id
int64 -30,985
55.9k
| text
stringlengths 5
437k
|
---|---|
-22,201 | \left(8 + s\right) (9 (-1) + s) = 72 (-1) + s s - s |
22,171 | 2!\cdot (6 + 1)! = 10080 |
23,030 | 0.33333\times ... = \frac13 |
33,851 | (2 (-1) + 2^7)/7 = 18 |
-29,515 | \frac{6!}{(6 + 5\left(-1\right))!} = 720 |
-19,032 | \frac{26}{45} = \frac{A_t}{81 \cdot π} \cdot 81 \cdot π = A_t |
-7,652 | \frac{1}{-2 \cdot i - 1} \cdot \left(5 + 5 \cdot i\right) \cdot \frac{-1 + 2 \cdot i}{-1 + i \cdot 2} = \frac{5 + i \cdot 5}{-1 - 2 \cdot i} |
29,812 | g^4 = l^2/9 \Rightarrow \frac{|l|}{9} = g^2 |
15,996 | \frac{1}{200} \cdot \left(5 + 1\right) = \frac{6}{200} = \frac{3}{100} |
-1,705 | \pi*5/3 + \tfrac{1}{4}\pi = \frac{23}{12} \pi |
30,676 | 3\times x^2 + x\times 3 + 1 = \left(1 + x\right)^3 - x^3 |
-18,383 | \dfrac{y \cdot \left(4 (-1) + y\right)}{(4 \left(-1\right) + y) (y + 4 (-1))} = \frac{y y - 4 y}{16 + y^2 - 8 y} |
30,954 | -l^2 + x^2 = (x + l)*\left(x - l\right) |
29,363 | u_a^2 = \frac12(u_a^2 + u_a^2) |
47,141 | 194 = 2 \times 97 |
-2,254 | \frac{4}{18} = -\frac{2}{18} + 6/18 |
-1,717 | \frac{\pi}{12} = \frac{\pi}{6} - \frac{\pi}{12} |
-15,129 | \tfrac{1}{r^{12}\cdot \frac{1}{r^4\cdot q^{10}}} = \frac{1}{\frac{1}{q^{10}}}\cdot \frac{1}{r^{12}}\cdot r^4 = \dfrac{1}{r^8}\cdot q^{10} = \frac{1}{r^8}\cdot q^{10} |
30,260 | x \cdot z + y \cdot x' + z \cdot y = x' \cdot y + x \cdot z |
19,062 | \left\{1, ..., 2\right\} = \N |
15,486 | (12 \cdot k + 11)/4 = 3/4 + k \cdot 3 + 2 |
22,133 | 22/30 = \frac{1}{15}11 \approx 0.73 |
-27,655 | 1 - 2/3 + 9/2 = \frac{1}{3} + 9/2 = 29/6 |
21,777 | z \cdot 4 \cdot (n + 1) = z \cdot \left(n \cdot 4 + 4\right) |
-8,894 | \left(-4\right)*(-4)*(-4) = -4^3 |
-4,515 | \frac{23\cdot (-1) + 3\cdot x}{x^2 + x + 12\cdot (-1)} = \frac{1}{4 + x}\cdot 5 - \frac{1}{3\cdot (-1) + x}\cdot 2 |
11,738 | 4/6\cdot \frac{1}{6}\cdot 4 = 4/9 |
190 | 1 + \pi = \cos{\pi/2} + (\pi/2) * (\pi/2) * (\pi/2)*\dfrac{8}{\pi^3} + \pi/2*2 |
22,228 | 2 \cdot 3 = x \cdot 2\Longrightarrow 3 = x |
9,374 | 13^2*4 = 24^2 + 6 * 6 + 8^2 |
-2,901 | 52^{1/2} + 208^{1/2} = (16\cdot 13)^{1/2} + \left(4\cdot 13\right)^{1/2} |
705 | x^{n_2} \times x^{n_1} = x^{n_1 + n_2} |
10,916 | \frac{1989}{867} = \frac{1989}{51 \cdot 17} \cdot 1 = 39/17 |
7,253 | \frac{h\cdot 1^{-1}}{1} = \frac{h}{1^{-1}}\cdot 1 = \frac{h}{1} |
10,228 | B_k B_i = B_i B_k |
-14,602 | 630 = 5 \cdot 86 + 2 \cdot 100 |
-23,410 | \frac{\frac15*4}{7} = 4/35 |
28,445 | 1 + (s + \frac18)^2 - 1/64 = 1 + s^2 + \frac14 \cdot s |
9,112 | \dfrac{1}{2\pi}a = \frac{1}{2}a \pi = a\pi/2 |
-20,874 | \frac{1}{6 + t} \cdot (t + 6) \cdot (-6/5) = \frac{1}{t \cdot 5 + 30} \cdot (-t \cdot 6 + 36 \cdot \left(-1\right)) |
38,641 | 1 = \dfrac{1}{1 + 0}*\left(1 + 0\right) |
-22,044 | 9/4 = \frac{1}{12}\cdot 27 |
9,792 | E\cdot k = 1 + \frac{7}{10}\cdot (E\cdot k - E) + 3/10\cdot (E\cdot k + E) = E\cdot k + 1 - 2/5\cdot E |
-18,947 | \frac{41}{45} = \frac{1}{25 \cdot \pi} \cdot E_p \cdot 25 \cdot \pi = E_p |
11,510 | (1 + y)*(y + 5*\left(-1\right)) = y^2 - y*4 + 5*(-1) |
-11,021 | 8 = \frac{1}{11} \cdot 88 |
12,973 | -a + a + z = -a + a + x\Longrightarrow x - a + a = z - a + a |
-20,976 | -\frac{3}{2}*\frac{1}{z*\left(-4\right)}*((-4)*z) = \frac{12*z}{(-8)*z}*1 |
-21,017 | \frac47*(-9/(-9)) = -\dfrac{1}{-63}*36 |
-26,592 | 25 x^2 + 16 (-1) = (4 + x*5) \left(5x + 4(-1)\right) |
26,494 | (b - s) (s + b) = b \cdot b - s^2 |
14,566 | Hy E = HEy |
18,089 | \sqrt{-9} \sqrt{-4} = \sqrt{9(-1)} \sqrt{4(-1)} = 3i\cdot 2i = 6i \cdot i = -6 |
6,685 | 1^2 + 2 \cdot 4 \cdot 4 = 33 |
7,378 | -i = \left(a + g\cdot i\right)^3 = a^3 + 3\cdot a^2\cdot g\cdot i - 3\cdot a\cdot g^2 - g^3\cdot i = a^3 - 3\cdot a\cdot g^2 + \left(3\cdot a^2\cdot g - g^3\right)\cdot i |
-4,094 | \dfrac{k*7}{9} = k*7/9 |
22,704 | 1-\frac{1}{4} \cdot 2 = \frac{2}{4} |
23,611 | 2\cdot (k\cdot 4 + 3) = 8\cdot k + 6 |
23,033 | (1 - \tfrac{1}{\vartheta}y) (\sqrt{y^2 + \vartheta^2})^2 = (-\frac{y}{\vartheta} + 1) (\vartheta^2 + y^2) |
11,811 | \frac{p \cdot p + \left(-1\right)}{p + (-1)} = p + 1 |
5,420 | \cos(\frac{\pi}{4}) = \sin(\frac{1}{4} \cdot \pi) = \frac{1}{\sqrt{2}} |
25,369 | \dfrac{x^2 + x + 6\cdot \left(-1\right)}{x + 2\cdot (-1)} = \frac{1}{x + 2\cdot (-1)}\cdot (x + 3)\cdot (x + 2\cdot (-1)) = x + 3 |
-4,580 | -\tfrac{1}{y + 5(-1)} - \frac{1}{y + 3\left(-1\right)} = \dfrac{-y*2 + 8}{y * y - 8y + 15} |
15,633 | \arcsin{1/2} = \pi/6 |
-2,332 | \tfrac{5}{16} = 9/16 - 4/16 |
9,826 | \dfrac{-z + (-1)}{(-1) - b} = \frac{1}{b + 1}(z + 1) |
-1,262 | (1/3\cdot (-8))/(\left(-7\right)\cdot \frac15) = -\frac57\cdot (-8/3) |
2,579 | -I^3 + a^3 = (a - I)\cdot \left(I^2 + a^2 + a\cdot I\right) |
-9,267 | -b\cdot 3\cdot 3\cdot 3 + b\cdot 2\cdot 3\cdot 5\cdot b = -b\cdot 27 + b^2\cdot 30 |
12,570 | (1 - y^3)*(1 - y^5)*(-y + 1) = -y^9 + 1 - y - y * y * y + y^4 - y^5 + y^6 + y^8 |
17,186 | 1 - u \cdot u = (u + 1) \cdot (1 - u) |
2,495 | \sin(f + b) = \cos(f)\cdot \sin\left(b\right) + \cos(b)\cdot \sin(f) |
49,154 | 1 + 2^{3^1} = 9 |
-20,273 | \frac{1 + k\cdot 5}{5\cdot k + 1}\cdot (-4/9) = \frac{1}{k\cdot 45 + 9}\cdot (4\cdot (-1) - k\cdot 20) |
-1,129 | \frac{1}{1/8}*((-1)*\tfrac{1}{2}) = \frac{8}{1}*\left(-1/2\right) |
7,341 | v = y + 1 \implies y = v + (-1) |
31,905 | \tfrac12(z + 1) = -\frac{1}{2}(1 - z) + 1 |
25,503 | \sinh(2) = \dfrac{e^4 + (-1)}{2\cdot e^2} \approx \frac{243}{67} |
-10,642 | \frac{9}{\delta*15 + 25}*4/4 = \frac{1}{100 + \delta*60}*36 |
37,812 | \frac96 = \dfrac{1}{2 \cdot 3} \cdot 9 = \frac12 \cdot 3 |
13,839 | 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = \dfrac1272 = \frac224\cdot \left(2\cdot 4 + 1\right) = 36 |
14,310 | 1 + y^2 = u \Rightarrow u + (-1) = y^2 |
13,467 | 2 \cdot x^2 + 6 \cdot x + 35 = 2 \cdot (x^2 + 3 \cdot x) + 35 = 2 \cdot (x + \frac32) \cdot (x + \frac32) + 61/2 |
2,363 | \frac{2}{-\dfrac{1}{8*\left(-1\right) + 1}*2 + 1} = \frac{14}{9} |
-2,885 | 2\cdot \sqrt{3} = \sqrt{3}\cdot (5 + 1 + 4\cdot (-1)) |
-27,662 | \frac{\mathrm{d}}{\mathrm{d}x} e^{-x} = -\frac{1}{e^x} |
3,657 | 4n = 3\epsilon + 3n \Rightarrow n = 3\epsilon |
9,352 | 2\xi_i + (-1) = \xi_i |
-20,216 | -7/9 \cdot \frac{-5 \cdot z + 8 \cdot \left(-1\right)}{8 \cdot (-1) - 5 \cdot z} = \frac{1}{-45 \cdot z + 72 \cdot (-1)} \cdot (z \cdot 35 + 56) |
-6,711 | 7/100 + \frac{4}{10} = \frac{7}{100} + 40/100 |
22,880 | 1^r \cdot 1^r = 1^r |
31,035 | \frac{2\cdot (2(-1) + 17)}{((-1) + 17) \left(2(-1) + 17\right)} + \frac{1}{17} = 2/16 + 1/17 |
27,928 | \left(q^2 + q + 1\right) ((-1) + q) = (-1) + q^3 |
-3,269 | 9^{1/2}\cdot 6^{1/2} + 16^{1/2}\cdot 6^{1/2} = 6^{1/2}\cdot 4 + 6^{1/2}\cdot 3 |
1,755 | n = s + (1 - s)*(1 + n) = 1 + \left(1 - s\right)*n |
12,719 | (x + 1)\cdot 2 + 1 = 3 + 2x |
31,753 | x \cdot R \cdot \delta = R \cdot x \cdot \delta |
22,261 | x\times E_p = E_p\times x |
12,953 | \left(10 + y\right)\cdot 11 = 160 + y \implies 11\cdot y + 110 = 160 + y |
18,941 | f_1 \cdot f_2 \cdot f = f_1 \cdot f_2 \cdot f = f_1 \cdot f_2 \cdot f |