> dict: # only last tokens for input_ids if past is not None if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] # the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed if past_key_values[0][0].shape[0] == input_ids.shape[0]: past_key_values = self._convert_to_bloom_cache(past_key_values) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, } ) return model_inputs @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() batch_size, seq_length, vocab_size = shift_logits.shape # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct( shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def _reorder_cache( self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx)) # Get a copy of `beam_idx` on all the devices where we need those indices. device_to_beam_idx = { past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past } reordered_past = tuple( ( layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), ) for layer_past in standardized_past ) return self._convert_to_bloom_cache(reordered_past) @add_start_docstrings( """ The Bloom Model transformer with a sequence classification head on top (linear layer). [`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, BLOOM_START_DOCSTRING, ) class BloomForSequenceClassification(BloomPreTrainedModel): def __init__(self, config: BloomConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = BloomModel(config) self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, BLOOM_START_DOCSTRING, ) class BloomForTokenClassification(BloomPreTrainedModel): def __init__(self, config: BloomConfig): super().__init__(config) self.num_labels = config.num_labels self.transformer = BloomModel(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **deprecated_arguments, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ if deprecated_arguments.pop("position_ids", False) is not False: # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` warnings.warn( "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" " passing `position_ids`.", FutureWarning, ) if len(deprecated_arguments) > 0: raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) batch_size, seq_length = labels.shape loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) ) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, BLOOM_START_DOCSTRING, ) class BloomForQuestionAnswering(BloomPreTrainedModel): def __init__(self, config): super().__init__(config) self.transformer = BloomModel(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/bloom/modeling_bloom.py/0
{ "file_path": "transformers/src/transformers/models/bloom/modeling_bloom.py", "repo_id": "transformers", "token_count": 23671 }
527
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_camembert": ["CamembertConfig", "CamembertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_camembert"] = ["CamembertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_camembert_fast"] = ["CamembertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_camembert"] = [ "CamembertForCausalLM", "CamembertForMaskedLM", "CamembertForMultipleChoice", "CamembertForQuestionAnswering", "CamembertForSequenceClassification", "CamembertForTokenClassification", "CamembertModel", "CamembertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_camembert"] = [ "TFCamembertForCausalLM", "TFCamembertForMaskedLM", "TFCamembertForMultipleChoice", "TFCamembertForQuestionAnswering", "TFCamembertForSequenceClassification", "TFCamembertForTokenClassification", "TFCamembertModel", "TFCamembertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_camembert import CamembertConfig, CamembertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_camembert import CamembertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_camembert_fast import CamembertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_camembert import ( CamembertForCausalLM, CamembertForMaskedLM, CamembertForMultipleChoice, CamembertForQuestionAnswering, CamembertForSequenceClassification, CamembertForTokenClassification, CamembertModel, CamembertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_camembert import ( TFCamembertForCausalLM, TFCamembertForMaskedLM, TFCamembertForMultipleChoice, TFCamembertForQuestionAnswering, TFCamembertForSequenceClassification, TFCamembertForTokenClassification, TFCamembertModel, TFCamembertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/camembert/__init__.py/0
{ "file_path": "transformers/src/transformers/models/camembert/__init__.py", "repo_id": "transformers", "token_count": 1665 }
528
# coding=utf-8 # Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Chinese-CLIP model.""" import math from dataclasses import dataclass from typing import Any, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPooling, BaseModelOutputWithPoolingAndCrossAttentions, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_chinese_clip import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "OFA-Sys/chinese-clip-vit-base-patch16" _CONFIG_FOR_DOC = "ChineseCLIPConfig" # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html # Copied from transformers.models.clip.modeling_clip.contrastive_loss def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) def chinese_clip_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 @dataclass class ChineseCLIPOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`ChineseCLIPTextModel`]. image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`ChineseCLIPVisionModel`]. text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`): The output of the [`ChineseCLIPTextModel`]. vision_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`): The output of the [`ChineseCLIPVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None vision_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) # Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->ChineseCLIPText class ChineseCLIPTextEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->ChineseCLIP class ChineseCLIPVisionEmbeddings(nn.Module): def __init__(self, config: ChineseCLIPVisionConfig): super().__init__() self.config = config self.embed_dim = config.hidden_size self.image_size = config.image_size self.patch_size = config.patch_size self.class_embedding = nn.Parameter(torch.randn(self.embed_dim)) self.patch_embedding = nn.Conv2d( in_channels=config.num_channels, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size, bias=False, ) self.num_patches = (self.image_size // self.patch_size) ** 2 self.num_positions = self.num_patches + 1 self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False) def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: batch_size = pixel_values.shape[0] target_dtype = self.patch_embedding.weight.dtype patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid] patch_embeds = patch_embeds.flatten(2).transpose(1, 2) class_embeds = self.class_embedding.expand(batch_size, 1, -1) embeddings = torch.cat([class_embeds, patch_embeds], dim=1) embeddings = embeddings + self.position_embedding(self.position_ids) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ChineseCLIPText class ChineseCLIPTextSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ChineseCLIPTextModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->ChineseCLIPText class ChineseCLIPTextSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states CHINESE_CLIP_TEXT_SELF_ATTENTION_CLASSES = { "eager": ChineseCLIPTextSelfAttention, } # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ChineseCLIPText,BERT->CHINESE_CLIP_TEXT class ChineseCLIPTextAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = CHINESE_CLIP_TEXT_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = ChineseCLIPTextSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class ChineseCLIPVisionAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scale key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->ChineseCLIPText class ChineseCLIPTextIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->ChineseCLIPText class ChineseCLIPTextOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->ChineseCLIPVision class ChineseCLIPVisionMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ChineseCLIPText class ChineseCLIPTextLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ChineseCLIPTextAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = ChineseCLIPTextAttention(config, position_embedding_type="absolute") self.intermediate = ChineseCLIPTextIntermediate(config) self.output = ChineseCLIPTextOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output class ChineseCLIPVisionLayer(nn.Module): def __init__(self, config: ChineseCLIPConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = ChineseCLIPVisionAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = ChineseCLIPVisionMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ChineseCLIPText class ChineseCLIPTextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class ChineseCLIPPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ChineseCLIPConfig base_model_prefix = "chinese_clip" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor if isinstance(module, ChineseCLIPVisionEmbeddings): factor = self.config.initializer_factor nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor) nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor) nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor) elif isinstance(module, ChineseCLIPTextEmbeddings): nn.init.normal_(module.word_embeddings.weight, mean=0.0, std=self.config.initializer_range) nn.init.normal_(module.position_embeddings.weight, mean=0.0, std=self.config.initializer_range) nn.init.normal_(module.token_type_embeddings.weight, mean=0.0, std=self.config.initializer_range) for embedding in [module.word_embeddings, module.position_embeddings, module.token_type_embeddings]: if embedding.padding_idx is not None: embedding.weight.data[embedding.padding_idx].zero_() elif isinstance(module, ChineseCLIPVisionAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, ChineseCLIPVisionMLP): factor = self.config.initializer_factor in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) elif isinstance(module, ChineseCLIPModel): nn.init.normal_( module.text_projection.weight, std=module.text_embed_dim**-0.5 * self.config.initializer_factor, ) nn.init.normal_( module.visual_projection.weight, std=module.vision_embed_dim**-0.5 * self.config.initializer_factor, ) if isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() CHINESE_CLIP_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ChineseCLIPConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CHINESE_CLIP_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CHINESE_CLIP_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ CHINESE_CLIP_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ChineseCLIPText class ChineseCLIPTextEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([ChineseCLIPTextLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class ChineseCLIPVisionEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`ChineseCLIPVisionEncoderLayer`]. Args: config: ChineseCLIPConfig """ def __init__(self, config: ChineseCLIPConfig): super().__init__() self.config = config self.layers = nn.ModuleList([ChineseCLIPVisionLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class ChineseCLIPVisionTransformer(nn.Module): def __init__(self, config: ChineseCLIPVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = ChineseCLIPVisionEmbeddings(config) self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) self.encoder = ChineseCLIPVisionEncoder(config) self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) hidden_states = self.pre_layrnorm(hidden_states) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] pooled_output = last_hidden_state[:, 0, :] pooled_output = self.post_layernorm(pooled_output) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( "The text model from CHINESE_CLIP without any head or projection on top.", CHINESE_CLIP_START_DOCSTRING, ) class ChineseCLIPTextModel(ChineseCLIPPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ config_class = ChineseCLIPTextConfig _no_split_modules = ["ChineseCLIPTextEmbeddings"] def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = ChineseCLIPTextEmbeddings(config) self.encoder = ChineseCLIPTextEncoder(config) self.pooler = ChineseCLIPTextPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """The vision model from CHINESE_CLIP without any head or projection on top.""", CHINESE_CLIP_START_DOCSTRING, ) class ChineseCLIPVisionModel(ChineseCLIPPreTrainedModel): config_class = ChineseCLIPVisionConfig main_input_name = "pixel_values" _no_split_modules = ["ChineseCLIPVisionEmbeddings", "ChineseCLIPVisionAttention"] def __init__(self, config: ChineseCLIPVisionConfig): super().__init__(config) self.vision_model = ChineseCLIPVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.vision_model.embeddings.patch_embedding @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import CLIPProcessor, ChineseCLIPVisionModel >>> model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") >>> processor = CLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @add_start_docstrings(CHINESE_CLIP_START_DOCSTRING) class ChineseCLIPModel(ChineseCLIPPreTrainedModel): config_class = ChineseCLIPConfig def __init__(self, config: ChineseCLIPConfig): super().__init__(config) if not isinstance(config.text_config, ChineseCLIPTextConfig): raise ValueError( "config.text_config is expected to be of type ChineseCLIPTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, ChineseCLIPVisionConfig): raise ValueError( "config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = ChineseCLIPTextModel(text_config, add_pooling_layer=False) self.vision_model = ChineseCLIPVisionTransformer(vision_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(CHINESE_CLIP_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the final [CLS] hidden state of Text-Transformer. Examples: ```python >>> from transformers import AutoTokenizer, ChineseCLIPModel >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") >>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") >>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) >>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True) ```""" # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[0][:, 0, :] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the final [CLS] hidden state of Vision-Transformer. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, ChineseCLIPModel >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") >>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) >>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True) ```""" # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ChineseCLIPOutput, config_class=ChineseCLIPConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ChineseCLIPOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, ChineseCLIPModel >>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") >>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16") >>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, return_tensors="pt", padding=True) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[0][:, 0, :] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() loss = None if return_loss: loss = chinese_clip_loss(logits_per_text) if not return_dict: # fix the None pooled_output of text_outputs to conform with dict_output pooled_output = text_outputs[1] if pooled_output is None: text_outputs = (text_outputs[0],) + text_outputs[2:] output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return ChineseCLIPOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, )
transformers/src/transformers/models/chinese_clip/modeling_chinese_clip.py/0
{ "file_path": "transformers/src/transformers/models/chinese_clip/modeling_chinese_clip.py", "repo_id": "transformers", "token_count": 30855 }
529
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for Conditional DETR.""" import io import pathlib from collections import defaultdict from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union import numpy as np from ...feature_extraction_utils import BatchFeature from ...image_processing_utils import BaseImageProcessor, get_size_dict from ...image_transforms import ( PaddingMode, center_to_corners_format, corners_to_center_format, id_to_rgb, pad, rescale, resize, rgb_to_id, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, AnnotationFormat, AnnotationType, ChannelDimension, ImageInput, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_annotations, validate_kwargs, validate_preprocess_arguments, ) from ...utils import ( TensorType, is_flax_available, is_jax_tensor, is_scipy_available, is_tf_available, is_tf_tensor, is_torch_available, is_torch_tensor, is_vision_available, logging, ) if is_torch_available(): import torch from torch import nn if is_vision_available(): import PIL if is_scipy_available(): import scipy.special import scipy.stats logger = logging.get_logger(__name__) # pylint: disable=invalid-name SUPPORTED_ANNOTATION_FORMATS = (AnnotationFormat.COCO_DETECTION, AnnotationFormat.COCO_PANOPTIC) # Copied from transformers.models.detr.image_processing_detr.get_size_with_aspect_ratio def get_size_with_aspect_ratio(image_size, size, max_size=None) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size. Args: image_size (`Tuple[int, int]`): The input image size. size (`int`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. """ height, width = image_size if max_size is not None: min_original_size = float(min((height, width))) max_original_size = float(max((height, width))) if max_original_size / min_original_size * size > max_size: size = int(round(max_size * min_original_size / max_original_size)) if (height <= width and height == size) or (width <= height and width == size): return height, width if width < height: ow = size oh = int(size * height / width) else: oh = size ow = int(size * width / height) return (oh, ow) # Copied from transformers.models.detr.image_processing_detr.get_resize_output_image_size def get_resize_output_image_size( input_image: np.ndarray, size: Union[int, Tuple[int, int], List[int]], max_size: Optional[int] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Tuple[int, int]: """ Computes the output image size given the input image size and the desired output size. If the desired output size is a tuple or list, the output image size is returned as is. If the desired output size is an integer, the output image size is computed by keeping the aspect ratio of the input image size. Args: input_image (`np.ndarray`): The image to resize. size (`int` or `Tuple[int, int]` or `List[int]`): The desired output size. max_size (`int`, *optional*): The maximum allowed output size. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred from the input image. """ image_size = get_image_size(input_image, input_data_format) if isinstance(size, (list, tuple)): return size return get_size_with_aspect_ratio(image_size, size, max_size) # Copied from transformers.models.detr.image_processing_detr.get_numpy_to_framework_fn def get_numpy_to_framework_fn(arr) -> Callable: """ Returns a function that converts a numpy array to the framework of the input array. Args: arr (`np.ndarray`): The array to convert. """ if isinstance(arr, np.ndarray): return np.array if is_tf_available() and is_tf_tensor(arr): import tensorflow as tf return tf.convert_to_tensor if is_torch_available() and is_torch_tensor(arr): import torch return torch.tensor if is_flax_available() and is_jax_tensor(arr): import jax.numpy as jnp return jnp.array raise ValueError(f"Cannot convert arrays of type {type(arr)}") # Copied from transformers.models.detr.image_processing_detr.safe_squeeze def safe_squeeze(arr: np.ndarray, axis: Optional[int] = None) -> np.ndarray: """ Squeezes an array, but only if the axis specified has dim 1. """ if axis is None: return arr.squeeze() try: return arr.squeeze(axis=axis) except ValueError: return arr # Copied from transformers.models.detr.image_processing_detr.normalize_annotation def normalize_annotation(annotation: Dict, image_size: Tuple[int, int]) -> Dict: image_height, image_width = image_size norm_annotation = {} for key, value in annotation.items(): if key == "boxes": boxes = value boxes = corners_to_center_format(boxes) boxes /= np.asarray([image_width, image_height, image_width, image_height], dtype=np.float32) norm_annotation[key] = boxes else: norm_annotation[key] = value return norm_annotation # Copied from transformers.models.detr.image_processing_detr.max_across_indices def max_across_indices(values: Iterable[Any]) -> List[Any]: """ Return the maximum value across all indices of an iterable of values. """ return [max(values_i) for values_i in zip(*values)] # Copied from transformers.models.detr.image_processing_detr.get_max_height_width def get_max_height_width( images: List[np.ndarray], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> List[int]: """ Get the maximum height and width across all images in a batch. """ if input_data_format is None: input_data_format = infer_channel_dimension_format(images[0]) if input_data_format == ChannelDimension.FIRST: _, max_height, max_width = max_across_indices([img.shape for img in images]) elif input_data_format == ChannelDimension.LAST: max_height, max_width, _ = max_across_indices([img.shape for img in images]) else: raise ValueError(f"Invalid channel dimension format: {input_data_format}") return (max_height, max_width) # Copied from transformers.models.detr.image_processing_detr.make_pixel_mask def make_pixel_mask( image: np.ndarray, output_size: Tuple[int, int], input_data_format: Optional[Union[str, ChannelDimension]] = None ) -> np.ndarray: """ Make a pixel mask for the image, where 1 indicates a valid pixel and 0 indicates padding. Args: image (`np.ndarray`): Image to make the pixel mask for. output_size (`Tuple[int, int]`): Output size of the mask. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) mask = np.zeros(output_size, dtype=np.int64) mask[:input_height, :input_width] = 1 return mask # Copied from transformers.models.detr.image_processing_detr.convert_coco_poly_to_mask def convert_coco_poly_to_mask(segmentations, height: int, width: int) -> np.ndarray: """ Convert a COCO polygon annotation to a mask. Args: segmentations (`List[List[float]]`): List of polygons, each polygon represented by a list of x-y coordinates. height (`int`): Height of the mask. width (`int`): Width of the mask. """ try: from pycocotools import mask as coco_mask except ImportError: raise ImportError("Pycocotools is not installed in your environment.") masks = [] for polygons in segmentations: rles = coco_mask.frPyObjects(polygons, height, width) mask = coco_mask.decode(rles) if len(mask.shape) < 3: mask = mask[..., None] mask = np.asarray(mask, dtype=np.uint8) mask = np.any(mask, axis=2) masks.append(mask) if masks: masks = np.stack(masks, axis=0) else: masks = np.zeros((0, height, width), dtype=np.uint8) return masks # Copied from transformers.models.detr.image_processing_detr.prepare_coco_detection_annotation with DETR->ConditionalDetr def prepare_coco_detection_annotation( image, target, return_segmentation_masks: bool = False, input_data_format: Optional[Union[ChannelDimension, str]] = None, ): """ Convert the target in COCO format into the format expected by ConditionalDetr. """ image_height, image_width = get_image_size(image, channel_dim=input_data_format) image_id = target["image_id"] image_id = np.asarray([image_id], dtype=np.int64) # Get all COCO annotations for the given image. annotations = target["annotations"] annotations = [obj for obj in annotations if "iscrowd" not in obj or obj["iscrowd"] == 0] classes = [obj["category_id"] for obj in annotations] classes = np.asarray(classes, dtype=np.int64) # for conversion to coco api area = np.asarray([obj["area"] for obj in annotations], dtype=np.float32) iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in annotations], dtype=np.int64) boxes = [obj["bbox"] for obj in annotations] # guard against no boxes via resizing boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4) boxes[:, 2:] += boxes[:, :2] boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=image_width) boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=image_height) keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0]) new_target = {} new_target["image_id"] = image_id new_target["class_labels"] = classes[keep] new_target["boxes"] = boxes[keep] new_target["area"] = area[keep] new_target["iscrowd"] = iscrowd[keep] new_target["orig_size"] = np.asarray([int(image_height), int(image_width)], dtype=np.int64) if annotations and "keypoints" in annotations[0]: keypoints = [obj["keypoints"] for obj in annotations] # Converting the filtered keypoints list to a numpy array keypoints = np.asarray(keypoints, dtype=np.float32) # Apply the keep mask here to filter the relevant annotations keypoints = keypoints[keep] num_keypoints = keypoints.shape[0] keypoints = keypoints.reshape((-1, 3)) if num_keypoints else keypoints new_target["keypoints"] = keypoints if return_segmentation_masks: segmentation_masks = [obj["segmentation"] for obj in annotations] masks = convert_coco_poly_to_mask(segmentation_masks, image_height, image_width) new_target["masks"] = masks[keep] return new_target # Copied from transformers.models.detr.image_processing_detr.masks_to_boxes def masks_to_boxes(masks: np.ndarray) -> np.ndarray: """ Compute the bounding boxes around the provided panoptic segmentation masks. Args: masks: masks in format `[number_masks, height, width]` where N is the number of masks Returns: boxes: bounding boxes in format `[number_masks, 4]` in xyxy format """ if masks.size == 0: return np.zeros((0, 4)) h, w = masks.shape[-2:] y = np.arange(0, h, dtype=np.float32) x = np.arange(0, w, dtype=np.float32) # see https://github.com/pytorch/pytorch/issues/50276 y, x = np.meshgrid(y, x, indexing="ij") x_mask = masks * np.expand_dims(x, axis=0) x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1) x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool))) x_min = x.filled(fill_value=1e8) x_min = x_min.reshape(x_min.shape[0], -1).min(-1) y_mask = masks * np.expand_dims(y, axis=0) y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1) y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool))) y_min = y.filled(fill_value=1e8) y_min = y_min.reshape(y_min.shape[0], -1).min(-1) return np.stack([x_min, y_min, x_max, y_max], 1) # Copied from transformers.models.detr.image_processing_detr.prepare_coco_panoptic_annotation with DETR->ConditionalDetr def prepare_coco_panoptic_annotation( image: np.ndarray, target: Dict, masks_path: Union[str, pathlib.Path], return_masks: bool = True, input_data_format: Union[ChannelDimension, str] = None, ) -> Dict: """ Prepare a coco panoptic annotation for ConditionalDetr. """ image_height, image_width = get_image_size(image, channel_dim=input_data_format) annotation_path = pathlib.Path(masks_path) / target["file_name"] new_target = {} new_target["image_id"] = np.asarray([target["image_id"] if "image_id" in target else target["id"]], dtype=np.int64) new_target["size"] = np.asarray([image_height, image_width], dtype=np.int64) new_target["orig_size"] = np.asarray([image_height, image_width], dtype=np.int64) if "segments_info" in target: masks = np.asarray(PIL.Image.open(annotation_path), dtype=np.uint32) masks = rgb_to_id(masks) ids = np.array([segment_info["id"] for segment_info in target["segments_info"]]) masks = masks == ids[:, None, None] masks = masks.astype(np.uint8) if return_masks: new_target["masks"] = masks new_target["boxes"] = masks_to_boxes(masks) new_target["class_labels"] = np.array( [segment_info["category_id"] for segment_info in target["segments_info"]], dtype=np.int64 ) new_target["iscrowd"] = np.asarray( [segment_info["iscrowd"] for segment_info in target["segments_info"]], dtype=np.int64 ) new_target["area"] = np.asarray( [segment_info["area"] for segment_info in target["segments_info"]], dtype=np.float32 ) return new_target # Copied from transformers.models.detr.image_processing_detr.get_segmentation_image def get_segmentation_image( masks: np.ndarray, input_size: Tuple, target_size: Tuple, stuff_equiv_classes, deduplicate=False ): h, w = input_size final_h, final_w = target_size m_id = scipy.special.softmax(masks.transpose(0, 1), -1) if m_id.shape[-1] == 0: # We didn't detect any mask :( m_id = np.zeros((h, w), dtype=np.int64) else: m_id = m_id.argmax(-1).reshape(h, w) if deduplicate: # Merge the masks corresponding to the same stuff class for equiv in stuff_equiv_classes.values(): for eq_id in equiv: m_id[m_id == eq_id] = equiv[0] seg_img = id_to_rgb(m_id) seg_img = resize(seg_img, (final_w, final_h), resample=PILImageResampling.NEAREST) return seg_img # Copied from transformers.models.detr.image_processing_detr.get_mask_area def get_mask_area(seg_img: np.ndarray, target_size: Tuple[int, int], n_classes: int) -> np.ndarray: final_h, final_w = target_size np_seg_img = seg_img.astype(np.uint8) np_seg_img = np_seg_img.reshape(final_h, final_w, 3) m_id = rgb_to_id(np_seg_img) area = [(m_id == i).sum() for i in range(n_classes)] return area # Copied from transformers.models.detr.image_processing_detr.score_labels_from_class_probabilities def score_labels_from_class_probabilities(logits: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: probs = scipy.special.softmax(logits, axis=-1) labels = probs.argmax(-1, keepdims=True) scores = np.take_along_axis(probs, labels, axis=-1) scores, labels = scores.squeeze(-1), labels.squeeze(-1) return scores, labels # Copied from transformers.models.detr.image_processing_detr.post_process_panoptic_sample with DetrForSegmentation->ConditionalDetrForSegmentation def post_process_panoptic_sample( out_logits: np.ndarray, masks: np.ndarray, boxes: np.ndarray, processed_size: Tuple[int, int], target_size: Tuple[int, int], is_thing_map: Dict, threshold=0.85, ) -> Dict: """ Converts the output of [`ConditionalDetrForSegmentation`] into panoptic segmentation predictions for a single sample. Args: out_logits (`torch.Tensor`): The logits for this sample. masks (`torch.Tensor`): The predicted segmentation masks for this sample. boxes (`torch.Tensor`): The prediced bounding boxes for this sample. The boxes are in the normalized format `(center_x, center_y, width, height)` and values between `[0, 1]`, relative to the size the image (disregarding padding). processed_size (`Tuple[int, int]`): The processed size of the image `(height, width)`, as returned by the preprocessing step i.e. the size after data augmentation but before batching. target_size (`Tuple[int, int]`): The target size of the image, `(height, width)` corresponding to the requested final size of the prediction. is_thing_map (`Dict`): A dictionary mapping class indices to a boolean value indicating whether the class is a thing or not. threshold (`float`, *optional*, defaults to 0.85): The threshold used to binarize the segmentation masks. """ # we filter empty queries and detection below threshold scores, labels = score_labels_from_class_probabilities(out_logits) keep = (labels != out_logits.shape[-1] - 1) & (scores > threshold) cur_scores = scores[keep] cur_classes = labels[keep] cur_boxes = center_to_corners_format(boxes[keep]) if len(cur_boxes) != len(cur_classes): raise ValueError("Not as many boxes as there are classes") cur_masks = masks[keep] cur_masks = resize(cur_masks[:, None], processed_size, resample=PILImageResampling.BILINEAR) cur_masks = safe_squeeze(cur_masks, 1) b, h, w = cur_masks.shape # It may be that we have several predicted masks for the same stuff class. # In the following, we track the list of masks ids for each stuff class (they are merged later on) cur_masks = cur_masks.reshape(b, -1) stuff_equiv_classes = defaultdict(list) for k, label in enumerate(cur_classes): if not is_thing_map[label]: stuff_equiv_classes[label].append(k) seg_img = get_segmentation_image(cur_masks, processed_size, target_size, stuff_equiv_classes, deduplicate=True) area = get_mask_area(cur_masks, processed_size, n_classes=len(cur_scores)) # We filter out any mask that is too small if cur_classes.size() > 0: # We know filter empty masks as long as we find some filtered_small = np.array([a <= 4 for a in area], dtype=bool) while filtered_small.any(): cur_masks = cur_masks[~filtered_small] cur_scores = cur_scores[~filtered_small] cur_classes = cur_classes[~filtered_small] seg_img = get_segmentation_image(cur_masks, (h, w), target_size, stuff_equiv_classes, deduplicate=True) area = get_mask_area(seg_img, target_size, n_classes=len(cur_scores)) filtered_small = np.array([a <= 4 for a in area], dtype=bool) else: cur_classes = np.ones((1, 1), dtype=np.int64) segments_info = [ {"id": i, "isthing": is_thing_map[cat], "category_id": int(cat), "area": a} for i, (cat, a) in enumerate(zip(cur_classes, area)) ] del cur_classes with io.BytesIO() as out: PIL.Image.fromarray(seg_img).save(out, format="PNG") predictions = {"png_string": out.getvalue(), "segments_info": segments_info} return predictions # Copied from transformers.models.detr.image_processing_detr.resize_annotation def resize_annotation( annotation: Dict[str, Any], orig_size: Tuple[int, int], target_size: Tuple[int, int], threshold: float = 0.5, resample: PILImageResampling = PILImageResampling.NEAREST, ): """ Resizes an annotation to a target size. Args: annotation (`Dict[str, Any]`): The annotation dictionary. orig_size (`Tuple[int, int]`): The original size of the input image. target_size (`Tuple[int, int]`): The target size of the image, as returned by the preprocessing `resize` step. threshold (`float`, *optional*, defaults to 0.5): The threshold used to binarize the segmentation masks. resample (`PILImageResampling`, defaults to `PILImageResampling.NEAREST`): The resampling filter to use when resizing the masks. """ ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(target_size, orig_size)) ratio_height, ratio_width = ratios new_annotation = {} new_annotation["size"] = target_size for key, value in annotation.items(): if key == "boxes": boxes = value scaled_boxes = boxes * np.asarray([ratio_width, ratio_height, ratio_width, ratio_height], dtype=np.float32) new_annotation["boxes"] = scaled_boxes elif key == "area": area = value scaled_area = area * (ratio_width * ratio_height) new_annotation["area"] = scaled_area elif key == "masks": masks = value[:, None] masks = np.array([resize(mask, target_size, resample=resample) for mask in masks]) masks = masks.astype(np.float32) masks = masks[:, 0] > threshold new_annotation["masks"] = masks elif key == "size": new_annotation["size"] = target_size else: new_annotation[key] = value return new_annotation # Copied from transformers.models.detr.image_processing_detr.binary_mask_to_rle def binary_mask_to_rle(mask): """ Converts given binary mask of shape `(height, width)` to the run-length encoding (RLE) format. Args: mask (`torch.Tensor` or `numpy.array`): A binary mask tensor of shape `(height, width)` where 0 denotes background and 1 denotes the target segment_id or class_id. Returns: `List`: Run-length encoded list of the binary mask. Refer to COCO API for more information about the RLE format. """ if is_torch_tensor(mask): mask = mask.numpy() pixels = mask.flatten() pixels = np.concatenate([[0], pixels, [0]]) runs = np.where(pixels[1:] != pixels[:-1])[0] + 1 runs[1::2] -= runs[::2] return list(runs) # Copied from transformers.models.detr.image_processing_detr.convert_segmentation_to_rle def convert_segmentation_to_rle(segmentation): """ Converts given segmentation map of shape `(height, width)` to the run-length encoding (RLE) format. Args: segmentation (`torch.Tensor` or `numpy.array`): A segmentation map of shape `(height, width)` where each value denotes a segment or class id. Returns: `List[List]`: A list of lists, where each list is the run-length encoding of a segment / class id. """ segment_ids = torch.unique(segmentation) run_length_encodings = [] for idx in segment_ids: mask = torch.where(segmentation == idx, 1, 0) rle = binary_mask_to_rle(mask) run_length_encodings.append(rle) return run_length_encodings # Copied from transformers.models.detr.image_processing_detr.remove_low_and_no_objects def remove_low_and_no_objects(masks, scores, labels, object_mask_threshold, num_labels): """ Binarize the given masks using `object_mask_threshold`, it returns the associated values of `masks`, `scores` and `labels`. Args: masks (`torch.Tensor`): A tensor of shape `(num_queries, height, width)`. scores (`torch.Tensor`): A tensor of shape `(num_queries)`. labels (`torch.Tensor`): A tensor of shape `(num_queries)`. object_mask_threshold (`float`): A number between 0 and 1 used to binarize the masks. Raises: `ValueError`: Raised when the first dimension doesn't match in all input tensors. Returns: `Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`]`: The `masks`, `scores` and `labels` without the region < `object_mask_threshold`. """ if not (masks.shape[0] == scores.shape[0] == labels.shape[0]): raise ValueError("mask, scores and labels must have the same shape!") to_keep = labels.ne(num_labels) & (scores > object_mask_threshold) return masks[to_keep], scores[to_keep], labels[to_keep] # Copied from transformers.models.detr.image_processing_detr.check_segment_validity def check_segment_validity(mask_labels, mask_probs, k, mask_threshold=0.5, overlap_mask_area_threshold=0.8): # Get the mask associated with the k class mask_k = mask_labels == k mask_k_area = mask_k.sum() # Compute the area of all the stuff in query k original_area = (mask_probs[k] >= mask_threshold).sum() mask_exists = mask_k_area > 0 and original_area > 0 # Eliminate disconnected tiny segments if mask_exists: area_ratio = mask_k_area / original_area if not area_ratio.item() > overlap_mask_area_threshold: mask_exists = False return mask_exists, mask_k # Copied from transformers.models.detr.image_processing_detr.compute_segments def compute_segments( mask_probs, pred_scores, pred_labels, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_size: Tuple[int, int] = None, ): height = mask_probs.shape[1] if target_size is None else target_size[0] width = mask_probs.shape[2] if target_size is None else target_size[1] segmentation = torch.zeros((height, width), dtype=torch.int32, device=mask_probs.device) segments: List[Dict] = [] if target_size is not None: mask_probs = nn.functional.interpolate( mask_probs.unsqueeze(0), size=target_size, mode="bilinear", align_corners=False )[0] current_segment_id = 0 # Weigh each mask by its prediction score mask_probs *= pred_scores.view(-1, 1, 1) mask_labels = mask_probs.argmax(0) # [height, width] # Keep track of instances of each class stuff_memory_list: Dict[str, int] = {} for k in range(pred_labels.shape[0]): pred_class = pred_labels[k].item() should_fuse = pred_class in label_ids_to_fuse # Check if mask exists and large enough to be a segment mask_exists, mask_k = check_segment_validity( mask_labels, mask_probs, k, mask_threshold, overlap_mask_area_threshold ) if mask_exists: if pred_class in stuff_memory_list: current_segment_id = stuff_memory_list[pred_class] else: current_segment_id += 1 # Add current object segment to final segmentation map segmentation[mask_k] = current_segment_id segment_score = round(pred_scores[k].item(), 6) segments.append( { "id": current_segment_id, "label_id": pred_class, "was_fused": should_fuse, "score": segment_score, } ) if should_fuse: stuff_memory_list[pred_class] = current_segment_id return segmentation, segments class ConditionalDetrImageProcessor(BaseImageProcessor): r""" Constructs a Conditional Detr image processor. Args: format (`str`, *optional*, defaults to `"coco_detection"`): Data format of the annotations. One of "coco_detection" or "coco_panoptic". do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`): Size of the image's (height, width) dimensions after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize: Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_annotations (`bool`, *optional*, defaults to `True`): Controls whether to convert the annotations to the format expected by the DETR model. Converts the bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`. Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `True`): Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method. If `True` will pad the images in the batch to the largest height and width in the batch. Padding will be applied to the bottom and right of the image with zeros. """ model_input_names = ["pixel_values", "pixel_mask"] # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.__init__ def __init__( self, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, do_convert_annotations: Optional[bool] = None, do_pad: bool = True, **kwargs, ) -> None: if "pad_and_return_pixel_mask" in kwargs: do_pad = kwargs.pop("pad_and_return_pixel_mask") if "max_size" in kwargs: logger.warning_once( "The `max_size` parameter is deprecated and will be removed in v4.26. " "Please specify in `size['longest_edge'] instead`.", ) max_size = kwargs.pop("max_size") else: max_size = None if size is None else 1333 size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333} size = get_size_dict(size, max_size=max_size, default_to_square=False) # Backwards compatibility if do_convert_annotations is None: do_convert_annotations = do_normalize super().__init__(**kwargs) self.format = format self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.do_convert_annotations = do_convert_annotations self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_pad = do_pad self._valid_processor_keys = [ "images", "annotations", "return_segmentation_masks", "masks_path", "do_resize", "size", "resample", "do_rescale", "rescale_factor", "do_normalize", "do_convert_annotations", "image_mean", "image_std", "do_pad", "format", "return_tensors", "data_format", "input_data_format", ] @classmethod # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->ConditionalDetr def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs): """ Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is created using from_dict and kwargs e.g. `ConditionalDetrImageProcessor.from_pretrained(checkpoint, size=600, max_size=800)` """ image_processor_dict = image_processor_dict.copy() if "max_size" in kwargs: image_processor_dict["max_size"] = kwargs.pop("max_size") if "pad_and_return_pixel_mask" in kwargs: image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask") return super().from_dict(image_processor_dict, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->ConditionalDetr def prepare_annotation( self, image: np.ndarray, target: Dict, format: Optional[AnnotationFormat] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Dict: """ Prepare an annotation for feeding into ConditionalDetr model. """ format = format if format is not None else self.format if format == AnnotationFormat.COCO_DETECTION: return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_detection_annotation( image, target, return_segmentation_masks, input_data_format=input_data_format ) elif format == AnnotationFormat.COCO_PANOPTIC: return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_panoptic_annotation( image, target, masks_path=masks_path, return_masks=return_segmentation_masks, input_data_format=input_data_format, ) else: raise ValueError(f"Format {format} is not supported.") return target # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare def prepare(self, image, target, return_segmentation_masks=None, masks_path=None): logger.warning_once( "The `prepare` method is deprecated and will be removed in a v4.33. " "Please use `prepare_annotation` instead. Note: the `prepare_annotation` method " "does not return the image anymore.", ) target = self.prepare_annotation(image, target, return_segmentation_masks, masks_path, self.format) return image, target # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.convert_coco_poly_to_mask def convert_coco_poly_to_mask(self, *args, **kwargs): logger.warning_once("The `convert_coco_poly_to_mask` method is deprecated and will be removed in v4.33. ") return convert_coco_poly_to_mask(*args, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_detection with DETR->ConditionalDetr def prepare_coco_detection(self, *args, **kwargs): logger.warning_once("The `prepare_coco_detection` method is deprecated and will be removed in v4.33. ") return prepare_coco_detection_annotation(*args, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_coco_panoptic def prepare_coco_panoptic(self, *args, **kwargs): logger.warning_once("The `prepare_coco_panoptic` method is deprecated and will be removed in v4.33. ") return prepare_coco_panoptic_annotation(*args, **kwargs) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary containing the size to resize to. Can contain the keys `shortest_edge` and `longest_edge` or `height` and `width`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ if "max_size" in kwargs: logger.warning_once( "The `max_size` parameter is deprecated and will be removed in v4.26. " "Please specify in `size['longest_edge'] instead`.", ) max_size = kwargs.pop("max_size") else: max_size = None size = get_size_dict(size, max_size=max_size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: size = get_resize_output_image_size( image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format ) elif "height" in size and "width" in size: size = (size["height"], size["width"]) else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) image = resize( image, size=size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs ) return image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation def resize_annotation( self, annotation, orig_size, size, resample: PILImageResampling = PILImageResampling.NEAREST, ) -> Dict: """ Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched to this number. """ return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict: """ Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to `[center_x, center_y, width, height]` format and from absolute to relative pixel values. """ return normalize_annotation(annotation, image_size=image_size) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image def _update_annotation_for_padded_image( self, annotation: Dict, input_image_size: Tuple[int, int], output_image_size: Tuple[int, int], padding, update_bboxes, ) -> Dict: """ Update the annotation for a padded image. """ new_annotation = {} new_annotation["size"] = output_image_size for key, value in annotation.items(): if key == "masks": masks = value masks = pad( masks, padding, mode=PaddingMode.CONSTANT, constant_values=0, input_data_format=ChannelDimension.FIRST, ) masks = safe_squeeze(masks, 1) new_annotation["masks"] = masks elif key == "boxes" and update_bboxes: boxes = value boxes *= np.asarray( [ input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], ] ) new_annotation["boxes"] = boxes elif key == "size": new_annotation["size"] = output_image_size else: new_annotation[key] = value return new_annotation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], annotation: Optional[Dict[str, Any]] = None, constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) if annotation is not None: annotation = self._update_annotation_for_padded_image( annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes ) return padded_image, annotation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad def pad( self, images: List[np.ndarray], annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, ) -> BatchFeature: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: images (List[`np.ndarray`]): Images to pad. annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): Annotations to transform according to the padding that is applied to the images. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. update_bboxes (`bool`, *optional*, defaults to `True`): Whether to update the bounding boxes in the annotations to match the padded images. If the bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)` format, the bounding boxes will not be updated. """ pad_size = get_max_height_width(images, input_data_format=input_data_format) annotation_list = annotations if annotations is not None else [None] * len(images) padded_images = [] padded_annotations = [] for image, annotation in zip(images, annotation_list): padded_image, padded_annotation = self._pad_image( image, pad_size, annotation, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, update_bboxes=update_bboxes, ) padded_images.append(padded_image) padded_annotations.append(padded_annotation) data = {"pixel_values": padded_images} if return_pixel_mask: masks = [ make_pixel_mask(image=image, output_size=pad_size, input_data_format=input_data_format) for image in images ] data["pixel_mask"] = masks encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations ] return encoded_inputs # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.preprocess def preprocess( self, images: ImageInput, annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample=None, # PILImageResampling do_rescale: Optional[bool] = None, rescale_factor: Optional[Union[int, float]] = None, do_normalize: Optional[bool] = None, do_convert_annotations: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = None, format: Optional[Union[str, AnnotationFormat]] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or a batch of images so that it can be used by the model. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): List of annotations associated with the image or batch of images. If annotation is for object detection, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a dictionary. An image can have no annotations, in which case the list should be empty. If annotation is for segmentation, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary. An image can have no segments, in which case the list should be empty. - "file_name" (`str`): The file name of the image. return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks): Whether to return segmentation masks. masks_path (`str` or `pathlib.Path`, *optional*): Path to the directory containing the segmentation masks. do_resize (`bool`, *optional*, defaults to self.do_resize): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to self.size): Size of the image after resizing. resample (`PILImageResampling`, *optional*, defaults to self.resample): Resampling filter to use when resizing the image. do_rescale (`bool`, *optional*, defaults to self.do_rescale): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to self.rescale_factor): Rescale factor to use when rescaling the image. do_normalize (`bool`, *optional*, defaults to self.do_normalize): Whether to normalize the image. do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations): Whether to convert the annotations to the format expected by the model. Converts the bounding boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)` and in relative coordinates. image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean): Mean to use when normalizing the image. image_std (`float` or `List[float]`, *optional*, defaults to self.image_std): Standard deviation to use when normalizing the image. do_pad (`bool`, *optional*, defaults to self.do_pad): Whether to pad the image. If `True` will pad the images in the batch to the largest image in the batch and create a pixel mask. Padding will be applied to the bottom and right of the image with zeros. format (`str` or `AnnotationFormat`, *optional*, defaults to self.format): Format of the annotations. return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors): Type of tensors to return. If `None`, will return the list of images. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ if "pad_and_return_pixel_mask" in kwargs: logger.warning_once( "The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, " "use `do_pad` instead." ) do_pad = kwargs.pop("pad_and_return_pixel_mask") max_size = None if "max_size" in kwargs: logger.warning_once( "The `max_size` argument is deprecated and will be removed in a future version, use" " `size['longest_edge']` instead." ) size = kwargs.pop("max_size") do_resize = self.do_resize if do_resize is None else do_resize size = self.size if size is None else size size = get_size_dict(size=size, max_size=max_size, default_to_square=False) resample = self.resample if resample is None else resample do_rescale = self.do_rescale if do_rescale is None else do_rescale rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor do_normalize = self.do_normalize if do_normalize is None else do_normalize image_mean = self.image_mean if image_mean is None else image_mean image_std = self.image_std if image_std is None else image_std do_convert_annotations = ( self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations ) do_pad = self.do_pad if do_pad is None else do_pad format = self.format if format is None else format images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) # Here, the pad() method pads to the maximum of (width, height). It does not need to be validated. validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if annotations is not None and isinstance(annotations, dict): annotations = [annotations] if annotations is not None and len(images) != len(annotations): raise ValueError( f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match." ) format = AnnotationFormat(format) if annotations is not None: validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations) if ( masks_path is not None and format == AnnotationFormat.COCO_PANOPTIC and not isinstance(masks_path, (pathlib.Path, str)) ): raise ValueError( "The path to the directory containing the mask PNG files should be provided as a" f" `pathlib.Path` or string object, but is {type(masks_path)} instead." ) # All transformations expect numpy arrays images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image) if annotations is not None: prepared_images = [] prepared_annotations = [] for image, target in zip(images, annotations): target = self.prepare_annotation( image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path, input_data_format=input_data_format, ) prepared_images.append(image) prepared_annotations.append(target) images = prepared_images annotations = prepared_annotations del prepared_images, prepared_annotations # transformations if do_resize: if annotations is not None: resized_images, resized_annotations = [], [] for image, target in zip(images, annotations): orig_size = get_image_size(image, input_data_format) resized_image = self.resize( image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format ) resized_annotation = self.resize_annotation( target, orig_size, get_image_size(resized_image, input_data_format) ) resized_images.append(resized_image) resized_annotations.append(resized_annotation) images = resized_images annotations = resized_annotations del resized_images, resized_annotations else: images = [ self.resize(image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] if do_normalize: images = [ self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images ] if do_convert_annotations and annotations is not None: annotations = [ self.normalize_annotation(annotation, get_image_size(image, input_data_format)) for annotation, image in zip(annotations, images) ] if do_pad: # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...} encoded_inputs = self.pad( images, annotations=annotations, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format, update_bboxes=do_convert_annotations, return_tensors=return_tensors, ) else: images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations ] return encoded_inputs # POSTPROCESSING METHODS - TODO: add support for other frameworks def post_process(self, outputs, target_sizes): """ Converts the output of [`ConditionalDetrForObjectDetection`] into the format expected by the Pascal VOC format (xmin, ymin, xmax, ymax). Only supports PyTorch. Args: outputs ([`ConditionalDetrObjectDetectionOutput`]): Raw outputs of the model. target_sizes (`torch.Tensor` of shape `(batch_size, 2)`): Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original image size (before any data augmentation). For visualization, this should be the image size after data augment, but before padding. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ logging.warning_once( "`post_process` is deprecated and will be removed in v5 of Transformers, please use" " `post_process_object_detection` instead, with `threshold=0.` for equivalent results.", ) out_logits, out_bbox = outputs.logits, outputs.pred_boxes if len(out_logits) != len(target_sizes): raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits") if target_sizes.shape[1] != 2: raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch") prob = out_logits.sigmoid() topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 300, dim=1) scores = topk_values topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor") labels = topk_indexes % out_logits.shape[2] boxes = center_to_corners_format(out_bbox) boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4)) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)] return results # Copied from transformers.models.deformable_detr.image_processing_deformable_detr.DeformableDetrImageProcessor.post_process_object_detection with DeformableDetr->ConditionalDetr def post_process_object_detection( self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, top_k: int = 100 ): """ Converts the raw output of [`ConditionalDetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`DetrObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the batch. If left to None, predictions will not be resized. top_k (`int`, *optional*, defaults to 100): Keep only top k bounding boxes before filtering by thresholding. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ out_logits, out_bbox = outputs.logits, outputs.pred_boxes if target_sizes is not None: if len(out_logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) prob = out_logits.sigmoid() prob = prob.view(out_logits.shape[0], -1) k_value = min(top_k, prob.size(1)) topk_values, topk_indexes = torch.topk(prob, k_value, dim=1) scores = topk_values topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor") labels = topk_indexes % out_logits.shape[2] boxes = center_to_corners_format(out_bbox) boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4)) # and from relative [0, 1] to absolute [0, height] coordinates if target_sizes is not None: if isinstance(target_sizes, List): img_h = torch.Tensor([i[0] for i in target_sizes]) img_w = torch.Tensor([i[1] for i in target_sizes]) else: img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] results = [] for s, l, b in zip(scores, labels, boxes): score = s[s > threshold] label = l[s > threshold] box = b[s > threshold] results.append({"scores": score, "labels": label, "boxes": box}) return results # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_semantic_segmentation with Detr->ConditionalDetr def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None): """ Converts the output of [`ConditionalDetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch. Args: outputs ([`ConditionalDetrForSegmentation`]): Raw outputs of the model. target_sizes (`List[Tuple[int, int]]`, *optional*): A list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the batch. If unset, predictions will not be resized. Returns: `List[torch.Tensor]`: A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width) corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each `torch.Tensor` correspond to a semantic class id. """ class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] # Remove the null class `[..., :-1]` masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1] masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Semantic segmentation logits of shape (batch_size, num_classes, height, width) segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs) batch_size = class_queries_logits.shape[0] # Resize logits and compute semantic segmentation maps if target_sizes is not None: if batch_size != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) semantic_segmentation = [] for idx in range(batch_size): resized_logits = nn.functional.interpolate( segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False ) semantic_map = resized_logits[0].argmax(dim=0) semantic_segmentation.append(semantic_map) else: semantic_segmentation = segmentation.argmax(dim=1) semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])] return semantic_segmentation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_instance_segmentation with Detr->ConditionalDetr def post_process_instance_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, target_sizes: Optional[List[Tuple[int, int]]] = None, return_coco_annotation: Optional[bool] = False, ) -> List[Dict]: """ Converts the output of [`ConditionalDetrForSegmentation`] into instance segmentation predictions. Only supports PyTorch. Args: outputs ([`ConditionalDetrForSegmentation`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction. If unset, predictions will not be resized. return_coco_annotation (`bool`, *optional*): Defaults to `False`. If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE) format. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or `List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to `True`. Set to `None` if no mask if found above `threshold`. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- An integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=[], target_size=target_size, ) # Return segmentation map in run-length encoding (RLE) format if return_coco_annotation: segmentation = convert_segmentation_to_rle(segmentation) results.append({"segmentation": segmentation, "segments_info": segments}) return results # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_panoptic_segmentation with Detr->ConditionalDetr def post_process_panoptic_segmentation( self, outputs, threshold: float = 0.5, mask_threshold: float = 0.5, overlap_mask_area_threshold: float = 0.8, label_ids_to_fuse: Optional[Set[int]] = None, target_sizes: Optional[List[Tuple[int, int]]] = None, ) -> List[Dict]: """ Converts the output of [`ConditionalDetrForSegmentation`] into image panoptic segmentation predictions. Only supports PyTorch. Args: outputs ([`ConditionalDetrForSegmentation`]): The outputs from [`ConditionalDetrForSegmentation`]. threshold (`float`, *optional*, defaults to 0.5): The probability score threshold to keep predicted instance masks. mask_threshold (`float`, *optional*, defaults to 0.5): Threshold to use when turning the predicted masks into binary values. overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8): The overlap mask area threshold to merge or discard small disconnected parts within each binary instance mask. label_ids_to_fuse (`Set[int]`, *optional*): The labels in this state will have all their instances be fused together. For instance we could say there can only be one sky in an image, but several persons, so the label ID for sky would be in that set, but not the one for person. target_sizes (`List[Tuple]`, *optional*): List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested final size (height, width) of each prediction in batch. If unset, predictions will not be resized. Returns: `List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys: - **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id` or `None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to the corresponding `target_sizes` entry. - **segments_info** -- A dictionary that contains additional information on each segment. - **id** -- an integer representing the `segment_id`. - **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`. - **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise. Multiple instances of the same class / label were fused and assigned a single `segment_id`. - **score** -- Prediction score of segment with `segment_id`. """ if label_ids_to_fuse is None: logger.warning_once("`label_ids_to_fuse` unset. No instance will be fused.") label_ids_to_fuse = set() class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1] masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width] batch_size = class_queries_logits.shape[0] num_labels = class_queries_logits.shape[-1] - 1 mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width] # Predicted label and score of each query (batch_size, num_queries) pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1) # Loop over items in batch size results: List[Dict[str, TensorType]] = [] for i in range(batch_size): mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects( mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels ) # No mask found if mask_probs_item.shape[0] <= 0: height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:] segmentation = torch.zeros((height, width)) - 1 results.append({"segmentation": segmentation, "segments_info": []}) continue # Get segmentation map and segment information of batch item target_size = target_sizes[i] if target_sizes is not None else None segmentation, segments = compute_segments( mask_probs=mask_probs_item, pred_scores=pred_scores_item, pred_labels=pred_labels_item, mask_threshold=mask_threshold, overlap_mask_area_threshold=overlap_mask_area_threshold, label_ids_to_fuse=label_ids_to_fuse, target_size=target_size, ) results.append({"segmentation": segmentation, "segments_info": segments}) return results
transformers/src/transformers/models/conditional_detr/image_processing_conditional_detr.py/0
{ "file_path": "transformers/src/transformers/models/conditional_detr/image_processing_conditional_detr.py", "repo_id": "transformers", "token_count": 34683 }
530
# flake8: noqa # There's no way to ignore "F401 '...' imported but unused" warnings in this # module, but to preserve other warnings. So, don't check this module at all. # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_tf_available, ) _import_structure = {"configuration_convnextv2": ["ConvNextV2Config"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_convnextv2"] = [ "ConvNextV2ForImageClassification", "ConvNextV2Model", "ConvNextV2PreTrainedModel", "ConvNextV2Backbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_convnextv2"] = [ "TFConvNextV2ForImageClassification", "TFConvNextV2Model", "TFConvNextV2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnextv2 import ( ConvNextV2Config, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnextv2 import ( ConvNextV2Backbone, ConvNextV2ForImageClassification, ConvNextV2Model, ConvNextV2PreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnextv2 import ( TFConvNextV2ForImageClassification, TFConvNextV2Model, TFConvNextV2PreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/convnextv2/__init__.py/0
{ "file_path": "transformers/src/transformers/models/convnextv2/__init__.py", "repo_id": "transformers", "token_count": 1010 }
531
# coding=utf-8 # Copyright 2018 Salesforce and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for Salesforce CTRL.""" import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } CONTROL_CODES = { "Pregnancy": 168629, "Christianity": 7675, "Explain": 106423, "Fitness": 63440, "Saving": 63163, "Ask": 27171, "Ass": 95985, "Joke": 163509, "Questions": 45622, "Thoughts": 49605, "Retail": 52342, "Feminism": 164338, "Writing": 11992, "Atheism": 192263, "Netflix": 48616, "Computing": 39639, "Opinion": 43213, "Alone": 44967, "Funny": 58917, "Gaming": 40358, "Human": 4088, "India": 1331, "Joker": 77138, "Diet": 36206, "Legal": 11859, "Norman": 4939, "Tip": 72689, "Weight": 52343, "Movies": 46273, "Running": 23425, "Science": 2090, "Horror": 37793, "Confession": 60572, "Finance": 12250, "Politics": 16360, "Scary": 191985, "Support": 12654, "Technologies": 32516, "Teenage": 66160, "Event": 32769, "Learned": 67460, "Notion": 182770, "Wikipedia": 37583, "Books": 6665, "Extract": 76050, "Confessions": 102701, "Conspiracy": 75932, "Links": 63674, "Narcissus": 150425, "Relationship": 54766, "Relationships": 134796, "Reviews": 41671, "News": 4256, "Translation": 26820, "multilingual": 128406, } def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = set(pairs) return pairs class CTRLTokenizer(PreTrainedTokenizer): """ Construct a CTRL tokenizer. Based on Byte-Pair-Encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. """ vocab_files_names = VOCAB_FILES_NAMES control_codes = CONTROL_CODES def __init__(self, vocab_file, merges_file, unk_token="<unk>", **kwargs): with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[1:-1] merges = [tuple(merge.split()) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__(unk_token=unk_token, **kwargs) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
transformers/src/transformers/models/ctrl/tokenization_ctrl.py/0
{ "file_path": "transformers/src/transformers/models/ctrl/tokenization_ctrl.py", "repo_id": "transformers", "token_count": 3720 }
532
# coding=utf-8 # Copyright 2022 Meta Platforms and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Data2Vec Vision model.""" from __future__ import annotations import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFSemanticSegmenterOutput, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import ( TFModelInputType, TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_data2vec_vision import Data2VecVisionConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Data2VecVisionConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/data2vec-vision-base" _EXPECTED_OUTPUT_SHAPE = [1, 197, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/data2vec-vision-base-ft1k" _IMAGE_CLASS_EXPECTED_OUTPUT = "remote control, remote" @dataclass class TFData2VecVisionModelOutputWithPooling(TFBaseModelOutputWithPooling): """ Class for outputs of [`TFData2VecVisionModel`]. Args: last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if *config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token will be returned. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: tf.Tensor = None pooler_output: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None class TFData2VecVisionDropPath(keras.layers.Layer): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). References: (1) github.com:rwightman/pytorch-image-models """ def __init__(self, drop_path, **kwargs): super().__init__(**kwargs) self.drop_path = drop_path def call(self, x, training=None): if training: keep_prob = 1 - self.drop_path shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x class TFData2VecVisionEmbeddings(keras.layers.Layer): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.patch_embeddings = TFData2VecVisionPatchEmbeddings(config, name="patch_embeddings") self.num_patches = self.patch_embeddings.num_patches self.config = config self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) def build(self, input_shape=None): self.cls_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="cls_token", ) if self.config.use_mask_token: self.mask_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="mask_token", ) else: self.mask_token = None if self.config.use_absolute_position_embeddings: self.position_embeddings = self.add_weight( shape=(1, self.num_patches + 1, self.config.hidden_size), initializer=tf.random_normal_initializer(stddev=self.config.initializer_range), trainable=True, name="position_embeddings", ) else: self.position_embeddings = None if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build(None) def call(self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None) -> tf.Tensor: embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, projection_dim = shape_list(embeddings) cls_tokens = tf.tile(self.cls_token, (batch_size, 1, 1)) if bool_masked_pos is not None: mask_tokens = tf.broadcast_to(self.mask_token, (batch_size, seq_len, projection_dim)) # replace the masked visual tokens by mask_tokens w = bool_masked_pos[..., None] w = tf.cast(w, mask_tokens.dtype) # since TF doesn't support eager tensor assignment embeddings = embeddings * (1 - w) + mask_tokens * w embeddings = tf.concat([cls_tokens, embeddings], axis=1) if self.position_embeddings is not None: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class TFData2VecVisionPatchEmbeddings(keras.layers.Layer): """ Image to Patch Embedding. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.patch_shape = patch_shape self.num_channels = num_channels self.projection = keras.layers.Conv2D( filters=hidden_size, kernel_size=patch_size, strides=patch_size, padding="valid", data_format="channels_last", kernel_initializer="glorot_uniform", # following torch.nn.Linear bias_initializer="zeros", name="projection", ) def call(self, pixel_values: tf.Tensor, training: bool = False) -> tf.Tensor: batch_size, num_channels, height, width = shape_list(pixel_values) if tf.executing_eagerly(): if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the" " configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) # When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1)) projection = self.projection(pixel_values) # Change the 2D spatial dimensions to a single temporal dimension. # shape = (batch_size, num_patches, out_channels=embed_dim) num_patches = (width // self.patch_size[1]) * (height // self.patch_size[0]) return tf.reshape(tensor=projection, shape=(batch_size, num_patches, -1)) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, None, self.num_channels]) class TFData2VecVisionSelfAttention(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key", use_bias=False, ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) if window_size: self.relative_position_bias = TFData2VecVisionRelativePositionBias( config, window_size=window_size, name="relative_position_bias" ) else: self.relative_position_bias = None self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = attention_scores / self.sqrt_att_head_size # Add relative position bias if present. if self.relative_position_bias is not None: # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras # might complain about `Layer.call()` not being invoked properly. In this case this input # i.e., 0.0 is not going to be used in any calculations so we're safe. attention_scores = attention_scores + self.relative_position_bias(0.0)[None, ...] # Add shared relative position bias if provided. if relative_position_bias is not None: attention_scores = attention_scores + relative_position_bias # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) if getattr(self, "relative_position_bias", None) is not None: with tf.name_scope(self.relative_position_bias.name): self.relative_position_bias.build(None) class TFData2VecVisionSelfOutput(keras.layers.Layer): """ The residual connection is defined in TFData2VecVisionLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, gamma=None, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFData2VecVisionAttention(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) self.attention = TFData2VecVisionSelfAttention(config, window_size=window_size, name="attention") self.dense_output = TFData2VecVisionSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.attention( hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, training=training, ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->Data2VecVision class TFData2VecVisionIntermediate(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFData2VecVisionOutput(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) class TFData2VecVisionLayer(keras.layers.Layer): """This corresponds to the Block class in the timm implementation.""" def __init__( self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, drop_path_rate: float = 0.0, **kwargs ): super().__init__(**kwargs) self.config = config self.attention = TFData2VecVisionAttention(config, window_size=window_size, name="attention") self.intermediate = TFData2VecVisionIntermediate(config, name="intermediate") self.data2vec_output = TFData2VecVisionOutput(config, name="output") self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") # Using `layers.Activation` instead of `tf.identity` to better control `training` # behaviour. self.drop_path = ( TFData2VecVisionDropPath(drop_path_rate, name="drop_path") if drop_path_rate > 0.0 else keras.layers.Activation("linear", name="drop_path") ) self.init_values = config.layer_scale_init_value def build(self, input_shape: tf.TensorShape = None): if self.init_values > 0: self.lambda_1 = self.add_weight( shape=(self.config.hidden_size), initializer="ones", trainable=True, name="lambda_1", ) self.lambda_2 = self.add_weight( shape=(self.config.hidden_size), initializer="ones", trainable=True, name="lambda_2", ) self.lambda_1.assign(self.init_values * tf.ones((self.config.hidden_size))) self.lambda_2.assign(self.init_values * tf.ones((self.config.hidden_size))) else: self.lambda_1, self.lambda_2 = None, None if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "data2vec_output", None) is not None: with tf.name_scope(self.data2vec_output.name): self.data2vec_output.build(None) if getattr(self, "layernorm_before", None) is not None: with tf.name_scope(self.layernorm_before.name): self.layernorm_before.build([None, None, self.config.hidden_size]) if getattr(self, "layernorm_after", None) is not None: with tf.name_scope(self.layernorm_after.name): self.layernorm_after.build([None, None, self.config.hidden_size]) if getattr(self, "drop_path", None) is not None: with tf.name_scope(self.drop_path.name): self.drop_path.build(None) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, relative_position_bias: Optional["TFData2VecVisionRelativePositionBias"] = None, training: bool = False, ) -> Tuple[tf.Tensor]: self_attention_outputs = self.attention( # in Data2VecVision, layernorm is applied before self-attention input_tensor=self.layernorm_before(inputs=hidden_states), head_mask=head_mask, output_attentions=output_attentions, relative_position_bias=relative_position_bias, training=training, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # apply lambda_1 if present if self.lambda_1 is not None: attention_output = self.lambda_1 * attention_output # first residual connection hidden_states = self.drop_path(attention_output) + hidden_states # in Data2VecVision, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.data2vec_output(layer_output) if self.lambda_2 is not None: layer_output = self.lambda_2 * layer_output # second residual connection layer_output = self.drop_path(layer_output) + hidden_states outputs = (layer_output,) + outputs return outputs # Taken and modified from here: # https://github.com/leondgarse/keras_cv_attention_models/blob/main/keras_cv_attention_models/beit/beit.py#L28 class TFData2VecVisionRelativePositionBias(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: tuple, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.window_size = window_size # +3 for cls_token_pos_len # window_size can be something like (14, 14) self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_index = self.get_position_index() def build(self, input_shape): self.relative_position_bias_table = self.add_weight( shape=(self.num_relative_distance, self.config.num_attention_heads), initializer="zeros", trainable=True, name="relative_position_bias_table", ) # [2*Wh-1 * 2*Ww-1, nH] # cls to token & token 2 cls & cls to cls super().build(input_shape) def get_position_index(self): # get pair-wise relative position index for each token inside the window xx, yy = tf.meshgrid(range(self.window_size[0]), range(self.window_size[1])) coords = tf.stack([yy, xx], axis=0) # [2, Wh, Ww] coords_flatten = tf.reshape(coords, [2, -1]) # [2, Wh*Ww] relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Wh*Ww, Wh*Ww] relative_coords = tf.transpose(relative_coords, perm=[1, 2, 0]) # [Wh*Ww, Wh*Ww, 2] xx = (relative_coords[:, :, 0] + self.window_size[0] - 1) * (2 * self.window_size[1] - 1) yy = relative_coords[:, :, 1] + self.window_size[1] - 1 relative_coords = tf.stack([xx, yy], axis=-1) relative_position_index = tf.reduce_sum(relative_coords, axis=-1) # [Wh*Ww, Wh*Ww] top = tf.ones((1, relative_position_index.shape[1]), dtype=relative_position_index.dtype) * ( self.num_relative_distance - 3 ) left = tf.ones((relative_position_index.shape[0], 1), dtype=relative_position_index.dtype) * ( self.num_relative_distance - 2 ) corner = tf.ones((1, 1), dtype=relative_position_index.dtype) * (self.num_relative_distance - 1) left_corner = tf.concat([corner, left], axis=0) relative_position_index = tf.concat([top, relative_position_index], axis=0) relative_position_index = tf.concat([left_corner, relative_position_index], axis=1) # [Wh*Ww + 1, Wh*Ww + 1] return relative_position_index def call(self, inputs=None) -> tf.Tensor: relative_position_bias = tf.gather(self.relative_position_bias_table, self.relative_position_index, axis=0) return tf.transpose(relative_position_bias, [2, 0, 1]) class TFData2VecVisionEncoder(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, window_size: Optional[tuple] = None, **kwargs): super().__init__(**kwargs) self.config = config if config.use_shared_relative_position_bias: self.relative_position_bias = TFData2VecVisionRelativePositionBias( config, window_size=window_size, name="relative_position_bias" ) else: self.relative_position_bias = None # stochastic depth decay rule dpr = list(tf.linspace(0.0, config.drop_path_rate, config.num_hidden_layers)) self.layer = [ TFData2VecVisionLayer( config, window_size=window_size if config.use_relative_position_bias else None, drop_path_rate=dpr[i], name=f"layer_._{i}", ) for i in range(config.num_hidden_layers) ] def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor | None = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, TFBaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None # Passing `0.0` to the `relative_position_bias()` layer because otherwise Keras # might complain about `Layer.call()` not being invoked properly. In this case this input # i.e., 0.0 is not going to be used in any calculations so we're safe. relative_position_bias = ( self.relative_position_bias(0.0) if self.relative_position_bias is not None else None ) layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions, relative_position_bias) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "relative_position_bias", None) is not None: with tf.name_scope(self.relative_position_bias.name): self.relative_position_bias.build(None) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFData2VecVisionMainLayer(keras.layers.Layer): config_class = Data2VecVisionConfig def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = True, **kwargs): super().__init__(**kwargs) self.config = config self.add_pooling_layer = add_pooling_layer self.embeddings = TFData2VecVisionEmbeddings(config, name="embeddings") self.encoder = TFData2VecVisionEncoder( config, window_size=self.embeddings.patch_embeddings.patch_shape, name="encoder" ) self.layernorm = ( tf.identity if config.use_mean_pooling else keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") ) # We are setting the `data_format` like so because from here on we will revert to the # NCHW output format self.pooler = TFData2VecVisionPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers embedding_output = self.embeddings(pixel_values, bool_masked_pos, training=training) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return TFData2VecVisionModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: if hasattr(self.layernorm, "name"): with tf.name_scope(self.layernorm.name): self.layernorm.build((None, self.config.hidden_size)) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) class TFData2VecVisionPooler(keras.layers.Layer): def __init__(self, config: Data2VecVisionConfig, **kwargs): super().__init__(**kwargs) self.layernorm = ( keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") if config.use_mean_pooling else None ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: if self.layernorm is not None: # Mean pool the final hidden states of the patch tokens patch_tokens = hidden_states[:, 1:, :] pooled_output = self.layernorm(tf.reduce_mean(patch_tokens, axis=1)) else: # Pool by simply taking the final hidden state of the [CLS] token pooled_output = hidden_states[:, 0] return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layernorm", None) is not None: if hasattr(self.layernorm, "name"): with tf.name_scope(self.layernorm.name): self.layernorm.build((None, self.config.hidden_size)) class TFData2VecVisionPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Data2VecVisionConfig base_model_prefix = "data2vec_vision" main_input_name = "pixel_values" _keys_to_ignore_on_load_unexpected = [r"relative_position_index"] DATA2VEC_VISION_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.). This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`Data2VecVisionConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ DATA2VEC_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`BeitImageProcessor.__call__`] for details. head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False``): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare Data2VecVision Model transformer outputting raw hidden-states without any specific head on top.", DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionModel(TFData2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, add_pooling_layer: bool = False, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.config = config self.data2vec_vision = TFData2VecVisionMainLayer( config, add_pooling_layer=add_pooling_layer, name="data2vec_vision" ) def get_input_embeddings(self): return self.data2vec_vision.get_input_embeddings() @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFData2VecVisionModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: TFModelInputType | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFData2VecVisionModelOutputWithPooling]: r""" bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). """ outputs = self.data2vec_vision( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "data2vec_vision", None) is not None: with tf.name_scope(self.data2vec_vision.name): self.data2vec_vision.build(None) @add_start_docstrings( """ Data2VecVision Model transformer with an image classification head on top (a linear layer on top of the average of the final hidden states of the patch tokens) e.g. for ImageNet. """, DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionForImageClassification(TFData2VecVisionPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=True, name="data2vec_vision") # Classifier head self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: TFModelInputType | None = None, head_mask: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, tuple]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.data2vec_vision( pixel_values=pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "data2vec_vision", None) is not None: with tf.name_scope(self.data2vec_vision.name): self.data2vec_vision.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) class TFData2VecVisionConvModule(keras.layers.Layer): """ A convolutional block that bundles conv/norm/activation layers. This block simplifies the usage of convolution layers, which are commonly used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int]], padding: str = "valid", bias: bool = False, dilation: Union[int, Tuple[int, int]] = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.conv = keras.layers.Conv2D( filters=out_channels, kernel_size=kernel_size, padding=padding, use_bias=bias, dilation_rate=dilation, name="conv", ) self.bn = keras.layers.BatchNormalization(name="bn", momentum=0.9, epsilon=1e-5) self.activation = tf.nn.relu self.in_channels = in_channels self.out_channels = out_channels def call(self, input: tf.Tensor) -> tf.Tensor: output = self.conv(input) output = self.bn(output) output = self.activation(output) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv", None) is not None: with tf.name_scope(self.conv.name): self.conv.build([None, None, None, self.in_channels]) if getattr(self, "bn", None) is not None: with tf.name_scope(self.bn.name): self.bn.build((None, None, None, self.out_channels)) class TFAdaptiveAvgPool2D(keras.layers.Layer): def __init__(self, output_dims: Tuple[int, int], input_ordering: str = "NHWC", **kwargs): super().__init__(**kwargs) self.output_dims = output_dims self.input_ordering = input_ordering if input_ordering not in ("NCHW", "NHWC"): raise ValueError("Unrecognized input_ordering, should be 'NCHW' or 'NHWC'!") self.h_axis = input_ordering.index("H") self.w_axis = input_ordering.index("W") def pseudo_1d_pool(self, inputs: tf.Tensor, h_pooling: bool): # Figure out which axis we're pooling on if h_pooling: axis = self.h_axis output_dim = self.output_dims[0] else: axis = self.w_axis output_dim = self.output_dims[1] input_dim = inputs.shape[axis] # Figure out the potential pooling windows # This is the key idea - the torch op always uses only two # consecutive pooling window sizes, like 3 and 4. Therefore, # if we pool with both possible sizes, we simply need to gather # the 'correct' pool at each position to reimplement the torch op. small_window = math.ceil(input_dim / output_dim) big_window = small_window + 1 if h_pooling: output_dim = self.output_dims[0] small_window_shape = (small_window, 1) big_window_shape = (big_window, 1) else: output_dim = self.output_dims[1] small_window_shape = (1, small_window) big_window_shape = (1, big_window) # For resizes to 1, or integer resizes, we can take quick shortcuts if output_dim == input_dim: return inputs elif output_dim == 1: return tf.reduce_mean(inputs, axis=axis, keepdims=True) elif input_dim % output_dim == 0: return tf.nn.avg_pool2d( inputs, ksize=small_window_shape, strides=small_window_shape, padding="VALID", data_format=self.input_ordering, ) # When upscaling by an integer factor we can also take a quick shortcut elif output_dim > input_dim and output_dim % input_dim == 0: return tf.repeat(inputs, repeats=output_dim // input_dim, axis=axis) # For non-integer resizes, we pool with both possible window sizes and concatenate them if output_dim < input_dim: small_pool = tf.nn.avg_pool2d( inputs, ksize=small_window_shape, strides=1, padding="VALID", data_format=self.input_ordering ) big_pool = tf.nn.avg_pool2d( inputs, ksize=big_window_shape, strides=1, padding="VALID", data_format=self.input_ordering ) both_pool = tf.concat([small_pool, big_pool], axis=axis) else: # When we're actually upscaling instead, then we build the pools a bit differently small_pool = inputs big_pool = tf.nn.avg_pool2d( inputs, ksize=big_window_shape, strides=1, padding="VALID", data_format=self.input_ordering ) both_pool = tf.concat([small_pool, big_pool], axis=axis) # We compute vectors of the start and end positions for each pooling window # Each (start, end) pair here corresponds to a single output position window_starts = tf.math.floor((tf.range(output_dim, dtype=tf.float32) * input_dim) / output_dim) window_starts = tf.cast(window_starts, tf.int64) window_ends = tf.math.ceil((tf.range(1, output_dim + 1, dtype=tf.float32) * input_dim) / output_dim) window_ends = tf.cast(window_ends, tf.int64) # pool_selector is a boolean array of shape (output_dim,) where 1 indicates that output position # has a big receptive field and 0 indicates that that output position has a small receptive field pool_selector = tf.cast(window_ends - window_starts - small_window, tf.bool) # Since we concatenated the small and big pools, we need to do a bit of # pointer arithmetic to get the indices of the big pools small_indices = window_starts big_indices = window_starts + small_pool.shape[axis] # Finally, we use the pool_selector to generate a list of indices, one per output position gather_indices = tf.where(pool_selector, big_indices, small_indices) # Gathering from those indices yields the final, correct pooling return tf.gather(both_pool, gather_indices, axis=axis) def call(self, inputs: tf.Tensor): if self.input_ordering == "NHWC": input_shape = inputs.shape[1:3] else: input_shape = inputs.shape[2:] # We break the task down into each possible case # Firstly, if we're resizing down to 1, it's just tf.reduce_mean if self.output_dims[0] == self.output_dims[1] == 1: if self.input_ordering == "NHWC": reduce_dims = [1, 2] else: reduce_dims = [2, 3] return tf.reduce_mean(inputs, axis=reduce_dims, keepdims=True) # Secondly, if we're resizing by an integer factor on both dimensions, we can take a quick shortcut elif input_shape[0] % self.output_dims[0] == 0 and input_shape[1] % self.output_dims[1] == 0: h_resize = int(input_shape[0] // self.output_dims[0]) w_resize = int(input_shape[1] // self.output_dims[1]) return tf.nn.avg_pool2d( inputs, ksize=(h_resize, w_resize), strides=(h_resize, w_resize), padding="VALID", data_format=self.input_ordering, ) else: # Finally, if we can't take the shortcut, we do a 1D pool on each axis. pseudo_1d_pool will take a shortcut # for dimensions where an integer resize is possible. It can also handle upscaling. h_pooled = self.pseudo_1d_pool(inputs, h_pooling=True) return self.pseudo_1d_pool(h_pooled, h_pooling=False) class TFData2VecVisionPyramidPoolingModule(keras.layers.Layer): """ Pyramid Pooling Module (PPM) used in PSPNet. Args: pool_scales (tuple[int]): Pooling scales used in Pooling Pyramid Module. channels (int): Channels after modules, before conv_seg. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, pool_scales: Tuple[int, ...], in_channels: int, out_channels: int, **kwargs) -> None: super().__init__(**kwargs) self.pool_scales = pool_scales self.in_channels = in_channels self.out_channels = out_channels self.layer_list = [] for idx, pool_scale in enumerate(pool_scales): pool_scale = pool_scale if isinstance(pool_scale, collections.abc.Iterable) else (pool_scale, pool_scale) self.layer_list.append( [ TFAdaptiveAvgPool2D(output_dims=pool_scale), TFData2VecVisionConvModule( in_channels=in_channels, out_channels=self.out_channels, kernel_size=1, name=f"{idx}.1" ), ] ) def call(self, x: tf.Tensor) -> List[tf.Tensor]: ppm_outs = [] inputs = x for ppm in self.layer_list: for layer_module in ppm: ppm_out = layer_module(x) x = ppm_out upsampled_ppm_out = tf.image.resize(ppm_out, size=shape_list(inputs)[1:-1], method="bilinear") ppm_outs.append(upsampled_ppm_out) return ppm_outs def build(self, input_shape=None): for layer in self.layer_list: for layer_module in layer: with tf.name_scope(layer_module.name): layer_module.build(None) class TFData2VecVisionUperHead(keras.layers.Layer): """ Unified Perceptual Parsing for Scene Understanding. This head is the implementation of [UPerNet](https://arxiv.org/abs/1807.10221). Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__(self, config: Data2VecVisionConfig, **kwargs) -> None: super().__init__(**kwargs) self.pool_scales = config.pool_scales # e.g. (1, 2, 3, 6) self.in_channels = [config.hidden_size] * 4 # e.g. [768, 768, 768, 768] self.channels = config.hidden_size self.classifier = keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") # PSP Module self.psp_modules = TFData2VecVisionPyramidPoolingModule( self.pool_scales, self.in_channels[-1], self.channels, name="psp_modules" ) self.bottleneck = TFData2VecVisionConvModule( self.in_channels[-1] + len(self.pool_scales) * self.channels, self.channels, kernel_size=3, padding="same", name="bottleneck", ) # FPN Module self.lateral_convs = [] self.fpn_convs = [] for idx, in_channels in enumerate(self.in_channels[:-1]): # skip the top layer l_conv = TFData2VecVisionConvModule( in_channels, out_channels=self.channels, kernel_size=1, name=f"lateral_convs.{idx}" ) fpn_conv = TFData2VecVisionConvModule( in_channels=self.channels, out_channels=self.channels, kernel_size=3, padding="same", name=f"fpn_convs.{idx}", ) self.lateral_convs.append(l_conv) self.fpn_convs.append(fpn_conv) self.fpn_bottleneck = TFData2VecVisionConvModule( in_channels=len(self.in_channels) * self.channels, out_channels=self.channels, kernel_size=3, padding="same", name="fpn_bottleneck", ) def psp_forward(self, inputs): x = inputs[-1] psp_outs = [x] psp_outs.extend(self.psp_modules(x)) psp_outs = tf.concat(psp_outs, axis=-1) output = self.bottleneck(psp_outs) return output def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: # build laterals laterals = [lateral_conv(encoder_hidden_states[i]) for i, lateral_conv in enumerate(self.lateral_convs)] laterals.append(self.psp_forward(encoder_hidden_states)) # build top-down path used_backbone_levels = len(laterals) for i in range(used_backbone_levels - 1, 0, -1): prev_shape = shape_list(laterals[i - 1])[1:-1] laterals[i - 1] = laterals[i - 1] + tf.image.resize(laterals[i], size=prev_shape, method="bilinear") # build outputs fpn_outs = [self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels - 1)] # append psp feature fpn_outs.append(laterals[-1]) for i in range(used_backbone_levels - 1, 0, -1): fpn_outs[i] = tf.image.resize(fpn_outs[i], size=shape_list(fpn_outs[0])[1:-1], method="bilinear") fpn_outs = tf.concat(fpn_outs, axis=-1) output = self.fpn_bottleneck(fpn_outs) output = self.classifier(output) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, None, self.channels]) if getattr(self, "psp_modules", None) is not None: with tf.name_scope(self.psp_modules.name): self.psp_modules.build(None) if getattr(self, "bottleneck", None) is not None: with tf.name_scope(self.bottleneck.name): self.bottleneck.build(None) if getattr(self, "fpn_bottleneck", None) is not None: with tf.name_scope(self.fpn_bottleneck.name): self.fpn_bottleneck.build(None) for layer in self.lateral_convs: with tf.name_scope(layer.name): layer.build(None) for layer in self.fpn_convs: with tf.name_scope(layer.name): layer.build(None) class TFData2VecVisionFCNHead(keras.layers.Layer): """ Fully Convolution Networks for Semantic Segmentation. This head is implemented from [FCNNet](https://arxiv.org/abs/1411.4038). Args: config (Data2VecVisionConfig): Configuration. kernel_size (int): The kernel size for convs in the head. Default: 3. dilation (int): The dilation rate for convs in the head. Default: 1. Based on OpenMMLab's implementation, found in https://github.com/open-mmlab/mmsegmentation. """ def __init__( self, config: Data2VecVisionConfig, in_index: int = 2, kernel_size: int = 3, dilation: Union[int, Tuple[int, int]] = 1, **kwargs, ) -> None: super().__init__(**kwargs) self.in_channels = config.hidden_size self.channels = config.auxiliary_channels self.num_convs = config.auxiliary_num_convs self.concat_input = config.auxiliary_concat_input self.in_index = in_index convs = [] convs.append( TFData2VecVisionConvModule( in_channels=self.in_channels, out_channels=self.channels, kernel_size=kernel_size, padding="same", dilation=dilation, name="convs.0", ) ) for i in range(self.num_convs - 1): convs.append( TFData2VecVisionConvModule( in_channels=self.channels, out_channels=self.channels, kernel_size=kernel_size, padding="same", dilation=dilation, name=f"conv_module_{i+2}", ) ) if self.num_convs == 0: self.convs = [tf.identity] else: self.convs = convs if self.concat_input: self.conv_cat = TFData2VecVisionConvModule( self.in_channels + self.channels, out_channels=self.channels, kernel_size=kernel_size, padding="same", name="conv_cat", ) self.classifier = keras.layers.Conv2D(config.num_labels, kernel_size=1, name="classifier") def call(self, encoder_hidden_states: tf.Tensor) -> tf.Tensor: # just take the relevant feature maps hidden_states = encoder_hidden_states[self.in_index] output = hidden_states for layer_module in self.convs: output = layer_module(output) if self.concat_input: output = self.conv_cat(tf.concat([hidden_states, output], axis=-1)) output = self.classifier(output) return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, None, self.channels]) if getattr(self, "conv_cat", None) is not None: with tf.name_scope(self.conv_cat.name): self.conv_cat.build(None) @add_start_docstrings( """ Data2VecVision Model transformer with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, DATA2VEC_VISION_START_DOCSTRING, ) class TFData2VecVisionForSemanticSegmentation(TFData2VecVisionPreTrainedModel): def __init__(self, config: Data2VecVisionConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.data2vec_vision = TFData2VecVisionMainLayer(config, add_pooling_layer=False, name="data2vec_vision") # FPNs self.fpn1 = [ keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.0"), keras.layers.BatchNormalization(name="fpn1.1", momentum=0.9, epsilon=1e-5), keras.layers.Activation("gelu"), keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn1.3"), ] self.fpn2 = [keras.layers.Conv2DTranspose(config.hidden_size, kernel_size=2, strides=2, name="fpn2.0")] self.fpn3 = tf.identity self.fpn4 = keras.layers.MaxPool2D(pool_size=2, strides=2) # Semantic segmentation head(s) self.decode_head = TFData2VecVisionUperHead(config, name="decode_head") self.auxiliary_head = ( TFData2VecVisionFCNHead(config, name="auxiliary_head") if config.use_auxiliary_head else None ) def compute_loss(self, logits, auxiliary_logits, labels): # upsample logits to the images' original size if len(shape_list(labels)) > 3: label_interp_shape = shape_list(labels)[1:-1] else: label_interp_shape = shape_list(labels)[-2:] upsampled_logits = tf.image.resize(logits, size=label_interp_shape, method="bilinear") if auxiliary_logits is not None: upsampled_auxiliary_logits = tf.image.resize(auxiliary_logits, size=label_interp_shape, method="bilinear") # compute weighted loss loss_fct = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none") # Copied from https://www.tensorflow.org/text/tutorials/transformer#loss_and_metrics. # Utility to mask the index to ignore during computing the loss. def masked_loss(real, pred): mask = tf.math.logical_not(tf.math.equal(real, self.config.semantic_loss_ignore_index)) loss_ = loss_fct(real, pred) mask = tf.cast(mask, dtype=loss_.dtype) loss_ *= mask reduced_masked_loss = tf.reduce_sum(loss_) / tf.reduce_sum(mask) return tf.reshape(reduced_masked_loss, (1,)) main_loss = masked_loss(labels, upsampled_logits) auxiliary_loss = masked_loss(labels, upsampled_auxiliary_logits) loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss return loss @unpack_inputs @add_start_docstrings_to_model_forward(DATA2VEC_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFSemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, TFSemanticSegmenterOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFData2VecVisionForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/data2vec-vision-base") >>> model = TFData2VecVisionForSemanticSegmentation.from_pretrained("facebook/data2vec-vision-base") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.data2vec_vision( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features, and reshape # note that we do +1 as the encoder_hidden_states also includes the initial embeddings features = [feature for idx, feature in enumerate(encoder_hidden_states) if idx + 1 in self.config.out_indices] patch_resolution = self.config.image_size // self.config.patch_size def reshape_features(x): # We do it this way so TF can always infer the non-batch dims at compile time x = tf.reshape(x, (-1, patch_resolution, patch_resolution, self.config.hidden_size)) return x features = [reshape_features(x[:, 1:, :]) for x in features] # apply FPNs ops = [self.fpn1, self.fpn2, self.fpn3, self.fpn4] for module in ops[0]: features[0] = module(features[0]) features[1] = ops[1][0](features[1]) for i in range(len(features[2:])): features[i + 2] = ops[i + 2](features[i + 2]) logits = self.decode_head(features) # Tranpose the logits to maintain consistency in the output formats. transposed_logits = tf.transpose(logits, perm=[0, 3, 1, 2]) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(features) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: loss = self.compute_loss(logits, auxiliary_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSemanticSegmenterOutput( loss=loss, logits=transposed_logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "data2vec_vision", None) is not None: with tf.name_scope(self.data2vec_vision.name): self.data2vec_vision.build(None) if getattr(self, "decode_head", None) is not None: with tf.name_scope(self.decode_head.name): self.decode_head.build(None) if getattr(self, "auxiliary_head", None) is not None: with tf.name_scope(self.auxiliary_head.name): self.auxiliary_head.build(None) if getattr(self, "fpn1", None) is not None: with tf.name_scope(self.fpn1[0].name): self.fpn1[0].build([None, None, None, self.config.hidden_size]) with tf.name_scope(self.fpn1[1].name): self.fpn1[1].build((None, None, None, self.config.hidden_size)) with tf.name_scope(self.fpn1[3].name): self.fpn1[3].build([None, None, None, self.config.hidden_size]) if getattr(self, "fpn2", None) is not None: with tf.name_scope(self.fpn2[0].name): self.fpn2[0].build([None, None, None, self.config.hidden_size])
transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py/0
{ "file_path": "transformers/src/transformers/models/data2vec/modeling_tf_data2vec_vision.py", "repo_id": "transformers", "token_count": 32240 }
533
# coding=utf-8 # Copyright 2022 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow DeiT model.""" from __future__ import annotations import collections.abc import math from dataclasses import dataclass from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFBaseModelOutputWithPooling, TFImageClassifierOutput, TFMaskedImageModelingOutput, ) from ...modeling_tf_utils import ( TFPreTrainedModel, TFSequenceClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_deit import DeiTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "DeiTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224" _EXPECTED_OUTPUT_SHAPE = [1, 198, 768] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" @dataclass class TFDeiTForImageClassificationWithTeacherOutput(ModelOutput): """ Output type of [`DeiTForImageClassificationWithTeacher`]. Args: logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores as the average of the cls_logits and distillation logits. cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the class token). distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`): Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the distillation token). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None cls_logits: tf.Tensor = None distillation_logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None class TFDeiTEmbeddings(keras.layers.Layer): """ Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: DeiTConfig, use_mask_token: bool = False, **kwargs) -> None: super().__init__(**kwargs) self.config = config self.use_mask_token = use_mask_token self.patch_embeddings = TFDeiTPatchEmbeddings(config=config, name="patch_embeddings") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") def build(self, input_shape=None): self.cls_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=keras.initializers.zeros(), trainable=True, name="cls_token", ) self.distillation_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=keras.initializers.zeros(), trainable=True, name="distillation_token", ) self.mask_token = None if self.use_mask_token: self.mask_token = self.add_weight( shape=(1, 1, self.config.hidden_size), initializer=keras.initializers.zeros(), trainable=True, name="mask_token", ) num_patches = self.patch_embeddings.num_patches self.position_embeddings = self.add_weight( shape=(1, num_patches + 2, self.config.hidden_size), initializer=keras.initializers.zeros(), trainable=True, name="position_embeddings", ) if self.built: return self.built = True if getattr(self, "patch_embeddings", None) is not None: with tf.name_scope(self.patch_embeddings.name): self.patch_embeddings.build(None) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) def call( self, pixel_values: tf.Tensor, bool_masked_pos: tf.Tensor | None = None, training: bool = False ) -> tf.Tensor: embeddings = self.patch_embeddings(pixel_values) batch_size, seq_length, _ = shape_list(embeddings) if bool_masked_pos is not None: mask_tokens = tf.tile(self.mask_token, [batch_size, seq_length, 1]) # replace the masked visual tokens by mask_tokens mask = tf.expand_dims(bool_masked_pos, axis=-1) mask = tf.cast(mask, dtype=mask_tokens.dtype) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0) distillation_tokens = tf.repeat(self.distillation_token, repeats=batch_size, axis=0) embeddings = tf.concat((cls_tokens, distillation_tokens, embeddings), axis=1) embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings, training=training) return embeddings class TFDeiTPatchEmbeddings(keras.layers.Layer): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config: DeiTConfig, **kwargs) -> None: super().__init__(**kwargs) image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = keras.layers.Conv2D( hidden_size, kernel_size=patch_size, strides=patch_size, name="projection" ) def call(self, pixel_values: tf.Tensor) -> tf.Tensor: batch_size, height, width, num_channels = shape_list(pixel_values) if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if tf.executing_eagerly() and (height != self.image_size[0] or width != self.image_size[1]): raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values) batch_size, height, width, num_channels = shape_list(x) x = tf.reshape(x, (batch_size, height * width, num_channels)) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "projection", None) is not None: with tf.name_scope(self.projection.name): self.projection.build([None, None, None, self.num_channels]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfAttention with ViT->DeiT class TFDeiTSelfAttention(keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number " f"of attention heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.sqrt_att_head_size = math.sqrt(self.attention_head_size) self.query = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) self.config = config def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(inputs=hidden_states) mixed_key_layer = self.key(inputs=hidden_states) mixed_value_layer = self.value(inputs=hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) value_layer = self.transpose_for_scores(mixed_value_layer, batch_size) # Take the dot product between "query" and "key" to get the raw attention scores. # (batch size, num_heads, seq_len_q, seq_len_k) attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) attention_scores = tf.divide(attention_scores, dk) # Normalize the attention scores to probabilities. attention_probs = stable_softmax(logits=attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(inputs=attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = tf.multiply(attention_probs, head_mask) attention_output = tf.matmul(attention_probs, value_layer) attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, all_head_size) attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfOutput with ViT->DeiT class TFDeiTSelfOutput(keras.layers.Layer): """ The residual connection is defined in TFDeiTLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTAttention with ViT->DeiT class TFDeiTAttention(keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.self_attention = TFDeiTSelfAttention(config, name="attention") self.dense_output = TFDeiTSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call( self, input_tensor: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self_attention( hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training ) attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=input_tensor, training=training ) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) # Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->DeiT class TFDeiTIntermediate(keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTOutput with ViT->DeiT class TFDeiTOutput(keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(inputs=hidden_states, training=training) hidden_states = hidden_states + input_tensor return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) class TFDeiTLayer(keras.layers.Layer): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.attention = TFDeiTAttention(config, name="attention") self.intermediate = TFDeiTIntermediate(config, name="intermediate") self.deit_output = TFDeiTOutput(config, name="output") self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before") self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after") self.config = config def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, training: bool = False, ) -> Tuple[tf.Tensor]: attention_outputs = self.attention( # in DeiT, layernorm is applied before self-attention input_tensor=self.layernorm_before(inputs=hidden_states, training=training), head_mask=head_mask, output_attentions=output_attentions, training=training, ) attention_output = attention_outputs[0] # first residual connection hidden_states = attention_output + hidden_states # in DeiT, layernorm is also applied after self-attention layer_output = self.layernorm_after(inputs=hidden_states, training=training) intermediate_output = self.intermediate(hidden_states=layer_output, training=training) # second residual connection is done here layer_output = self.deit_output( hidden_states=intermediate_output, input_tensor=hidden_states, training=training ) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "deit_output", None) is not None: with tf.name_scope(self.deit_output.name): self.deit_output.build(None) if getattr(self, "layernorm_before", None) is not None: with tf.name_scope(self.layernorm_before.name): self.layernorm_before.build([None, None, self.config.hidden_size]) if getattr(self, "layernorm_after", None) is not None: with tf.name_scope(self.layernorm_after.name): self.layernorm_after.build([None, None, self.config.hidden_size]) # Copied from transformers.models.vit.modeling_tf_vit.TFViTEncoder with ViT->DeiT class TFDeiTEncoder(keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.layer = [TFDeiTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states: tf.Tensor, head_mask: tf.Tensor, output_attentions: bool, output_hidden_states: bool, return_dict: bool, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=hidden_states, head_mask=head_mask[i], output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFDeiTMainLayer(keras.layers.Layer): config_class = DeiTConfig def __init__( self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs ) -> None: super().__init__(**kwargs) self.config = config self.embeddings = TFDeiTEmbeddings(config, use_mask_token=use_mask_token, name="embeddings") self.encoder = TFDeiTEncoder(config, name="encoder") self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm") self.pooler = TFDeiTPooler(config, name="pooler") if add_pooling_layer else None def get_input_embeddings(self) -> TFDeiTPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def get_head_mask(self, head_mask): if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers return head_mask @unpack_inputs def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # TF 2.0 image layers can't use NCHW format when running on CPU. # (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels) pixel_values = tf.transpose(pixel_values, (0, 2, 3, 1)) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask) embedding_output = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos, training=training) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output, training=training) pooled_output = self.pooler(sequence_output, training=training) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return TFBaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "layernorm", None) is not None: with tf.name_scope(self.layernorm.name): self.layernorm.build([None, None, self.config.hidden_size]) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) # Copied from transformers.models.vit.modeling_tf_vit.TFViTPreTrainedModel with ViT->DeiT all-casing class TFDeiTPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DeiTConfig base_model_prefix = "deit" main_input_name = "pixel_values" DEIT_START_DOCSTRING = r""" This model is a TensorFlow [keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior. Parameters: config ([`DeiTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DEIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DeiTImageProcessor.__call__`] for details. head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.", DEIT_START_DOCSTRING, ) class TFDeiTModel(TFDeiTPreTrainedModel): def __init__( self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs ) -> None: super().__init__(config, **kwargs) self.deit = TFDeiTMainLayer( config, add_pooling_layer=add_pooling_layer, use_mask_token=use_mask_token, name="deit" ) @unpack_inputs @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple, TFBaseModelOutputWithPooling]: outputs = self.deit( pixel_values=pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deit", None) is not None: with tf.name_scope(self.deit.name): self.deit.build(None) # Copied from transformers.models.vit.modeling_tf_vit.TFViTPooler with ViT->DeiT class TFDeiTPooler(keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), activation="tanh", name="dense", ) self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(inputs=first_token_tensor) return pooled_output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFDeitPixelShuffle(keras.layers.Layer): """TF layer implementation of torch.nn.PixelShuffle""" def __init__(self, upscale_factor: int, **kwargs) -> None: super().__init__(**kwargs) if not isinstance(upscale_factor, int) or upscale_factor < 2: raise ValueError(f"upscale_factor must be an integer value >= 2 got {upscale_factor}") self.upscale_factor = upscale_factor def call(self, x: tf.Tensor) -> tf.Tensor: hidden_states = x batch_size, _, _, num_input_channels = shape_list(hidden_states) block_size_squared = self.upscale_factor**2 output_depth = int(num_input_channels / block_size_squared) # When the number of output channels >= 2, PyTorch's PixelShuffle and # TF's depth_to_space differ in their output as the order of channels selected for combining # is a permutation of the other c.f. # https://stackoverflow.com/questions/68272502/tf-depth-to-space-not-same-as-torchs-pixelshuffle-when-output-channels-1 permutation = tf.constant( [[i + j * block_size_squared for i in range(block_size_squared) for j in range(output_depth)]] ) hidden_states = tf.gather(params=hidden_states, indices=tf.tile(permutation, [batch_size, 1]), batch_dims=-1) hidden_states = tf.nn.depth_to_space(hidden_states, block_size=self.upscale_factor, data_format="NHWC") return hidden_states class TFDeitDecoder(keras.layers.Layer): def __init__(self, config: DeiTConfig, **kwargs) -> None: super().__init__(**kwargs) self.conv2d = keras.layers.Conv2D( filters=config.encoder_stride**2 * config.num_channels, kernel_size=1, name="0" ) self.pixel_shuffle = TFDeitPixelShuffle(config.encoder_stride, name="1") self.config = config def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = inputs hidden_states = self.conv2d(hidden_states) hidden_states = self.pixel_shuffle(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "conv2d", None) is not None: with tf.name_scope(self.conv2d.name): self.conv2d.build([None, None, None, self.config.hidden_size]) if getattr(self, "pixel_shuffle", None) is not None: with tf.name_scope(self.pixel_shuffle.name): self.pixel_shuffle.build(None) @add_start_docstrings( "DeiT Model with a decoder on top for masked image modeling, as proposed in" " [SimMIM](https://arxiv.org/abs/2111.09886).", DEIT_START_DOCSTRING, ) class TFDeiTForMaskedImageModeling(TFDeiTPreTrainedModel): def __init__(self, config: DeiTConfig) -> None: super().__init__(config) self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, use_mask_token=True, name="deit") self.decoder = TFDeitDecoder(config, name="decoder") @unpack_inputs @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, bool_masked_pos: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFMaskedImageModelingOutput]: r""" bool_masked_pos (`tf.Tensor` of type bool and shape `(batch_size, num_patches)`): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFDeiTForMaskedImageModeling >>> import tensorflow as tf >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> model = TFDeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> num_patches = (model.config.image_size // model.config.patch_size) ** 2 >>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values >>> # create random boolean mask of shape (batch_size, num_patches) >>> bool_masked_pos = tf.cast(tf.random.uniform((1, num_patches), minval=0, maxval=2, dtype=tf.int32), tf.bool) >>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos) >>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction >>> list(reconstructed_pixel_values.shape) [1, 3, 224, 224] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, bool_masked_pos=bool_masked_pos, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] # Reshape to (batch_size, num_channels, height, width) sequence_output = sequence_output[:, 1:-1] batch_size, sequence_length, num_channels = shape_list(sequence_output) height = width = int(sequence_length**0.5) sequence_output = tf.reshape(sequence_output, (batch_size, height, width, num_channels)) # Reconstruct pixel values reconstructed_pixel_values = self.decoder(sequence_output, training=training) # TF 2.0 image layers can't use NCHW format when running on CPU, so intermediate layers use NHWC, # including the decoder. We transpose to compute the loss against the pixel values # (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width) reconstructed_pixel_values = tf.transpose(reconstructed_pixel_values, (0, 3, 1, 2)) masked_im_loss = None if bool_masked_pos is not None: size = self.config.image_size // self.config.patch_size bool_masked_pos = tf.reshape(bool_masked_pos, (-1, size, size)) mask = tf.repeat(bool_masked_pos, self.config.patch_size, 1) mask = tf.repeat(mask, self.config.patch_size, 2) mask = tf.expand_dims(mask, 1) mask = tf.cast(mask, tf.float32) reconstruction_loss = keras.losses.mean_absolute_error( # Swap axes as metric calculation reduces over the final dimension tf.transpose(pixel_values, (1, 2, 3, 0)), tf.transpose(reconstructed_pixel_values, (1, 2, 3, 0)), ) reconstruction_loss = tf.expand_dims(reconstruction_loss, 0) total_loss = tf.reduce_sum(reconstruction_loss * mask) num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels masked_im_loss = total_loss / num_masked_pixels masked_im_loss = tf.reshape(masked_im_loss, (1,)) if not return_dict: output = (reconstructed_pixel_values,) + outputs[1:] return ((masked_im_loss,) + output) if masked_im_loss is not None else output return TFMaskedImageModelingOutput( loss=masked_im_loss, reconstruction=reconstructed_pixel_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deit", None) is not None: with tf.name_scope(self.deit.name): self.deit.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) @add_start_docstrings( """ DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of the [CLS] token) e.g. for ImageNet. """, DEIT_START_DOCSTRING, ) class TFDeiTForImageClassification(TFDeiTPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: DeiTConfig): super().__init__(config) self.num_labels = config.num_labels self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit") # Classifier head self.classifier = ( keras.layers.Dense(config.num_labels, name="classifier") if config.num_labels > 0 else keras.layers.Activation("linear", name="classifier") ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, labels: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tf.Tensor, TFImageClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, TFDeiTForImageClassification >>> import tensorflow as tf >>> from PIL import Image >>> import requests >>> keras.utils.set_random_seed(3) # doctest: +IGNORE_RESULT >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> # note: we are loading a TFDeiTForImageClassificationWithTeacher from the hub here, >>> # so the head will be randomly initialized, hence the predictions will be random >>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> model = TFDeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224") >>> inputs = image_processor(images=image, return_tensors="tf") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0] >>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)]) Predicted class: little blue heron, Egretta caerulea ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.classifier(sequence_output[:, 0, :]) # we don't use the distillation token loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deit", None) is not None: with tf.name_scope(self.deit.name): self.deit.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet. .. warning:: This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet supported. """, DEIT_START_DOCSTRING, ) class TFDeiTForImageClassificationWithTeacher(TFDeiTPreTrainedModel): def __init__(self, config: DeiTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit") # Classifier heads self.cls_classifier = ( keras.layers.Dense(config.num_labels, name="cls_classifier") if config.num_labels > 0 else keras.layers.Activation("linear", name="cls_classifier") ) self.distillation_classifier = ( keras.layers.Dense(config.num_labels, name="distillation_classifier") if config.num_labels > 0 else keras.layers.Activation("linear", name="distillation_classifier") ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=TFDeiTForImageClassificationWithTeacherOutput, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def call( self, pixel_values: tf.Tensor | None = None, head_mask: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[tuple, TFDeiTForImageClassificationWithTeacherOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] cls_logits = self.cls_classifier(sequence_output[:, 0, :]) distillation_logits = self.distillation_classifier(sequence_output[:, 1, :]) # during inference, return the average of both classifier predictions logits = (cls_logits + distillation_logits) / 2 if not return_dict: output = (logits, cls_logits, distillation_logits) + outputs[1:] return output return TFDeiTForImageClassificationWithTeacherOutput( logits=logits, cls_logits=cls_logits, distillation_logits=distillation_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deit", None) is not None: with tf.name_scope(self.deit.name): self.deit.build(None) if getattr(self, "cls_classifier", None) is not None: with tf.name_scope(self.cls_classifier.name): self.cls_classifier.build([None, None, self.config.hidden_size]) if getattr(self, "distillation_classifier", None) is not None: with tf.name_scope(self.distillation_classifier.name): self.distillation_classifier.build([None, None, self.config.hidden_size])
transformers/src/transformers/models/deit/modeling_tf_deit.py/0
{ "file_path": "transformers/src/transformers/models/deit/modeling_tf_deit.py", "repo_id": "transformers", "token_count": 21168 }
534
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RetriBERT model configuration""" from ....configuration_utils import PretrainedConfig from ....utils import logging logger = logging.get_logger(__name__) class RetriBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RetriBertModel`]. It is used to instantiate a RetriBertModel model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RetriBERT [yjernite/retribert-base-uncased](https://huggingface.co/yjernite/retribert-base-uncased) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30522): Vocabulary size of the RetriBERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RetriBertModel`] hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the *token_type_ids* passed into [`BertModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. share_encoders (`bool`, *optional*, defaults to `True`): Whether or not to use the same Bert-type encoder for the queries and document projection_dim (`int`, *optional*, defaults to 128): Final dimension of the query and document representation after projection """ model_type = "retribert" def __init__( self, vocab_size=30522, hidden_size=768, num_hidden_layers=8, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, share_encoders=True, projection_dim=128, pad_token_id=0, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.share_encoders = share_encoders self.projection_dim = projection_dim
transformers/src/transformers/models/deprecated/retribert/configuration_retribert.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/retribert/configuration_retribert.py", "repo_id": "transformers", "token_count": 1915 }
535
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utilities for PyTorch Transformer XL model. Directly adapted from https://github.com/kimiyoung/transformer-xl. """ import torch from torch import nn # CUDA_MAJOR = int(torch.version.cuda.split('.')[0]) # CUDA_MINOR = int(torch.version.cuda.split('.')[1]) class ProjectedAdaptiveLogSoftmax(nn.Module): def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1, keep_order=False): super().__init__() self.n_token = n_token self.d_embed = d_embed self.d_proj = d_proj self.cutoffs = cutoffs + [n_token] self.cutoff_ends = [0] + self.cutoffs self.div_val = div_val self.shortlist_size = self.cutoffs[0] self.n_clusters = len(self.cutoffs) - 1 self.head_size = self.shortlist_size + self.n_clusters if self.n_clusters > 0: self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed)) self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters)) self.out_layers = nn.ModuleList() self.out_projs = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_embed))) else: self.out_projs.append(None) self.out_layers.append(nn.Linear(d_embed, n_token)) else: for i in range(len(self.cutoffs)): l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] d_emb_i = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(d_proj, d_emb_i))) self.out_layers.append(nn.Linear(d_emb_i, r_idx - l_idx)) self.keep_order = keep_order def _compute_logit(self, hidden, weight, bias, proj): if proj is None: logit = nn.functional.linear(hidden, weight, bias=bias) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: proj_hid = nn.functional.linear(hidden, proj.t().contiguous()) logit = nn.functional.linear(proj_hid, weight, bias=bias) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def forward(self, hidden, labels=None, keep_order=False): """ Params: hidden :: [len*bsz x d_proj] labels :: [len*bsz] Return: if labels is None: out :: [len*bsz x n_tokens] log probabilities of tokens over the vocabulary else: out :: [(len-1)*bsz] Negative log likelihood. We could replace this implementation by the native PyTorch one if theirs had an option to set bias on all clusters in the native one. here: https://github.com/pytorch/pytorch/blob/dbe6a7a9ff1a364a8706bf5df58a1ca96d2fd9da/torch/nn/modules/adaptive.py#L138 """ if labels is not None: # Shift so that tokens < n predict n hidden = hidden[..., :-1, :].contiguous() labels = labels[..., 1:].contiguous() hidden = hidden.view(-1, hidden.size(-1)) labels = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("Input and labels should have the same size in the batch dimension.") else: hidden = hidden.view(-1, hidden.size(-1)) if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) if labels is not None: mask = labels != -100 out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device) out[mask] = ( -nn.functional.log_softmax(logit, dim=-1)[mask].gather(1, labels[mask].unsqueeze(1)).squeeze(1) ) else: out = nn.functional.log_softmax(logit, dim=-1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers[0].weight[l_idx:r_idx] bias_i = self.out_layers[0].bias[l_idx:r_idx] else: weight_i = self.out_layers[i].weight bias_i = self.out_layers[i].bias if i == 0: weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) head_logprob = nn.functional.log_softmax(head_logit, dim=1) if labels is None: out = hidden.new_empty((head_logit.size(0), self.n_token)) else: out = torch.zeros_like(labels, dtype=hidden.dtype, device=hidden.device) offset = 0 cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1] if labels is not None: mask_i = (labels >= l_idx) & (labels < r_idx) indices_i = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue target_i = labels.index_select(0, indices_i) - l_idx head_logprob_i = head_logprob.index_select(0, indices_i) hidden_i = hidden.index_select(0, indices_i) else: hidden_i = hidden if i == 0: if labels is not None: logprob_i = head_logprob_i.gather(1, target_i[:, None]).squeeze(1) else: out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]] else: weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i) tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1) cluster_prob_idx = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: logprob_i = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1, target_i[:, None] ).squeeze(1) else: logprob_i = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i out[:, l_idx:r_idx] = logprob_i if labels is not None: if (hasattr(self, "keep_order") and self.keep_order) or keep_order: out.index_copy_(0, indices_i, -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def log_prob(self, hidden): r""" Computes log probabilities for all \\(n\_classes\\) From: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/adaptive.p Args: hidden (Tensor): a minibatch of example Returns: log-probabilities of for each class \\(c\\) in range \\(0 <= c <= n\_classes\\), where \\(n\_classes\\) is a parameter passed to `AdaptiveLogSoftmaxWithLoss` constructor. Shape: - Input: \\((N, in\_features)\\) - Output: \\((N, n\_classes)\\) """ if self.n_clusters == 0: logit = self._compute_logit(hidden, self.out_layers[0].weight, self.out_layers[0].bias, self.out_projs[0]) return nn.functional.log_softmax(logit, dim=-1) else: # construct weights and biases weights, biases = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1] weight_i = self.out_layers[0].weight[l_idx:r_idx] bias_i = self.out_layers[0].bias[l_idx:r_idx] else: weight_i = self.out_layers[i].weight bias_i = self.out_layers[i].bias if i == 0: weight_i = torch.cat([weight_i, self.cluster_weight], dim=0) bias_i = torch.cat([bias_i, self.cluster_bias], dim=0) weights.append(weight_i) biases.append(bias_i) head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0] head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj) out = hidden.new_empty((head_logit.size(0), self.n_token)) head_logprob = nn.functional.log_softmax(head_logit, dim=1) cutoff_values = [0] + self.cutoffs for i in range(len(cutoff_values) - 1): start_idx, stop_idx = cutoff_values[i], cutoff_values[i + 1] if i == 0: out[:, : self.cutoffs[0]] = head_logprob[:, : self.cutoffs[0]] else: weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i] tail_logit_i = self._compute_logit(hidden, weight_i, bias_i, proj_i) tail_logprob_i = nn.functional.log_softmax(tail_logit_i, dim=1) logprob_i = head_logprob[:, -i] + tail_logprob_i out[:, start_idx, stop_idx] = logprob_i return out
transformers/src/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/transfo_xl/modeling_transfo_xl_utilities.py", "repo_id": "transformers", "token_count": 5685 }
536
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = {"configuration_detr": ["DetrConfig", "DetrOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_detr"] = ["DetrFeatureExtractor"] _import_structure["image_processing_detr"] = ["DetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_detr"] = [ "DetrForObjectDetection", "DetrForSegmentation", "DetrModel", "DetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_detr import DetrConfig, DetrOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_detr import DetrFeatureExtractor from .image_processing_detr import DetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_detr import ( DetrForObjectDetection, DetrForSegmentation, DetrModel, DetrPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/detr/__init__.py/0
{ "file_path": "transformers/src/transformers/models/detr/__init__.py", "repo_id": "transformers", "token_count": 823 }
537
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_distilbert": [ "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_distilbert_fast"] = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_distilbert"] = [ "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_distilbert"] = [ "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_distilbert"] = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/distilbert/__init__.py/0
{ "file_path": "transformers/src/transformers/models/distilbert/__init__.py", "repo_id": "transformers", "token_count": 2032 }
538
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_dpr": ["DPRConfig"], "tokenization_dpr": [ "DPRContextEncoderTokenizer", "DPRQuestionEncoderTokenizer", "DPRReaderOutput", "DPRReaderTokenizer", ], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_dpr_fast"] = [ "DPRContextEncoderTokenizerFast", "DPRQuestionEncoderTokenizerFast", "DPRReaderTokenizerFast", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_dpr"] = [ "DPRContextEncoder", "DPRPretrainedContextEncoder", "DPRPreTrainedModel", "DPRPretrainedQuestionEncoder", "DPRPretrainedReader", "DPRQuestionEncoder", "DPRReader", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_dpr"] = [ "TFDPRContextEncoder", "TFDPRPretrainedContextEncoder", "TFDPRPretrainedQuestionEncoder", "TFDPRPretrainedReader", "TFDPRQuestionEncoder", "TFDPRReader", ] if TYPE_CHECKING: from .configuration_dpr import DPRConfig from .tokenization_dpr import ( DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderOutput, DPRReaderTokenizer, ) try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_dpr_fast import ( DPRContextEncoderTokenizerFast, DPRQuestionEncoderTokenizerFast, DPRReaderTokenizerFast, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpr import ( DPRContextEncoder, DPRPretrainedContextEncoder, DPRPreTrainedModel, DPRPretrainedQuestionEncoder, DPRPretrainedReader, DPRQuestionEncoder, DPRReader, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_dpr import ( TFDPRContextEncoder, TFDPRPretrainedContextEncoder, TFDPRPretrainedQuestionEncoder, TFDPRPretrainedReader, TFDPRQuestionEncoder, TFDPRReader, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/dpr/__init__.py/0
{ "file_path": "transformers/src/transformers/models/dpr/__init__.py", "repo_id": "transformers", "token_count": 1561 }
539
# coding=utf-8 # Copyright 2022 Intel Labs, OpenMMLab and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch DPT (Dense Prediction Transformers) model. This implementation is heavily inspired by OpenMMLab's implementation, found here: https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/dpt_head.py. """ import collections.abc import math from dataclasses import dataclass from typing import List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...file_utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput, SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ModelOutput, logging from ...utils.backbone_utils import load_backbone from .configuration_dpt import DPTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "DPTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "Intel/dpt-large" _EXPECTED_OUTPUT_SHAPE = [1, 577, 1024] @dataclass class BaseModelOutputWithIntermediateActivations(ModelOutput): """ Base class for model's outputs that also contains intermediate activations that can be used at later stages. Useful in the context of Vision models.: Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. intermediate_activations (`tuple(torch.FloatTensor)`, *optional*): Intermediate activations that can be used to compute hidden states of the model at various layers. """ last_hidden_states: torch.FloatTensor = None intermediate_activations: Optional[Tuple[torch.FloatTensor, ...]] = None @dataclass class BaseModelOutputWithPoolingAndIntermediateActivations(ModelOutput): """ Base class for model's outputs that also contains a pooling of the last hidden states as well as intermediate activations that can be used by the model at later stages. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. intermediate_activations (`tuple(torch.FloatTensor)`, *optional*): Intermediate activations that can be used to compute hidden states of the model at various layers. """ last_hidden_state: torch.FloatTensor = None pooler_output: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None intermediate_activations: Optional[Tuple[torch.FloatTensor, ...]] = None class DPTViTHybridEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config, feature_size=None): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.backbone = load_backbone(config) feature_dim = self.backbone.channels[-1] if len(self.backbone.channels) != 3: raise ValueError(f"Expected backbone to have 3 output features, got {len(self.backbone.channels)}") self.residual_feature_map_index = [0, 1] # Always take the output of the first and second backbone stage if feature_size is None: feat_map_shape = config.backbone_featmap_shape feature_size = feat_map_shape[-2:] feature_dim = feat_map_shape[1] else: feature_size = ( feature_size if isinstance(feature_size, collections.abc.Iterable) else (feature_size, feature_size) ) feature_dim = self.backbone.channels[-1] self.image_size = image_size self.patch_size = patch_size[0] self.num_channels = num_channels self.projection = nn.Conv2d(feature_dim, hidden_size, kernel_size=1) self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1): posemb_tok = posemb[:, :start_index] posemb_grid = posemb[0, start_index:] old_grid_size = int(math.sqrt(len(posemb_grid))) posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2) posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def forward( self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False, return_dict: bool = False ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) position_embeddings = self._resize_pos_embed( self.position_embeddings, height // self.patch_size, width // self.patch_size ) backbone_output = self.backbone(pixel_values) features = backbone_output.feature_maps[-1] # Retrieve also the intermediate activations to use them at later stages output_hidden_states = [backbone_output.feature_maps[index] for index in self.residual_feature_map_index] embeddings = self.projection(features).flatten(2).transpose(1, 2) cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token embeddings = embeddings + position_embeddings if not return_dict: return (embeddings, output_hidden_states) # Return hidden states and intermediate activations return BaseModelOutputWithIntermediateActivations( last_hidden_states=embeddings, intermediate_activations=output_hidden_states, ) class DPTViTEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. """ def __init__(self, config): super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = DPTViTPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1): posemb_tok = posemb[:, :start_index] posemb_grid = posemb[0, start_index:] old_grid_size = int(math.sqrt(len(posemb_grid))) posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2) posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear") posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1) posemb = torch.cat([posemb_tok, posemb_grid], dim=1) return posemb def forward(self, pixel_values, return_dict=False): batch_size, num_channels, height, width = pixel_values.shape # possibly interpolate position encodings to handle varying image sizes patch_size = self.config.patch_size position_embeddings = self._resize_pos_embed( self.position_embeddings, height // patch_size, width // patch_size ) embeddings = self.patch_embeddings(pixel_values) batch_size, seq_len, _ = embeddings.size() # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token embeddings = embeddings + position_embeddings embeddings = self.dropout(embeddings) if not return_dict: return (embeddings,) return BaseModelOutputWithIntermediateActivations(last_hidden_states=embeddings) class DPTViTPatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values): batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DPT class DPTViTSelfAttention(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DPT class DPTViTSelfOutput(nn.Module): """ The residual connection is defined in DPTLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: DPTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class DPTViTAttention(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.attention = DPTViTSelfAttention(config) self.output = DPTViTSelfOutput(config) self.pruned_heads = set() # Copied from transformers.models.vit.modeling_vit.ViTAttention.prune_heads def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) # Copied from transformers.models.vit.modeling_vit.ViTAttention.forward def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DPT class DPTViTIntermediate(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DPT class DPTViTOutput(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states # copied from transformers.models.vit.modeling_vit.ViTLayer with ViTConfig->DPTConfig, ViTAttention->DPTViTAttention, ViTIntermediate->DPTViTIntermediate, ViTOutput->DPTViTOutput class DPTViTLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: DPTConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = DPTViTAttention(config) self.intermediate = DPTViTIntermediate(config) self.output = DPTViTOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViT, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # copied from transformers.models.vit.modeling_vit.ViTEncoder with ViTConfig -> DPTConfig, ViTLayer->DPTViTLayer class DPTViTEncoder(nn.Module): def __init__(self, config: DPTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([DPTViTLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class DPTReassembleStage(nn.Module): """ This class reassembles the hidden states of the backbone into image-like feature representations at various resolutions. This happens in 3 stages: 1. Map the N + 1 tokens to a set of N tokens, by taking into account the readout ([CLS]) token according to `config.readout_type`. 2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`. 3. Resizing the spatial dimensions (height, width). Args: config (`[DPTConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList() if config.is_hybrid: self._init_reassemble_dpt_hybrid(config) else: self._init_reassemble_dpt(config) self.neck_ignore_stages = config.neck_ignore_stages def _init_reassemble_dpt_hybrid(self, config): r""" " For DPT-Hybrid the first 2 reassemble layers are set to `nn.Identity()`, please check the official implementation: https://github.com/isl-org/DPT/blob/f43ef9e08d70a752195028a51be5e1aff227b913/dpt/vit.py#L438 for more details. """ for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors): if i <= 1: self.layers.append(nn.Identity()) elif i > 1: self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor)) if config.readout_type != "project": raise ValueError(f"Readout type {config.readout_type} is not supported for DPT-Hybrid.") # When using DPT-Hybrid the readout type is set to "project". The sanity check is done on the config file self.readout_projects = nn.ModuleList() hidden_size = _get_backbone_hidden_size(config) for i in range(len(config.neck_hidden_sizes)): if i <= 1: self.readout_projects.append(nn.Sequential(nn.Identity())) elif i > 1: self.readout_projects.append( nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act]) ) def _init_reassemble_dpt(self, config): for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors): self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor)) if config.readout_type == "project": self.readout_projects = nn.ModuleList() hidden_size = _get_backbone_hidden_size(config) for _ in range(len(config.neck_hidden_sizes)): self.readout_projects.append( nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act]) ) def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`): List of hidden states from the backbone. """ out = [] for i, hidden_state in enumerate(hidden_states): if i not in self.neck_ignore_stages: # reshape to (batch_size, num_channels, height, width) cls_token, hidden_state = hidden_state[:, 0], hidden_state[:, 1:] batch_size, sequence_length, num_channels = hidden_state.shape if patch_height is not None and patch_width is not None: hidden_state = hidden_state.reshape(batch_size, patch_height, patch_width, num_channels) else: size = int(math.sqrt(sequence_length)) hidden_state = hidden_state.reshape(batch_size, size, size, num_channels) hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() feature_shape = hidden_state.shape if self.config.readout_type == "project": # reshape to (batch_size, height*width, num_channels) hidden_state = hidden_state.flatten(2).permute((0, 2, 1)) readout = cls_token.unsqueeze(1).expand_as(hidden_state) # concatenate the readout token to the hidden states and project hidden_state = self.readout_projects[i](torch.cat((hidden_state, readout), -1)) # reshape back to (batch_size, num_channels, height, width) hidden_state = hidden_state.permute(0, 2, 1).reshape(feature_shape) elif self.config.readout_type == "add": hidden_state = hidden_state.flatten(2) + cls_token.unsqueeze(-1) hidden_state = hidden_state.reshape(feature_shape) hidden_state = self.layers[i](hidden_state) out.append(hidden_state) return out def _get_backbone_hidden_size(config): if config.backbone_config is not None and config.is_hybrid is False: return config.backbone_config.hidden_size else: return config.hidden_size class DPTReassembleLayer(nn.Module): def __init__(self, config, channels, factor): super().__init__() # projection hidden_size = _get_backbone_hidden_size(config) self.projection = nn.Conv2d(in_channels=hidden_size, out_channels=channels, kernel_size=1) # up/down sampling depending on factor if factor > 1: self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0) elif factor == 1: self.resize = nn.Identity() elif factor < 1: # so should downsample self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=int(1 / factor), padding=1) def forward(self, hidden_state): hidden_state = self.projection(hidden_state) hidden_state = self.resize(hidden_state) return hidden_state class DPTFeatureFusionStage(nn.Module): def __init__(self, config): super().__init__() self.layers = nn.ModuleList() for _ in range(len(config.neck_hidden_sizes)): self.layers.append(DPTFeatureFusionLayer(config)) def forward(self, hidden_states): # reversing the hidden_states, we start from the last hidden_states = hidden_states[::-1] fused_hidden_states = [] # first layer only uses the last hidden_state fused_hidden_state = self.layers[0](hidden_states[0]) fused_hidden_states.append(fused_hidden_state) # looping from the last layer to the second for hidden_state, layer in zip(hidden_states[1:], self.layers[1:]): fused_hidden_state = layer(fused_hidden_state, hidden_state) fused_hidden_states.append(fused_hidden_state) return fused_hidden_states class DPTPreActResidualLayer(nn.Module): """ ResidualConvUnit, pre-activate residual unit. Args: config (`[DPTConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.use_batch_norm = config.use_batch_norm_in_fusion_residual use_bias_in_fusion_residual = ( config.use_bias_in_fusion_residual if config.use_bias_in_fusion_residual is not None else not self.use_batch_norm ) self.activation1 = nn.ReLU() self.convolution1 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=use_bias_in_fusion_residual, ) self.activation2 = nn.ReLU() self.convolution2 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=use_bias_in_fusion_residual, ) if self.use_batch_norm: self.batch_norm1 = nn.BatchNorm2d(config.fusion_hidden_size) self.batch_norm2 = nn.BatchNorm2d(config.fusion_hidden_size) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: residual = hidden_state hidden_state = self.activation1(hidden_state) hidden_state = self.convolution1(hidden_state) if self.use_batch_norm: hidden_state = self.batch_norm1(hidden_state) hidden_state = self.activation2(hidden_state) hidden_state = self.convolution2(hidden_state) if self.use_batch_norm: hidden_state = self.batch_norm2(hidden_state) return hidden_state + residual class DPTFeatureFusionLayer(nn.Module): """Feature fusion layer, merges feature maps from different stages. Args: config (`[DPTConfig]`): Model configuration class defining the model architecture. align_corners (`bool`, *optional*, defaults to `True`): The align_corner setting for bilinear upsample. """ def __init__(self, config, align_corners=True): super().__init__() self.align_corners = align_corners self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True) self.residual_layer1 = DPTPreActResidualLayer(config) self.residual_layer2 = DPTPreActResidualLayer(config) def forward(self, hidden_state, residual=None): if residual is not None: if hidden_state.shape != residual.shape: residual = nn.functional.interpolate( residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode="bilinear", align_corners=False ) hidden_state = hidden_state + self.residual_layer1(residual) hidden_state = self.residual_layer2(hidden_state) hidden_state = nn.functional.interpolate( hidden_state, scale_factor=2, mode="bilinear", align_corners=self.align_corners ) hidden_state = self.projection(hidden_state) return hidden_state class DPTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DPTConfig base_model_prefix = "dpt" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) DPT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DPT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare DPT Model transformer outputting raw hidden-states without any specific head on top.", DPT_START_DOCSTRING, ) class DPTModel(DPTPreTrainedModel): def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config # vit encoder if config.is_hybrid: self.embeddings = DPTViTHybridEmbeddings(config) else: self.embeddings = DPTViTEmbeddings(config) self.encoder = DPTViTEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pooler = DPTViTPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): if self.config.is_hybrid: return self.embeddings else: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndIntermediateActivations, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: torch.FloatTensor, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPoolingAndIntermediateActivations]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(pixel_values, return_dict=return_dict) embedding_last_hidden_states = embedding_output[0] if not return_dict else embedding_output.last_hidden_states encoder_outputs = self.encoder( embedding_last_hidden_states, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] + embedding_output[1:] return BaseModelOutputWithPoolingAndIntermediateActivations( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, intermediate_activations=embedding_output.intermediate_activations, ) # Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DPT class DPTViTPooler(nn.Module): def __init__(self, config: DPTConfig): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class DPTNeck(nn.Module): """ DPTNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as input and produces another list of tensors as output. For DPT, it includes 2 stages: * DPTReassembleStage * DPTFeatureFusionStage. Args: config (dict): config dict. """ def __init__(self, config): super().__init__() self.config = config # postprocessing: only required in case of a non-hierarchical backbone (e.g. ViT, BEiT) if config.backbone_config is not None and config.backbone_config.model_type in ["swinv2"]: self.reassemble_stage = None else: self.reassemble_stage = DPTReassembleStage(config) self.convs = nn.ModuleList() for channel in config.neck_hidden_sizes: self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False)) # fusion self.fusion_stage = DPTFeatureFusionStage(config) def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`): List of hidden states from the backbone. """ if not isinstance(hidden_states, (tuple, list)): raise ValueError("hidden_states should be a tuple or list of tensors") if len(hidden_states) != len(self.config.neck_hidden_sizes): raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.") # postprocess hidden states if self.reassemble_stage is not None: hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width) features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)] # fusion blocks output = self.fusion_stage(features) return output class DPTDepthEstimationHead(nn.Module): """ Output head head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples the predictions to the input resolution after the first convolutional layer (details can be found in the paper's supplementary material). """ def __init__(self, config): super().__init__() self.config = config self.projection = None if config.add_projection: self.projection = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) features = config.fusion_hidden_size self.head = nn.Sequential( nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1), nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0), nn.ReLU(), ) def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor: # use last features hidden_states = hidden_states[self.config.head_in_index] if self.projection is not None: hidden_states = self.projection(hidden_states) hidden_states = nn.ReLU()(hidden_states) predicted_depth = self.head(hidden_states) predicted_depth = predicted_depth.squeeze(dim=1) return predicted_depth @add_start_docstrings( """ DPT Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2. """, DPT_START_DOCSTRING, ) class DPTForDepthEstimation(DPTPreTrainedModel): def __init__(self, config): super().__init__(config) self.backbone = None if config.is_hybrid or config.backbone_config is None: self.dpt = DPTModel(config, add_pooling_layer=False) else: self.backbone = load_backbone(config) # Neck self.neck = DPTNeck(config) # Depth estimation head self.head = DPTDepthEstimationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, head_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth depth estimation maps for computing the loss. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DPTForDepthEstimation >>> import torch >>> import numpy as np >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large") >>> model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... predicted_depth = outputs.predicted_depth >>> # interpolate to original size >>> prediction = torch.nn.functional.interpolate( ... predicted_depth.unsqueeze(1), ... size=image.size[::-1], ... mode="bicubic", ... align_corners=False, ... ) >>> # visualize the prediction >>> output = prediction.squeeze().cpu().numpy() >>> formatted = (output * 255 / np.max(output)).astype("uint8") >>> depth = Image.fromarray(formatted) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions if self.backbone is not None: outputs = self.backbone.forward_with_filtered_kwargs( pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions ) hidden_states = outputs.feature_maps else: outputs = self.dpt( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features based on config.backbone_out_indices # note that the hidden_states also include the initial embeddings if not self.config.is_hybrid: hidden_states = [ feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices ] else: backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1]) backbone_hidden_states.extend( feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices[2:] ) hidden_states = backbone_hidden_states patch_height, patch_width = None, None if self.config.backbone_config is not None and self.config.is_hybrid is False: _, _, height, width = pixel_values.shape patch_size = self.config.backbone_config.patch_size patch_height = height // patch_size patch_width = width // patch_size hidden_states = self.neck(hidden_states, patch_height, patch_width) predicted_depth = self.head(hidden_states) loss = None if labels is not None: raise NotImplementedError("Training is not implemented yet") if not return_dict: if output_hidden_states: output = (predicted_depth,) + outputs[1:] else: output = (predicted_depth,) + outputs[2:] return ((loss,) + output) if loss is not None else output return DepthEstimatorOutput( loss=loss, predicted_depth=predicted_depth, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, ) class DPTSemanticSegmentationHead(nn.Module): def __init__(self, config): super().__init__() self.config = config features = config.fusion_hidden_size self.head = nn.Sequential( nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(features), nn.ReLU(), nn.Dropout(config.semantic_classifier_dropout), nn.Conv2d(features, config.num_labels, kernel_size=1), nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True), ) def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor: # use last features hidden_states = hidden_states[self.config.head_in_index] logits = self.head(hidden_states) return logits class DPTAuxiliaryHead(nn.Module): def __init__(self, config): super().__init__() features = config.fusion_hidden_size self.head = nn.Sequential( nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(features), nn.ReLU(), nn.Dropout(0.1, False), nn.Conv2d(features, config.num_labels, kernel_size=1), ) def forward(self, hidden_states): logits = self.head(hidden_states) return logits @add_start_docstrings( """ DPT Model with a semantic segmentation head on top e.g. for ADE20k, CityScapes. """, DPT_START_DOCSTRING, ) class DPTForSemanticSegmentation(DPTPreTrainedModel): def __init__(self, config): super().__init__(config) self.dpt = DPTModel(config, add_pooling_layer=False) # Neck self.neck = DPTNeck(config) # Segmentation head(s) self.head = DPTSemanticSegmentationHead(config) self.auxiliary_head = DPTAuxiliaryHead(config) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DPTForSemanticSegmentation >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large-ade") >>> model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) outputs = self.dpt( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) hidden_states = outputs.hidden_states if return_dict else outputs[1] # only keep certain features based on config.backbone_out_indices # note that the hidden_states also include the initial embeddings if not self.config.is_hybrid: hidden_states = [ feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices ] else: backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1]) backbone_hidden_states.extend( feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices[2:] ) hidden_states = backbone_hidden_states hidden_states = self.neck(hidden_states=hidden_states) logits = self.head(hidden_states) auxiliary_logits = None if self.auxiliary_head is not None: auxiliary_logits = self.auxiliary_head(hidden_states[-1]) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) if auxiliary_logits is not None: upsampled_auxiliary_logits = nn.functional.interpolate( auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) # compute weighted loss loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) main_loss = loss_fct(upsampled_logits, labels) auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels) loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
transformers/src/transformers/models/dpt/modeling_dpt.py/0
{ "file_path": "transformers/src/transformers/models/dpt/modeling_dpt.py", "repo_id": "transformers", "token_count": 23963 }
540
# coding=utf-8 # Copyright 2021 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Optional, Tuple import flax import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxMaskedLMOutput, FlaxMultipleChoiceModelOutput, FlaxQuestionAnsweringModelOutput, FlaxSequenceClassifierOutput, FlaxTokenClassifierOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_electra import ElectraConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/electra-small-discriminator" _CONFIG_FOR_DOC = "ElectraConfig" remat = nn_partitioning.remat @flax.struct.dataclass class FlaxElectraForPreTrainingOutput(ModelOutput): """ Output type of [`ElectraForPreTraining`]. Args: logits (`jnp.ndarray` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: jnp.ndarray = None hidden_states: Optional[Tuple[jnp.ndarray]] = None attentions: Optional[Tuple[jnp.ndarray]] = None ELECTRA_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading, saving and converting weights from PyTorch models) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`ElectraConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ELECTRA_INPUTS_DOCSTRING = r""" Args: input_ids (`numpy.ndarray` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`numpy.ndarray` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`numpy.ndarray` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxElectraEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" config: ElectraConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.word_embeddings = nn.Embed( self.config.vocab_size, self.config.embedding_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.position_embeddings = nn.Embed( self.config.max_position_embeddings, self.config.embedding_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.token_type_embeddings = nn.Embed( self.config.type_vocab_size, self.config.embedding_size, embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings.__call__ def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True): # Embed inputs_embeds = self.word_embeddings(input_ids.astype("i4")) position_embeds = self.position_embeddings(position_ids.astype("i4")) token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4")) # Sum all embeddings hidden_states = inputs_embeds + token_type_embeddings + position_embeds # Layer Norm hidden_states = self.LayerNorm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->Electra class FlaxElectraSelfAttention(nn.Module): config: ElectraConfig causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.head_dim = self.config.hidden_size // self.config.num_attention_heads if self.config.hidden_size % self.config.num_attention_heads != 0: raise ValueError( "`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` " " : {self.config.num_attention_heads}" ) self.query = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.key = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) self.value = nn.Dense( self.config.hidden_size, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), ) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,)) @nn.compact # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic=True, output_attentions: bool = False, ): # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.query(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.key(key_value_states) value_states = self.value(key_value_states) else: # self_attention key_states = self.key(hidden_states) value_states = self.value(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.config.attention_probs_dropout_prob > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.config.attention_probs_dropout_prob, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) # Mask heads if we want to if layer_head_mask is not None: attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,)) outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->Electra class FlaxElectraSelfOutput(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) def __call__(self, hidden_states, input_tensor, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->Electra class FlaxElectraAttention(nn.Module): config: ElectraConfig causal: bool = False dtype: jnp.dtype = jnp.float32 def setup(self): self.self = FlaxElectraSelfAttention(self.config, causal=self.causal, dtype=self.dtype) self.output = FlaxElectraSelfOutput(self.config, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, layer_head_mask, key_value_states=None, init_cache=False, deterministic=True, output_attentions: bool = False, ): # Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length) # FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable # with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length) attn_outputs = self.self( hidden_states, attention_mask, layer_head_mask=layer_head_mask, key_value_states=key_value_states, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) attn_output = attn_outputs[0] hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attn_outputs[1],) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->Electra class FlaxElectraIntermediate(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.intermediate_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.activation = ACT2FN[self.config.hidden_act] def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.activation(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->Electra class FlaxElectraOutput(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dense = nn.Dense( self.config.hidden_size, kernel_init=jax.nn.initializers.normal(self.config.initializer_range), dtype=self.dtype, ) self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob) self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) def __call__(self, hidden_states, attention_output, deterministic: bool = True): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.LayerNorm(hidden_states + attention_output) return hidden_states # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->Electra class FlaxElectraLayer(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.attention = FlaxElectraAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype) self.intermediate = FlaxElectraIntermediate(self.config, dtype=self.dtype) self.output = FlaxElectraOutput(self.config, dtype=self.dtype) if self.config.add_cross_attention: self.crossattention = FlaxElectraAttention(self.config, causal=False, dtype=self.dtype) def __call__( self, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, ): # Self Attention attention_outputs = self.attention( hidden_states, attention_mask, layer_head_mask=layer_head_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = attention_outputs[0] # Cross-Attention Block if encoder_hidden_states is not None: cross_attention_outputs = self.crossattention( attention_output, attention_mask=encoder_attention_mask, layer_head_mask=layer_head_mask, key_value_states=encoder_hidden_states, deterministic=deterministic, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] hidden_states = self.intermediate(attention_output) hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic) outputs = (hidden_states,) if output_attentions: outputs += (attention_outputs[1],) if encoder_hidden_states is not None: outputs += (cross_attention_outputs[1],) return outputs # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->Electra class FlaxElectraLayerCollection(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): if self.gradient_checkpointing: FlaxElectraCheckpointLayer = remat(FlaxElectraLayer, static_argnums=(5, 6, 7)) self.layers = [ FlaxElectraCheckpointLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] else: self.layers = [ FlaxElectraLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers) ] def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None # Check if head_mask has a correct number of layers specified if desired if head_mask is not None: if head_mask.shape[0] != (len(self.layers)): raise ValueError( f"The head_mask should be specified for {len(self.layers)} layers, but it is for " f" {head_mask.shape[0]}." ) for i, layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) layer_outputs = layer( hidden_states, attention_mask, head_mask[i] if head_mask is not None else None, encoder_hidden_states, encoder_attention_mask, init_cache, deterministic, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->Electra class FlaxElectraEncoder(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.layer = FlaxElectraLayerCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, hidden_states, attention_mask, head_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): return self.layer( hidden_states, attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class FlaxElectraGeneratorPredictions(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype) self.dense = nn.Dense(self.config.embedding_size, dtype=self.dtype) def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = ACT2FN[self.config.hidden_act](hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class FlaxElectraDiscriminatorPredictions(nn.Module): """Prediction module for the discriminator, made up of two dense layers.""" config: ElectraConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) self.dense_prediction = nn.Dense(1, dtype=self.dtype) def __call__(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = ACT2FN[self.config.hidden_act](hidden_states) hidden_states = self.dense_prediction(hidden_states).squeeze(-1) return hidden_states class FlaxElectraPreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ElectraConfig base_model_prefix = "electra" module_class: nn.Module = None def __init__( self, config: ElectraConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, gradient_checkpointing: bool = False, **kwargs, ): module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.init_weights def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") token_type_ids = jnp.zeros_like(input_ids) position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) attention_mask = jnp.ones_like(input_ids) head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} if self.config.add_cross_attention: encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,)) encoder_attention_mask = attention_mask module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states, encoder_attention_mask, return_dict=False, ) else: module_init_outputs = self.module.init( rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False ) random_params = module_init_outputs["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache def init_cache(self, batch_size, max_length): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. """ # init input variables to retrieve cache input_ids = jnp.ones((batch_size, max_length), dtype="i4") attention_mask = jnp.ones_like(input_ids, dtype="i4") position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) init_variables = self.module.init( jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True ) return unfreeze(init_variables["cache"]) @add_start_docstrings_to_model_forward(ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train: bool = False, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, past_key_values: dict = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # init input tensors if not passed if token_type_ids is None: token_type_ids = jnp.ones_like(input_ids) if position_ids is None: position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if head_mask is None: head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} if self.config.add_cross_attention: # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be # changed by FlaxElectraAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, mutable=mutable, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past_key_values = outputs outputs["past_key_values"] = unfreeze(past_key_values["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past_key_values = outputs outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] else: outputs = self.module.apply( inputs, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), token_type_ids=jnp.array(token_type_ids, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), head_mask=jnp.array(head_mask, dtype="i4"), deterministic=not train, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, rngs=rngs, ) return outputs class FlaxElectraModule(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.embeddings = FlaxElectraEmbeddings(self.config, dtype=self.dtype) if self.config.embedding_size != self.config.hidden_size: self.embeddings_project = nn.Dense(self.config.hidden_size, dtype=self.dtype) self.encoder = FlaxElectraEncoder( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) def __call__( self, input_ids, attention_mask, token_type_ids, position_ids, head_mask: Optional[np.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): embeddings = self.embeddings( input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic ) if hasattr(self, "embeddings_project"): embeddings = self.embeddings_project(embeddings) return self.encoder( embeddings, attention_mask, head_mask=head_mask, deterministic=deterministic, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @add_start_docstrings( "The bare Electra Model transformer outputting raw hidden-states without any specific head on top.", ELECTRA_START_DOCSTRING, ) class FlaxElectraModel(FlaxElectraPreTrainedModel): module_class = FlaxElectraModule append_call_sample_docstring(FlaxElectraModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC) class FlaxElectraTiedDense(nn.Module): embedding_size: int dtype: jnp.dtype = jnp.float32 precision = None bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros def setup(self): self.bias = self.param("bias", self.bias_init, (self.embedding_size,)) def __call__(self, x, kernel): x = jnp.asarray(x, self.dtype) kernel = jnp.asarray(kernel, self.dtype) y = lax.dot_general( x, kernel, (((x.ndim - 1,), (0,)), ((), ())), precision=self.precision, ) bias = jnp.asarray(self.bias, self.dtype) return y + bias class FlaxElectraForMaskedLMModule(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.electra = FlaxElectraModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype) if self.config.tie_word_embeddings: self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype) else: self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): outputs = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] prediction_scores = self.generator_predictions(hidden_states) if self.config.tie_word_embeddings: shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"] prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T) else: prediction_scores = self.generator_lm_head(prediction_scores) if not return_dict: return (prediction_scores,) + outputs[1:] return FlaxMaskedLMOutput( logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""Electra Model with a `language modeling` head on top.""", ELECTRA_START_DOCSTRING) class FlaxElectraForMaskedLM(FlaxElectraPreTrainedModel): module_class = FlaxElectraForMaskedLMModule append_call_sample_docstring(FlaxElectraForMaskedLM, _CHECKPOINT_FOR_DOC, FlaxMaskedLMOutput, _CONFIG_FOR_DOC) class FlaxElectraForPreTrainingModule(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.electra = FlaxElectraModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.discriminator_predictions = FlaxElectraDiscriminatorPredictions(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.discriminator_predictions(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxElectraForPreTrainingOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Electra model with a binary classification head on top as used during pretraining for identifying generated tokens. It is recommended to load the discriminator checkpoint into that model. """, ELECTRA_START_DOCSTRING, ) class FlaxElectraForPreTraining(FlaxElectraPreTrainedModel): module_class = FlaxElectraForPreTrainingModule FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxElectraForPreTraining >>> tokenizer = AutoTokenizer.from_pretrained("google/electra-small-discriminator") >>> model = FlaxElectraForPreTraining.from_pretrained("google/electra-small-discriminator") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ``` """ overwrite_call_docstring( FlaxElectraForPreTraining, ELECTRA_INPUTS_DOCSTRING.format("batch_size, sequence_length") + FLAX_ELECTRA_FOR_PRETRAINING_DOCSTRING, ) append_replace_return_docstrings( FlaxElectraForPreTraining, output_type=FlaxElectraForPreTrainingOutput, config_class=_CONFIG_FOR_DOC ) class FlaxElectraForTokenClassificationModule(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.electra = FlaxElectraModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states, deterministic=deterministic) logits = self.classifier(hidden_states) if not return_dict: return (logits,) + outputs[1:] return FlaxTokenClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Electra model with a token classification head on top. Both the discriminator and generator may be loaded into this model. """, ELECTRA_START_DOCSTRING, ) class FlaxElectraForTokenClassification(FlaxElectraPreTrainedModel): module_class = FlaxElectraForTokenClassificationModule append_call_sample_docstring( FlaxElectraForTokenClassification, _CHECKPOINT_FOR_DOC, FlaxTokenClassifierOutput, _CONFIG_FOR_DOC, ) def identity(x, **kwargs): return x class FlaxElectraSequenceSummary(nn.Module): r""" Compute a single vector summary of a sequence hidden states. Args: config ([`PretrainedConfig`]): The config used by the model. Relevant arguments in the config class of the model are (refer to the actual config class of your model for the default values it uses): - **summary_use_proj** (`bool`) -- Add a projection after the vector extraction. - **summary_proj_to_labels** (`bool`) -- If `True`, the projection outputs to `config.num_labels` classes (otherwise to `config.hidden_size`). - **summary_activation** (`Optional[str]`) -- Set to `"tanh"` to add a tanh activation to the output, another string or `None` will add no activation. - **summary_first_dropout** (`float`) -- Optional dropout probability before the projection and activation. - **summary_last_dropout** (`float`)-- Optional dropout probability after the projection and activation. """ config: ElectraConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.summary = identity if hasattr(self.config, "summary_use_proj") and self.config.summary_use_proj: if ( hasattr(self.config, "summary_proj_to_labels") and self.config.summary_proj_to_labels and self.config.num_labels > 0 ): num_classes = self.config.num_labels else: num_classes = self.config.hidden_size self.summary = nn.Dense(num_classes, dtype=self.dtype) activation_string = getattr(self.config, "summary_activation", None) self.activation = ACT2FN[activation_string] if activation_string else lambda x: x # noqa F407 self.first_dropout = identity if hasattr(self.config, "summary_first_dropout") and self.config.summary_first_dropout > 0: self.first_dropout = nn.Dropout(self.config.summary_first_dropout) self.last_dropout = identity if hasattr(self.config, "summary_last_dropout") and self.config.summary_last_dropout > 0: self.last_dropout = nn.Dropout(self.config.summary_last_dropout) def __call__(self, hidden_states, cls_index=None, deterministic: bool = True): """ Compute a single vector summary of a sequence hidden states. Args: hidden_states (`jnp.ndarray` of shape `[batch_size, seq_len, hidden_size]`): The hidden states of the last layer. cls_index (`jnp.ndarray` of shape `[batch_size]` or `[batch_size, ...]` where ... are optional leading dimensions of `hidden_states`, *optional*): Used if `summary_type == "cls_index"` and takes the last token of the sequence as classification token. Returns: `jnp.ndarray`: The summary of the sequence hidden states. """ # NOTE: this doest "first" type summary always output = hidden_states[:, 0] output = self.first_dropout(output, deterministic=deterministic) output = self.summary(output) output = self.activation(output) output = self.last_dropout(output, deterministic=deterministic) return output class FlaxElectraForMultipleChoiceModule(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.electra = FlaxElectraModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.sequence_summary = FlaxElectraSequenceSummary(config=self.config, dtype=self.dtype) self.classifier = nn.Dense(1, dtype=self.dtype) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): num_choices = input_ids.shape[1] input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None # Model outputs = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] pooled_output = self.sequence_summary(hidden_states, deterministic=deterministic) logits = self.classifier(pooled_output) reshaped_logits = logits.reshape(-1, num_choices) if not return_dict: return (reshaped_logits,) + outputs[1:] return FlaxMultipleChoiceModelOutput( logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ ELECTRA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ELECTRA_START_DOCSTRING, ) class FlaxElectraForMultipleChoice(FlaxElectraPreTrainedModel): module_class = FlaxElectraForMultipleChoiceModule # adapt docstring slightly for FlaxElectraForMultipleChoice overwrite_call_docstring( FlaxElectraForMultipleChoice, ELECTRA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) append_call_sample_docstring( FlaxElectraForMultipleChoice, _CHECKPOINT_FOR_DOC, FlaxMultipleChoiceModelOutput, _CONFIG_FOR_DOC, ) class FlaxElectraForQuestionAnsweringModule(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.electra = FlaxElectraModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.qa_outputs(hidden_states) start_logits, end_logits = logits.split(self.config.num_labels, axis=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) if not return_dict: return (start_logits, end_logits) + outputs[1:] return FlaxQuestionAnsweringModelOutput( start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ ELECTRA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ELECTRA_START_DOCSTRING, ) class FlaxElectraForQuestionAnswering(FlaxElectraPreTrainedModel): module_class = FlaxElectraForQuestionAnsweringModule append_call_sample_docstring( FlaxElectraForQuestionAnswering, _CHECKPOINT_FOR_DOC, FlaxQuestionAnsweringModelOutput, _CONFIG_FOR_DOC, ) class FlaxElectraClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" config: ElectraConfig dtype: jnp.dtype = jnp.float32 def setup(self): self.dense = nn.Dense(self.config.hidden_size, dtype=self.dtype) classifier_dropout = ( self.config.classifier_dropout if self.config.classifier_dropout is not None else self.config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Dense(self.config.num_labels, dtype=self.dtype) def __call__(self, hidden_states, deterministic: bool = True): x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x, deterministic=deterministic) x = self.dense(x) x = ACT2FN["gelu"](x) # although BERT uses tanh here, it seems Electra authors used gelu x = self.dropout(x, deterministic=deterministic) x = self.out_proj(x) return x class FlaxElectraForSequenceClassificationModule(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.electra = FlaxElectraModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.classifier = FlaxElectraClassificationHead(config=self.config, dtype=self.dtype) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # Model outputs = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] logits = self.classifier(hidden_states, deterministic=deterministic) if not return_dict: return (logits,) + outputs[1:] return FlaxSequenceClassifierOutput( logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Electra Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ELECTRA_START_DOCSTRING, ) class FlaxElectraForSequenceClassification(FlaxElectraPreTrainedModel): module_class = FlaxElectraForSequenceClassificationModule append_call_sample_docstring( FlaxElectraForSequenceClassification, _CHECKPOINT_FOR_DOC, FlaxSequenceClassifierOutput, _CONFIG_FOR_DOC, ) class FlaxElectraForCausalLMModule(nn.Module): config: ElectraConfig dtype: jnp.dtype = jnp.float32 gradient_checkpointing: bool = False def setup(self): self.electra = FlaxElectraModule( config=self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.generator_predictions = FlaxElectraGeneratorPredictions(config=self.config, dtype=self.dtype) if self.config.tie_word_embeddings: self.generator_lm_head = FlaxElectraTiedDense(self.config.vocab_size, dtype=self.dtype) else: self.generator_lm_head = nn.Dense(self.config.vocab_size, dtype=self.dtype) def __call__( self, input_ids, attention_mask: Optional[jnp.ndarray] = None, token_type_ids: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, head_mask: Optional[jnp.ndarray] = None, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): outputs = self.electra( input_ids, attention_mask, token_type_ids, position_ids, head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] prediction_scores = self.generator_predictions(hidden_states) if self.config.tie_word_embeddings: shared_embedding = self.electra.variables["params"]["embeddings"]["word_embeddings"]["embedding"] prediction_scores = self.generator_lm_head(prediction_scores, shared_embedding.T) else: prediction_scores = self.generator_lm_head(prediction_scores) if not return_dict: return (prediction_scores,) + outputs[1:] return FlaxCausalLMOutputWithCrossAttentions( logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) @add_start_docstrings( """ Electra Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for autoregressive tasks. """, ELECTRA_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForCausalLM with Bert->Electra class FlaxElectraForCausalLM(FlaxElectraPreTrainedModel): module_class = FlaxElectraForCausalLMModule def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): # initializing the cache batch_size, seq_length = input_ids.shape past_key_values = self.init_cache(batch_size, max_length) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyway. # Thus, we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if attention_mask is not None: position_ids = attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "attention_mask": extended_attention_mask, "position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 return model_kwargs append_call_sample_docstring( FlaxElectraForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutputWithCrossAttentions, _CONFIG_FOR_DOC, )
transformers/src/transformers/models/electra/modeling_flax_electra.py/0
{ "file_path": "transformers/src/transformers/models/electra/modeling_flax_electra.py", "repo_id": "transformers", "token_count": 27232 }
541
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ERNIE model.""" import math import warnings from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithCrossAttentions, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_ernie import ErnieConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "nghuyong/ernie-1.0-base-zh" _CONFIG_FOR_DOC = "ErnieConfig" class ErnieEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.use_task_id = config.use_task_id if config.use_task_id: self.task_type_embeddings = nn.Embedding(config.task_type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, task_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, past_key_values_length: int = 0, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings # add `task_type_id` for ERNIE model if self.use_task_id: if task_type_ids is None: task_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) task_type_embeddings = self.task_type_embeddings(task_type_ids) embeddings += task_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->Ernie class ErnieSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in ErnieModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs # Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->Ernie class ErnieSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states ERNIE_SELF_ATTENTION_CLASSES = { "eager": ErnieSelfAttention, } # Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->Ernie,BERT->ERNIE class ErnieAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = ERNIE_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = ErnieSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Ernie class ErnieIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->Ernie class ErnieOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->Ernie class ErnieLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ErnieAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = ErnieAttention(config, position_embedding_type="absolute") self.intermediate = ErnieIntermediate(config) self.output = ErnieOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output # Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->Ernie class ErnieEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([ErnieLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Ernie class ErniePooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Ernie class ErniePredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Ernie class ErnieLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = ErniePredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Ernie class ErnieOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = ErnieLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->Ernie class ErnieOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->Ernie class ErniePreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = ErnieLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class ErniePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ErnieConfig base_model_prefix = "ernie" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass # Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->Ernie class ErnieForPreTrainingOutput(ModelOutput): """ Output type of [`ErnieForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None ERNIE_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ErnieConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ ERNIE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) task_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Task type embedding is a special embedding to represent the characteristic of different tasks, such as word-aware pre-training task, structure-aware pre-training task and semantic-aware pre-training task. We assign a `task_type_id` to each task and the `task_type_id` is in the range `[0, config.task_type_vocab_size-1] position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Ernie Model transformer outputting raw hidden-states without any specific head on top.", ERNIE_START_DOCSTRING, ) class ErnieModel(ErniePreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ # Copied from transformers.models.clap.modeling_clap.ClapTextModel.__init__ with ClapText->Ernie def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = ErnieEmbeddings(config) self.encoder = ErnieEncoder(config) self.pooler = ErniePooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertModel.get_input_embeddings def get_input_embeddings(self): return self.embeddings.word_embeddings # Copied from transformers.models.bert.modeling_bert.BertModel.set_input_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value # Copied from transformers.models.bert.modeling_bert.BertModel._prune_heads def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, task_type_ids=task_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) @add_start_docstrings( """ Ernie Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, ERNIE_START_DOCSTRING, ) class ErnieForPreTraining(ErniePreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.ernie = ErnieModel(config) self.cls = ErniePreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.get_output_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder # Copied from transformers.models.bert.modeling_bert.BertForPreTraining.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=ErnieForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, next_sentence_label: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], ErnieForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, ErnieForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> model = ErnieForPreTraining.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return ErnieForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """Ernie Model with a `language modeling` head on top for CLM fine-tuning.""", ERNIE_START_DOCSTRING ) class ErnieForCausalLM(ErniePreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.__init__ with BertLMHeadModel->ErnieForCausalLM,Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `ErnieForCausalLM` as a standalone, add `is_decoder=True.`") self.ernie = ErnieModel(config, add_pooling_layer=False) self.cls = ErnieOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.get_output_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel.prepare_inputs_for_generation def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=True, **model_kwargs ): input_shape = input_ids.shape # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly if attention_mask is None: attention_mask = input_ids.new_ones(input_shape) # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] return { "input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values, "use_cache": use_cache, } # Copied from transformers.models.bert.modeling_bert.BertLMHeadModel._reorder_cache def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past @add_start_docstrings("""Ernie Model with a `language modeling` head on top.""", ERNIE_START_DOCSTRING) class ErnieForMaskedLM(ErniePreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) if config.is_decoder: logger.warning( "If you want to use `ErnieForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.ernie = ErnieModel(config, add_pooling_layer=False) self.cls = ErnieOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.get_output_embeddings def get_output_embeddings(self): return self.cls.predictions.decoder # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.set_output_embeddings def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.88, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # Copied from transformers.models.bert.modeling_bert.BertForMaskedLM.prepare_inputs_for_generation def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs): input_shape = input_ids.shape effective_batch_size = input_shape[0] # add a dummy token if self.config.pad_token_id is None: raise ValueError("The PAD token should be defined for generation") attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1) dummy_token = torch.full( (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device ) input_ids = torch.cat([input_ids, dummy_token], dim=1) return {"input_ids": input_ids, "attention_mask": attention_mask} @add_start_docstrings( """Ernie Model with a `next sentence prediction (classification)` head on top.""", ERNIE_START_DOCSTRING, ) class ErnieForNextSentencePrediction(ErniePreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForNextSentencePrediction.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.ernie = ErnieModel(config) self.cls = ErnieOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.Tensor], NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, ErnieForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> model = ErnieForNextSentencePrediction.from_pretrained("nghuyong/ernie-1.0-base-zh") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ``` """ if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Ernie Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ERNIE_START_DOCSTRING, ) class ErnieForSequenceClassification(ErniePreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.ernie = ErnieModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Ernie Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, ERNIE_START_DOCSTRING, ) class ErnieForMultipleChoice(ErniePreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.ernie = ErnieModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Ernie Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, ERNIE_START_DOCSTRING, ) class ErnieForTokenClassification(ErniePreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ernie = ErnieModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ Ernie Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, ERNIE_START_DOCSTRING, ) class ErnieForQuestionAnswering(ErniePreTrainedModel): # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering.__init__ with Bert->Ernie,bert->ernie def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.ernie = ErnieModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(ERNIE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, task_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ernie( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, task_type_ids=task_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/ernie/modeling_ernie.py/0
{ "file_path": "transformers/src/transformers/models/ernie/modeling_ernie.py", "repo_id": "transformers", "token_count": 35528 }
542
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Protein data type.""" import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants FeatureDict = Mapping[str, np.ndarray] ModelOutput = Mapping[str, Any] # Is a nested dict. PICO_TO_ANGSTROM = 0.01 @dataclasses.dataclass(frozen=True) class Protein: """Protein structure representation.""" # Cartesian coordinates of atoms in angstroms. The atom types correspond to # residue_constants.atom_types, i.e. the first three are N, CA, CB. atom_positions: np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. aatype: np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. atom_mask: np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. residue_index: np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. b_factors: np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions chain_index: Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files remark: Optional[str] = None # Templates used to generate this protein (prediction-only) parents: Optional[Sequence[str]] = None # Chain corresponding to each parent parents_chain_index: Optional[Sequence[int]] = None def from_proteinnet_string(proteinnet_str: str) -> Protein: tag_re = r"(\[[A-Z]+\]\n)" tags: List[str] = [tag.strip() for tag in re.split(tag_re, proteinnet_str) if len(tag) > 0] groups: Iterator[Tuple[str, List[str]]] = zip(tags[0::2], [l.split("\n") for l in tags[1::2]]) atoms: List[str] = ["N", "CA", "C"] aatype = None atom_positions = None atom_mask = None for g in groups: if "[PRIMARY]" == g[0]: seq = g[1][0].strip() for i in range(len(seq)): if seq[i] not in residue_constants.restypes: seq[i] = "X" # FIXME: strings are immutable aatype = np.array( [residue_constants.restype_order.get(res_symbol, residue_constants.restype_num) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: tertiary: List[List[float]] = [] for axis in range(3): tertiary.append(list(map(float, g[1][axis].split()))) tertiary_np = np.array(tertiary) atom_positions = np.zeros((len(tertiary[0]) // 3, residue_constants.atom_type_num, 3)).astype(np.float32) for i, atom in enumerate(atoms): atom_positions[:, residue_constants.atom_order[atom], :] = np.transpose(tertiary_np[:, i::3]) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: mask = np.array(list(map({"-": 0, "+": 1}.get, g[1][0].strip()))) atom_mask = np.zeros( ( len(mask), residue_constants.atom_type_num, ) ).astype(np.float32) for i, atom in enumerate(atoms): atom_mask[:, residue_constants.atom_order[atom]] = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=atom_positions, atom_mask=atom_mask, aatype=aatype, residue_index=np.arange(len(aatype)), b_factors=None, ) def get_pdb_headers(prot: Protein, chain_id: int = 0) -> List[str]: pdb_headers: List[str] = [] remark = prot.remark if remark is not None: pdb_headers.append(f"REMARK {remark}") parents = prot.parents parents_chain_index = prot.parents_chain_index if parents is not None and parents_chain_index is not None: parents = [p for i, p in zip(parents_chain_index, parents) if i == chain_id] if parents is None or len(parents) == 0: parents = ["N/A"] pdb_headers.append(f"PARENT {' '.join(parents)}") return pdb_headers def add_pdb_headers(prot: Protein, pdb_str: str) -> str: """Add pdb headers to an existing PDB string. Useful during multi-chain recycling """ out_pdb_lines: List[str] = [] lines = pdb_str.split("\n") remark = prot.remark if remark is not None: out_pdb_lines.append(f"REMARK {remark}") parents_per_chain: List[List[str]] if prot.parents is not None and len(prot.parents) > 0: parents_per_chain = [] if prot.parents_chain_index is not None: parent_dict: Dict[str, List[str]] = {} for p, i in zip(prot.parents, prot.parents_chain_index): parent_dict.setdefault(str(i), []) parent_dict[str(i)].append(p) max_idx = max([int(chain_idx) for chain_idx in parent_dict]) for i in range(max_idx + 1): chain_parents = parent_dict.get(str(i), ["N/A"]) parents_per_chain.append(chain_parents) else: parents_per_chain.append(list(prot.parents)) else: parents_per_chain = [["N/A"]] def make_parent_line(p: Sequence[str]) -> str: return f"PARENT {' '.join(p)}" out_pdb_lines.append(make_parent_line(parents_per_chain[0])) chain_counter = 0 for i, l in enumerate(lines): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(l) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(parents_per_chain): chain_parents = parents_per_chain[chain_counter] else: chain_parents = ["N/A"] out_pdb_lines.append(make_parent_line(chain_parents)) return "\n".join(out_pdb_lines) def to_pdb(prot: Protein) -> str: """Converts a `Protein` instance to a PDB string. Args: prot: The protein to convert to PDB. Returns: PDB string. """ restypes = residue_constants.restypes + ["X"] def res_1to3(r: int) -> str: return residue_constants.restype_1to3.get(restypes[r], "UNK") atom_types = residue_constants.atom_types pdb_lines: List[str] = [] atom_mask = prot.atom_mask aatype = prot.aatype atom_positions = prot.atom_positions residue_index = prot.residue_index.astype(np.int32) b_factors = prot.b_factors chain_index = prot.chain_index if np.any(aatype > residue_constants.restype_num): raise ValueError("Invalid aatypes.") headers = get_pdb_headers(prot) if len(headers) > 0: pdb_lines.extend(headers) n = aatype.shape[0] atom_index = 1 prev_chain_index = 0 chain_tags = string.ascii_uppercase chain_tag = None # Add all atom sites. for i in range(n): res_name_3 = res_1to3(aatype[i]) for atom_name, pos, mask, b_factor in zip(atom_types, atom_positions[i], atom_mask[i], b_factors[i]): if mask < 0.5: continue record_type = "ATOM" name = atom_name if len(atom_name) == 4 else f" {atom_name}" alt_loc = "" insertion_code = "" occupancy = 1.00 element = atom_name[0] # Protein supports only C, N, O, S, this works. charge = "" chain_tag = "A" if chain_index is not None: chain_tag = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! atom_line = ( f"{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}" f"{res_name_3:>3} {chain_tag:>1}" f"{residue_index[i]:>4}{insertion_code:>1} " f"{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}" f"{occupancy:>6.2f}{b_factor:>6.2f} " f"{element:>2}{charge:>2}" ) pdb_lines.append(atom_line) atom_index += 1 should_terminate = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: should_terminate = True prev_chain_index = chain_index[i + 1] if should_terminate: # Close the chain. chain_end = "TER" chain_termination_line = ( f"{chain_end:<6}{atom_index:>5} {res_1to3(aatype[i]):>3} {chain_tag:>1}{residue_index[i]:>4}" ) pdb_lines.append(chain_termination_line) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(prot, prev_chain_index)) pdb_lines.append("END") pdb_lines.append("") return "\n".join(pdb_lines) def ideal_atom_mask(prot: Protein) -> np.ndarray: """Computes an ideal atom mask. `Protein.atom_mask` typically is defined according to the atoms that are reported in the PDB. This function computes a mask according to heavy atoms that should be present in the given sequence of amino acids. Args: prot: `Protein` whose fields are `numpy.ndarray` objects. Returns: An ideal atom mask. """ return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def from_prediction( features: FeatureDict, result: ModelOutput, b_factors: Optional[np.ndarray] = None, chain_index: Optional[np.ndarray] = None, remark: Optional[str] = None, parents: Optional[Sequence[str]] = None, parents_chain_index: Optional[Sequence[int]] = None, ) -> Protein: """Assembles a protein from a prediction. Args: features: Dictionary holding model inputs. result: Dictionary holding model outputs. b_factors: (Optional) B-factors to use for the protein. chain_index: (Optional) Chain indices for multi-chain predictions remark: (Optional) Remark about the prediction parents: (Optional) List of template names Returns: A protein instance. """ return Protein( aatype=features["aatype"], atom_positions=result["final_atom_positions"], atom_mask=result["final_atom_mask"], residue_index=features["residue_index"] + 1, b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"]), chain_index=chain_index, remark=remark, parents=parents, parents_chain_index=parents_chain_index, )
transformers/src/transformers/models/esm/openfold_utils/protein.py/0
{ "file_path": "transformers/src/transformers/models/esm/openfold_utils/protein.py", "repo_id": "transformers", "token_count": 5075 }
543
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = { "configuration_flaubert": ["FlaubertConfig", "FlaubertOnnxConfig"], "tokenization_flaubert": ["FlaubertTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flaubert"] = [ "FlaubertForMultipleChoice", "FlaubertForQuestionAnswering", "FlaubertForQuestionAnsweringSimple", "FlaubertForSequenceClassification", "FlaubertForTokenClassification", "FlaubertModel", "FlaubertWithLMHeadModel", "FlaubertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_flaubert"] = [ "TFFlaubertForMultipleChoice", "TFFlaubertForQuestionAnsweringSimple", "TFFlaubertForSequenceClassification", "TFFlaubertForTokenClassification", "TFFlaubertModel", "TFFlaubertPreTrainedModel", "TFFlaubertWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_flaubert import FlaubertConfig, FlaubertOnnxConfig from .tokenization_flaubert import FlaubertTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flaubert import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertPreTrainedModel, FlaubertWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_flaubert import ( TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertPreTrainedModel, TFFlaubertWithLMHeadModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/flaubert/__init__.py/0
{ "file_path": "transformers/src/transformers/models/flaubert/__init__.py", "repo_id": "transformers", "token_count": 1282 }
544
# coding=utf-8 # Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch FNet model.""" import warnings from dataclasses import dataclass from functools import partial from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...utils import is_scipy_available if is_scipy_available(): from scipy import linalg from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, ModelOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_fnet import FNetConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/fnet-base" _CONFIG_FOR_DOC = "FNetConfig" # Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py def _two_dim_matmul(x, matrix_dim_one, matrix_dim_two): """Applies 2D matrix multiplication to 3D input arrays.""" seq_length = x.shape[1] matrix_dim_one = matrix_dim_one[:seq_length, :seq_length] x = x.type(torch.complex64) return torch.einsum("bij,jk,ni->bnk", x, matrix_dim_two, matrix_dim_one) # # Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py def two_dim_matmul(x, matrix_dim_one, matrix_dim_two): return _two_dim_matmul(x, matrix_dim_one, matrix_dim_two) # Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py def fftn(x): """ Applies n-dimensional Fast Fourier Transform (FFT) to input array. Args: x: Input n-dimensional array. Returns: n-dimensional Fourier transform of input n-dimensional array. """ out = x for axis in reversed(range(x.ndim)[1:]): # We don't need to apply FFT to last axis out = torch.fft.fft(out, axis=axis) return out class FNetEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # NOTE: This is the project layer and will be needed. The original code allows for different embedding and different model dimensions. self.projection = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves # issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.projection(embeddings) embeddings = self.dropout(embeddings) return embeddings class FNetBasicFourierTransform(nn.Module): def __init__(self, config): super().__init__() self._init_fourier_transform(config) def _init_fourier_transform(self, config): if not config.use_tpu_fourier_optimizations: self.fourier_transform = partial(torch.fft.fftn, dim=(1, 2)) elif config.max_position_embeddings <= 4096: if is_scipy_available(): self.register_buffer( "dft_mat_hidden", torch.tensor(linalg.dft(config.hidden_size), dtype=torch.complex64) ) self.register_buffer( "dft_mat_seq", torch.tensor(linalg.dft(config.tpu_short_seq_length), dtype=torch.complex64) ) self.fourier_transform = partial( two_dim_matmul, matrix_dim_one=self.dft_mat_seq, matrix_dim_two=self.dft_mat_hidden ) else: logging.warning( "SciPy is needed for DFT matrix calculation and is not found. Using TPU optimized fast fourier" " transform instead." ) self.fourier_transform = fftn else: self.fourier_transform = fftn def forward(self, hidden_states): # NOTE: We do not use torch.vmap as it is not integrated into PyTorch stable versions. # Interested users can modify the code to use vmap from the nightly versions, getting the vmap from here: # https://pytorch.org/docs/master/generated/torch.vmap.html. Note that fourier transform methods will need # change accordingly. outputs = self.fourier_transform(hidden_states).real return (outputs,) class FNetBasicOutput(nn.Module): def __init__(self, config): super().__init__() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states, input_tensor): hidden_states = self.LayerNorm(input_tensor + hidden_states) return hidden_states class FNetFourierTransform(nn.Module): def __init__(self, config): super().__init__() self.self = FNetBasicFourierTransform(config) self.output = FNetBasicOutput(config) def forward(self, hidden_states): self_outputs = self.self(hidden_states) fourier_output = self.output(self_outputs[0], hidden_states) outputs = (fourier_output,) return outputs # Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->FNet class FNetIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->FNet class FNetOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class FNetLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 # The dimension which has the sequence length self.fourier = FNetFourierTransform(config) self.intermediate = FNetIntermediate(config) self.output = FNetOutput(config) def forward(self, hidden_states): self_fourier_outputs = self.fourier(hidden_states) fourier_output = self_fourier_outputs[0] layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, fourier_output ) outputs = (layer_output,) return outputs def feed_forward_chunk(self, fourier_output): intermediate_output = self.intermediate(fourier_output) layer_output = self.output(intermediate_output, fourier_output) return layer_output class FNetEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([FNetLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward(self, hidden_states, output_hidden_states=False, return_dict=True): all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func(layer_module.__call__, hidden_states) else: layer_outputs = layer_module(hidden_states) hidden_states = layer_outputs[0] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states) # Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->FNet class FNetPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output # Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->FNet class FNetPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class FNetLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = FNetPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states def _tie_weights(self) -> None: # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias class FNetOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = FNetLMPredictionHead(config) def forward(self, sequence_output): prediction_scores = self.predictions(sequence_output) return prediction_scores # Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->FNet class FNetOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output): seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score # Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->FNet class FNetPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = FNetLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output, pooled_output): prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class FNetPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FNetConfig base_model_prefix = "fnet" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) # NOTE: Original code uses same initialization as weights for biases as well. if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class FNetForPreTrainingOutput(ModelOutput): """ Output type of [`FNetForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None FNET_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`FNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FNET_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert *input_ids* indices into associated vectors than the model's internal embedding lookup matrix. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare FNet Model transformer outputting raw hidden-states without any specific head on top.", FNET_START_DOCSTRING, ) class FNetModel(FNetPreTrainedModel): """ The model can behave as an encoder, following the architecture described in [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon. """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = FNetEmbeddings(config) self.encoder = FNetEncoder(config) self.pooler = FNetPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutput]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() batch_size, seq_length = input_shape elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size, seq_length = input_shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if ( self.config.use_tpu_fourier_optimizations and seq_length <= 4096 and self.config.tpu_short_seq_length != seq_length ): raise ValueError( "The `tpu_short_seq_length` in FNetConfig should be set equal to the sequence length being passed to" " the model when using TPU optimizations." ) device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooler_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooler_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ FNet Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, FNET_START_DOCSTRING, ) class FNetForPreTraining(FNetPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) self.fnet = FNetModel(config) self.cls = FNetPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=FNetForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, next_sentence_label: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, FNetForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Used to hide legacy arguments that have been deprecated. Returns: Example: ```python >>> from transformers import AutoTokenizer, FNetForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base") >>> model = FNetForPreTraining.from_pretrained("google/fnet-base") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return FNetForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, ) @add_start_docstrings("""FNet Model with a `language modeling` head on top.""", FNET_START_DOCSTRING) class FNetForMaskedLM(FNetPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"] def __init__(self, config): super().__init__(config) self.fnet = FNetModel(config) self.cls = FNetOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput(loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states) @add_start_docstrings( """FNet Model with a `next sentence prediction (classification)` head on top.""", FNET_START_DOCSTRING, ) class FNetForNextSentencePrediction(FNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.fnet = FNetModel(config) self.cls = FNetOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring). Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Example: ```python >>> from transformers import AutoTokenizer, FNetForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base") >>> model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert logits[0, 0] < logits[0, 1] # next sentence was random ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_scores = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_scores,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_scores, hidden_states=outputs.hidden_states, ) @add_start_docstrings( """ FNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FNET_START_DOCSTRING, ) class FNetForSequenceClassification(FNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.fnet = FNetModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ FNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FNET_START_DOCSTRING, ) class FNetForMultipleChoice(FNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.fnet = FNetModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput(loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ FNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FNET_START_DOCSTRING, ) class FNetForTokenClassification(FNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.fnet = FNetModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() # Only keep active parts of the loss loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states) @add_start_docstrings( """ FNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FNET_START_DOCSTRING, ) class FNetForQuestionAnswering(FNetPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.fnet = FNetModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.fnet( input_ids, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states )
transformers/src/transformers/models/fnet/modeling_fnet.py/0
{ "file_path": "transformers/src/transformers/models/fnet/modeling_fnet.py", "repo_id": "transformers", "token_count": 20427 }
545
# coding=utf-8 # Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 Funnel model.""" from __future__ import annotations import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_funnel import FunnelConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "FunnelConfig" INF = 1e6 class TFFunnelEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.initializer_std = 1.0 if config.initializer_std is None else config.initializer_std self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.hidden_size], initializer=get_initializer(initializer_range=self.initializer_std), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.d_model]) def call(self, input_ids=None, inputs_embeds=None, training=False): """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ assert not (input_ids is None and inputs_embeds is None) assert not (input_ids is not None and inputs_embeds is not None) if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(self.weight, input_ids) final_embeddings = self.LayerNorm(inputs=inputs_embeds) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFFunnelAttentionStructure: """ Contains helpers for `TFFunnelRelMultiheadAttention `. """ cls_token_type_id: int = 2 def __init__(self, config): self.d_model = config.d_model self.attention_type = config.attention_type self.num_blocks = config.num_blocks self.separate_cls = config.separate_cls self.truncate_seq = config.truncate_seq self.pool_q_only = config.pool_q_only self.pooling_type = config.pooling_type self.sin_dropout = keras.layers.Dropout(config.hidden_dropout) self.cos_dropout = keras.layers.Dropout(config.hidden_dropout) # Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was # divided. self.pooling_mult = None def init_attention_inputs(self, inputs_embeds, attention_mask=None, token_type_ids=None, training=False): """Returns the attention inputs associated to the inputs of the model.""" # inputs_embeds has shape batch_size x seq_len x d_model # attention_mask and token_type_ids have shape batch_size x seq_len self.pooling_mult = 1 self.seq_len = seq_len = shape_list(inputs_embeds)[1] position_embeds = self.get_position_embeds(seq_len, training=training) token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None cls_mask = ( tf.pad(tf.ones([seq_len - 1, seq_len - 1], dtype=inputs_embeds.dtype), [[1, 0], [1, 0]]) if self.separate_cls else None ) return (position_embeds, token_type_mat, attention_mask, cls_mask) def token_type_ids_to_mat(self, token_type_ids): """Convert `token_type_ids` to `token_type_mat`.""" token_type_mat = tf.equal(tf.expand_dims(token_type_ids, -1), tf.expand_dims(token_type_ids, -2)) # Treat <cls> as in the same segment as both A & B cls_ids = tf.equal(token_type_ids, tf.constant([self.cls_token_type_id], dtype=token_type_ids.dtype)) cls_mat = tf.logical_or(tf.expand_dims(cls_ids, -1), tf.expand_dims(cls_ids, -2)) return tf.logical_or(cls_mat, token_type_mat) def get_position_embeds(self, seq_len, training=False): """ Create and cache inputs related to relative position encoding. Those are very different depending on whether we are using the factorized or the relative shift attention: For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2, final formula. For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final formula. Paper link: https://arxiv.org/abs/2006.03236 """ if self.attention_type == "factorized": # Notations from the paper, appending A.2.2, final formula. # We need to create and return the matrices phi, psi, pi and omega. pos_seq = tf.range(0, seq_len, 1.0) freq_seq = tf.range(0, self.d_model // 2, 1.0) inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2))) sinusoid = tf.einsum("i,d->id", pos_seq, inv_freq) sin_embed = tf.sin(sinusoid) sin_embed_d = self.sin_dropout(sin_embed, training=training) cos_embed = tf.cos(sinusoid) cos_embed_d = self.cos_dropout(cos_embed, training=training) # This is different from the formula on the paper... phi = tf.concat([sin_embed_d, sin_embed_d], axis=-1) psi = tf.concat([cos_embed, sin_embed], axis=-1) pi = tf.concat([cos_embed_d, cos_embed_d], axis=-1) omega = tf.concat([-sin_embed, cos_embed], axis=-1) return (phi, pi, psi, omega) else: # Notations from the paper, appending A.2.1, final formula. # We need to create and return all the possible vectors R for all blocks and shifts. freq_seq = tf.range(0, self.d_model // 2, 1.0) inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2))) # Maximum relative positions for the first input rel_pos_id = tf.range(-seq_len * 2, seq_len * 2, 1.0) zero_offset = seq_len * tf.constant(2) sinusoid = tf.einsum("i,d->id", rel_pos_id, inv_freq) sin_embed = self.sin_dropout(tf.sin(sinusoid), training=training) cos_embed = self.cos_dropout(tf.cos(sinusoid), training=training) pos_embed = tf.concat([sin_embed, cos_embed], axis=-1) pos = tf.range(0, seq_len) pooled_pos = pos position_embeds_list = [] for block_index in range(0, self.num_blocks): # For each block with block_index > 0, we need two types position embeddings: # - Attention(pooled-q, unpooled-kv) # - Attention(pooled-q, pooled-kv) # For block_index = 0 we only need the second one and leave the first one as None. # First type position_embeds_pooling = tf.fill([1], value=-1.0) if block_index != 0: pooled_pos = self.stride_pool_pos(pos, block_index) # construct rel_pos_id stride = 2 ** (block_index - 1) rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2) # rel_pos = tf.expand_dims(rel_pos,1) + zero_offset # rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model)) rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype) rel_pos = rel_pos + zero_offset position_embeds_pooling = tf.gather(pos_embed, rel_pos, axis=0) # Second type pos = pooled_pos stride = 2**block_index rel_pos = self.relative_pos(pos, stride) # rel_pos = tf.expand_dims(rel_pos,1) + zero_offset # rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model)) rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype) rel_pos = rel_pos + zero_offset tf.debugging.assert_less(rel_pos, tf.shape(pos_embed)[0]) position_embeds_no_pooling = tf.gather(pos_embed, rel_pos, axis=0) position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling]) return position_embeds_list def stride_pool_pos(self, pos_id, block_index): """ Pool `pos_id` while keeping the cls token separate (if `self.separate_cls=True`). """ if self.separate_cls: # Under separate <cls>, we treat the <cls> as the first token in # the previous block of the 1st real block. Since the 1st real # block always has position 1, the position of the previous block # will be at `1 - 2 ** block_index`. cls_pos = tf.constant([-(2**block_index) + 1], dtype=pos_id.dtype) pooled_pos_id = pos_id[1:-1] if self.truncate_seq else pos_id[1:] return tf.concat([cls_pos, pooled_pos_id[::2]], 0) else: return pos_id[::2] def relative_pos(self, pos, stride, pooled_pos=None, shift=1): """ Build the relative positional vector between `pos` and `pooled_pos`. """ if pooled_pos is None: pooled_pos = pos ref_point = pooled_pos[0] - pos[0] num_remove = shift * shape_list(pooled_pos)[0] max_dist = ref_point + num_remove * stride min_dist = pooled_pos[0] - pos[-1] return tf.range(max_dist, min_dist - 1, -stride) def stride_pool(self, tensor, axis): """ Perform pooling by stride slicing the tensor along the given axis. """ if tensor is None: return None # Do the stride pool recursively if axis is a list or a tuple of ints. if isinstance(axis, (list, tuple)): for ax in axis: tensor = self.stride_pool(tensor, ax) return tensor # Do the stride pool recursively if tensor is a list or tuple of tensors. if isinstance(tensor, (tuple, list)): return type(tensor)(self.stride_pool(x, axis) for x in tensor) # Deal with negative axis axis %= len(shape_list(tensor)) axis_slice = slice(None, -1, 2) if self.separate_cls and self.truncate_seq else slice(None, None, 2) enc_slice = [slice(None)] * axis + [axis_slice] if self.separate_cls: cls_slice = [slice(None)] * axis + [slice(None, 1)] tensor = tf.concat([tensor[cls_slice], tensor], axis) return tensor[enc_slice] def pool_tensor(self, tensor, mode="mean", stride=2): """Apply 1D pooling to a tensor of size [B x T (x H)].""" if tensor is None: return None # Do the pool recursively if tensor is a list or tuple of tensors. if isinstance(tensor, (tuple, list)): return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor) if self.separate_cls: suffix = tensor[:, :-1] if self.truncate_seq else tensor tensor = tf.concat([tensor[:, :1], suffix], axis=1) ndim = len(shape_list(tensor)) if ndim == 2: tensor = tensor[:, :, None] if mode == "mean": tensor = tf.nn.avg_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME") elif mode == "max": tensor = tf.nn.max_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME") elif mode == "min": tensor = -tf.nn.max_pool1d(-tensor, stride, strides=stride, data_format="NWC", padding="SAME") else: raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.") return tf.squeeze(tensor, 2) if ndim == 2 else tensor def pre_attention_pooling(self, output, attention_inputs): """Pool `output` and the proper parts of `attention_inputs` before the attention layer.""" position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs if self.pool_q_only: if self.attention_type == "factorized": position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:] token_type_mat = self.stride_pool(token_type_mat, 1) cls_mask = self.stride_pool(cls_mask, 0) output = self.pool_tensor(output, mode=self.pooling_type) else: self.pooling_mult *= 2 if self.attention_type == "factorized": position_embeds = self.stride_pool(position_embeds, 0) token_type_mat = self.stride_pool(token_type_mat, [1, 2]) cls_mask = self.stride_pool(cls_mask, [1, 2]) attention_mask = self.pool_tensor(attention_mask, mode="min") output = self.pool_tensor(output, mode=self.pooling_type) attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) return output, attention_inputs def post_attention_pooling(self, attention_inputs): """Pool the proper parts of `attention_inputs` after the attention layer.""" position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs if self.pool_q_only: self.pooling_mult *= 2 if self.attention_type == "factorized": position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0) token_type_mat = self.stride_pool(token_type_mat, 2) cls_mask = self.stride_pool(cls_mask, 1) attention_mask = self.pool_tensor(attention_mask, mode="min") attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask) return attention_inputs def _relative_shift_gather(positional_attn, context_len, shift): batch_size, n_head, seq_len, max_rel_len = shape_list(positional_attn) # max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j # What's next is the same as doing the following gather in PyTorch, which might be clearer code but less efficient. # idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1) # # matrix of context_len + i-j # return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len])) positional_attn = tf.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len]) positional_attn = positional_attn[:, :, shift:, :] positional_attn = tf.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift]) positional_attn = positional_attn[..., :context_len] return positional_attn class TFFunnelRelMultiheadAttention(keras.layers.Layer): def __init__(self, config, block_index, **kwargs): super().__init__(**kwargs) self.attention_type = config.attention_type self.n_head = n_head = config.n_head self.d_head = d_head = config.d_head self.d_model = d_model = config.d_model self.initializer_range = config.initializer_range self.block_index = block_index self.hidden_dropout = keras.layers.Dropout(config.hidden_dropout) self.attention_dropout = keras.layers.Dropout(config.attention_dropout) initializer = get_initializer(config.initializer_range) self.q_head = keras.layers.Dense( n_head * d_head, use_bias=False, kernel_initializer=initializer, name="q_head" ) self.k_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="k_head") self.v_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="v_head") self.post_proj = keras.layers.Dense(d_model, kernel_initializer=initializer, name="post_proj") self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.scale = 1.0 / (d_head**0.5) def build(self, input_shape=None): n_head, d_head, d_model = self.n_head, self.d_head, self.d_model initializer = get_initializer(self.initializer_range) self.r_w_bias = self.add_weight( shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_w_bias" ) self.r_r_bias = self.add_weight( shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_r_bias" ) self.r_kernel = self.add_weight( shape=(d_model, n_head, d_head), initializer=initializer, trainable=True, name="r_kernel" ) self.r_s_bias = self.add_weight( shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_s_bias" ) self.seg_embed = self.add_weight( shape=(2, n_head, d_head), initializer=initializer, trainable=True, name="seg_embed" ) if self.built: return self.built = True if getattr(self, "q_head", None) is not None: with tf.name_scope(self.q_head.name): self.q_head.build([None, None, d_model]) if getattr(self, "k_head", None) is not None: with tf.name_scope(self.k_head.name): self.k_head.build([None, None, d_model]) if getattr(self, "v_head", None) is not None: with tf.name_scope(self.v_head.name): self.v_head.build([None, None, d_model]) if getattr(self, "post_proj", None) is not None: with tf.name_scope(self.post_proj.name): self.post_proj.build([None, None, n_head * d_head]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, d_model]) def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None): """Relative attention score for the positional encodings""" # q_head has shape batch_size x sea_len x n_head x d_head if self.attention_type == "factorized": # Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236) # phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model phi, pi, psi, omega = position_embeds # Shape n_head x d_head u = self.r_r_bias * self.scale # Shape d_model x n_head x d_head w_r = self.r_kernel # Shape batch_size x sea_len x n_head x d_model q_r_attention = tf.einsum("binh,dnh->bind", q_head + u, w_r) q_r_attention_1 = q_r_attention * phi[:, None] q_r_attention_2 = q_r_attention * pi[:, None] # Shape batch_size x n_head x seq_len x context_len positional_attn = tf.einsum("bind,jd->bnij", q_r_attention_1, psi) + tf.einsum( "bind,jd->bnij", q_r_attention_2, omega ) else: # Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236) # Grab the proper positional encoding, shape max_rel_len x d_model if shape_list(q_head)[1] != context_len: shift = 2 r = position_embeds[self.block_index][1] else: shift = 1 r = position_embeds[self.block_index][0] # Shape n_head x d_head v = self.r_r_bias * self.scale # Shape d_model x n_head x d_head w_r = self.r_kernel # Shape max_rel_len x n_head x d_model r_head = tf.einsum("td,dnh->tnh", r, w_r) # Shape batch_size x n_head x seq_len x max_rel_len positional_attn = tf.einsum("binh,tnh->bnit", q_head + v, r_head) # Shape batch_size x n_head x seq_len x context_len positional_attn = _relative_shift_gather(positional_attn, context_len, shift) if cls_mask is not None: positional_attn *= cls_mask return positional_attn def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None): """Relative attention score for the token_type_ids""" if token_type_mat is None: return 0 batch_size, seq_len, context_len = shape_list(token_type_mat) # q_head has shape batch_size x seq_len x n_head x d_head # Shape n_head x d_head r_s_bias = self.r_s_bias * self.scale # Shape batch_size x n_head x seq_len x 2 token_type_bias = tf.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed) # Shape batch_size x n_head x seq_len x context_len token_type_mat = tf.tile(token_type_mat[:, None], [1, shape_list(q_head)[2], 1, 1]) # token_type_mat = tf.broadcast_to(token_type_mat[:, None], new_shape) # Shapes batch_size x n_head x seq_len diff_token_type, same_token_type = tf.split(token_type_bias, 2, axis=-1) # Shape batch_size x n_head x seq_len x context_len token_type_attn = tf.where( token_type_mat, tf.tile(same_token_type, [1, 1, 1, context_len]), tf.tile(diff_token_type, [1, 1, 1, context_len]), ) if cls_mask is not None: token_type_attn *= cls_mask return token_type_attn def call(self, query, key, value, attention_inputs, output_attentions=False, training=False): # query has shape batch_size x seq_len x d_model # key and value have shapes batch_size x context_len x d_model position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs batch_size, seq_len, _ = shape_list(query) context_len = shape_list(key)[1] n_head, d_head = self.n_head, self.d_head # Shape batch_size x seq_len x n_head x d_head q_head = tf.reshape(self.q_head(query), [batch_size, seq_len, n_head, d_head]) # Shapes batch_size x context_len x n_head x d_head k_head = tf.reshape(self.k_head(key), [batch_size, context_len, n_head, d_head]) v_head = tf.reshape(self.v_head(value), [batch_size, context_len, n_head, d_head]) q_head = q_head * self.scale # Shape n_head x d_head r_w_bias = self.r_w_bias * self.scale # Shapes batch_size x n_head x seq_len x context_len content_score = tf.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head) positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask) token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask) # merge attention scores attn_score = content_score + positional_attn + token_type_attn # perform masking if attention_mask is not None: attention_mask = tf.cast(attention_mask, dtype=attn_score.dtype) attn_score = attn_score - (INF * (1 - attention_mask[:, None, None])) # attention probability attn_prob = stable_softmax(attn_score, axis=-1) attn_prob = self.attention_dropout(attn_prob, training=training) # attention output, shape batch_size x seq_len x n_head x d_head attn_vec = tf.einsum("bnij,bjnd->bind", attn_prob, v_head) # Shape shape batch_size x seq_len x d_model attn_out = self.post_proj(tf.reshape(attn_vec, [batch_size, seq_len, n_head * d_head])) attn_out = self.hidden_dropout(attn_out, training=training) output = self.layer_norm(query + attn_out) return (output, attn_prob) if output_attentions else (output,) class TFFunnelPositionwiseFFN(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) initializer = get_initializer(config.initializer_range) self.linear_1 = keras.layers.Dense(config.d_inner, kernel_initializer=initializer, name="linear_1") self.activation_function = get_tf_activation(config.hidden_act) self.activation_dropout = keras.layers.Dropout(config.activation_dropout) self.linear_2 = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_2") self.dropout = keras.layers.Dropout(config.hidden_dropout) self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm") self.config = config def call(self, hidden, training=False): h = self.linear_1(hidden) h = self.activation_function(h) h = self.activation_dropout(h, training=training) h = self.linear_2(h) h = self.dropout(h, training=training) return self.layer_norm(hidden + h) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "linear_1", None) is not None: with tf.name_scope(self.linear_1.name): self.linear_1.build([None, None, self.config.d_model]) if getattr(self, "linear_2", None) is not None: with tf.name_scope(self.linear_2.name): self.linear_2.build([None, None, self.config.d_inner]) if getattr(self, "layer_norm", None) is not None: with tf.name_scope(self.layer_norm.name): self.layer_norm.build([None, None, self.config.d_model]) class TFFunnelLayer(keras.layers.Layer): def __init__(self, config, block_index, **kwargs): super().__init__(**kwargs) self.attention = TFFunnelRelMultiheadAttention(config, block_index, name="attention") self.ffn = TFFunnelPositionwiseFFN(config, name="ffn") def call(self, query, key, value, attention_inputs, output_attentions=False, training=False): attn = self.attention( query, key, value, attention_inputs, output_attentions=output_attentions, training=training ) output = self.ffn(attn[0], training=training) return (output, attn[1]) if output_attentions else (output,) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "ffn", None) is not None: with tf.name_scope(self.ffn.name): self.ffn.build(None) class TFFunnelEncoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.separate_cls = config.separate_cls self.pool_q_only = config.pool_q_only self.block_repeats = config.block_repeats self.attention_structure = TFFunnelAttentionStructure(config) self.blocks = [ [TFFunnelLayer(config, block_index, name=f"blocks_._{block_index}_._{i}") for i in range(block_size)] for block_index, block_size in enumerate(config.block_sizes) ] def call( self, inputs_embeds, attention_mask=None, token_type_ids=None, output_attentions=False, output_hidden_states=False, return_dict=True, training=False, ): # The pooling is not implemented on long tensors, so we convert this mask. # attention_mask = tf.cast(attention_mask, inputs_embeds.dtype) attention_inputs = self.attention_structure.init_attention_inputs( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, training=training, ) hidden = inputs_embeds all_hidden_states = (inputs_embeds,) if output_hidden_states else None all_attentions = () if output_attentions else None for block_index, block in enumerate(self.blocks): pooling_flag = shape_list(hidden)[1] > (2 if self.separate_cls else 1) pooling_flag = pooling_flag and block_index > 0 pooled_hidden = tf.zeros(shape_list(hidden)) if pooling_flag: pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling( hidden, attention_inputs ) for layer_index, layer in enumerate(block): for repeat_index in range(self.block_repeats[block_index]): do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag if do_pooling: query = pooled_hidden key = value = hidden if self.pool_q_only else pooled_hidden else: query = key = value = hidden layer_output = layer( query, key, value, attention_inputs, output_attentions=output_attentions, training=training ) hidden = layer_output[0] if do_pooling: attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs) if output_attentions: all_attentions = all_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden,) if not return_dict: return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) def build(self, input_shape=None): if self.built: return self.built = True for block in self.blocks: for layer in block: with tf.name_scope(layer.name): layer.build(None) def upsample(x, stride, target_len, separate_cls=True, truncate_seq=False): """ Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension. """ if stride == 1: return x if separate_cls: cls = x[:, :1] x = x[:, 1:] output = tf.repeat(x, repeats=stride, axis=1) if separate_cls: if truncate_seq: output = tf.pad(output, [[0, 0], [0, stride - 1], [0, 0]]) output = output[:, : target_len - 1] output = tf.concat([cls, output], axis=1) else: output = output[:, :target_len] return output class TFFunnelDecoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.separate_cls = config.separate_cls self.truncate_seq = config.truncate_seq self.stride = 2 ** (len(config.block_sizes) - 1) self.attention_structure = TFFunnelAttentionStructure(config) self.layers = [TFFunnelLayer(config, 0, name=f"layers_._{i}") for i in range(config.num_decoder_layers)] def call( self, final_hidden, first_block_hidden, attention_mask=None, token_type_ids=None, output_attentions=False, output_hidden_states=False, return_dict=True, training=False, ): upsampled_hidden = upsample( final_hidden, stride=self.stride, target_len=shape_list(first_block_hidden)[1], separate_cls=self.separate_cls, truncate_seq=self.truncate_seq, ) hidden = upsampled_hidden + first_block_hidden all_hidden_states = (hidden,) if output_hidden_states else None all_attentions = () if output_attentions else None attention_inputs = self.attention_structure.init_attention_inputs( hidden, attention_mask=attention_mask, token_type_ids=token_type_ids, training=training, ) for layer in self.layers: layer_output = layer( hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions, training=training ) hidden = layer_output[0] if output_attentions: all_attentions = all_attentions + layer_output[1:] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden,) if not return_dict: return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layers", None) is not None: for layer in self.layers: with tf.name_scope(layer.name): layer.build(None) @keras_serializable class TFFunnelBaseLayer(keras.layers.Layer): """Base model without decoder""" config_class = FunnelConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFFunnelEmbeddings(config, name="embeddings") self.encoder = TFFunnelEncoder(config, name="encoder") def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids, training=training) encoder_outputs = self.encoder( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return encoder_outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) @keras_serializable class TFFunnelMainLayer(keras.layers.Layer): """Base model with decoder""" config_class = FunnelConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.block_sizes = config.block_sizes self.output_attentions = config.output_attentions self.output_hidden_states = config.output_hidden_states self.return_dict = config.use_return_dict self.embeddings = TFFunnelEmbeddings(config, name="embeddings") self.encoder = TFFunnelEncoder(config, name="encoder") self.decoder = TFFunnelDecoder(config, name="decoder") def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) if inputs_embeds is None: inputs_embeds = self.embeddings(input_ids, training=training) encoder_outputs = self.encoder( inputs_embeds, attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=True, return_dict=return_dict, training=training, ) decoder_outputs = self.decoder( final_hidden=encoder_outputs[0], first_block_hidden=encoder_outputs[1][self.block_sizes[0]], attention_mask=attention_mask, token_type_ids=token_type_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) if not return_dict: idx = 0 outputs = (decoder_outputs[0],) if output_hidden_states: idx += 1 outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],) if output_attentions: idx += 1 outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],) return outputs return TFBaseModelOutput( last_hidden_state=decoder_outputs[0], hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states) if output_hidden_states else None, attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None) class TFFunnelDiscriminatorPredictions(keras.layers.Layer): """Prediction module for the discriminator, made up of two dense layers.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) initializer = get_initializer(config.initializer_range) self.dense = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="dense") self.activation_function = get_tf_activation(config.hidden_act) self.dense_prediction = keras.layers.Dense(1, kernel_initializer=initializer, name="dense_prediction") self.config = config def call(self, discriminator_hidden_states): hidden_states = self.dense(discriminator_hidden_states) hidden_states = self.activation_function(hidden_states) logits = tf.squeeze(self.dense_prediction(hidden_states)) return logits def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.d_model]) if getattr(self, "dense_prediction", None) is not None: with tf.name_scope(self.dense_prediction.name): self.dense_prediction.build([None, None, self.config.d_model]) class TFFunnelMaskedLMHead(keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.hidden_size = config.hidden_size self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states, training=False): seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states class TFFunnelClassificationHead(keras.layers.Layer): def __init__(self, config, n_labels, **kwargs): super().__init__(**kwargs) initializer = get_initializer(config.initializer_range) self.linear_hidden = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_hidden") self.dropout = keras.layers.Dropout(config.hidden_dropout) self.linear_out = keras.layers.Dense(n_labels, kernel_initializer=initializer, name="linear_out") self.config = config def call(self, hidden, training=False): hidden = self.linear_hidden(hidden) hidden = keras.activations.tanh(hidden) hidden = self.dropout(hidden, training=training) return self.linear_out(hidden) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "linear_hidden", None) is not None: with tf.name_scope(self.linear_hidden.name): self.linear_hidden.build([None, None, self.config.d_model]) if getattr(self, "linear_out", None) is not None: with tf.name_scope(self.linear_out.name): self.linear_out.build([None, None, self.config.d_model]) class TFFunnelPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = FunnelConfig base_model_prefix = "funnel" @property def dummy_inputs(self): # Funnel misbehaves with very small inputs, so we override and make them a bit bigger return {"input_ids": tf.ones((1, 3), dtype=tf.int32)} @dataclass class TFFunnelForPreTrainingOutput(ModelOutput): """ Output type of [`FunnelForPreTraining`]. Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Prediction scores of the head (scores for each token before SoftMax). hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None FUNNEL_START_DOCSTRING = r""" The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le. This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Parameters: config ([`XxxConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ FUNNEL_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( """ The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called decoder) or any task-specific head on top. """, FUNNEL_START_DOCSTRING, ) class TFFunnelBaseModel(TFFunnelPreTrainedModel): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelBaseLayer(config, name="funnel") @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]: return self.funnel( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) def serving_output(self, output): # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFBaseModelOutput( last_hidden_state=output.last_hidden_state, hidden_states=output.hidden_states, attentions=output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) @add_start_docstrings( "The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.", FUNNEL_START_DOCSTRING, ) class TFFunnelModel(TFFunnelPreTrainedModel): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelMainLayer(config, name="funnel") @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]: return self.funnel( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) def serving_output(self, output): # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFBaseModelOutput( last_hidden_state=output.last_hidden_state, hidden_states=output.hidden_states, attentions=output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) @add_start_docstrings( """ Funnel model with a binary classification head on top as used during pretraining for identifying generated tokens. """, FUNNEL_START_DOCSTRING, ) class TFFunnelForPreTraining(TFFunnelPreTrainedModel): def __init__(self, config: FunnelConfig, **kwargs) -> None: super().__init__(config, **kwargs) self.funnel = TFFunnelMainLayer(config, name="funnel") self.discriminator_predictions = TFFunnelDiscriminatorPredictions(config, name="discriminator_predictions") @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=TFFunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[Tuple[tf.Tensor], TFFunnelForPreTrainingOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, TFFunnelForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small") >>> model = TFFunnelForPreTraining.from_pretrained("funnel-transformer/small") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf") >>> logits = model(inputs).logits ```""" discriminator_hidden_states = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) discriminator_sequence_output = discriminator_hidden_states[0] logits = self.discriminator_predictions(discriminator_sequence_output) if not return_dict: return (logits,) + discriminator_hidden_states[1:] return TFFunnelForPreTrainingOutput( logits=logits, hidden_states=discriminator_hidden_states.hidden_states, attentions=discriminator_hidden_states.attentions, ) def serving_output(self, output): # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFFunnelForPreTrainingOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "discriminator_predictions", None) is not None: with tf.name_scope(self.discriminator_predictions.name): self.discriminator_predictions.build(None) @add_start_docstrings("""Funnel Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING) class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelMainLayer(config, name="funnel") self.lm_head = TFFunnelMaskedLMHead(config, self.funnel.embeddings, name="lm_head") def get_lm_head(self) -> TFFunnelMaskedLMHead: return self.lm_head def get_prefix_bias_name(self) -> str: warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning) return self.name + "/" + self.lm_head.name @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFMaskedLMOutput(logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "lm_head", None) is not None: with tf.name_scope(self.lm_head.name): self.lm_head.build(None) @add_start_docstrings( """ Funnel Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, FUNNEL_START_DOCSTRING, ) class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.funnel = TFFunnelBaseLayer(config, name="funnel") self.classifier = TFFunnelClassificationHead(config, config.num_labels, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = outputs[0] pooled_output = last_hidden_state[:, 0] logits = self.classifier(pooled_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFSequenceClassifierOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None) @add_start_docstrings( """ Funnel Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, FUNNEL_START_DOCSTRING, ) class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.funnel = TFFunnelBaseLayer(config, name="funnel") self.classifier = TFFunnelClassificationHead(config, 1, name="classifier") @property def dummy_inputs(self): return {"input_ids": tf.ones((3, 3, 4), dtype=tf.int32)} @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small-base", output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.funnel( flat_input_ids, attention_mask=flat_attention_mask, token_type_ids=flat_token_type_ids, inputs_embeds=flat_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) last_hidden_state = outputs[0] pooled_output = last_hidden_state[:, 0] logits = self.classifier(pooled_output, training=training) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFMultipleChoiceModelOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None) @add_start_docstrings( """ Funnel Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, FUNNEL_START_DOCSTRING, ) class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.funnel = TFFunnelMainLayer(config, name="funnel") self.dropout = keras.layers.Dropout(config.hidden_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFTokenClassifierOutput( logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ Funnel Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, FUNNEL_START_DOCSTRING, ) class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None: super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.funnel = TFFunnelMainLayer(config, name="funnel") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint="funnel-transformer/small", output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: bool = False, ) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.funnel( input_ids, attention_mask, token_type_ids, inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions, "end_position": end_positions} loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput: # hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of # different dimensions return TFQuestionAnsweringModelOutput( start_logits=output.start_logits, end_logits=output.end_logits, hidden_states=output.hidden_states, attentions=output.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "funnel", None) is not None: with tf.name_scope(self.funnel.name): self.funnel.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
transformers/src/transformers/models/funnel/modeling_tf_funnel.py/0
{ "file_path": "transformers/src/transformers/models/funnel/modeling_tf_funnel.py", "repo_id": "transformers", "token_count": 35085 }
546
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _import_structure = { "configuration_git": ["GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_git"] = [ "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/git/__init__.py/0
{ "file_path": "transformers/src/transformers/models/git/__init__.py", "repo_id": "transformers", "token_count": 621 }
547
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch OpenAI GPT-2 model.""" import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.cuda.amp import autocast from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, QuestionAnsweringModelOutput, SequenceClassifierOutputWithPast, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel, SequenceSummary from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from ...utils.model_parallel_utils import assert_device_map, get_device_map from .configuration_gpt2 import GPT2Config if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai-community/gpt2" _CONFIG_FOR_DOC = "GPT2Config" # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path): """Load tf checkpoints in a pytorch model""" try: import re import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(gpt2_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array.squeeze()) for name, array in zip(names, arrays): name = name[6:] # skip "model/" name = name.split("/") pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+\d+", m_name): scope_names = re.split(r"(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "w" or scope_names[0] == "g": pointer = getattr(pointer, "weight") elif scope_names[0] == "b": pointer = getattr(pointer, "bias") elif scope_names[0] == "wpe" or scope_names[0] == "wte": pointer = getattr(pointer, scope_names[0]) pointer = getattr(pointer, "weight") else: pointer = getattr(pointer, scope_names[0]) if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except ValueError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class GPT2Attention(nn.Module): def __init__(self, config, is_cross_attention=False, layer_idx=None): super().__init__() self.config = config max_positions = config.max_position_embeddings self.register_buffer( "bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( 1, 1, max_positions, max_positions ), persistent=False, ) self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False) self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.split_size = self.embed_dim if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale_attn_weights = config.scale_attn_weights self.is_cross_attention = is_cross_attention # Layer-wise attention scaling, reordering, and upcasting self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx self.layer_idx = layer_idx self.reorder_and_upcast_attn = config.reorder_and_upcast_attn if self.is_cross_attention: self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim) self.q_attn = Conv1D(self.embed_dim, self.embed_dim) else: self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim) self.c_proj = Conv1D(self.embed_dim, self.embed_dim) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.is_causal = True self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads) index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads)) self.num_heads = self.num_heads - len(heads) self.pruned_heads = self.pruned_heads.union(heads) def _attn(self, query, key, value, attention_mask=None, head_mask=None): attn_weights = torch.matmul(query, key.transpose(-1, -2)) if self.scale_attn_weights: attn_weights = attn_weights / torch.full( [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device ) # Layer-wise attention scaling if self.scale_attn_by_inverse_layer_idx: attn_weights = attn_weights / float(self.layer_idx + 1) if not self.is_cross_attention: # if only "normal" attention layer implements causal mask query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] mask_value = torch.finfo(attn_weights.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise attn_weights = attn_weights.type(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None): # Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM) bsz, num_heads, q_seq_len, dk = query.size() _, _, k_seq_len, _ = key.size() # Preallocate attn_weights for `baddbmm` attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device) # Compute Scale Factor scale_factor = 1.0 if self.scale_attn_weights: scale_factor /= float(value.size(-1)) ** 0.5 if self.scale_attn_by_inverse_layer_idx: scale_factor /= float(self.layer_idx + 1) # Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk)) with autocast(enabled=False): q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len) attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor) attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len) if not self.is_cross_attention: # if only "normal" attention layer implements causal mask query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] mask_value = torch.finfo(attn_weights.dtype).min # Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`. # Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device` mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights, mask_value) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1) # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise if attn_weights.dtype != torch.float32: raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32") attn_weights = attn_weights.type(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights def _split_heads(self, tensor, num_heads, attn_head_size): """ Splits hidden_size dim into attn_head_size and num_heads """ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) tensor = tensor.view(new_shape) return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features) def _merge_heads(self, tensor, num_heads, attn_head_size): """ Merges attn_head_size dim and num_attn_heads dim into hidden_size """ tensor = tensor.permute(0, 2, 1, 3).contiguous() new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,) return tensor.view(new_shape) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: if encoder_hidden_states is not None: if not hasattr(self, "q_attn"): raise ValueError( "If class is used as cross attention, the weights `q_attn` have to be defined. " "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`." ) query = self.q_attn(hidden_states) key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) attention_mask = encoder_attention_mask else: query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) query = self._split_heads(query, self.num_heads, self.head_dim) key = self._split_heads(key, self.num_heads, self.head_dim) value = self._split_heads(value, self.num_heads, self.head_dim) if layer_past is not None: past_key, past_value = layer_past key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None if self.reorder_and_upcast_attn: attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask) else: attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim) attn_output = self.c_proj(attn_output) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights,) return outputs # a, present, (attentions) class GPT2FlashAttention2(GPT2Attention): """ GPT2 flash attention module. This module inherits from `GPT2Attention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: bsz, _, _ = hidden_states.size() if encoder_hidden_states is not None: if not hasattr(self, "q_attn"): raise ValueError( "If class is used as cross attention, the weights `q_attn` have to be defined. " "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`." ) query = self.q_attn(hidden_states) key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2) attention_mask = encoder_attention_mask else: query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) query = self._split_heads(query, self.num_heads, self.head_dim) key = self._split_heads(key, self.num_heads, self.head_dim) value = self._split_heads(value, self.num_heads, self.head_dim) if layer_past is not None: past_key = layer_past[0] past_value = layer_past[1] key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) present = None if use_cache is True: present = (key, value) query_length = query.shape[2] tgt_len = key.shape[2] # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim query = query.transpose(1, 2).view(bsz, query_length, self.num_heads, self.head_dim) key = key.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim) value = value.transpose(1, 2).view(bsz, tgt_len, self.num_heads, self.head_dim) attn_dropout = self.attn_dropout.p if self.training else 0.0 # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) if query.dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.c_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query = query.to(target_dtype) key = key.to(target_dtype) value = value.to(target_dtype) attn_output = self._flash_attention_forward( query, key, value, attention_mask, query_length, dropout=attn_dropout ) attn_weights_reshaped = attn_output.reshape(bsz, query_length, self.num_heads * self.head_dim) attn_output = self.c_proj(attn_weights_reshaped) attn_output = self.resid_dropout(attn_output) outputs = (attn_output, present) if output_attentions: outputs += (attn_weights_reshaped,) return outputs # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) class GPT2MLP(nn.Module): def __init__(self, intermediate_size, config): super().__init__() embed_dim = config.hidden_size self.c_fc = Conv1D(intermediate_size, embed_dim) self.c_proj = Conv1D(embed_dim, intermediate_size) self.act = ACT2FN[config.activation_function] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor: hidden_states = self.c_fc(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.c_proj(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states GPT2_ATTENTION_CLASSES = { "eager": GPT2Attention, "flash_attention_2": GPT2FlashAttention2, } class GPT2Block(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() hidden_size = config.hidden_size inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size attention_class = GPT2_ATTENTION_CLASSES[config._attn_implementation] self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.attn = attention_class(config=config, layer_idx=layer_idx) self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) if config.add_cross_attention: self.crossattention = attention_class(config=config, is_cross_attention=True, layer_idx=layer_idx) self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon) self.mlp = GPT2MLP(inner_dim, config) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: residual = hidden_states hidden_states = self.ln_1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attn_output = attn_outputs[0] # output_attn: a, present, (attentions) outputs = attn_outputs[1:] # residual connection hidden_states = attn_output + residual if encoder_hidden_states is not None: # add one self-attention block for cross-attention if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " "cross-attention layers by setting `config.add_cross_attention=True`" ) residual = hidden_states hidden_states = self.ln_cross_attn(hidden_states) cross_attn_outputs = self.crossattention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) attn_output = cross_attn_outputs[0] # residual connection hidden_states = residual + attn_output outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights residual = hidden_states hidden_states = self.ln_2(hidden_states) feed_forward_hidden_states = self.mlp(hidden_states) # residual connection hidden_states = residual + feed_forward_hidden_states if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs # hidden_states, present, (attentions, cross_attentions) class GPT2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPT2Config load_tf_weights = load_tf_weights_in_gpt2 base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True _no_split_modules = ["GPT2Block"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True def __init__(self, *inputs, **kwargs): super().__init__(*inputs, **kwargs) def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme: # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers. # > -- GPT-2 :: https://openai.com/blog/better-language-models/ # # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py for name, p in module.named_parameters(): if name == "c_proj.weight": # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))) @dataclass class GPT2DoubleHeadsModelOutput(ModelOutput): """ Base class for outputs of models predicting if two sentences are consecutive or not. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided): Multiple choice classification loss. logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. GPT2Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None mc_loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mc_logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None GPT2_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GPT2Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GPT2_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for `past_key_values`. In other words, the `attention_mask` always has to have the length: `len(past_key_values) + len(input_ids)` [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see `past_key_values`). use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PARALLELIZE_DOCSTRING = r""" This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices. Args: device_map (`Dict[int, list]`, optional, defaults to None): A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the following number of attention modules: - openai-community/gpt2: 12 - openai-community/gpt2-medium: 24 - openai-community/gpt2-large: 36 - openai-community/gpt2-xl: 48 Example: ```python # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules: model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-xl") device_map = { 0: [0, 1, 2, 3, 4, 5, 6, 7, 8], 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34], 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47], } model.parallelize(device_map) ``` """ DEPARALLELIZE_DOCSTRING = r""" Moves the model to cpu from a model parallel state. Example: ```python # On a 4 GPU machine with openai-community/gpt2-large: model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2-large") device_map = { 0: [0, 1, 2, 3, 4, 5, 6, 7], 1: [8, 9, 10, 11, 12, 13, 14, 15], 2: [16, 17, 18, 19, 20, 21, 22, 23], 3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], } model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() ``` """ @add_start_docstrings( "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.", GPT2_START_DOCSTRING, ) class GPT2Model(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) self.embed_dim = config.hidden_size self.wte = nn.Embedding(config.vocab_size, self.embed_dim) self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)]) self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) # Model parallel self.model_parallel = False self.device_map = None self.gradient_checkpointing = False self._attn_implementation = config._attn_implementation # Initialize weights and apply final processing self.post_init() @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): # Check validity of device_map warnings.warn( "`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your" " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1," " ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.h)) self.model_parallel = True self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) self.last_device = "cuda:" + str(max(self.device_map.keys())) self.wte = self.wte.to(self.first_device) self.wpe = self.wpe.to(self.first_device) # Load onto devices for k, v in self.device_map.items(): for block in v: cuda_device = "cuda:" + str(k) self.h[block] = self.h[block].to(cuda_device) # ln_f to last self.ln_f = self.ln_f.to(self.last_device) @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.model_parallel = False self.device_map = None self.first_device = "cpu" self.last_device = "cpu" self.wte = self.wte.to("cpu") self.wpe = self.wpe.to("cpu") for index in range(len(self.h)): self.h[index] = self.h[index].to("cpu") self.ln_f = self.ln_f.to("cpu") torch.cuda.empty_cache() def get_input_embeddings(self): return self.wte def set_input_embeddings(self, new_embeddings): self.wte = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].attn.prune_heads(heads) @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) if past_key_values is None: past_length = 0 past_key_values = tuple([None] * len(self.h)) else: past_length = past_key_values[0][0].size(-2) if position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0) # Attention mask. if attention_mask is not None: attention_mask = attention_mask.view(batch_size, -1) if self._attn_implementation == "flash_attention_2": attention_mask = attention_mask if 0 in attention_mask else None else: # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask[:, None, None, :] # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.add_cross_attention and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) if self._attn_implementation != "flash_attention_2": encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # head_mask has shape n_layer x batch x n_heads x N x N head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.wte(input_ids) position_embeds = self.wpe(position_ids) hidden_states = inputs_embeds + position_embeds if token_type_ids is not None: token_type_embeds = self.wte(token_type_ids) hidden_states = hidden_states + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure layer_past is on same device as hidden_states (might not be correct) if layer_past is not None: layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past) # Ensure that attention_mask is always on the same device as hidden_states if attention_mask is not None: attention_mask = attention_mask.to(hidden_states.device) if isinstance(head_mask, torch.Tensor): head_mask = head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, None, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask, use_cache, output_attentions, ) else: outputs = block( hidden_states, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask[i], encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.ln_f(hidden_states) hidden_states = hidden_states.view(output_shape) # Add last hidden state if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) @add_start_docstrings( """ The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, ) class GPT2LMHeadModel(GPT2PreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':" " 0, 'transformer.h.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.transformer.h)) self.transformer.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.transformer.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.transformer.deparallelize() self.transformer = self.transformer.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False torch.cuda.empty_cache() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # Omit tokens covered by past_key_values if past_key_values: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] if token_type_ids is not None: token_type_ids = token_type_ids[:, -input_ids.shape[1] :] attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] else: position_ids = None # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } ) return model_inputs @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.transformer.first_device) hidden_states = hidden_states.to(self.lm_head.weight.device) lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, cross_attentions=transformer_outputs.cross_attentions, ) @staticmethod def _reorder_cache( past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor ) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past_key_values ) @add_start_docstrings( """ The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, GPT2_START_DOCSTRING, ) class GPT2DoubleHeadsModel(GPT2PreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) config.num_labels = 1 self.transformer = GPT2Model(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.multiple_choice_head = SequenceSummary(config) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`GPT2DoubleHeadsModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should" " load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your" " own `device_map` but it needs to be a dictionary module_name to device, so for instance" " {'transformer.h.0': 0, 'transformer.h.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.transformer.h), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.transformer.h)) self.transformer.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.transformer.first_device) self.multiple_choice_head = self.multiple_choice_head.to(self.transformer.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.transformer.deparallelize() self.transformer = self.transformer.to("cpu") self.lm_head = self.lm_head.to("cpu") self.multiple_choice_head = self.multiple_choice_head.to("cpu") self.model_parallel = False torch.cuda.empty_cache() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def prepare_inputs_for_generation(self, input_ids, inputs_embeds=None, past_key_values=None, **kwargs): token_type_ids = kwargs.get("token_type_ids", None) # Omit tokens covered by past_key_values if past_key_values: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] if token_type_ids is not None: token_type_ids = token_type_ids[:, -input_ids.shape[1] :] attention_mask = kwargs.get("attention_mask", None) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] else: position_ids = None # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and past_key_values is None: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids.contiguous()} model_inputs.update( { "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "position_ids": position_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } ) return model_inputs @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, mc_token_ids: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, mc_labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, GPT2DoubleHeadsModelOutput]: r""" mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - 1]`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids`. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size - 1]` mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) Return: Example: ```python >>> import torch >>> from transformers import AutoTokenizer, GPT2DoubleHeadsModel >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") >>> model = GPT2DoubleHeadsModel.from_pretrained("openai-community/gpt2") >>> # Add a [CLS] to the vocabulary (we should train it also!) >>> num_added_tokens = tokenizer.add_special_tokens({"cls_token": "[CLS]"}) >>> # Update the model embeddings with the new vocabulary size >>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] >>> encoded_choices = [tokenizer.encode(s) for s in choices] >>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices] >>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2 >>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1 >>> outputs = model(input_ids, mc_token_ids=mc_token_ids) >>> lm_logits = outputs.logits >>> mc_logits = outputs.mc_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.transformer.first_device) hidden_states = hidden_states.to(self.lm_head.weight.device) lm_logits = self.lm_head(hidden_states) mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) mc_loss = None if mc_labels is not None: loss_fct = CrossEntropyLoss() mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) lm_loss = None if labels is not None: labels = labels.to(lm_logits.device) shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits, mc_logits) + transformer_outputs[1:] if mc_loss is not None: output = (mc_loss,) + output return ((lm_loss,) + output) if lm_loss is not None else output return GPT2DoubleHeadsModelOutput( loss=lm_loss, mc_loss=mc_loss, logits=lm_logits, mc_logits=mc_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache( past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor ) -> Tuple[Tuple[torch.Tensor]]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. """ return tuple( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) for layer_past in past_key_values ) @add_start_docstrings( """ The GPT2 Model transformer with a sequence classification head on top (linear layer). [`GPT2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, GPT2_START_DOCSTRING, ) class GPT2ForSequenceClassification(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPT2Model(config) self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint="microsoft/DialogRPT-updown", output_type=SequenceClassifierOutputWithPast, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, GPT2_START_DOCSTRING, ) class GPT2ForTokenClassification(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPT2Model(config) if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: classifier_dropout = config.classifier_dropout elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING) # fmt: off @add_code_sample_docstrings( checkpoint="brad1141/gpt2-finetuned-comp2", output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_loss=0.25, expected_output=[ "Lead", "Lead", "Lead", "Position", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", "Lead", ], ) # fmt: on def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The GPT-2 Model transformer with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, GPT2_START_DOCSTRING, ) class GPT2ForQuestionAnswering(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPT2Model(config) self.qa_outputs = nn.Linear(config.hidden_size, 2) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, real_checkpoint=_CHECKPOINT_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1).to(start_logits.device) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1).to(end_logits.device) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/gpt2/modeling_gpt2.py/0
{ "file_path": "transformers/src/transformers/models/gpt2/modeling_gpt2.py", "repo_id": "transformers", "token_count": 38760 }
548
# coding=utf-8 # Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for GPTNeoX.""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} class GPTNeoXTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" GPT-NeoX-20B tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import GPTNeoXTokenizerFast >>> tokenizer = GPTNeoXTokenizerFast.from_pretrained("openai-community/gpt2") >>> tokenizer("Hello world")["input_ids"] [15496, 995] >>> tokenizer(" Hello world")["input_ids"] [18435, 995] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. unk_token (`str`, *optional*, defaults to `<|endoftext|>`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `<|endoftext|>`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `<|endoftext|>`): The end of sequence token. pad_token (`str`, *optional*): Token for padding a sequence. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (GPTNeoX tokenizer detect beginning of words by the preceding space). add_bos_token (`bool`, *optional*, defaults to `False`): Whether or not to add a `bos_token` at the start of sequences. add_eos_token (`bool`, *optional*, defaults to `False`): Whether or not to add an `eos_token` at the end of sequences. trim_offsets (`bool`, *optional*, defaults to `True`): Whether or not the post-processing step should trim offsets to avoid including whitespaces. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|endoftext|>", eos_token="<|endoftext|>", pad_token=None, add_bos_token=False, add_eos_token=False, add_prefix_space=False, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, add_bos_token=add_bos_token, add_eos_token=add_eos_token, add_prefix_space=add_prefix_space, **kwargs, ) self._add_bos_token = add_bos_token self._add_eos_token = add_eos_token self.update_post_processor() pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space @property def add_eos_token(self): return self._add_eos_token @property def add_bos_token(self): return self._add_bos_token @add_eos_token.setter def add_eos_token(self, value): self._add_eos_token = value self.update_post_processor() @add_bos_token.setter def add_bos_token(self, value): self._add_bos_token = value self.update_post_processor() # Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor def update_post_processor(self): """ Updates the underlying post processor with the current `bos_token` and `eos_token`. """ bos = self.bos_token bos_token_id = self.bos_token_id if bos is None and self.add_bos_token: raise ValueError("add_bos_token = True but bos_token = None") eos = self.eos_token eos_token_id = self.eos_token_id if eos is None and self.add_eos_token: raise ValueError("add_eos_token = True but eos_token = None") single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" special_tokens = [] if self.add_bos_token: special_tokens.append((bos, bos_token_id)) if self.add_eos_token: special_tokens.append((eos, eos_token_id)) self._tokenizer.post_processor = processors.TemplateProcessing( single=single, pair=pair, special_tokens=special_tokens ) # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) bos_token_id = [1] if self.add_bos_token else [] eos_token_id = [1] if self.add_eos_token else [] if token_ids_1 is None: return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id return ( bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id ) # Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = bos_token_id + token_ids_0 + eos_token_id if token_ids_1 is not None: output = output + bos_token_id + token_ids_1 + eos_token_id return output def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) @property # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template def default_chat_template(self): """ A simple chat template that ignores role information and just concatenates messages with EOS tokens. """ return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}"
transformers/src/transformers/models/gpt_neox/tokenization_gpt_neox_fast.py/0
{ "file_path": "transformers/src/transformers/models/gpt_neox/tokenization_gpt_neox_fast.py", "repo_id": "transformers", "token_count": 4041 }
549
# coding=utf-8 # Copyright 2023 Toshiyuki Sakamoto(tanreinama) and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GPTSANJapanese model.""" import copy from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from ...activations import ACT2FN from ...modeling_outputs import MoECausalLMOutputWithPast, MoEModelOutputWithPastAndCrossAttentions from ...modeling_utils import PreTrainedModel from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, logging, ) from .configuration_gptsan_japanese import GPTSanJapaneseConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "GPTSanJapaneseConfig" _CHECKPOINT_FOR_DOC = "Tanrei/GPTSAN-japanese" #################################################### # This dict contains ids and associated url # for the pretrained weights provided with the models #################################################### # Copied from transformers.models.switch_transformers.modeling_switch_transformers.router_z_loss_func def router_z_loss_func(router_logits: torch.Tensor) -> float: r""" Compute the router z-loss implemented in PyTorch. The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906). It encourages router logits to remain small in an effort to improve stability. Args: router_logits (`float`): Input logits of shape [batch_size, sequence_length, num_experts] Returns: Scalar router z-loss. """ num_groups, tokens_per_group, _ = router_logits.shape log_z = torch.logsumexp(router_logits, dim=-1) z_loss = log_z**2 return torch.sum(z_loss) / (num_groups * tokens_per_group) # Copied from transformers.models.switch_transformers.modeling_switch_transformers.load_balancing_loss_func def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float: r""" Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: router_probs (`torch.Tensor`): Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts]. expert_indices (`torch.Tensor`): Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token. Returns: The auxiliary loss. """ num_experts = router_probs.shape[-1] # cast the expert indices to int64, otherwise one-hot encoding will fail if expert_indices.dtype != torch.int64: expert_indices = expert_indices.to(torch.int64) if len(expert_indices.shape) == 2: expert_indices = expert_indices.unsqueeze(2) expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts) # For a given token, determine if it was routed to a given expert. expert_mask = torch.max(expert_mask, axis=-2).values # cast to float32 otherwise mean will fail expert_mask = expert_mask.to(torch.float32) tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2) return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2) class GPTSanJapaneseDenseActDense(nn.Module): """ FFN Layer for Switch Transformer and Extra layers GPTSAN can mix Switch Transformer layers and normal Transformer layers This class is used as Expert in Switch Transformer layers and as FFN in regular Transformer layers. RELU is used in the Switch Transformer layer, and Swish is used in the normal Transformer layer, so there is a choice of which is used in the argument. """ def __init__(self, config: GPTSanJapaneseConfig, ext_layer=False): super().__init__() d_inter = config.d_ext if ext_layer else config.d_ff self.wi = nn.Linear(config.d_model, d_inter, bias=ext_layer) self.wo = nn.Linear(d_inter, config.d_model, bias=ext_layer) self.dropout = nn.Identity() if ext_layer else nn.Dropout(config.dropout_rate) self.act = ACT2FN["swish" if ext_layer else "relu"] def forward(self, hidden_states): r""" Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. Returns: torch.Tensor[num_groups, tokens_per_group, hidden_dim] """ hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) return hidden_states # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersTop1Router with SwitchTransformers->GPTSanJapanese class GPTSanJapaneseTop1Router(nn.Module): """ Router using tokens choose top-1 experts assignment. This router uses the same mechanism as in Switch Transformer (https://arxiv.org/abs/2101.03961) and V-MoE (https://arxiv.org/abs/2106.05974): tokens choose their top experts. Items are sorted by router_probs and then routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each token is processed by an expert**, or that each expert receives at least one token. """ def __init__(self, config: GPTSanJapaneseConfig): super().__init__() self.num_experts = config.num_experts self.expert_capacity = config.expert_capacity self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias) self.jitter_noise = config.router_jitter_noise self.ignore_padding_tokens = config.router_ignore_padding_tokens self.dtype = getattr(torch, config.router_dtype) def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: r""" Computes router probabilities from input hidden states. Args: hidden_states (`torch.Tensor`): (batch_size, sequence_length, hidden_dim) from which router probabilities are computed. Returns: router_probabilities (`torch.Tensor`): Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each token and expert. Used for routing tokens to experts. router_logits (`torch.Tensor`): Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits. This is used later for computing router z-loss. """ # float32 is used to ensure stability. See the discussion of "selective precision" in # https://arxiv.org/abs/2101.03961. # We also store the previous dtype to cast back the output to the previous dtype self.input_dtype = hidden_states.dtype hidden_states = hidden_states.to(self.dtype) if self.training and self.jitter_noise > 0: # Multiply the token inputs by the uniform distribution - adding some noise hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) # Shape: [num_groups, tokens_per_group, num_experts] self._cast_classifier() router_logits = self.classifier(hidden_states) # Apply Softmax and cast back to the original `dtype` router_probabilities = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(self.input_dtype) return router_probabilities, router_logits def _cast_classifier(self): r""" `bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an instance of the `Linear8bitLt` class by checking special attributes. """ if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")): self.classifier = self.classifier.to(self.dtype) def forward(self, hidden_states: torch.Tensor) -> Tuple: r""" Generic forward function for every Router class. Each Router expects to have the same input hidden states (`hidden_states`) corresponding to the hidden states for each token, the `expert_capacity` corresponding to the number of tokens the Router will send to each expert, some Routers can send up to few tokens to each expert. Each Router works as the following: it expects the hidden states for each token, gets the `router_probs` and `router_logits` from the `router_weights`. This will assign for each token, the raw probability to be assigned to an expert. Then each Router class will have to define its own `_compute_routing_instructions`. Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. Returns: Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`] Tuple containing the expert index, the router probs and the router logits. The router probabilities and logits are required to compute the loss. """ router_probs, router_logits = self._compute_router_probabilities(hidden_states) expert_index = torch.argmax(router_probs, dim=-1) expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.num_experts) # Mask tokens outside expert capacity. Sum over each sequence token_priority = torch.cumsum(expert_index, dim=-2) # mask if the token routed to to the expert will overflow expert_capacity_mask = token_priority <= self.expert_capacity expert_index = expert_index * expert_capacity_mask router_probs = torch.max(router_probs, dim=-1).values.unsqueeze(-1) return expert_index, router_probs, router_logits # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersSparseMLP with SwitchTransformers->GPTSanJapanese class GPTSanJapaneseSparseMLP(nn.Module): r""" Implementation of the Switch Transformers Sparse MLP module. """ def __init__(self, config: GPTSanJapaneseConfig, expert_class: nn.Module = GPTSanJapaneseDenseActDense): super().__init__() # Step 1: Get the correct router according to its class self.router = GPTSanJapaneseTop1Router(config) # Step 2: Get the experts self.experts = nn.ModuleDict() for idx in range(config.num_experts): self.experts[f"expert_{idx}"] = expert_class(config) def forward(self, hidden_states): r""" Hold on, this will be slightly tricky to understand In the correct order, a MoE layer does the following: 1- Gets the `router_mask` from the router. The shape of the mask is `(batch_size, sequence_length, num_expert)` and corresponds to the argmax of the `router_probs`. The probabilities are needed in the computation of the hidden states : they are broadcasted to the hidden states values (can be interpreted as a scaling factor). 2- Dispatch the tokens to its associated experts. We do a classic for loop over the experts and assign for each expert the corresponding hidden states. """ # Step 1: Get the router_mask from the router as wel as the probabilities router_mask, router_probs, router_logits = self.router(hidden_states) expert_index = torch.argmax(router_mask, dim=-1) # The routers introduced might not always map all the tokens, to a router, which means that some hidden states # can be unchanged from one layer to another. That is why the hidden states are cloned before updating only the seleced ones. next_states = hidden_states.clone() for idx, expert in enumerate(self.experts.values()): token_indices = router_mask[:, :, idx].bool() next_states[token_indices] = expert(hidden_states[token_indices]).to(next_states.dtype) hidden_states = router_probs * next_states return hidden_states, (router_logits, expert_index) class GPTSanJapaneseLayerSparseFF(nn.Module): r""" Switch Transformers Feed Forward layer module. This is a wrapper around the Mixture of Experts module. Parameters: config : ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ def __init__(self, config: GPTSanJapaneseConfig): super().__init__() self.mlp = GPTSanJapaneseSparseMLP(config) self.soft_bypass_mlp = nn.Linear(config.d_model, config.d_model, bias=False) self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon) def forward(self, hidden_states, output_router_logits): r""" Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. output_router_logits (`bool`) : output experts router output. Returns: torch.Tensor[num_groups, tokens_per_group, hidden_dim] """ forwarded_states, router_tuple = self.mlp(hidden_states) forwarded_states += torch.tanh(self.soft_bypass_mlp(hidden_states)) output = hidden_states + self.norm(forwarded_states) if output_router_logits and router_tuple is not None: return output, router_tuple else: return output class GPTSanJapaneseLayerDenseFF(nn.Module): r""" Extra Transformers Feed Forward layer module. Parameters: config : ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ def __init__(self, config: GPTSanJapaneseConfig): super().__init__() # Check if it is a sparse layer, if not then it is a dense layer self.mlp = GPTSanJapaneseDenseActDense(config, ext_layer=True) self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon) def forward(self, hidden_states): r""" Args: hidden_states (`torch.Tensor`) : [num_groups, tokens_per_group, hidden_dim] inputs to send to experts. Returns: torch.Tensor[num_groups, tokens_per_group, hidden_dim] """ forwarded_states = self.mlp(hidden_states) output = hidden_states + self.norm(forwarded_states) return output # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->GPTSanJapanese class GPTSanJapaneseAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[GPTSanJapaneseConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value class GPTSanJapaneseLayerSelfAttention(nn.Module): """ Self Attention and Normalization Unit """ def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.self_attn = GPTSanJapaneseAttention( embed_dim=config.d_model, num_heads=config.num_heads, is_decoder=True, bias=has_relative_attention_bias, ) self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: r""" Self-attention and normalize block. Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. Returns: Tuple[torch.Tensor[num_groups, tokens_per_group, hidden_dim],...] """ # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple atten_out = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=(1 - attention_mask) * torch.finfo(hidden_states.dtype).min, layer_head_mask=head_mask, output_attentions=output_attentions, ) if output_attentions: attn_weights = (atten_out[1],) else: attn_weights = () attention_output = atten_out[0] hidden = hidden_states + self.norm(attention_output) if use_cache: outputs = (hidden, atten_out[2]) # hidden, present, (attentions) else: outputs = (hidden,) # hidden, (attentions) return outputs + attn_weights class GPTSanJapaneseBlock(nn.Module): """ Self Attention and FFN Unit """ def __init__(self, config, ext_layer=False): super().__init__() self.self_attn = GPTSanJapaneseLayerSelfAttention(config) self.feed_forward = GPTSanJapaneseLayerDenseFF(config) if ext_layer else GPTSanJapaneseLayerSparseFF(config) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, output_router_tuple: Optional[bool] = False, ) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]: r""" GPTSAN transformer block. Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. head_mask (`numpy.ndarray` of shape `({0})`, `optional): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`) : output attention probabirities. output_router_tuple: output experts router logits and expert id. Returns: Tuple[torch.Tensor[num_groups, tokens_per_group, hidden_dim],...] """ atten_out = self.self_attn( hidden_states=hidden_states, past_key_value=past_key_value, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, ) attention_output = atten_out[0] if isinstance(self.feed_forward, GPTSanJapaneseLayerSparseFF): sparse_out = self.feed_forward(attention_output, output_router_tuple) if output_router_tuple: hidden, router_tuple = sparse_out else: hidden = sparse_out else: hidden = self.feed_forward(attention_output) outputs = (hidden,) + atten_out[1:] if isinstance(self.feed_forward, GPTSanJapaneseLayerSparseFF) and output_router_tuple: outputs += (router_tuple,) return outputs class GPTSanJapanesePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GPTSanJapaneseConfig base_model_prefix = "gptsan_japanese" supports_gradient_checkpointing = False _no_split_modules = ["GPTSanJapaneseBlock"] _skip_keys_device_placement = "past_key_values" @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "input_ids": input_ids, "attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, nn.LayerNorm): module.weight.data.fill_(factor * 1.0) module.bias.data.zero_() elif isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module, "bias") and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=factor * 1.0) elif isinstance(module, GPTSanJapaneseModel): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.embed_tokens.weight.data.normal_(mean=0.0, std=factor * 1.0) module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "extra_position_embeddings") and module.extra_position_embeddings is not None: module.extra_position_embeddings.weight.data.normal_(mean=0.0, std=factor * 1.0) elif isinstance(module, (GPTSanJapaneseModel, GPTSanJapaneseForConditionalGeneration)): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.final_logits_bias.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) elif isinstance(module, GPTSanJapaneseDenseActDense): # Mesh TensorFlow FF initialization # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi, "bias") and module.wi.bias is not None: module.wi.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, GPTSanJapaneseAttention): # Multi-headed attention d_model = self.config.d_model key_value_proj_dim = self.config.d_model n_heads = self.config.num_heads module.k_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.v_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.q_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) elif isinstance(module, GPTSanJapaneseSparseMLP): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 d_model = self.config.d_model key_value_proj_dim = self.config.d_model n_heads = self.config.num_heads module.router.classifier.weight.data.normal_(mean=0.0, std=factor * 1) for idx in range(self.config.num_experts): module.experts[f"expert_{idx}"].wi.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.experts[f"expert_{idx}"].wo.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id if decoder_start_token_id is None: raise ValueError( "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. " "See T5 docs for more information." ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids GPTSAN_JAPANESE_START_DOCSTRING = r""" The [GPTSAN-japanese](https://github.com/tanreinama/GPTSAN) model was proposed in General-purpose Swich transformer based Japanese language model This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GPTSAN_JAPANESE_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. GPTSAN-japanese is a model that generates sentence continuations or predicts tokens at mask positions. Special tokens required for inputs to the model are automatically appended. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): An input that masks the Prefix part in the Prefix-LM input. Mask values selected in `[0, 1]`: - 1 for tokens that are **prefix** input, - 0 for tokens that are **not-prefix** input. spout (`torch.Tensor` of shape `(batch_size, config.d_spout)`): This vector is transformed through an 8-layer FFN and can be used instead of `past_key_values`. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`. Router logits of the decoder model, useful to compute the auxiliary loss for Mixture of Experts models. """ @add_start_docstrings( "The bare GPTSAN-japanese Model transformer outputting raw hidden-states without any specific head on top.", GPTSAN_JAPANESE_START_DOCSTRING, ) class GPTSanJapaneseModel(GPTSanJapanesePreTrainedModel): def __init__(self, config: GPTSanJapaneseConfig): super().__init__(config) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model) self.config = copy.deepcopy(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model) self.last_project = nn.Linear(config.d_model, config.d_model, bias=True) self.act = ACT2FN["swish"] self.blocks = torch.nn.ModuleList([]) for _ in range(config.num_switch_layers): self.blocks.append(GPTSanJapaneseBlock(config)) for _ in range(config.num_ext_layers): self.blocks.append(GPTSanJapaneseBlock(config, ext_layer=True)) if config.num_ext_layers > 0: self.extra_position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model) if config.d_spout: spouts = [] for _ in range(8): spouts.append(nn.Linear(config.d_spout, config.d_spout, bias=False)) spouts.append(nn.Tanh()) spouts.append(nn.Linear(config.d_spout, config.num_layers * 2 * config.d_model, bias=False)) self.spout = nn.Sequential(*spouts) self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings @add_start_docstrings_to_model_forward(GPTSAN_JAPANESE_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.FloatTensor] = None, spout: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, output_router_logits: Optional[bool] = None, num_precontext: Optional[torch.LongTensor] = None, ) -> Union[MoEModelOutputWithPastAndCrossAttentions, Tuple[torch.FloatTensor]]: r""" num_precontext (`torch.LongTensor` of shape `(batch_size,1)`): length of `hybrid` input tokens in the input. Tokens up to this length refer to both front and back like BERT, tokens after that refer only to front like GPT. see also: https://github.com/tanreinama/GPTSAN/blob/main/report/model.md Returns: `MoEModelOutputWithPastAndCrossAttentions` or `tuple` if `return_dict` returns MoEModelOutputWithPastAndCrossAttentions insted of tuple """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict device = self.position_embeddings.weight.device if input_ids is None: input_ids = torch.zeros([1, 1]).int().to(device) # dummy for input_ids was None if inputs_embeds is not None: raise NotImplementedError( "GPTSanJapaneseModel does not use `inputs_embeds`. Make sure to pass in `input_ids` instead." ) num_pasts_contexts = 0 num_batch = input_ids.shape[0] pasts_or_spout_value = None if past_key_values is not None: num_pasts_contexts = past_key_values[0][0].shape[2] elif self.config.d_spout and spout is not None: # `spout` is a special input vector specific to GPTSAN # This controls the output by projecting embedded information such as the class of sentences during learning. # It should passed instead of the first past_key_value. # See the original GPTSAN repository for details num_pasts_contexts += 1 # If there is an attention_mask, increase first one for spout if self.config.d_spout and spout is not None and attention_mask is not None: attention_mask_with_spout = torch.ones(num_batch, attention_mask.shape[1] + 1, device=device) attention_mask_with_spout[:, 1:] -= 1 - attention_mask # 1st token should be spout attention_mask = attention_mask_with_spout # update attention_mask if num_precontext is not None: # `num_precontext` is the number of tokens that refer to each other in prefix-lm # created per batch, so dimension of num_precontext should be [batch, 1] if not ( len(num_precontext.shape) == 2 and num_precontext.shape[1] == 1 ): # num_precontext Should be [batch,1] raise ValueError("num_precontext should be [batch, 1] size.") num_precontext = torch.reshape(num_precontext, [-1]) else: num_precontext = torch.zeros([num_batch]).int().to(device) num_input_contexts = input_ids.shape[1] num_output_contexts = num_input_contexts + num_pasts_contexts hidden_states = self.embed_tokens(input_ids) if past_key_values is not None: pasts_or_spout_value = past_key_values elif self.config.d_spout and spout is not None: # Make vector from `spout` of GPTSAN to the same shape as past_key_values pasts_or_spout_value = self.spout(spout) # projecting `spout` vector pasts_or_spout_value = torch.reshape( pasts_or_spout_value, [ num_batch, self.config.num_layers, 2, self.config.num_heads, num_pasts_contexts, self.config.d_model // self.config.num_heads, ], ) pasts_or_spout_value = torch.split(pasts_or_spout_value, [1] * self.config.num_layers, dim=1) # make same shape as past_key_values pasts_or_spout_value = tuple( tuple([b.squeeze(1) for b in torch.split(a.squeeze(1), [1, 1], dim=1)]) for a in pasts_or_spout_value ) else: pasts_or_spout_value = [None] * self.config.num_layers # Token position considering spout and pasts token_position = torch.arange(num_input_contexts).to(device) + num_pasts_contexts if attention_mask is None: attention_mask = torch.ones(num_batch, num_input_contexts, device=device) # positions for get position_embeddings gather_position = ( ( torch.zeros((num_batch, self.config.d_model, num_input_contexts)).to(device) + token_position.unsqueeze(0) ) .transpose(1, 2) .long() ) # When padding with padding_side="left", zeros line up on the left side of attention_mask, so position_embeddings is shifted accordingly gather_position -= (1 - attention_mask).argmin(dim=-1).unsqueeze(1).unsqueeze(2) gather_position = torch.clip(gather_position, num_pasts_contexts, self.config.max_position_embeddings - 1) # attention_mask is applied per batch for i in range(num_batch): hidden_states[i] += torch.gather(self.position_embeddings.weight, dim=0, index=gather_position[i]) # Create a mask to be used when making the prefix Input length of Prefix-LM variable causal_mask = ( torch.tril(torch.ones((num_output_contexts, num_output_contexts), dtype=torch.uint8)) .view(1, 1, num_output_contexts, num_output_contexts) .to(device) ) prefix_lm_mask = causal_mask[:, :, -num_input_contexts:, :] if token_type_ids is not None: token_type_ids = token_type_ids.unsqueeze(1).unsqueeze(2) prefix_lm_mask = ((prefix_lm_mask + token_type_ids) > 0).float() # Marge prefix_lm_mask and attention_mask extended_attention_mask = prefix_lm_mask * attention_mask.unsqueeze(1).unsqueeze(2) # Prepare head mask if needed if head_mask is not None: head_mask = self.get_head_mask( head_mask, self.config.num_switch_layers + self.config.num_ext_layers ) # n_layer x batch x n_heads x N x N # outputs present_key_value_states = () if self.config.use_cache or use_cache else None all_hidden_states = () if self.config.output_hidden_states or output_hidden_states else None all_attentions = () if self.config.output_attentions or output_attentions else None all_router_probs = () if self.config.output_router_logits or output_router_logits else None for layer, past in enumerate(pasts_or_spout_value): if layer == self.config.num_switch_layers: if self.config.num_ext_layers > 0: # extra_position_embeddings are extra position embeddings that are only created when extending the model with code from the original GPTSAN repository. Not used in the default model. # However, it is created when you create an additional layer and partially train only that location. # Therefore, convert_gptsan_tf_checkpoint_to_pytorch.py is used when converting and loading models created in the original GPTSAN repository. for i in range(num_batch): hidden_states[i] += torch.gather( self.extra_position_embeddings.weight, dim=0, index=gather_position[i] ) output_router_tuple = ( self.config.output_router_logits or output_router_logits ) and layer < self.config.num_switch_layers block_output = self.blocks[layer]( hidden_states=hidden_states, past_key_value=past, attention_mask=extended_attention_mask, head_mask=head_mask, use_cache=self.config.use_cache or use_cache, output_attentions=self.config.output_attentions or output_attentions, output_router_tuple=output_router_tuple, ) outpos = 0 hidden_states = block_output[outpos] if self.config.output_hidden_states or output_hidden_states: all_hidden_states += (hidden_states,) if self.config.use_cache or use_cache: outpos += 1 present = block_output[outpos] present_key_value_states += (present,) if self.config.output_attentions or output_attentions: outpos += 1 attention_probs = block_output[outpos] all_attentions += (attention_probs,) if output_router_tuple: outpos += 1 router_tuple = block_output[outpos] all_router_probs.append(router_tuple[0]) hidden_states = self.last_project(hidden_states) hidden_states = self.act(hidden_states) if self.config.output_hidden_states or output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, present_key_value_states, all_hidden_states, all_attentions, all_router_probs, ] if v is not None ) return MoEModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, router_probs=all_router_probs, ) @add_start_docstrings( "The bare GPTSAN-japanese Model with a language modeling head.", GPTSAN_JAPANESE_START_DOCSTRING, ) class GPTSanJapaneseForConditionalGeneration(GPTSanJapanesePreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: GPTSanJapaneseConfig): super().__init__(config) self.model = GPTSanJapaneseModel(config) self.register_buffer("final_logits_bias", torch.zeros([1, config.vocab_size])) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) if not self.config.torchscript: self.lm_head.weight = self.model.embed_tokens.weight @add_start_docstrings_to_model_forward(GPTSAN_JAPANESE_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.FloatTensor] = None, spout: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, head_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = False, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, output_router_logits: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, ) -> Union[Tuple[torch.FloatTensor], MoECausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: `MoECausalLMOutputWithPast` or `tuple` if `return_dict` returns MoECausalLMOutputWithPast insted of tuple Example: Text Generation with regular LM Model ```python >>> from transformers import AutoModel, AutoTokenizer, trainer_utils >>> device = "cuda" >>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device) >>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> x_token = tokenizer("織田信長は、", return_tensors="pt") >>> trainer_utils.set_seed(30) >>> input_ids = x_token.input_ids.to(device) >>> gen_token = model.generate(input_ids, max_new_tokens=50) >>> tokenizer.decode(gen_token[0]) "織田信長は、政治・軍事の中枢まで掌握した政治家であり、日本史上類を見ない驚異的な軍事侵攻を続け..." ``` Text Generation with Prefix-LM Model ```python >>> from transformers import AutoModel, AutoTokenizer, trainer_utils >>> device = "cuda" >>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device) >>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> x_token = tokenizer("", prefix_text="織田信長は、", return_tensors="pt") >>> trainer_utils.set_seed(30) >>> input_ids = x_token.input_ids.to(device) >>> token_type_ids = x_token.token_type_ids.to(device) >>> gen_token = model.generate(input_ids, token_type_ids=token_type_ids, max_new_tokens=50) >>> tokenizer.decode(gen_token[0]) "織田信長は、政治・外交で数々の戦果を上げるが、1568年からは、いわゆる本能寺の変で細川晴元に暗殺される..." ``` Simultaneously Text Generation And Masked Language Model ```python >>> from transformers import AutoModel, AutoTokenizer, trainer_utils >>> device = "cuda" >>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device) >>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> masked_sentence = "武田信玄は、<|inputmask|>時代ファンならぜひ押さえ<|inputmask|>きたい名将の一人。" >>> x_token = tokenizer("", prefix_text=masked_sentence, return_tensors="pt") >>> trainer_utils.set_seed(30) >>> input_ids = x_token.input_ids.to(device) >>> token_type_ids = x_token.token_type_ids.to(device) >>> out_lm_token = model.generate(input_ids, token_type_ids=token_type_ids, max_new_tokens=50) >>> out_mlm_token = model(input_ids, token_type_ids=token_type_ids).logits.argmax(axis=-1) >>> tokenizer.decode(out_mlm_token[0]) "武田信玄は、戦国時代ファンならぜひ押さえておきたい名将の一人。" >>> tokenizer.decode(out_lm_token[0][input_ids.shape[1] :]) "武田氏の三代に渡った武田家のひとり\n甲斐市に住む、日本史上最大の戦国大名。..." ```""" SEG_TOKEN = self.config.separator_token_id use_cache = use_cache or self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict model_return_dict = True num_precontext = None if input_ids is not None: num_batch = input_ids.shape[0] num_precontext = torch.zeros([num_batch]).int().to(input_ids.device) where_separators = torch.where(input_ids == SEG_TOKEN) num_precontext[where_separators[0]] += where_separators[1] num_precontext = num_precontext.unsqueeze(1) outputs = self.model( input_ids, attention_mask, token_type_ids, spout, past_key_values, head_mask, use_cache, inputs_embeds, decoder_inputs_embeds, output_attentions, output_hidden_states, model_return_dict, output_router_logits, num_precontext, ) lm_logits = self.lm_head(outputs[0]) if lm_logits.shape[-1] == self.final_logits_bias.shape[-1]: lm_logits = lm_logits + self.final_logits_bias loss = None z_loss = None router_probs = None aux_loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(lm_logits.device) loss_fct = nn.CrossEntropyLoss(ignore_index=-100) if output_router_logits: # Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder router_logits, expert_indexes = self._unpack_router_logits(outputs.router_probs) z_loss = router_z_loss_func(router_logits) router_probs = nn.Softmax(dim=-1)(router_logits) aux_loss = load_balancing_loss_func(router_probs, expert_indexes) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) if not return_dict: return tuple( v for v in [ loss, lm_logits, outputs.past_key_values, outputs.hidden_states, outputs.router_probs, z_loss, aux_loss, ] if v is not None ) return MoECausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_probs, z_loss=z_loss, aux_loss=aux_loss, ) def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, attention_mask: torch.FloatTensor, token_type_ids: Optional[torch.FloatTensor] = None, spout: Optional[Union[List, torch.FloatTensor]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, **kwargs, ): if isinstance(spout, list): spout = torch.tensor(spout).float() if input_ids is not None: spout = spout.to(input_ids.device) if past_key_values is not None: return { "input_ids": input_ids[:, -1:] if input_ids is not None else None, "attention_mask": attention_mask, "token_type_ids": token_type_ids[:, -1:] if token_type_ids is not None else None, "spout": spout, "past_key_values": past_key_values, } return { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, "spout": spout, "past_key_values": None, } # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.prepare_decoder_input_ids_from_labels with SwitchTransformers->GPTSanJapanese def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) # Copied from transformers.models.mbart.modeling_mbart.MBartForConditionalGeneration.resize_token_embeddings with MBart->GPTSanJapanese def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) self._resize_final_logits_bias(new_embeddings.weight.shape[0]) return new_embeddings # Copied from transformers.models.mbart.modeling_mbart.MBartForConditionalGeneration._resize_final_logits_bias with MBart->GPTSanJapanese def _resize_final_logits_bias(self, new_num_tokens: int) -> None: old_num_tokens = self.final_logits_bias.shape[-1] if new_num_tokens <= old_num_tokens: new_bias = self.final_logits_bias[:, :new_num_tokens] else: extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) self.register_buffer("final_logits_bias", new_bias) def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, new_embeddings): self.model.set_input_embeddings(new_embeddings) # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.set_output_embeddings with SwitchTransformers->GPTSanJapanese def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.get_output_embeddings with SwitchTransformers->GPTSanJapanese def get_output_embeddings(self): return self.lm_head # Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration._unpack_router_logits with SwitchTransformers->GPTSanJapanese def _unpack_router_logits(self, router_outputs): total_router_logits = [] total_expert_indexes = [] for router_output in router_outputs: if len(router_output[0].shape) > 1: router_logits, expert_indexes = router_output total_router_logits.append(router_logits) total_expert_indexes.append(expert_indexes) return torch.cat(total_router_logits, dim=1), torch.cat(total_expert_indexes, dim=1)
transformers/src/transformers/models/gptsan_japanese/modeling_gptsan_japanese.py/0
{ "file_path": "transformers/src/transformers/models/gptsan_japanese/modeling_gptsan_japanese.py", "repo_id": "transformers", "token_count": 28624 }
550
# coding=utf-8 # Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch GroupViT model.""" import collections.abc import math from dataclasses import dataclass from typing import Any, Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import PreTrainedModel from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_groupvit import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "nvidia/groupvit-gcc-yfcc" # contrastive loss function, adapted from # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html def contrastive_loss(logits: torch.Tensor) -> torch.Tensor: return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device)) # Copied from transformers.models.clip.modeling_clip.clip_loss with clip->groupvit def groupvit_loss(similarity: torch.Tensor) -> torch.Tensor: caption_loss = contrastive_loss(similarity) image_loss = contrastive_loss(similarity.t()) return (caption_loss + image_loss) / 2.0 def hard_softmax(logits: torch.Tensor, dim: int): y_soft = logits.softmax(dim) # Straight through. index = y_soft.max(dim, keepdim=True)[1] y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) ret = y_hard - y_soft.detach() + y_soft return ret def gumbel_softmax(logits: torch.Tensor, tau: float = 1, hard: bool = False, dim: int = -1) -> torch.Tensor: # more stable https://github.com/pytorch/pytorch/issues/41663 gumbel_dist = torch.distributions.gumbel.Gumbel( torch.tensor(0.0, device=logits.device, dtype=logits.dtype), torch.tensor(1.0, device=logits.device, dtype=logits.dtype), ) gumbels = gumbel_dist.sample(logits.shape) gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau) y_soft = gumbels.softmax(dim) if hard: # Straight through. index = y_soft.max(dim, keepdim=True)[1] y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0) ret = y_hard - y_soft.detach() + y_soft else: # Reparametrization trick. ret = y_soft return ret def resize_attention_map(attentions, height, width, align_corners=False): """ Args: attentions (`torch.Tensor`): attention map of shape [batch_size, groups, feat_height*feat_width] height (`int`): height of the output attention map width (`int`): width of the output attention map align_corners (`bool`, *optional*): the `align_corner` argument for `nn.functional.interpolate`. Returns: `torch.Tensor`: resized attention map of shape [batch_size, groups, height, width] """ scale = (height * width // attentions.shape[2]) ** 0.5 if height > width: feat_width = int(np.round(width / scale)) feat_height = attentions.shape[2] // feat_width else: feat_height = int(np.round(height / scale)) feat_width = attentions.shape[2] // feat_height batch_size = attentions.shape[0] groups = attentions.shape[1] # number of group token # [batch_size, groups, height*width, groups] -> [batch_size, groups, height, width] attentions = attentions.reshape(batch_size, groups, feat_height, feat_width) attentions = nn.functional.interpolate( attentions, size=(height, width), mode="bilinear", align_corners=align_corners ) return attentions def get_grouping_from_attentions(attentions, hw_shape): """ Args: attentions (`tuple(torch.FloatTensor)`: tuple of attention maps returned by `GroupViTVisionTransformer` hw_shape (`tuple(int)`): height and width of the output attention map Returns: `torch.Tensor`: the attention map of shape [batch_size, groups, height, width] """ attn_maps = [] with torch.no_grad(): prev_attn_masks = None for attn_masks in attentions: # [batch_size, num_groups, height x width] -> [batch_size, height x width, num_groups] attn_masks = attn_masks.permute(0, 2, 1).contiguous() if prev_attn_masks is None: prev_attn_masks = attn_masks else: prev_attn_masks = prev_attn_masks @ attn_masks # [batch_size, heightxwidth, num_groups] -> [batch_size, num_groups, heightxwidth] -> [batch_size, num_groups, height, width] cur_attn_map = resize_attention_map(prev_attn_masks.permute(0, 2, 1).contiguous(), *hw_shape) attn_maps.append(cur_attn_map) # [batch_size, num_groups, height, width] final_grouping = attn_maps[-1] return final_grouping class GroupViTCrossAttentionLayer(nn.Module): def __init__(self, config: GroupViTVisionConfig): super().__init__() self.attn = GroupViTAttention(config) self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp = GroupViTMLP(config) self.norm_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward(self, query, key): x = query x = x + self.attn(query, encoder_hidden_states=key)[0] x = x + self.mlp(self.norm2(x)) x = self.norm_post(x) return x class GroupViTAssignAttention(nn.Module): def __init__(self, config: GroupViTVisionConfig): super().__init__() self.scale = config.hidden_size**-0.5 self.q_proj = nn.Linear(config.hidden_size, config.hidden_size) self.k_proj = nn.Linear(config.hidden_size, config.hidden_size) self.v_proj = nn.Linear(config.hidden_size, config.hidden_size) self.proj = nn.Linear(config.hidden_size, config.hidden_size) self.assign_eps = config.assign_eps def get_attn(self, attn, gumbel=True, hard=True): if gumbel and self.training: attn = gumbel_softmax(attn, dim=-2, hard=hard) else: if hard: attn = hard_softmax(attn, dim=-2) else: attn = nn.functional.softmax(attn, dim=-2) return attn def forward(self, query, key): value = key # [batch_size, query_length, channels] query = self.q_proj(query) # [batch_size, key_length, channels] key = self.k_proj(key) # [batch_size, key_length, channels] value = self.v_proj(value) # [batch_size, query_length, key_length] raw_attn = (query @ key.transpose(-2, -1)) * self.scale attn = self.get_attn(raw_attn) soft_attn = self.get_attn(raw_attn, gumbel=False, hard=False) attn = attn / (attn.sum(dim=-1, keepdim=True) + self.assign_eps) out = attn @ value out = self.proj(out) return out, soft_attn class GroupViTTokenAssign(nn.Module): def __init__(self, config: GroupViTVisionConfig, num_group_token, num_output_group): super().__init__() self.num_output_group = num_output_group # norm on group_tokens self.norm_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) assign_mlp_ratio = ( config.assign_mlp_ratio if isinstance(config.assign_mlp_ratio, collections.abc.Iterable) else (config.assign_mlp_ratio, config.assign_mlp_ratio) ) tokens_dim, channels_dim = [int(x * config.hidden_size) for x in assign_mlp_ratio] self.mlp_inter = GroupViTMixerMLP(config, num_group_token, tokens_dim, num_output_group) self.norm_post_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # norm on x self.norm_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pre_assign_attn = GroupViTCrossAttentionLayer(config) self.assign = GroupViTAssignAttention(config) self.norm_new_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.mlp_channels = GroupViTMLP(config, config.hidden_size, channels_dim, config.hidden_size) def project_group_token(self, group_tokens): """ Args: group_tokens (torch.Tensor): group tokens, [batch_size, num_group_tokens, channels] Returns: projected_group_tokens (torch.Tensor): [batch_size, num_output_groups, channels] """ # [B, num_output_groups, C] <- [B, num_group_tokens, C] projected_group_tokens = self.mlp_inter(group_tokens) projected_group_tokens = self.norm_post_tokens(projected_group_tokens) return projected_group_tokens def forward(self, image_tokens, group_tokens): """ Args: image_tokens (`torch.Tensor`): image tokens, of shape [batch_size, input_length, channels] group_tokens (`torch.Tensor`): group tokens, [batch_size, num_group_tokens, channels] """ group_tokens = self.norm_tokens(group_tokens) image_tokens = self.norm_x(image_tokens) # [batch_size, num_output_groups, channels] projected_group_tokens = self.project_group_token(group_tokens) projected_group_tokens = self.pre_assign_attn(projected_group_tokens, image_tokens) new_image_tokens, attention = self.assign(projected_group_tokens, image_tokens) new_image_tokens += projected_group_tokens new_image_tokens = new_image_tokens + self.mlp_channels(self.norm_new_x(new_image_tokens)) return new_image_tokens, attention @dataclass class GroupViTModelOutput(ModelOutput): """ Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. segmentation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`): Classification scores for each pixel. <Tip warning={true}> The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the original image size as post-processing. You should always check your logits shape and resize as needed. </Tip> text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`GroupViTTextModel`]. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`GroupViTVisionModel`]. text_model_output (`BaseModelOutputWithPooling`): The output of the [`GroupViTTextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`GroupViTVisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: torch.FloatTensor = None logits_per_text: torch.FloatTensor = None segmentation_logits: torch.FloatTensor = None text_embeds: torch.FloatTensor = None image_embeds: torch.FloatTensor = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> Tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) class GroupViTPatchEmbeddings(nn.Module): """ Image to Patch Embedding. """ def __init__( self, image_size: int = 224, patch_size: Union[int, Tuple[int, int]] = 16, num_channels: int = 3, embed_dim: int = 768, ): super().__init__() image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) x = self.projection(pixel_values).flatten(2).transpose(1, 2) return x class GroupViTVisionEmbeddings(nn.Module): def __init__(self, config: GroupViTVisionConfig): super().__init__() self.patch_embeddings = GroupViTPatchEmbeddings( image_size=config.image_size, patch_size=config.patch_size, num_channels=config.num_channels, embed_dim=config.hidden_size, ) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches, config.hidden_size)) self.dropout = nn.Dropout(config.dropout) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.config = config def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. Source: https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 """ npatch = embeddings.shape[1] if npatch == self.position_embeddings.shape[1] and height == width: return self.position_embeddings patch_pos_embed = self.position_embeddings num_original_pos_embed = patch_pos_embed.shape[1] dim = embeddings.shape[-1] feat_height = height // self.config.patch_size feat_width = width // self.config.patch_size # we add a small number to avoid floating point error in the interpolation # see discussion at https://github.com/facebookresearch/dino/issues/8 feat_height, feat_width = feat_height + 0.1, feat_width + 0.1 original_height = original_width = math.sqrt(num_original_pos_embed) reshaped_patch_pos_embed = patch_pos_embed.reshape(1, int(original_height), int(original_width), dim).permute( 0, 3, 1, 2 ) scale_factor = (feat_height / original_height, feat_width / original_width) patch_pos_embed = nn.functional.interpolate( reshaped_patch_pos_embed, scale_factor=scale_factor, mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return patch_pos_embed def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) embeddings = self.layernorm(embeddings) batch_size, seq_len, _ = embeddings.size() # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings # Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->GroupViT class GroupViTTextEmbeddings(nn.Module): def __init__(self, config: GroupViTTextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings class GroupViTStage(nn.Module): """This corresponds to the `GroupingLayer` class in the GroupViT implementation.""" def __init__( self, config: GroupViTVisionConfig, depth: int, num_prev_group_token: int, num_group_token: int, num_output_group: int, ): super().__init__() self.depth = depth self.num_group_token = num_group_token if num_group_token > 0: self.group_token = nn.Parameter(torch.zeros(1, num_group_token, config.hidden_size)) else: self.group_token = None self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(depth)]) if num_group_token > 0: self.downsample = GroupViTTokenAssign( config=config, num_group_token=num_group_token, num_output_group=num_output_group, ) else: self.downsample = None if num_prev_group_token > 0 and num_group_token > 0: self.group_projector = nn.Sequential( nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps), GroupViTMixerMLP(config, num_prev_group_token, config.hidden_size // 2, num_group_token), ) else: self.group_projector = None @property def with_group_token(self): return self.group_token is not None def split_x(self, x): if self.with_group_token: return x[:, : -self.num_group_token], x[:, -self.num_group_token :] else: return x, None def concat_x(self, x: torch.Tensor, group_token: Optional[torch.Tensor] = None) -> torch.Tensor: if group_token is None: return x return torch.cat([x, group_token], dim=1) def forward( self, hidden_states: torch.Tensor, prev_group_token: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the grouping tensors of Grouping block. """ if self.with_group_token: group_token = self.group_token.expand(hidden_states.size(0), -1, -1) if self.group_projector is not None: group_token = group_token + self.group_projector(prev_group_token) else: group_token = None x = hidden_states cat_x = self.concat_x(x, group_token) for layer in self.layers: layer_out = layer(cat_x, attention_mask=None, causal_attention_mask=None) cat_x = layer_out[0] x, group_token = self.split_x(cat_x) attention = None if self.downsample is not None: x, attention = self.downsample(x, group_token) outputs = (x, group_token) if output_attentions: outputs = outputs + (attention,) return outputs class GroupViTMLP(nn.Module): def __init__( self, config: GroupViTVisionConfig, hidden_size: Optional[int] = None, intermediate_size: Optional[int] = None, output_size: Optional[int] = None, ): super().__init__() self.config = config self.activation_fn = ACT2FN[config.hidden_act] hidden_size = hidden_size if hidden_size is not None else config.hidden_size intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size output_size = output_size if output_size is not None else hidden_size self.fc1 = nn.Linear(hidden_size, intermediate_size) self.fc2 = nn.Linear(intermediate_size, output_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.fc1(hidden_states) hidden_states = self.activation_fn(hidden_states) hidden_states = self.fc2(hidden_states) return hidden_states class GroupViTMixerMLP(GroupViTMLP): def forward(self, x): x = super().forward(x.transpose(1, 2)) return x.transpose(1, 2) class GroupViTAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" bsz, tgt_len, embed_dim = hidden_states.size() is_cross_attention = encoder_hidden_states is not None # get query proj query_states = self.q_proj(hidden_states) * self.scale if is_cross_attention: key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz) value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz) else: key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) # apply the causal_attention_mask first if causal_attention_mask is not None: if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" f" {causal_attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit akward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, tgt_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->GroupViT class GroupViTEncoderLayer(nn.Module): def __init__(self, config: GroupViTConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = GroupViTAttention(config) self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) self.mlp = GroupViTMLP(config) self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, causal_attention_mask: torch.Tensor, output_attentions: Optional[bool] = False, ) -> Tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. `(config.encoder_attention_heads,)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.layer_norm1(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.layer_norm2(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class GroupViTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = GroupViTConfig base_model_prefix = "groupvit" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" init_range = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=init_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) factor = self.config.initializer_factor if isinstance(module, GroupViTTextEmbeddings): module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02) elif isinstance(module, GroupViTAttention): factor = self.config.initializer_factor in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor out_proj_std = (module.embed_dim**-0.5) * factor nn.init.normal_(module.q_proj.weight, std=in_proj_std) nn.init.normal_(module.k_proj.weight, std=in_proj_std) nn.init.normal_(module.v_proj.weight, std=in_proj_std) nn.init.normal_(module.out_proj.weight, std=out_proj_std) elif isinstance(module, GroupViTMLP): factor = self.config.initializer_factor in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor fc_std = (2 * module.config.hidden_size) ** -0.5 * factor nn.init.normal_(module.fc1.weight, std=fc_std) nn.init.normal_(module.fc2.weight, std=in_proj_std) GROUPVIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`GroupViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ GROUPVIT_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ GROUPVIT_VISION_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ GROUPVIT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details. return_loss (`bool`, *optional*): Whether or not to return the contrastive loss. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class GroupViTVisionEncoder(nn.Module): def __init__(self, config: GroupViTVisionConfig) -> None: super().__init__() self.config = config self.stages = nn.ModuleList( [ GroupViTStage( config=config, depth=config.depths[i], num_group_token=config.num_group_tokens[i], num_output_group=config.num_output_groups[i], num_prev_group_token=config.num_output_groups[i - 1] if i > 0 else 0, ) for i in range(len(config.depths)) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict all_hidden_states = () if output_hidden_states else None all_groupings = () if output_attentions else None group_tokens = None for i, stage in enumerate(self.stages): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = stage(hidden_states, group_tokens, output_attentions) hidden_states = layer_outputs[0] group_tokens = layer_outputs[1] if output_attentions and layer_outputs[2] is not None: all_groupings = all_groupings + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_groupings] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_groupings ) class GroupViTTextEncoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self-attention layers. Each layer is a [`GroupViTEncoderLayer`]. Args: config: GroupViTTextConfig """ def __init__(self, config: GroupViTTextConfig): super().__init__() self.config = config self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, causal_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Causal mask for the text model. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, causal_attention_mask, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, causal_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) # Copied from transformers.models.clip.modeling_clip.CLIPTextTransformer with CLIPText->GroupViTText, CLIPEncoder->GroupViTTextEncoder, CLIP_TEXT->GROUPVIT_TEXT class GroupViTTextTransformer(nn.Module): def __init__(self, config: GroupViTTextConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = GroupViTTextEmbeddings(config) self.encoder = GroupViTTextEncoder(config) self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) # For `pooled_output` computation self.eos_token_id = config.eos_token_id @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is None: raise ValueError("You have to specify input_ids") input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids) # CLIP's text model uses causal mask, prepare it here. # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324 causal_attention_mask = _create_4d_causal_attention_mask( input_shape, hidden_states.dtype, device=hidden_states.device ) # expand attention_mask if attention_mask is not None: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, causal_attention_mask=causal_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.final_layer_norm(last_hidden_state) if self.eos_token_id == 2: # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here. # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added # ------------------------------------------------------------ # text_embeds.shape = [batch_size, sequence_length, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14 pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1), ] else: # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible) pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`) # Note: we assume each sequence (along batch dim.) contains an `eos_token_id` (e.g. prepared by the tokenizer) (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id) .int() .argmax(dim=-1), ] if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class GroupViTTextModel(GroupViTPreTrainedModel): config_class = GroupViTTextConfig def __init__(self, config: GroupViTTextConfig): super().__init__(config) self.text_model = GroupViTTextTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> nn.Module: return self.text_model.embeddings.token_embedding def set_input_embeddings(self, value): self.text_model.embeddings.token_embedding = value @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTTextConfig) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import CLIPTokenizer, GroupViTTextModel >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> model = GroupViTTextModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled (EOS token) states ```""" return self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) class GroupViTVisionTransformer(nn.Module): def __init__(self, config: GroupViTVisionConfig): super().__init__() self.config = config embed_dim = config.hidden_size self.embeddings = GroupViTVisionEmbeddings(config) self.encoder = GroupViTVisionEncoder(config) self.layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( hidden_states=hidden_states, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) last_hidden_state = encoder_outputs[0] # normalize the last hidden state last_hidden_state = self.layernorm(last_hidden_state) pooled_output = last_hidden_state.mean(dim=1) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class GroupViTVisionModel(GroupViTPreTrainedModel): config_class = GroupViTVisionConfig main_input_name = "pixel_values" def __init__(self, config: GroupViTVisionConfig): super().__init__(config) self.vision_model = GroupViTVisionTransformer(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> GroupViTPatchEmbeddings: return self.vision_model.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTVisionConfig) def forward( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, GroupViTVisionModel >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> model = GroupViTVisionModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled CLS states ```""" return self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @add_start_docstrings(GROUPVIT_START_DOCSTRING) class GroupViTModel(GroupViTPreTrainedModel): config_class = GroupViTConfig def __init__(self, config: GroupViTConfig): super().__init__(config) if not isinstance(config.text_config, GroupViTTextConfig): raise ValueError( "config.text_config is expected to be of type GroupViTTextConfig but is of type" f" {type(config.text_config)}." ) if not isinstance(config.vision_config, GroupViTVisionConfig): raise ValueError( "config.vision_config is expected to be of type GroupViTVisionConfig but is of type" f" {type(config.vision_config)}." ) text_config = config.text_config vision_config = config.vision_config self.projection_dim = config.projection_dim self.projection_intermediate_dim = config.projection_intermediate_dim self.text_embed_dim = text_config.hidden_size self.vision_embed_dim = vision_config.hidden_size self.text_model = GroupViTTextTransformer(text_config) self.vision_model = GroupViTVisionTransformer(vision_config) self.visual_projection = nn.Sequential( nn.Linear(self.vision_embed_dim, self.projection_intermediate_dim, bias=True), nn.BatchNorm1d(self.projection_intermediate_dim), nn.ReLU(inplace=True), nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True), ) self.text_projection = nn.Sequential( nn.Linear(self.text_embed_dim, self.projection_intermediate_dim, bias=True), nn.BatchNorm1d(self.projection_intermediate_dim), nn.ReLU(inplace=True), nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True), ) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING) def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`GroupViTTextModel`]. Examples: ```python >>> from transformers import CLIPTokenizer, GroupViTModel >>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = text_outputs[1] text_features = self.text_projection(pooled_output) return text_features @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING) def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`GroupViTVisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, GroupViTModel >>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" # Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = vision_outputs[1] # pooled_output image_features = self.visual_projection(pooled_output) return image_features @add_start_docstrings_to_model_forward(GROUPVIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=GroupViTModelOutput, config_class=GroupViTConfig) def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, return_loss: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_segmentation: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, GroupViTModelOutput]: r""" Returns: Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, GroupViTModel >>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" # Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_segmentation = ( output_segmentation if output_segmentation is not None else self.config.output_segmentation ) if output_segmentation: output_attentions = True output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_outputs = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) text_outputs = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeds = vision_outputs[1] image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs[1] text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True) text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale logits_per_image = logits_per_text.t() seg_logits = None if output_segmentation: # grouped features # [batch_size_image, num_group, hidden_size] image_group_embeds = vision_outputs[0] # [batch_size_image*num_group, hidden_size] image_group_embeds = self.visual_projection(image_group_embeds.reshape(-1, image_group_embeds.shape[-1])) if output_hidden_states: attentions = vision_outputs[3] else: attentions = vision_outputs[2] # [batch_size_image, num_group, height, width] grouping = get_grouping_from_attentions(attentions, pixel_values.shape[2:]) # normalized features image_group_embeds = image_group_embeds / image_group_embeds.norm(dim=-1, keepdim=True) # [batch_size_image x num_group, batch_size_text] logits_per_image_group = torch.matmul(image_group_embeds, text_embeds.t()) * logit_scale # [batch_size_image, batch_size_text, num_group] logits_per_image_group = logits_per_image_group.reshape( image_embeds.shape[0], -1, text_embeds.shape[0] ).permute(0, 2, 1) # [batch_size_image, batch_size_text, height x width] flatten_grouping = grouping.reshape(grouping.shape[0], grouping.shape[1], -1) # [batch_size_image, batch_size_text, height, width] seg_logits = torch.matmul(logits_per_image_group, flatten_grouping) * logit_scale seg_logits = seg_logits.reshape( seg_logits.shape[0], seg_logits.shape[1], grouping.shape[2], grouping.shape[3] ) loss = None if return_loss: loss = groupvit_loss(logits_per_text) if not return_dict: if seg_logits is not None: output = ( logits_per_image, logits_per_text, seg_logits, text_embeds, image_embeds, text_outputs, vision_outputs, ) else: output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs) return ((loss,) + output) if loss is not None else output return GroupViTModelOutput( loss=loss, logits_per_image=logits_per_image, logits_per_text=logits_per_text, segmentation_logits=seg_logits, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, )
transformers/src/transformers/models/groupvit/modeling_groupvit.py/0
{ "file_path": "transformers/src/transformers/models/groupvit/modeling_groupvit.py", "repo_id": "transformers", "token_count": 29433 }
551
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = {"configuration_idefics": ["IdeficsConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_idefics"] = ["IdeficsImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_idefics"] = [ "IdeficsForVisionText2Text", "IdeficsModel", "IdeficsPreTrainedModel", ] _import_structure["processing_idefics"] = ["IdeficsProcessor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_idefics"] = [ "TFIdeficsForVisionText2Text", "TFIdeficsModel", "TFIdeficsPreTrainedModel", ] if TYPE_CHECKING: from .configuration_idefics import IdeficsConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_idefics import IdeficsImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_idefics import ( IdeficsForVisionText2Text, IdeficsModel, IdeficsPreTrainedModel, ) from .processing_idefics import IdeficsProcessor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_idefics import ( TFIdeficsForVisionText2Text, TFIdeficsModel, TFIdeficsPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/idefics/__init__.py/0
{ "file_path": "transformers/src/transformers/models/idefics/__init__.py", "repo_id": "transformers", "token_count": 1096 }
552
# coding=utf-8 # Copyright 2024 AI21 Labs Ltd. and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Jamba model.""" import inspect import math from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn.functional as F import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache # we need __iter__ and __len__ of pkv from ...modeling_attn_mask_utils import ( AttentionMaskConverter, ) from ...modeling_outputs import ( MoeCausalLMOutputWithPast, MoeModelOutputWithPast, SequenceClassifierOutputWithPast, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from ...utils.import_utils import ( is_causal_conv1d_available, is_flash_attn_2_available, is_mamba_ssm_available, ) from .configuration_jamba import JambaConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) if is_mamba_ssm_available(): from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn from mamba_ssm.ops.triton.selective_state_update import selective_state_update else: selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None if is_causal_conv1d_available(): from causal_conv1d import causal_conv1d_fn, causal_conv1d_update else: causal_conv1d_update, causal_conv1d_fn = None, None is_fast_path_available = all( (selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn) ) logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "JambaConfig" # Copied from transformers.models.mixtral.modeling_mixtral.load_balancing_loss_func with gate->router def load_balancing_loss_func( router_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None, ) -> float: r""" Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between experts is too unbalanced. Args: router_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]): Logits from the `router`, should be a tuple of model.config.num_hidden_layers tensors of shape [batch_size X sequence_length, num_experts]. attention_mask (`torch.Tensor`, None): The attention_mask used in forward function shape [batch_size X sequence_length] if not None. num_experts (`int`, *optional*): Number of experts Returns: The auxiliary loss. """ if router_logits is None or not isinstance(router_logits, tuple): return 0 if isinstance(router_logits, tuple): compute_device = router_logits[0].device concatenated_router_logits = torch.cat( [layer_router.to(compute_device) for layer_router in router_logits], dim=0 ) routing_weights = torch.nn.functional.softmax(concatenated_router_logits, dim=-1) _, selected_experts = torch.topk(routing_weights, top_k, dim=-1) expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) if attention_mask is None: # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.mean(expert_mask.float(), dim=0) # Compute the average probability of routing to these experts router_prob_per_expert = torch.mean(routing_weights, dim=0) else: batch_size, sequence_length = attention_mask.shape num_hidden_layers = concatenated_router_logits.shape[0] // (batch_size * sequence_length) # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask expert_attention_mask = ( attention_mask[None, :, :, None, None] .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) .reshape(-1, top_k, num_experts) .to(compute_device) ) # Compute the percentage of tokens routed to each experts tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( expert_attention_mask, dim=0 ) # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert router_per_expert_attention_mask = ( attention_mask[None, :, :, None] .expand((num_hidden_layers, batch_size, sequence_length, num_experts)) .reshape(-1, num_experts) .to(compute_device) ) # Compute the average probability of routing to these experts router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( router_per_expert_attention_mask, dim=0 ) overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) return overall_loss * num_experts # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Jamba class JambaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ JambaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) # Copied from transformers.models.llama.modeling_llama.repeat_kv def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) class HybridMambaAttentionDynamicCache(DynamicCache): """ A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache (which has a constant shape regardless of seq_len). This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states` and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`, while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors). For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors), while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`, and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`. """ def __init__(self, config, batch_size, dtype=torch.float16, device=None): self.dtype = dtype self.layers_block_type = config.layers_block_type self.has_previous_state = False # only used by mamba intermediate_size = config.mamba_expand * config.hidden_size ssm_state_size = config.mamba_d_state conv_kernel_size = config.mamba_d_conv self.conv_states = [] self.ssm_states = [] self.transformer_layers = [] for i in range(config.num_hidden_layers): if self.layers_block_type[i] == "mamba": self.conv_states += [ torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype) ] self.ssm_states += [ torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype) ] else: self.conv_states += [torch.tensor([[]] * batch_size, device=device)] self.ssm_states += [torch.tensor([[]] * batch_size, device=device)] self.transformer_layers.append(i) self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)] def update( self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int, cache_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # Update the cache if self.key_cache[layer_idx].shape[-1] == 0: self.key_cache[layer_idx] = key_states self.value_cache[layer_idx] = value_states else: self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2) self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2) return self.key_cache[layer_idx], self.value_cache[layer_idx] def reorder_cache(self, beam_idx: torch.LongTensor): """Reorders the cache for beam search, given the selected beam indices.""" for layer_idx in range(len(self.key_cache)): device = self.key_cache[layer_idx].device self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.value_cache[layer_idx].device self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device)) device = self.conv_states[layer_idx].device self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device)) device = self.ssm_states[layer_idx].device self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device)) def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states. A layer index can be optionally passed.""" # take any layer that contains cache and not empty tensor layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx if len(self.key_cache) <= layer_idx: return 0 return self.key_cache[layer_idx].shape[-2] def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]: raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.") @classmethod def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache": raise NotImplementedError("HybridMambaAttentionDynamicCache does not have a legacy cache equivalent.") # Adapted from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Jamba class JambaAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer and "Generating Long Sequences with Sparse Transformers". """ def __init__(self, config: JambaConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx if layer_idx is None: logger.warning_once( f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.hidden_size // self.num_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_heads // self.num_key_value_heads self.is_causal = True self.attention_dropout = config.attention_dropout if (self.head_dim * self.num_heads) != self.hidden_size: raise ValueError( f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" f" and `num_heads`: {self.num_heads})." ) self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if past_key_value is not None: key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: # no matter the length, we just slice it causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Adapted from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Jamba class JambaFlashAttention2(JambaAttention): """ Jamba flash attention module. This module inherits from `JambaAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, **kwargs, ): bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) # Flash attention requires the input to have the shape # batch_size x seq_length x head_dim x hidden_dim # therefore we just need to keep the original shape query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = cache_position[-1] use_sliding_windows = ( _flash_supports_window_size and getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window ) if not _flash_supports_window_size: logger.warning_once( "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" " make sure to upgrade flash-attn library." ) if past_key_value is not None: # Activate slicing cache only if the config has a value `sliding_windows` attribute cache_has_contents = cache_position[0] > 0 if ( getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window and cache_has_contents ): slicing_tokens = 1 - self.config.sliding_window past_key = past_key_value[self.layer_idx][0] past_value = past_key_value[self.layer_idx][1] past_key = past_key[:, :, slicing_tokens:, :].contiguous() past_value = past_value[:, :, slicing_tokens:, :].contiguous() if past_key.shape[-2] != self.config.sliding_window - 1: raise ValueError( f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" f" {past_key.shape}" ) if attention_mask is not None: attention_mask = attention_mask[:, slicing_tokens:] attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) dropout_rate = 0.0 if not self.training else self.attention_dropout # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in float16 just to be sure everything works as expected. input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) # Reashape to the expected shape for Flash Attention query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, use_sliding_windows=use_sliding_windows, ) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None, use_sliding_windows=False, ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`, *optional*): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) use_sliding_windows (`bool`, *optional*): Whether to activate sliding window attention. """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens if not use_sliding_windows: attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) else: attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, window_size=(self.config.sliding_window, self.config.sliding_window), ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: if not use_sliding_windows: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, ) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal, window_size=(self.config.sliding_window, self.config.sliding_window), ) return attn_output # Copied from transformers.models.mixtral.modeling_mixtral.MixtralFlashAttention2._upad_input def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape # On the first iteration we need to properly re-create the padding mask # by slicing it on the proper place if kv_seq_len != attention_mask.shape[-1]: attention_mask_num_tokens = attention_mask.shape[-1] attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) # Adapted from transformers.models.mistral.modeling_mistral.MistralSdpaAttention with Mistral->Jamba class JambaSdpaAttention(JambaAttention): """ Jamba attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from `JambaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to SDPA API. """ # Adapted from JambaAttention.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if output_attentions: # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. logger.warning_once( "JambaModel is using JambaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) bsz, q_len, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) if past_key_value is not None: key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) causal_mask = attention_mask if attention_mask is not None: causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, # Reference: https://github.com/pytorch/pytorch/issues/112577. if query_states.device.type == "cuda" and attention_mask is not None: query_states = query_states.contiguous() key_states = key_states.contiguous() value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=causal_mask, dropout_p=self.attention_dropout if self.training else 0.0, # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. is_causal=self.is_causal and attention_mask is None and q_len > 1, ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) return attn_output, None, past_key_value JAMBA_ATTENTION_CLASSES = { "eager": JambaAttention, "flash_attention_2": JambaFlashAttention2, "sdpa": JambaSdpaAttention, } # Adapted from transformers.models.mamba.modeling_mamba.MambaMixer class JambaMambaMixer(nn.Module): """ Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`. A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective) ∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4, and is why Mamba is called **selective** state spaces) """ def __init__(self, config: JambaConfig, layer_idx): super().__init__() self.config = config self.layer_idx = layer_idx self.hidden_size = config.hidden_size self.ssm_state_size = config.mamba_d_state self.conv_kernel_size = config.mamba_d_conv self.intermediate_size = config.mamba_expand * config.hidden_size self.time_step_rank = config.mamba_dt_rank self.use_conv_bias = config.mamba_conv_bias self.use_bias = config.mamba_proj_bias self.conv1d = nn.Conv1d( in_channels=self.intermediate_size, out_channels=self.intermediate_size, bias=self.use_conv_bias, kernel_size=self.conv_kernel_size, groups=self.intermediate_size, padding=self.conv_kernel_size - 1, ) self.activation = config.hidden_act self.act = ACT2FN[config.hidden_act] self.use_fast_kernels = config.use_mamba_kernels # projection of the input hidden states self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias) # selective projection used to make dt, B and C input dependant self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False) # time step projection (discretization) self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True) # S4D real initialization. These are not discretized! # The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :] A = A.expand(self.intermediate_size, -1).contiguous() self.A_log = nn.Parameter(torch.log(A)) self.D = nn.Parameter(torch.ones(self.intermediate_size)) self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias) self.dt_layernorm = JambaRMSNorm(self.time_step_rank, eps=config.rms_norm_eps) self.b_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps) self.c_layernorm = JambaRMSNorm(self.ssm_state_size, eps=config.rms_norm_eps) if not is_fast_path_available: logger.warning_once( "The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`" " is None. To install follow https://github.com/state-spaces/mamba/#installation and" " https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config" ) def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: HybridMambaAttentionDynamicCache = None): batch_size, seq_len, _ = hidden_states.shape use_precomputed_states = ( cache_params is not None and cache_params.has_previous_state and seq_len == 1 and cache_params.conv_states[self.layer_idx].shape[0] == cache_params.ssm_states[self.layer_idx].shape[0] == batch_size ) # 1. Gated MLP's linear projection projected_states = self.in_proj(hidden_states).transpose(1, 2) # We can't use `mamba_inner_fn` even if in training and without cache params because we have the # inner layernorms which isn't supported by this fused kernel hidden_states, gate = projected_states.chunk(2, dim=1) # 2. Convolution sequence transformation conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)) if use_precomputed_states: hidden_states = causal_conv1d_update( hidden_states.squeeze(-1), cache_params.conv_states[self.layer_idx], conv_weights, self.conv1d.bias, self.activation, ) hidden_states = hidden_states.unsqueeze(-1) else: if cache_params is not None: conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)) cache_params.conv_states[self.layer_idx].copy_(conv_states) hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation) # 3. State Space Model sequence transformation # 3.a. input varying initialization of time_step, B and C ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) time_step = self.dt_layernorm(time_step) B = self.b_layernorm(B) C = self.c_layernorm(C) # Here we need to apply dt_proj without the bias, as the bias is added in the selective scan kernel. # This is a hack to apply dt_proj while still using the forward pass of `torch.nn.Linear`, which is needed # in order to make quantization work. Quantization code replaces `torch.nn.Linear` layers with quantized # linear layers, and requires to call the forward pass directly. # The original code here was: ```discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)``` time_proj_bias = self.dt_proj.bias self.dt_proj.bias = None discrete_time_step = self.dt_proj(time_step).transpose(1, 2) self.dt_proj.bias = time_proj_bias A = -torch.exp(self.A_log.float()) # 3.c perform the recurrence y ← SSM(A, B, C)(x) time_proj_bias = time_proj_bias.float() if time_proj_bias is not None else None if use_precomputed_states: scan_outputs = selective_state_update( cache_params.ssm_states[self.layer_idx], hidden_states[..., 0], discrete_time_step[..., 0], A, B[:, 0], C[:, 0], self.D, gate[..., 0], time_proj_bias, dt_softplus=True, ).unsqueeze(-1) else: scan_outputs, ssm_state = selective_scan_fn( hidden_states, discrete_time_step, A, B.transpose(1, 2), C.transpose(1, 2), self.D.float(), gate, time_proj_bias, delta_softplus=True, return_last_state=True, ) if ssm_state is not None and cache_params is not None: cache_params.ssm_states[self.layer_idx].copy_(ssm_state) # 4. Final linear projection contextualized_states = self.out_proj(scan_outputs.transpose(1, 2)) return contextualized_states # fmt: off def slow_forward(self, input_states, cache_params: HybridMambaAttentionDynamicCache = None): batch_size, seq_len, _ = input_states.shape dtype = input_states.dtype # 1. Gated MLP's linear projection projected_states = self.in_proj(input_states).transpose(1, 2) # [batch, 2 * intermediate_size, seq_len] hidden_states, gate = projected_states.chunk(2, dim=1) use_cache = isinstance(cache_params,HybridMambaAttentionDynamicCache) # 2. Convolution sequence transformation if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size: if self.training: # In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass ssm_state = cache_params.ssm_states[self.layer_idx].clone() else: ssm_state = cache_params.ssm_states[self.layer_idx] ssm_state = ssm_state.to(hidden_states.device) if cache_params.has_previous_state and seq_len == 1 and \ cache_params.conv_states[self.layer_idx].shape[0] == batch_size: conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size] conv_state = torch.roll(conv_state, shifts=-1, dims=-1) conv_state[:, :, -1] = hidden_states[:, :, 0] cache_params.conv_states[self.layer_idx] = conv_state hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1) if self.use_conv_bias: hidden_states += self.conv1d.bias hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1) # [batch, intermediate_size, 1] : decoding else: conv_state = nn.functional.pad( hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0) ) cache_params.conv_states[self.layer_idx] = conv_state hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len] else: ssm_state = torch.zeros( (batch_size, self.intermediate_size, self.ssm_state_size), device=hidden_states.device, dtype=dtype ) hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len]) # [batch, intermediate_size, seq_len] # 3. State Space Model sequence transformation # 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2] ssm_parameters = self.x_proj(hidden_states.transpose(1, 2)) time_step, B, C = torch.split( ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1 ) time_step = self.dt_layernorm(time_step) B = self.b_layernorm(B) C = self.c_layernorm(C) discrete_time_step = self.dt_proj(time_step) # [batch, seq_len, intermediate_size] discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2) # [batch, intermediate_size, seq_len] # 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM) A = -torch.exp(self.A_log.float()) # [intermediate_size, ssm_state_size] discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None]) # [batch, intermediate_size, seq_len, ssm_state_size] discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float() # [batch, intermediade_size, seq_len, ssm_state_size] deltaB_u = discrete_B * hidden_states[:, :, :, None].float() # 3.c perform the recurrence y ← SSM(A, B, C)(x) scan_outputs = [] for i in range(seq_len): ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :] # [batch, intermediade_size, ssm_state] scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1)) # [batch, intermediade_size, 1] scan_outputs.append(scan_output[:, :, 0]) scan_output = torch.stack(scan_outputs, dim=-1) # [batch, intermediade_size, seq_len] scan_output = scan_output + (hidden_states * self.D[None, :, None]) scan_output = (scan_output * self.act(gate)) if use_cache: cache_params.ssm_states[self.layer_idx] = ssm_state # 4. Final linear projection contextualized_states = self.out_proj(scan_output.transpose(1, 2)) # [batch, seq_len, hidden_size] return contextualized_states # fmt: on def forward(self, hidden_states, cache_params: HybridMambaAttentionDynamicCache = None): if self.use_fast_kernels: if not is_fast_path_available or "cuda" not in self.x_proj.weight.device.type: raise ValueError( "Fast Mamba kernels are not available. Make sure to they are installed and that the mamba module is on a CUDA device" ) return self.cuda_kernels_forward(hidden_states, cache_params) return self.slow_forward(hidden_states, cache_params) # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Jamba class JambaMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) # Adapted from transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock with Mistral->Jamba class JambaSparseMoeBlock(nn.Module): """ This implementation is strictly equivalent to standard MoE with full capacity (no dropped tokens). It's faster since it formulates MoE operations in terms of block-sparse operations to accomodate imbalanced assignments of tokens to experts, whereas standard MoE either (1) drop tokens at the cost of reduced performance or (2) set capacity factor to number of experts and thus waste computation and memory on padding. """ def __init__(self, config: JambaConfig): super().__init__() self.hidden_dim = config.hidden_size self.ffn_dim = config.intermediate_size self.num_experts = config.num_experts self.top_k = config.num_experts_per_tok self.router = nn.Linear(self.hidden_dim, self.num_experts, bias=False) self.experts = nn.ModuleList([JambaMLP(config) for _ in range(self.num_experts)]) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ """ batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) # router_logits: (batch * sequence_length, n_experts) router_logits = self.router(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be sollicitated expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) if top_x.shape[0] == 0: continue # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None] # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits class JambaAttentionDecoderLayer(nn.Module): def __init__(self, config: JambaConfig, layer_idx: int): super().__init__() num_experts = config.layers_num_experts[layer_idx] self.self_attn = JAMBA_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx) ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP self.feed_forward = ffn_layer_class(config) self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) # residual connection after attention hidden_states = residual + hidden_states # feed-forward (experts/MLP) residual = hidden_states hidden_states = self.pre_ff_layernorm(hidden_states) ff_outputs = self.feed_forward(hidden_states) if isinstance(ff_outputs, tuple): hidden_states, router_logits = ff_outputs else: hidden_states, router_logits = ff_outputs, None hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (present_key_value,) if output_router_logits: outputs += (router_logits,) return outputs class JambaMambaDecoderLayer(nn.Module): def __init__(self, config: JambaConfig, layer_idx: int): super().__init__() num_experts = config.layers_num_experts[layer_idx] self.mamba = JambaMambaMixer(config=config, layer_idx=layer_idx) ffn_layer_class = JambaSparseMoeBlock if num_experts > 1 else JambaMLP self.feed_forward = ffn_layer_class(config) self.input_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.pre_ff_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[HybridMambaAttentionDynamicCache] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch, sequence_length)` where padding elements are indicated by 0. past_key_value (`HybridMambaAttentionDynamicCache`, *optional*): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states = self.mamba( hidden_states=hidden_states, cache_params=past_key_value, ) self_attn_weights = None # residual connection after mamba hidden_states = residual + hidden_states # feed-forward (experts/MLP) residual = hidden_states hidden_states = self.pre_ff_layernorm(hidden_states) ff_outputs = self.feed_forward(hidden_states) if isinstance(ff_outputs, tuple): hidden_states, router_logits = ff_outputs else: hidden_states, router_logits = ff_outputs, None hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) if use_cache: outputs += (past_key_value,) if output_router_logits: outputs += (router_logits,) return outputs JAMBA_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`JambaConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ @add_start_docstrings( "The bare Jamba Model outputting raw hidden-states without any specific head on top.", JAMBA_START_DOCSTRING, ) class JambaPreTrainedModel(PreTrainedModel): config_class = JambaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["JambaAttentionDecoderLayer", "JambaMambaDecoderLayer"] _skip_keys_device_placement = "past_key_values" _supports_flash_attn_2 = True _supports_sdpa = True _supports_cache_class = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() JAMBA_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. If `past_key_values` is used, optionally only the last `input_ids` have to be input (see `past_key_values`). If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) past_key_values (`HybridMambaAttentionDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): A HybridMambaAttentionDynamicCache object containing pre-computed hidden-states (keys and values in the self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`. Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and `(batch_size, d_inner, d_state)` respectively. See the `HybridMambaAttentionDynamicCache` class for more details. If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_router_logits (`bool`, *optional*): Whether or not to return the logits of all the routers. They are useful for computing the router loss, and should not be returned during inference. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. """ ALL_DECODER_LAYER_TYPES = {"attention": JambaAttentionDecoderLayer, "mamba": JambaMambaDecoderLayer} @add_start_docstrings( "The bare Jamba Model outputting raw hidden-states without any specific head on top.", JAMBA_START_DOCSTRING, ) # Adapted from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->JAMBA, Mistral->Jamba class JambaModel(JambaPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`JambaDecoderLayer`] Args: config: JambaConfig """ def __init__(self, config: JambaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) decoder_layers = [] for i in range(config.num_hidden_layers): layer_class = ALL_DECODER_LAYER_TYPES[config.layers_block_type[i]] decoder_layers.append(layer_class(config, layer_idx=i)) self.layers = nn.ModuleList(decoder_layers) self._attn_implementation = config._attn_implementation self.final_layernorm = JambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[HybridMambaAttentionDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[Tuple, MoeModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one" ) if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) hidden_states = inputs_embeds if use_cache and past_key_values is None: logger.warning_once( "Jamba requires an initialized `HybridMambaAttentionDynamicCache` to return a cache. None was " "provided, so no cache will be returned." ) if cache_position is None: cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position) all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, output_router_logits, use_cache, cache_position, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, ) hidden_states = layer_outputs[0] if output_attentions: if layer_outputs[1] is not None: # append attentions only of attention layers. Mamba layers return `None` as the attention weights all_self_attns += (layer_outputs[1],) if output_router_logits: if layer_outputs[-1] is not None: # append router logits only of expert layers. Regular MLP layers return `None` as the router logits all_router_logits += (layer_outputs[-1],) hidden_states = self.final_layernorm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if past_key_values and not past_key_values.has_previous_state: past_key_values.has_previous_state = True next_cache = None if not use_cache else past_key_values if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] if v is not None ) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, ) def _update_causal_mask(self, attention_mask, input_tensor, cache_position): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and 0.0 in attention_mask: return attention_mask return None dtype, device = input_tensor.dtype, input_tensor.device min_dtype = torch.finfo(dtype).min sequence_length = input_tensor.shape[1] target_length = cache_position[-1] + 1 causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit if attention_mask.dim() == 2: mask_length = attention_mask.shape[-1] padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0) causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask # Adapted from transformers.models.mixtral.modeling_mixtral.MixtralForCausalLM with MIXTRAL->JAMBA, Mixtral->Jamba class JambaForCausalLM(JambaPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: JambaConfig): super().__init__(config) self.model = JambaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.router_aux_loss_coef = config.router_aux_loss_coef self.num_experts = config.num_experts self.num_experts_per_tok = config.num_experts_per_tok # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) # Ignore copy def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[HybridMambaAttentionDynamicCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: Optional[Union[int, None]] = None, ) -> Union[Tuple, MoeCausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int` or `None`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `None`, calculate logits for all `input_ids`. Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences. Returns: Example: ```python >>> from transformers import AutoTokenizer, JambaForCausalLM >>> model = JambaForCausalLM.from_pretrained("ai21labs/Jamba-v0.1") >>> tokenizer = AutoTokenizer.from_pretrained("ai21labs/Jamba-v0.1") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_router_logits=output_router_logits, cache_position=cache_position, return_dict=return_dict, ) hidden_states = outputs[0] if num_logits_to_keep is None: logits = self.lm_head(hidden_states) else: logits = self.lm_head(hidden_states[..., -num_logits_to_keep:, :]) logits = logits.float() loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) aux_loss = None if output_router_logits: aux_loss = load_balancing_loss_func( outputs.router_logits if return_dict else outputs[-1], self.num_experts, self.num_experts_per_tok, attention_mask, ) if labels is not None: loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device if not return_dict: output = (logits,) + outputs[1:] if output_router_logits: output = (aux_loss,) + output return (loss,) + output if loss is not None else output return MoeCausalLMOutputWithPast( loss=loss, aux_loss=aux_loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, router_logits=outputs.router_logits, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, output_router_logits=False, cache_position=None, **kwargs, ): empty_past_kv = past_key_values is None # Omit tokens covered by past_key_values if not empty_past_kv: past_length = cache_position[0] if cache_position is not None else attention_mask.shape[1] max_cache_length = self.config.sliding_window # Keep only the unprocessed tokens: # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as # input) if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard # input_ids based on the past_length. elif past_length < input_ids.shape[1]: input_ids = input_ids[:, past_length:] # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. if ( max_cache_length is not None and attention_mask is not None and past_length + input_ids.shape[1] > max_cache_length ): attention_mask = attention_mask[:, -max_cache_length:] else: past_key_values = HybridMambaAttentionDynamicCache( self.config, input_ids.shape[0], self.dtype, device=self.device ) position_ids = kwargs.get("position_ids", None) if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if not empty_past_kv: position_ids = position_ids[:, -input_ids.shape[1] :] # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and empty_past_kv: model_inputs = {"inputs_embeds": inputs_embeds} else: model_inputs = {"input_ids": input_ids} model_inputs.update( { "position_ids": position_ids, "past_key_values": past_key_values, "use_cache": kwargs.get("use_cache"), "attention_mask": attention_mask, "output_router_logits": output_router_logits, "num_logits_to_keep": self.config.num_logits_to_keep, "cache_position": cache_position, } ) return model_inputs @add_start_docstrings( """ The Jamba Model with a sequence classification head on top (linear layer). [`JambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, JAMBA_START_DOCSTRING, ) # Copied from transformers.models.mixtral.modeling_mixtral.MixtralForSequenceClassification with Mixtral->Jamba, MIXTRAL->JAMBA class JambaForSequenceClassification(JambaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = JambaModel(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(JAMBA_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
transformers/src/transformers/models/jamba/modeling_jamba.py/0
{ "file_path": "transformers/src/transformers/models/jamba/modeling_jamba.py", "repo_id": "transformers", "token_count": 38987 }
553
# coding=utf-8 # Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization class for model LayoutLM.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_layoutlm import LayoutLMTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} # Copied from transformers.models.bert.tokenization_bert_fast.BertTokenizerFast with Bert->LayoutLM,BERT->LayoutLM class LayoutLMTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" LayoutLM tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): File containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. clean_text (`bool`, *optional*, defaults to `True`): Whether or not to clean the text before tokenization by removing any control characters and replacing all whitespaces by the classic one. tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original LayoutLM). wordpieces_prefix (`str`, *optional*, defaults to `"##"`): The prefix for subwords. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = LayoutLMTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) self.do_lower_case = do_lower_case def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A LayoutLM sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1 is not None: output += token_ids_1 + [self.sep_token_id] return output def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A LayoutLM sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
transformers/src/transformers/models/layoutlm/tokenization_layoutlm_fast.py/0
{ "file_path": "transformers/src/transformers/models/layoutlm/tokenization_layoutlm_fast.py", "repo_id": "transformers", "token_count": 3083 }
554
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for LeViT.""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( get_resize_output_image_size, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, logging logger = logging.get_logger(__name__) class LevitImageProcessor(BaseImageProcessor): r""" Constructs a LeViT image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Wwhether to resize the shortest edge of the input to int(256/224 *`size`). Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]`, *optional*, defaults to `{"shortest_edge": 224}`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width, size["shortest_egde"])`. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `True`): Whether or not to center crop the input to `(crop_size["height"], crop_size["width"])`. Can be overridden by the `do_center_crop` parameter in the `preprocess` method. crop_size (`Dict`, *optional*, defaults to `{"height": 224, "width": 224}`): Desired image size after `center_crop`. Can be overridden by the `crop_size` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`List[int]`, *optional*, defaults to `[0.485, 0.456, 0.406]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`List[int]`, *optional*, defaults to `[0.229, 0.224, 0.225]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_center_crop: bool = True, crop_size: Dict[str, int] = None, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN, image_std: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"shortest_edge": 224} size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} crop_size = get_size_dict(crop_size, param_name="crop_size") self.do_resize = do_resize self.size = size self.resample = resample self.do_center_crop = do_center_crop self.crop_size = crop_size self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_center_crop", "crop_size", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "return_tensors", "data_format", "input_data_format", ] def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image. If size is a dict with keys "width" and "height", the image will be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width, size["shortest_egde"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to (size * height / width, size). resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ size_dict = get_size_dict(size, default_to_square=False) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: shortest_edge = int((256 / 224) * size["shortest_edge"]) output_size = get_resize_output_image_size( image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format ) size_dict = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}" ) return resize( image, size=(size_dict["height"], size_dict["width"]), resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_center_crop: Optional[bool] = None, crop_size: Optional[Dict[str, int]] = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, Iterable[float]]] = None, image_std: Optional[Union[float, Iterable[float]]] = None, return_tensors: Optional[TensorType] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess an image or batch of images to be used as input to a LeViT model. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled to (size * height / width, size). resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): Resampling filter to use when resiizing the image. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the image. crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`): Size of the output image after center cropping. Crops images to (crop_size["height"], crop_size["width"]). do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image pixel values by `rescaling_factor` - typical to values between 0 and 1. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Factor to rescale the image pixel values by. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image pixel values by `image_mean` and `image_std`. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Mean to normalize the image pixel values by. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Standard deviation to normalize the image pixel values by. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) crop_size = crop_size if crop_size is not None else self.crop_size crop_size = get_size_dict(crop_size, param_name="crop_size") images = make_list_of_images(images) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_center_crop=do_center_crop, crop_size=crop_size, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [self.resize(image, size, resample, input_data_format=input_data_format) for image in images] if do_center_crop: images = [self.center_crop(image, crop_size, input_data_format=input_data_format) for image in images] if do_rescale: images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] if do_normalize: images = [ self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/levit/image_processing_levit.py/0
{ "file_path": "transformers/src/transformers/models/levit/image_processing_levit.py", "repo_id": "transformers", "token_count": 7148 }
555
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Llava. """ from typing import List, Optional, Union from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class LlavaProcessor(ProcessorMixin): r""" Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor. [`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the [`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information. Args: image_processor ([`CLIPImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`LlamaTokenizerFast`], *optional*): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "CLIPImageProcessor" tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast") def __init__(self, image_processor=None, tokenizer=None): super().__init__(image_processor, tokenizer) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, images: ImageInput = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length=None, return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`, *optional*): Activates truncation to cut input sequences longer than `max_length` to `max_length`. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if images is not None: pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] else: pixel_values = None text_inputs = self.tokenizer( text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length ) return BatchFeature(data={**text_inputs, "pixel_values": pixel_values}) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama def decode(self, *args, **kwargs): """ This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
transformers/src/transformers/models/llava/processing_llava.py/0
{ "file_path": "transformers/src/transformers/models/llava/processing_llava.py", "repo_id": "transformers", "token_count": 2708 }
556
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert T5/LongT5X checkpoints from the original repository to JAX/FLAX model. This script is an extension of 'src/transformers/models/t5/convert_t5x_checkpoint_to_flax. """ import argparse from t5x import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeq2SeqLM def convert_t5x_checkpoint_to_flax(t5x_checkpoint_path, config_name, flax_dump_folder_path): config = AutoConfig.from_pretrained(config_name) flax_model = FlaxAutoModelForSeq2SeqLM.from_config(config=config) t5x_model = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path) split_mlp_wi = "wi_0" in t5x_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": encoder_attn_name = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": encoder_attn_name = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": encoder_attn_name = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers): layer_name = f"layers_{str(layer_index)}" # Self-Attention t5x_attention_key = t5x_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] t5x_attention_out = t5x_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] t5x_attention_query = t5x_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] t5x_attention_value = t5x_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": t5x_global_layer_norm = t5x_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization t5x_attention_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: t5x_mlp_wi_0 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] t5x_mlp_wi_1 = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: t5x_mlp_wi = t5x_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] t5x_mlp_wo = t5x_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization t5x_mlp_layer_norm = t5x_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning flax_model_encoder_layer_block = flax_model.params["encoder"]["block"][str(layer_index)]["layer"] flax_model_encoder_layer_block["0"][encoder_attn_name]["k"]["kernel"] = t5x_attention_key flax_model_encoder_layer_block["0"][encoder_attn_name]["o"]["kernel"] = t5x_attention_out flax_model_encoder_layer_block["0"][encoder_attn_name]["q"]["kernel"] = t5x_attention_query flax_model_encoder_layer_block["0"][encoder_attn_name]["v"]["kernel"] = t5x_attention_value flax_model_encoder_layer_block["0"]["layer_norm"]["weight"] = t5x_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": flax_model_encoder_layer_block["0"][encoder_attn_name]["global_input_layer_norm"][ "weight" ] = t5x_global_layer_norm if split_mlp_wi: flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0 flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1 else: flax_model_encoder_layer_block["1"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi flax_model_encoder_layer_block["1"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo flax_model_encoder_layer_block["1"]["layer_norm"]["weight"] = t5x_mlp_layer_norm flax_model.params["encoder"]["block"][str(layer_index)]["layer"] = flax_model_encoder_layer_block # Only for layer 0: t5x_encoder_rel_embedding = t5x_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T flax_model.params["encoder"]["block"]["0"]["layer"]["0"][encoder_attn_name]["relative_attention_bias"][ "embedding" ] = t5x_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": t5x_encoder_global_rel_embedding = t5x_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T flax_model.params["encoder"]["block"]["0"]["layer"]["0"][encoder_attn_name]["global_relative_attention_bias"][ "embedding" ] = t5x_encoder_global_rel_embedding # Assigning t5x_encoder_norm = t5x_model["target"]["encoder"]["encoder_norm"]["scale"] flax_model.params["encoder"]["final_layer_norm"]["weight"] = t5x_encoder_norm # Decoder for layer_index in range(config.num_layers): layer_name = f"layers_{str(layer_index)}" # Self-Attention t5x_attention_key = t5x_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] t5x_attention_out = t5x_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] t5x_attention_query = t5x_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] t5x_attention_value = t5x_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization t5x_pre_attention_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention t5x_enc_dec_attention_module = t5x_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] t5x_enc_dec_attention_key = t5x_enc_dec_attention_module["key"]["kernel"] t5x_enc_dec_attention_out = t5x_enc_dec_attention_module["out"]["kernel"] t5x_enc_dec_attention_query = t5x_enc_dec_attention_module["query"]["kernel"] t5x_enc_dec_attention_value = t5x_enc_dec_attention_module["value"]["kernel"] # Layer Normalization t5x_cross_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: t5x_mlp_wi_0 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] t5x_mlp_wi_1 = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: t5x_mlp_wi = t5x_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] t5x_mlp_wo = t5x_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization tx5_mlp_layer_norm = t5x_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning flax_model_decoder_layer_block = flax_model.params["decoder"]["block"][str(layer_index)]["layer"] flax_model_decoder_layer_block["0"]["SelfAttention"]["k"]["kernel"] = t5x_attention_key flax_model_decoder_layer_block["0"]["SelfAttention"]["o"]["kernel"] = t5x_attention_out flax_model_decoder_layer_block["0"]["SelfAttention"]["q"]["kernel"] = t5x_attention_query flax_model_decoder_layer_block["0"]["SelfAttention"]["v"]["kernel"] = t5x_attention_value flax_model_decoder_layer_block["0"]["layer_norm"]["weight"] = t5x_pre_attention_layer_norm flax_model_decoder_layer_block["1"]["EncDecAttention"]["k"]["kernel"] = t5x_enc_dec_attention_key flax_model_decoder_layer_block["1"]["EncDecAttention"]["o"]["kernel"] = t5x_enc_dec_attention_out flax_model_decoder_layer_block["1"]["EncDecAttention"]["q"]["kernel"] = t5x_enc_dec_attention_query flax_model_decoder_layer_block["1"]["EncDecAttention"]["v"]["kernel"] = t5x_enc_dec_attention_value flax_model_decoder_layer_block["1"]["layer_norm"]["weight"] = t5x_cross_layer_norm if split_mlp_wi: flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi_0"]["kernel"] = t5x_mlp_wi_0 flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi_1"]["kernel"] = t5x_mlp_wi_1 else: flax_model_decoder_layer_block["2"]["DenseReluDense"]["wi"]["kernel"] = t5x_mlp_wi flax_model_decoder_layer_block["2"]["DenseReluDense"]["wo"]["kernel"] = t5x_mlp_wo flax_model_decoder_layer_block["2"]["layer_norm"]["weight"] = tx5_mlp_layer_norm flax_model.params["decoder"]["block"][str(layer_index)]["layer"] = flax_model_decoder_layer_block # Decoder Normalization tx5_decoder_norm = t5x_model["target"]["decoder"]["decoder_norm"]["scale"] flax_model.params["decoder"]["final_layer_norm"]["weight"] = tx5_decoder_norm # Only for layer 0: t5x_decoder_rel_embedding = t5x_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T flax_model.params["decoder"]["block"]["0"]["layer"]["0"]["SelfAttention"]["relative_attention_bias"][ "embedding" ] = t5x_decoder_rel_embedding # Token Embeddings tx5_token_embeddings = t5x_model["target"]["token_embedder"]["embedding"] flax_model.params["shared"]["embedding"] = tx5_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in t5x_model["target"]["decoder"]: flax_model.params["lm_head"]["kernel"] = t5x_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(flax_dump_folder_path) print("T5X Model was sucessfully converted!") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) args = parser.parse_args() convert_t5x_checkpoint_to_flax(args.t5x_checkpoint_path, args.config_name, args.flax_dump_folder_path)
transformers/src/transformers/models/longt5/convert_longt5x_checkpoint_to_flax.py/0
{ "file_path": "transformers/src/transformers/models/longt5/convert_longt5x_checkpoint_to_flax.py", "repo_id": "transformers", "token_count": 4985 }
557
# coding=utf-8 # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ M2M100 model configuration""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging logger = logging.get_logger(__name__) class M2M100Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`M2M100Model`]. It is used to instantiate an M2M100 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the M2M100 [facebook/m2m100_418M](https://huggingface.co/facebook/m2m100_418M) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the M2M100 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`M2M100Model`] or d_model (`int`, *optional*, defaults to 1024): Dimensionality of the layers and the pooler layer. encoder_layers (`int`, *optional*, defaults to 12): Number of encoder layers. decoder_layers (`int`, *optional*, defaults to 12): Number of decoder layers. encoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. decoder_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. decoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. encoder_ffn_dim (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. dropout (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. activation_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for activations inside the fully connected layer. classifier_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for classifier. max_position_embeddings (`int`, *optional*, defaults to 1024): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). init_std (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. encoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. decoder_layerdrop (`float`, *optional*, defaults to 0.0): The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more details. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import M2M100Config, M2M100Model >>> # Initializing a M2M100 facebook/m2m100_418M style configuration >>> configuration = M2M100Config() >>> # Initializing a model (with random weights) from the facebook/m2m100_418M style configuration >>> model = M2M100Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "m2m_100" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self, vocab_size=128112, max_position_embeddings=1024, encoder_layers=12, encoder_ffn_dim=4096, encoder_attention_heads=16, decoder_layers=12, decoder_ffn_dim=4096, decoder_attention_heads=16, encoder_layerdrop=0.05, decoder_layerdrop=0.05, use_cache=True, is_encoder_decoder=True, activation_function="relu", d_model=1024, dropout=0.1, attention_dropout=0.1, activation_dropout=0.0, init_std=0.02, decoder_start_token_id=2, scale_embedding=True, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.d_model = d_model self.encoder_ffn_dim = encoder_ffn_dim self.encoder_layers = encoder_layers self.encoder_attention_heads = encoder_attention_heads self.decoder_ffn_dim = decoder_ffn_dim self.decoder_layers = decoder_layers self.decoder_attention_heads = decoder_attention_heads self.dropout = dropout self.attention_dropout = attention_dropout self.activation_dropout = activation_dropout self.activation_function = activation_function self.init_std = init_std self.encoder_layerdrop = encoder_layerdrop self.decoder_layerdrop = decoder_layerdrop self.use_cache = use_cache self.num_hidden_layers = encoder_layers self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, is_encoder_decoder=is_encoder_decoder, decoder_start_token_id=decoder_start_token_id, **kwargs, ) class M2M100OnnxConfig(OnnxSeq2SeqConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: common_inputs["decoder_input_ids"] = {0: "batch"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") return common_inputs # Copied from BartOnnxConfig._generate_dummy_inputs_for_sequence_classification_and_question_answering # A better name would be _generate_dummy_inputs_for_encoder_and_decoder because sequence classification and question # answering are not supported for M2M100, but this name is preserved to be able to check that the copy matches what # was done for BART so that it can be updated if need be. def _generate_dummy_inputs_for_sequence_classification_and_question_answering( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX batch_size = compute_effective_axis_dimension( batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX token_to_add = tokenizer.num_special_tokens_to_add(is_pair) seq_length = compute_effective_axis_dimension( seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add ) # Generate dummy inputs according to compute batch and sequence dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) return common_inputs # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig._generate_dummy_inputs_for_default_and_seq2seq_lm def _generate_dummy_inputs_for_default_and_seq2seq_lm( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, seq_length, is_pair, framework ) # Generate decoder inputs decoder_seq_length = seq_length if not self.use_past else 1 decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( tokenizer, batch_size, decoder_seq_length, is_pair, framework ) decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} common_inputs = dict(**encoder_inputs, **decoder_inputs) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, encoder_seq_length = common_inputs["input_ids"].shape decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads encoder_shape = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) decoder_past_length = decoder_seq_length + 3 decoder_shape = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) common_inputs["decoder_attention_mask"] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 ) common_inputs["past_key_values"] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered num_encoder_layers, num_decoder_layers = self.num_layers min_num_layers = min(num_encoder_layers, num_decoder_layers) max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(min_num_layers): common_inputs["past_key_values"].append( ( torch.zeros(decoder_shape), torch.zeros(decoder_shape), torch.zeros(encoder_shape), torch.zeros(encoder_shape), ) ) # TODO: test this. shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(min_num_layers, max_num_layers): common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) return common_inputs generate_dummy_inputs = _generate_dummy_inputs_for_default_and_seq2seq_lm
transformers/src/transformers/models/m2m_100/configuration_m2m_100.py/0
{ "file_path": "transformers/src/transformers/models/m2m_100/configuration_m2m_100.py", "repo_id": "transformers", "token_count": 5564 }
558
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_markuplm": ["MarkupLMConfig"], "feature_extraction_markuplm": ["MarkupLMFeatureExtractor"], "processing_markuplm": ["MarkupLMProcessor"], "tokenization_markuplm": ["MarkupLMTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_markuplm_fast"] = ["MarkupLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_markuplm"] = [ "MarkupLMForQuestionAnswering", "MarkupLMForSequenceClassification", "MarkupLMForTokenClassification", "MarkupLMModel", "MarkupLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_markuplm import MarkupLMConfig from .feature_extraction_markuplm import MarkupLMFeatureExtractor from .processing_markuplm import MarkupLMProcessor from .tokenization_markuplm import MarkupLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_markuplm_fast import MarkupLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_markuplm import ( MarkupLMForQuestionAnswering, MarkupLMForSequenceClassification, MarkupLMForTokenClassification, MarkupLMModel, MarkupLMPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/markuplm/__init__.py/0
{ "file_path": "transformers/src/transformers/models/markuplm/__init__.py", "repo_id": "transformers", "token_count": 953 }
559
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert MaskFormer checkpoints with ResNet backbone from the original repository. URL: https://github.com/facebookresearch/MaskFormer""" import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_maskformer_config(model_name: str): if "resnet101c" in model_name: # TODO add support for ResNet-C backbone, which uses a "deeplab" stem raise NotImplementedError("To do") elif "resnet101" in model_name: backbone_config = ResNetConfig.from_pretrained( "microsoft/resnet-101", out_features=["stage1", "stage2", "stage3", "stage4"] ) else: backbone_config = ResNetConfig.from_pretrained( "microsoft/resnet-50", out_features=["stage1", "stage2", "stage3", "stage4"] ) config = MaskFormerConfig(backbone_config=backbone_config) repo_id = "huggingface/label-files" if "ade20k-full" in model_name: config.num_labels = 847 filename = "maskformer-ade20k-full-id2label.json" elif "ade" in model_name: config.num_labels = 150 filename = "ade20k-id2label.json" elif "coco-stuff" in model_name: config.num_labels = 171 filename = "maskformer-coco-stuff-id2label.json" elif "coco" in model_name: # TODO config.num_labels = 133 filename = "coco-panoptic-id2label.json" elif "cityscapes" in model_name: config.num_labels = 19 filename = "cityscapes-id2label.json" elif "vistas" in model_name: config.num_labels = 65 filename = "mapillary-vistas-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config def create_rename_keys(config): rename_keys = [] # stem # fmt: off rename_keys.append(("backbone.stem.conv1.weight", "model.pixel_level_module.encoder.embedder.embedder.convolution.weight")) rename_keys.append(("backbone.stem.conv1.norm.weight", "model.pixel_level_module.encoder.embedder.embedder.normalization.weight")) rename_keys.append(("backbone.stem.conv1.norm.bias", "model.pixel_level_module.encoder.embedder.embedder.normalization.bias")) rename_keys.append(("backbone.stem.conv1.norm.running_mean", "model.pixel_level_module.encoder.embedder.embedder.normalization.running_mean")) rename_keys.append(("backbone.stem.conv1.norm.running_var", "model.pixel_level_module.encoder.embedder.embedder.normalization.running_var")) # fmt: on # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.bias", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.running_mean", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.shortcut.norm.running_var", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3): rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.weight", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.bias", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.running_mean", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( f"backbone.res{stage_idx + 2}.{layer_idx}.conv{i+1}.norm.running_var", f"model.pixel_level_module.encoder.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # FPN # fmt: off rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight")) rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias")) for source_index, target_index in zip(range(3, 0, -1), range(0, 3)): rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight")) rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias")) rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight")) rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias")) rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight")) rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias")) # fmt: on # Transformer decoder # fmt: off for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias")) # cross-attention out projection rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias")) # MLP 1 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias")) # MLP 2 rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias")) # layernorm 1 (self-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias")) # layernorm 2 (cross-attention layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias")) # layernorm 3 (final layernorm) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight")) rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight")) rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias")) # fmt: on # heads on top # fmt: off rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight")) rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias")) rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight")) rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias")) for i in range(3): rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight")) rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias")) # fmt: on return rename_keys def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # we split up the matrix of each encoder layer into queries, keys and values def read_in_decoder_q_k_v(state_dict, config): # fmt: off hidden_size = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight") in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias") # next, add query, keys and values (in that order) to the state dict state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :] state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.bias"] = in_proj_bias[-hidden_size :] # fmt: on # We will verify our results on an image of cute cats def prepare_img() -> torch.Tensor: url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_maskformer_checkpoint( model_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False ): """ Copy/paste/tweak model's weights to our MaskFormer structure. """ config = get_maskformer_config(model_name) # load original state_dict with open(checkpoint_path, "rb") as f: data = pickle.load(f) state_dict = data["model"] # rename keys rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_decoder_q_k_v(state_dict, config) # update to torch tensors for key, value in state_dict.items(): state_dict[key] = torch.from_numpy(value) # load 🤗 model model = MaskFormerForInstanceSegmentation(config) model.eval() model.load_state_dict(state_dict) # verify results image = prepare_img() if "vistas" in model_name: ignore_index = 65 elif "cityscapes" in model_name: ignore_index = 65535 else: ignore_index = 255 reduce_labels = True if "ade" in model_name else False image_processor = MaskFormerImageProcessor(ignore_index=ignore_index, reduce_labels=reduce_labels) inputs = image_processor(image, return_tensors="pt") outputs = model(**inputs) if model_name == "maskformer-resnet50-ade": expected_logits = torch.tensor( [[6.7710, -0.1452, -3.5687], [1.9165, -1.0010, -1.8614], [3.6209, -0.2950, -1.3813]] ) elif model_name == "maskformer-resnet101-ade": expected_logits = torch.tensor( [[4.0381, -1.1483, -1.9688], [2.7083, -1.9147, -2.2555], [3.4367, -1.3711, -2.1609]] ) elif model_name == "maskformer-resnet50-coco-stuff": expected_logits = torch.tensor( [[3.2309, -3.0481, -2.8695], [5.4986, -5.4242, -2.4211], [6.2100, -5.2279, -2.7786]] ) elif model_name == "maskformer-resnet101-coco-stuff": expected_logits = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ) elif model_name == "maskformer-resnet101-cityscapes": expected_logits = torch.tensor( [[-1.8861, -1.5465, 0.6749], [-2.3677, -1.6707, -0.0867], [-2.2314, -1.9530, -0.9132]] ) elif model_name == "maskformer-resnet50-vistas": expected_logits = torch.tensor( [[-6.3917, -1.5216, -1.1392], [-5.5335, -4.5318, -1.8339], [-4.3576, -4.0301, 0.2162]] ) elif model_name == "maskformer-resnet50-ade20k-full": expected_logits = torch.tensor( [[3.6146, -1.9367, -3.2534], [4.0099, 0.2027, -2.7576], [3.3913, -2.3644, -3.9519]] ) elif model_name == "maskformer-resnet101-ade20k-full": expected_logits = torch.tensor( [[3.2211, -1.6550, -2.7605], [2.8559, -2.4512, -2.9574], [2.6331, -2.6775, -2.1844]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_logits, atol=1e-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and image processor of {model_name} to {pytorch_dump_folder_path}") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) model.save_pretrained(pytorch_dump_folder_path) image_processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print(f"Pushing model and image processor of {model_name} to the hub...") model.push_to_hub(f"facebook/{model_name}") image_processor.push_to_hub(f"facebook/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-resnet50-ade", type=str, required=True, choices=[ "maskformer-resnet50-ade", "maskformer-resnet101-ade", "maskformer-resnet50-coco-stuff", "maskformer-resnet101-coco-stuff", "maskformer-resnet101-cityscapes", "maskformer-resnet50-vistas", "maskformer-resnet50-ade20k-full", "maskformer-resnet101-ade20k-full", ], help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", type=str, required=True, help=("Path to the original pickle file (.pkl) of the original checkpoint.",), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) args = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
transformers/src/transformers/models/maskformer/convert_maskformer_resnet_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/maskformer/convert_maskformer_resnet_to_pytorch.py", "repo_id": "transformers", "token_count": 9461 }
560
# coding=utf-8 # Copyright 2021 The Facebook AI Research Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart50 import MBart50Tokenizer else: MBart50Tokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] # fmt: skip class MBart50TokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" MBART tokenizer for mBART-50 (backed by HuggingFace's *tokenizers* library). Based on [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. src_lang (`str`, *optional*): A string representing the source language. tgt_lang (`str`, *optional*): A string representing the target language. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. Examples: ```python >>> from transformers import MBart50TokenizerFast >>> tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50", src_lang="en_XX", tgt_lang="ro_RO") >>> src_text = " UN Chief Says There Is No Military Solution in Syria" >>> tgt_text = "Şeful ONU declară că nu există o soluţie militară în Siria" >>> model_inputs = tokenizer(src_text, text_target=tgt_text, return_tensors="pt") >>> # model(**model_inputs) should work ```""" vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = MBart50Tokenizer prefix_tokens: List[int] = [] suffix_tokens: List[int] = [] def __init__( self, vocab_file=None, src_lang=None, tgt_lang=None, tokenizer_file=None, eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) or [] kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( vocab_file, src_lang=src_lang, tgt_lang=tgt_lang, tokenizer_file=tokenizer_file, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) self.vocab_file = vocab_file self.lang_code_to_id = { lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES } self._src_lang = src_lang if src_lang is not None else "en_XX" self.tgt_lang = tgt_lang self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] self.set_src_lang_special_tokens(self._src_lang) @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False @property def src_lang(self) -> str: return self._src_lang @src_lang.setter def src_lang(self, new_src_lang: str) -> None: self._src_lang = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang. An MBART-50 sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `[src_lang_code] X [eos]` - `labels`: (for decoder) `[tgt_lang_code] X [eos]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.prefix_tokens + token_ids_0 + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens def prepare_seq2seq_batch( self, src_texts: List[str], src_lang: str = "en_XX", tgt_texts: Optional[List[str]] = None, tgt_lang: str = "ro_RO", **kwargs, ) -> BatchEncoding: self.src_lang = src_lang self.tgt_lang = tgt_lang return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) def _switch_to_input_mode(self): return self.set_src_lang_special_tokens(self.src_lang) def _switch_to_target_mode(self): return self.set_tgt_lang_special_tokens(self.tgt_lang) def set_src_lang_special_tokens(self, src_lang: str) -> None: """Reset the special tokens to the source lang setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.convert_tokens_to_ids(src_lang) self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def set_tgt_lang_special_tokens(self, tgt_lang: str) -> None: """Reset the special tokens to the target language setting. prefix=[src_lang_code] and suffix=[eos].""" self.cur_lang_code_id = self.convert_tokens_to_ids(tgt_lang) self.prefix_tokens = [self.cur_lang_code_id] self.suffix_tokens = [self.eos_token_id] prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) self._tokenizer.post_processor = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str, pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def _build_translation_inputs( self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs ): """Used by translation pipeline, to prepare inputs for the generate function""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") self.src_lang = src_lang inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) inputs["forced_bos_token_id"] = tgt_lang_id return inputs def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers/src/transformers/models/mbart50/tokenization_mbart50_fast.py/0
{ "file_path": "transformers/src/transformers/models/mbart50/tokenization_mbart50_fast.py", "repo_id": "transformers", "token_count": 4905 }
561
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for MGT-STR CHAR.""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"} class MgpstrTokenizer(PreTrainedTokenizer): """ Construct a MGP-STR char tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. unk_token (`str`, *optional*, defaults to `"[GO]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"[GO]"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"[s]"`): The end of sequence token. pad_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"[GO]"`): A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. """ vocab_files_names = VOCAB_FILES_NAMES def __init__(self, vocab_file, unk_token="[GO]", bos_token="[GO]", eos_token="[s]", pad_token="[GO]", **kwargs): with open(vocab_file, encoding="utf-8") as vocab_handle: self.vocab = json.load(vocab_handle) self.decoder = {v: k for k, v in self.vocab.items()} super().__init__( unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) @property def vocab_size(self): return len(self.vocab) def get_vocab(self): vocab = dict(self.vocab).copy() vocab.update(self.added_tokens_encoder) return vocab def _tokenize(self, text): """Tokenize a string.""" char_tokens = [] for s in text: char_tokens.extend(s) return char_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.vocab.get(token, self.vocab.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return (vocab_file,)
transformers/src/transformers/models/mgp_str/tokenization_mgp_str.py/0
{ "file_path": "transformers/src/transformers/models/mgp_str/tokenization_mgp_str.py", "repo_id": "transformers", "token_count": 1510 }
562
# MIT License # # Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import math import os import warnings from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, MultipleChoiceModelOutput, NextSentencePredictorOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilebert import MobileBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/mobilebert-uncased" _CONFIG_FOR_DOC = "MobileBertConfig" # TokenClassification docstring _CHECKPOINT_FOR_TOKEN_CLASSIFICATION = "mrm8488/mobilebert-finetuned-ner" _TOKEN_CLASS_EXPECTED_OUTPUT = "['I-ORG', 'I-ORG', 'O', 'O', 'O', 'O', 'O', 'I-LOC', 'O', 'I-LOC', 'I-LOC']" _TOKEN_CLASS_EXPECTED_LOSS = 0.03 # QuestionAnswering docstring _CHECKPOINT_FOR_QA = "csarron/mobilebert-uncased-squad-v2" _QA_EXPECTED_OUTPUT = "'a nice puppet'" _QA_EXPECTED_LOSS = 3.98 _QA_TARGET_START_INDEX = 12 _QA_TARGET_END_INDEX = 13 # SequenceClassification docstring _CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION = "lordtt13/emo-mobilebert" _SEQ_CLASS_EXPECTED_OUTPUT = "'others'" _SEQ_CLASS_EXPECTED_LOSS = "4.72" def load_tf_weights_in_mobilebert(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.replace("ffn_layer", "ffn") name = name.replace("FakeLayerNorm", "LayerNorm") name = name.replace("extra_output_weights", "dense/kernel") name = name.replace("bert", "mobilebert") name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: assert ( pointer.shape == array.shape ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model class NoNorm(nn.Module): def __init__(self, feat_size, eps=None): super().__init__() self.bias = nn.Parameter(torch.zeros(feat_size)) self.weight = nn.Parameter(torch.ones(feat_size)) def forward(self, input_tensor: torch.Tensor) -> torch.Tensor: return input_tensor * self.weight + self.bias NORM2FN = {"layer_norm": nn.LayerNorm, "no_norm": NoNorm} class MobileBertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.trigram_input = config.trigram_input self.embedding_size = config.embedding_size self.hidden_size = config.hidden_size self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) embed_dim_multiplier = 3 if self.trigram_input else 1 embedded_input_size = self.embedding_size * embed_dim_multiplier self.embedding_transformation = nn.Linear(embedded_input_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.trigram_input: # From the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited # Devices (https://arxiv.org/abs/2004.02984) # # The embedding table in BERT models accounts for a substantial proportion of model size. To compress # the embedding layer, we reduce the embedding dimension to 128 in MobileBERT. # Then, we apply a 1D convolution with kernel size 3 on the raw token embedding to produce a 512 # dimensional output. inputs_embeds = torch.cat( [ nn.functional.pad(inputs_embeds[:, 1:], [0, 0, 0, 1, 0, 0], value=0.0), inputs_embeds, nn.functional.pad(inputs_embeds[:, :-1], [0, 0, 1, 0, 0, 0], value=0.0), ], dim=2, ) if self.trigram_input or self.embedding_size != self.hidden_size: inputs_embeds = self.embedding_transformation(inputs_embeds) # Add positional embeddings and token type embeddings, then layer # normalize and perform dropout. position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MobileBertSelfAttention(nn.Module): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.true_hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.true_hidden_size, self.all_head_size) self.key = nn.Linear(config.true_hidden_size, self.all_head_size) self.value = nn.Linear( config.true_hidden_size if config.use_bottleneck_attention else config.hidden_size, self.all_head_size ) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(query_tensor) mixed_key_layer = self.key(key_tensor) mixed_value_layer = self.value(value_tensor) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs class MobileBertSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.true_hidden_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) if not self.use_bottleneck: layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertAttention(nn.Module): def __init__(self, config): super().__init__() self.self = MobileBertSelfAttention(config) self.output = MobileBertSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, query_tensor: torch.Tensor, key_tensor: torch.Tensor, value_tensor: torch.Tensor, layer_input: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: self_outputs = self.self( query_tensor, key_tensor, value_tensor, attention_mask, head_mask, output_attentions, ) # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. attention_output = self.output(self_outputs[0], layer_input) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class MobileBertIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class OutputBottleneck(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.true_hidden_size, config.hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.dropout(layer_outputs) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class MobileBertOutput(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size) if not self.use_bottleneck: self.dropout = nn.Dropout(config.hidden_dropout_prob) else: self.bottleneck = OutputBottleneck(config) def forward( self, intermediate_states: torch.Tensor, residual_tensor_1: torch.Tensor, residual_tensor_2: torch.Tensor ) -> torch.Tensor: layer_output = self.dense(intermediate_states) if not self.use_bottleneck: layer_output = self.dropout(layer_output) layer_output = self.LayerNorm(layer_output + residual_tensor_1) else: layer_output = self.LayerNorm(layer_output + residual_tensor_1) layer_output = self.bottleneck(layer_output, residual_tensor_2) return layer_output class BottleneckLayer(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intra_bottleneck_size) self.LayerNorm = NORM2FN[config.normalization_type](config.intra_bottleneck_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: layer_input = self.dense(hidden_states) layer_input = self.LayerNorm(layer_input) return layer_input class Bottleneck(nn.Module): def __init__(self, config): super().__init__() self.key_query_shared_bottleneck = config.key_query_shared_bottleneck self.use_bottleneck_attention = config.use_bottleneck_attention self.input = BottleneckLayer(config) if self.key_query_shared_bottleneck: self.attention = BottleneckLayer(config) def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor]: # This method can return three different tuples of values. These different values make use of bottlenecks, # which are linear layers used to project the hidden states to a lower-dimensional vector, reducing memory # usage. These linear layer have weights that are learned during training. # # If `config.use_bottleneck_attention`, it will return the result of the bottleneck layer four times for the # key, query, value, and "layer input" to be used by the attention layer. # This bottleneck is used to project the hidden. This last layer input will be used as a residual tensor # in the attention self output, after the attention scores have been computed. # # If not `config.use_bottleneck_attention` and `config.key_query_shared_bottleneck`, this will return # four values, three of which have been passed through a bottleneck: the query and key, passed through the same # bottleneck, and the residual layer to be applied in the attention self output, through another bottleneck. # # Finally, in the last case, the values for the query, key and values are the hidden states without bottleneck, # and the residual layer will be this value passed through a bottleneck. bottlenecked_hidden_states = self.input(hidden_states) if self.use_bottleneck_attention: return (bottlenecked_hidden_states,) * 4 elif self.key_query_shared_bottleneck: shared_attention_input = self.attention(hidden_states) return (shared_attention_input, shared_attention_input, hidden_states, bottlenecked_hidden_states) else: return (hidden_states, hidden_states, hidden_states, bottlenecked_hidden_states) class FFNOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.true_hidden_size) self.LayerNorm = NORM2FN[config.normalization_type](config.true_hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor, residual_tensor: torch.Tensor) -> torch.Tensor: layer_outputs = self.dense(hidden_states) layer_outputs = self.LayerNorm(layer_outputs + residual_tensor) return layer_outputs class FFNLayer(nn.Module): def __init__(self, config): super().__init__() self.intermediate = MobileBertIntermediate(config) self.output = FFNOutput(config) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: intermediate_output = self.intermediate(hidden_states) layer_outputs = self.output(intermediate_output, hidden_states) return layer_outputs class MobileBertLayer(nn.Module): def __init__(self, config): super().__init__() self.use_bottleneck = config.use_bottleneck self.num_feedforward_networks = config.num_feedforward_networks self.attention = MobileBertAttention(config) self.intermediate = MobileBertIntermediate(config) self.output = MobileBertOutput(config) if self.use_bottleneck: self.bottleneck = Bottleneck(config) if config.num_feedforward_networks > 1: self.ffn = nn.ModuleList([FFNLayer(config) for _ in range(config.num_feedforward_networks - 1)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, ) -> Tuple[torch.Tensor]: if self.use_bottleneck: query_tensor, key_tensor, value_tensor, layer_input = self.bottleneck(hidden_states) else: query_tensor, key_tensor, value_tensor, layer_input = [hidden_states] * 4 self_attention_outputs = self.attention( query_tensor, key_tensor, value_tensor, layer_input, attention_mask, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] s = (attention_output,) outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.num_feedforward_networks != 1: for i, ffn_module in enumerate(self.ffn): attention_output = ffn_module(attention_output) s += (attention_output,) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output, hidden_states) outputs = ( (layer_output,) + outputs + ( torch.tensor(1000), query_tensor, key_tensor, value_tensor, layer_input, attention_output, intermediate_output, ) + s ) return outputs class MobileBertEncoder(nn.Module): def __init__(self, config): super().__init__() self.layer = nn.ModuleList([MobileBertLayer(config) for _ in range(config.num_hidden_layers)]) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) class MobileBertPooler(nn.Module): def __init__(self, config): super().__init__() self.do_activate = config.classifier_activation if self.do_activate: self.dense = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] if not self.do_activate: return first_token_tensor else: pooled_output = self.dense(first_token_tensor) pooled_output = torch.tanh(pooled_output) return pooled_output class MobileBertPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = NORM2FN["layer_norm"](config.hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states class MobileBertLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = MobileBertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.dense = nn.Linear(config.vocab_size, config.hidden_size - config.embedding_size, bias=False) self.decoder = nn.Linear(config.embedding_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self) -> None: self.decoder.bias = self.bias def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.transform(hidden_states) hidden_states = hidden_states.matmul(torch.cat([self.decoder.weight.t(), self.dense.weight], dim=0)) hidden_states += self.decoder.bias return hidden_states class MobileBertOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores class MobileBertPreTrainingHeads(nn.Module): def __init__(self, config): super().__init__() self.predictions = MobileBertLMPredictionHead(config) self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, sequence_output: torch.Tensor, pooled_output: torch.Tensor) -> Tuple[torch.Tensor]: prediction_scores = self.predictions(sequence_output) seq_relationship_score = self.seq_relationship(pooled_output) return prediction_scores, seq_relationship_score class MobileBertPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileBertConfig load_tf_weights = load_tf_weights_in_mobilebert base_model_prefix = "mobilebert" def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, (nn.LayerNorm, NoNorm)): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class MobileBertForPreTrainingOutput(ModelOutput): """ Output type of [`MobileBertForPreTraining`]. Args: loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`): Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss. prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`): Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None prediction_logits: torch.FloatTensor = None seq_relationship_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None MOBILEBERT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileBert Model transformer outputting raw hidden-states without any specific head on top.", MOBILEBERT_START_DOCSTRING, ) class MobileBertModel(MobileBertPreTrainedModel): """ https://arxiv.org/pdf/2004.02984.pdf """ def __init__(self, config, add_pooling_layer=True): super().__init__(config) self.config = config self.embeddings = MobileBertEmbeddings(config) self.encoder = MobileBertEncoder(config) self.pooler = MobileBertPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next sentence prediction (classification)` head. """, MOBILEBERT_START_DOCSTRING, ) class MobileBertForPreTraining(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertPreTrainingHeads(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=MobileBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, next_sentence_label: Optional[torch.LongTensor] = None, output_attentions: Optional[torch.FloatTensor] = None, output_hidden_states: Optional[torch.FloatTensor] = None, return_dict: Optional[torch.FloatTensor] = None, ) -> Union[Tuple, MobileBertForPreTrainingOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`: - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForPreTraining >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0) >>> # Batch size 1 >>> outputs = model(input_ids) >>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits = outputs.seq_relationship_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output, pooled_output = outputs[:2] prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) total_loss = None if labels is not None and next_sentence_label is not None: loss_fct = CrossEntropyLoss() masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) total_loss = masked_lm_loss + next_sentence_loss if not return_dict: output = (prediction_scores, seq_relationship_score) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return MobileBertForPreTrainingOutput( loss=total_loss, prediction_logits=prediction_scores, seq_relationship_logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings("""MobileBert Model with a `language modeling` head on top.""", MOBILEBERT_START_DOCSTRING) class MobileBertForMaskedLM(MobileBertPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.cls = MobileBertOnlyMLMHead(config) self.config = config # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.cls.predictions.decoder def set_output_embeddings(self, new_embeddings): self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: # resize dense output embedings at first self.cls.predictions.dense = self._get_resized_lm_head( self.cls.predictions.dense, new_num_tokens=new_num_tokens, transposed=True ) return super().resize_token_embeddings(new_num_tokens=new_num_tokens) @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, expected_output="'paris'", expected_loss=0.57, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.cls(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class MobileBertOnlyNSPHead(nn.Module): def __init__(self, config): super().__init__() self.seq_relationship = nn.Linear(config.hidden_size, 2) def forward(self, pooled_output: torch.Tensor) -> torch.Tensor: seq_relationship_score = self.seq_relationship(pooled_output) return seq_relationship_score @add_start_docstrings( """MobileBert Model with a `next sentence prediction (classification)` head on top.""", MOBILEBERT_START_DOCSTRING, ) class MobileBertForNextSentencePrediction(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) self.cls = MobileBertOnlyNSPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, NextSentencePredictorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see `input_ids` docstring) Indices should be in `[0, 1]`. - 0 indicates sequence B is a continuation of sequence A, - 1 indicates sequence B is a random sequence. Returns: Examples: ```python >>> from transformers import AutoTokenizer, MobileBertForNextSentencePrediction >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased") >>> model = MobileBertForNextSentencePrediction.from_pretrained("google/mobilebert-uncased") >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced." >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt") >>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> loss = outputs.loss >>> logits = outputs.logits ```""" if "next_sentence_label" in kwargs: warnings.warn( "The `next_sentence_label` argument is deprecated and will be removed in a future version, use" " `labels` instead.", FutureWarning, ) labels = kwargs.pop("next_sentence_label") return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] seq_relationship_score = self.cls(pooled_output) next_sentence_loss = None if labels is not None: loss_fct = CrossEntropyLoss() next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), labels.view(-1)) if not return_dict: output = (seq_relationship_score,) + outputs[2:] return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output return NextSentencePredictorOutput( loss=next_sentence_loss, logits=seq_relationship_score, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForSequenceClassification with Bert->MobileBert all-casing class MobileBertForSequenceClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_SEQUENCE_CLASSIFICATION, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForQuestionAnswering with Bert->MobileBert all-casing class MobileBertForQuestionAnswering(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForMultipleChoice with Bert->MobileBert all-casing class MobileBertForMultipleChoice(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.mobilebert = MobileBertModel(config) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward( MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=MultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: output = (reshaped_logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return MultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @add_start_docstrings( """ MobileBert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, MOBILEBERT_START_DOCSTRING, ) # Copied from transformers.models.bert.modeling_bert.BertForTokenClassification with Bert->MobileBert all-casing class MobileBertForTokenClassification(MobileBertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.mobilebert = MobileBertModel(config, add_pooling_layer=False) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_TOKEN_CLASSIFICATION, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, expected_output=_TOKEN_CLASS_EXPECTED_OUTPUT, expected_loss=_TOKEN_CLASS_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilebert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
transformers/src/transformers/models/mobilebert/modeling_mobilebert.py/0
{ "file_path": "transformers/src/transformers/models/mobilebert/modeling_mobilebert.py", "repo_id": "transformers", "token_count": 29596 }
563
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_mobilevit": ["MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_mobilevit"] = ["MobileViTFeatureExtractor"] _import_structure["image_processing_mobilevit"] = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_mobilevit"] = [ "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_tf_mobilevit"] = [ "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/mobilevit/__init__.py/0
{ "file_path": "transformers/src/transformers/models/mobilevit/__init__.py", "repo_id": "transformers", "token_count": 1213 }
564
# coding=utf-8 # Copyright 2023 Meta AI and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Musicgen model.""" import copy import inspect import math import random from dataclasses import dataclass from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import CrossEntropyLoss from ...activations import ACT2FN from ...generation.configuration_utils import GenerationConfig from ...generation.logits_process import ClassifierFreeGuidanceLogitsProcessor, LogitsProcessorList from ...generation.stopping_criteria import StoppingCriteriaList from ...modeling_attn_mask_utils import ( _prepare_4d_attention_mask, _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask, _prepare_4d_causal_attention_mask_for_sdpa, ) from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions, ModelOutput, Seq2SeqLMOutput, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, is_flash_attn_2_available, is_flash_attn_greater_or_equal_2_10, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_auto import AutoModel from .configuration_musicgen import MusicgenConfig, MusicgenDecoderConfig if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa if TYPE_CHECKING: from ...generation.streamers import BaseStreamer logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "MusicgenConfig" _CHECKPOINT_FOR_DOC = "facebook/musicgen-small" # Copied from transformers.models.llama.modeling_llama._get_unpad_data def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) @dataclass class MusicgenUnconditionalInput(ModelOutput): """ Args: encoder_outputs (`Tuple[torch.FloatTensor]` of length 1, with tensor shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the text encoder model. attention_mask (`torch.LongTensor`) of shape `(batch_size, sequence_length)`, *optional*): Encoder attention mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: 1 for tokens that are **not masked**, 0 for tokens that are **masked**. guidance_scale (`float`, *optional*): Guidance scale for classifier free guidance, setting the balance between the conditional logits (predicted from the prompts) and the unconditional logits (predicted without prompts). """ encoder_outputs: Tuple[torch.FloatTensor] = None attention_mask: torch.LongTensor = None guidance_scale: float = None def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): """ Shift input ids one token to the right. """ # transpose to get (bsz, num_codebooks, seq_len) input_ids = input_ids.transpose(1, 2) shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class MusicgenSinusoidalPositionalEmbedding(nn.Module): """This module produces sinusoidal positional embeddings of any length.""" def __init__(self, num_positions: int, embedding_dim: int): super().__init__() self.embedding_dim = embedding_dim self.make_weights(num_positions, embedding_dim) def make_weights(self, num_embeddings: int, embedding_dim: int): emb_weights = self.get_embedding(num_embeddings, embedding_dim) if hasattr(self, "weights"): # in forward put the weights on the correct dtype and device of the param emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device) self.weights = nn.Parameter(emb_weights) self.weights.requires_grad = False self.weights.detach_() @staticmethod def get_embedding(num_embeddings: int, embedding_dim: int): """ Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb) emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0) emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=1).view(num_embeddings, -1) if embedding_dim % 2 == 1: # zero pad emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) return emb.to(torch.get_default_dtype()) @torch.no_grad() def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): bsz, codebooks, seq_len = input_ids.size() # Create the position ids from the input token ids. position_ids = (torch.arange(seq_len) + past_key_values_length).to(input_ids.device) # expand embeddings if needed if seq_len > self.weights.size(0): self.make_weights(seq_len + self.offset, self.embedding_dim) return self.weights.index_select(0, position_ids.view(-1)).detach() # Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->Musicgen class MusicgenAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, is_decoder: bool = False, bias: bool = True, is_causal: bool = False, config: Optional[MusicgenConfig] = None, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads self.config = config if (self.head_dim * num_heads) != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {num_heads})." ) self.scaling = self.head_dim**-0.5 self.is_decoder = is_decoder self.is_causal = is_causal self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) * self.scaling # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) proj_shape = (bsz * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) key_states = key_states.reshape(*proj_shape) value_states = value_states.reshape(*proj_shape) src_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): raise ValueError( f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" f" {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, tgt_len, src_len): raise ValueError( f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" ) attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if layer_head_mask is not None: if layer_head_mask.size() != (self.num_heads,): raise ValueError( f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" f" {layer_head_mask.size()}" ) attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to be reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped, past_key_value # Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->Musicgen class MusicgenFlashAttention2(MusicgenAttention): """ Musicgen flash attention module. This module inherits from `MusicgenAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: # MusicgenFlashAttention2 attention does not support output_attentions if output_attentions: raise ValueError("MusicgenFlashAttention2 attention does not support output_attentions") # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, q_len, _ = hidden_states.size() # get query proj query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0].transpose(1, 2) value_states = past_key_value[1].transpose(1, 2) elif is_cross_attention: # cross_attentions key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) else: # self_attention key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[-2] # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (LlamaRMSNorm handles it correctly) input_dtype = query_states.dtype if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.q_proj.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_states = query_states.to(target_dtype) key_states = key_states.to(target_dtype) value_states = value_states.to(target_dtype) attn_output = self._flash_attention_forward( query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout ) attn_output = attn_output.reshape(bsz, q_len, -1) attn_output = self.out_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward def _flash_attention_forward( self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None ): """ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token first unpad the input, then computes the attention scores and pad the final attention scores. Args: query_states (`torch.Tensor`): Input query states to be passed to Flash Attention API key_states (`torch.Tensor`): Input key states to be passed to Flash Attention API value_states (`torch.Tensor`): Input value states to be passed to Flash Attention API attention_mask (`torch.Tensor`): The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the position of padding tokens and 1 for the position of non-padding tokens. dropout (`float`): Attention dropout softmax_scale (`float`, *optional*): The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) """ if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 # Contains at least one padding token in the sequence if attention_mask is not None: batch_size = query_states.shape[0] query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=softmax_scale, causal=causal, ) attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal ) return attn_output # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) # Copied from transformers.models.bart.modeling_bart.BartSdpaAttention with Bart->Musicgen class MusicgenSdpaAttention(MusicgenAttention): def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" if output_attentions or layer_head_mask is not None: # TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented. logger.warning_once( "MusicgenModel is using MusicgenSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" ' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, key_value_states=key_value_states, past_key_value=past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None bsz, tgt_len, _ = hidden_states.size() # get query proj query_states = self.q_proj(hidden_states) # get key, value proj # `past_key_value[0].shape[2] == key_value_states.shape[1]` # is checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning if ( is_cross_attention and past_key_value is not None and past_key_value[0].shape[2] == key_value_states.shape[1] ): # reuse k,v, cross_attentions key_states = past_key_value[0] value_states = past_key_value[1] elif is_cross_attention: # cross_attentions key_states = self._shape(self.k_proj(key_value_states), -1, bsz) value_states = self._shape(self.v_proj(key_value_states), -1, bsz) elif past_key_value is not None: # reuse k, v, self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) key_states = torch.cat([past_key_value[0], key_states], dim=2) value_states = torch.cat([past_key_value[1], value_states], dim=2) else: # self_attention key_states = self._shape(self.k_proj(hidden_states), -1, bsz) value_states = self._shape(self.v_proj(hidden_states), -1, bsz) if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_states, value_states) query_states = self._shape(query_states, tgt_len, bsz) # NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask, # but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577 attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attn_mask=attention_mask, dropout_p=self.dropout if self.training else 0.0, # The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1. is_causal=self.is_causal and attention_mask is None and tgt_len > 1, ) if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2) # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be # partitioned across GPUs when using tensor-parallelism. attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) attn_output = self.out_proj(attn_output) return attn_output, None, past_key_value MUSICGEN_ATTENTION_CLASSES = { "eager": MusicgenAttention, "sdpa": MusicgenSdpaAttention, "flash_attention_2": MusicgenFlashAttention2, } class MusicgenDecoderLayer(nn.Module): def __init__(self, config: MusicgenDecoderConfig): super().__init__() self.embed_dim = config.hidden_size self.self_attn = MUSICGEN_ATTENTION_CLASSES[config._attn_implementation]( embed_dim=self.embed_dim, num_heads=config.num_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, is_causal=True, config=config, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.encoder_attn = MUSICGEN_ATTENTION_CLASSES[config._attn_implementation]( self.embed_dim, config.num_attention_heads, dropout=config.attention_dropout, is_decoder=True, bias=False, config=config, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, config.ffn_dim, bias=False) self.fc2 = nn.Linear(config.ffn_dim, self.embed_dim, bias=False) self.final_layer_norm = nn.LayerNorm(self.embed_dim) # Copied from transformers.models.mbart.modeling_mbart.MBartDecoderLayer.forward def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, ) -> torch.Tensor: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size `(encoder_attention_heads,)`. cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`. past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None # add present self-attn cache to positions 1,2 of present_key_value tuple hidden_states, self_attn_weights, present_key_value = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_present_key_value = None cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states # add cross-attn to positions 3,4 of present_key_value tuple present_key_value = present_key_value + cross_attn_present_key_value # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) if use_cache: outputs += (present_key_value,) return outputs class MusicgenPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MusicgenDecoderConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MusicgenDecoderLayer", "MusicgenAttention"] _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module): std = self.config.initializer_factor if isinstance(module, (nn.Linear, nn.Conv1d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() MUSICGEN_START_DOCSTRING = r""" The Musicgen model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, Alexandre Défossez. It is an encoder decoder transformer trained on the task of conditional music generation This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MusicgenConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MUSICGEN_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) <Tip warning={true}> The `decoder_input_ids` will automatically be converted from shape `(batch_size * num_codebooks, target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as `decoder_input_ids`. </Tip> decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ MUSICGEN_DECODER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size * num_codebooks, sequence_length)`): Indices of input sequence tokens in the vocabulary, corresponding to the sequence of audio codes. Indices can be obtained by encoding an audio prompt with an audio encoder model to predict audio codes, such as with the [`EncodecModel`]. See [`EncodecModel.encode`] for details. [What are input IDs?](../glossary#input-ids) <Tip warning={true}> The `input_ids` will automatically be converted from shape `(batch_size * num_codebooks, target_sequence_length)` to `(batch_size, num_codebooks, target_sequence_length)` in the forward pass. If you obtain audio codes from an audio encoding model, such as [`EncodecModel`], ensure that the number of frames is equal to 1, and that you reshape the audio codes from `(frames, batch_size, num_codebooks, target_sequence_length)` to `(batch_size * num_codebooks, target_sequence_length)` prior to passing them as `input_ids`. </Tip> attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing cross-attention on hidden heads. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class MusicgenDecoder(MusicgenPreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MusicgenDecoderLayer`] """ def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.dropout = config.dropout self.layerdrop = config.layerdrop self.max_target_positions = config.max_position_embeddings self.d_model = config.hidden_size self.num_codebooks = config.num_codebooks self.embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0 embed_dim = config.vocab_size + 1 self.embed_tokens = nn.ModuleList( [nn.Embedding(embed_dim, config.hidden_size) for _ in range(config.num_codebooks)] ) self.embed_positions = MusicgenSinusoidalPositionalEmbedding( config.max_position_embeddings, config.hidden_size, ) self.layers = nn.ModuleList([MusicgenDecoderLayer(config) for _ in range(config.num_hidden_layers)]) self.layer_norm = nn.LayerNorm(config.hidden_size) self.attn_implementation = config._attn_implementation self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: # (bsz * codebooks, seq_len) -> (bsz, codebooks, seq_len) input = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input.shape input_shape = (bsz, seq_len) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] input = inputs_embeds[:, :, -1:] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if inputs_embeds is None: inputs_embeds = sum([self.embed_tokens[codebook](input[:, codebook]) for codebook in range(num_codebooks)]) if self.attn_implementation == "flash_attention_2": attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None elif self.attn_implementation == "sdpa" and head_mask is None and not output_attentions: # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( attention_mask, input_shape, inputs_embeds, past_key_values_length, ) else: attention_mask = _prepare_4d_causal_attention_mask( attention_mask, input_shape, inputs_embeds, past_key_values_length ) # expand encoder attention mask if encoder_hidden_states is not None and encoder_attention_mask is not None: if self.attn_implementation == "flash_attention_2": encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None elif self.attn_implementation == "sdpa" and cross_attn_head_mask is None and not output_attentions: # output_attentions=True & cross_attn_head_mask can not be supported when using SDPA, and we fall back on # the manual implementation that requires a 4D causal mask in all cases. # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1], ) else: # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] encoder_attention_mask = _prepare_4d_attention_mask( encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] ) # embed positions positions = self.embed_positions(input, past_key_values_length) hidden_states = inputs_embeds + positions.to(inputs_embeds.device) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None next_decoder_cache = () if use_cache else None # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): if attn_mask is not None: if attn_mask.size()[0] != len(self.layers): raise ValueError( f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" f" {attn_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: all_hidden_states += (hidden_states,) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue past_key_value = past_key_values[idx] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.forward, hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, head_mask[idx] if head_mask is not None else None, cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, None, output_attentions, use_cache, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) hidden_states = self.layer_norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "The bare Musicgen decoder model outputting raw hidden-states without any specific head on top.", MUSICGEN_START_DOCSTRING, ) class MusicgenModel(MusicgenPreTrainedModel): def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.decoder = MusicgenDecoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.embed_tokens def set_input_embeddings(self, value): self.decoder.embed_tokens = value def get_decoder(self): return self.decoder @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) decoder_outputs = self.decoder( input_ids=input_ids, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, encoder_hidden_states=encoder_hidden_states, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: return decoder_outputs return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) @add_start_docstrings( "The MusicGen decoder model with a language modelling head on top.", MUSICGEN_START_DOCSTRING, ) class MusicgenForCausalLM(MusicgenPreTrainedModel): def __init__(self, config: MusicgenDecoderConfig): super().__init__(config) self.model = MusicgenModel(config) self.num_codebooks = config.num_codebooks self.lm_heads = nn.ModuleList( [nn.Linear(config.hidden_size, config.vocab_size, bias=False) for _ in range(config.num_codebooks)] ) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.decoder.embed_tokens def set_input_embeddings(self, value): self.model.decoder.embed_tokens = value def get_output_embeddings(self): return self.lm_heads def set_output_embeddings(self, new_embeddings): self.lm_heads = new_embeddings def set_decoder(self, decoder): self.model.decoder = decoder def get_decoder(self): return self.model.decoder @add_start_docstrings_to_model_forward(MUSICGEN_DECODER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length, num_codebooks)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (labels is not None) and (input_ids is None and inputs_embeds is None): input_ids = shift_tokens_right(labels, self.config.pad_token_id, self.config.bos_token_id) outputs = self.model( input_ids, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, head_mask=head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] lm_logits = torch.stack([head(hidden_states) for head in self.lm_heads], dim=1) loss = None if labels is not None: # since encoder hidden states have been concatenated to the decoder hidden states, # we take the last timestamps corresponding to labels logits = lm_logits[:, :, -labels.shape[1] :] loss_fct = CrossEntropyLoss() loss = torch.zeros([], device=self.device) # per codebook cross-entropy # -100 labels are ignored labels = labels.masked_fill(labels == self.config.pad_token_id, -100) # per codebook cross-entropy # ref: https://github.com/facebookresearch/audiocraft/blob/69fea8b290ad1b4b40d28f92d1dfc0ab01dbab85/audiocraft/solvers/musicgen.py#L242-L243 for codebook in range(self.config.num_codebooks): codebook_logits = logits[:, codebook].contiguous().view(-1, logits.shape[-1]) codebook_labels = labels[..., codebook].contiguous().view(-1) loss += loss_fct(codebook_logits, codebook_labels) loss = loss / self.config.num_codebooks # (bsz, num_codebooks, seq_len, vocab_size) -> (bsz * num_codebooks, seq_len, vocab_size) lm_logits = lm_logits.reshape(-1, *lm_logits.shape[2:]) if not return_dict: output = (lm_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithCrossAttentions( loss=loss, logits=lm_logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def prepare_inputs_for_generation( self, input_ids, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=True, delay_pattern_mask=None, guidance_scale=None, **kwargs, ): if delay_pattern_mask is None: input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask input_ids = self.apply_delay_pattern_mask(input_ids, delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) input_ids = input_ids.repeat((2, 1)) if attention_mask is not None: attention_mask = attention_mask.repeat((2, 1)) if past_key_values is not None: input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "attention_mask": attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "head_mask": head_mask, "cross_attn_head_mask": cross_attn_head_mask, "past_key_values": past_key_values, "use_cache": use_cache, } def build_delay_pattern_mask(self, input_ids: torch.LongTensor, pad_token_id: int, max_length: int = None): """Build a delayed pattern mask to the input_ids. Each codebook is offset by the previous codebook by one, giving a delayed pattern mask at the start of sequence and end of sequence. Take the example where there are 4 codebooks and a max sequence length of 8, we have the delayed pattern mask of shape `(codebooks, seq_len)`: - [P, -1, -1, -1, -1, P, P, P] - [P, P, -1, -1, -1, -1, P, P] - [P, P, P, -1, -1, -1, -1, P] - [P, P, P, P, -1, -1, -1, -1] where P is the special padding token id and -1 indicates that the token is valid for prediction. If we include a prompt (decoder input ids), the -1 positions indicate where new tokens should be predicted. Otherwise, the mask is set to the value in the prompt: - [P, a, b, -1, -1, P, P, P] - [P, P, c, d, -1, -1, P, P] - [P, P, P, e, f, -1, -1, P] - [P, P, P, P, g, h, -1, -1] where a-h indicate the input prompt (decoder input ids) that are offset by 1. Now, we only override the -1 tokens in our prediction. """ # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) input_ids = input_ids.reshape(-1, self.num_codebooks, input_ids.shape[-1]) bsz, num_codebooks, seq_len = input_ids.shape max_length = max_length if max_length is not None else self.generation_config.max_length input_ids_shifted = ( torch.ones((bsz, num_codebooks, max_length), dtype=torch.long, device=input_ids.device) * -1 ) channel_codebooks = num_codebooks // 2 if self.config.audio_channels == 2 else num_codebooks # we only apply the mask if we have a large enough seq len - otherwise we return as is if max_length < 2 * channel_codebooks - 1: return input_ids.reshape(bsz * num_codebooks, -1), input_ids_shifted.reshape(bsz * num_codebooks, -1) # fill the shifted ids with the prompt entries, offset by the codebook idx for codebook in range(channel_codebooks): if self.config.audio_channels == 1: # mono channel - loop over the codebooks one-by-one input_ids_shifted[:, codebook, codebook : seq_len + codebook] = input_ids[:, codebook] else: # left/right channels are interleaved in the generated codebooks, so handle one then the other input_ids_shifted[:, 2 * codebook, codebook : seq_len + codebook] = input_ids[:, 2 * codebook] input_ids_shifted[:, 2 * codebook + 1, codebook : seq_len + codebook] = input_ids[:, 2 * codebook + 1] # construct a pattern mask that indicates the positions of padding tokens for each codebook # first fill the upper triangular part (the EOS padding) delay_pattern = torch.triu( torch.ones((channel_codebooks, max_length), dtype=torch.bool), diagonal=max_length - channel_codebooks + 1 ) # then fill the lower triangular part (the BOS padding) delay_pattern = delay_pattern + torch.tril(torch.ones((channel_codebooks, max_length), dtype=torch.bool)) if self.config.audio_channels == 2: # for left/right channel we need to duplicate every row of the pattern mask in an interleaved fashion delay_pattern = delay_pattern.repeat_interleave(2, dim=0) mask = ~delay_pattern.to(input_ids.device) input_ids = mask * input_ids_shifted + ~mask * pad_token_id # find the first position to start generating - this is the first place we have the -1 token # and will always be in the first codebook (since it has no codebook offset) first_codebook_ids = input_ids[:, 0, :] start_ids = (first_codebook_ids == -1).nonzero()[:, 1] if len(start_ids) > 0: first_start_id = min(start_ids) else: # we have no tokens that need to be filled - return entire matrix of input ids first_start_id = seq_len # (bsz * num_codebooks, seq_len) -> (bsz, num_codebooks, seq_len) pattern_mask = input_ids.reshape(bsz * num_codebooks, -1) input_ids = input_ids[..., :first_start_id].reshape(bsz * num_codebooks, -1) return input_ids, pattern_mask @staticmethod def apply_delay_pattern_mask(input_ids, decoder_pad_token_mask): """Apply a delay pattern mask to the decoder input ids, only preserving predictions where the mask is set to -1, and otherwise setting to the value detailed in the mask.""" seq_len = input_ids.shape[-1] decoder_pad_token_mask = decoder_pad_token_mask[..., :seq_len] input_ids = torch.where(decoder_pad_token_mask == -1, input_ids, decoder_pad_token_mask) return input_ids @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, streamer: Optional["BaseStreamer"] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask", None) is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id # 3. Define model inputs # inputs_tensor has to be defined # model_input_name is defined if model-specific keyword input is passed # otherwise model_input_name is None # all model-specific keyword inputs are removed from `model_kwargs` input_ids, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = input_ids.shape[0] // self.num_codebooks # 4. Define other model kwargs model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale requires_attention_mask = "encoder_outputs" not in model_kwargs if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( input_ids, generation_config.pad_token_id, generation_config.eos_token_id ) # 5. Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20: logger.warning( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. recommend setting `max_new_tokens` to control the maximum length of the generation." ) elif generation_config.max_new_tokens is not None: if not has_default_max_length: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: raise ValueError( f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than" f" the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: logger.warning( f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing `max_new_tokens`." ) # 6. Prepare `input_ids` which will be used for auto-regressive generation # Build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) input_ids, delay_pattern_mask = self.build_delay_pattern_mask( input_ids, pad_token_id=generation_config.decoder_start_token_id, max_length=generation_config.max_length, ) if streamer is not None: streamer.put(input_ids.cpu()) # stash the delay mask so that we don't have to recompute it in each forward pass model_kwargs["delay_pattern_mask"] = delay_pattern_mask # 7. determine generation mode is_greedy_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is False ) is_sample_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is True ) # 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) generation_config.guidance_scale = None # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=input_ids, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, ) # 10. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if is_greedy_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( "num_return_sequences has to be 1 when doing greedy search, " f"but is {generation_config.num_return_sequences}." ) # 11. run greedy search outputs = self._sample( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif is_sample_gen_mode: # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config) # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, **model_kwargs, ) # 12. run sample outputs = self._sample( input_ids, logits_processor=logits_processor, logits_warper=logits_warper, stopping_criteria=stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling. " "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.apply_delay_pattern_mask(output_ids, model_kwargs["delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape( batch_size, self.num_codebooks, -1 ) if generation_config.return_dict_in_generate: outputs.sequences = output_ids return outputs else: return output_ids @add_start_docstrings( "The composite MusicGen model with a text encoder, audio encoder and Musicgen decoder, " "for music generation tasks with one or both of text and audio prompts.", MUSICGEN_START_DOCSTRING, ) class MusicgenForConditionalGeneration(PreTrainedModel): config_class = MusicgenConfig base_model_prefix = "encoder_decoder" main_input_name = "input_ids" supports_gradient_checkpointing = True _supports_flash_attn_2 = True _supports_sdpa = True def __init__( self, config: Optional[MusicgenConfig] = None, text_encoder: Optional[PreTrainedModel] = None, audio_encoder: Optional[PreTrainedModel] = None, decoder: Optional[MusicgenForCausalLM] = None, ): if config is None and (text_encoder is None or audio_encoder is None or decoder is None): raise ValueError( "Either a configuration has to be provided, or all three of text encoder, audio encoder and MusicGen decoder." ) if config is None: config = MusicgenConfig.from_sub_models_config(text_encoder.config, audio_encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"Config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.text_encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the MusicGen decoder's configuration, it has to be equal" f" to the text encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.text_encoder.hidden_size} for" " `config.text_encoder.hidden_size`." ) # initialize with config super().__init__(config) if text_encoder is None: from ..auto.modeling_auto import AutoModelForTextEncoding text_encoder = AutoModelForTextEncoding.from_config(config.text_encoder) if audio_encoder is None: from ..auto.modeling_auto import AutoModel audio_encoder = AutoModel.from_config(config.audio_encoder) if decoder is None: decoder = MusicgenForCausalLM(config.decoder) self.text_encoder = text_encoder self.audio_encoder = audio_encoder self.decoder = decoder if self.text_encoder.config.to_dict() != self.config.text_encoder.to_dict(): logger.warning( f"Config of the text_encoder: {self.text_encoder.__class__} is overwritten by shared text_encoder config:" f" {self.config.text_encoder}" ) if self.audio_encoder.config.to_dict() != self.config.audio_encoder.to_dict(): logger.warning( f"Config of the audio_encoder: {self.audio_encoder.__class__} is overwritten by shared audio_encoder config:" f" {self.config.audio_encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.text_encoder.config = self.config.text_encoder self.audio_encoder.config = self.config.audio_encoder self.decoder.config = self.config.decoder # text encoder outputs might need to be projected to different dimension for decoder if ( self.text_encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = nn.Linear(self.text_encoder.config.hidden_size, self.decoder.config.hidden_size) if self.text_encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.text_encoder} should not have a LM Head. Please use a model without and LM Head" ) decoder_signature = set(inspect.signature(self.decoder.forward).parameters.keys()) if "encoder_hidden_states" not in decoder_signature: raise ValueError( "The selected decoder is not prepared for the encoder hidden states to be passed. Please see the " "following discussion on GitHub: https://github.com/huggingface/transformers/issues/23350" ) # tie text encoder, decoder weights if config set accordingly self.tie_weights() def tie_weights(self): # tie text encoder & decoder if needed if self.config.tie_encoder_decoder: # tie text encoder and decoder base model decoder_base_model_prefix = self.decoder.base_model_prefix tied_weights = self._tie_encoder_decoder_weights( self.text_encoder, self.decoder._modules[decoder_base_model_prefix], self.decoder.base_model_prefix, "text_encoder", ) # Setting a dynamic variable instead of `_tied_weights_keys` because it's a class # attributed not an instance member, therefore modifying it will modify the entire class # Leading to issues on subsequent calls by different tests or subsequent calls. self._dynamic_tied_weights_keys = tied_weights def get_audio_encoder(self): return self.audio_encoder def get_text_encoder(self): return self.text_encoder def get_encoder(self): # get the text encoder to compute the encoder hidden-states for generation return self.get_text_encoder() def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.text_encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): r""" Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") ```""" # At the moment fast initialization is not supported for composite models if kwargs.get("_fast_init", False): logger.warning( "Fast initialization is currently not supported for MusicgenForConditionalGeneration. " "Falling back to slow initialization..." ) kwargs["_fast_init"] = False return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs) @classmethod def from_sub_models_pretrained( cls, text_encoder_pretrained_model_name_or_path: str = None, audio_encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> PreTrainedModel: r""" Instantiate a text encoder, an audio encoder, and a MusicGen decoder from one, two or three base classes of the library from pretrained model checkpoints. The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train the model, you need to first set it back in training mode with `model.train()`. Params: text_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the text encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. audio_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the audio encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the text encoder configuration, use the prefix *text_encoder_* for each configuration parameter. - To update the audio encoder configuration, use the prefix *audio_encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> # initialize a musicgen model from a t5 text encoder, encodec audio encoder, and musicgen decoder >>> model = MusicgenForConditionalGeneration.from_sub_models_pretrained( ... text_encoder_pretrained_model_name_or_path="google-t5/t5-base", ... audio_encoder_pretrained_model_name_or_path="facebook/encodec_24khz", ... decoder_pretrained_model_name_or_path="facebook/musicgen-small", ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./musicgen-ft") >>> # load fine-tuned model >>> model = MusicgenForConditionalGeneration.from_pretrained("./musicgen-ft") ```""" kwargs_text_encoder = { argument[len("text_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_audio_encoder = { argument[len("audio_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("audio_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove text encoder, audio encoder and decoder kwargs from kwargs for key in kwargs_text_encoder.keys(): del kwargs["text_encoder_" + key] for key in kwargs_audio_encoder.keys(): del kwargs["audio_encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. text_encoder = kwargs_text_encoder.pop("model", None) if text_encoder is None: if text_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `text_encoder_model` is not defined as an argument, a `text_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_text_encoder: encoder_config, kwargs_text_encoder = AutoConfig.from_pretrained( text_encoder_pretrained_model_name_or_path, **kwargs_text_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {text_encoder_pretrained_model_name_or_path} as a text_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_text_encoder["config"] = encoder_config text_encoder = AutoModel.from_pretrained( text_encoder_pretrained_model_name_or_path, *model_args, **kwargs_text_encoder ) audio_encoder = kwargs_audio_encoder.pop("model", None) if audio_encoder is None: if audio_encoder_pretrained_model_name_or_path is None: raise ValueError( "If `audio_encoder_model` is not defined as an argument, an `audio_encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_audio_encoder: encoder_config, kwargs_audio_encoder = AutoConfig.from_pretrained( audio_encoder_pretrained_model_name_or_path, **kwargs_audio_encoder, return_unused_kwargs=True ) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {audio_encoder_pretrained_model_name_or_path} as an audio_encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_audio_encoder["config"] = encoder_config audio_encoder = AutoModel.from_pretrained( audio_encoder_pretrained_model_name_or_path, *model_args, **kwargs_audio_encoder ) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config, kwargs_decoder = AutoConfig.from_pretrained( decoder_pretrained_model_name_or_path, **kwargs_decoder, return_unused_kwargs=True ) if isinstance(decoder_config, MusicgenConfig): decoder_config = decoder_config.decoder if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_sub_models_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_sub_models_pretrained(...)`" ) decoder = MusicgenForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # instantiate config with corresponding kwargs config = MusicgenConfig.from_sub_models_config( text_encoder.config, audio_encoder.config, decoder.config, **kwargs ) return cls(text_encoder=text_encoder, audio_encoder=audio_encoder, decoder=decoder, config=config) @add_start_docstrings_to_model_forward(MUSICGEN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.BoolTensor] = None, input_values: Optional[torch.FloatTensor] = None, padding_mask: Optional[torch.BoolTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, encoder_outputs: Optional[Tuple[torch.FloatTensor]] = None, past_key_values: Tuple[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple, Seq2SeqLMOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoProcessor, MusicgenForConditionalGeneration >>> import torch >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-small") >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") >>> inputs = processor( ... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], ... padding=True, ... return_tensors="pt", ... ) >>> pad_token_id = model.generation_config.pad_token_id >>> decoder_input_ids = ( ... torch.ones((inputs.input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long) ... * pad_token_id ... ) >>> logits = model(**inputs, decoder_input_ids=decoder_input_ids).logits >>> logits.shape # (bsz * num_codebooks, tgt_len, vocab_size) torch.Size([8, 1, 2048]) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_text_encoder = { argument[len("text_encoder_")]: value for argument, value in kwargs.items() if argument.startswith("text_encoder_") } kwargs_audio_encoder = { argument[len("audio_encoder_")]: value for argument, value in kwargs.items() if argument.startswith("audio_encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } if encoder_outputs is None: encoder_outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, **kwargs_text_encoder, ) elif isinstance(encoder_outputs, tuple): encoder_outputs = BaseModelOutput(*encoder_outputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.text_encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if attention_mask is not None: encoder_hidden_states = encoder_hidden_states * attention_mask[..., None] if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.decoder.pad_token_id, self.config.decoder.decoder_start_token_id ) elif decoder_input_ids is None and decoder_inputs_embeds is None: audio_encoder_outputs = self.audio_encoder( input_values=input_values, padding_mask=padding_mask, **kwargs_audio_encoder, ) audio_codes = audio_encoder_outputs.audio_codes frames, bsz, codebooks, seq_len = audio_codes.shape if frames != 1: raise ValueError( f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " "disabled by setting `chunk_length=None` in the audio encoder." ) if self.config.decoder.audio_channels == 2 and audio_codes.shape[2] == self.decoder.num_codebooks // 2: # mono input through encodec that we convert to stereo audio_codes = audio_codes.repeat_interleave(2, dim=2) decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=attention_mask, inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, past_key_values=past_key_values, return_dict=return_dict, labels=labels, **kwargs_decoder, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=decoder_outputs.loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, head_mask=None, decoder_attention_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, decoder_delay_pattern_mask=None, guidance_scale=None, **kwargs, ): if decoder_delay_pattern_mask is None: decoder_input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( decoder_input_ids, self.generation_config.pad_token_id, max_length=self.generation_config.max_length, ) # apply the delay pattern mask decoder_input_ids = self.decoder.apply_delay_pattern_mask(decoder_input_ids, decoder_delay_pattern_mask) if guidance_scale is not None and guidance_scale > 1: # for classifier free guidance we need to replicate the decoder args across the batch dim (we'll split these # before sampling) decoder_input_ids = decoder_input_ids.repeat((2, 1)) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.repeat((2, 1)) if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if decoder_input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = decoder_input_ids.shape[1] - 1 decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] return { "input_ids": None, # encoder_outputs is defined. input_ids not needed "encoder_outputs": encoder_outputs, "past_key_values": past_key_values, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, } def _prepare_decoder_input_ids_for_generation( self, batch_size: int, model_input_name: str, model_kwargs: Dict[str, torch.Tensor], decoder_start_token_id: int = None, bos_token_id: int = None, device: torch.device = None, ) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]: """Prepares `decoder_input_ids` for generation with encoder-decoder models""" # 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming, # we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input. if model_kwargs is not None and "decoder_input_ids" in model_kwargs: decoder_input_ids = model_kwargs.pop("decoder_input_ids") elif "input_ids" in model_kwargs and model_input_name != "input_ids": decoder_input_ids = model_kwargs.pop("input_ids") else: decoder_input_ids = None # 2. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that. decoder_start_token_id = self._get_decoder_start_token_id(decoder_start_token_id, bos_token_id) if device is None: device = self.device decoder_input_ids_start = ( torch.ones((batch_size * self.decoder.num_codebooks, 1), dtype=torch.long, device=device) * decoder_start_token_id ) # no user input -> use decoder_start_token_id as decoder_input_ids if decoder_input_ids is None: decoder_input_ids = decoder_input_ids_start # user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust # decoder_attention_mask if provided) elif (decoder_input_ids[..., 0] != decoder_start_token_id).all().item(): decoder_input_ids = torch.cat([decoder_input_ids_start, decoder_input_ids], dim=-1) if "decoder_attention_mask" in model_kwargs: decoder_attention_mask = model_kwargs["decoder_attention_mask"] decoder_attention_mask = torch.cat( (torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask), dim=-1, ) model_kwargs["decoder_attention_mask"] = decoder_attention_mask return decoder_input_ids, model_kwargs def _prepare_text_encoder_kwargs_for_generation( self, inputs_tensor: torch.Tensor, model_kwargs, model_input_name: Optional[str], generation_config: GenerationConfig, ) -> Dict[str, Any]: # 1. get text encoder encoder = self.get_text_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True # 2. Prepare encoder args and encoder kwargs from model kwargs. irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } encoder_kwargs["output_attentions"] = generation_config.output_attentions encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states guidance_scale = generation_config.guidance_scale # 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.text_encoder.main_input_name encoder_kwargs["return_dict"] = True encoder_kwargs[model_input_name] = inputs_tensor last_hidden_state = encoder(**encoder_kwargs).last_hidden_state # for classifier free guidance we need to add a 'null' input to our encoder hidden states if guidance_scale is not None and guidance_scale > 1: last_hidden_state = torch.concatenate([last_hidden_state, torch.zeros_like(last_hidden_state)], dim=0) if "attention_mask" in model_kwargs: model_kwargs["attention_mask"] = torch.concatenate( [model_kwargs["attention_mask"], torch.zeros_like(model_kwargs["attention_mask"])], dim=0 ) model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=last_hidden_state) return model_kwargs def _prepare_audio_encoder_kwargs_for_generation( self, input_values, model_kwargs, model_input_name: Optional[str] = None ): # 1. get audio encoder encoder = self.get_audio_encoder() # Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device # as the inputs. if hasattr(encoder, "_hf_hook"): encoder._hf_hook.io_same_device = True # 2. Prepare encoder args and encoder kwargs from model kwargs. irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"] encoder_kwargs = { argument: value for argument, value in model_kwargs.items() if not any(argument.startswith(p) for p in irrelevant_prefix) } encoder_signature = set(inspect.signature(encoder.forward).parameters) encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature if not encoder_accepts_wildcard: encoder_kwargs = { argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature } # 3. make sure that encoder returns `ModelOutput` model_input_name = model_input_name if model_input_name is not None else self.audio_encoder.main_input_name encoder_kwargs["return_dict"] = True if self.decoder.config.audio_channels == 1: encoder_kwargs[model_input_name] = input_values audio_encoder_outputs = encoder.encode(**encoder_kwargs) audio_codes = audio_encoder_outputs.audio_codes audio_scales = audio_encoder_outputs.audio_scales frames, bsz, codebooks, seq_len = audio_codes.shape else: if input_values.shape[1] != 2: raise ValueError( f"Expected stereo audio (2-channels) but example has {input_values.shape[1]} channel." ) encoder_kwargs[model_input_name] = input_values[:, :1, :] audio_encoder_outputs_left = encoder.encode(**encoder_kwargs) audio_codes_left = audio_encoder_outputs_left.audio_codes audio_scales_left = audio_encoder_outputs_left.audio_scales encoder_kwargs[model_input_name] = input_values[:, 1:, :] audio_encoder_outputs_right = encoder.encode(**encoder_kwargs) audio_codes_right = audio_encoder_outputs_right.audio_codes audio_scales_right = audio_encoder_outputs_right.audio_scales frames, bsz, codebooks, seq_len = audio_codes_left.shape # copy alternating left/right channel codes into stereo codebook audio_codes = audio_codes_left.new_ones((frames, bsz, 2 * codebooks, seq_len)) audio_codes[:, :, ::2, :] = audio_codes_left audio_codes[:, :, 1::2, :] = audio_codes_right if audio_scales_left != [None] or audio_scales_right != [None]: audio_scales = torch.stack([audio_scales_left, audio_scales_right], dim=1) else: audio_scales = [None] * bsz if frames != 1: raise ValueError( f"Expected 1 frame in the audio code outputs, got {frames} frames. Ensure chunking is " "disabled by setting `chunk_length=None` in the audio encoder." ) decoder_input_ids = audio_codes[0, ...].reshape(bsz * self.decoder.num_codebooks, seq_len) model_kwargs["decoder_input_ids"] = decoder_input_ids model_kwargs["audio_scales"] = audio_scales return model_kwargs def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return shift_tokens_right(labels, self.config.decoder.pad_token_id, self.config.decoder.bos_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the EncoderDecoderModel directly is not supported. Please use the" " respective methods of the wrapped objects (model.encoder.resize_token_embeddings(...) or" " model.decoder.resize_token_embeddings(...))" ) def freeze_audio_encoder(self): """ Freeze the audio encoder weights. """ for param in self.audio_encoder.parameters(): param.requires_grad = False self.audio_encoder._requires_grad = False def freeze_text_encoder(self): """ Freeze the text encoder weights. """ for param in self.text_encoder.parameters(): param.requires_grad = False self.text_encoder._requires_grad = False def _maybe_initialize_input_ids_for_generation( self, inputs: Optional[torch.Tensor] = None, bos_token_id: Optional[int] = None, model_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.LongTensor: """Initializes input ids for generation, if necessary.""" if inputs is not None: return inputs encoder_outputs = model_kwargs.get("encoder_outputs") if encoder_outputs is not None: # make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding shape = encoder_outputs[0].size()[:-1] return torch.ones(shape, dtype=torch.long, device=self.device) * -100 if bos_token_id is None: raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.") # If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with # soft-prompting or in multimodal implementations built on top of decoder-only language models. batch_size = 1 for value in model_kwargs.values(): if isinstance(value, torch.Tensor): batch_size = value.shape[0] break return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id def _get_decoder_start_token_id( self, decoder_start_token_id: Union[int, List[int]] = None, bos_token_id: int = None ) -> int: decoder_start_token_id = ( decoder_start_token_id if decoder_start_token_id is not None else self.generation_config.decoder_start_token_id ) bos_token_id = bos_token_id if bos_token_id is not None else self.generation_config.bos_token_id if decoder_start_token_id is not None: return decoder_start_token_id elif bos_token_id is not None: return bos_token_id raise ValueError( "`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation." ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, generation_config: Optional[GenerationConfig] = None, logits_processor: Optional[LogitsProcessorList] = None, stopping_criteria: Optional[StoppingCriteriaList] = None, synced_gpus: Optional[bool] = None, streamer: Optional["BaseStreamer"] = None, **kwargs, ): """ Generates sequences of token ids for models with a language modeling head. <Tip warning={true}> Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the model's default generation configuration. You can override any `generation_config` by passing the corresponding parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`. For an overview of generation strategies and code examples, check out the [following guide](./generation_strategies). </Tip> Parameters: inputs (`torch.Tensor` of varying shape depending on the modality, *optional*): The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs` should be in the format `input_ids`. For encoder-decoder models *inputs* can represent any of `input_ids`, `input_values`, `input_features`, or `pixel_values`. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`LogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and generation config. If a logit processor is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. stopping_criteria (`StoppingCriteriaList`, *optional*): Custom stopping criteria that complement the default stopping criteria built from arguments and a generation config. If a stopping criteria is passed that is already created with the arguments or a generation config an error is thrown. This feature is intended for advanced users. synced_gpus (`bool`, *optional*, defaults to `False`): Whether to continue running the while loop until max_length (needed for ZeRO stage 3) streamer (`BaseStreamer`, *optional*): Streamer object that will be used to stream the generated sequences. Generated tokens are passed through `streamer.put(token_ids)` and the streamer is responsible for any further processing. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*. Return: [`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True` or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateDecoderOnlyOutput`], - [`~generation.GenerateBeamDecoderOnlyOutput`] If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible [`~utils.ModelOutput`] types are: - [`~generation.GenerateEncoderDecoderOutput`], - [`~generation.GenerateBeamEncoderDecoderOutput`] """ # 1. Handle `generation_config` and kwargs that might update it, and validate the resulting objects if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs generation_config.validate() self._validate_model_kwargs(model_kwargs.copy()) if model_kwargs.get("encoder_outputs") is not None and type(model_kwargs["encoder_outputs"]) == tuple: # wrap the unconditional outputs as a BaseModelOutput for compatibility with the rest of generate model_kwargs["encoder_outputs"] = BaseModelOutput(last_hidden_state=model_kwargs["encoder_outputs"][0]) # 2. Set generation parameters if not already defined logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList() stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList() if generation_config.pad_token_id is None and generation_config.eos_token_id is not None: if model_kwargs.get("attention_mask", None) is None: logger.warning( "The attention mask and the pad token id were not set. As a consequence, you may observe " "unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results." ) eos_token_id = generation_config.eos_token_id if isinstance(eos_token_id, list): eos_token_id = eos_token_id[0] logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{eos_token_id} for open-end generation.") generation_config.pad_token_id = eos_token_id # 3. Define model inputs # inputs_tensor has to be defined # model_input_name is defined if model-specific keyword input is passed # otherwise model_input_name is None # all model-specific keyword inputs are removed from `model_kwargs` inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs( inputs, generation_config.bos_token_id, model_kwargs ) batch_size = inputs_tensor.shape[0] # 4. Define other model kwargs model_kwargs["use_cache"] = generation_config.use_cache model_kwargs["guidance_scale"] = generation_config.guidance_scale requires_attention_mask = "encoder_outputs" not in model_kwargs if model_kwargs.get("attention_mask", None) is None and requires_attention_mask: model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation( inputs_tensor, generation_config.pad_token_id, generation_config.eos_token_id ) if "encoder_outputs" not in model_kwargs: # encoder_outputs are created and added to `model_kwargs` model_kwargs = self._prepare_text_encoder_kwargs_for_generation( inputs_tensor, model_kwargs, model_input_name, generation_config ) if "decoder_input_ids" not in model_kwargs and "input_values" in model_kwargs: model_kwargs = self._prepare_audio_encoder_kwargs_for_generation( model_kwargs["input_values"], model_kwargs, ) # 5. Prepare `input_ids` which will be used for auto-regressive generation input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation( batch_size=batch_size, model_input_name=model_input_name, model_kwargs=model_kwargs, decoder_start_token_id=generation_config.decoder_start_token_id, bos_token_id=generation_config.bos_token_id, device=inputs_tensor.device, ) # 6. Prepare `max_length` depending on other stopping criteria. input_ids_seq_length = input_ids.shape[-1] has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None if has_default_max_length and generation_config.max_new_tokens is None: logger.warning( f"Using the model-agnostic default `max_length` (={generation_config.max_length}) " "to control the generation length. We recommend setting `max_new_tokens` to control the maximum length of the generation." ) elif generation_config.max_new_tokens is not None: if not has_default_max_length: logger.warning( f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(=" f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. " "Please refer to the documentation for more information. " "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)" ) generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length: raise ValueError( f"Unfeasible length constraints: the minimum length ({generation_config.min_length}) is larger than" f" the maximum length ({generation_config.max_length})" ) if input_ids_seq_length >= generation_config.max_length: logger.warning( f"Input length of decoder_input_ids is {input_ids_seq_length}, but `max_length` is set to" f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider" " increasing `max_new_tokens`." ) # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen) input_ids, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask( input_ids, pad_token_id=generation_config.decoder_start_token_id, max_length=generation_config.max_length, ) # stash the delay mask so that we don't have to recompute in each forward pass model_kwargs["decoder_delay_pattern_mask"] = decoder_delay_pattern_mask # input_ids are ready to be placed on the streamer (if used) if streamer is not None: streamer.put(input_ids.cpu()) # 7. determine generation mode is_greedy_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is False ) is_sample_gen_mode = ( (generation_config.num_beams == 1) and (generation_config.num_beam_groups == 1) and generation_config.do_sample is True ) # 8. prepare batched CFG externally (to enable coexistance with the unbatched CFG) if generation_config.guidance_scale is not None and generation_config.guidance_scale > 1: logits_processor.append(ClassifierFreeGuidanceLogitsProcessor(generation_config.guidance_scale)) generation_config.guidance_scale = None # 9. prepare distribution pre_processing samplers logits_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=input_ids_seq_length, encoder_input_ids=inputs_tensor, prefix_allowed_tokens_fn=None, logits_processor=logits_processor, ) # 10. prepare stopping criteria stopping_criteria = self._get_stopping_criteria( generation_config=generation_config, stopping_criteria=stopping_criteria ) if is_greedy_gen_mode: if generation_config.num_return_sequences > 1: raise ValueError( "num_return_sequences has to be 1 when doing greedy search, " f"but is {generation_config.num_return_sequences}." ) # 11. run greedy search outputs = self._sample( input_ids, logits_processor=logits_processor, stopping_criteria=stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) elif is_sample_gen_mode: # 11. prepare logits warper logits_warper = self._get_logits_warper(generation_config) # expand input_ids with `num_return_sequences` additional sequences per batch input_ids, model_kwargs = self._expand_inputs_for_generation( input_ids=input_ids, expand_size=generation_config.num_return_sequences, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs, ) # 12. run sample outputs = self._sample( input_ids, logits_processor=logits_processor, logits_warper=logits_warper, stopping_criteria=stopping_criteria, generation_config=generation_config, synced_gpus=synced_gpus, streamer=streamer, **model_kwargs, ) else: raise ValueError( "Got incompatible mode for generation, should be one of greedy or sampling. " "Ensure that beam search is de-activated by setting `num_beams=1` and `num_beam_groups=1`." ) if generation_config.return_dict_in_generate: output_ids = outputs.sequences else: output_ids = outputs # apply the pattern mask to the final ids output_ids = self.decoder.apply_delay_pattern_mask(output_ids, model_kwargs["decoder_delay_pattern_mask"]) # revert the pattern delay mask by filtering the pad token id output_ids = output_ids[output_ids != generation_config.pad_token_id].reshape( batch_size, self.decoder.num_codebooks, -1 ) # append the frame dimension back to the audio codes output_ids = output_ids[None, ...] audio_scales = model_kwargs.get("audio_scales") if audio_scales is None: audio_scales = [None] * batch_size if self.decoder.config.audio_channels == 1: output_values = self.audio_encoder.decode( output_ids, audio_scales=audio_scales, ).audio_values else: codec_outputs_left = self.audio_encoder.decode(output_ids[:, :, ::2, :], audio_scales=audio_scales) output_values_left = codec_outputs_left.audio_values codec_outputs_right = self.audio_encoder.decode(output_ids[:, :, 1::2, :], audio_scales=audio_scales) output_values_right = codec_outputs_right.audio_values output_values = torch.cat([output_values_left, output_values_right], dim=1) if generation_config.return_dict_in_generate: outputs.sequences = output_values return outputs else: return output_values def get_unconditional_inputs(self, num_samples=1): """ Helper function to get null inputs for unconditional generation, enabling the model to be used without the feature extractor or tokenizer. Args: num_samples (int, *optional*): Number of audio samples to unconditionally generate. max_new_tokens (int, *optional*): Number of tokens to generate for each sample. More tokens means longer audio samples, at the expense of longer inference (since more audio tokens need to be generated per sample). Example: ```python >>> from transformers import MusicgenForConditionalGeneration >>> model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small") >>> # get the unconditional (or 'null') inputs for the model >>> unconditional_inputs = model.get_unconditional_inputs(num_samples=1) >>> audio_samples = model.generate(**unconditional_inputs, max_new_tokens=256) ```""" last_hidden_state = torch.zeros( (num_samples, 1, self.config.text_encoder.hidden_size), device=self.device, dtype=self.dtype ) attention_mask = torch.zeros((num_samples, 1), device=self.device, dtype=torch.long) return MusicgenUnconditionalInput( encoder_outputs=(last_hidden_state,), attention_mask=attention_mask, guidance_scale=1.0, )
transformers/src/transformers/models/musicgen/modeling_musicgen.py/0
{ "file_path": "transformers/src/transformers/models/musicgen/modeling_musicgen.py", "repo_id": "transformers", "token_count": 62670 }
565
# coding=utf-8 # Copyright 2022 UW-Madison and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Nystromformer model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class NystromformerConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`NystromformerModel`]. It is used to instantiate an Nystromformer model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Nystromformer [uw-madison/nystromformer-512](https://huggingface.co/uw-madison/nystromformer-512) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 30000): Vocabulary size of the Nystromformer model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`NystromformerModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`NystromformerModel`]. segment_means_seq_len (`int`, *optional*, defaults to 64): Sequence length used in segment-means. num_landmarks (`int`, *optional*, defaults to 64): The number of landmark (or Nystrom) points to use in Nystrom approximation of the softmax self-attention matrix. conv_kernel_size (`int`, *optional*, defaults to 65): The kernel size of depthwise convolution used in Nystrom approximation. inv_coeff_init_option (`bool`, *optional*, defaults to `False`): Whether or not to use exact coefficient computation for the initial values for the iterative method of calculating the Moore-Penrose inverse of a matrix. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. Example: ```python >>> from transformers import NystromformerModel, NystromformerConfig >>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration >>> configuration = NystromformerConfig() >>> # Initializing a model from the uw-madison/nystromformer-512 style configuration >>> model = NystromformerModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "nystromformer" def __init__( self, vocab_size=30000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu_new", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=510, type_vocab_size=2, segment_means_seq_len=64, num_landmarks=64, conv_kernel_size=65, inv_coeff_init_option=False, initializer_range=0.02, layer_norm_eps=1e-5, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.segment_means_seq_len = segment_means_seq_len self.num_landmarks = num_landmarks self.conv_kernel_size = conv_kernel_size self.inv_coeff_init_option = inv_coeff_init_option self.layer_norm_eps = layer_norm_eps super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
transformers/src/transformers/models/nystromformer/configuration_nystromformer.py/0
{ "file_path": "transformers/src/transformers/models/nystromformer/configuration_nystromformer.py", "repo_id": "transformers", "token_count": 2343 }
566
# coding=utf-8 # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch OpenAI GPT model.""" import json import math import os from dataclasses import dataclass from typing import Any, Dict, Optional, Tuple, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import gelu_new, silu from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel, SequenceSummary from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer from ...utils import ( ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_openai import OpenAIGPTConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "openai-community/openai-gpt" _CONFIG_FOR_DOC = "OpenAIGPTConfig" def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path): """Load tf pre-trained weights in a pytorch model (from NumPy arrays here)""" import re import numpy as np if ".ckpt" in openai_checkpoint_folder_path: openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path) logger.info(f"Loading weights from {openai_checkpoint_folder_path}") with open(openai_checkpoint_folder_path + "/parameters_names.json", "r", encoding="utf-8") as names_handle: names = json.load(names_handle) with open(openai_checkpoint_folder_path + "/params_shapes.json", "r", encoding="utf-8") as shapes_handle: shapes = json.load(shapes_handle) offsets = np.cumsum([np.prod(shape) for shape in shapes]) init_params = [np.load(openai_checkpoint_folder_path + f"/params_{n}.npy") for n in range(10)] init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1] init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)] # This was used when we had a single embedding matrix for positions and tokens # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0) # del init_params[1] init_params = [arr.squeeze() for arr in init_params] # Check that the token and position embeddings weight dimensions map those of the init parameters. if model.tokens_embed.weight.shape != init_params[1].shape: raise ValueError( f"tokens_embed.weight.shape: {model.tokens_embed.weight.shape} does not match init_param[1].shape:" f" {init_params[1].shape}" ) if model.positions_embed.weight.shape != init_params[0].shape: raise ValueError( f"positions_embed.weight.shape: {model.positions_embed.weight.shape} does not match init_param[0].shape:" f" {init_params[0].shape}" ) model.tokens_embed.weight.data = torch.from_numpy(init_params[1]) model.positions_embed.weight.data = torch.from_numpy(init_params[0]) names.pop(0) # Pop position and token embedding arrays init_params.pop(0) init_params.pop(0) for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]): name = name[6:] # skip "model/" if name[-2:] != ":0": raise ValueError(f"Layer {name} does not end with :0") name = name[:-2] name = name.split("/") pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+\d+", m_name): scope_names = re.split(r"(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "g": pointer = getattr(pointer, "weight") elif scope_names[0] == "b": pointer = getattr(pointer, "bias") elif scope_names[0] == "w": pointer = getattr(pointer, "weight") else: pointer = getattr(pointer, scope_names[0]) if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] # Ensure that the pointer and array have compatible shapes. if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model ACT_FNS = {"relu": nn.ReLU(), "silu": silu, "gelu": gelu_new, "swish": silu} class Attention(nn.Module): def __init__(self, nx, n_positions, config, scale=False): super().__init__() n_state = nx # in Attention: n_state=768 (nx=n_embd) # [switch nx => n_state from Block to Attention to keep identical to TF implementation] if n_state % config.n_head != 0: raise ValueError(f"Attention n_state shape: {n_state} must be divisible by config.n_head {config.n_head}") self.register_buffer( "bias", torch.tril(torch.ones(n_positions, n_positions)).view(1, 1, n_positions, n_positions), persistent=False, ) self.n_head = config.n_head self.split_size = n_state self.scale = scale self.c_attn = Conv1D(n_state * 3, nx) self.c_proj = Conv1D(n_state, nx) self.attn_dropout = nn.Dropout(config.attn_pdrop) self.resid_dropout = nn.Dropout(config.resid_pdrop) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_head, self.split_size // self.n_head, self.pruned_heads ) index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)]) # Prune conv1d layers self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) # Update hyper params self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) self.n_head = self.n_head - len(heads) self.pruned_heads = self.pruned_heads.union(heads) def _attn(self, q, k, v, attention_mask=None, head_mask=None, output_attentions=False): w = torch.matmul(q, k) if self.scale: w = w / math.sqrt(v.size(-1)) # w = w * self.bias + -1e9 * (1 - self.bias) # TF implementation method: mask_attn_weights # XD: self.b may be larger than w, so we need to crop it b = self.bias[:, :, : w.size(-2), : w.size(-1)] w = w * b + -1e4 * (1 - b) if attention_mask is not None: # Apply the attention mask w = w + attention_mask w = nn.functional.softmax(w, dim=-1) w = self.attn_dropout(w) # Mask heads if we want to if head_mask is not None: w = w * head_mask outputs = [torch.matmul(w, v)] if output_attentions: outputs.append(w) return outputs def merge_heads(self, x): x = x.permute(0, 2, 1, 3).contiguous() new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) return x.view(*new_x_shape) # in Tensorflow implementation: fct merge_states def split_heads(self, x, k=False): new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) x = x.view(*new_x_shape) # in Tensorflow implementation: fct split_states if k: return x.permute(0, 2, 3, 1) else: return x.permute(0, 2, 1, 3) def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False): x = self.c_attn(x) query, key, value = x.split(self.split_size, dim=2) query = self.split_heads(query) key = self.split_heads(key, k=True) value = self.split_heads(value) attn_outputs = self._attn(query, key, value, attention_mask, head_mask, output_attentions) a = attn_outputs[0] a = self.merge_heads(a) a = self.c_proj(a) a = self.resid_dropout(a) outputs = [a] + attn_outputs[1:] return outputs # a, (attentions) class MLP(nn.Module): def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) super().__init__() nx = config.n_embd self.c_fc = Conv1D(n_state, nx) self.c_proj = Conv1D(nx, n_state) self.act = ACT_FNS[config.afn] self.dropout = nn.Dropout(config.resid_pdrop) def forward(self, x): h = self.act(self.c_fc(x)) h2 = self.c_proj(h) return self.dropout(h2) class Block(nn.Module): def __init__(self, n_positions, config, scale=False): super().__init__() nx = config.n_embd self.attn = Attention(nx, n_positions, config, scale) self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) self.mlp = MLP(4 * nx, config) self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) def forward(self, x, attention_mask=None, head_mask=None, output_attentions=False): attn_outputs = self.attn( x, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, ) a = attn_outputs[0] n = self.ln_1(x + a) m = self.mlp(n) h = self.ln_2(n + m) outputs = [h] + attn_outputs[1:] return outputs class OpenAIGPTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = OpenAIGPTConfig load_tf_weights = load_tf_weights_in_openai_gpt base_model_prefix = "transformer" def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class OpenAIGPTDoubleHeadsModelOutput(ModelOutput): """ Base class for outputs of models predicting if two sentences are consecutive or not. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided): Multiple choice classification loss. logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`): Prediction scores of the multiple choice classification head (scores for each choice before SoftMax). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None mc_loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None mc_logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None OPENAI_GPT_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`OpenAIGPTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ OPENAI_GPT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.", OPENAI_GPT_START_DOCSTRING, ) class OpenAIGPTModel(OpenAIGPTPreTrainedModel): def __init__(self, config): super().__init__(config) self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd) self.positions_embed = nn.Embedding(config.n_positions, config.n_embd) self.drop = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList([Block(config.n_positions, config, scale=True) for _ in range(config.n_layer)]) self.register_buffer("position_ids", torch.arange(config.n_positions), persistent=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.tokens_embed def set_input_embeddings(self, new_embeddings): self.tokens_embed = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].attn.prune_heads(heads) @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if position_ids is None: # Code is different from when we had a single embedding matrix from position and token embeddings position_ids = self.position_ids[None, : input_shape[-1]] # Attention mask. if attention_mask is not None: # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.n_layer) if inputs_embeds is None: inputs_embeds = self.tokens_embed(input_ids) position_embeds = self.positions_embed(position_ids) if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) token_type_embeds = self.tokens_embed(token_type_ids) else: token_type_embeds = 0 hidden_states = inputs_embeds + position_embeds + token_type_embeds hidden_states = self.drop(hidden_states) output_shape = input_shape + (hidden_states.size(-1),) all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, block in enumerate(self.h): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = block(hidden_states, attention_mask, head_mask[i], output_attentions=output_attentions) hidden_states = outputs[0] if output_attentions: all_attentions = all_attentions + (outputs[1],) hidden_states = hidden_states.view(*output_shape) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, ) @add_start_docstrings( """ OpenAI GPT Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, ) class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = OpenAIGPTModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutput( loss=loss, logits=lm_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids: torch.LongTensor, **kwargs) -> Dict[str, Any]: return {"input_ids": input_ids} @add_start_docstrings( """ OpenAI GPT Model transformer with a language modeling and a multiple-choice classification head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the input embeddings, the classification head takes as input the input of a specified classification token index in the input sequence). """, OPENAI_GPT_START_DOCSTRING, ) class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) config.num_labels = 1 self.transformer = OpenAIGPTModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) self.multiple_choice_head = SequenceSummary(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=OpenAIGPTDoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, mc_token_ids: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, mc_labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], OpenAIGPTDoubleHeadsModelOutput]: r""" mc_token_ids (`torch.LongTensor` of shape `(batch_size, num_choices)`, *optional*, default to index of the last token of the input): Index of the classification token in each input sequence. Selected in the range `[0, input_ids.size(-1) - 1]`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-1, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` mc_labels (`torch.LongTensor` of shape `(batch_size)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where *num_choices* is the size of the second dimension of the input tensors. (see *input_ids* above) Return: Examples: ```python >>> from transformers import AutoTokenizer, OpenAIGPTDoubleHeadsModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/openai-gpt") >>> model = OpenAIGPTDoubleHeadsModel.from_pretrained("openai-community/openai-gpt") >>> tokenizer.add_special_tokens( ... {"cls_token": "[CLS]"} ... ) # Add a [CLS] to the vocabulary (we should train it also!) >>> model.resize_token_embeddings(len(tokenizer)) >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] >>> input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices >>> mc_token_ids = torch.tensor([input_ids.size(-1) - 1, input_ids.size(-1) - 1]).unsqueeze(0) # Batch size 1 >>> outputs = model(input_ids, mc_token_ids=mc_token_ids) >>> lm_logits = outputs.logits >>> mc_logits = outputs.mc_logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) lm_loss, mc_loss = None, None if mc_labels is not None: loss_fct = CrossEntropyLoss() mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1)) if labels is not None: shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) if not return_dict: output = (lm_logits, mc_logits) + transformer_outputs[1:] if mc_loss is not None: output = (mc_loss,) + output return ((lm_loss,) + output) if lm_loss is not None else output return OpenAIGPTDoubleHeadsModelOutput( loss=lm_loss, mc_loss=mc_loss, logits=lm_logits, mc_logits=mc_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @add_start_docstrings( """ The Original OpenAI GPT Model transformer with a sequence classification head on top (linear layer). [`OpenAIGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """, OPENAI_GPT_START_DOCSTRING, ) class OpenAIGPTForSequenceClassification(OpenAIGPTPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = OpenAIGPTModel(config) self.score = nn.Linear(config.n_embd, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(OPENAI_GPT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] # Ensure the batch size is > 1 if there is no padding. if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 logger.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[range(batch_size), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=pooled_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
transformers/src/transformers/models/openai/modeling_openai.py/0
{ "file_path": "transformers/src/transformers/models/openai/modeling_openai.py", "repo_id": "transformers", "token_count": 16256 }
567
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _import_structure = { "configuration_owlvit": [ "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_owlvit"] = ["OwlViTFeatureExtractor"] _import_structure["image_processing_owlvit"] = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_owlvit"] = [ "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/owlvit/__init__.py/0
{ "file_path": "transformers/src/transformers/models/owlvit/__init__.py", "repo_id": "transformers", "token_count": 1087 }
568
# coding=utf-8 # Copyright 2021, Google and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax PEGASUS model.""" import math import random from functools import partial from typing import Callable, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax import lax from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, add_start_docstrings_to_model_forward, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, logging, replace_return_docstrings from .configuration_pegasus import PegasusConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/pegasus-large" _CONFIG_FOR_DOC = "PegasusConfig" PEGASUS_START_DOCSTRING = r""" This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`PegasusConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ PEGASUS_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PEGASUS_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PEGASUS_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids # Copied from transformers.models.marian.modeling_flax_marian.create_sinusoidal_positions def create_sinusoidal_positions(n_pos, dim): position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)]) sentinel = dim // 2 + dim % 2 out = np.zeros_like(position_enc) out[:, 0:sentinel] = np.sin(position_enc[:, 0::2]) out[:, sentinel:] = np.cos(position_enc[:, 1::2]) return jnp.array(out) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->Pegasus class FlaxPegasusAttention(nn.Module): config: PegasusConfig embed_dim: int num_heads: int dropout: float = 0.0 causal: bool = False bias: bool = True dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self) -> None: self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" f" and `num_heads`: {self.num_heads})." ) dense = partial( nn.Dense, self.embed_dim, use_bias=self.bias, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() self.out_proj = dense() self.dropout_layer = nn.Dropout(rate=self.dropout) if self.causal: self.causal_mask = make_causal_mask( jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" ) def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = lax.dynamic_update_slice(cached_key.value, key, indices) value = lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def __call__( self, hidden_states: jnp.ndarray, key_value_states: Optional[jnp.ndarray] = None, attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: """Input shape: Batch x Time x Channel""" # if key_value_states are provided this layer is used as a cross-attention layer # for the decoder is_cross_attention = key_value_states is not None batch_size = hidden_states.shape[0] # get query proj query_states = self.q_proj(hidden_states) # get key, value proj if is_cross_attention: # cross_attentions key_states = self.k_proj(key_value_states) value_states = self.v_proj(key_value_states) else: # self_attention key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # handle cache prepare causal attention mask if self.causal: query_length, key_length = query_states.shape[1], key_states.shape[1] if self.has_variable("cache", "cached_key"): mask_shift = self.variables["cache"]["cache_index"] max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_mask = lax.dynamic_slice( self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) ) else: causal_mask = self.causal_mask[:, :, :query_length, :key_length] causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) # combine masks if needed if attention_mask is not None and self.causal: attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) attention_mask = combine_masks(attention_mask, causal_mask) elif self.causal: attention_mask = causal_mask elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # Convert the boolean attention mask to an attention bias. if attention_mask is not None: # attention mask in the form of attention bias attention_bias = lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), ) else: attention_bias = None dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") attn_weights = dot_product_attention_weights( query_states, key_states, bias=attention_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, precision=None, ) attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) attn_output = self._merge_heads(attn_output) attn_output = self.out_proj(attn_output) return attn_output, attn_weights # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartEncoderLayer with MBart->Pegasus class FlaxPegasusEncoderLayer(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxPegasusAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.encoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.fc1 = nn.Dense( self.config.encoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->Pegasus class FlaxPegasusEncoderLayerCollection(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxPegasusEncoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.encoder_layers) ] self.layerdrop = self.config.encoder_layerdrop def __call__( self, hidden_states, attention_mask, deterministic: bool = True, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): all_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for encoder_layer in self.layers: if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): # skip the layer layer_outputs = (None, None) else: layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions, deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states += (hidden_states,) outputs = (hidden_states, all_hidden_states, all_attentions) if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) # Copied from transformers.models.mbart.modeling_flax_mbart.FlaxMBartDecoderLayer with MBart->Pegasus class FlaxPegasusDecoderLayer(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 def setup(self) -> None: self.embed_dim = self.config.d_model self.self_attn = FlaxPegasusAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, causal=True, dtype=self.dtype, ) self.dropout_layer = nn.Dropout(rate=self.config.dropout) self.activation_fn = ACT2FN[self.config.activation_function] self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.encoder_attn = FlaxPegasusAttention( config=self.config, embed_dim=self.embed_dim, num_heads=self.config.decoder_attention_heads, dropout=self.config.attention_dropout, dtype=self.dtype, ) self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) self.fc1 = nn.Dense( self.config.decoder_ffn_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.fc2 = nn.Dense( self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) ) self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, hidden_states: jnp.ndarray, attention_mask: jnp.ndarray, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = True, deterministic: bool = True, ) -> Tuple[jnp.ndarray]: residual = hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Cross-Attention Block cross_attn_weights = None if encoder_hidden_states is not None: residual = hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) hidden_states = self.fc2(hidden_states) hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->Pegasus class FlaxPegasusDecoderLayerCollection(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layers = [ FlaxPegasusDecoderLayer(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.decoder_layers) ] self.layerdrop = self.config.decoder_layerdrop def __call__( self, hidden_states, attention_mask, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, deterministic: bool = True, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ): # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if not deterministic and (dropout_probability < self.layerdrop): layer_outputs = (None, None, None) else: layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, init_cache=init_cache, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] if not return_dict: return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) class FlaxPegasusEncoder(nn.Module): config: PegasusConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_source_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxPegasusEncoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions embed_pos = jnp.take(self.embed_positions, position_ids, axis=0) # explicitly cast the positions here, since self.embed_positions are not registered as parameters embed_pos = embed_pos.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + embed_pos hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] last_hidden_state = self.layer_norm(last_hidden_state) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_state,) if not return_dict: outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutput( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions, ) class FlaxPegasusDecoder(nn.Module): config: PegasusConfig embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.dropout_layer = nn.Dropout(rate=self.config.dropout) embed_dim = self.config.d_model self.padding_idx = self.config.pad_token_id self.max_target_positions = self.config.max_position_embeddings self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 self.embed_positions = create_sinusoidal_positions(self.config.max_position_embeddings, embed_dim) self.layers = FlaxPegasusDecoderLayerCollection(self.config, self.dtype) self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) def __call__( self, input_ids, attention_mask, position_ids, encoder_hidden_states: Optional[jnp.ndarray] = None, encoder_attention_mask: Optional[jnp.ndarray] = None, init_cache: bool = False, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): input_shape = input_ids.shape input_ids = input_ids.reshape(-1, input_shape[-1]) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale # embed positions positions = jnp.take(self.embed_positions, position_ids, axis=0) # explicitly cast the positions here, since self.embed_positions are not registered as parameters positions = positions.astype(inputs_embeds.dtype) hidden_states = inputs_embeds + positions hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) outputs = self.layers( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, deterministic=deterministic, init_cache=init_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) last_hidden_state = outputs[0] last_hidden_state = self.layer_norm(last_hidden_state) # update the last element in `hidden_states` after applying `layernorm` above hidden_states = None if output_hidden_states: hidden_states = outputs[1] hidden_states = hidden_states[:-1] + (last_hidden_state,) if not return_dict: outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) return tuple(v for v in outputs if v is not None) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->Pegasus class FlaxPegasusModule(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.init_std), dtype=self.dtype, ) self.encoder = FlaxPegasusEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) self.decoder = FlaxPegasusDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxPegasusPreTrainedModel(FlaxPreTrainedModel): config_class = PegasusConfig base_model_prefix: str = "model" module_class: nn.Module = None def __init__( self, config: PegasusConfig, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) decoder_input_ids = input_ids decoder_attention_mask = jnp.ones_like(input_ids) batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) decoder_position_ids = jnp.broadcast_to( jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape ) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, decoder_position_ids=decoder_position_ids, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(PEGASUS_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=PegasusConfig) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, position_ids, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=PegasusConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> last_decoder_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxPegasusAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs @add_start_docstrings_to_model_forward(PEGASUS_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, position_ids: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) if position_ids is None: batch_size, sequence_length = input_ids.shape position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) # prepare decoder inputs if decoder_input_ids is None: decoder_input_ids = shift_tokens_right( input_ids, self.config.pad_token_id, decoder_start_token_id=self.config.decoder_start_token_id ) if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) if decoder_position_ids is None: batch_size, sequence_length = decoder_input_ids.shape decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), position_ids=jnp.array(position_ids, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) @add_start_docstrings( "The bare Pegasus Model transformer outputting raw hidden-states without any specific head on top.", PEGASUS_START_DOCSTRING, ) class FlaxPegasusModel(FlaxPegasusPreTrainedModel): config: PegasusConfig dtype: jnp.dtype = jnp.float32 # the dtype of the computation module_class = FlaxPegasusModule append_call_sample_docstring(FlaxPegasusModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->Pegasus class FlaxPegasusForConditionalGenerationModule(nn.Module): config: PegasusConfig dtype: jnp.dtype = jnp.float32 bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros def setup(self): self.model = FlaxPegasusModule(config=self.config, dtype=self.dtype) self.lm_head = nn.Dense( self.model.shared.num_embeddings, use_bias=False, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std), ) self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) def _get_encoder_module(self): return self.model.encoder def _get_decoder_module(self): return self.model.decoder def __call__( self, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, position_ids, decoder_position_ids, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, ): outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, position_ids=position_ids, decoder_position_ids=decoder_position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = self.model.variables["params"]["shared"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = self.lm_head(hidden_states) lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) if not return_dict: output = (lm_logits,) + outputs[1:] return output return FlaxSeq2SeqLMOutput( logits=lm_logits, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @add_start_docstrings( "The PEGASUS Model with a language modeling head. Can be used for summarization.", PEGASUS_START_DOCSTRING ) class FlaxPegasusForConditionalGeneration(FlaxPegasusPreTrainedModel): module_class = FlaxPegasusForConditionalGenerationModule dtype: jnp.dtype = jnp.float32 @add_start_docstrings(PEGASUS_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=PegasusConfig) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, decoder_position_ids: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, deterministic: bool = True, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> import jax.numpy as jnp >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large") >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, max_length=1024, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) if decoder_position_ids is None: if past_key_values is not None: raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") decoder_position_ids = jnp.broadcast_to( jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxPegasusAttention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): decoder_module = module._get_decoder_module() outputs = decoder_module( decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs, ) hidden_states = outputs[0] if self.config.tie_word_embeddings: shared_embedding = module.model.variables["params"]["shared"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) else: lm_logits = module.lm_head(hidden_states) lm_logits += module.final_logits_bias.astype(self.dtype) return lm_logits, outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) else: position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, "decoder_position_ids": position_ids, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 return model_kwargs FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING = """ Returns: Summarization example: ```pyton >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> model = FlaxPegasusForConditionalGeneration.from_pretrained('google/pegasus-large') >>> tokenizer = AutoTokenizer.from_pretrained('google/pegasus-large') >>> ARTICLE_TO_SUMMARIZE = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors='np') >>> # Generate Summary >>> summary_ids = model.generate(inputs['input_ids']).sequences >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` Mask filling example: ```python >>> from transformers import AutoTokenizer, FlaxPegasusForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google/pegasus-large") >>> TXT = "My friends are <mask> but they eat too many carbs." >>> model = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-large") >>> input_ids = tokenizer([TXT], return_tensors="np")["input_ids"] >>> logits = model(input_ids).logits >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() >>> probs = jax.nn.softmax(logits[0, masked_index], axis=0) >>> values, predictions = jax.lax.top_k(probs) >>> tokenizer.decode(predictions).split() ``` """ overwrite_call_docstring( FlaxPegasusForConditionalGeneration, PEGASUS_INPUTS_DOCSTRING + FLAX_PEGASUS_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxPegasusForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC )
transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py/0
{ "file_path": "transformers/src/transformers/models/pegasus/modeling_flax_pegasus.py", "repo_id": "transformers", "token_count": 28739 }
569
# coding=utf-8 # Copyright 2023 Adept AI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Persimmon model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class PersimmonConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`PersimmonModel`]. It is used to instantiate an Persimmon model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the [adept/persimmon-8b-base](https://huggingface.co/adept/persimmon-8b-base). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 262144): Vocabulary size of the Persimmon model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`PersimmonModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 16384): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 36): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 64): Number of attention heads for each attention layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 16384): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. tie_word_embeddings(`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 25000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. qk_layernorm (`bool`, *optional*, default to `True`): Whether or not to normalize the Queries and Keys after projecting the hidden states hidden_dropout (`float`, *optional*, default to 0.0): The dropout ratio after applying the MLP to the hidden states. attention_dropout (`float`, *optional*, default to 0.0): The dropout ratio after computing the attention scores. partial_rotary_factor (`float`, *optional*, default to 0.5): Percentage of the query and keys which will have rotary embedding. Example: ```python >>> from transformers import PersimmonModel, PersimmonConfig >>> # Initializing a Persimmon persimmon-7b style configuration >>> configuration = PersimmonConfig() ```""" model_type = "persimmon" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=262144, hidden_size=4096, intermediate_size=16384, num_hidden_layers=36, num_attention_heads=64, hidden_act="relu2", max_position_embeddings=16384, initializer_range=0.02, layer_norm_eps=1e-5, use_cache=True, tie_word_embeddings=False, rope_theta=25000.0, rope_scaling=None, qk_layernorm=True, hidden_dropout=0.0, attention_dropout=0.0, partial_rotary_factor=0.5, pad_token_id=None, bos_token_id=1, eos_token_id=2, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.qk_layernorm = qk_layernorm self.hidden_dropout = hidden_dropout self.attention_dropout = attention_dropout self.partial_rotary_factor = partial_rotary_factor self._rope_scaling_validation() super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation def _rope_scaling_validation(self): """ Validate the `rope_scaling` configuration. """ if self.rope_scaling is None: return if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: raise ValueError( "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}" ) rope_scaling_type = self.rope_scaling.get("type", None) rope_scaling_factor = self.rope_scaling.get("factor", None) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
transformers/src/transformers/models/persimmon/configuration_persimmon.py/0
{ "file_path": "transformers/src/transformers/models/persimmon/configuration_persimmon.py", "repo_id": "transformers", "token_count": 2982 }
570
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. & Google team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pix2Struct modeling file""" import math from typing import Dict, List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, CausalLMOutputWithCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import ALL_LAYERNORM_LAYERS from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, add_start_docstrings_to_model_forward, is_torch_fx_proxy, logging, replace_return_docstrings, ) from .configuration_pix2struct import Pix2StructConfig, Pix2StructTextConfig, Pix2StructVisionConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "Pix2StructConfig" # Adapted from transformers.models.t5.modeling_t5.T5LayerNorm with T5->Pix2Struct class Pix2StructLayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the T5 style. No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states try: from apex.normalization import FusedRMSNorm Pix2StructLayerNorm = FusedRMSNorm # noqa logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of Pix2StructLayerNorm") except ImportError: # using the normal Pix2StructLayerNorm pass except Exception: logger.warning("Discovered apex but it failed to load, falling back to Pix2StructLayerNorm") pass ALL_LAYERNORM_LAYERS.append(Pix2StructLayerNorm) class Pix2StructVisionEmbeddings(nn.Module): r""" Construct the embeddings from patch. In `Pix2Struct` the input is different from classic Vision-transformer models. Here the input is a sequence of `seq_len` flattened patches that also combines padding patches (tokens). Each patch is represented by a vector of `hidden_size` values. """ def __init__(self, config: Pix2StructConfig) -> None: super().__init__() self.patch_projection = nn.Linear(config.patch_embed_hidden_size, config.hidden_size) self.row_embedder = nn.Embedding(config.seq_len, config.hidden_size) self.column_embedder = nn.Embedding(config.seq_len, config.hidden_size) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, flattened_patches: torch.Tensor) -> torch.Tensor: # the row and column indices are stored in the first and second position of the flattened_patches # flattened_patches: `batch_size`, `seq_len`, `hidden_size` + 2 row_indices = flattened_patches[:, :, 0].long() col_indices = flattened_patches[:, :, 1].long() flattened_patches = flattened_patches[:, :, 2:] embeddings = self.patch_projection(flattened_patches) row_embeddings = self.row_embedder(row_indices) col_embeddings = self.column_embedder(col_indices) # sum all embeddings together embeddings = embeddings + row_embeddings + col_embeddings embeddings = self.dropout(embeddings) return embeddings class Pix2StructVisionAttention(nn.Module): def __init__(self, config): super().__init__() self.hidden_size = config.hidden_size self.key_value_proj_dim = config.d_kv self.n_heads = config.num_attention_heads self.dropout = config.attention_dropout self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.query = nn.Linear(self.hidden_size, self.inner_dim, bias=False) self.key = nn.Linear(self.hidden_size, self.inner_dim, bias=False) self.value = nn.Linear(self.hidden_size, self.inner_dim, bias=False) self.output = nn.Linear(self.inner_dim, self.hidden_size, bias=False) self.gradient_checkpointing = False def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, output_attentions=False, ): """ Self-attention block """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] def to_projection_shape(states): """projection""" return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) # get query states # (batch_size, n_heads, seq_length, dim_per_head) query_states = to_projection_shape(self.query(hidden_states)) # get key/value states key_states = to_projection_shape(self.key(hidden_states)) value_states = to_projection_shape(self.value(hidden_states)) # compute scores # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 scores = torch.matmul(query_states, key_states.transpose(3, 2)) if position_bias is None: position_bias = torch.zeros( (1, self.n_heads, seq_length, seq_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length), device=scores.device, dtype=scores.dtype) if attention_mask.dim() == 2: position_bias = position_bias + attention_mask[:, None, None, :].to(position_bias.device) else: # (batch_size, n_heads, seq_length, key_length) position_bias = position_bias + attention_mask.to(position_bias.device) position_bias = 1 - position_bias position_bias_masked = position_bias.masked_fill(position_bias == 1, torch.finfo(scores.dtype).min) scores += position_bias_masked scores = torch.max(scores, torch.tensor(torch.finfo(scores.dtype).min)) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.softmax(scores, dim=-1, dtype=torch.float32).type_as(scores) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = torch.matmul(attn_weights, value_states) # (batch_size, seq_length, dim) attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) attn_output = self.output(attn_output) outputs = (attn_output,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs # Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5DenseGatedActDense->Pix2StructVisionMlp,T5Config->Pix2StructVisionConfig,config.d_model->config.hidden_size,dropout_rate->dropout_rate class Pix2StructVisionMlp(nn.Module): def __init__(self, config: Pix2StructVisionConfig): super().__init__() self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. # See https://github.com/huggingface/transformers/issues/20287 # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class Pix2StructVisionLayer(nn.Module): def __init__(self, config: Pix2StructConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = Pix2StructVisionAttention(config) self.mlp = Pix2StructVisionMlp(config) self.pre_mlp_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.pre_attention_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: residual = hidden_states # in Pix2StructVision, layernorm is applied before self-attention hidden_states = self.pre_attention_layer_norm(hidden_states) self_attention_outputs = self.attention( hidden_states, attention_mask=attention_mask, layer_head_mask=head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + residual # in Pix2StructVision, layernorm is also applied after self-attention layer_output = self.pre_mlp_layer_norm(hidden_states) layer_output = self.mlp(layer_output) + hidden_states # second residual connection outputs = (layer_output,) + outputs return outputs class Pix2StructVisionEncoder(nn.Module): def __init__(self, config: Pix2StructConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([Pix2StructVisionLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class Pix2StructPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = Pix2StructConfig @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "decoder_input_ids": input_ids, "input_ids": input_ids, "decoder_attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, Pix2StructLayerNorm): module.weight.data.fill_(factor * 1.0) elif isinstance(module, Pix2StructTextDenseGatedActDense): hidden_size = ( self.config.text_config.hidden_size if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size ) d_ff = self.config.text_config.d_ff if isinstance(self.config, Pix2StructConfig) else self.config.d_ff module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: module.wi_0.bias.data.zero_() module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: module.wi_1.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, Pix2StructTextAttention): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 hidden_size = ( self.config.text_config.hidden_size if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size ) key_value_proj_dim = ( self.config.text_config.d_kv if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size ) n_heads = ( self.config.text_config.num_heads if isinstance(self.config, Pix2StructConfig) else self.config.num_heads ) module.query.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * key_value_proj_dim) ** -0.5)) module.key.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5)) module.value.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5)) module.output.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) if module.has_relative_attention_bias: module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) elif isinstance(module, nn.Embedding): hidden_size = ( self.config.text_config.hidden_size if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size ) module.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, Pix2StructTextModel): hidden_size = ( self.config.text_config.hidden_size if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size ) module.lm_head.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5)) elif isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, Pix2StructLayerNorm): if module.weight is not None: module.weight.data.fill_(1.0) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->Pix2Struct def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id if decoder_start_token_id is None: raise ValueError( "self.model.config.decoder_start_token_id has to be defined. In Pix2Struct it is usually set to the pad_token_id. " "See Pix2Struct docs for more information." ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids PIX2STRUCT_VISION_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`Pix2StructConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PIX2STRUCT_VISION_INPUTS_DOCSTRING = r""" Args: flattened_patches (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_channels x patch_height x patch_width)`): Flattened and padded pixel values. These values can be obtained using [`AutoImageProcessor`]. See [`Pix2StructVisionImageProcessor.__call__`] for details. Check the [original paper](https://arxiv.org/abs/2210.03347) (figure 5) for more details. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Pix2StructVision Model transformer outputting raw hidden-states without any specific head on top.", PIX2STRUCT_VISION_START_DOCSTRING, ) class Pix2StructVisionModel(Pix2StructPreTrainedModel): config_class = Pix2StructVisionConfig main_input_name = "flattened_patches" supports_gradient_checkpointing = True _no_split_modules = ["Pix2StructVisionLayer"] def __init__(self, config: Pix2StructConfig): super().__init__(config) self.config = config self.embeddings = Pix2StructVisionEmbeddings(config) self.encoder = Pix2StructVisionEncoder(config) self.layernorm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.patch_projection def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(PIX2STRUCT_VISION_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, flattened_patches: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: r""" Returns: Example: ```python >>> import requests >>> from PIL import Image >>> from transformers import AutoProcessor, Pix2StructVisionModel >>> image_processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") >>> model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base") >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 2048, 768] ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if flattened_patches is None: raise ValueError("You have to specify flattened_patches") if attention_mask is None: # check where `flattened_patches` is not 0 attention_mask = (flattened_patches.sum(dim=-1) != 0).float() # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(flattened_patches) encoder_outputs = self.encoder( embedding_output, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) if not return_dict: head_outputs = (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->Pix2StructText,d_model->hidden_size class Pix2StructTextDenseGatedActDense(nn.Module): def __init__(self, config: Pix2StructTextConfig): super().__init__() self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. # See https://github.com/huggingface/transformers/issues/20287 # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class Pix2StructTextLayerFF(nn.Module): def __init__(self, config: Pix2StructTextConfig): super().__init__() self.DenseReluDense = Pix2StructTextDenseGatedActDense(config) self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) # Copied from transformers.models.t5.modeling_t5.T5LayerFF.forward def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states) hidden_states = hidden_states + self.dropout(forwarded_states) return hidden_states class Pix2StructTextAttention(nn.Module): def __init__(self, config: Pix2StructTextConfig, has_relative_attention_bias=False): super().__init__() self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.hidden_size = config.hidden_size self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim # Mesh TensorFlow initialization to avoid scaling before softmax self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.key = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.value = nn.Linear(self.hidden_size, self.hidden_size, bias=False) self.output = nn.Linear(self.hidden_size, self.hidden_size, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False @staticmethod # Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets # Adapted from transformers.models.t5.modeling_t5.T5Attention.compute_bias def compute_bias(self, query_length, key_length, device=None): """Compute binned relative position bias""" if device is None: device = self.relative_attention_bias.weight.device context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=False, num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) batch_size, seq_length = hidden_states.shape[:2] real_seq_length = seq_length if past_key_value is not None: if len(past_key_value) != 2: raise ValueError( f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" ) real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] def to_projection_shape(states): """projection""" return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) def project(hidden_states, proj_layer, key_value_states, past_key_value): """projects hidden states correctly to key/query states""" if key_value_states is None: # self-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = to_projection_shape(proj_layer(hidden_states)) elif past_key_value is None: # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = to_projection_shape(proj_layer(key_value_states)) if past_key_value is not None: if key_value_states is None: # self-attn # (batch_size, n_heads, key_length, dim_per_head) hidden_states = torch.cat([past_key_value, hidden_states], dim=2) elif past_key_value.shape[2] != key_value_states.shape[1]: # checking that the `sequence_length` of the `past_key_value` is the same as # the provided `key_value_states` to support prefix tuning # cross-attn # (batch_size, n_heads, seq_length, dim_per_head) hidden_states = to_projection_shape(proj_layer(key_value_states)) else: # cross-attn hidden_states = past_key_value return hidden_states # get query states # (batch_size, n_heads, seq_length, dim_per_head) query_states = to_projection_shape(self.query(hidden_states)) # get key/value states key_states = project( hidden_states, self.key, key_value_states, past_key_value[0] if past_key_value is not None else None ) value_states = project( hidden_states, self.value, key_value_states, past_key_value[1] if past_key_value is not None else None ) # compute scores scores = torch.matmul( query_states, key_states.transpose(3, 2) ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 if position_bias is None: if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) # if key and values are already calculated # we want only the last query position bias if past_key_value is not None: position_bias = position_bias[:, :, -hidden_states.size(1) :, :] if mask is not None: position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) if self.pruned_heads: mask = torch.ones(position_bias.shape[1]) mask[list(self.pruned_heads)] = 0 position_bias_masked = position_bias[:, mask.bool()] else: position_bias_masked = position_bias scores += position_bias_masked # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = torch.matmul(attn_weights, value_states) # (batch_size, seq_length, dim) attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) attn_output = self.output(attn_output) present_key_value_state = (key_states, value_states) if use_cache else None outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) if output_attentions: outputs = outputs + (attn_weights,) return outputs # Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.SelfAttention->self.attention,config.d_model->config.hidden_size class Pix2StructTextLayerSelfAttention(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=has_relative_attention_bias) self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.attention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs # Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5LayerNorm->Pix2StructLayerNorm,T5Attention->Pix2StructTextAttention,self.EncDecAttention->self.attention,config.d_model->config.hidden_size class Pix2StructTextLayerCrossAttention(nn.Module): def __init__(self, config): super().__init__() self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=False) self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.attention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, ) layer_output = hidden_states + self.dropout(attention_output[0]) outputs = (layer_output,) + attention_output[1:] # add attentions if we output them return outputs class Pix2StructTextBlock(nn.Module): def __init__(self, config, has_relative_attention_bias=False): super().__init__() self.self_attention = Pix2StructTextLayerSelfAttention( config, has_relative_attention_bias=has_relative_attention_bias ) self.encoder_decoder_attention = Pix2StructTextLayerCrossAttention(config) self.mlp = Pix2StructTextLayerFF(config) def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, ): if past_key_value is not None: expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 if len(past_key_value) != expected_num_past_key_values: raise ValueError( f"There should be {expected_num_past_key_values} past states. " f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" f"Got {len(past_key_value)} past key / value states" ) self_attn_past_key_value = past_key_value[:2] cross_attn_past_key_value = past_key_value[2:] else: self_attn_past_key_value, cross_attn_past_key_value = None, None self_attention_outputs = self.self_attention( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=self_attn_past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states, present_key_value_state = self_attention_outputs[:2] attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = encoder_hidden_states is not None if do_cross_attention: # the actual query length is unknown for cross attention # if using past key value states. Need to inject it here if present_key_value_state is not None: query_length = present_key_value_state[0].shape[2] else: query_length = None cross_attention_outputs = self.encoder_decoder_attention( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=cross_attn_past_key_value, query_length=query_length, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) # Combine self attn and cross attn key value states if present_key_value_state is not None: present_key_value_state = present_key_value_state + cross_attention_outputs[1] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[2:] # Apply Feed Forward layer hidden_states = self.mlp(hidden_states) # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if use_cache: outputs = outputs + (present_key_value_state,) + attention_outputs else: outputs = outputs + attention_outputs return outputs PIX2STRUCT_START_DOCSTRING = r""" The Pix2Struct model was proposed in [Pix2Struct: Screenshot Parsing as Pretraining for Visual Language Understanding](https://arxiv.org/abs/2210.03347) by Kenton Lee, Mandar Joshi, Iulia Turc, Hexiang Hu, Fangyu Liu, Julian Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, Kristina Toutanova. It's an encoder decoder transformer pre-trained in a image-to-text setting. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (Union[`Pix2StructConfig`, `Pix2StructTextConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ PIX2STRUCT_TEXT_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Pix2StructText is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [Pix2StructText Training](./t5#training). attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ PIX2STRUCT_INPUTS_DOCSTRING = r""" Args: flattened_patches (`torch.FloatTensor` of shape `(batch_size, seq_length, hidden_size)`): Flattened pixel patches. the `hidden_size` is obtained by the following formula: `hidden_size` = `num_channels` * `patch_size` * `patch_size` The process of flattening the pixel patches is done by `Pix2StructProcessor`. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) Pix2StructText uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [Pix2StructText Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention layers. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be input (see `past_key_values`). This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value of `inputs_embeds`. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss for the decoder. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The standalone text decoder of Pix2Struct", PIX2STRUCT_START_DOCSTRING, ) class Pix2StructTextModel(Pix2StructPreTrainedModel): config_class = Pix2StructTextConfig _no_split_modules = ["Pix2StructTextBlock"] _tied_weights_keys = ["lm_head.weight"] supports_gradient_checkpointing = True def __init__(self, config): super().__init__(config) self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) self.layer = nn.ModuleList( [Pix2StructTextBlock(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] ) self.final_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() self.gradient_checkpointing = False # Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._reorder_cache def _reorder_cache(self, past_key_values, beam_idx): # if decoder past is not included in output # speedy decoding is disabled and no need to reorder if past_key_values is None: logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") return past_key_values reordered_decoder_past = () for layer_past_states in past_key_values: # get the correct batch idx from layer past batch dim # batch dim of `past` is at 2nd position reordered_layer_past_states = () for layer_past_state in layer_past_states: # need to set correct `past` for each of the four key / value states reordered_layer_past_states = reordered_layer_past_states + ( layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), ) if reordered_layer_past_states[0].shape != layer_past_states[0].shape: raise ValueError( f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" ) if len(reordered_layer_past_states) != len(layer_past_states): raise ValueError( f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" ) reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) return reordered_decoder_past def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings @add_start_docstrings_to_model_forward(PIX2STRUCT_TEXT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.LongTensor] = None, return_dict: Optional[bool] = None, **kwargs, ) -> Union[Tuple[torch.FloatTensor, ...], CausalLMOutputWithCrossAttentions]: r""" Returns: Example: ```python >>> from transformers import AutoProcessor, Pix2StructTextModel >>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") >>> model = Pix2StructTextModel.from_pretrained("google/pix2struct-textcaps-base") >>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs) >>> loss = outputs.loss ``` """ use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") if inputs_embeds is None: assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape # required mask seq length can be calculated via length of past mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length if attention_mask is None: attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) if encoder_attention_mask is None and encoder_hidden_states is not None: encoder_seq_length = encoder_hidden_states.shape[1] encoder_attention_mask = torch.ones( batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long ) # initialize past_key_values with `None` if past does not exist if past_key_values is None: past_key_values = [None] * len(self.layer) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) present_key_value_states = () if use_cache else None all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds) for i, (layer_module, past_key_value) in enumerate(zip(self.layer, past_key_values)): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: if use_cache: logger.warning( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False layer_outputs = self._gradient_checkpointing_func( layer_module.forward, hidden_states, extended_attention_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, layer_head_mask, cross_attn_layer_head_mask, None, # past_key_value is always None with gradient checkpointing use_cache, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask=extended_attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, ) # layer_outputs is a tuple with: # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) if use_cache is False: layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] hidden_states, present_key_value_state = layer_outputs[:2] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[2] if encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] # append next layer key value states if use_cache: present_key_value_states = present_key_value_states + (present_key_value_state,) if output_attentions: all_attentions = all_attentions + (layer_outputs[3],) if encoder_hidden_states is not None: all_cross_attentions = all_cross_attentions + (layer_outputs[5],) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) logits = self.lm_head(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) loss_fct = nn.CrossEntropyLoss(ignore_index=-100, reduction="mean") loss = loss_fct(logits.contiguous().view(-1, logits.size(-1)), labels.contiguous().view(-1)) if not return_dict: return tuple( v for v in [ loss, logits, present_key_value_states, all_hidden_states, all_attentions, all_cross_attentions, ] if v is not None ) return CausalLMOutputWithCrossAttentions( loss=loss, logits=logits, past_key_values=present_key_value_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) @add_start_docstrings( "A conditional generation model with a language modeling head. Can be used for sequence generation tasks.", PIX2STRUCT_START_DOCSTRING, ) class Pix2StructForConditionalGeneration(Pix2StructPreTrainedModel): config_class = Pix2StructConfig main_input_name = "flattened_patches" _tied_weights_keys = ["decoder.lm_head.weight"] def __init__(self, config: Pix2StructConfig): super().__init__(config) self.encoder = Pix2StructVisionModel(config.vision_config) self.decoder = Pix2StructTextModel(config.text_config) self.is_vqa = config.is_vqa # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.decoder.get_input_embeddings() def set_input_embeddings(self, new_embeddings): self.decoder.set_input_embeddings(new_embeddings) def get_output_embeddings(self) -> nn.Module: return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): self.decoder.set_output_embeddings(new_embeddings) def resize_token_embeddings(self, new_num_tokens: Optional[int] = None) -> nn.Embedding: model_embeds = self.decoder.resize_token_embeddings(new_num_tokens) # update vocab size self.config.text_config.vocab_size = new_num_tokens return model_embeds def get_decoder(self): return self.decoder def get_encoder(self): return self.encoder @add_start_docstrings_to_model_forward(PIX2STRUCT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, flattened_patches: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, labels: Optional[torch.LongTensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" Returns: Example: Inference: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base") >>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base") >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> # autoregressive generation >>> generated_ids = model.generate(**inputs, max_new_tokens=50) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> print(generated_text) A stop sign is on a street corner. >>> # conditional generation >>> text = "A picture of" >>> inputs = processor(text=text, images=image, return_tensors="pt", add_special_tokens=False) >>> generated_ids = model.generate(**inputs, max_new_tokens=50) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] >>> print(generated_text) A picture of a stop sign with a red stop sign ``` Training: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("google/pix2struct-base") >>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-base") >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> text = "A stop sign is on the street corner." >>> inputs = processor(images=image, return_tensors="pt") >>> labels = processor(text=text, return_tensors="pt").input_ids >>> # forward pass >>> outputs = model(**inputs, labels=labels) >>> loss = outputs.loss >>> print(f"{loss.item():.5f}") 5.94282 ```""" use_cache = use_cache if use_cache is not None else self.config.text_config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( flattened_patches=flattened_patches, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) decoder_attention_mask = ( decoder_attention_mask if decoder_attention_mask is not None else decoder_input_ids.ne(self.config.pad_token_id).float() ) # Always attend to the first token decoder_attention_mask[:, 0] = 1 # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, labels=labels, return_dict=return_dict, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqLMOutput( loss=decoder_outputs.loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, flattened_patches: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, past_key_values=None, head_mask=None, decoder_head_mask=None, cross_attn_head_mask=None, use_cache=None, encoder_outputs=None, **kwargs, ): if decoder_attention_mask is None: decoder_attention_mask = torch.ones_like(input_ids).to(input_ids.device) # cut decoder_input_ids if past_key_values is used if past_key_values is not None: past_length = past_key_values[0][0].shape[2] # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] return { "flattened_patches": flattened_patches, "decoder_input_ids": input_ids, "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, "use_cache": use_cache, }
transformers/src/transformers/models/pix2struct/modeling_pix2struct.py/0
{ "file_path": "transformers/src/transformers/models/pix2struct/modeling_pix2struct.py", "repo_id": "transformers", "token_count": 35403 }
571
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for Pop2Piano""" import warnings from typing import List, Optional, Union import numpy import numpy as np from ...audio_utils import mel_filter_bank, spectrogram from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import ( TensorType, is_essentia_available, is_librosa_available, is_scipy_available, logging, requires_backends, ) if is_essentia_available(): import essentia import essentia.standard if is_librosa_available(): import librosa if is_scipy_available(): import scipy logger = logging.get_logger(__name__) class Pop2PianoFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a Pop2Piano feature extractor. This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts rhythm and preprocesses the audio before it is passed to the model. First the audio is passed to `RhythmExtractor2013` algorithm which extracts the beat_times, beat positions and estimates their confidence as well as tempo in bpm, then beat_times is interpolated and to get beatsteps. Later we calculate extrapolated_beatsteps from it to be used in tokenizer. On the other hand audio is resampled to self.sampling_rate and preprocessed and then log mel spectogram is computed from that to be used in our transformer model. Args: sampling_rate (`int`, *optional*, defaults to 22050): Target Sampling rate of audio signal. It's the sampling rate that we forward to the model. padding_value (`int`, *optional*, defaults to 0): Padding value used to pad the audio. Should correspond to silences. window_size (`int`, *optional*, defaults to 4096): Length of the window in samples to which the Fourier transform is applied. hop_length (`int`, *optional*, defaults to 1024): Step size between each window of the waveform, in samples. min_frequency (`float`, *optional*, defaults to 10.0): Lowest frequency that will be used in the log-mel spectrogram. feature_size (`int`, *optional*, defaults to 512): The feature dimension of the extracted features. num_bars (`int`, *optional*, defaults to 2): Determines interval between each sequence. """ model_input_names = ["input_features", "beatsteps", "extrapolated_beatstep"] def __init__( self, sampling_rate: int = 22050, padding_value: int = 0, window_size: int = 4096, hop_length: int = 1024, min_frequency: float = 10.0, feature_size: int = 512, num_bars: int = 2, **kwargs, ): super().__init__( feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs, ) self.sampling_rate = sampling_rate self.padding_value = padding_value self.window_size = window_size self.hop_length = hop_length self.min_frequency = min_frequency self.feature_size = feature_size self.num_bars = num_bars self.mel_filters = mel_filter_bank( num_frequency_bins=(self.window_size // 2) + 1, num_mel_filters=self.feature_size, min_frequency=self.min_frequency, max_frequency=float(self.sampling_rate // 2), sampling_rate=self.sampling_rate, norm=None, mel_scale="htk", ) def mel_spectrogram(self, sequence: np.ndarray): """ Generates MelSpectrogram. Args: sequence (`numpy.ndarray`): The sequence of which the mel-spectrogram will be computed. """ mel_specs = [] for seq in sequence: window = np.hanning(self.window_size + 1)[:-1] mel_specs.append( spectrogram( waveform=seq, window=window, frame_length=self.window_size, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters, ) ) mel_specs = np.array(mel_specs) return mel_specs def extract_rhythm(self, audio: np.ndarray): """ This algorithm(`RhythmExtractor2013`) extracts the beat positions and estimates their confidence as well as tempo in bpm for an audio signal. For more information please visit https://essentia.upf.edu/reference/std_RhythmExtractor2013.html . Args: audio(`numpy.ndarray`): raw audio waveform which is passed to the Rhythm Extractor. """ requires_backends(self, ["essentia"]) essentia_tracker = essentia.standard.RhythmExtractor2013(method="multifeature") bpm, beat_times, confidence, estimates, essentia_beat_intervals = essentia_tracker(audio) return bpm, beat_times, confidence, estimates, essentia_beat_intervals def interpolate_beat_times( self, beat_times: numpy.ndarray, steps_per_beat: numpy.ndarray, n_extend: numpy.ndarray ): """ This method takes beat_times and then interpolates that using `scipy.interpolate.interp1d` and the output is then used to convert raw audio to log-mel-spectrogram. Args: beat_times (`numpy.ndarray`): beat_times is passed into `scipy.interpolate.interp1d` for processing. steps_per_beat (`int`): used as an parameter to control the interpolation. n_extend (`int`): used as an parameter to control the interpolation. """ requires_backends(self, ["scipy"]) beat_times_function = scipy.interpolate.interp1d( np.arange(beat_times.size), beat_times, bounds_error=False, fill_value="extrapolate", ) ext_beats = beat_times_function( np.linspace(0, beat_times.size + n_extend - 1, beat_times.size * steps_per_beat + n_extend) ) return ext_beats def preprocess_mel(self, audio: np.ndarray, beatstep: np.ndarray): """ Preprocessing for log-mel-spectrogram Args: audio (`numpy.ndarray` of shape `(audio_length, )` ): Raw audio waveform to be processed. beatstep (`numpy.ndarray`): Interpolated values of the raw audio. If beatstep[0] is greater than 0.0, then it will be shifted by the value at beatstep[0]. """ if audio is not None and len(audio.shape) != 1: raise ValueError( f"Expected `audio` to be a single channel audio input of shape `(n, )` but found shape {audio.shape}." ) if beatstep[0] > 0.0: beatstep = beatstep - beatstep[0] num_steps = self.num_bars * 4 num_target_steps = len(beatstep) extrapolated_beatstep = self.interpolate_beat_times( beat_times=beatstep, steps_per_beat=1, n_extend=(self.num_bars + 1) * 4 + 1 ) sample_indices = [] max_feature_length = 0 for i in range(0, num_target_steps, num_steps): start_idx = i end_idx = min(i + num_steps, num_target_steps) start_sample = int(extrapolated_beatstep[start_idx] * self.sampling_rate) end_sample = int(extrapolated_beatstep[end_idx] * self.sampling_rate) sample_indices.append((start_sample, end_sample)) max_feature_length = max(max_feature_length, end_sample - start_sample) padded_batch = [] for start_sample, end_sample in sample_indices: feature = audio[start_sample:end_sample] padded_feature = np.pad( feature, ((0, max_feature_length - feature.shape[0]),), "constant", constant_values=0, ) padded_batch.append(padded_feature) padded_batch = np.asarray(padded_batch) return padded_batch, extrapolated_beatstep def _pad(self, features: np.ndarray, add_zero_line=True): features_shapes = [each_feature.shape for each_feature in features] attention_masks, padded_features = [], [] for i, each_feature in enumerate(features): # To pad "input_features". if len(each_feature.shape) == 3: features_pad_value = max([*zip(*features_shapes)][1]) - features_shapes[i][1] attention_mask = np.ones(features_shapes[i][:2], dtype=np.int64) feature_padding = ((0, 0), (0, features_pad_value), (0, 0)) attention_mask_padding = (feature_padding[0], feature_padding[1]) # To pad "beatsteps" and "extrapolated_beatstep". else: each_feature = each_feature.reshape(1, -1) features_pad_value = max([*zip(*features_shapes)][0]) - features_shapes[i][0] attention_mask = np.ones(features_shapes[i], dtype=np.int64).reshape(1, -1) feature_padding = attention_mask_padding = ((0, 0), (0, features_pad_value)) each_padded_feature = np.pad(each_feature, feature_padding, "constant", constant_values=self.padding_value) attention_mask = np.pad( attention_mask, attention_mask_padding, "constant", constant_values=self.padding_value ) if add_zero_line: # if it is batched then we seperate each examples using zero array zero_array_len = max([*zip(*features_shapes)][1]) # we concatenate the zero array line here each_padded_feature = np.concatenate( [each_padded_feature, np.zeros([1, zero_array_len, self.feature_size])], axis=0 ) attention_mask = np.concatenate( [attention_mask, np.zeros([1, zero_array_len], dtype=attention_mask.dtype)], axis=0 ) padded_features.append(each_padded_feature) attention_masks.append(attention_mask) padded_features = np.concatenate(padded_features, axis=0).astype(np.float32) attention_masks = np.concatenate(attention_masks, axis=0).astype(np.int64) return padded_features, attention_masks def pad( self, inputs: BatchFeature, is_batched: bool, return_attention_mask: bool, return_tensors: Optional[Union[str, TensorType]] = None, ): """ Pads the inputs to same length and returns attention_mask. Args: inputs (`BatchFeature`): Processed audio features. is_batched (`bool`): Whether inputs are batched or not. return_attention_mask (`bool`): Whether to return attention mask or not. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. If nothing is specified, it will return list of `np.ndarray` arrays. Return: `BatchFeature` with attention_mask, attention_mask_beatsteps and attention_mask_extrapolated_beatstep added to it: - **attention_mask** numpy.ndarray of shape `(batch_size, max_input_features_seq_length)` -- Example : 1, 1, 1, 0, 0 (audio 1, also here it is padded to max length of 5 thats why there are 2 zeros at the end indicating they are padded) 0, 0, 0, 0, 0 (zero pad to seperate audio 1 and 2) 1, 1, 1, 1, 1 (audio 2) 0, 0, 0, 0, 0 (zero pad to seperate audio 2 and 3) 1, 1, 1, 1, 1 (audio 3) - **attention_mask_beatsteps** numpy.ndarray of shape `(batch_size, max_beatsteps_seq_length)` - **attention_mask_extrapolated_beatstep** numpy.ndarray of shape `(batch_size, max_extrapolated_beatstep_seq_length)` """ processed_features_dict = {} for feature_name, feature_value in inputs.items(): if feature_name == "input_features": padded_feature_values, attention_mask = self._pad(feature_value, add_zero_line=True) processed_features_dict[feature_name] = padded_feature_values if return_attention_mask: processed_features_dict["attention_mask"] = attention_mask else: padded_feature_values, attention_mask = self._pad(feature_value, add_zero_line=False) processed_features_dict[feature_name] = padded_feature_values if return_attention_mask: processed_features_dict[f"attention_mask_{feature_name}"] = attention_mask # If we are processing only one example, we should remove the zero array line since we don't need it to # seperate examples from each other. if not is_batched and not return_attention_mask: processed_features_dict["input_features"] = processed_features_dict["input_features"][:-1, ...] outputs = BatchFeature(processed_features_dict, tensor_type=return_tensors) return outputs def __call__( self, audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], sampling_rate: Union[int, List[int]], steps_per_beat: int = 2, resample: Optional[bool] = True, return_attention_mask: Optional[bool] = False, return_tensors: Optional[Union[str, TensorType]] = None, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model. Args: audio (`np.ndarray`, `List`): The audio or batch of audio to be processed. Each audio can be a numpy array, a list of float values, a list of numpy arrays or a list of list of float values. sampling_rate (`int`): The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. steps_per_beat (`int`, *optional*, defaults to 2): This is used in interpolating `beat_times`. resample (`bool`, *optional*, defaults to `True`): Determines whether to resample the audio to `sampling_rate` or not before processing. Must be True during inference. return_attention_mask (`bool` *optional*, defaults to `False`): Denotes if attention_mask for input_features, beatsteps and extrapolated_beatstep will be given as output or not. Automatically set to True for batched inputs. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. If nothing is specified, it will return list of `np.ndarray` arrays. """ requires_backends(self, ["librosa"]) is_batched = bool(isinstance(audio, (list, tuple)) and isinstance(audio[0], (np.ndarray, tuple, list))) if is_batched: # This enables the user to process files of different sampling_rate at same time if not isinstance(sampling_rate, list): raise ValueError( "Please give sampling_rate of each audio separately when you are passing multiple raw_audios at the same time. " f"Received {sampling_rate}, expected [audio_1_sr, ..., audio_n_sr]." ) return_attention_mask = True if return_attention_mask is None else return_attention_mask else: audio = [audio] sampling_rate = [sampling_rate] return_attention_mask = False if return_attention_mask is None else return_attention_mask batch_input_features, batch_beatsteps, batch_ext_beatstep = [], [], [] for single_raw_audio, single_sampling_rate in zip(audio, sampling_rate): bpm, beat_times, confidence, estimates, essentia_beat_intervals = self.extract_rhythm( audio=single_raw_audio ) beatsteps = self.interpolate_beat_times(beat_times=beat_times, steps_per_beat=steps_per_beat, n_extend=1) if self.sampling_rate != single_sampling_rate and self.sampling_rate is not None: if resample: # Change sampling_rate to self.sampling_rate single_raw_audio = librosa.core.resample( single_raw_audio, orig_sr=single_sampling_rate, target_sr=self.sampling_rate, res_type="kaiser_best", ) else: warnings.warn( f"The sampling_rate of the provided audio is different from the target sampling_rate " f"of the Feature Extractor, {self.sampling_rate} vs {single_sampling_rate}. " f"In these cases it is recommended to use `resample=True` in the `__call__` method to " f"get the optimal behaviour." ) single_sampling_rate = self.sampling_rate start_sample = int(beatsteps[0] * single_sampling_rate) end_sample = int(beatsteps[-1] * single_sampling_rate) input_features, extrapolated_beatstep = self.preprocess_mel( single_raw_audio[start_sample:end_sample], beatsteps - beatsteps[0] ) mel_specs = self.mel_spectrogram(input_features.astype(np.float32)) # apply np.log to get log mel-spectrograms log_mel_specs = np.log(np.clip(mel_specs, a_min=1e-6, a_max=None)) input_features = np.transpose(log_mel_specs, (0, -1, -2)) batch_input_features.append(input_features) batch_beatsteps.append(beatsteps) batch_ext_beatstep.append(extrapolated_beatstep) output = BatchFeature( { "input_features": batch_input_features, "beatsteps": batch_beatsteps, "extrapolated_beatstep": batch_ext_beatstep, } ) output = self.pad( output, is_batched=is_batched, return_attention_mask=return_attention_mask, return_tensors=return_tensors, ) return output
transformers/src/transformers/models/pop2piano/feature_extraction_pop2piano.py/0
{ "file_path": "transformers/src/transformers/models/pop2piano/feature_extraction_pop2piano.py", "repo_id": "transformers", "token_count": 8827 }
572
# coding=utf-8 # Copyright 2023 Authors: Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, # Kaitao Song, Ding Liang, Tong Lu, Ping Luo, Ling Shao and The HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert PvtV2 checkpoints from the original library.""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import PvtImageProcessor, PvtV2Config, PvtV2ForImageClassification from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config): rename_keys = [] for i in range(config.num_encoder_blocks): # Remane embedings' paramters rename_keys.append( (f"patch_embed{i + 1}.proj.weight", f"pvt_v2.encoder.layers.{i}.patch_embedding.proj.weight") ) rename_keys.append((f"patch_embed{i + 1}.proj.bias", f"pvt_v2.encoder.layers.{i}.patch_embedding.proj.bias")) rename_keys.append( (f"patch_embed{i + 1}.norm.weight", f"pvt_v2.encoder.layers.{i}.patch_embedding.layer_norm.weight") ) rename_keys.append( (f"patch_embed{i + 1}.norm.bias", f"pvt_v2.encoder.layers.{i}.patch_embedding.layer_norm.bias") ) rename_keys.append((f"norm{i + 1}.weight", f"pvt_v2.encoder.layers.{i}.layer_norm.weight")) rename_keys.append((f"norm{i + 1}.bias", f"pvt_v2.encoder.layers.{i}.layer_norm.bias")) for j in range(config.depths[i]): # Rename blocks' parameters rename_keys.append( (f"block{i + 1}.{j}.attn.q.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.query.weight") ) rename_keys.append( (f"block{i + 1}.{j}.attn.q.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.query.bias") ) rename_keys.append( (f"block{i + 1}.{j}.attn.kv.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.kv.weight") ) rename_keys.append( (f"block{i + 1}.{j}.attn.kv.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.kv.bias") ) if config.linear_attention or config.sr_ratios[i] > 1: rename_keys.append( ( f"block{i + 1}.{j}.attn.norm.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.layer_norm.weight", ) ) rename_keys.append( ( f"block{i + 1}.{j}.attn.norm.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.layer_norm.bias", ) ) rename_keys.append( ( f"block{i + 1}.{j}.attn.sr.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.spatial_reduction.weight", ) ) rename_keys.append( ( f"block{i + 1}.{j}.attn.sr.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.spatial_reduction.bias", ) ) rename_keys.append( (f"block{i + 1}.{j}.attn.proj.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.proj.weight") ) rename_keys.append( (f"block{i + 1}.{j}.attn.proj.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.proj.bias") ) rename_keys.append( (f"block{i + 1}.{j}.norm1.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.layer_norm_1.weight") ) rename_keys.append( (f"block{i + 1}.{j}.norm1.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.layer_norm_1.bias") ) rename_keys.append( (f"block{i + 1}.{j}.norm2.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.layer_norm_2.weight") ) rename_keys.append( (f"block{i + 1}.{j}.norm2.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.layer_norm_2.bias") ) rename_keys.append( (f"block{i + 1}.{j}.mlp.fc1.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dense1.weight") ) rename_keys.append( (f"block{i + 1}.{j}.mlp.fc1.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dense1.bias") ) rename_keys.append( ( f"block{i + 1}.{j}.mlp.dwconv.dwconv.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dwconv.dwconv.weight", ) ) rename_keys.append( ( f"block{i + 1}.{j}.mlp.dwconv.dwconv.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dwconv.dwconv.bias", ) ) rename_keys.append( (f"block{i + 1}.{j}.mlp.fc2.weight", f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dense2.weight") ) rename_keys.append( (f"block{i + 1}.{j}.mlp.fc2.bias", f"pvt_v2.encoder.layers.{i}.blocks.{j}.mlp.dense2.bias") ) rename_keys.extend( [ ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_k_v(state_dict, config): # for each of the encoder blocks: for i in range(config.num_encoder_blocks): for j in range(config.depths[i]): # read in weights + bias of keys and values (which is a single matrix in the original implementation) kv_weight = state_dict.pop(f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.kv.weight") kv_bias = state_dict.pop(f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.kv.bias") # next, add keys and values (in that order) to the state dict state_dict[f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.key.weight"] = kv_weight[ : config.hidden_sizes[i], : ] state_dict[f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.key.bias"] = kv_bias[: config.hidden_sizes[i]] state_dict[f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.value.weight"] = kv_weight[ config.hidden_sizes[i] :, : ] state_dict[f"pvt_v2.encoder.layers.{i}.blocks.{j}.attention.value.bias"] = kv_bias[ config.hidden_sizes[i] : ] def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_pvt_v2_checkpoint(pvt_v2_size, pvt_v2_checkpoint, pytorch_dump_folder_path, verify_imagenet_weights=False): """ Copy/paste/tweak model's weights to our PVT structure. """ # define default PvtV2 configuration if pvt_v2_size == "b0": config_path = "OpenGVLab/pvt_v2_b0" elif pvt_v2_size == "b1": config_path = "OpenGVLab/pvt_v2_b1" elif pvt_v2_size == "b2": config_path = "OpenGVLab/pvt_v2_b2" elif pvt_v2_size == "b2-linear": config_path = "OpenGVLab/pvt_v2_b2_linear" elif pvt_v2_size == "b3": config_path = "OpenGVLab/pvt_v2_b3" elif pvt_v2_size == "b4": config_path = "OpenGVLab/pvt_v2_b4" elif pvt_v2_size == "b5": config_path = "OpenGVLab/pvt_v2_b5" else: raise ValueError( f"Available model sizes: 'b0', 'b1', 'b2', 'b2-linear', 'b3', 'b4', 'b5', but " f"'{pvt_v2_size}' was given" ) config = PvtV2Config.from_pretrained(config_path) # load original model from https://github.com/whai362/PVT state_dict = torch.load(pvt_v2_checkpoint, map_location="cpu") rename_keys = create_rename_keys(config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_k_v(state_dict, config) # load HuggingFace model model = PvtV2ForImageClassification(config).eval() model.load_state_dict(state_dict) image_processor = PvtImageProcessor(size=config.image_size) if verify_imagenet_weights: # Check outputs on an image, prepared by PvtImageProcessor print("Verifying conversion of pretrained ImageNet weights...") encoding = image_processor(images=prepare_img(), return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) logits = outputs.logits.detach().cpu() if pvt_v2_size == "b0": expected_slice_logits = torch.tensor([-1.1939, -1.4547, -0.1076]) elif pvt_v2_size == "b1": expected_slice_logits = torch.tensor([-0.4716, -0.7335, -0.4600]) elif pvt_v2_size == "b2": expected_slice_logits = torch.tensor([0.0795, -0.3170, 0.2247]) elif pvt_v2_size == "b2-linear": expected_slice_logits = torch.tensor([0.0968, 0.3937, -0.4252]) elif pvt_v2_size == "b3": expected_slice_logits = torch.tensor([-0.4595, -0.2870, 0.0940]) elif pvt_v2_size == "b4": expected_slice_logits = torch.tensor([-0.1769, -0.1747, -0.0143]) elif pvt_v2_size == "b5": expected_slice_logits = torch.tensor([-0.2943, -0.1008, 0.6812]) else: raise ValueError( f"Available model sizes: 'b0', 'b1', 'b2', 'b2-linear', 'b3', 'b4', 'b5', but " f"'{pvt_v2_size}' was given" ) assert torch.allclose( logits[0, :3], expected_slice_logits, atol=1e-4 ), "ImageNet weights not converted successfully." print("ImageNet weights verified, conversion successful.") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model pytorch_model.bin to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pvt_v2_size", default="b0", type=str, help="Size of the PVTv2 pretrained model you'd like to convert.", ) parser.add_argument( "--pvt_v2_checkpoint", default="pvt_v2_b0.pth", type=str, help="Checkpoint of the PVTv2 pretrained model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--verify-imagenet-weights", action="store_true", default=False, help="Verifies the correct conversion of author-published pretrained ImageNet weights.", ) args = parser.parse_args() convert_pvt_v2_checkpoint( pvt_v2_size=args.pvt_v2_size, pvt_v2_checkpoint=args.pvt_v2_checkpoint, pytorch_dump_folder_path=args.pytorch_dump_folder_path, verify_imagenet_weights=args.verify_imagenet_weights, )
transformers/src/transformers/models/pvt_v2/convert_pvt_v2_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/pvt_v2/convert_pvt_v2_to_pytorch.py", "repo_id": "transformers", "token_count": 6185 }
573
# coding=utf-8 # Copyright 2020, The RAG Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFRAG model implementation.""" from __future__ import annotations import copy from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...generation import TFLogitsProcessorList from ...modeling_tf_utils import ( TFCausalLanguageModelingLoss, TFModelInputType, TFPreTrainedModel, keras, shape_list, unpack_inputs, ) from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "RagConfig" @dataclass class TFRetrievAugLMMarginOutput(ModelOutput): """ Base class for retriever augmented marginalized models outputs. Args: loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`tf.Tensor` (int32) of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`tf.Tensor`(int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` (int32) of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: tf.Tensor | None = None logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None doc_scores: tf.Tensor | None = None retrieved_doc_embeds: tf.Tensor | None = None retrieved_doc_ids: tf.Tensor | None = None context_input_ids: tf.Tensor | None = None context_attention_mask: tf.Tensor | None = None question_encoder_last_hidden_state: tf.Tensor | None = None question_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None question_enc_attentions: Tuple[tf.Tensor, ...] | None = None generator_enc_last_hidden_state: tf.Tensor | None = None generator_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None generator_enc_attentions: Tuple[tf.Tensor, ...] | None = None generator_dec_hidden_states: Tuple[tf.Tensor, ...] | None = None generator_dec_attentions: Tuple[tf.Tensor, ...] | None = None @dataclass class TFRetrievAugLMOutput(ModelOutput): """ Args: logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head. The score is possibly marginalized over all documents for each vocabulary token. past_key_values (`List[tf.Tensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `tf.Tensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains precomputed hidden-states (key and values in the attention blocks) of the decoder that can be used (see `past_key_values` input) to speed up sequential decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. retrieved_doc_embeds (`tf.Tensor` of shape `(batch_size, config.n_docs, hidden_size)`, *optional*, returned when *output_retrieved=True*): Embedded documents retrieved by the retriever. Is used with `question_encoder_last_hidden_state` to compute the `doc_scores`. retrieved_doc_ids (`tf.Tensor` of shape `(batch_size, config.n_docs)`, *optional*, returned when *output_retrieved=True*): The indexes of the embedded documents retrieved by the retriever. context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input ids post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. question_encoder_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden states at the output of the last layer of the question encoder pooled output of the model. question_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the question encoder at the output of each layer plus the initial embedding outputs. question_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the question encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_enc_last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the generator encoder of the model. generator_enc_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator encoder at the output of each layer plus the initial embedding outputs. generator_enc_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. generator_dec_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden states of the generator decoder at the output of each layer plus the initial embedding outputs. generator_dec_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the generator decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. """ logits: tf.Tensor = None past_key_values: List[tf.Tensor] | None = None doc_scores: tf.Tensor | None = None retrieved_doc_embeds: tf.Tensor | None = None retrieved_doc_ids: tf.Tensor | None = None context_input_ids: tf.Tensor | None = None context_attention_mask: tf.Tensor | None = None question_encoder_last_hidden_state: tf.Tensor | None = None question_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None question_enc_attentions: Tuple[tf.Tensor, ...] | None = None generator_enc_last_hidden_state: tf.Tensor | None = None generator_enc_hidden_states: Tuple[tf.Tensor, ...] | None = None generator_enc_attentions: Tuple[tf.Tensor, ...] | None = None generator_dec_hidden_states: Tuple[tf.Tensor, ...] | None = None generator_dec_attentions: Tuple[tf.Tensor, ...] | None = None class TFRagPreTrainedModel(TFPreTrainedModel): r""" RAG models were released with the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/abs/2005.11401) by Patrick Lewis, Ethan Perez, Aleksandra Piktus et al. RAG is a retriever augmented model and encapsulate three components: a question encoder, a dataset retriever and a generator, the encoder and generator are trainable while the retriever is just an indexed dataset. """ config_class = RagConfig base_model_prefix = "rag" _keys_to_ignore_on_load_missing = [r"position_ids"] @classmethod def from_pretrained_question_encoder_generator( cls, question_encoder_pretrained_model_name_or_path: str = None, generator_pretrained_model_name_or_path: str = None, retriever: RagRetriever = None, *model_args, **kwargs, ) -> TFPreTrainedModel: r""" Instantiates an question encoder and a generator from one or two base classes of the library from pretrained model checkpoints. Params: question_encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the question encoder. Can be either: - A string with the *shortcut name* of a pretrained model to load from cache or download, e.g., `google-bert/bert-base-uncased`. - A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g., `dbmdz/bert-base-german-cased`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `question_encoder_from_pt` should be set to `True`. generator_pretrained_model_name_or_path (`str`, *optional*, defaults to `None`): Information necessary to initiate the generator. Can be either: - A string with the *shortcut name* of a pretrained model to load from cache or download, e.g., `google-t5/t5-small`. - A string with the *identifier name* of a pretrained model that was user-uploaded to our S3, e.g., `facebook/bart-base`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `generator_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaining positional arguments will be passed to the underlying model's `__init__` method. retriever ([`RagRetriever`], *optional*): The retriever to use. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the question_encoder configuration, use the prefix *question_encoder_* for each configuration parameter. - To update the generator configuration, use the prefix *generator_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import RagRetriever, TFRagModel >>> # initialize a RAG from two pretrained models. >>> model = TFRagModel.from_pretrained_question_encoder_generator( ... "facebook/dpr-question_encoder-single-nq-base", "google-t5/t5-small" ... ) >>> # alternatively, initialize from pytorch pretrained models can also be done >>> model = TFRagModel.from_pretrained_question_encoder_generator( ... "facebook/dpr-question_encoder-single-nq-base", ... "facebook/bart-base", ... generator_from_pt=True, ... question_encoder_from_pt=True, ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./rag") >>> # load retriever >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True ... ) >>> # load fine-tuned model with retriever >>> model = TFRagModel.from_pretrained("./rag", retriever=retriever) ```""" kwargs_question_encoder = { argument[len("question_encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("question_encoder_") } kwargs_generator = { argument[len("generator_") :]: value for argument, value in kwargs.items() if argument.startswith("generator_") } # remove question_encoder, generator kwargs from kwargs for key in kwargs_question_encoder.keys(): del kwargs["question_encoder_" + key] for key in kwargs_generator.keys(): del kwargs["generator_" + key] # Load and initialize the question_encoder and generator # The distinction between question_encoder and generator at the model level is made # by the value of the flag `is_generator` that we need to set correctly. question_encoder = kwargs_question_encoder.pop("model", None) if question_encoder is None: assert question_encoder_pretrained_model_name_or_path is not None, ( "If `model` is not defined as an argument, a `question_encoder_pretrained_model_name_or_path` has to" " be defined" ) from ..auto.modeling_tf_auto import TFAutoModel if "config" not in kwargs_question_encoder: from ..auto.configuration_auto import AutoConfig question_encoder_config = AutoConfig.from_pretrained(question_encoder_pretrained_model_name_or_path) kwargs_question_encoder["config"] = question_encoder_config question_encoder = TFAutoModel.from_pretrained( question_encoder_pretrained_model_name_or_path, name="question_encoder", load_weight_prefix=cls.load_weight_prefix, *model_args, **kwargs_question_encoder, ) generator = kwargs_generator.pop("generator", None) if generator is None: assert generator_pretrained_model_name_or_path is not None, ( "If `generator_model` is not defined as an argument, a `generator_pretrained_model_name_or_path` has" " to be defined" ) from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM if "config" not in kwargs_generator: from ..auto.configuration_auto import AutoConfig generator_config = AutoConfig.from_pretrained(generator_pretrained_model_name_or_path) kwargs_generator["config"] = generator_config generator = TFAutoModelForSeq2SeqLM.from_pretrained( generator_pretrained_model_name_or_path, name="generator", load_weight_prefix=cls.load_weight_prefix, **kwargs_generator, ) # instantiate config with corresponding kwargs config = kwargs.get("config", None) if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) return cls(question_encoder=question_encoder, generator=generator, config=config, retriever=retriever) RAG_START_DOCSTRING = r""" RAG is a sequence-to-sequence model which encapsulates two core components: a question encoder and a generator. During a forward pass, we encode the input with the question encoder and pass it to the retriever to extract relevant context documents. The documents are then prepended to the input. Such contextualized inputs is passed to the generator. The question encoder can be any *autoencoding* model, preferably [`TFDPRQuestionEncoder`], and the generator can be any *seq2seq* model, preferably [`TFBartForConditionalGeneration`]. The model can be initialized with a [`RagRetriever`] for end-to-end generation or used in combination with the outputs of a retriever in multiple steps---see examples for more details. The model is compatible any *autoencoding* model as the `question_encoder` and any *seq2seq* model with language model head as the `generator`. It has been tested with [`TFDPRQuestionEncoder`] as the `question_encoder` and [`TFBartForConditionalGeneration`] as the `generator`. This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Tensorflow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. The model is in a developing state as it is now fully supports in eager-mode only, and may not be exported in SavedModel format. Args: config ([`RagConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. question_encoder ([`TFPreTrainedModel`]): An encoder model compatible with the faiss index encapsulated by the `retriever`. generator ([`TFPreTrainedModel`]): A seq2seq model used as the generator in the RAG architecture. retriever ([`RagRetriever`]): A retriever class encapsulating a faiss index queried to obtain context documents for current inputs. """ RAG_FORWARD_INPUTS_DOCSTRING = r""" Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. [`RagConfig`], used to initialize the model, specifies which generator to use, it also specifies a compatible generator tokenizer. Use that tokenizer class to obtain the indices. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*) Tuple consists of (`generator_enc_last_hidden_state`, *optional*: `generator_enc_hidden_states`, *optional*: `generator_enc_attentions`). `generator_enc_last_hidden_state` of shape `(batch_size, n_docs * sequence_length, hidden_size)` is a sequence of hidden-states at the output of the last layer of the generator's encoder. Used by the ([`TFRagModel`]) model during decoding. decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Provide for generation tasks. `None` by default, construct as per instructions for the generator model you're using with your RAG instance. decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. past_key_values (`tuple(tuple(tf.Tensor))`): Tuple consists of two elements: `encoder_outputs` of the RAG model (see `encoder_outputs`) and `past_key_values` of the underlying generator. Can be used to speed up decoding. `past_key_values` are used in the ([`RagTokenForGeneration`]) model during decoding. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` `doc_scores` has to be provided to the forward pass. `doc_scores` can be computed via `question_encoder_last_hidden_state` and `retrieved_doc_embeds`, see examples for more information. context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` ``context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` `context_attention_mask` has to be provided to the forward pass. `context_attention_mask` are returned by [`~RagRetriever.__call__`]. use_cache (`bool`, *optional*, defaults to `True`): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. output_retrieved(`bool`, *optional*): Whether or not to return the `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and `context_attention_mask`. See returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`TFRetrievAugLMOutput`] instead of a plain tuple. n_docs (`int`, *optional*, defaults to `config.n_docs``) Number of documents to retrieve and/or number of documents for which to generate an answer. """ @add_start_docstrings_to_model_forward(RAG_START_DOCSTRING) class TFRagModel(TFRagPreTrainedModel): load_weight_prefix = "tf_rag_model_1" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, load_weight_prefix: Optional[str] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an question_encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) else: assert isinstance(config, self.config_class), f"config: {config} has to be of type {self.config_class}" super().__init__(config, **kwargs) if question_encoder is None: from ..auto.modeling_tf_auto import TFAutoModel question_encoder = TFAutoModel.from_config(config.question_encoder, name="question_encoder") if generator is None: from ..auto.modeling_tf_auto import TFAutoModelForSeq2SeqLM load_weight_prefix = load_weight_prefix if load_weight_prefix is not None else self.load_weight_prefix generator = TFAutoModelForSeq2SeqLM.from_config( config.generator, name="generator", load_weight_prefix=load_weight_prefix + "/generator" ) self.retriever = retriever if self.retriever is not None: assert isinstance( retriever, RagRetriever ), f"`self.retriever` is of type {type(self.retriever)}, but should be of type `RagRetriever`" self.retriever = retriever self.question_encoder = question_encoder self.generator = generator def set_retriever(self, retriever: RagRetriever): self.retriever = retriever @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, output_retrieved: bool | None = None, n_docs: int | None = None, return_dict: bool | None = None, training: bool = False, **kwargs, ) -> TFRetrievAugLMOutput: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, TFRagModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-base", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagModel.from_pretrained("facebook/rag-token-base", retriever=retriever, from_pt=True) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> input_ids = input_dict["input_ids"] >>> outputs = model(input_ids) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py # aliasing to minimize code changing n_docs = n_docs if n_docs is not None else self.config.n_docs # whether retriever has to be used has_to_retrieve = ( self.retriever is not None and (context_input_ids is None or context_attention_mask is None or doc_scores is None) and encoder_outputs is None ) # encoder_outputs are pre-computed during RAG-token generation if encoder_outputs is None: if has_to_retrieve: question_enc_outputs = self.question_encoder( input_ids, attention_mask=attention_mask, return_dict=True, training=training ) # see https://github.com/huggingface/transformers/blob/main/src/transformers/models/dpr/modeling_tf_dpr.py#L91 question_encoder_last_hidden_state = question_enc_outputs[ 0 ] # hidden states of question encoder => pooler_output retriever_outputs = self.retriever( input_ids, question_encoder_last_hidden_state.numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", ) context_input_ids, context_attention_mask, retrieved_doc_embeds, retrieved_doc_ids = ( retriever_outputs["context_input_ids"], retriever_outputs["context_attention_mask"], retriever_outputs["retrieved_doc_embeds"], retriever_outputs["doc_ids"], ) context_input_ids = tf.cast(context_input_ids, tf.int32) context_attention_mask = tf.cast(context_attention_mask, tf.int32) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) retrieved_doc_ids = tf.cast(retrieved_doc_ids, tf.int32) # compute doc_scores doc_scores = tf.squeeze( tf.matmul( tf.expand_dims(question_encoder_last_hidden_state, axis=1), retrieved_doc_embeds, transpose_b=True, ), axis=1, ) else: assert context_input_ids is not None, ( "Make sure that `context_input_ids` are passed, if no `retriever` is set. Alternatively, you can" " set a retriever using the `set_retriever(...)` function." ) assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `retriever` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `retriever` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) assert ( doc_scores is not None ), "Make sure that `doc_scores` are passed when passing `encoder_outputs` to the forward function." assert (doc_scores.shape[1] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) # Decoder input without context documents if decoder_input_ids is not None: decoder_input_ids = tf.repeat(decoder_input_ids, n_docs, axis=0) if decoder_attention_mask is not None: decoder_attention_mask = tf.repeat(decoder_attention_mask, n_docs, axis=0) gen_outputs = self.generator( context_input_ids, attention_mask=context_attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, return_dict=True, training=training, ) if not has_to_retrieve: question_encoder_last_hidden_state = None question_enc_hidden_states = None question_enc_attentions = None retrieved_doc_embeds = None retrieved_doc_ids = None else: question_enc_hidden_states = question_enc_outputs.hidden_states question_enc_attentions = question_enc_outputs.attentions if not has_to_retrieve or not output_retrieved: # don't output retrieved docs context_input_ids = (None,) context_attention_mask = None retrieved_doc_embeds = None retrieved_doc_ids = None return TFRetrievAugLMOutput( logits=gen_outputs.logits, doc_scores=doc_scores, past_key_values=gen_outputs.past_key_values, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, retrieved_doc_embeds=retrieved_doc_embeds, retrieved_doc_ids=retrieved_doc_ids, question_encoder_last_hidden_state=question_encoder_last_hidden_state, question_enc_hidden_states=question_enc_hidden_states, question_enc_attentions=question_enc_attentions, generator_enc_last_hidden_state=gen_outputs.encoder_last_hidden_state, generator_enc_hidden_states=gen_outputs.encoder_hidden_states, generator_enc_attentions=gen_outputs.encoder_attentions, generator_dec_hidden_states=gen_outputs.decoder_hidden_states, generator_dec_attentions=gen_outputs.decoder_attentions, ) def build(self, input_shape=None): if self.built: return self.built = True with tf.name_scope(self.generator.name): self.generator.build(None) with tf.name_scope(self.question_encoder.name): self.question_encoder.build(None) @add_start_docstrings_to_model_forward( """ A TF RAG-token model implementation. It performs RAG-token specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class TFRagTokenForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss): load_weight_prefix = "tf_rag_token_for_generation_1/rag" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = TFRagModel( config=config, question_encoder=question_encoder, generator=generator, retriever=retriever, load_weight_prefix=self.load_weight_prefix, name="rag", ) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever # Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_tf_bart.py def prepare_inputs_for_generation( self, decoder_input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, doc_scores=None, n_docs=None, **kwargs, ): if past_key_values is not None: # if past is defined use only last decoder_input_ids decoder_input_ids = decoder_input_ids[:, -1:] return { "input_ids": None, "encoder_outputs": encoder_outputs, "doc_scores": doc_scores, "context_attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "past_key_values": past_key_values, "use_cache": use_cache, "do_marginalize": True, "n_docs": n_docs, } @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @staticmethod def _gather_beams(nested, beam_indices, batch_axis=0): """ RAG-specific `_gather_beams`: gathers the beam slices indexed by beam_indices into new beam array. If the nested tensor has a shape mismatch with the beam indices, then it means it is the cache. In that case, isolates and takes care of the extra dimension for ndocs. """ def gather_fn(tensor): is_rag_cache = tensor.shape[0] != beam_indices.shape[0] if is_rag_cache: n_docs = tensor.shape[0] // beam_indices.shape[0] batch_size = beam_indices.shape[0] # reshapes into (batch size, num beams, n_docs, ...), the cache format expected by RAG tensor = tf.reshape(tensor, (batch_size, -1, n_docs, *tensor.shape[2:])) gathered_tensor = tf.gather(params=tensor, indices=beam_indices, axis=1, batch_dims=1) if is_rag_cache: # reshapes back into the shape expected by beam search gathered_tensor = tf.reshape(gathered_tensor, (batch_size * n_docs, -1, *gathered_tensor.shape[3:])) return gathered_tensor return tf.nest.map_structure(gather_fn, nested) def marginalize(self, seq_logits, doc_scores, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # RAG-token marginalization seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1) seq_logprobs = tf.reshape(seq_logprobs, [seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]]) doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # twice log_prob_sum = seq_logprobs + doc_logprobs return tf.reduce_logsumexp(log_prob_sum, axis=1) @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Tuple[Tuple[Union[np.ndarray, tf.Tensor]]] | None = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: bool | None = None, output_attentions: bool | None = None, output_hidden_states: bool | None = None, output_retrieved: bool | None = None, n_docs: int | None = None, do_marginalize: bool | None = None, labels: np.ndarray | tf.Tensor | None = None, reduce_loss: bool | None = None, return_dict: bool | None = None, training: bool = False, **kwargs, # needs kwargs for generation ) -> TFRetrievAugLMMarginOutput: r""" do_marginalize (`bool`, *optional*): If `True`, the logits are marginalized over all documents by making use of `torch.nn.functional.log_softmax`. labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss according to Rag-Token model formulation See https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Token formulation. Indices should be in `[0, ..., config.vocab_size - 1]`. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> import tensorflow as tf >>> from transformers import AutoTokenizer, RagRetriever, TFRagTokenForGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever, from_pt=True) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> outputs = model(input_dict, output_retrieved=True) >>> # or use retriever separately >>> # 1. Encode >>> input_ids = input_dict["input_ids"] >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") >>> doc_scores = tf.squeeze( ... tf.matmul( ... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True ... ), ... axis=1, ... ) >>> # 3. Forward to generator >>> outputs = model( ... inputs=None, ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=input_dict["labels"], ... ) >>> # or directly generate >>> generated = model.generate( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... ) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py do_marginalize = do_marginalize if do_marginalize else self.config.do_marginalize reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, training=training, ) loss = None logits = outputs.logits if labels is not None: assert decoder_input_ids is not None loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) if do_marginalize: logits = self.marginalize(logits, outputs.doc_scores, n_docs) return TFRetrievAugLMMarginOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, doc_scores=outputs.doc_scores, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, ) def generate( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, n_docs=None, generation_config=None, logits_processor=TFLogitsProcessorList(), **kwargs, ): """ Implements TFRAG token decoding. Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever`, `context_input_ids` has to be provided to the forward pass. `context_input_ids` are returned by [`~RagRetriever.__call__`]. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. generation_config (`~generation.GenerationConfig`, *optional*): The generation configuration to be used as base parametrization for the generation call. `**kwargs` passed to generate matching the attributes of `generation_config` will override them. If `generation_config` is not provided, the default will be used, which had the following loading priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s default values, whose documentation should be checked to parameterize generation. logits_processor (`TFLogitsProcessorList`, *optional*): Custom logits processors that complement the default logits processors built from arguments and a model's config. If a logit processor is passed that is already created with the arguments or a model's config an error is thrown. kwargs (`Dict[str, Any]`, *optional*): Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be forwarded to the `forward` function of the model. Return: `tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ # Handle `generation_config` and kwargs that might update it if generation_config is None: generation_config = self.generation_config generation_config = copy.deepcopy(generation_config) model_kwargs = generation_config.update(**kwargs) # All unused kwargs must be model kwargs # set default parameters n_docs = n_docs if n_docs is not None else self.config.n_docs # retrieve docs if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] out = self.retriever( input_ids, question_hidden_states.numpy().astype(np.float32), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", ) context_input_ids, context_attention_mask, retrieved_doc_embeds = ( out["context_input_ids"], out["context_attention_mask"], out["retrieved_doc_embeds"], ) context_input_ids = tf.cast(context_input_ids, tf.int32) context_attention_mask = tf.cast(context_attention_mask, tf.int32) retrieved_doc_embeds = tf.cast(retrieved_doc_embeds, tf.float32) # compute doc_scores doc_scores = tf.matmul( tf.expand_dims(question_hidden_states, axis=1), retrieved_doc_embeds, transpose_b=True ) doc_scores = tf.squeeze(doc_scores, axis=1) assert (context_input_ids.shape[0] % n_docs) == 0, ( f" The first dimension of `context_input_ids` should be a multiple of `n_docs`={n_docs}, but is" f" {context_input_ids.shape[0]}." ) batch_size = context_input_ids.shape[0] // n_docs encoder = self.rag.generator.get_encoder() encoder_outputs = encoder( input_ids=context_input_ids, attention_mask=context_attention_mask, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, return_dict=True, ) decoder_input_ids = tf.fill( (batch_size * generation_config.num_beams, 1), tf.cast(generation_config.decoder_start_token_id, tf.int32), ) last_hidden_state = encoder_outputs["last_hidden_state"] def extend_enc_output(tensor, num_beams=None): """ Broadcast tensor with `num_beams` replica, with correct order Input: tensor of shape (batch_size*n_docs , d) Output: tensor of shape (batch_size*num_beams*n_docs , d) """ # expand batch_size & num_beam dimensions d_shape_list = tensor.shape[1:] # split n_docs dimensions new_shape = (batch_size, 1, n_docs) + d_shape_list tensor = tf.reshape(tensor, new_shape) # repeat same last hidden states over `num_beams` dimension new_shape = (batch_size, num_beams, n_docs) + d_shape_list tensor = tf.broadcast_to(tensor, new_shape) # merge `batch_size`, `num_beams`, `num_docs` dims again new_shape = (batch_size * num_beams * n_docs,) + d_shape_list return tf.reshape(tensor, new_shape) # correctly extend last_hidden_state and attention mask context_attention_mask = extend_enc_output(context_attention_mask, num_beams=generation_config.num_beams) encoder_outputs["last_hidden_state"] = extend_enc_output( last_hidden_state, num_beams=generation_config.num_beams ) doc_scores = tf.repeat(doc_scores, generation_config.num_beams, axis=0) # define start_len & additional parameters model_kwargs["doc_scores"] = doc_scores model_kwargs["encoder_outputs"] = encoder_outputs model_kwargs["attention_mask"] = context_attention_mask model_kwargs["n_docs"] = n_docs pre_processor = self._get_logits_processor( generation_config=generation_config, input_ids_seq_length=tf.shape(decoder_input_ids)[-1], logits_processor=logits_processor, ) if generation_config.num_beams == 1: return self.greedy_search( input_ids=decoder_input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, logits_processor=pre_processor, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) elif generation_config.num_beams > 1: if generation_config.num_beams < generation_config.num_return_sequences: raise ValueError( "Beam search decoding cannot return more sequences than it has beams. Please set num_beams >=" f" num_return_sequences, got {generation_config.num_beams} and" f" {generation_config.num_return_sequences} (respectivelly)" ) def unflatten_beam_dim(tensor): """Unflattens the first, flat batch*beam dimension of a non-scalar array.""" shape = shape_list(tensor) return tf.reshape(tensor, [-1, generation_config.num_beams] + shape[1:]) decoder_input_ids = unflatten_beam_dim(decoder_input_ids) model_kwargs["attention_mask"] = unflatten_beam_dim(model_kwargs["attention_mask"]) model_kwargs["encoder_outputs"]["last_hidden_state"] = unflatten_beam_dim( model_kwargs["encoder_outputs"]["last_hidden_state"] ) return self.beam_search( input_ids=decoder_input_ids, max_length=generation_config.max_length, pad_token_id=generation_config.pad_token_id, eos_token_id=generation_config.eos_token_id, logits_processor=pre_processor, output_attentions=generation_config.output_attentions, output_hidden_states=generation_config.output_hidden_states, output_scores=generation_config.output_scores, return_dict_in_generate=generation_config.return_dict_in_generate, **model_kwargs, ) else: raise ValueError( f"`num_beams` has to be an integer strictly superior to 0 (≥ 1), but is {generation_config.num_beams}" ) def get_input_embeddings(self): return self.rag.generator.get_input_embeddings() def get_output_embeddings(self): return self.rag.generator.get_output_embeddings() # Adapted from tf_t5's & tf_bart's _shift_right def shift_tokens_right(self, input_ids, start_token_id=None): """Shift input ids one token to the right, and pad with start_token_id""" if start_token_id is None: start_token_id = self.generator.config.decoder_start_token_id assert start_token_id is not None, ( "self.generator.config.decoder_start_token_id has to be defined. In Rag we commonly use Bart as" " generator, see Bart docs for more information" ) pad_token_id = self.generator.config.pad_token_id assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." start_tokens = tf.fill((shape_list(input_ids)[0], 1), tf.cast(start_token_id, input_ids.dtype)) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), tf.cast(pad_token_id, input_ids.dtype)), shifted_input_ids, ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.cast(0, shifted_input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids # nll stands for 'negative log likelihood' def get_nll(self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, n_docs=None): n_docs = n_docs if n_docs is not None else self.config.n_docs # shift tokens left (from original Pytorch's version) target = tf.concat( [target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))], axis=1, ) rag_logprobs = self.marginalize(seq_logits, doc_scores, n_docs) loss = self.hf_compute_loss(target, rag_logprobs, from_logits=True, reduce_loss=reduce_loss) return loss # Adopted modeling_tf_bart + add smooth_loss to match with pytorch version def hf_compute_loss(self, labels, y_pred, smooth_epsilon=0.0, from_logits=True, reduce_loss=False): """CrossEntropyLoss that ignores pad tokens""" # Matt: As written, this loss is not XLA-compatible, but it's doing some very weird things # and I don't feel comfortable converting it. loss_fn = keras.losses.SparseCategoricalCrossentropy( from_logits=True, reduction=keras.losses.Reduction.SUM, ) if from_logits is False: # convert to logits eps = 1e-9 y_pred = tf.clip_by_value(y_pred, clip_value_min=eps, clip_value_max=1 - eps) y_pred = tf.math.log(y_pred) logits = y_pred melted_labels = tf.reshape(labels, (-1,)) active_loss = tf.not_equal(melted_labels, self.config.generator.pad_token_id) reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, logits.shape[2])), active_loss) labels = tf.boolean_mask(melted_labels, active_loss) nll_loss = loss_fn(labels, reduced_logits) smooth_loss = -tf.reduce_sum(reduced_logits, axis=-1) smooth_loss = tf.reduce_sum(smooth_loss) # sum and squeeze like torch eps_i = smooth_epsilon / reduced_logits.shape[-1] loss = (1.0 - smooth_epsilon) * nll_loss + eps_i * smooth_loss return loss def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rag", None) is not None: with tf.name_scope(self.rag.name): self.rag.build(None) @add_start_docstrings_to_model_forward( """ A TF RAG-sequence model implementation. It performs RAG-sequence specific marginalization in the forward pass. """, RAG_START_DOCSTRING, ) class TFRagSequenceForGeneration(TFRagPreTrainedModel, TFCausalLanguageModelingLoss): load_weight_prefix = "tf_rag_sequence_for_generation_1/rag" def __init__( self, config: Optional[PretrainedConfig] = None, question_encoder: Optional[TFPreTrainedModel] = None, generator: Optional[TFPreTrainedModel] = None, retriever: Optional[RagRetriever] = None, **kwargs, ): assert config is not None or ( question_encoder is not None and generator is not None ), "Either a configuration or an encoder and a generator has to be provided." if config is None: config = RagConfig.from_question_encoder_generator_configs( question_encoder.config, generator.config, **kwargs ) super().__init__(config) # instantiate model self.rag = TFRagModel( config=config, question_encoder=question_encoder, generator=generator, retriever=retriever, load_weight_prefix=self.load_weight_prefix, name="rag", ) def set_retriever(self, retriever: RagRetriever): self.rag.retriever = retriever @property def retriever(self): return self.rag.retriever @property def generator(self): return self.rag.generator @property def question_encoder(self): return self.rag.question_encoder @unpack_inputs @add_start_docstrings_to_model_forward(RAG_FORWARD_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=TFRetrievAugLMMarginOutput, config_class=_CONFIG_FOR_DOC) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: np.ndarray | tf.Tensor | None = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, doc_scores: np.ndarray | tf.Tensor | None = None, context_input_ids: np.ndarray | tf.Tensor | None = None, context_attention_mask: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_retrieved: Optional[bool] = None, n_docs: Optional[int] = None, exclude_bos_score: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, reduce_loss: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, # needs kwargs for generation ) -> Union[Tuple[tf.Tensor], TFRetrievAugLMMarginOutput]: r""" exclude_bos_score (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the score of the BOS token is disregarded when computing the loss. labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the cross entropy classification loss according to Rag-Sequence model formulation See https://arxiv.org/pdf/2005.11401.pdf Section 2.1 for details about Rag-Sequence formulation. Indices should be in `[0, ..., config.vocab_size - 1]`. reduce_loss (`bool`, *optional*): Only relevant if `labels` is passed. If `True`, the NLL loss is reduced using the `tf.Tensor.sum` operation. kwargs (`Dict[str, any]`, optional, defaults to *{}*): Legacy dictionary, which is required so that model can use *generate()* function. Returns: Example: ```python >>> from transformers import AutoTokenizer, RagRetriever, TFRagSequenceForGeneration >>> tokenizer = AutoTokenizer.from_pretrained("facebook/rag-sequence-nq") >>> retriever = RagRetriever.from_pretrained( ... "facebook/rag-sequence-nq", index_name="exact", use_dummy_dataset=True ... ) >>> # initialize with RagRetriever to do everything in one forward call >>> model = TFRagSequenceForGeneration.from_pretrained( ... "facebook/rag-sequence-nq", retriever=retriever, from_pt=True ... ) >>> input_dict = tokenizer.prepare_seq2seq_batch( ... "How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="tf" ... ) >>> outputs = model(input_dict, output_retrieved=True) >>> # or use retriever separately >>> # 1. Encode >>> input_ids = input_dict["input_ids"] >>> question_hidden_states = model.question_encoder(input_ids)[0] >>> # 2. Retrieve >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.numpy(), return_tensors="tf") >>> doc_scores = tf.squeeze( ... tf.matmul( ... tf.expand_dims(question_hidden_states, axis=1), docs_dict["retrieved_doc_embeds"], transpose_b=True ... ), ... axis=1, ... ) >>> # 3. Forward to generator >>> outputs = model( ... inputs=None, ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... decoder_input_ids=input_dict["labels"], ... ) >>> # or directly generate >>> generated = model.generate( ... context_input_ids=docs_dict["context_input_ids"], ... context_attention_mask=docs_dict["context_attention_mask"], ... doc_scores=doc_scores, ... ) >>> generated_string = tokenizer.batch_decode(generated, skip_special_tokens=True) ```""" assert ( "decoder_cached_states" not in kwargs ), "Please use past_key_values to cache intermediate outputs" # from modeling_tf_bart.py exclude_bos_score = exclude_bos_score if exclude_bos_score else self.config.exclude_bos_score reduce_loss = reduce_loss if reduce_loss else self.config.reduce_loss if labels is not None: if decoder_input_ids is None: decoder_input_ids = labels use_cache = False outputs = self.rag( input_ids, attention_mask=attention_mask, encoder_outputs=encoder_outputs, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, context_input_ids=context_input_ids, context_attention_mask=context_attention_mask, doc_scores=doc_scores, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, output_retrieved=output_retrieved, n_docs=n_docs, training=training, ) loss = None if labels is not None: loss = self.get_nll( outputs.logits, outputs.doc_scores, labels, reduce_loss=reduce_loss, epsilon=self.config.label_smoothing, n_docs=n_docs, ) return TFRetrievAugLMMarginOutput( loss=loss, logits=outputs.logits, doc_scores=outputs.doc_scores, past_key_values=outputs.past_key_values, context_input_ids=outputs.context_input_ids, context_attention_mask=outputs.context_attention_mask, retrieved_doc_embeds=outputs.retrieved_doc_embeds, retrieved_doc_ids=outputs.retrieved_doc_ids, question_encoder_last_hidden_state=outputs.question_encoder_last_hidden_state, question_enc_hidden_states=outputs.question_enc_hidden_states, question_enc_attentions=outputs.question_enc_attentions, generator_enc_last_hidden_state=outputs.generator_enc_last_hidden_state, generator_enc_hidden_states=outputs.generator_enc_hidden_states, generator_enc_attentions=outputs.generator_enc_attentions, generator_dec_hidden_states=outputs.generator_dec_hidden_states, generator_dec_attentions=outputs.generator_dec_attentions, ) def get_nll( self, seq_logits, doc_scores, target, reduce_loss=False, epsilon=0.0, exclude_bos_score=False, n_docs=None ): # shift tokens left target = tf.concat( [target[:, 1:], tf.fill([target.shape[0], 1], tf.cast(self.config.generator.pad_token_id, target.dtype))], axis=1, ) # bos_token_id is None for T5 bos_token_id = self.config.bos_token_id or self.config.generator.bos_token_id n_docs = n_docs if n_docs is not None else self.config.n_docs equal_bos_token_id_all = tf.reduce_all(tf.equal(target[:, 0], bos_token_id)) use_bos = bos_token_id is not None and equal_bos_token_id_all def _mask_pads(ll, smooth_obj): pad_mask = tf.equal(target, tf.cast(self.config.generator.pad_token_id, target.dtype)) if tf.reduce_any(pad_mask): ll = tf.where(pad_mask, 0.0, ll) smooth_obj = tf.where(pad_mask, 0.0, smooth_obj) return tf.squeeze(ll, axis=-1), tf.squeeze(smooth_obj, axis=-1) # seq_logits.shape = (batch*n_docs, tgt_len , vocabs) seq_logprobs = tf.nn.log_softmax(seq_logits, axis=-1) seq_logprobs = tf.reshape( seq_logprobs, (seq_logits.shape[0] // n_docs, n_docs, -1, seq_logits.shape[-1]) ) # (batch_size, n_docs, tgt_len, vocabs) doc_logprobs = tf.nn.log_softmax(doc_scores, axis=1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) doc_logprobs = tf.expand_dims(doc_logprobs, axis=-1) # done twice to get 4-D # RAG-sequence marginalization first_token_scores = seq_logprobs[:, :, :1, :] second_token_scores = seq_logprobs[:, :, 1:2, :] remainder = seq_logprobs[:, :, 2:, :] rag_logprobs = tf.concat([first_token_scores, second_token_scores + doc_logprobs, remainder], axis=2) # calculate loss target = tf.expand_dims(target, axis=1) # n_docs dimension target = tf.expand_dims(target, axis=-1) # logits dimension target = tf.repeat(target, n_docs, axis=1) assert len(target.shape) == len(rag_logprobs.shape) # last-axis gathering only - use 2D-reshape-trick for Torch's style nD gathering def torch_gather(param, id_tensor): # 2d-gather torch equivalent: https://stackoverflow.com/questions/52129909/tensorflow-equivalent-of-torch-gather def gather2d(target, id_tensor): idx = tf.stack([tf.range(tf.shape(id_tensor)[0], dtype=id_tensor.dtype), id_tensor[:, 0]], axis=-1) result = tf.gather_nd(target, idx) return tf.expand_dims(result, axis=-1) target = tf.reshape(param, (-1, param.shape[-1])) # reshape 2D target_shape = id_tensor.shape id_tensor = tf.reshape(id_tensor, (-1, 1)) # also 2D-index result = gather2d(target, id_tensor) return tf.reshape(result, target_shape) ll = torch_gather(rag_logprobs, id_tensor=target) smooth_obj = tf.reduce_sum(rag_logprobs, axis=-1, keepdims=True) # total sum of all (normalised) logits ll, smooth_obj = _mask_pads(ll, smooth_obj) # sum over tokens, exclude bos while scoring if exclude_bos_score and use_bos: ll = tf.reduce_sum(ll[:, :, 1:], axis=2) else: ll = tf.reduce_sum(ll, axis=2) smooth_obj = tf.reduce_sum(smooth_obj, axis=2) ll = tf.math.reduce_logsumexp(ll, axis=1) # logsumexp over docs smooth_obj = tf.math.reduce_logsumexp(smooth_obj, axis=1) nll_loss = -ll smooth_loss = -smooth_obj if reduce_loss: nll_loss = tf.reduce_sum(nll_loss) smooth_loss = tf.reduce_sum(smooth_loss) eps_i = epsilon / rag_logprobs.shape[-1] loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss return loss def generate( self, input_ids: TFModelInputType | None = None, attention_mask: tf.Tensor | None = None, context_input_ids=None, context_attention_mask=None, doc_scores=None, do_deduplication=None, # defaults to True num_return_sequences=None, # defaults to 1 num_beams=None, # defaults to 1 n_docs=None, **model_kwargs, ): """ Implements RAG sequence "thorough" decoding. Read the [`~generation.GenerationMixin.generate`]` documentation for more information on how to set other generate input parameters Args: input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): The sequence used as a prompt for the generation. If `input_ids` is not passed, then `context_input_ids` has to be provided. attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) context_input_ids (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Input IDs post-processed from the retrieved documents and the question encoder input_ids by the retriever. context_attention_mask (`tf.Tensor` of shape `(batch_size * config.n_docs, config.max_combined_length)`, *optional*, returned when *output_retrieved=True*): Attention mask post-processed from the retrieved documents and the question encoder `input_ids` by the retriever. If the model has is not initialized with a `retriever` or `input_ids` is not given, `context_input_ids` and `context_attention_mask` have to be provided to the forward pass. They are returned by [`~RagRetriever.__call__`]. doc_scores (`tf.Tensor` of shape `(batch_size, config.n_docs)`): Score between each retrieved document embeddings (see `retrieved_doc_embeds`) and `question_encoder_last_hidden_state`. If the model has is not initialized with a `retriever` or `input_ids` is not given, `doc_scores` has to be provided to the forward pass. `doc_scores` are returned by [`~RagRetriever.__call__`]. do_deduplication (`bool`, *optional*): Whether or not to deduplicate the generations from different context documents for a given input. Has to be set to `False` if used while training with distributed backend. num_return_sequences(`int`, *optional*, defaults to 1): The number of independently computed returned sequences for each element in the batch. Note that this is not the value we pass to the `generator`'s `[`~generation.GenerationMixin.generate`]` function, where we set `num_return_sequences` to `num_beams`. num_beams (`int`, *optional*, defaults to 1): Number of beams for beam search. 1 means no beam search. n_docs (`int`, *optional*, defaults to `config.n_docs`) Number of documents to retrieve and/or number of documents for which to generate an answer. kwargs (`Dict[str, Any]`, *optional*): Additional kwargs will be passed to [`~generation.GenerationMixin.generate`] Return: `tf.Tensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences. The second dimension (sequence length) is either equal to `max_length` or shorter if all batches finished early due to the `eos_token_id`. """ n_docs = n_docs if n_docs is not None else self.config.n_docs do_deduplication = do_deduplication if do_deduplication is not None else self.config.do_deduplication num_doc_return_sequences = ( num_return_sequences if num_return_sequences is not None else self.config.num_return_sequences ) num_beams = num_beams if num_beams is not None else self.config.num_beams assert ( input_ids is not None or context_input_ids is not None ), " At least one of input_ids or context_input_ids must be given" if self.retriever is not None and context_input_ids is None: question_hidden_states = self.question_encoder(input_ids, attention_mask=attention_mask)[0] context_input_ids = self.retriever( input_ids, question_hidden_states.numpy(), prefix=self.generator.config.prefix, n_docs=n_docs, return_tensors="tf", )["context_input_ids"] hypos = [] model_kwargs["num_beams"] = num_beams model_kwargs["num_return_sequences"] = num_beams # put here so that not confused with num_doc_return_sequences model_kwargs["attention_mask"] = None batch_size = input_ids.shape[0] if input_ids is not None else context_input_ids.shape[0] // n_docs for index in range(batch_size): # first, generate beams from documents: generator_input_ids = context_input_ids[index * n_docs : (index + 1) * n_docs] # (n_docs, max_len) output_sequences = self.generator.generate( generator_input_ids, **model_kwargs, ) # n_docs * n_beam, tgt_len if do_deduplication: # do_deduplication -- for TF, work on Eager mode only! output_sequences = tf.stack(list({str(k.numpy().tolist()): k for k in output_sequences}.values())) num_candidates = output_sequences.shape[ 0 ] # after deduplication, this number can be less than n_docs*n_beam # then, run model forwards to get nll scores: if input_ids is not None: new_input_ids = tf.tile(input_ids[index : index + 1], (num_candidates, 1)) outputs = self(new_input_ids, labels=output_sequences, exclude_bos_score=True) else: # input_ids is None, need context_input_ids/mask and doc_scores assert context_attention_mask is not None, ( "Make sure that `context_attention_mask` are passed, if no `input_ids` is set. Alternatively, you" " can set a retriever using the `set_retriever(...)` function." ) assert doc_scores is not None, ( "Make sure that `doc_scores` are passed, if no `input_ids` is set. Alternatively, you can set a" " retriever using the `set_retriever(...)` function." ) individual_input_ids = tf.tile( generator_input_ids, (num_candidates, 1) ) # (num_candidates*n_docs, max_len) individual_attention_mask = context_attention_mask[index * n_docs : (index + 1) * n_docs] individual_attention_mask = tf.tile(individual_attention_mask, (num_candidates, 1)) individual_doc_scores = doc_scores[index : (index + 1), :] # doc_scores.shape = [batch, n_docs] individual_doc_scores = tf.tile(individual_doc_scores, (num_candidates, 1)) # [num_candidates, n_docs] outputs = self( input_ids=None, context_input_ids=individual_input_ids, context_attention_mask=individual_attention_mask, doc_scores=individual_doc_scores, labels=output_sequences, exclude_bos_score=True, ) top_cand_inds = tf.math.top_k((-outputs["loss"]), k=num_doc_return_sequences)[1] # add hypothesis hypos.append(tf.gather(output_sequences, top_cand_inds)) return self._cat_and_pad(hypos, pad_token_id=self.config.generator.pad_token_id) @staticmethod def _cat_and_pad(tensors, pad_token_id): # used by generate(): tensors is a (batched) list of (candidates, len); len is varied across batch # Initialize padded tensor with shape ( all_candidates , max_candidate_length ), # where all_candidates counted from all inputs new_shape = sum([t.shape[0] for t in tensors]), max([t.shape[1] for t in tensors]) output = tf.fill(new_shape, pad_token_id) # Normal tensor doesn't support slice assignment, so we need tf.Variable output = tf.Variable(output) # Assign, and then convert back to tensor ind = 0 for t in tensors: output[ind : ind + t.shape[0], : t.shape[1]].assign(t) ind += t.shape[0] output = tf.convert_to_tensor(output) return tf.cast(output, tensors[0][0][0].dtype) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "rag", None) is not None: with tf.name_scope(self.rag.name): self.rag.build(None)
transformers/src/transformers/models/rag/modeling_tf_rag.py/0
{ "file_path": "transformers/src/transformers/models/rag/modeling_tf_rag.py", "repo_id": "transformers", "token_count": 38079 }
574
# coding=utf-8 # Copyright 2020 The Trax Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch REFORMER model.""" import sys from collections import namedtuple from dataclasses import dataclass from functools import reduce from operator import mul from typing import List, Optional, Tuple, Union import numpy as np import torch from torch import nn from torch.autograd.function import Function from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import CausalLMOutput, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import apply_chunking_to_forward from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, ModelOutput, add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_reformer import ReformerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/reformer-crime-and-punishment" _CONFIG_FOR_DOC = "ReformerConfig" # Define named tuples for nn.Modules here LSHSelfAttentionOutput = namedtuple("LSHSelfAttentionOutput", ["hidden_states", "attention_probs", "buckets"]) LocalSelfAttentionOutput = namedtuple("LocalSelfAttentionOutput", ["hidden_states", "attention_probs"]) AttentionOutput = namedtuple("AttentionOutput", ["hidden_states", "attention_probs", "buckets"]) ReformerOutput = namedtuple("ReformerOutput", ["hidden_states", "attn_output", "attention_probs", "buckets"]) ReformerBackwardOutput = namedtuple( "ReformerBackwardOutput", ["attn_output", "hidden_states", "grad_attn_output", "grad_hidden_states"] ) ReformerEncoderOutput = namedtuple( "ReformerEncoderOutput", ["hidden_states", "all_hidden_states", "all_attentions", "past_buckets_states"], ) def _stable_argsort(vector, dim): # this function scales the vector so that torch.argsort is stable. # torch.argsort is not stable on its own scale_offset = torch.arange(vector.shape[dim], device=vector.device).view(1, 1, -1) scale_offset = scale_offset.expand(vector.shape) scaled_vector = vector.shape[dim] * vector + (scale_offset % vector.shape[dim]) return torch.argsort(scaled_vector, dim=dim) def _get_least_common_mult_chunk_len(config): attn_types = config.attn_layers attn_types_set = set(attn_types) if len(attn_types_set) == 1 and attn_types[0] == "lsh": return config.lsh_attn_chunk_length elif len(attn_types_set) == 1 and attn_types[0] == "local": return config.local_attn_chunk_length elif len(attn_types_set) == 2 and attn_types_set == {"lsh", "local"}: return np.lcm(config.lsh_attn_chunk_length, config.local_attn_chunk_length) else: raise NotImplementedError( f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select " "attn layer types from ['lsh', 'local'] only." ) def _get_min_chunk_len(config): attn_types = config.attn_layers attn_types_set = set(attn_types) if len(attn_types_set) == 1 and attn_types[0] == "lsh": return config.lsh_attn_chunk_length elif len(attn_types_set) == 1 and attn_types[0] == "local": return config.local_attn_chunk_length elif len(attn_types_set) == 2 and attn_types_set == {"lsh", "local"}: return min(config.lsh_attn_chunk_length, config.local_attn_chunk_length) else: raise NotImplementedError( f"Only attn layer types 'lsh' and 'local' exist, but `config.attn_layers`: {config.attn_layers}. Select " "attn layer types from ['lsh', 'local'] only." ) class AxialPositionEmbeddings(nn.Module): """ Constructs axial position embeddings. Useful for very long input sequences to save memory and time. """ def __init__(self, config): super().__init__() self.axial_pos_shape = config.axial_pos_shape self.axial_pos_embds_dim = config.axial_pos_embds_dim self.dropout = config.hidden_dropout_prob self.least_common_mult_chunk_length = _get_least_common_mult_chunk_len(config) self.weights = nn.ParameterList() if sum(self.axial_pos_embds_dim) != config.hidden_size: raise ValueError( f"Make sure that config.axial_pos_embds factors: {self.axial_pos_embds_dim} sum to " f"config.hidden_size: {config.hidden_size}" ) # create weights for axis, axial_pos_embd_dim in enumerate(self.axial_pos_embds_dim): # create expanded shapes ax_shape = [1] * len(self.axial_pos_shape) ax_shape[axis] = self.axial_pos_shape[axis] ax_shape = tuple(ax_shape) + (axial_pos_embd_dim,) # create tensor and init self.weights.append(nn.Parameter(torch.ones(ax_shape, dtype=torch.float32))) def forward(self, position_ids): # broadcast weights to correct shape batch_size = position_ids.shape[0] sequence_length = position_ids.shape[1] broadcasted_weights = [ weight.expand((batch_size,) + self.axial_pos_shape + weight.shape[-1:]) for weight in self.weights ] if self.training is True: if reduce(mul, self.axial_pos_shape) != sequence_length: raise ValueError( f"If training, make sure that config.axial_pos_shape factors: {self.axial_pos_shape} multiply to " f"sequence length. Got prod({self.axial_pos_shape}) != sequence_length: {sequence_length}. " f"You might want to consider padding your sequence length to {reduce(mul, self.axial_pos_shape)} " "or changing config.axial_pos_shape." ) if self.dropout > 0: weights = torch.cat(broadcasted_weights, dim=-1) # permute weights so that 2D correctly drops dims 1 and 2 transposed_weights = weights.transpose(2, 1) # drop entire matrix of last two dims (prev dims 1 and 2) dropped_transposed_weights = nn.functional.dropout2d( transposed_weights, p=self.dropout, training=self.training ) dropped_weights = dropped_transposed_weights.transpose(2, 1) position_encodings = torch.reshape(dropped_weights, (batch_size, sequence_length, -1)) else: position_encodings = torch.cat( [torch.reshape(weight, (batch_size, sequence_length, -1)) for weight in broadcasted_weights], dim=-1, ) else: if reduce(mul, self.axial_pos_shape) < sequence_length: raise ValueError( f"Make sure that config.axial_pos_shape factors: {self.axial_pos_shape} multiply at least to " f"max(sequence_length, least_common_mult_chunk_length): max({sequence_length}, " f"{self.least_common_mult_chunk_length})." ) # compute how many columns are needed max_position_id = position_ids.max().item() required_pos_encodings_columns = -(-(max_position_id + 1) // self.axial_pos_shape[1]) # cut to columns that are needed position_encodings = torch.cat( [weight[:, :required_pos_encodings_columns] for weight in broadcasted_weights], dim=-1 ) position_encodings = torch.reshape(position_encodings, (batch_size, -1, position_encodings.shape[-1])) # select correct position encodings position_encodings = torch.cat( [ torch.index_select(position_encodings[i], 0, position_ids[i]).unsqueeze(0) for i in range(batch_size) ], dim=0, ) return position_encodings class PositionEmbeddings(nn.Module): """Constructs conventional position embeddings of shape `[max_pos_embeddings, hidden_size]`.""" def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob self.embedding = nn.Embedding(config.max_position_embeddings, config.hidden_size) def forward(self, position_ids): position_embeddings = self.embedding(position_ids) position_embeddings = nn.functional.dropout(position_embeddings, p=self.dropout, training=self.training) return position_embeddings class ReformerEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() self.max_position_embeddings = config.max_position_embeddings self.dropout = config.hidden_dropout_prob self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) self.position_embeddings = ( AxialPositionEmbeddings(config) if config.axial_pos_embds else PositionEmbeddings(config) ) def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, start_idx_pos_encodings=0): if input_ids is not None: input_shape = input_ids.size() device = input_ids.device else: input_shape = inputs_embeds.size()[:-1] device = inputs_embeds.device seq_length = input_shape[1] if position_ids is None: position_ids = torch.arange( start_idx_pos_encodings, start_idx_pos_encodings + seq_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).expand(input_shape) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if position_ids.shape[-1] > self.max_position_embeddings: raise ValueError( f"Sequence Length: {position_ids.shape[-1]} has to be less or equal than " f"config.max_position_embeddings {self.max_position_embeddings}." ) # dropout embeddings = nn.functional.dropout(inputs_embeds, p=self.dropout, training=self.training) # add positional embeddings position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings return embeddings class EfficientAttentionMixin: """ A few utilities for nn.Modules in Reformer, to be used as a mixin. """ def _look_adjacent(self, vectors, num_chunks_before, num_chunks_after): """ Used to implement attention between consecutive chunks. Args: vectors: array of shape [batch_size, num_attention_heads, n_chunks, chunk_len, ...] num_chunks_before: chunks before current chunk to include in attention num_chunks_after: chunks after current chunk to include in attention Returns: tensor of shape [num_chunks, N * chunk_length, ...], where N = (1 + num_chunks_before + num_chunks_after). """ if num_chunks_before == 0 and num_chunks_after == 0: return vectors slices = [] for i in range(-num_chunks_before, num_chunks_after + 1): if i == 0: slices.append(vectors) else: slices.append(torch.cat([vectors[:, :, i:, ...], vectors[:, :, :i, ...]], dim=2)) return torch.cat(slices, dim=3) def _split_hidden_size_dim(self, x, num_attn_heads, attn_head_size): """ splits hidden_size dim into attn_head_size and num_attn_heads """ new_x_shape = x.size()[:-1] + (num_attn_heads, attn_head_size) x = x.view(*new_x_shape) return x.transpose(2, 1) def _merge_hidden_size_dims(self, x, num_attn_heads, attn_head_size): """ merges attn_head_size dim and num_attn_heads dim into hidden_size """ x = x.permute(0, 2, 1, 3) return torch.reshape(x, (x.size()[0], -1, num_attn_heads * attn_head_size)) def _split_seq_length_dim_to(self, vectors, dim_factor_1, dim_factor_2, num_attn_heads, attn_head_size=None): """ splits sequence length dim of vectors into `dim_factor_1` and `dim_factor_2` dims """ batch_size = vectors.shape[0] split_dim_shape = (batch_size, num_attn_heads, dim_factor_1, dim_factor_2) if len(vectors.shape) == 4: return torch.reshape(vectors, split_dim_shape + (attn_head_size,)) elif len(vectors.shape) == 3: return torch.reshape(vectors, split_dim_shape) else: raise ValueError(f"Input vector rank should be one of [3, 4], but is: {len(vectors.shape)}") class LSHSelfAttention(nn.Module, EfficientAttentionMixin): def __init__(self, config): super().__init__() self.config = config self.chunk_length = config.lsh_attn_chunk_length self.num_hashes = config.num_hashes self.num_buckets = config.num_buckets self.num_chunks_before = config.lsh_num_chunks_before self.num_chunks_after = config.lsh_num_chunks_after self.hash_seed = config.hash_seed self.is_decoder = config.is_decoder self.max_position_embeddings = config.max_position_embeddings self.dropout = config.lsh_attention_probs_dropout_prob self.num_attention_heads = config.num_attention_heads self.attention_head_size = config.attention_head_size self.all_head_size = self.num_attention_heads * self.attention_head_size self.hidden_size = config.hidden_size # projection matrices self.query_key = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False) # save mask value here. Need fp32 and fp16 mask values self.register_buffer("self_mask_value_float16", torch.tensor(-1e3), persistent=False) self.register_buffer("self_mask_value_float32", torch.tensor(-1e5), persistent=False) self.register_buffer("mask_value_float16", torch.tensor(-1e4), persistent=False) self.register_buffer("mask_value_float32", torch.tensor(-1e9), persistent=False) def forward( self, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, buckets=None, past_buckets_states=None, use_cache=False, output_attentions=False, **kwargs, ): sequence_length = hidden_states.shape[1] batch_size = hidden_states.shape[0] # num hashes can optionally be overwritten by user num_hashes = num_hashes if num_hashes is not None else self.num_hashes do_cached_attention = use_cache and past_buckets_states[1] is not None # check if cache shall be used and that hidden states are already cached if do_cached_attention: assert sequence_length == 1, ( "At the moment, auto-regressive language generation is only possible one word at a time. Make sure" f" that input sequence length {sequence_length} equals 1, when `past_buckets_states` is passed." ) past_buckets = past_buckets_states[0] past_states = past_buckets_states[1] # get query vector query_vectors = self.query_key(hidden_states) query_vectors = self._split_hidden_size_dim( query_vectors, self.num_attention_heads, self.attention_head_size ) if past_buckets is not None: key_value_hidden_states, sorted_bucket_idx, buckets = self._get_relevant_hid_states_and_buckets( query_vectors=query_vectors, attention_mask=attention_mask, num_hashes=num_hashes, hidden_states=hidden_states, past_states=past_states, past_buckets=past_buckets, ) query_key_vectors = self._query_per_attn_head(key_value_hidden_states) value_vectors = self._value_per_attn_head(key_value_hidden_states) # split key & value vectors by num hashes to apply # self attention on each separately query_key_vectors = self._split_seq_length_dim_to( query_key_vectors, num_hashes, -1, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, num_hashes, -1, self.num_attention_heads, self.attention_head_size, ) # repeat query vectors across hash dimension query_vectors = query_vectors.unsqueeze(2).repeat(1, 1, num_hashes, 1, 1) else: key_value_hidden_states = torch.cat([past_states, hidden_states], dim=1) query_key_vectors = self.query_key(key_value_hidden_states) value_vectors = self.value(key_value_hidden_states) else: # project hidden_states to query_key and value query_vectors = None query_key_vectors = self.query_key(hidden_states) value_vectors = self.value(hidden_states) # if query key is not already split if not do_cached_attention or past_buckets is None: query_key_vectors = self._split_hidden_size_dim( query_key_vectors, self.num_attention_heads, self.attention_head_size ) value_vectors = self._split_hidden_size_dim( value_vectors, self.num_attention_heads, self.attention_head_size ) # cache buckets for next incremental decoding if do_cached_attention and past_buckets is None and key_value_hidden_states.shape[1] >= self.chunk_length: buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask) # free memory del hidden_states assert ( query_key_vectors.shape[-1] == self.attention_head_size ), f"last dim of query_key_vectors is {query_key_vectors.shape[-1]} but should be {self.attention_head_size}." assert ( value_vectors.shape[-1] == self.attention_head_size ), f"last dim of value_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}." do_standard_self_attention = (sequence_length <= self.chunk_length) or ( use_cache and past_buckets_states[1] is not None ) # LSH attention only makes sense if chunked attention should be performed if not do_standard_self_attention: # set `num_buckets` on the fly, recommended way to do it if self.num_buckets is None: self._set_num_buckets(sequence_length) # use cached buckets for backprop only if buckets is None: # hash query key vectors into buckets buckets = self._hash_vectors(query_key_vectors, num_hashes, attention_mask) else: # make sure buckets has correct shape for LSH attention buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes * sequence_length) assert ( int(buckets.shape[-1]) == num_hashes * sequence_length ), f"last dim of buckets is {buckets.shape[-1]}, but should be {num_hashes * sequence_length}" sorted_bucket_idx, undo_sorted_bucket_idx = self._get_sorted_bucket_idx_and_undo_sorted_bucket_idx( sequence_length, buckets, num_hashes ) # make sure bucket idx is not longer then sequence length sorted_bucket_idx_per_hash = sorted_bucket_idx % sequence_length # cluster query key value vectors according to hashed buckets query_key_vectors = self._gather_by_expansion(query_key_vectors, sorted_bucket_idx_per_hash, num_hashes) value_vectors = self._gather_by_expansion(value_vectors, sorted_bucket_idx_per_hash, num_hashes) query_key_vectors = self._split_seq_length_dim_to( query_key_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) if self.chunk_length is None: assert self.num_chunks_before == 0 and self.num_chunks_after == 0, ( "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and" " `config.num_chunks_before` are set to 0." ) elif do_cached_attention and past_buckets is not None: # use max sequence length sorted_bucket_idx_per_hash = sorted_bucket_idx else: # get sequence length indices sorted_bucket_idx_per_hash = torch.arange(sequence_length, device=query_key_vectors.device).repeat( batch_size, self.num_attention_heads, 1 ) # scale key vectors sqrt_num = np.sqrt(self.attention_head_size) key_vectors = self._len_and_dim_norm(query_key_vectors, sqrt_num) # set query_vectors to query key vectors if LSH self attention query_vectors = query_vectors if query_vectors is not None else query_key_vectors # free memory del query_key_vectors # get attention probs out_vectors, logits, attention_probs = self._attend( query_vectors=query_vectors, key_vectors=key_vectors, value_vectors=value_vectors, sorted_bucket_idx_per_hash=sorted_bucket_idx_per_hash, attention_mask=attention_mask, head_mask=head_mask, do_standard_self_attention=do_standard_self_attention, do_cached_attention=do_cached_attention, ) # free memory del key_vectors, value_vectors # re-order out_vectors and logits if not do_standard_self_attention: # sort clusters back to correct ordering out_vectors, logits = ReverseSort.apply(out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx) if not do_standard_self_attention or (do_cached_attention and past_buckets is not None): # sum up all hash rounds if num_hashes > 1: out_vectors = self._split_seq_length_dim_to( out_vectors, num_hashes, sequence_length, self.num_attention_heads, self.attention_head_size, ) logits = self._split_seq_length_dim_to( logits, num_hashes, sequence_length, self.num_attention_heads, self.attention_head_size, ).unsqueeze(-1) probs_vectors = torch.exp(logits - torch.logsumexp(logits, dim=2, keepdim=True)) out_vectors = torch.sum(out_vectors * probs_vectors, dim=2) # free memory del probs_vectors # free memory del logits assert out_vectors.shape == ( batch_size, self.num_attention_heads, sequence_length, self.attention_head_size, ), ( "out_vectors have be of shape `[batch_size, config.num_attention_heads, sequence_length," " config.attention_head_size]`." ) out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size) if output_attentions is False: attention_probs = () if buckets is not None: buckets = buckets.view(batch_size, self.num_attention_heads, num_hashes, -1) return LSHSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs, buckets=buckets) def _query_per_attn_head(self, hidden_states): per_head_query_key = self.query_key.weight.reshape( self.num_attention_heads, self.attention_head_size, self.hidden_size ).transpose(-2, -1) # only relevant for inference and no bias => we can use einsum here query_key_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_query_key) return query_key_vectors def _value_per_attn_head(self, hidden_states): per_head_value = self.value.weight.reshape( self.num_attention_heads, self.attention_head_size, self.hidden_size ).transpose(-2, -1) # only relevant for inference and no bias => we can use einsum here value_vectors = torch.einsum("balh,ahr->balr", hidden_states, per_head_value) return value_vectors def _hash_vectors(self, vectors, num_hashes, attention_mask, increase_num_buckets=False): batch_size = vectors.shape[0] # See https://arxiv.org/pdf/1509.02897.pdf # We sample a different random rotation for each round of hashing to # decrease the probability of hash misses. if isinstance(self.num_buckets, int): assert ( self.num_buckets % 2 == 0 ), f"There should be an even number of buckets, but `self.num_buckets`: {self.num_buckets}" rotation_size = self.num_buckets num_buckets = self.num_buckets else: # Factorize the hash if self.num_buckets is a list or tuple rotation_size, num_buckets = 0, 1 for bucket_factor in self.num_buckets: assert ( bucket_factor % 2 == 0 ), f"The number of buckets should be even, but `num_bucket`: {bucket_factor}" rotation_size = rotation_size + bucket_factor num_buckets = num_buckets * bucket_factor # remove gradient vectors = vectors.detach() if self.hash_seed is not None: # for determinism torch.manual_seed(self.hash_seed) rotations_shape = (self.num_attention_heads, vectors.shape[-1], num_hashes, rotation_size // 2) # create a random self.attention_head_size x num_hashes x num_buckets/2 random_rotations = torch.randn(rotations_shape, device=vectors.device, dtype=vectors.dtype) # Output dim: Batch_Size x Num_Attn_Heads x Num_Hashes x Seq_Len x Num_Buckets/2 rotated_vectors = torch.einsum("bmtd,mdhr->bmhtr", vectors, random_rotations) if isinstance(self.num_buckets, int) or len(self.num_buckets) == 1: rotated_vectors = torch.cat([rotated_vectors, -rotated_vectors], dim=-1) buckets = torch.argmax(rotated_vectors, dim=-1) else: # Get the buckets for them and combine. buckets, cur_sum, cur_product = None, 0, 1 for bucket_factor in self.num_buckets: rotated_vectors_factor = rotated_vectors[..., cur_sum : cur_sum + (bucket_factor // 2)] cur_sum = cur_sum + bucket_factor // 2 rotated_vectors_factor = torch.cat([rotated_vectors_factor, -rotated_vectors_factor], dim=-1) if buckets is None: buckets = torch.argmax(rotated_vectors_factor, dim=-1) else: buckets = buckets + (cur_product * torch.argmax(rotated_vectors_factor, dim=-1)) cur_product = cur_product * bucket_factor if attention_mask is not None and (attention_mask.sum().item() < batch_size * attention_mask.shape[-1]): # add an extra bucket for padding tokens only num_buckets = num_buckets + 1 # assign padding tokens extra bucket buckets_mask = attention_mask.to(torch.bool)[:, None, None, :].expand(buckets.shape) buckets = torch.where( buckets_mask, buckets, torch.tensor(num_buckets - 1, dtype=torch.long, device=buckets.device) ) elif increase_num_buckets: num_buckets = num_buckets + 1 # buckets is now (Batch_size x Num_Attn_Heads x Num_Hashes x Seq_Len). # Next we add offsets so that bucket numbers from different hashing rounds don't overlap. offsets = torch.arange(num_hashes, device=vectors.device) offsets = (offsets * num_buckets).view((1, 1, -1, 1)) # expand to batch size and num attention heads offsets = offsets.expand((batch_size, self.num_attention_heads) + offsets.shape[-2:]) offset_buckets = (buckets + offsets).flatten(start_dim=2, end_dim=3) return offset_buckets def _get_sorted_bucket_idx_and_undo_sorted_bucket_idx(self, sequence_length, buckets, num_hashes): # no gradients are needed with torch.no_grad(): # hash-based sort sorted_bucket_idx = _stable_argsort(buckets, dim=-1) # create simple indices to scatter to, to have undo sort indices = ( torch.arange(sorted_bucket_idx.shape[-1], device=buckets.device) .view(1, 1, -1) .expand(sorted_bucket_idx.shape) ) # get undo sort undo_sorted_bucket_idx = sorted_bucket_idx.new(*sorted_bucket_idx.size()) undo_sorted_bucket_idx.scatter_(-1, sorted_bucket_idx, indices) return sorted_bucket_idx, undo_sorted_bucket_idx def _set_num_buckets(self, sequence_length): # `num_buckets` should be set to 2 * sequence_length // chunk_length as recommended in paper num_buckets_pow_2 = (2 * (sequence_length // self.chunk_length)).bit_length() - 1 # make sure buckets are power of 2 num_buckets = 2**num_buckets_pow_2 # factorize `num_buckets` if `num_buckets` becomes too large num_buckets_limit = 2 * max( int((self.max_position_embeddings // self.chunk_length) ** (0.5)), self.chunk_length, ) if num_buckets > num_buckets_limit: num_buckets = [2 ** (num_buckets_pow_2 // 2), 2 ** (num_buckets_pow_2 - num_buckets_pow_2 // 2)] logger.warning(f"config.num_buckets is not set. Setting config.num_buckets to {num_buckets}...") # set num buckets in config to be properly saved self.config.num_buckets = num_buckets self.num_buckets = num_buckets def _attend( self, query_vectors, key_vectors, value_vectors, sorted_bucket_idx_per_hash, attention_mask, head_mask, do_standard_self_attention, do_cached_attention, ): # look at previous and following chunks if chunked attention if not do_standard_self_attention: key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after) value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after) # get logits and dots # (BS, NumAttn, NumHash x NumChunk, Chunk_L x Hidden),(BS, NumAttn, NumHash x NumChunk, Chunk_L * (Num_bef + Num_aft + 1) x Hidden) -> (BS, NumAttn, NumHash x NumChunk, Chunk_L, Chunk_L * (1 + Num_bef + Num_aft)) query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2)) # free memory del query_vectors, key_vectors # if chunked attention split bucket idxs to query and key if not do_standard_self_attention: query_bucket_idx = self._split_seq_length_dim_to( sorted_bucket_idx_per_hash, -1, self.chunk_length, self.num_attention_heads ) key_value_bucket_idx = self._look_adjacent(query_bucket_idx, self.num_chunks_before, self.num_chunks_after) elif do_cached_attention and query_key_dots.ndim > 4: key_value_bucket_idx = sorted_bucket_idx_per_hash query_bucket_idx = ( key_value_bucket_idx.new_ones(key_value_bucket_idx.shape[:-1] + (1,)) * key_value_bucket_idx.max() ) elif do_cached_attention and query_key_dots.ndim <= 4: query_bucket_idx = (query_key_dots.shape[-1] - 1) * torch.ones_like(query_key_dots)[:, :, :, -1] key_value_bucket_idx = torch.arange( query_key_dots.shape[-1], dtype=torch.long, device=query_key_dots.device )[None, None, :].expand(query_bucket_idx.shape[:2] + (-1,)) else: query_bucket_idx = key_value_bucket_idx = sorted_bucket_idx_per_hash # get correct mask values depending on precision if query_key_dots.dtype == torch.float16: self_mask_value = self.self_mask_value_float16.half() mask_value = self.mask_value_float16.half() else: self_mask_value = self.self_mask_value_float32 mask_value = self.mask_value_float32 if not do_cached_attention: mask = self._compute_attn_mask( query_bucket_idx, key_value_bucket_idx, attention_mask, query_key_dots.shape, do_standard_self_attention, ) if mask is not None: query_key_dots = torch.where(mask, query_key_dots, mask_value) # free memory del mask # Self mask is ALWAYS applied. # From the reformer paper (https://arxiv.org/pdf/2001.04451.pdf): # " While attention to the future is not allowed, typical implementations of the # Transformer do allow a position to attend to itself. # Such behavior is undesirable in a shared-QK formulation because the dot-product # of a query vector with itself will almost always be greater than the dot product of a # query vector with a vector at another position. We therefore modify the masking # to forbid a token from attending to itself, except in situations # where a token has no other valid attention targets (e.g. the first token in a sequence) " self_mask = torch.ne(query_bucket_idx.unsqueeze(-1), key_value_bucket_idx.unsqueeze(-2)).to( query_bucket_idx.device ) # apply self_mask query_key_dots = torch.where(self_mask, query_key_dots, self_mask_value) # free memory del self_mask logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True) # dots shape is `[batch_size, num_attn_heads, num_hashes * seq_len // chunk_length, chunk_length, chunk_length * (1 + num_chunks_before + num_chunks_after)]` attention_probs = torch.exp(query_key_dots - logits) # free memory del query_key_dots # dropout attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask # attend values out_vectors = torch.matmul(attention_probs, value_vectors) # free memory del value_vectors # merge chunk length if out_vectors.ndim > 4: logits = logits.flatten(start_dim=2, end_dim=3).squeeze(-1) out_vectors = out_vectors.flatten(start_dim=2, end_dim=3) return out_vectors, logits, attention_probs def _compute_attn_mask( self, query_indices, key_indices, attention_mask, query_key_dot_shape, do_standard_self_attention ): # attention mask for LSH if attention_mask is not None: # if chunked attention, the attention mask has to correspond to LSH order attention_mask = attention_mask.to(torch.bool)[:, None, :] if not do_standard_self_attention: # expand attn_mask to fit with key_value_bucket_idx shape attention_mask = attention_mask[:, None, :] attention_mask = attention_mask.expand(query_indices.shape[:-1] + (-1,)) # extract attention mask from LSH sorted key_indices attention_mask = torch.gather(attention_mask, -1, key_indices) attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dot_shape) # Causal mask if self.is_decoder is True: causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device) # add attention mask if not None if attention_mask is not None: attention_mask = causal_mask * attention_mask else: attention_mask = causal_mask return attention_mask def _get_relevant_hid_states_and_buckets( self, query_vectors, attention_mask, num_hashes, hidden_states, past_states, past_buckets ): # concat hidden states hidden_states = torch.cat([past_states, hidden_states], dim=1) # batch_size hidden batch_size = hidden_states.shape[0] sequence_length = hidden_states.shape[1] # check if cached buckets include pad bucket max_bucket = self.num_buckets if isinstance(self.num_buckets, int) else reduce(mul, self.num_buckets) # if pad bucket was cached => need to increase num buckets for caching increase_num_buckets = past_buckets.max() > num_hashes * max_bucket - 1 # retrieve query buckets query_buckets = self._hash_vectors( query_vectors, num_hashes, attention_mask, increase_num_buckets=increase_num_buckets ) # concat buckets concat_buckets = torch.cat([past_buckets, query_buckets.unsqueeze(-1)], dim=-1) # hash-based sort bucket_idx = _stable_argsort(concat_buckets, dim=-1) # bucket_idx has shape: BatchSize x NumAttnHeads x NumHashes x SequenceLength assert bucket_idx.shape == ( batch_size, self.num_attention_heads, num_hashes, sequence_length, ), ( f"bucket_idx should have shape {(batch_size, self.num_attention_heads, num_hashes, sequence_length)}, but" f" has shape {bucket_idx.shape}." ) # find indices of new bucket indices relevant_bucket_idx = (bucket_idx == (bucket_idx.shape[-1] - 1)).nonzero() # expand relevant bucket indices to its chunks relevant_bucket_idx_chunk = self._expand_to_indices_in_relevant_chunk(relevant_bucket_idx, sequence_length) relevant_bucket_idx_chunk = bucket_idx[tuple(relevant_bucket_idx_chunk.transpose(0, 1))] # adapt bucket_idx for batch and hidden states for index select offset = torch.arange(relevant_bucket_idx_chunk.shape[-1], device=hidden_states.device, dtype=torch.long) bucket_idx_batch_offset = sequence_length * ( batch_size * torch.div(offset, relevant_bucket_idx_chunk.shape[-1], rounding_mode="floor") ) # add batch offset relevant_bucket_idx_chunk_all_batch = relevant_bucket_idx_chunk + bucket_idx_batch_offset hidden_states = hidden_states.reshape((-1, self.hidden_size)) # select all relevant hidden states relevant_hidden_states = hidden_states.index_select(0, relevant_bucket_idx_chunk_all_batch) # reshape hidden states and bucket_idx to correct output relevant_hidden_states = relevant_hidden_states.reshape( batch_size, self.num_attention_heads, -1, self.hidden_size ) relevant_bucket_idx_chunk = relevant_bucket_idx_chunk.reshape( batch_size, self.num_attention_heads, num_hashes, -1 ) assert ( relevant_hidden_states.shape[2] == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes ), ( "There should be" f" {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length * num_hashes} `hidden_states`," f" there are {relevant_hidden_states.shape[2]} `hidden_states`." ) assert ( relevant_bucket_idx_chunk.shape[-1] == (self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length ), ( "There should be" f" {(self.num_chunks_before + self.num_chunks_after + 1) * self.chunk_length} `hidden_states`, there are" f" {relevant_bucket_idx_chunk.shape[-1]} `bucket_idx`." ) return relevant_hidden_states, relevant_bucket_idx_chunk, query_buckets def _expand_to_indices_in_relevant_chunk(self, indices, sequence_length): # get relevant indices of where chunk starts and its size start_indices_chunk = ((indices[:, -1] // self.chunk_length) - self.num_chunks_before) * self.chunk_length total_chunk_size = self.chunk_length * (1 + self.num_chunks_before + self.num_chunks_after) # expand start indices and add correct chunk offset via arange expanded_start_indices = start_indices_chunk.unsqueeze(-1).expand(indices.shape[0], total_chunk_size) chunk_sequence_indices = expanded_start_indices + torch.arange( total_chunk_size, device=indices.device, dtype=torch.long ).unsqueeze(0).expand(indices.shape[0], total_chunk_size) # make sure that circular logic holds via % seq len chunk_sequence_indices = chunk_sequence_indices.flatten() % sequence_length # expand indices and set indices correctly indices = indices.unsqueeze(1).expand((indices.shape[0], total_chunk_size, -1)).flatten(0, 1).clone() indices[:, -1] = chunk_sequence_indices return indices def _len_and_dim_norm(self, vectors, sqrt_num): """ length and attention head size dim normalization """ vectors = self._len_norm(vectors) vectors = vectors / sqrt_num return vectors def _len_norm(self, x, epsilon=1e-6): """ length normalization """ variance = torch.mean(x**2, -1, keepdim=True) norm_x = x * torch.rsqrt(variance + epsilon) return norm_x def _gather_by_expansion(self, vectors, idxs, num_hashes): """ expand dims of idxs and vectors for all hashes and gather """ expanded_idxs = idxs.unsqueeze(-1).expand(-1, -1, -1, self.attention_head_size) vectors = vectors.repeat(1, 1, num_hashes, 1) return torch.gather(vectors, 2, expanded_idxs) class ReverseSort(Function): """ After chunked attention is applied which sorted clusters, original ordering has to be restored. Since customized backward function is used for Reformer, the gradients of the output vectors have to be explicitly sorted here. """ @staticmethod def forward(ctx, out_vectors, logits, sorted_bucket_idx, undo_sorted_bucket_idx): # save sorted_bucket_idx for backprop with torch.no_grad(): ctx.sorted_bucket_idx = sorted_bucket_idx # undo sort to have correct order for next layer expanded_undo_sort_indices = undo_sorted_bucket_idx.unsqueeze(-1).expand(out_vectors.shape) out_vectors = torch.gather(out_vectors, 2, expanded_undo_sort_indices) logits = torch.gather(logits, 2, undo_sorted_bucket_idx) return out_vectors, logits @staticmethod def backward(ctx, grad_out_vectors, grad_logits): # get parameters saved in ctx sorted_bucket_idx = ctx.sorted_bucket_idx expanded_sort_indices = sorted_bucket_idx.unsqueeze(-1).expand(grad_out_vectors.shape) # reverse sort of forward grad_out_vectors = torch.gather(grad_out_vectors, 2, expanded_sort_indices) grad_logits = torch.gather(grad_logits, 2, sorted_bucket_idx) # return grad and `None` fillers for last 2 forward args return grad_out_vectors, grad_logits, None, None class LocalSelfAttention(nn.Module, EfficientAttentionMixin): def __init__(self, config): super().__init__() self.num_attention_heads = config.num_attention_heads self.chunk_length = config.local_attn_chunk_length self.num_chunks_before = config.local_num_chunks_before self.num_chunks_after = config.local_num_chunks_after self.is_decoder = config.is_decoder self.pad_token_id = config.pad_token_id self.attention_head_size = config.attention_head_size self.all_head_size = self.num_attention_heads * self.attention_head_size self.hidden_size = config.hidden_size # projection matrices self.query = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.key = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.value = nn.Linear(self.hidden_size, self.all_head_size, bias=False) self.dropout = config.local_attention_probs_dropout_prob # save mask value here self.register_buffer("mask_value_float16", torch.tensor(-1e4), persistent=False) self.register_buffer("mask_value_float32", torch.tensor(-1e9), persistent=False) def forward( self, hidden_states, attention_mask=None, head_mask=None, past_buckets_states=None, use_cache=False, output_attentions=False, **kwargs, ): sequence_length = hidden_states.shape[1] batch_size = hidden_states.shape[0] # check if cache shall be used and that hidden states are already cached if use_cache and past_buckets_states[1] is not None: assert past_buckets_states[0] is None, ( "LocalSelfAttention should not make use of `buckets`. There seems to be an error when caching" " hidden_states_and_buckets." ) key_value_hidden_states = self._retrieve_relevant_hidden_states( past_buckets_states[1], self.chunk_length, self.num_chunks_before ) key_value_hidden_states = torch.cat([key_value_hidden_states, hidden_states], dim=1) # only query vector for last token query_vectors = self.query(hidden_states) # compute key and value for relevant chunk key_vectors = self.key(key_value_hidden_states) value_vectors = self.value(key_value_hidden_states) # free memory del key_value_hidden_states else: # project hidden_states to query, key and value query_vectors = self.query(hidden_states) key_vectors = self.key(hidden_states) value_vectors = self.value(hidden_states) # split last dim into `config.num_attention_heads` and `config.attention_head_size` query_vectors = self._split_hidden_size_dim(query_vectors, self.num_attention_heads, self.attention_head_size) key_vectors = self._split_hidden_size_dim(key_vectors, self.num_attention_heads, self.attention_head_size) value_vectors = self._split_hidden_size_dim(value_vectors, self.num_attention_heads, self.attention_head_size) assert ( query_vectors.shape[-1] == self.attention_head_size ), f"last dim of query_key_vectors is {query_vectors.shape[-1]} but should be {self.attention_head_size}." assert ( key_vectors.shape[-1] == self.attention_head_size ), f"last dim of query_key_vectors is {key_vectors.shape[-1]} but should be {self.attention_head_size}." assert ( value_vectors.shape[-1] == self.attention_head_size ), f"last dim of query_key_vectors is {value_vectors.shape[-1]} but should be {self.attention_head_size}." if self.chunk_length is None: assert self.num_chunks_before == 0 and self.num_chunks_after == 0, ( "If `config.chunk_length` is `None`, make sure `config.num_chunks_after` and" " `config.num_chunks_before` are set to 0." ) # normalize key vectors key_vectors = key_vectors / np.sqrt(self.attention_head_size) # get sequence length indices indices = torch.arange(sequence_length, device=query_vectors.device).repeat( batch_size, self.num_attention_heads, 1 ) # if one should do normal n^2 self-attention do_standard_self_attention = sequence_length <= self.chunk_length # if input should be chunked if not do_standard_self_attention: # chunk vectors # B x Num_Attn_Head x Seq_Len // chunk_len x chunk_len x attn_head_size query_vectors = self._split_seq_length_dim_to( query_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) key_vectors = self._split_seq_length_dim_to( key_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) value_vectors = self._split_seq_length_dim_to( value_vectors, -1, self.chunk_length, self.num_attention_heads, self.attention_head_size, ) # chunk indices query_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads) key_indices = self._split_seq_length_dim_to(indices, -1, self.chunk_length, self.num_attention_heads) # append chunks before and after key_vectors = self._look_adjacent(key_vectors, self.num_chunks_before, self.num_chunks_after) value_vectors = self._look_adjacent(value_vectors, self.num_chunks_before, self.num_chunks_after) key_indices = self._look_adjacent(key_indices, self.num_chunks_before, self.num_chunks_after) else: query_indices = key_indices = indices # query-key matmul: QK^T query_key_dots = torch.matmul(query_vectors, key_vectors.transpose(-1, -2)) # free memory del query_vectors, key_vectors mask = self._compute_attn_mask( query_indices, key_indices, attention_mask, query_key_dots.shape, do_standard_self_attention ) if mask is not None: # get mask tensor depending on half precision or not if query_key_dots.dtype == torch.float16: mask_value = self.mask_value_float16.half() else: mask_value = self.mask_value_float32 query_key_dots = torch.where(mask, query_key_dots, mask_value) # free memory del mask # softmax logits = torch.logsumexp(query_key_dots, dim=-1, keepdim=True) attention_probs = torch.exp(query_key_dots - logits) # free memory del logits # dropout attention_probs = nn.functional.dropout(attention_probs, p=self.dropout, training=self.training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask # attend values out_vectors = torch.matmul(attention_probs, value_vectors) # free memory del value_vectors # merge chunk length if not do_standard_self_attention: out_vectors = out_vectors.flatten(start_dim=2, end_dim=3) assert out_vectors.shape == ( batch_size, self.num_attention_heads, sequence_length, self.attention_head_size, ) out_vectors = self._merge_hidden_size_dims(out_vectors, self.num_attention_heads, self.attention_head_size) if output_attentions is False: attention_probs = () return LocalSelfAttentionOutput(hidden_states=out_vectors, attention_probs=attention_probs) def _compute_attn_mask( self, query_indices, key_indices, attention_mask, query_key_dots_shape, do_standard_self_attention ): # chunk attention mask and look before and after if attention_mask is not None: attention_mask = attention_mask.to(torch.bool)[:, None, :] if not do_standard_self_attention: attention_mask = self._split_seq_length_dim_to(attention_mask, -1, self.chunk_length, 1) attention_mask = self._look_adjacent(attention_mask, self.num_chunks_before, self.num_chunks_after) # create attn_mask attention_mask = attention_mask.unsqueeze(-2).expand(query_key_dots_shape) # Causal mask if self.is_decoder is True: causal_mask = torch.ge(query_indices.unsqueeze(-1), key_indices.unsqueeze(-2)).to(query_indices.device) # add attention mask if not None if attention_mask is not None: attention_mask = causal_mask * attention_mask else: attention_mask = causal_mask return attention_mask @staticmethod def _retrieve_relevant_hidden_states(previous_hidden_states, chunk_length, num_chunks_before): start_position = ((previous_hidden_states.shape[1] // chunk_length) - num_chunks_before) * chunk_length return previous_hidden_states[:, start_position:] class ReformerSelfOutput(nn.Module): def __init__(self, config): super().__init__() all_head_size = config.num_attention_heads * config.attention_head_size self.dropout = config.hidden_dropout_prob self.dense = nn.Linear(all_head_size, config.hidden_size, bias=False) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states class ReformerAttention(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.layer_id = layer_id self.attn_layers = config.attn_layers self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) if len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "lsh": self.self_attention = LSHSelfAttention(config) elif len(set(self.attn_layers)) == 1 and self.attn_layers[0] == "local": self.self_attention = LocalSelfAttention(config) elif len(set(self.attn_layers)) == 2 and set(self.attn_layers) == {"lsh", "local"}: # get correct attn layers if self.attn_layers[self.layer_id] == "lsh": self.self_attention = LSHSelfAttention(config) else: self.self_attention = LocalSelfAttention(config) else: raise NotImplementedError( f"Only attn layer types 'lsh' and 'local' exist, but got `config.attn_layers`: {self.attn_layers}. " "Select attn layer types from ['lsh', 'local'] only." ) self.output = ReformerSelfOutput(config) def forward( self, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, past_buckets_states=None, use_cache=False, orig_sequence_length=None, output_attentions=False, buckets=None, ): hidden_states = self.layer_norm(hidden_states) # make sure cached hidden states is set to None for backward pass if past_buckets_states is not None: past_buckets_states_layer = past_buckets_states[self.layer_id] else: past_buckets_states_layer = None # use cached buckets for backprob if buckets not None for LSHSelfAttention self_attention_outputs = self.self_attention( hidden_states=hidden_states, head_mask=head_mask, attention_mask=attention_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states_layer, use_cache=use_cache, output_attentions=output_attentions, buckets=buckets, ) # add buckets if necessary if hasattr(self_attention_outputs, "buckets"): buckets = self_attention_outputs.buckets else: buckets = None # cache hidden states for future use if use_cache: if past_buckets_states[self.layer_id][0] is None: # padded input should not be cached past_buckets = ( buckets[:, :, :, :orig_sequence_length] if (buckets is not None and orig_sequence_length > 1) else buckets ) else: past_buckets = torch.cat([past_buckets_states[self.layer_id][0], buckets], dim=-1) if past_buckets_states[self.layer_id][1] is None: # padded input should not be cached past_states = hidden_states[:, :orig_sequence_length] else: past_states = torch.cat([past_buckets_states[self.layer_id][1], hidden_states], dim=1) past_buckets_states[self.layer_id] = (past_buckets, past_states) # compute attention feed forward output attention_output = self.output(self_attention_outputs.hidden_states) return AttentionOutput( hidden_states=attention_output, attention_probs=self_attention_outputs.attention_probs, buckets=buckets, ) class ReformerFeedForwardDense(nn.Module): def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob if isinstance(config.hidden_act, str): self.act_fn = ACT2FN[config.hidden_act] else: self.act_fn = config.hidden_act self.dense = nn.Linear(config.hidden_size, config.feed_forward_size) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = self.act_fn(hidden_states) return hidden_states class ReformerFeedForwardOutput(nn.Module): def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob self.dense = nn.Linear(config.feed_forward_size, config.hidden_size) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return hidden_states class ChunkReformerFeedForward(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense = ReformerFeedForwardDense(config) self.output = ReformerFeedForwardOutput(config) def forward(self, attention_output): return apply_chunking_to_forward( self.forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output, ) def forward_chunk(self, hidden_states): hidden_states = self.layer_norm(hidden_states) hidden_states = self.dense(hidden_states) return self.output(hidden_states) class ReformerLayer(nn.Module): def __init__(self, config, layer_id=0): super().__init__() self.attention = ReformerAttention(config, layer_id) # dropout requires to have the same # seed for forward and backward pass self.attention_seed = None self.feed_forward_seed = None self.feed_forward = ChunkReformerFeedForward(config) def _init_attention_seed(self): """ This function sets a new seed for the attention layer to make dropout deterministic for both forward calls: 1 normal forward call and 1 forward call in backward to recalculate activations. """ # randomize seeds # use cuda generator if available if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0: # GPU device_idx = torch.cuda.current_device() self.attention_seed = torch.cuda.default_generators[device_idx].seed() else: # CPU self.attention_seed = int(torch.seed() % sys.maxsize) torch.manual_seed(self.attention_seed) def _init_feed_forward_seed(self): """ This function sets a new seed for the feed forward layer to make dropout deterministic for both forward calls: 1 normal forward call and 1 forward call in backward to recalculate activations. """ # randomize seeds # use cuda generator if available if hasattr(torch.cuda, "default_generators") and len(torch.cuda.default_generators) > 0: # GPU device_idx = torch.cuda.current_device() self.feed_forward_seed = torch.cuda.default_generators[device_idx].seed() else: # CPU self.feed_forward_seed = int(torch.seed() % sys.maxsize) torch.manual_seed(self.feed_forward_seed) def forward( self, prev_attn_output, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, past_buckets_states=None, use_cache=False, orig_sequence_length=None, output_attentions=False, ): with torch.no_grad(): # every forward pass we sample a different seed # for dropout and save for forward fn in backward pass # to have correct dropout if self.training: self._init_attention_seed() attn_outputs = self.attention( hidden_states=hidden_states, head_mask=head_mask, attention_mask=attention_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, orig_sequence_length=orig_sequence_length, output_attentions=output_attentions, ) attn_output = attn_outputs.hidden_states # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0) # Y_1 = X_1 + f(X_2) attn_output = prev_attn_output + attn_output # free memory del prev_attn_output # every forward pass we sample a different seed # for dropout and save seed for forward fn in backward # to have correct dropout if self.training: self._init_feed_forward_seed() # Y_2 = X_2 + g(Y_1) hidden_states = hidden_states + self.feed_forward(attn_output) return ReformerOutput( attn_output=attn_output, hidden_states=hidden_states, attention_probs=attn_outputs.attention_probs, buckets=attn_outputs.buckets, ) def backward_pass( self, next_attn_output, hidden_states, grad_attn_output, grad_hidden_states, attention_mask=None, head_mask=None, buckets=None, ): # Implements the backward pass for reversible ResNets. # A good blog post on how this works can be found here: # Implementation of RevNet (see Fig. 6 in https://towardsdatascience.com/illustrating-the-reformer-393575ac6ba0) # This code is heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py assert self.training, ( "If you want to train `ReformerModel` and its variations, make sure to use `model.train()` to put the" " model into training mode." ) with torch.enable_grad(): next_attn_output.requires_grad = True # set seed to have correct dropout torch.manual_seed(self.feed_forward_seed) # g(Y_1) res_hidden_states = self.feed_forward(next_attn_output) res_hidden_states.backward(grad_hidden_states, retain_graph=True) with torch.no_grad(): # X_2 = Y_2 - g(Y_1) hidden_states = hidden_states - res_hidden_states del res_hidden_states grad_attn_output = grad_attn_output + next_attn_output.grad next_attn_output.grad = None with torch.enable_grad(): hidden_states.requires_grad = True # set seed to have correct dropout torch.manual_seed(self.attention_seed) # f(X_2) # use cached buckets for backprob if buckets not None for LSHSelfAttention output = self.attention( hidden_states=hidden_states, head_mask=head_mask, attention_mask=attention_mask, buckets=buckets, ).hidden_states output.backward(grad_attn_output, retain_graph=True) with torch.no_grad(): # X_1 = Y_1 - f(X_2) attn_output = next_attn_output - output del output, next_attn_output grad_hidden_states = grad_hidden_states + hidden_states.grad hidden_states.grad = None hidden_states = hidden_states.detach() return ReformerBackwardOutput( attn_output=attn_output, hidden_states=hidden_states, grad_attn_output=grad_attn_output, grad_hidden_states=grad_hidden_states, ) class _ReversibleFunction(Function): """ To prevent PyTorch from performing the usual backpropagation, a customized backward function is implemented here. This way it is made sure that no memory expensive activations are saved during the forward pass. This function is heavily inspired by https://github.com/lucidrains/reformer-pytorch/blob/master/reformer_pytorch/reversible.py """ @staticmethod def forward( ctx, hidden_states, layers, attention_mask, head_mask, num_hashes, all_hidden_states, all_attentions, past_buckets_states, use_cache, orig_sequence_length, output_hidden_states, output_attentions, ): all_buckets = () # split duplicated tensor hidden_states, attn_output = torch.chunk(hidden_states, 2, dim=-1) for layer_id, (layer, layer_head_mask) in enumerate(zip(layers, head_mask)): if output_hidden_states is True: all_hidden_states.append(hidden_states) layer_outputs = layer( prev_attn_output=attn_output, hidden_states=hidden_states, attention_mask=attention_mask, head_mask=layer_head_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, orig_sequence_length=orig_sequence_length, output_attentions=output_attentions, ) attn_output = layer_outputs.attn_output hidden_states = layer_outputs.hidden_states all_buckets = all_buckets + (layer_outputs.buckets,) if output_attentions: all_attentions.append(layer_outputs.attention_probs) # Add last layer if output_hidden_states is True: all_hidden_states.append(hidden_states) # attach params to ctx for backward ctx.save_for_backward(attn_output.detach(), hidden_states.detach()) ctx.layers = layers ctx.all_buckets = all_buckets ctx.head_mask = head_mask ctx.attention_mask = attention_mask # Concatenate 2 RevNet outputs return torch.cat([attn_output, hidden_states], dim=-1) @staticmethod def backward(ctx, grad_hidden_states): grad_attn_output, grad_hidden_states = torch.chunk(grad_hidden_states, 2, dim=-1) # retrieve params from ctx for backward attn_output, hidden_states = ctx.saved_tensors # create tuple output = ReformerBackwardOutput( attn_output=attn_output, hidden_states=hidden_states, grad_attn_output=grad_attn_output, grad_hidden_states=grad_hidden_states, ) # free memory del grad_attn_output, grad_hidden_states, attn_output, hidden_states layers = ctx.layers all_buckets = ctx.all_buckets head_mask = ctx.head_mask attention_mask = ctx.attention_mask for idx, layer in enumerate(layers[::-1]): # pop last buckets from stack buckets = all_buckets[-1] all_buckets = all_buckets[:-1] # backprop output = layer.backward_pass( next_attn_output=output.attn_output, hidden_states=output.hidden_states, grad_attn_output=output.grad_attn_output, grad_hidden_states=output.grad_hidden_states, head_mask=head_mask[len(layers) - idx - 1], attention_mask=attention_mask, buckets=buckets, ) assert all_buckets == (), "buckets have to be empty after backpropagation" grad_hidden_states = torch.cat([output.grad_attn_output, output.grad_hidden_states], dim=-1) # num of return vars has to match num of forward() args # return gradient for hidden_states arg and None for other args return grad_hidden_states, None, None, None, None, None, None, None, None, None, None, None class ReformerEncoder(nn.Module): def __init__(self, config): super().__init__() self.dropout = config.hidden_dropout_prob self.layers = nn.ModuleList([ReformerLayer(config, i) for i in range(config.num_hidden_layers)]) # Reformer is using Rev Nets, thus last layer outputs are concatenated and # Layer Norm is done over 2 * hidden_size self.layer_norm = nn.LayerNorm(2 * config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states, attention_mask=None, head_mask=None, num_hashes=None, past_buckets_states=None, use_cache=False, orig_sequence_length=None, output_hidden_states=False, output_attentions=False, ): # hidden_states and attention lists to be filled if wished all_hidden_states = [] all_attentions = [] # init cached hidden states if necessary if past_buckets_states is None: past_buckets_states = [((None), (None)) for i in range(len(self.layers))] # concat same tensor for reversible ResNet hidden_states = torch.cat([hidden_states, hidden_states], dim=-1) hidden_states = _ReversibleFunction.apply( hidden_states, self.layers, attention_mask, head_mask, num_hashes, all_hidden_states, all_attentions, past_buckets_states, use_cache, orig_sequence_length, output_hidden_states, output_attentions, ) # Apply layer norm to concatenated hidden states hidden_states = self.layer_norm(hidden_states) # Apply dropout hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) return ReformerEncoderOutput( hidden_states=hidden_states, all_hidden_states=all_hidden_states, all_attentions=all_attentions, past_buckets_states=past_buckets_states, ) class ReformerOnlyLMHead(nn.Module): def __init__(self, config): super().__init__() # Reformer is using Rev Nets, thus last layer outputs are concatenated and # Layer Norm is done over 2 * hidden_size self.seq_len_dim = 1 self.chunk_size_lm_head = config.chunk_size_lm_head self.decoder = nn.Linear(2 * config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, hidden_states): return apply_chunking_to_forward(self.forward_chunk, self.chunk_size_lm_head, self.seq_len_dim, hidden_states) def forward_chunk(self, hidden_states): hidden_states = self.decoder(hidden_states) return hidden_states def _tie_weights(self) -> None: # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias class ReformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ReformerConfig base_model_prefix = "reformer" @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "input_ids": input_ids, "attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" if isinstance(module, AxialPositionEmbeddings): for weight in module.weights: nn.init.normal_(weight, std=self.config.axial_norm_std) elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @dataclass class ReformerModelOutput(ModelOutput): """ Output type of [`ReformerModel`]. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_predict, hidden_size)`): Sequence of hidden-states at the last layer of the model. `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`). Contains precomputed buckets and hidden-states that can be used (see `past_buckets_states` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ last_hidden_state: torch.FloatTensor past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class ReformerModelWithLMHeadOutput(ModelOutput): """ Output type of [`ReformerModelWithLMHead`]. Args: loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided) Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, num_predict, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). `num_predict` corresponds to `target_mapping.shape[1]`. If `target_mapping` is `None`, then `num_predict` corresponds to `sequence_length`. past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`). Contains precomputed buckets and hidden-states that can be used (see `past_buckets_states` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): TTuple of `torch.FloatTensor` (one for the output of the embeddings and one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_buckets_states: Optional[List[Tuple[torch.LongTensor, torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None REFORMER_START_DOCSTRING = r""" Reformer was proposed in [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ReformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ REFORMER_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. During training the input_ids sequence_length has to be a multiple of the relevant model's chunk lengths (lsh's, local's or both). During evaluation, the indices are automatically padded to be a multiple of the chunk length. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. num_hashes (`int`, *optional*): The number of hashing rounds that should be performed during bucketing. Setting this argument overwrites the default defined in `config.num_hashes`. For more information, see `num_hashes` in [`ReformerConfig`]. past_buckets_states (`List[Tuple(torch.LongTensor, torch.FloatTensor)]`, *optional*): List of `Tuple(torch.LongTensor, torch.FloatTensor` of length `config.n_layers`, with the first element being the previous *buckets* of shape `(batch_size, num_heads, num_hashes, sequence_length)`) and the second being the previous *hidden_states* of shape `(batch_size, sequence_length, hidden_size)`). Contains precomputed hidden-states and buckets (only relevant for LSH Self-Attention). Can be used to speed up sequential decoding. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare Reformer Model transformer outputting raw hidden-stateswithout any specific head on top.", REFORMER_START_DOCSTRING, ) class ReformerModel(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config assert ( self.config.num_hidden_layers > 0 ), "`config.attn_layers` is empty. Select at least one attn layer form ['lsh', 'local']" self.embeddings = ReformerEmbeddings(config) self.encoder = ReformerEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=ReformerModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, num_hashes: Optional[int] = None, past_buckets_states: Optional[List[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ReformerModelOutput]: use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() # noqa: F841 device = input_ids.device elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] # noqa: F841 device = inputs_embeds.device else: raise ValueError("You have to specify either input_ids or inputs_embeds") assert ( len(input_shape) == 2 ), f"`input_ids` have be of shape `[batch_size, sequence_length]`, but got shape: {input_shape}" if past_buckets_states is not None: assert not self.training, "`past_buckets_states` can only be used for inference, not for training`." # prepare head mask head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers, is_attention_chunked=True) # original sequence length for padding orig_sequence_length = input_shape[-1] # if needs padding least_common_mult_chunk_length = _get_least_common_mult_chunk_len(self.config) min_chunk_length = _get_min_chunk_len(self.config) must_pad_to_match_chunk_length = ( input_shape[-1] % least_common_mult_chunk_length != 0 and input_shape[-1] > min_chunk_length and past_buckets_states is None ) if must_pad_to_match_chunk_length: padding_length = least_common_mult_chunk_length - input_shape[-1] % least_common_mult_chunk_length if self.training is True: raise ValueError( f"If training, sequence length {input_shape[-1]} has to be a multiple of least common multiple " f"chunk_length {least_common_mult_chunk_length}. Please consider padding the input to a length " f"of {input_shape[-1] + padding_length}." ) # pad input input_ids, inputs_embeds, attention_mask, position_ids, input_shape = self._pad_to_mult_of_chunk_length( input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, input_shape=input_shape, padding_length=padding_length, padded_seq_length=least_common_mult_chunk_length, device=device, ) # start index for position encoding depends on incremental decoding if past_buckets_states is not None: start_idx_pos_encodings = past_buckets_states[0][1].shape[1] else: start_idx_pos_encodings = 0 embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, start_idx_pos_encodings=start_idx_pos_encodings, ) encoder_outputs = self.encoder( hidden_states=embedding_output, head_mask=head_mask, attention_mask=attention_mask, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, orig_sequence_length=orig_sequence_length, output_hidden_states=output_hidden_states, output_attentions=output_attentions, ) sequence_output = encoder_outputs.hidden_states # if padding was applied if must_pad_to_match_chunk_length: sequence_output = sequence_output[:, :orig_sequence_length] past_buckets_states = encoder_outputs.past_buckets_states if use_cache else None hidden_states = encoder_outputs.all_hidden_states if output_hidden_states else None attentions = encoder_outputs.all_attentions if output_attentions else None if not return_dict: return tuple(v for v in [sequence_output, past_buckets_states, hidden_states, attentions] if v is not None) return ReformerModelOutput( last_hidden_state=sequence_output, past_buckets_states=past_buckets_states, hidden_states=hidden_states, attentions=attentions, ) def _pad_to_mult_of_chunk_length( self, input_ids, inputs_embeds=None, attention_mask=None, position_ids=None, input_shape=None, padding_length=None, padded_seq_length=None, device=None, ): logger.warning_once( f"Input ids are automatically padded from {input_shape[-1]} to {input_shape[-1] + padding_length} to be a " f"multiple of `config.chunk_length`: {padded_seq_length}" ) padded_input_ids = torch.full( (input_shape[0], padding_length), self.config.pad_token_id, device=device, dtype=torch.long, ) # Extend `attention_mask` if attention_mask is not None: pad_attention_mask = torch.zeros(input_shape[0], padding_length, device=device, dtype=attention_mask.dtype) attention_mask = torch.cat([attention_mask, pad_attention_mask], dim=-1) else: attention_mask = torch.cat( [ torch.ones(input_shape, device=device, dtype=torch.bool), torch.zeros((input_shape[0], padding_length), device=device, dtype=torch.bool), ], dim=-1, ) # Extend `input_ids` with padding to match least common multiple chunk_length if input_ids is not None: input_ids = torch.cat([input_ids, padded_input_ids], dim=-1) input_shape = input_ids.size() # Pad position ids if given if position_ids is not None: padded_position_ids = torch.arange(input_shape[-1], padded_seq_length, dtype=torch.long, device=device) padded_position_ids = position_ids.unsqueeze(0).expand(input_shape[0], padding_length) position_ids = torch.cat([position_ids, padded_position_ids], dim=-1) # Extend `inputs_embeds` with padding to match least common multiple chunk_length if inputs_embeds is not None: padded_inputs_embeds = self.embeddings(padded_input_ids, position_ids) inputs_embeds = torch.cat([inputs_embeds, padded_inputs_embeds], dim=-2) input_shape = inputs_embeds.size() return input_ids, inputs_embeds, attention_mask, position_ids, input_shape @add_start_docstrings("""Reformer Model with a `language modeling` head on top.""", REFORMER_START_DOCSTRING) class ReformerModelWithLMHead(ReformerPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) assert config.is_decoder, "If you want to use `ReformerModelWithLMHead` make sure that `is_decoder=True`." assert "local" not in self.config.attn_layers or config.local_num_chunks_after == 0, ( "If causal mask is enabled, make sure that `config.local_num_chunks_after` is set to 0 and not" f" {config.local_num_chunks_after}." ) assert "lsh" not in self.config.attn_layers or config.lsh_num_chunks_after == 0, ( "If causal mask is enabled, make sure that `config.lsh_num_chunks_after` is set to 1 and not" f" {config.lsh_num_chunks_after}." ) self.reformer = ReformerModel(config) self.lm_head = ReformerOnlyLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings self.lm_head.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, num_hashes: Optional[int] = None, past_buckets_states: Optional[List[Tuple[torch.Tensor]]] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, labels: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict reformer_outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, past_buckets_states=past_buckets_states, use_cache=use_cache, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = reformer_outputs[0] logits = self.lm_head(sequence_output) loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) if not return_dict: output = (logits,) + reformer_outputs[1:] return ((loss,) + output) if loss is not None else output return ReformerModelWithLMHeadOutput( loss=loss, logits=logits, past_buckets_states=reformer_outputs.past_buckets_states, hidden_states=reformer_outputs.hidden_states, attentions=reformer_outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, use_cache=None, num_hashes=None, **kwargs ): # only last token for inputs_ids if past is defined in kwargs if past_key_values is not None: input_ids = input_ids[:, -1:] inputs_dict = { "input_ids": input_ids, "past_buckets_states": past_key_values, "use_cache": use_cache, "num_hashes": num_hashes, } return inputs_dict def _reorder_cache(self, past_key_values, beam_idx): reord_past_buckets_states = [] for layer_past in past_key_values: # buckets if layer_past[0] is not None: reord_buckets = layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)) else: reord_buckets = None # hidden states reord_hidden_states = layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)) reord_past_buckets_states.append((reord_buckets, reord_hidden_states)) return reord_past_buckets_states @add_start_docstrings("""Reformer Model with a `language modeling` head on top.""", REFORMER_START_DOCSTRING) class ReformerForMaskedLM(ReformerPreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) assert not config.is_decoder, ( "If you want to use `ReformerForMaskedLM` make sure `config.is_decoder=False` for bi-directional" " self-attention." ) self.reformer = ReformerModel(config) self.lm_head = ReformerOnlyLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings self.lm_head.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, num_hashes: Optional[int] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels Returns: <Tip warning={true}> This example uses a false checkpoint since we don't have any available pretrained model for the masked language modeling task with the Reformer architecture. </Tip> Example: ```python >>> import torch >>> from transformers import AutoTokenizer, ReformerForMaskedLM >>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-reformer") >>> model = ReformerForMaskedLM.from_pretrained("hf-internal-testing/tiny-random-reformer") >>> # add mask_token >>> tokenizer.add_special_tokens({"mask_token": "[MASK]"}) # doctest: +IGNORE_RESULT >>> inputs = tokenizer("The capital of France is [MASK].", return_tensors="pt") >>> # resize model's embedding matrix >>> model.resize_token_embeddings(new_num_tokens=model.config.vocab_size + 1) # doctest: +IGNORE_RESULT >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # retrieve index of [MASK] >>> mask_token_index = (inputs.input_ids == tokenizer.mask_token_id)[0].nonzero(as_tuple=True)[0] >>> predicted_token_id = logits[0, mask_token_index].argmax(axis=-1) >>> predicted_token = tokenizer.decode(predicted_token_id) ``` ```python >>> labels = tokenizer("The capital of France is Paris.", return_tensors="pt")["input_ids"] >>> # mask labels of non-[MASK] tokens >>> labels = torch.where( ... inputs.input_ids == tokenizer.mask_token_id, labels[:, : inputs["input_ids"].shape[-1]], -100 ... ) >>> outputs = model(**inputs, labels=labels) >>> loss = round(outputs.loss.item(), 2) ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict reformer_outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, use_cache=False, # no causal mask output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = reformer_outputs[0] logits = self.lm_head(sequence_output) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (logits,) + reformer_outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=logits, hidden_states=reformer_outputs.hidden_states, attentions=reformer_outputs.attentions, ) @add_start_docstrings( """ Reformer Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, REFORMER_START_DOCSTRING, ) class ReformerForSequenceClassification(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.reformer = ReformerModel(config) self.classifier = ReformerClassificationHead(config) if config.is_decoder is True: logger.warning("You might want to disable causal masking for sequence classification") # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, num_hashes: Optional[int] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Returns: Example of single-label classification: ```python >>> import torch >>> from transformers import AutoTokenizer, ReformerForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("google/reformer-crime-and-punishment") >>> model = ReformerForSequenceClassification.from_pretrained("google/reformer-crime-and-punishment") >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> label = model.config.id2label[predicted_class_id] ``` ```python >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = ReformerForSequenceClassification.from_pretrained( ... "google/reformer-crime-and-punishment", num_labels=num_labels ... ) >>> labels = torch.tensor(1) >>> loss = model(**inputs, labels=labels).loss ``` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class ReformerClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(2 * config.hidden_size, config.hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(config.hidden_size, config.num_labels) def forward(self, hidden_states, **kwargs): hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states @add_start_docstrings( """ Reformer Model with a span classification head on top for extractive question-answering tasks like SQuAD / TriviaQA ( a linear layer on top of hidden-states output to compute `span start logits` and `span end logits`. """, REFORMER_START_DOCSTRING, ) class ReformerForQuestionAnswering(ReformerPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.reformer = ReformerModel(config) # 2 * config.hidden_size because we use reversible residual layers self.qa_outputs = nn.Linear(2 * config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(REFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, num_hashes: Optional[int] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict reformer_outputs = self.reformer( input_ids, position_ids=position_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, num_hashes=num_hashes, use_cache=False, # no causal mask output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=return_dict, ) sequence_output = reformer_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + reformer_outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=reformer_outputs.hidden_states, attentions=reformer_outputs.attentions, )
transformers/src/transformers/models/reformer/modeling_reformer.py/0
{ "file_path": "transformers/src/transformers/models/reformer/modeling_reformer.py", "repo_id": "transformers", "token_count": 51208 }
575
# coding=utf-8 # Copyright 2018 Google AI, Google Brain and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tokenization classes for RemBERT model.""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: RemBertTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} SPIECE_UNDERLINE = "▁" class RemBertTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" RemBert tokenizer (backed by HuggingFace's *tokenizers* library). Based on [Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models). This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether or not to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether or not to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. .. note:: When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = RemBertTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, remove_space=True, keep_accents=False, bos_token="[CLS]", eos_token="[SEP]", unk_token="<unk>", sep_token="[SEP]", pad_token="<pad>", cls_token="[CLS]", mask_token="[MASK]", **kwargs, ): # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, **kwargs, ) self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RemBERT sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added token_ids_1 (`List[int]`, *optional*, defaults to `None`): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return cls + token_ids_0 + sep return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*, defaults to `None`): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Set to True if the token list is already formatted with special tokens for the model Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: if token_ids_1 is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_0] if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. A RemBERT sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` if token_ids_1 is None, only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of ids. token_ids_1 (`List[int]`, *optional*, defaults to `None`): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error("Vocabulary path ({}) should be a directory".format(save_directory)) return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,)
transformers/src/transformers/models/rembert/tokenization_rembert_fast.py/0
{ "file_path": "transformers/src/transformers/models/rembert/tokenization_rembert_fast.py", "repo_id": "transformers", "token_count": 4078 }
576
# coding=utf-8 # Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ RoBERTa-PreLayerNorm configuration""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) # Copied from transformers.models.roberta.configuration_roberta.RobertaConfig with FacebookAI/roberta-base->andreasmadsen/efficient_mlm_m0.40,RoBERTa->RoBERTa-PreLayerNorm,Roberta->RobertaPreLayerNorm,roberta->roberta-prelayernorm class RobertaPreLayerNormConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RobertaPreLayerNormModel`] or a [`TFRobertaPreLayerNormModel`]. It is used to instantiate a RoBERTa-PreLayerNorm model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RoBERTa-PreLayerNorm [andreasmadsen/efficient_mlm_m0.40](https://huggingface.co/andreasmadsen/efficient_mlm_m0.40) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the RoBERTa-PreLayerNorm model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`RobertaPreLayerNormModel`] or [`TFRobertaPreLayerNormModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 2): The vocabulary size of the `token_type_ids` passed when calling [`RobertaPreLayerNormModel`] or [`TFRobertaPreLayerNormModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). is_decoder (`bool`, *optional*, defaults to `False`): Whether the model is used as a decoder or not. If `False`, the model is used as an encoder. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. Examples: ```python >>> from transformers import RobertaPreLayerNormConfig, RobertaPreLayerNormModel >>> # Initializing a RoBERTa-PreLayerNorm configuration >>> configuration = RobertaPreLayerNormConfig() >>> # Initializing a model (with random weights) from the configuration >>> model = RobertaPreLayerNormModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "roberta-prelayernorm" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=1, bos_token_id=0, eos_token_id=2, position_embedding_type="absolute", use_cache=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache self.classifier_dropout = classifier_dropout # Copied from transformers.models.roberta.configuration_roberta.RobertaOnnxConfig with Roberta->RobertaPreLayerNorm class RobertaPreLayerNormOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
transformers/src/transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py/0
{ "file_path": "transformers/src/transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py", "repo_id": "transformers", "token_count": 2897 }
577
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for RoFormer.""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} class RoFormerTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" RoFormer tokenizer (backed by HuggingFace's *tokenizers* library). [`RoFormerTokenizerFast`] is almost identical to [`BertTokenizerFast`] and runs end-to-end tokenization: punctuation splitting and wordpiece. There are some difference between them when tokenizing Chinese. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Example: ```python >>> from transformers import RoFormerTokenizerFast >>> tokenizer = RoFormerTokenizerFast.from_pretrained("junnyu/roformer_chinese_base") >>> tokenizer.tokenize("今天天气非常好。") ['今', '天', '天', '气', '非常', '好', '。'] ```""" vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = RoFormerTokenizer def __init__( self, vocab_file=None, tokenizer_file=None, do_lower_case=True, unk_token="[UNK]", sep_token="[SEP]", pad_token="[PAD]", cls_token="[CLS]", mask_token="[MASK]", tokenize_chinese_chars=True, strip_accents=None, **kwargs, ): super().__init__( vocab_file, tokenizer_file=tokenizer_file, do_lower_case=do_lower_case, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, tokenize_chinese_chars=tokenize_chinese_chars, strip_accents=strip_accents, **kwargs, ) normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("lowercase", do_lower_case) != do_lower_case or normalizer_state.get("strip_accents", strip_accents) != strip_accents ): normalizer_class = getattr(normalizers, normalizer_state.pop("type")) normalizer_state["lowercase"] = do_lower_case normalizer_state["strip_accents"] = strip_accents self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state) # Make sure we correctly set the custom PreTokenizer vocab = self.backend_tokenizer.get_vocab() self.backend_tokenizer.pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab)) self.do_lower_case = do_lower_case def __getstate__(self): state = self.__dict__.copy() state["_tokenizer"].pre_tokenizer = BertPreTokenizer() return state def __setstate__(self, d): self.__dict__ = d vocab = self.__dict__["_tokenizer"].get_vocab() self.__dict__["_tokenizer"].pre_tokenizer = PreTokenizer.custom(JiebaPreTokenizer(vocab)) def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoFormer sequence has the following format: - single sequence: `[CLS] X [SEP]` - pair of sequences: `[CLS] A [SEP] B [SEP]` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id] if token_ids_1 is not None: output += token_ids_1 + [self.sep_token_id] return output def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A RoFormer sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) def save_pretrained( self, save_directory, legacy_format=None, filename_prefix=None, push_to_hub=False, **kwargs, ): self.backend_tokenizer.pre_tokenizer = BertPreTokenizer() return super().save_pretrained(save_directory, legacy_format, filename_prefix, push_to_hub, **kwargs)
transformers/src/transformers/models/roformer/tokenization_roformer_fast.py/0
{ "file_path": "transformers/src/transformers/models/roformer/tokenization_roformer_fast.py", "repo_id": "transformers", "token_count": 2757 }
578
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extractor class for SeamlessM4T """ from typing import List, Optional, Union import numpy as np from ...utils import is_torch_available if is_torch_available(): import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging logger = logging.get_logger(__name__) class SeamlessM4TFeatureExtractor(SequenceFeatureExtractor): r""" Constructs a SeamlessM4T feature extractor. This feature extractor inherits from [`SequenceFeatureExtractor`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. This class extracts mel-filter bank features from raw speech. Args: feature_size (`int`, *optional*, defaults to 80): The feature dimension of the extracted features. sampling_rate (`int`, *optional*, defaults to 16000): The sampling rate at which the audio files should be digitalized expressed in hertz (Hz). num_mel_bins (`int`, *optional*, defaults to 80): Number of Mel-frequency bins. padding_value (`float`, *optional*, defaults to 0.0): The value that is used to fill the padding vectors. stride (`int`, *optional*, defaults to 2): Stride used to reshape audios from shape (batch_size,num_frames,num_mel_bins) to (batch_size,num_frames//stride,num_mel_bins*stride). """ model_input_names = ["input_features", "attention_mask"] def __init__( self, feature_size=80, sampling_rate=16000, num_mel_bins=80, padding_value=0.0, stride=2, **kwargs, ): self.num_mel_bins = num_mel_bins self.return_attention_mask = True self.stride = stride mel_filters = mel_filter_bank( num_frequency_bins=256, num_mel_filters=self.num_mel_bins, min_frequency=20, max_frequency=sampling_rate // 2, sampling_rate=sampling_rate, norm=None, mel_scale="kaldi", triangularize_in_mel_space=True, ) self.mel_filters = np.pad(mel_filters, ((0, 1), (0, 0))) self.window = window_function(400, "povey", periodic=False) super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def zero_mean_unit_var_norm( input_values: List[np.ndarray], attention_mask: List[np.ndarray], padding_value: float = 0.0 ) -> List[np.ndarray]: """ Every array in the list is normalized to have zero mean and unit variance """ if attention_mask is not None: attention_mask = np.array(attention_mask, np.int32) normed_input_values = [] for vector, length in zip(input_values, attention_mask.sum(-1)): normed_slice = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7) if length < normed_slice.shape[0]: normed_slice[length:] = padding_value normed_input_values.append(normed_slice) else: normed_input_values = [(x - x.mean()) / np.sqrt(x.var() + 1e-7) for x in input_values] return normed_input_values def _extract_fbank_features( self, waveform: np.ndarray, ) -> np.ndarray: """ Get mel-filter bank features using TorchAudio. Note that TorchAudio requires 16-bit signed integers as inputs and hence the waveform should not be normalized before feature extraction. """ # by default, it extracts the left channel if stereo if len(waveform.shape) == 2: waveform = waveform[0] waveform = np.squeeze(waveform) * (2**15) # Kaldi compliance: 16-bit signed integers features = spectrogram( waveform, self.window, frame_length=400, hop_length=160, fft_length=512, power=2.0, center=False, preemphasis=0.97, mel_filters=self.mel_filters, log_mel="log", mel_floor=1.192092955078125e-07, remove_dc_offset=True, ).T return features def __call__( self, raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], padding: Union[bool, str, PaddingStrategy] = True, pad_to_multiple_of: Optional[int] = 2, max_length: Optional[int] = None, truncation: bool = False, return_tensors: Optional[Union[str, TensorType]] = None, sampling_rate: Optional[int] = None, return_attention_mask: Optional[bool] = None, do_normalize_per_mel_bins: Optional[bool] = True, **kwargs, ) -> BatchFeature: """ Main method to featurize and prepare for the model one or several sequence(s). Args: raw_speech (`np.ndarray`, `torch.Tensor`, `List[float]`, `List[np.ndarray]`, `List[torch.Tensor]`, `List[List[float]]`, `List[List[List[float]]]`): The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a torch tensor, a list of float values, a list of numpy arrays, a list of torch tensors, a list of list of float values or a list of a list of list of float values. If `raw_speech` is a one-dimensional `np.ndarray`, `torch.Tensor` or a `List[float]`, `raw_speech` is considered a single-channel, single-sample sound. In all other cases, the first dimension of `raw_speech`, whether from an `np.ndarray`, a `torch.Tensor` or a `List[...]`, corresponds to the number of samples in the batch, and the number of channels (i.e. mono or stereo character) is derived from the other dimensions (1D -> single-channel waveform batches; 2D-> stereo-channel waveform batches). padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). pad_to_multiple_of (`int`, *optional*, defaults to 2): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). truncation (`bool`): Activates truncation to cut input sequences longer than *max_length* to *max_length*. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask) <Tip> For SeamlessM4T models, `attention_mask` should always be passed for batched inference, to avoid subtle bugs. </Tip> return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. sampling_rate (`int`, *optional*): The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass `sampling_rate` at the forward call to prevent silent errors. do_normalize_per_mel_bins (`bool`, *optional*, defaults to `True`): Whether or not to zero-mean unit-variance normalize the input per mel-channel. kwargs (*optional*): Remaining dictionary of keyword arguments that will be passed to the tokenizer or the feature extractor. """ if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) return_attention_mask = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 3: raise ValueError(f"Only mono-channel or stereo-channel audio is supported for input to {self}") acceptable_types = ( (torch.Tensor, np.ndarray, tuple, list) if is_torch_available() else (np.ndarray, tuple, list) ) is_batched = is_batched_numpy or ( isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], acceptable_types)) ) if is_batched: raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech] elif not is_batched and not isinstance(raw_speech, np.ndarray): raw_speech = np.asarray(raw_speech, dtype=np.float32) elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64): raw_speech = raw_speech.astype(np.float32) # always return batch if not is_batched: raw_speech = [raw_speech] # extract fbank features features = [self._extract_fbank_features(waveform) for waveform in raw_speech] if do_normalize_per_mel_bins: # torch defaults to ddof=1, and numpy defaults to ddof=0 features = [ (x - np.expand_dims(x.mean(0), 0)) / np.sqrt(np.expand_dims(x.var(0, ddof=1), 0) + 1e-7) for x in features ] # convert into correct format for padding encoded_inputs = BatchFeature({"input_features": features}) padded_inputs = self.pad( encoded_inputs, padding=padding, max_length=max_length, truncation=truncation, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=True, return_tensors="np", ) # SeamlessM4T needs to process extracted features input_features = padded_inputs.get("input_features") attention_mask = padded_inputs.pop("attention_mask") batch_size, num_frames, num_channels = input_features.shape remainder = num_frames % self.stride if remainder != 0: input_features = input_features[:, :num_frames, :] attention_mask = attention_mask[:, :num_frames] input_features = np.reshape( input_features, (batch_size, num_frames // self.stride, num_channels * self.stride) ) indices = np.arange(0, num_frames) attention_mask = attention_mask[:, indices % self.stride == 1] padded_inputs["input_features"] = input_features if return_attention_mask: padded_inputs["attention_mask"] = attention_mask if return_tensors is not None: padded_inputs = padded_inputs.convert_to_tensors(return_tensors) return padded_inputs
transformers/src/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py/0
{ "file_path": "transformers/src/transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py", "repo_id": "transformers", "token_count": 5746 }
579
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = {"configuration_seggpt": ["SegGptConfig", "SegGptOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_seggpt"] = [ "SegGptModel", "SegGptPreTrainedModel", "SegGptForImageSegmentation", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_seggpt"] = ["SegGptImageProcessor"] if TYPE_CHECKING: from .configuration_seggpt import SegGptConfig, SegGptOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_seggpt import ( SegGptForImageSegmentation, SegGptModel, SegGptPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_seggpt import SegGptImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/seggpt/__init__.py/0
{ "file_path": "transformers/src/transformers/models/seggpt/__init__.py", "repo_id": "transformers", "token_count": 758 }
580
# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for SigLIP.""" from typing import Dict, List, Optional, Union from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, is_vision_available, logging logger = logging.get_logger(__name__) if is_vision_available(): import PIL class SiglipImageProcessor(BaseImageProcessor): r""" Constructs a SigLIP image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by `do_resize` in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 224, "width": 224}`): Size of the image after resizing. Can be overridden by `size` in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image by the specified mean and standard deviation. Can be overridden by `do_normalize` in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `[0.5, 0.5, 0.5]`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 224, "width": 224} image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean self.image_std = image_std self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "return_tensors", "data_format", "input_data_format", ] def preprocess( self, images: ImageInput, do_resize: bool = None, size: Dict[str, int] = None, resample: PILImageResampling = None, do_rescale: bool = None, rescale_factor: float = None, do_normalize: bool = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Size of the image after resizing. resample (`int`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to `True`. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize size = size if size is not None else self.size size = get_size_dict(size, param_name="size", default_to_square=False) resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std images = make_list_of_images(images) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: height, width = size["height"], size["width"] images = [ resize(image=image, size=(height, width), resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/siglip/image_processing_siglip.py/0
{ "file_path": "transformers/src/transformers/models/siglip/image_processing_siglip.py", "repo_id": "transformers", "token_count": 4986 }
581
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Speech processor class for Speech2Text """ import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class Speech2TextProcessor(ProcessorMixin): r""" Constructs a Speech2Text processor which wraps a Speech2Text feature extractor and a Speech2Text tokenizer into a single processor. [`Speech2TextProcessor`] offers all the functionalities of [`Speech2TextFeatureExtractor`] and [`Speech2TextTokenizer`]. See the [`~Speech2TextProcessor.__call__`] and [`~Speech2TextProcessor.decode`] for more information. Args: feature_extractor (`Speech2TextFeatureExtractor`): An instance of [`Speech2TextFeatureExtractor`]. The feature extractor is a required input. tokenizer (`Speech2TextTokenizer`): An instance of [`Speech2TextTokenizer`]. The tokenizer is a required input. """ feature_extractor_class = "Speech2TextFeatureExtractor" tokenizer_class = "Speech2TextTokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) self.current_processor = self.feature_extractor self._in_target_context_manager = False def __call__(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to Speech2TextFeatureExtractor's [`~Speech2TextFeatureExtractor.__call__`] and returns its output. If used in the context [`~Speech2TextProcessor.as_target_processor`] this method forwards all its arguments to Speech2TextTokenizer's [`~Speech2TextTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor(*args, **kwargs) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") audio = kwargs.pop("raw_speech") else: audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @contextmanager def as_target_processor(self): """ Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning Speech2Text. """ warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) self._in_target_context_manager = True self.current_processor = self.tokenizer yield self.current_processor = self.feature_extractor self._in_target_context_manager = False
transformers/src/transformers/models/speech_to_text/processing_speech_to_text.py/0
{ "file_path": "transformers/src/transformers/models/speech_to_text/processing_speech_to_text.py", "repo_id": "transformers", "token_count": 1792 }
582
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _import_structure = { "configuration_splinter": ["SplinterConfig"], "tokenization_splinter": ["SplinterTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_splinter_fast"] = ["SplinterTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_splinter"] = [ "SplinterForQuestionAnswering", "SplinterForPreTraining", "SplinterLayer", "SplinterModel", "SplinterPreTrainedModel", ] if TYPE_CHECKING: from .configuration_splinter import SplinterConfig from .tokenization_splinter import SplinterTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_splinter_fast import SplinterTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_splinter import ( SplinterForPreTraining, SplinterForQuestionAnswering, SplinterLayer, SplinterModel, SplinterPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/splinter/__init__.py/0
{ "file_path": "transformers/src/transformers/models/splinter/__init__.py", "repo_id": "transformers", "token_count": 833 }
583
# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = {"configuration_superpoint": ["SuperPointConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["image_processing_superpoint"] = ["SuperPointImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_superpoint"] = [ "SuperPointForKeypointDetection", "SuperPointPreTrainedModel", ] if TYPE_CHECKING: from .configuration_superpoint import ( SuperPointConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_superpoint import SuperPointImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_superpoint import ( SuperPointForKeypointDetection, SuperPointPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/superpoint/__init__.py/0
{ "file_path": "transformers/src/transformers/models/superpoint/__init__.py", "repo_id": "transformers", "token_count": 715 }
584
# coding=utf-8 # Copyright 2018 The T5 authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert T5 checkpoint.""" import argparse from transformers import T5Config, T5ForConditionalGeneration, load_tf_weights_in_t5 from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path): # Initialise PyTorch model config = T5Config.from_json_file(config_file) print(f"Building PyTorch model from configuration: {config}") model = T5ForConditionalGeneration(config) # Load weights from tf checkpoint load_tf_weights_in_t5(model, config, tf_checkpoint_path) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
transformers/src/transformers/models/t5/convert_t5_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/t5/convert_t5_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 735 }
585
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TAPAS checkpoint.""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def convert_tf_checkpoint_to_pytorch( task, reset_position_index_per_cell, tf_checkpoint_path, tapas_config_file, pytorch_dump_path ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file config = TapasConfig.from_json_file(tapas_config_file) # set absolute/relative position embeddings parameter config.reset_position_index_per_cell = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": model = TapasForQuestionAnswering(config=config) elif task == "WTQ": # run_task_main.py hparams config.num_aggregation_labels = 4 config.use_answer_as_supervision = True # hparam_utils.py hparams config.answer_loss_cutoff = 0.664694 config.cell_selection_preference = 0.207951 config.huber_loss_delta = 0.121194 config.init_cell_selection_weights_to_zero = True config.select_one_column = True config.allow_empty_column_selection = False config.temperature = 0.0352513 model = TapasForQuestionAnswering(config=config) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams config.num_aggregation_labels = 4 config.use_answer_as_supervision = False # hparam_utils.py hparams config.answer_loss_cutoff = 36.4519 config.cell_selection_preference = 0.903421 config.huber_loss_delta = 222.088 config.init_cell_selection_weights_to_zero = True config.select_one_column = True config.allow_empty_column_selection = True config.temperature = 0.763141 model = TapasForQuestionAnswering(config=config) elif task == "TABFACT": model = TapasForSequenceClassification(config=config) elif task == "MLM": model = TapasForMaskedLM(config=config) elif task == "INTERMEDIATE_PRETRAINING": model = TapasModel(config=config) else: raise ValueError(f"Task {task} not supported.") print(f"Building PyTorch model from configuration: {config}") # Load weights from tf checkpoint load_tf_weights_in_tapas(model, config, tf_checkpoint_path) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}") model.save_pretrained(pytorch_dump_path) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}") tokenizer = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512) tokenizer.save_pretrained(pytorch_dump_path) print("Used relative position embeddings:", model.config.reset_position_index_per_cell) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
transformers/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1935 }
586
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert TrOCR checkpoints from the unilm repository.""" import argparse from pathlib import Path import requests import torch from PIL import Image from transformers import ( RobertaTokenizer, TrOCRConfig, TrOCRForCausalLM, TrOCRProcessor, VisionEncoderDecoderModel, ViTConfig, ViTImageProcessor, ViTModel, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(encoder_config, decoder_config): rename_keys = [] for i in range(encoder_config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f"encoder.deit.blocks.{i}.norm1.weight", f"encoder.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm1.bias", f"encoder.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.weight", f"encoder.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.attn.proj.bias", f"encoder.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.norm2.weight", f"encoder.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.norm2.bias", f"encoder.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.weight", f"encoder.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc1.bias", f"encoder.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append( (f"encoder.deit.blocks.{i}.mlp.fc2.weight", f"encoder.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"encoder.deit.blocks.{i}.mlp.fc2.bias", f"encoder.encoder.layer.{i}.output.dense.bias")) # cls token, position embeddings and patch embeddings of encoder rename_keys.extend( [ ("encoder.deit.cls_token", "encoder.embeddings.cls_token"), ("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"), ("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"), ("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"), ("encoder.deit.norm.weight", "encoder.layernorm.weight"), ("encoder.deit.norm.bias", "encoder.layernorm.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, encoder_config): for i in range(encoder_config.num_hidden_layers): # queries, keys and values (only weights, no biases) in_proj_weight = state_dict.pop(f"encoder.deit.blocks.{i}.attn.qkv.weight") state_dict[f"encoder.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : encoder_config.hidden_size, : ] state_dict[f"encoder.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ encoder_config.hidden_size : encoder_config.hidden_size * 2, : ] state_dict[f"encoder.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -encoder_config.hidden_size :, : ] def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of the IAM Handwriting Database def prepare_img(checkpoint_url): if "handwritten" in checkpoint_url: url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let # url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" # # url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg" elif "printed" in checkpoint_url or "stage1" in checkpoint_url: url = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg" im = Image.open(requests.get(url, stream=True).raw).convert("RGB") return im @torch.no_grad() def convert_tr_ocr_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our VisionEncoderDecoderModel structure. """ # define encoder and decoder configs based on checkpoint_url encoder_config = ViTConfig(image_size=384, qkv_bias=False) decoder_config = TrOCRConfig() # size of the architecture if "base" in checkpoint_url: decoder_config.encoder_hidden_size = 768 elif "large" in checkpoint_url: # use ViT-large encoder encoder_config.hidden_size = 1024 encoder_config.intermediate_size = 4096 encoder_config.num_hidden_layers = 24 encoder_config.num_attention_heads = 16 decoder_config.encoder_hidden_size = 1024 else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL") # the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards if "large-printed" in checkpoint_url or "stage1" in checkpoint_url: decoder_config.tie_word_embeddings = False decoder_config.activation_function = "relu" decoder_config.max_position_embeddings = 1024 decoder_config.scale_embedding = True decoder_config.use_learned_position_embeddings = False decoder_config.layernorm_embedding = False # load HuggingFace model encoder = ViTModel(encoder_config, add_pooling_layer=False) decoder = TrOCRForCausalLM(decoder_config) model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder) model.eval() # load state_dict of original model, rename some keys state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True)["model"] rename_keys = create_rename_keys(encoder_config, decoder_config) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, encoder_config) # remove parameters we don't need del state_dict["encoder.deit.head.weight"] del state_dict["encoder.deit.head.bias"] del state_dict["decoder.version"] # add prefix to decoder keys for key, val in state_dict.copy().items(): val = state_dict.pop(key) if key.startswith("decoder") and "output_projection" not in key: state_dict["decoder.model." + key] = val else: state_dict[key] = val # load state dict model.load_state_dict(state_dict) # Check outputs on an image image_processor = ViTImageProcessor(size=encoder_config.image_size) tokenizer = RobertaTokenizer.from_pretrained("FacebookAI/roberta-large") processor = TrOCRProcessor(image_processor, tokenizer) pixel_values = processor(images=prepare_img(checkpoint_url), return_tensors="pt").pixel_values # verify logits decoder_input_ids = torch.tensor([[model.config.decoder.decoder_start_token_id]]) outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) logits = outputs.logits expected_shape = torch.Size([1, 1, 50265]) if "trocr-base-handwritten" in checkpoint_url: expected_slice = torch.tensor( [-1.4502, -4.6683, -0.5347, -2.9291, 9.1435, -3.0571, 8.9764, 1.7560, 8.7358, -1.5311] ) elif "trocr-large-handwritten" in checkpoint_url: expected_slice = torch.tensor( [-2.6437, -1.3129, -2.2596, -5.3455, 6.3539, 1.7604, 5.4991, 1.4702, 5.6113, 2.0170] ) elif "trocr-base-printed" in checkpoint_url: expected_slice = torch.tensor( [-5.6816, -5.8388, 1.1398, -6.9034, 6.8505, -2.4393, 1.2284, -1.0232, -1.9661, -3.9210] ) elif "trocr-large-printed" in checkpoint_url: expected_slice = torch.tensor( [-6.0162, -7.0959, 4.4155, -5.1063, 7.0468, -3.1631, 2.6466, -0.3081, -0.8106, -1.7535] ) if "stage1" not in checkpoint_url: assert logits.shape == expected_shape, "Shape of logits not as expected" assert torch.allclose(logits[0, 0, :10], expected_slice, atol=1e-3), "First elements of logits not as expected" Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving processor to {pytorch_dump_folder_path}") processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) args = parser.parse_args() convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/trocr/convert_trocr_unilm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/trocr/convert_trocr_unilm_to_pytorch.py", "repo_id": "transformers", "token_count": 4298 }
587
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert UniSpeechSat checkpoint.""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() logger = logging.get_logger(__name__) MAPPING = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } TOP_LEVEL_KEYS = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def set_recursively(hf_pointer, key, value, full_name, weight_type): for attribute in key.split("."): hf_pointer = getattr(hf_pointer, attribute) if weight_type is not None: hf_shape = getattr(hf_pointer, weight_type).shape else: hf_shape = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": hf_pointer.weight.data = value elif weight_type == "weight_g": hf_pointer.weight_g.data = value elif weight_type == "weight_v": hf_pointer.weight_v.data = value elif weight_type == "bias": hf_pointer.bias.data = value else: hf_pointer.data = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.") def recursively_load_weights(fairseq_model, hf_model): unused_weights = [] fairseq_dict = fairseq_model.state_dict() feature_extractor = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): is_used = False if "conv_layers" in name: load_conv_layer( name, value, feature_extractor, unused_weights, hf_model.config.feat_extract_norm == "group", ) is_used = True else: for key, mapped_key in MAPPING.items(): mapped_key = "unispeech_sat." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if "layer_norm_for_extract" in name and (".".join(name.split(".")[:-1]) != key): # special case since naming is very similar continue is_used = True if "*" in mapped_key: layer_index = name.split(key)[0].split(".")[-2] mapped_key = mapped_key.replace("*", layer_index) if "weight_g" in name: weight_type = "weight_g" elif "weight_v" in name: weight_type = "weight_v" elif "bias" in name: weight_type = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj weight_type = "weight" else: weight_type = None set_recursively(hf_model, mapped_key, value, name, weight_type) continue if not is_used: unused_weights.append(name) logger.warning(f"Unused weights: {unused_weights}") def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm): name = full_name.split("conv_layers.")[-1] items = name.split(".") layer_id = int(items[0]) type_id = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.bias.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].conv.weight.data = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.") elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.") else: unused_weights.append(full_name) @torch.no_grad() def convert_unispeech_sat_checkpoint( checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True ): """ Copy/paste/tweak model's weights to transformers design. """ if config_path is not None: config = UniSpeechSatConfig.from_pretrained(config_path) else: config = UniSpeechSatConfig() dict_path = "" if is_finetuned: hf_wav2vec = UniSpeechSatForCTC(config) else: hf_wav2vec = UniSpeechSatForPreTraining(config) model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])} ) model = model[0].eval() recursively_load_weights(model, hf_wav2vec) hf_wav2vec.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) args = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
transformers/src/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/unispeech_sat/convert_unispeech_sat_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 4200 }
588
# coding=utf-8 # Copyright 2022 HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Classes to support TF Vision-Encoder-Text-Decoder architectures""" from __future__ import annotations import re import warnings from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...configuration_utils import PretrainedConfig from ...modeling_tf_outputs import TFBaseModelOutput, TFSeq2SeqLMOutput from ...modeling_tf_utils import TFCausalLanguageModelingLoss, TFPreTrainedModel, get_initializer, keras, unpack_inputs from ...tf_utils import shape_list from ...utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ..auto.configuration_auto import AutoConfig from ..auto.modeling_tf_auto import TFAutoModel, TFAutoModelForCausalLM from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "VisionEncoderDecoderConfig" DEPRECATION_WARNING = ( "Version v4.17.0 introduces a better way to train encoder-decoder models by computing the loss inside the" " encoder-decoder framework rather than in the decoder itself. You may observe training discrepancies if" " fine-tuning a model trained with versions anterior to 4.17.0. The decoder_input_ids are now created based on the" " labels, no need to pass them yourself anymore." ) VISION_ENCODER_DECODER_START_DOCSTRING = r""" This class can be used to initialize an image-to-text-sequence model with any pretrained vision autoencoding model as the encoder and any pretrained text autoregressive model as the decoder. The encoder is loaded via [`~TFAutoModel.from_pretrained`] function and the decoder is loaded via [`~TFAutoModelForCausalLM.from_pretrained`] function. Cross-attention layers are automatically added to the decoder and should be fine-tuned on a downstream generative task, like image captioning. The effectiveness of initializing sequence-to-sequence models with pretrained checkpoints for sequence generation tasks was shown in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, Aliaksei Severyn. Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. Additionally, in [TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models](https://arxiv.org/abs/2109.10282) it is shown how leveraging large pretrained vision models for optical character recognition (OCR) yields a significant performance improvement. After such a Vision-Encoder-Text-Decoder model has been trained/fine-tuned, it can be saved/loaded just like any other models (see the examples for more information). This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. Parameters: config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ VISION_ENCODER_DECODER_INPUTS_DOCSTRING = r""" Args: pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using the vision's model's image processor. For example, using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. decoder_input_ids (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). Provide for sequence to sequence training to the decoder. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. decoder_attention_mask (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(tf.Tensor)`, *optional*): This tuple must consist of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` (`tf.Tensor` of shape `({0}, hidden_size)`) is a tensor of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(tf.Tensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `({0})`. decoder_inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. labels (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): Labels for computing the masked language modeling loss for the decoder. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): If set to `True`, the model will return a [`~utils.Seq2SeqLMOutput`] instead of a plain tuple. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). kwargs (*optional*): Remaining dictionary of keyword arguments. Keyword arguments come in two flavors: - Without a prefix which will be input as `**encoder_kwargs` for the encoder forward function. - With a *decoder_* prefix which will be input as `**decoder_kwargs` for the decoder forward function. """ # Copied from transformers.models.encoder_decoder.modeling_tf_encoder_decoder.shift_tokens_right def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int, decoder_start_token_id: int): if pad_token_id is None: raise ValueError("Make sure to set the pad_token_id attribute of the model's configuration.") pad_token_id = tf.cast(pad_token_id, input_ids.dtype) if decoder_start_token_id is None: raise ValueError("Make sure to set the decoder_start_token_id attribute of the model's configuration.") decoder_start_token_id = tf.cast(decoder_start_token_id, input_ids.dtype) start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id) shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1) # replace possible -100 values in labels by `pad_token_id` shifted_input_ids = tf.where( shifted_input_ids == -100, tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids ) # "Verify that `labels` has only positive values and -100" assert_gte0 = tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=input_ids.dtype)) # Make sure the assertion op is called by wrapping the result in an identity no-op with tf.control_dependencies([assert_gte0]): shifted_input_ids = tf.identity(shifted_input_ids) return shifted_input_ids @add_start_docstrings(VISION_ENCODER_DECODER_START_DOCSTRING) class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss): r""" [`TFVisionEncoderDecoderModel`] is a generic model class that will be instantiated as a transformer architecture with one of the base vision model classes of the library as encoder and another one of the base model classes as decoder when created with the [`~TFAutoModel.from_pretrained`] class method for the encoder and [`~TFAutoModelForCausalLM.from_pretrained`] class method for the decoder. """ config_class = VisionEncoderDecoderConfig base_model_prefix = "vision_encoder_decoder" load_weight_prefix = "tf_vision_encoder_decoder_model" main_input_name = "pixel_values" def __init__( self, config: Optional[PretrainedConfig] = None, encoder: Optional[TFPreTrainedModel] = None, decoder: Optional[TFPreTrainedModel] = None, ): if config is None and (encoder is None or decoder is None): raise ValueError("Either a configuration or an encoder and a decoder has to be provided.") if config is None: config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config) else: if not isinstance(config, self.config_class): raise ValueError(f"config: {config} has to be of type {self.config_class}") if config.decoder.cross_attention_hidden_size is not None: if config.decoder.cross_attention_hidden_size != config.encoder.hidden_size: raise ValueError( "If `cross_attention_hidden_size` is specified in the decoder's configuration, it has to be equal" f" to the encoder's `hidden_size`. Got {config.decoder.cross_attention_hidden_size} for" f" `config.decoder.cross_attention_hidden_size` and {config.encoder.hidden_size} for" " `config.encoder.hidden_size`." ) # initialize with config super().__init__(config) if encoder is None: encoder = TFAutoModel.from_config(config.encoder, name="encoder") if decoder is None: decoder = TFAutoModelForCausalLM.from_config(config.decoder, name="decoder") self.encoder = encoder self.decoder = decoder if self.encoder.config.to_dict() != self.config.encoder.to_dict(): logger.warning( f"Config of the encoder: {self.encoder.__class__} is overwritten by shared encoder config:" f" {self.config.encoder}" ) if self.decoder.config.to_dict() != self.config.decoder.to_dict(): logger.warning( f"Config of the decoder: {self.decoder.__class__} is overwritten by shared decoder config:" f" {self.config.decoder}" ) # make sure that the individual model's config refers to the shared config # so that the updates to the config will be synced self.encoder.config = self.config.encoder self.decoder.config = self.config.decoder # encoder outputs might need to be projected to different dimension for decoder if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): self.enc_to_dec_proj = keras.layers.Dense( units=self.decoder.config.hidden_size, kernel_initializer=get_initializer(config.encoder.initializer_range), name="enc_to_dec_proj", ) if self.encoder.get_output_embeddings() is not None: raise ValueError( f"The encoder {self.encoder} should not have a LM Head. Please use a model without LM Head" ) @property def input_signature(self): vision_config = self.config.encoder if hasattr(vision_config, "vision_config"): vision_config = vision_config.vision_config if hasattr(vision_config, "image_size"): image_size = vision_config.image_size else: image_size = vision_config.input_size return { "pixel_values": tf.TensorSpec( shape=( None, vision_config.num_channels, image_size, image_size, ), dtype=tf.float32, ), "decoder_input_ids": tf.TensorSpec(shape=(None, None), dtype=tf.int32, name="decoder_input_ids"), } def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def get_input_embeddings(self): return self.encoder.get_input_embeddings() def get_output_embeddings(self): return self.decoder.get_output_embeddings() def set_output_embeddings(self, new_embeddings): return self.decoder.set_output_embeddings(new_embeddings) def tf_to_pt_weight_rename(self, tf_weight): # Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models # (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal. # However, the name of that extra layer is the name of the MainLayer in the base model. We make the assumption # here that the config model_type is the same as the name of the MainLayer. I don't know of anywhere that's # not the case, and I wasn't sure how else to go from the config to the correct MainLayer name! # This override is only needed in the case where we're crossloading weights from PT. However, since weights are # often safetensors now, we don't know if we're going to be crossloading until we sniff the weights file. # Therefore, we specify tf_to_pt_weight_rename anyway, and let the super method figure out if it needs it # or not. encoder_model_type = self.config.encoder.model_type if "encoder" in tf_weight and "decoder" not in tf_weight: return (re.sub(rf"encoder\.{encoder_model_type}\.", "encoder.", tf_weight),) else: return (tf_weight,) @classmethod def from_encoder_decoder_pretrained( cls, encoder_pretrained_model_name_or_path: str = None, decoder_pretrained_model_name_or_path: str = None, *model_args, **kwargs, ) -> TFPreTrainedModel: r""" Instantiate an encoder and a decoder from one or two base classes of the library from pretrained model checkpoints. Params: encoder_pretrained_model_name_or_path (`str`, *optional*): Information necessary to initiate the encoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. An example is `google/vit-base-patch16-224-in21k`. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch index checkpoint file* (e.g, `./pt_model/`). In this case, `encoder_from_pt` should be set to `True`. decoder_pretrained_model_name_or_path (`str`, *optional*, defaults to *None*): Information necessary to initiate the decoder. Can be either: - A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co. - A path to a *directory* containing model weights saved using [`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - A path or url to a *pytorch checkpoint file* (e.g, `./pt_model/`). In this case, `decoder_from_pt` should be set to `True`. model_args (remaining positional arguments, *optional*): All remaning positional arguments will be passed to the underlying model's `__init__` method. kwargs (remaining dictionary of keyword arguments, *optional*): Can be used to update the configuration object (after it being loaded) and initiate the model (e.g., `output_attentions=True`). - To update the encoder configuration, use the prefix *encoder_* for each configuration parameter. - To update the decoder configuration, use the prefix *decoder_* for each configuration parameter. - To update the parent model configuration, do not use a prefix for each configuration parameter. Behaves differently depending on whether a `config` is provided or automatically loaded. Example: ```python >>> from transformers import TFVisionEncoderDecoderModel >>> # initialize a vit-bert from a pretrained ViT and a pretrained BERT model. Note that the cross-attention layers will be randomly initialized >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "google-bert/bert-base-uncased" ... ) >>> # saving model after fine-tuning >>> model.save_pretrained("./vit-bert") >>> # load fine-tuned model >>> model = TFVisionEncoderDecoderModel.from_pretrained("./vit-bert") ```""" kwargs_encoder = { argument[len("encoder_") :]: value for argument, value in kwargs.items() if argument.startswith("encoder_") } kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # remove encoder, decoder kwargs from kwargs for key in kwargs_encoder.keys(): del kwargs["encoder_" + key] for key in kwargs_decoder.keys(): del kwargs["decoder_" + key] # Load and initialize the encoder and decoder # The distinction between encoder and decoder at the model level is made # by the value of the flag `is_decoder` that we need to set correctly. encoder = kwargs_encoder.pop("model", None) if encoder is None: if encoder_pretrained_model_name_or_path is None: raise ValueError( "If `encoder_model` is not defined as an argument, a `encoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_encoder: encoder_config = AutoConfig.from_pretrained(encoder_pretrained_model_name_or_path) if encoder_config.is_decoder is True or encoder_config.add_cross_attention is True: logger.info( f"Initializing {encoder_pretrained_model_name_or_path} as a encoder model " "from a decoder model. Cross-attention and casual mask are disabled." ) encoder_config.is_decoder = False encoder_config.add_cross_attention = False kwargs_encoder["config"] = encoder_config kwargs_encoder["name"] = "encoder" kwargs_encoder["load_weight_prefix"] = cls.load_weight_prefix encoder = TFAutoModel.from_pretrained(encoder_pretrained_model_name_or_path, *model_args, **kwargs_encoder) decoder = kwargs_decoder.pop("model", None) if decoder is None: if decoder_pretrained_model_name_or_path is None: raise ValueError( "If `decoder_model` is not defined as an argument, a `decoder_pretrained_model_name_or_path` has " "to be defined." ) if "config" not in kwargs_decoder: decoder_config = AutoConfig.from_pretrained(decoder_pretrained_model_name_or_path) if decoder_config.is_decoder is False or decoder_config.add_cross_attention is False: logger.info( f"Initializing {decoder_pretrained_model_name_or_path} as a decoder model. Cross attention" f" layers are added to {decoder_pretrained_model_name_or_path} and randomly initialized if" f" {decoder_pretrained_model_name_or_path}'s architecture allows for cross attention layers." ) decoder_config.is_decoder = True decoder_config.add_cross_attention = True kwargs_decoder["config"] = decoder_config if kwargs_decoder["config"].is_decoder is False or kwargs_decoder["config"].add_cross_attention is False: logger.warning( f"Decoder model {decoder_pretrained_model_name_or_path} is not initialized as a decoder. " f"In order to initialize {decoder_pretrained_model_name_or_path} as a decoder, " "make sure that the attributes `is_decoder` and `add_cross_attention` of `decoder_config` " "passed to `.from_encoder_decoder_pretrained(...)` are set to `True` or do not pass a " "`decoder_config` to `.from_encoder_decoder_pretrained(...)`" ) kwargs_decoder["name"] = "decoder" kwargs_decoder["load_weight_prefix"] = cls.load_weight_prefix decoder = TFAutoModelForCausalLM.from_pretrained(decoder_pretrained_model_name_or_path, **kwargs_decoder) # Make sure these 2 `keras.Model` have fixed names so `from_pretrained` could load model weights correctly. if encoder.name != "encoder": raise ValueError("encoder model must be created with the name `encoder`.") if decoder.name != "decoder": raise ValueError("decoder model must be created with the name `decoder`.") # instantiate config with corresponding kwargs config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(encoder.config, decoder.config, **kwargs) return cls(encoder=encoder, decoder=decoder, config=config) @unpack_inputs @add_start_docstrings_to_model_forward( VISION_ENCODER_DECODER_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) def call( self, pixel_values: np.ndarray | tf.Tensor | None = None, decoder_input_ids: np.ndarray | tf.Tensor | None = None, decoder_attention_mask: np.ndarray | tf.Tensor | None = None, encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None, decoder_inputs_embeds: np.ndarray | tf.Tensor | None = None, labels: np.ndarray | tf.Tensor | None = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, **kwargs, ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoTokenizer, TFVisionEncoderDecoderModel >>> from PIL import Image >>> import requests >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> decoder_tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2") >>> # initialize a bert2gpt2 from a pretrained BERT and GPT2 models. Note that the cross-attention layers will be randomly initialized >>> model = TFVisionEncoderDecoderModel.from_encoder_decoder_pretrained( ... "google/vit-base-patch16-224-in21k", "openai-community/gpt2" ... ) >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> img = Image.open(requests.get(url, stream=True).raw) >>> # forward >>> pixel_values = image_processor(images=img, return_tensors="tf").pixel_values # Batch size 1 >>> decoder_input_ids = decoder_tokenizer("Linda Davis", return_tensors="tf").input_ids # Batch size 1 >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids) >>> # training >>> outputs = model(pixel_values=pixel_values, decoder_input_ids=decoder_input_ids, labels=decoder_input_ids) >>> loss, logits = outputs.loss, outputs.logits >>> # save and load from pretrained >>> model.save_pretrained("vit-gpt2") >>> model = TFVisionEncoderDecoderModel.from_pretrained("vit-gpt2") >>> # generation >>> generated = model.generate(pixel_values, decoder_start_token_id=model.config.decoder.bos_token_id) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict kwargs_encoder = {argument: value for argument, value in kwargs.items() if not argument.startswith("decoder_")} kwargs_decoder = { argument[len("decoder_") :]: value for argument, value in kwargs.items() if argument.startswith("decoder_") } # Let the user be responsible for the expected format. if encoder_outputs is not None: if return_dict and not isinstance(encoder_outputs, ModelOutput): raise ValueError( "If `return_dict=True` and `encoder_outputs` is provided, it should be an instance of " f"`ModelOutput`. Got an instance {type(encoder_outputs)} for `encoder_outputs`." ) if encoder_outputs is None: encoder_inputs = { "input_ids": pixel_values, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "return_dict": return_dict, "training": training, } # Add arguments to encoder from `kwargs_encoder` encoder_inputs.update(kwargs_encoder) if "input_ids" in encoder_inputs: encoder_inputs["pixel_values"] = encoder_inputs.pop("input_ids") if encoder_inputs["pixel_values"] is None: raise ValueError("You have to specify pixel_values") # Handle the case where the inputs are passed as a single dict which contains `labels`. # The `labels` shouldn't be passed to `self.encoder` below, because it is a based model without this # parameter (otherwise, an error occurs when `input_processing` is called inside `self.encoder.call()`). if "labels" in encoder_inputs: labels = encoder_inputs.pop("labels") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_input_ids" in encoder_inputs: decoder_input_ids = encoder_inputs.pop("decoder_input_ids") # handle the init case where `dummy_inputs` returns a dict containing `decoder_input_ids`. if "decoder_attention_mask" in encoder_inputs: decoder_attention_mask = encoder_inputs.pop("decoder_attention_mask") encoder_outputs = self.encoder(**encoder_inputs) encoder_hidden_states = encoder_outputs[0] # optionally project encoder_hidden_states if ( self.encoder.config.hidden_size != self.decoder.config.hidden_size and self.decoder.config.cross_attention_hidden_size is None ): encoder_hidden_states = self.enc_to_dec_proj(encoder_hidden_states) if (labels is not None) and (decoder_input_ids is None and decoder_inputs_embeds is None): decoder_input_ids = shift_tokens_right( labels, self.config.pad_token_id, self.config.decoder_start_token_id ) batch_size, sequence_length = shape_list(encoder_hidden_states)[:2] encoder_attention_mask = tf.ones(shape=(batch_size, sequence_length), dtype=tf.int32) decoder_inputs = { "input_ids": decoder_input_ids, "attention_mask": decoder_attention_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, "inputs_embeds": decoder_inputs_embeds, "output_attentions": output_attentions, "output_hidden_states": output_hidden_states, "use_cache": use_cache, "past_key_values": past_key_values, "return_dict": return_dict, "training": training, } # Add arguments to decoder from `kwargs_decoder` decoder_inputs.update(kwargs_decoder) decoder_outputs = self.decoder(**decoder_inputs) logits = decoder_outputs[0] # Compute loss independent from decoder (as some shift the logits inside them) loss = None if labels is not None: warnings.warn(DEPRECATION_WARNING, FutureWarning) loss = self.hf_compute_loss(labels, logits) if not return_dict: past_key_values = None if use_cache: past_key_values = decoder_outputs[1] # The starting index of the remaining elements in `decoder_outputs` start_index = sum([1 if x is not None else 0 for x in (loss, logits, past_key_values)]) if not isinstance(encoder_outputs, tuple): encoder_outputs = encoder_outputs.to_tuple() output = (loss, logits, past_key_values) + decoder_outputs[start_index:] + encoder_outputs output = tuple([x for x in output if x is not None]) return output return TFSeq2SeqLMOutput( loss=loss, logits=decoder_outputs.logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def serving_output(self, output): pkv = tf.tuple(output.past_key_values)[1] if self.config.decoder.use_cache else None dec_hs = ( tf.convert_to_tensor(output.decoder_hidden_states) if self.config.decoder.output_hidden_states else None ) dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.decoder.output_attentions else None enc_hs = ( tf.convert_to_tensor(output.encoder_hidden_states) if self.config.encoder.output_hidden_states else None ) enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.encoder.output_attentions else None cross_attns = ( tf.convert_to_tensor(output.cross_attentions) if self.config.decoder.output_attentions and output.cross_attentions is not None else None ) return TFSeq2SeqLMOutput( logits=output.logits, past_key_values=pkv, decoder_hidden_states=dec_hs, decoder_attentions=dec_attns, encoder_last_hidden_state=output.encoder_last_hidden_state, encoder_hidden_states=enc_hs, encoder_attentions=enc_attns, cross_attentions=cross_attns, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, encoder_outputs=None, **kwargs ): decoder_inputs = self.decoder.prepare_inputs_for_generation(input_ids, past_key_values=past_key_values) decoder_attention_mask = decoder_inputs["attention_mask"] if "attention_mask" in decoder_inputs else None past_key_values = decoder_inputs.get("past_key_values") input_dict = { "pixel_values": None, # needs to be passed to make Keras.layer.__call__ happy "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "decoder_input_ids": decoder_inputs["input_ids"], # TODO (joao): the `TFBaseModelOutput` wrapper should not be needed after the generate refactor is complete "encoder_outputs": TFBaseModelOutput(last_hidden_state=encoder_outputs[0]), "past_key_values": past_key_values, "use_cache": use_cache, } return input_dict def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id) def resize_token_embeddings(self, *args, **kwargs): raise NotImplementedError( "Resizing the embedding layers via the TFVisionEncoderDecoderModel directly is not supported. " "Please use the respective methods of the wrapped objects (model.decoder.resize_token_embeddings(...))" ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "enc_to_dec_proj", None) is not None: with tf.name_scope(self.enc_to_dec_proj.name): self.enc_to_dec_proj.build([None, None, self.encoder.config.hidden_size]) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "decoder", None) is not None: with tf.name_scope(self.decoder.name): self.decoder.build(None)
transformers/src/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py/0
{ "file_path": "transformers/src/transformers/models/vision_encoder_decoder/modeling_tf_vision_encoder_decoder.py", "repo_id": "transformers", "token_count": 14880 }
589