id
int64
0
4.52k
code
stringlengths
142
31.2k
answer
stringclasses
7 values
prompt
stringlengths
1.64k
32.6k
test_prompt
stringlengths
1.7k
32.7k
token_length
int64
373
7.8k
__index_level_0__
int64
0
4.5k
2,094
import java.util.Arrays; import java.util.Scanner; public class A { void run(){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; boolean dif = false; for(int i=0;i<n;i++)a[i]=sc.nextInt(); Arrays.sort(a); if(n==1){ System.out.println(a[0]==1?2:1);return; } int[] m = new int[n]; for(int i=1;i<n;i++)if(a[i]!=a[i-1])dif=true; m[0] = 1; for(int i=1;i<n;i++)m[i]=a[i-1]; if(!dif&&a[0]==1)m[n-1]++; for(int i=0;i<n;i++)System.out.print(m[i]+(i==n-1?"\n":" ")); } public static void main(String[] args) { new A().run(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class A { void run(){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; boolean dif = false; for(int i=0;i<n;i++)a[i]=sc.nextInt(); Arrays.sort(a); if(n==1){ System.out.println(a[0]==1?2:1);return; } int[] m = new int[n]; for(int i=1;i<n;i++)if(a[i]!=a[i-1])dif=true; m[0] = 1; for(int i=1;i<n;i++)m[i]=a[i-1]; if(!dif&&a[0]==1)m[n-1]++; for(int i=0;i<n;i++)System.out.print(m[i]+(i==n-1?"\n":" ")); } public static void main(String[] args) { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class A { void run(){ Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int[] a = new int[n]; boolean dif = false; for(int i=0;i<n;i++)a[i]=sc.nextInt(); Arrays.sort(a); if(n==1){ System.out.println(a[0]==1?2:1);return; } int[] m = new int[n]; for(int i=1;i<n;i++)if(a[i]!=a[i-1])dif=true; m[0] = 1; for(int i=1;i<n;i++)m[i]=a[i-1]; if(!dif&&a[0]==1)m[n-1]++; for(int i=0;i<n;i++)System.out.print(m[i]+(i==n-1?"\n":" ")); } public static void main(String[] args) { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
549
2,090
4,184
import java.util.Arrays; import java.util.Scanner; public class Main { static double[] dp; static double[][] P; public static void main(String[] args) { Scanner r = new Scanner(System.in); int n = r.nextInt(); double[][] g = new double[n][n]; for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) g[i][j] = r.nextDouble(); dp = new double[1 << n]; P = new double[1 << n][n]; for(int mask = 0; mask < 1 << n; mask++){ for(int d = 0; d < n; d++)if((mask & (1 << d)) == 0) for(int i = 0; i < n; i++)if((mask & (1 << i)) == 0){ if(i == d)continue; P[mask][d] += g[i][d]; } } for(int i = 0; i < n; i++){ Arrays.fill(dp, -1); double res = go(i, 0, g, n, n); System.out.println(res); } } private static double go(int a, int v, double[][] g, int cnt, int n) { if(dp[v] != -1)return dp[v]; if(cnt == 1){ return 1; }else{ double ret = 0; for(int d = 0; d < n; d++)if((v & (1 << d)) == 0 && d != a){ double current = P[v][d] * go(a, v | 1 << d, g, cnt-1, n); ret += current; } return dp[v] = ret/(cnt * (cnt-1) /2); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class Main { static double[] dp; static double[][] P; public static void main(String[] args) { Scanner r = new Scanner(System.in); int n = r.nextInt(); double[][] g = new double[n][n]; for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) g[i][j] = r.nextDouble(); dp = new double[1 << n]; P = new double[1 << n][n]; for(int mask = 0; mask < 1 << n; mask++){ for(int d = 0; d < n; d++)if((mask & (1 << d)) == 0) for(int i = 0; i < n; i++)if((mask & (1 << i)) == 0){ if(i == d)continue; P[mask][d] += g[i][d]; } } for(int i = 0; i < n; i++){ Arrays.fill(dp, -1); double res = go(i, 0, g, n, n); System.out.println(res); } } private static double go(int a, int v, double[][] g, int cnt, int n) { if(dp[v] != -1)return dp[v]; if(cnt == 1){ return 1; }else{ double ret = 0; for(int d = 0; d < n; d++)if((v & (1 << d)) == 0 && d != a){ double current = P[v][d] * go(a, v | 1 << d, g, cnt-1, n); ret += current; } return dp[v] = ret/(cnt * (cnt-1) /2); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class Main { static double[] dp; static double[][] P; public static void main(String[] args) { Scanner r = new Scanner(System.in); int n = r.nextInt(); double[][] g = new double[n][n]; for(int i = 0; i < n; i++) for(int j = 0; j < n; j++) g[i][j] = r.nextDouble(); dp = new double[1 << n]; P = new double[1 << n][n]; for(int mask = 0; mask < 1 << n; mask++){ for(int d = 0; d < n; d++)if((mask & (1 << d)) == 0) for(int i = 0; i < n; i++)if((mask & (1 << i)) == 0){ if(i == d)continue; P[mask][d] += g[i][d]; } } for(int i = 0; i < n; i++){ Arrays.fill(dp, -1); double res = go(i, 0, g, n, n); System.out.println(res); } } private static double go(int a, int v, double[][] g, int cnt, int n) { if(dp[v] != -1)return dp[v]; if(cnt == 1){ return 1; }else{ double ret = 0; for(int d = 0; d < n; d++)if((v & (1 << d)) == 0 && d != a){ double current = P[v][d] * go(a, v | 1 << d, g, cnt-1, n); ret += current; } return dp[v] = ret/(cnt * (cnt-1) /2); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
754
4,173
3,983
import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import static java.lang.Math.*; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Map.Entry; import java.util.StringTokenizer; import java.util.TreeMap; /** * * @author pttrung */ public class C { public static double Epsilon = 1e-6; public static long x, y, d; public static long MOD = 1000000007; public static int[][][] dp; public static int min, max, need; public static void main(String[] args) { Scanner in = new Scanner(); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(); int m = in.nextInt(); min = Math.min(n, m); max = (m + n) - min; dp = new int[max][1 << min][1 << min]; for (int[][] temp : dp) { for (int[] val : temp) { Arrays.fill(val, -1); } } need = (1 << min) - 1; //System.out.println(add + total); // System.out.println(min + " " + max); out.println(cal(0, 0, 0)); out.close(); } public static int cal(int index, int last, int lastHold) { if (index == max) { return 0; } if (dp[index][lastHold][last] != -1) { return dp[index][lastHold][last]; } int result = 0; for (int i = 0; i < 1 << min; i++) { if ((i | last) == need || (index == 0)) { // System.out.println("PREV " + index + " " + i + " " + last + " " + lastHold); // System.out.println("NEXT " + index + " " + i + " " + (i | lastHold) + " " + i); // System.out.println(Integer.bitCount(i) + " " + i); // if (index == 3) { // System.out.println(last + " " + i + " " + match(i, last) + " " + next); // } if(index + 1 == max && match(i,lastHold)!= need){ continue; } int temp = cal(index + 1, match(i,lastHold), i) + (min - Integer.bitCount(i)); result = result < temp ? temp : result; // break; } } dp[index][lastHold][last] = result; return result; } public static int match(int mask, int last) { int result = last; for (int i = 0; i < min; i++) { if (((1 << i) & mask) != 0) { int a = i - 1; int b = i + 1; result |= (1 << i); if (a >= 0) { result |= (1 << a); } if (b < min) { result |= (1 << b); } } } // System.out.println(mask + " " + result + " " + need); return result ; } public static long pow(long a, long b) { if (b == 0) { return 1; } long val = pow(a, b / 2); if (b % 2 == 0) { return val * val % MOD; } else { return a * (val * val % MOD) % MOD; } } public static void extendEuclid(long a, long b) { if (b == 0) { x = 1; y = 0; d = a; return; } extendEuclid(b, a % b); long x1 = y; long y1 = x - (a / b) * y; x = x1; y = y1; } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } static class Line { double a, b, c; Line(double x1, double y1, double x2, double y2) { if (Math.abs(x1 - x2) < Epsilon && Math.abs(y1 - y2) < Epsilon) { throw new RuntimeException("Two point are the same"); } a = y1 - y2; b = x2 - x1; c = -a * x1 - b * y1; } Line(Point x, Point y) { this(x.x, x.y, y.x, y.y); } public Line perpendicular(Point p) { return new Line(p, new Point(p.x + a, p.y + b)); } public Point intersect(Line l) { double d = a * l.b - b * l.a; if (d == 0) { throw new RuntimeException("Two lines are parallel"); } return new Point((l.c * b - c * l.b) / d, (l.a * c - l.c * a) / d); } } static void check(Point a, Point b, ArrayList<Point> p, Point[] rec, int index) { for (int i = 0; i < 4; i++) { int m = (i + index) % 4; int j = (i + 1 + index) % 4; Point k = intersect(minus(b, a), minus(rec[m], rec[j]), minus(rec[m], a)); if (k.x >= 0 && k.x <= 1 && k.y >= 0 && k.y <= 1) { Point val = new Point(k.x * minus(b, a).x, k.x * minus(b, a).y); p.add(add(val, a)); // System.out.println(a + " " + b + " " + rec[i] + " " + rec[j]); // System.out.println(add(val, a)); } } } static Point intersect(Point a, Point b, Point c) { double D = cross(a, b); if (D != 0) { return new Point(cross(c, b) / D, cross(a, c) / D); } return null; } static Point convert(Point a, double angle) { double x = a.x * cos(angle) - a.y * sin(angle); double y = a.x * sin(angle) + a.y * cos(angle); return new Point(x, y); } static Point minus(Point a, Point b) { return new Point(a.x - b.x, a.y - b.y); } static Point add(Point a, Point b) { return new Point(a.x + b.x, a.y + b.y); } static double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; } static class Point { double x, y; Point(double x, double y) { this.x = x; this.y = y; } @Override public String toString() { return "Point: " + x + " " + y; } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import static java.lang.Math.*; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Map.Entry; import java.util.StringTokenizer; import java.util.TreeMap; /** * * @author pttrung */ public class C { public static double Epsilon = 1e-6; public static long x, y, d; public static long MOD = 1000000007; public static int[][][] dp; public static int min, max, need; public static void main(String[] args) { Scanner in = new Scanner(); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(); int m = in.nextInt(); min = Math.min(n, m); max = (m + n) - min; dp = new int[max][1 << min][1 << min]; for (int[][] temp : dp) { for (int[] val : temp) { Arrays.fill(val, -1); } } need = (1 << min) - 1; //System.out.println(add + total); // System.out.println(min + " " + max); out.println(cal(0, 0, 0)); out.close(); } public static int cal(int index, int last, int lastHold) { if (index == max) { return 0; } if (dp[index][lastHold][last] != -1) { return dp[index][lastHold][last]; } int result = 0; for (int i = 0; i < 1 << min; i++) { if ((i | last) == need || (index == 0)) { // System.out.println("PREV " + index + " " + i + " " + last + " " + lastHold); // System.out.println("NEXT " + index + " " + i + " " + (i | lastHold) + " " + i); // System.out.println(Integer.bitCount(i) + " " + i); // if (index == 3) { // System.out.println(last + " " + i + " " + match(i, last) + " " + next); // } if(index + 1 == max && match(i,lastHold)!= need){ continue; } int temp = cal(index + 1, match(i,lastHold), i) + (min - Integer.bitCount(i)); result = result < temp ? temp : result; // break; } } dp[index][lastHold][last] = result; return result; } public static int match(int mask, int last) { int result = last; for (int i = 0; i < min; i++) { if (((1 << i) & mask) != 0) { int a = i - 1; int b = i + 1; result |= (1 << i); if (a >= 0) { result |= (1 << a); } if (b < min) { result |= (1 << b); } } } // System.out.println(mask + " " + result + " " + need); return result ; } public static long pow(long a, long b) { if (b == 0) { return 1; } long val = pow(a, b / 2); if (b % 2 == 0) { return val * val % MOD; } else { return a * (val * val % MOD) % MOD; } } public static void extendEuclid(long a, long b) { if (b == 0) { x = 1; y = 0; d = a; return; } extendEuclid(b, a % b); long x1 = y; long y1 = x - (a / b) * y; x = x1; y = y1; } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } static class Line { double a, b, c; Line(double x1, double y1, double x2, double y2) { if (Math.abs(x1 - x2) < Epsilon && Math.abs(y1 - y2) < Epsilon) { throw new RuntimeException("Two point are the same"); } a = y1 - y2; b = x2 - x1; c = -a * x1 - b * y1; } Line(Point x, Point y) { this(x.x, x.y, y.x, y.y); } public Line perpendicular(Point p) { return new Line(p, new Point(p.x + a, p.y + b)); } public Point intersect(Line l) { double d = a * l.b - b * l.a; if (d == 0) { throw new RuntimeException("Two lines are parallel"); } return new Point((l.c * b - c * l.b) / d, (l.a * c - l.c * a) / d); } } static void check(Point a, Point b, ArrayList<Point> p, Point[] rec, int index) { for (int i = 0; i < 4; i++) { int m = (i + index) % 4; int j = (i + 1 + index) % 4; Point k = intersect(minus(b, a), minus(rec[m], rec[j]), minus(rec[m], a)); if (k.x >= 0 && k.x <= 1 && k.y >= 0 && k.y <= 1) { Point val = new Point(k.x * minus(b, a).x, k.x * minus(b, a).y); p.add(add(val, a)); // System.out.println(a + " " + b + " " + rec[i] + " " + rec[j]); // System.out.println(add(val, a)); } } } static Point intersect(Point a, Point b, Point c) { double D = cross(a, b); if (D != 0) { return new Point(cross(c, b) / D, cross(a, c) / D); } return null; } static Point convert(Point a, double angle) { double x = a.x * cos(angle) - a.y * sin(angle); double y = a.x * sin(angle) + a.y * cos(angle); return new Point(x, y); } static Point minus(Point a, Point b) { return new Point(a.x - b.x, a.y - b.y); } static Point add(Point a, Point b) { return new Point(a.x + b.x, a.y + b.y); } static double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; } static class Point { double x, y; Point(double x, double y) { this.x = x; this.y = y; } @Override public String toString() { return "Point: " + x + " " + y; } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import static java.lang.Math.*; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Map.Entry; import java.util.StringTokenizer; import java.util.TreeMap; /** * * @author pttrung */ public class C { public static double Epsilon = 1e-6; public static long x, y, d; public static long MOD = 1000000007; public static int[][][] dp; public static int min, max, need; public static void main(String[] args) { Scanner in = new Scanner(); PrintWriter out = new PrintWriter(System.out); int n = in.nextInt(); int m = in.nextInt(); min = Math.min(n, m); max = (m + n) - min; dp = new int[max][1 << min][1 << min]; for (int[][] temp : dp) { for (int[] val : temp) { Arrays.fill(val, -1); } } need = (1 << min) - 1; //System.out.println(add + total); // System.out.println(min + " " + max); out.println(cal(0, 0, 0)); out.close(); } public static int cal(int index, int last, int lastHold) { if (index == max) { return 0; } if (dp[index][lastHold][last] != -1) { return dp[index][lastHold][last]; } int result = 0; for (int i = 0; i < 1 << min; i++) { if ((i | last) == need || (index == 0)) { // System.out.println("PREV " + index + " " + i + " " + last + " " + lastHold); // System.out.println("NEXT " + index + " " + i + " " + (i | lastHold) + " " + i); // System.out.println(Integer.bitCount(i) + " " + i); // if (index == 3) { // System.out.println(last + " " + i + " " + match(i, last) + " " + next); // } if(index + 1 == max && match(i,lastHold)!= need){ continue; } int temp = cal(index + 1, match(i,lastHold), i) + (min - Integer.bitCount(i)); result = result < temp ? temp : result; // break; } } dp[index][lastHold][last] = result; return result; } public static int match(int mask, int last) { int result = last; for (int i = 0; i < min; i++) { if (((1 << i) & mask) != 0) { int a = i - 1; int b = i + 1; result |= (1 << i); if (a >= 0) { result |= (1 << a); } if (b < min) { result |= (1 << b); } } } // System.out.println(mask + " " + result + " " + need); return result ; } public static long pow(long a, long b) { if (b == 0) { return 1; } long val = pow(a, b / 2); if (b % 2 == 0) { return val * val % MOD; } else { return a * (val * val % MOD) % MOD; } } public static void extendEuclid(long a, long b) { if (b == 0) { x = 1; y = 0; d = a; return; } extendEuclid(b, a % b); long x1 = y; long y1 = x - (a / b) * y; x = x1; y = y1; } public static long gcd(long a, long b) { if (b == 0) { return a; } return gcd(b, a % b); } static class Line { double a, b, c; Line(double x1, double y1, double x2, double y2) { if (Math.abs(x1 - x2) < Epsilon && Math.abs(y1 - y2) < Epsilon) { throw new RuntimeException("Two point are the same"); } a = y1 - y2; b = x2 - x1; c = -a * x1 - b * y1; } Line(Point x, Point y) { this(x.x, x.y, y.x, y.y); } public Line perpendicular(Point p) { return new Line(p, new Point(p.x + a, p.y + b)); } public Point intersect(Line l) { double d = a * l.b - b * l.a; if (d == 0) { throw new RuntimeException("Two lines are parallel"); } return new Point((l.c * b - c * l.b) / d, (l.a * c - l.c * a) / d); } } static void check(Point a, Point b, ArrayList<Point> p, Point[] rec, int index) { for (int i = 0; i < 4; i++) { int m = (i + index) % 4; int j = (i + 1 + index) % 4; Point k = intersect(minus(b, a), minus(rec[m], rec[j]), minus(rec[m], a)); if (k.x >= 0 && k.x <= 1 && k.y >= 0 && k.y <= 1) { Point val = new Point(k.x * minus(b, a).x, k.x * minus(b, a).y); p.add(add(val, a)); // System.out.println(a + " " + b + " " + rec[i] + " " + rec[j]); // System.out.println(add(val, a)); } } } static Point intersect(Point a, Point b, Point c) { double D = cross(a, b); if (D != 0) { return new Point(cross(c, b) / D, cross(a, c) / D); } return null; } static Point convert(Point a, double angle) { double x = a.x * cos(angle) - a.y * sin(angle); double y = a.x * sin(angle) + a.y * cos(angle); return new Point(x, y); } static Point minus(Point a, Point b) { return new Point(a.x - b.x, a.y - b.y); } static Point add(Point a, Point b) { return new Point(a.x + b.x, a.y + b.y); } static double cross(Point a, Point b) { return a.x * b.y - a.y * b.x; } static class Point { double x, y; Point(double x, double y) { this.x = x; this.y = y; } @Override public String toString() { return "Point: " + x + " " + y; } } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { // System.setOut(new PrintStream(new BufferedOutputStream(System.out), true)); br = new BufferedReader(new InputStreamReader(System.in)); } public String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { throw new RuntimeException(); } } return st.nextToken(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt() { return Integer.parseInt(next()); } public double nextDouble() { return Double.parseDouble(next()); } public String nextLine() { st = null; try { return br.readLine(); } catch (Exception e) { throw new RuntimeException(); } } public boolean endLine() { try { String next = br.readLine(); while (next != null && next.trim().isEmpty()) { next = br.readLine(); } if (next == null) { return true; } st = new StringTokenizer(next); return st.hasMoreTokens(); } catch (Exception e) { throw new RuntimeException(); } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,257
3,972
1,641
import java.util.ArrayList; import java.util.Collections; import java.util.Scanner; public class r114 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); ArrayList<Integer> l = new ArrayList<Integer>(); for (int i = 0 ; i < n; i++) { l.add(sc.nextInt()); } Collections.sort(l); int pet = l.get(n - a); int vas = l.get(b - 1); if (pet <= vas) { System.out.println(0); } else System.out.println(pet - vas); sc.close(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.Collections; import java.util.Scanner; public class r114 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); ArrayList<Integer> l = new ArrayList<Integer>(); for (int i = 0 ; i < n; i++) { l.add(sc.nextInt()); } Collections.sort(l); int pet = l.get(n - a); int vas = l.get(b - 1); if (pet <= vas) { System.out.println(0); } else System.out.println(pet - vas); sc.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.Collections; import java.util.Scanner; public class r114 { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int a = sc.nextInt(); int b = sc.nextInt(); ArrayList<Integer> l = new ArrayList<Integer>(); for (int i = 0 ; i < n; i++) { l.add(sc.nextInt()); } Collections.sort(l); int pet = l.get(n - a); int vas = l.get(b - 1); if (pet <= vas) { System.out.println(0); } else System.out.println(pet - vas); sc.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
490
1,638
2,015
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.InputMismatchException; /** * @author Egor Kulikov (egor@egork.net) * Created on 14.03.2010 */ public class TaskA implements Runnable { private InputReader in; private PrintWriter out; public static void main(String[] args) { // new Thread(new Template()).start(); new TaskA().run(); } public TaskA() { // String id = getClass().getName().toLowerCase(); // try { // System.setIn(new FileInputStream(id + ".in")); // System.setOut(new PrintStream(new FileOutputStream(id + ".out"))); // System.setIn(new FileInputStream("input.txt")); // System.setOut(new PrintStream(new FileOutputStream("output.txt"))); // } catch (FileNotFoundException e) { // throw new RuntimeException(); // } in = new InputReader(System.in); out = new PrintWriter(System.out); } public void run() { // int numTests = in.readInt(); // for (int testNumber = 0; testNumber < numTests; testNumber++) { // out.print("Case " + (testNumber + 1) + ": "); // } int n = in.readInt(); int min = 101; int[] a = new int[n]; for (int i = 0; i < n; i++) min = Math.min(min, a[i] = in.readInt()); int ans = 101; for (int i = 0; i < n; i++) { if (a[i] > min) ans = Math.min(ans, a[i]); } if (ans == 101) out.println("NO"); else out.println(ans); out.close(); } private static class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public BigInteger readBigInteger() { try { return new BigInteger(readString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.InputMismatchException; /** * @author Egor Kulikov (egor@egork.net) * Created on 14.03.2010 */ public class TaskA implements Runnable { private InputReader in; private PrintWriter out; public static void main(String[] args) { // new Thread(new Template()).start(); new TaskA().run(); } public TaskA() { // String id = getClass().getName().toLowerCase(); // try { // System.setIn(new FileInputStream(id + ".in")); // System.setOut(new PrintStream(new FileOutputStream(id + ".out"))); // System.setIn(new FileInputStream("input.txt")); // System.setOut(new PrintStream(new FileOutputStream("output.txt"))); // } catch (FileNotFoundException e) { // throw new RuntimeException(); // } in = new InputReader(System.in); out = new PrintWriter(System.out); } public void run() { // int numTests = in.readInt(); // for (int testNumber = 0; testNumber < numTests; testNumber++) { // out.print("Case " + (testNumber + 1) + ": "); // } int n = in.readInt(); int min = 101; int[] a = new int[n]; for (int i = 0; i < n; i++) min = Math.min(min, a[i] = in.readInt()); int ans = 101; for (int i = 0; i < n; i++) { if (a[i] > min) ans = Math.min(ans, a[i]); } if (ans == 101) out.println("NO"); else out.println(ans); out.close(); } private static class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public BigInteger readBigInteger() { try { return new BigInteger(readString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.math.BigInteger; import java.util.InputMismatchException; /** * @author Egor Kulikov (egor@egork.net) * Created on 14.03.2010 */ public class TaskA implements Runnable { private InputReader in; private PrintWriter out; public static void main(String[] args) { // new Thread(new Template()).start(); new TaskA().run(); } public TaskA() { // String id = getClass().getName().toLowerCase(); // try { // System.setIn(new FileInputStream(id + ".in")); // System.setOut(new PrintStream(new FileOutputStream(id + ".out"))); // System.setIn(new FileInputStream("input.txt")); // System.setOut(new PrintStream(new FileOutputStream("output.txt"))); // } catch (FileNotFoundException e) { // throw new RuntimeException(); // } in = new InputReader(System.in); out = new PrintWriter(System.out); } public void run() { // int numTests = in.readInt(); // for (int testNumber = 0; testNumber < numTests; testNumber++) { // out.print("Case " + (testNumber + 1) + ": "); // } int n = in.readInt(); int min = 101; int[] a = new int[n]; for (int i = 0; i < n; i++) min = Math.min(min, a[i] = in.readInt()); int ans = 101; for (int i = 0; i < n; i++) { if (a[i] > min) ans = Math.min(ans, a[i]); } if (ans == 101) out.println("NO"); else out.println(ans); out.close(); } private static class InputReader { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public BigInteger readBigInteger() { try { return new BigInteger(readString()); } catch (NumberFormatException e) { throw new InputMismatchException(); } } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,662
2,011
1,262
import java.io.*; import java.math.BigInteger; public class C { private static Solver solver = new Solver(); private static long m = 1000000000L + 7L; public static void main(String[] args) throws IOException { solver.withProcedure(() -> { String[] input = solver.readString().split(" "); BigInteger x = new BigInteger(input[0]); BigInteger k = new BigInteger(input[1]); if (x.compareTo(BigInteger.ZERO) == 0) { solver.println("" + 0); return; } BigInteger two = BigInteger.valueOf(2); BigInteger mm = BigInteger.valueOf(m); BigInteger binpowedK = two.modPow(k, mm); BigInteger binpowedKPlusOne = two.modPow(k.add(BigInteger.ONE), mm); BigInteger res = binpowedKPlusOne.multiply(x).subtract(binpowedK.subtract(BigInteger.ONE)).mod(mm); if (res.compareTo(BigInteger.ZERO) < 0) { res = BigInteger.ZERO; } solver.println("" + res); }).solve(); } private static long binpow(long a, long n) { a = a % m; long res = 1L; while (n > 0) { if ((n & 1L) != 0) res = (res * a) % m; a = (a * a) % m; n >>= 1L; } return res; } @FunctionalInterface private interface Procedure { void run() throws IOException; } private static class Solver { private Procedure procedure; private StreamTokenizer in; private PrintWriter out; private BufferedReader bufferedReader; Solver() { try { boolean oj = System.getProperty("ONLINE_JUDGE") != null; Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("input.txt"); Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("output.txt"); bufferedReader = new BufferedReader(reader); in = new StreamTokenizer(bufferedReader); out = new PrintWriter(writer); } catch (Exception e) { throw new RuntimeException("Initialization has failed"); } } void solve() throws IOException { procedure.run(); } int readInt() throws IOException { in.nextToken(); return (int) in.nval; } long readLong() throws IOException { in.nextToken(); return (long) in.nval; } String readString() throws IOException { return bufferedReader.readLine(); } char readChar() throws IOException { in.nextToken(); return in.sval.charAt(0); } void println(String str) { out.println(str); out.flush(); } void print(String str) { out.print(str); out.flush(); } Solver withProcedure(Procedure procedure) { this.procedure = procedure; return this; } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; public class C { private static Solver solver = new Solver(); private static long m = 1000000000L + 7L; public static void main(String[] args) throws IOException { solver.withProcedure(() -> { String[] input = solver.readString().split(" "); BigInteger x = new BigInteger(input[0]); BigInteger k = new BigInteger(input[1]); if (x.compareTo(BigInteger.ZERO) == 0) { solver.println("" + 0); return; } BigInteger two = BigInteger.valueOf(2); BigInteger mm = BigInteger.valueOf(m); BigInteger binpowedK = two.modPow(k, mm); BigInteger binpowedKPlusOne = two.modPow(k.add(BigInteger.ONE), mm); BigInteger res = binpowedKPlusOne.multiply(x).subtract(binpowedK.subtract(BigInteger.ONE)).mod(mm); if (res.compareTo(BigInteger.ZERO) < 0) { res = BigInteger.ZERO; } solver.println("" + res); }).solve(); } private static long binpow(long a, long n) { a = a % m; long res = 1L; while (n > 0) { if ((n & 1L) != 0) res = (res * a) % m; a = (a * a) % m; n >>= 1L; } return res; } @FunctionalInterface private interface Procedure { void run() throws IOException; } private static class Solver { private Procedure procedure; private StreamTokenizer in; private PrintWriter out; private BufferedReader bufferedReader; Solver() { try { boolean oj = System.getProperty("ONLINE_JUDGE") != null; Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("input.txt"); Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("output.txt"); bufferedReader = new BufferedReader(reader); in = new StreamTokenizer(bufferedReader); out = new PrintWriter(writer); } catch (Exception e) { throw new RuntimeException("Initialization has failed"); } } void solve() throws IOException { procedure.run(); } int readInt() throws IOException { in.nextToken(); return (int) in.nval; } long readLong() throws IOException { in.nextToken(); return (long) in.nval; } String readString() throws IOException { return bufferedReader.readLine(); } char readChar() throws IOException { in.nextToken(); return in.sval.charAt(0); } void println(String str) { out.println(str); out.flush(); } void print(String str) { out.print(str); out.flush(); } Solver withProcedure(Procedure procedure) { this.procedure = procedure; return this; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.math.BigInteger; public class C { private static Solver solver = new Solver(); private static long m = 1000000000L + 7L; public static void main(String[] args) throws IOException { solver.withProcedure(() -> { String[] input = solver.readString().split(" "); BigInteger x = new BigInteger(input[0]); BigInteger k = new BigInteger(input[1]); if (x.compareTo(BigInteger.ZERO) == 0) { solver.println("" + 0); return; } BigInteger two = BigInteger.valueOf(2); BigInteger mm = BigInteger.valueOf(m); BigInteger binpowedK = two.modPow(k, mm); BigInteger binpowedKPlusOne = two.modPow(k.add(BigInteger.ONE), mm); BigInteger res = binpowedKPlusOne.multiply(x).subtract(binpowedK.subtract(BigInteger.ONE)).mod(mm); if (res.compareTo(BigInteger.ZERO) < 0) { res = BigInteger.ZERO; } solver.println("" + res); }).solve(); } private static long binpow(long a, long n) { a = a % m; long res = 1L; while (n > 0) { if ((n & 1L) != 0) res = (res * a) % m; a = (a * a) % m; n >>= 1L; } return res; } @FunctionalInterface private interface Procedure { void run() throws IOException; } private static class Solver { private Procedure procedure; private StreamTokenizer in; private PrintWriter out; private BufferedReader bufferedReader; Solver() { try { boolean oj = System.getProperty("ONLINE_JUDGE") != null; Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("input.txt"); Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("output.txt"); bufferedReader = new BufferedReader(reader); in = new StreamTokenizer(bufferedReader); out = new PrintWriter(writer); } catch (Exception e) { throw new RuntimeException("Initialization has failed"); } } void solve() throws IOException { procedure.run(); } int readInt() throws IOException { in.nextToken(); return (int) in.nval; } long readLong() throws IOException { in.nextToken(); return (long) in.nval; } String readString() throws IOException { return bufferedReader.readLine(); } char readChar() throws IOException { in.nextToken(); return in.sval.charAt(0); } void println(String str) { out.println(str); out.flush(); } void print(String str) { out.print(str); out.flush(); } Solver withProcedure(Procedure procedure) { this.procedure = procedure; return this; } } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
981
1,261
1,924
import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.lang.reflect.Array; import java.math.BigDecimal; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; import java.util.TreeSet; public class AA implements Runnable { public static void main(String[] args) { new Thread(new AA()).run(); } static class Utils { private Utils() { } public static void mergeSort(int[] a) { mergeSort(a, 0, a.length - 1); } private static void mergeSort(int[] a, int leftIndex, int rightIndex) { final int MAGIC_VALUE = 50; if (leftIndex < rightIndex) { if (rightIndex - leftIndex <= MAGIC_VALUE) { insertionSort(a, leftIndex, rightIndex); } else { int middleIndex = (leftIndex + rightIndex) / 2; mergeSort(a, leftIndex, middleIndex); mergeSort(a, middleIndex + 1, rightIndex); merge(a, leftIndex, middleIndex, rightIndex); } } } private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) { int length1 = middleIndex - leftIndex + 1; int length2 = rightIndex - middleIndex; int[] leftArray = new int[length1]; int[] rightArray = new int[length2]; System.arraycopy(a, leftIndex, leftArray, 0, length1); System.arraycopy(a, middleIndex + 1, rightArray, 0, length2); for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) { if (i == length1) { a[k] = rightArray[j++]; } else if (j == length2) { a[k] = leftArray[i++]; } else { a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++]; } } } private static void insertionSort(int[] a, int leftIndex, int rightIndex) { for (int i = leftIndex + 1; i <= rightIndex; i++) { int current = a[i]; int j = i - 1; while (j >= leftIndex && a[j] > current) { a[j + 1] = a[j]; j--; } a[j + 1] = current; } } } BufferedReader br; StringTokenizer str = new StringTokenizer(""); PrintWriter pw; public Integer ni() { return Integer.parseInt(nextToken()); } public Double nd() { return Double.parseDouble(nextToken()); } public Long nl() { return Long.parseLong(nextToken()); } public boolean EOF() { try { if (!br.ready() && !str.hasMoreTokens()) { return true; } } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return false; } public String nextToken() { while (!str.hasMoreTokens()) try { str = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return str.nextToken(); } @Override public void run() { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new OutputStreamWriter(System.out)); // try { // br = new BufferedReader(new FileReader("input.txt")); // } catch (FileNotFoundException e) { // e.printStackTrace(); // } // try { // pw = new PrintWriter(new FileWriter("output.txt")); // } catch (IOException e) { // // TODO Auto-generated catch block // e.printStackTrace(); // } solve(); pw.close(); } public void solve() { int n = ni(); int[] a = new int[n]; int total = 0; for (int i = 0; i < n; i++) { a[i] = ni(); total+=a[i]; } Arrays.sort(a); int c =0; int left=0; for(int i=n-1; i>=0;i--){ if (left<=total){ c++; left+=a[i]; total-=a[i]; } } pw.print(c); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.lang.reflect.Array; import java.math.BigDecimal; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; import java.util.TreeSet; public class AA implements Runnable { public static void main(String[] args) { new Thread(new AA()).run(); } static class Utils { private Utils() { } public static void mergeSort(int[] a) { mergeSort(a, 0, a.length - 1); } private static void mergeSort(int[] a, int leftIndex, int rightIndex) { final int MAGIC_VALUE = 50; if (leftIndex < rightIndex) { if (rightIndex - leftIndex <= MAGIC_VALUE) { insertionSort(a, leftIndex, rightIndex); } else { int middleIndex = (leftIndex + rightIndex) / 2; mergeSort(a, leftIndex, middleIndex); mergeSort(a, middleIndex + 1, rightIndex); merge(a, leftIndex, middleIndex, rightIndex); } } } private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) { int length1 = middleIndex - leftIndex + 1; int length2 = rightIndex - middleIndex; int[] leftArray = new int[length1]; int[] rightArray = new int[length2]; System.arraycopy(a, leftIndex, leftArray, 0, length1); System.arraycopy(a, middleIndex + 1, rightArray, 0, length2); for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) { if (i == length1) { a[k] = rightArray[j++]; } else if (j == length2) { a[k] = leftArray[i++]; } else { a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++]; } } } private static void insertionSort(int[] a, int leftIndex, int rightIndex) { for (int i = leftIndex + 1; i <= rightIndex; i++) { int current = a[i]; int j = i - 1; while (j >= leftIndex && a[j] > current) { a[j + 1] = a[j]; j--; } a[j + 1] = current; } } } BufferedReader br; StringTokenizer str = new StringTokenizer(""); PrintWriter pw; public Integer ni() { return Integer.parseInt(nextToken()); } public Double nd() { return Double.parseDouble(nextToken()); } public Long nl() { return Long.parseLong(nextToken()); } public boolean EOF() { try { if (!br.ready() && !str.hasMoreTokens()) { return true; } } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return false; } public String nextToken() { while (!str.hasMoreTokens()) try { str = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return str.nextToken(); } @Override public void run() { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new OutputStreamWriter(System.out)); // try { // br = new BufferedReader(new FileReader("input.txt")); // } catch (FileNotFoundException e) { // e.printStackTrace(); // } // try { // pw = new PrintWriter(new FileWriter("output.txt")); // } catch (IOException e) { // // TODO Auto-generated catch block // e.printStackTrace(); // } solve(); pw.close(); } public void solve() { int n = ni(); int[] a = new int[n]; int total = 0; for (int i = 0; i < n; i++) { a[i] = ni(); total+=a[i]; } Arrays.sort(a); int c =0; int left=0; for(int i=n-1; i>=0;i--){ if (left<=total){ c++; left+=a[i]; total-=a[i]; } } pw.print(c); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.lang.reflect.Array; import java.math.BigDecimal; import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.StringTokenizer; import java.util.TreeSet; public class AA implements Runnable { public static void main(String[] args) { new Thread(new AA()).run(); } static class Utils { private Utils() { } public static void mergeSort(int[] a) { mergeSort(a, 0, a.length - 1); } private static void mergeSort(int[] a, int leftIndex, int rightIndex) { final int MAGIC_VALUE = 50; if (leftIndex < rightIndex) { if (rightIndex - leftIndex <= MAGIC_VALUE) { insertionSort(a, leftIndex, rightIndex); } else { int middleIndex = (leftIndex + rightIndex) / 2; mergeSort(a, leftIndex, middleIndex); mergeSort(a, middleIndex + 1, rightIndex); merge(a, leftIndex, middleIndex, rightIndex); } } } private static void merge(int[] a, int leftIndex, int middleIndex, int rightIndex) { int length1 = middleIndex - leftIndex + 1; int length2 = rightIndex - middleIndex; int[] leftArray = new int[length1]; int[] rightArray = new int[length2]; System.arraycopy(a, leftIndex, leftArray, 0, length1); System.arraycopy(a, middleIndex + 1, rightArray, 0, length2); for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) { if (i == length1) { a[k] = rightArray[j++]; } else if (j == length2) { a[k] = leftArray[i++]; } else { a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++] : rightArray[j++]; } } } private static void insertionSort(int[] a, int leftIndex, int rightIndex) { for (int i = leftIndex + 1; i <= rightIndex; i++) { int current = a[i]; int j = i - 1; while (j >= leftIndex && a[j] > current) { a[j + 1] = a[j]; j--; } a[j + 1] = current; } } } BufferedReader br; StringTokenizer str = new StringTokenizer(""); PrintWriter pw; public Integer ni() { return Integer.parseInt(nextToken()); } public Double nd() { return Double.parseDouble(nextToken()); } public Long nl() { return Long.parseLong(nextToken()); } public boolean EOF() { try { if (!br.ready() && !str.hasMoreTokens()) { return true; } } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return false; } public String nextToken() { while (!str.hasMoreTokens()) try { str = new StringTokenizer(br.readLine()); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return str.nextToken(); } @Override public void run() { br = new BufferedReader(new InputStreamReader(System.in)); pw = new PrintWriter(new OutputStreamWriter(System.out)); // try { // br = new BufferedReader(new FileReader("input.txt")); // } catch (FileNotFoundException e) { // e.printStackTrace(); // } // try { // pw = new PrintWriter(new FileWriter("output.txt")); // } catch (IOException e) { // // TODO Auto-generated catch block // e.printStackTrace(); // } solve(); pw.close(); } public void solve() { int n = ni(); int[] a = new int[n]; int total = 0; for (int i = 0; i < n; i++) { a[i] = ni(); total+=a[i]; } Arrays.sort(a); int c =0; int left=0; for(int i=n-1; i>=0;i--){ if (left<=total){ c++; left+=a[i]; total-=a[i]; } } pw.print(c); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,353
1,920
202
import java.util.*; import java.io.*; public class FirstClass { public static void main(String[] args)throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int n = Integer.parseInt(br.readLine()); int arr[] = new int [n]; StringTokenizer st1 = new StringTokenizer(br.readLine()); for(int i = 0 ; i < n ; i++) { arr[i] = Integer.parseInt(st1.nextToken()); } int max = -1; boolean flag = true; for(int i = 0 ; i < n ; i++) { if(arr[i] > max+1) { flag = false; out.println(i+1); break; } else { max = Math.max(max, arr[i]); } } if(flag) out.println(-1); out.flush(); out.close(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class FirstClass { public static void main(String[] args)throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int n = Integer.parseInt(br.readLine()); int arr[] = new int [n]; StringTokenizer st1 = new StringTokenizer(br.readLine()); for(int i = 0 ; i < n ; i++) { arr[i] = Integer.parseInt(st1.nextToken()); } int max = -1; boolean flag = true; for(int i = 0 ; i < n ; i++) { if(arr[i] > max+1) { flag = false; out.println(i+1); break; } else { max = Math.max(max, arr[i]); } } if(flag) out.println(-1); out.flush(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class FirstClass { public static void main(String[] args)throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int n = Integer.parseInt(br.readLine()); int arr[] = new int [n]; StringTokenizer st1 = new StringTokenizer(br.readLine()); for(int i = 0 ; i < n ; i++) { arr[i] = Integer.parseInt(st1.nextToken()); } int max = -1; boolean flag = true; for(int i = 0 ; i < n ; i++) { if(arr[i] > max+1) { flag = false; out.println(i+1); break; } else { max = Math.max(max, arr[i]); } } if(flag) out.println(-1); out.flush(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
548
202
2,239
import java.io.*; import java.util.*; public final class PythonIndentation { public static void main(String[] args) { new PythonIndentation(System.in, System.out); } static class Solver implements Runnable { static final int MOD = (int) 1e9 + 7; int n; char[] arr; long[][] dp; BufferedReader in; PrintWriter out; void solve() throws IOException { n = Integer.parseInt(in.readLine()); arr = new char[n]; dp = new long[n + 1][n + 1]; for (int i = 0; i < n; i++) arr[i] = in.readLine().charAt(0); for (int i = 0; i <= n; i++) Arrays.fill(dp[i], -1); dp[0][0] = 1; if (arr[0] == 's') out.println(find(1, 0)); else out.println(find(1, 1)); /* System.out.println("dp :"); for (int i = 0; i <= n; i++) { System.out.print("i : " + i + " => "); for (int j = 0; j <= n; j++) System.out.print(dp[i][j] + " "); System.out.println(); }*/ } long find(int curr, int backIndents) { // System.out.println("curr : " + curr + ", bI : " + backIndents); if (backIndents < 0) return 0; if (curr == n) return dp[curr][backIndents] = 1; if (dp[curr][backIndents] != -1) return dp[curr][backIndents]; long ans; if (arr[curr] == 's') { if (arr[curr - 1] == 'f') ans = find(curr + 1, backIndents); else ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD); } else { ans = find(curr + 1, backIndents + 1); if (arr[curr - 1] != 'f') { // System.out.println("calling from curr : " + curr + ", bI : " + backIndents); ans = CMath.mod(ans + find(curr, backIndents - 1), MOD); } } return dp[curr][backIndents] = ans; } public Solver(BufferedReader in, PrintWriter out) { this.in = in; this.out = out; } @Override public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } } } static class CMath { static long mod(long number, long mod) { return number - (number / mod) * mod; } } private PythonIndentation(InputStream inputStream, OutputStream outputStream) { BufferedReader in = new BufferedReader(new InputStreamReader(inputStream)); PrintWriter out = new PrintWriter(outputStream); Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29); try { thread.start(); thread.join(); } catch (InterruptedException e) { e.printStackTrace(); } finally { try { in.close(); } catch (IOException e) { e.printStackTrace(); } out.flush(); out.close(); } } } /* 6 f f s s s s : 10 */
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public final class PythonIndentation { public static void main(String[] args) { new PythonIndentation(System.in, System.out); } static class Solver implements Runnable { static final int MOD = (int) 1e9 + 7; int n; char[] arr; long[][] dp; BufferedReader in; PrintWriter out; void solve() throws IOException { n = Integer.parseInt(in.readLine()); arr = new char[n]; dp = new long[n + 1][n + 1]; for (int i = 0; i < n; i++) arr[i] = in.readLine().charAt(0); for (int i = 0; i <= n; i++) Arrays.fill(dp[i], -1); dp[0][0] = 1; if (arr[0] == 's') out.println(find(1, 0)); else out.println(find(1, 1)); /* System.out.println("dp :"); for (int i = 0; i <= n; i++) { System.out.print("i : " + i + " => "); for (int j = 0; j <= n; j++) System.out.print(dp[i][j] + " "); System.out.println(); }*/ } long find(int curr, int backIndents) { // System.out.println("curr : " + curr + ", bI : " + backIndents); if (backIndents < 0) return 0; if (curr == n) return dp[curr][backIndents] = 1; if (dp[curr][backIndents] != -1) return dp[curr][backIndents]; long ans; if (arr[curr] == 's') { if (arr[curr - 1] == 'f') ans = find(curr + 1, backIndents); else ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD); } else { ans = find(curr + 1, backIndents + 1); if (arr[curr - 1] != 'f') { // System.out.println("calling from curr : " + curr + ", bI : " + backIndents); ans = CMath.mod(ans + find(curr, backIndents - 1), MOD); } } return dp[curr][backIndents] = ans; } public Solver(BufferedReader in, PrintWriter out) { this.in = in; this.out = out; } @Override public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } } } static class CMath { static long mod(long number, long mod) { return number - (number / mod) * mod; } } private PythonIndentation(InputStream inputStream, OutputStream outputStream) { BufferedReader in = new BufferedReader(new InputStreamReader(inputStream)); PrintWriter out = new PrintWriter(outputStream); Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29); try { thread.start(); thread.join(); } catch (InterruptedException e) { e.printStackTrace(); } finally { try { in.close(); } catch (IOException e) { e.printStackTrace(); } out.flush(); out.close(); } } } /* 6 f f s s s s : 10 */ </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public final class PythonIndentation { public static void main(String[] args) { new PythonIndentation(System.in, System.out); } static class Solver implements Runnable { static final int MOD = (int) 1e9 + 7; int n; char[] arr; long[][] dp; BufferedReader in; PrintWriter out; void solve() throws IOException { n = Integer.parseInt(in.readLine()); arr = new char[n]; dp = new long[n + 1][n + 1]; for (int i = 0; i < n; i++) arr[i] = in.readLine().charAt(0); for (int i = 0; i <= n; i++) Arrays.fill(dp[i], -1); dp[0][0] = 1; if (arr[0] == 's') out.println(find(1, 0)); else out.println(find(1, 1)); /* System.out.println("dp :"); for (int i = 0; i <= n; i++) { System.out.print("i : " + i + " => "); for (int j = 0; j <= n; j++) System.out.print(dp[i][j] + " "); System.out.println(); }*/ } long find(int curr, int backIndents) { // System.out.println("curr : " + curr + ", bI : " + backIndents); if (backIndents < 0) return 0; if (curr == n) return dp[curr][backIndents] = 1; if (dp[curr][backIndents] != -1) return dp[curr][backIndents]; long ans; if (arr[curr] == 's') { if (arr[curr - 1] == 'f') ans = find(curr + 1, backIndents); else ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD); } else { ans = find(curr + 1, backIndents + 1); if (arr[curr - 1] != 'f') { // System.out.println("calling from curr : " + curr + ", bI : " + backIndents); ans = CMath.mod(ans + find(curr, backIndents - 1), MOD); } } return dp[curr][backIndents] = ans; } public Solver(BufferedReader in, PrintWriter out) { this.in = in; this.out = out; } @Override public void run() { try { solve(); } catch (IOException e) { e.printStackTrace(); } } } static class CMath { static long mod(long number, long mod) { return number - (number / mod) * mod; } } private PythonIndentation(InputStream inputStream, OutputStream outputStream) { BufferedReader in = new BufferedReader(new InputStreamReader(inputStream)); PrintWriter out = new PrintWriter(outputStream); Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29); try { thread.start(); thread.join(); } catch (InterruptedException e) { e.printStackTrace(); } finally { try { in.close(); } catch (IOException e) { e.printStackTrace(); } out.flush(); out.close(); } } } /* 6 f f s s s s : 10 */ </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,180
2,235
774
import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.Writer; import java.util.Arrays; import java.util.InputMismatchException; public class TestClass11 { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub InputReader in=new InputReader(System.in); OutputWriter out=new OutputWriter(System.out); int n=in.readInt(); String s=in.readString(); int low[]=new int[26]; int upper[]=new int[26]; boolean islow[]=new boolean[26]; boolean isupper[]=new boolean[26]; Arrays.fill(low,Integer.MAX_VALUE); Arrays.fill(upper, Integer.MAX_VALUE); int ans[]=new int[n]; int finalsans=Integer.MAX_VALUE; for(int i=0;i<n;i++){ int c=s.charAt(i); if(c>='a'&&c<='z'){ islow[c-'a']=true; } else{ isupper[c-'A']=true; } } for(int i=n-1;i>=0;i--){ int c=s.charAt(i); if(c>='a'&&c<='z'){ low[c-'a']=i; } else{ upper[c-'A']=i; } for(int j=0;j<26;j++){ if(islow[j]==true){ ans[i]=Math.max(ans[i], low[j]); } } for(int j=0;j<26;j++){ if(isupper[j]==true){ ans[i]=Math.max(ans[i], upper[j]); } } finalsans=Math.min(ans[i]-i+1, finalsans); } System.out.println(finalsans); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } class IOUtils { public static int[] readIntArray(InputReader in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.readInt(); return array; } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.Writer; import java.util.Arrays; import java.util.InputMismatchException; public class TestClass11 { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub InputReader in=new InputReader(System.in); OutputWriter out=new OutputWriter(System.out); int n=in.readInt(); String s=in.readString(); int low[]=new int[26]; int upper[]=new int[26]; boolean islow[]=new boolean[26]; boolean isupper[]=new boolean[26]; Arrays.fill(low,Integer.MAX_VALUE); Arrays.fill(upper, Integer.MAX_VALUE); int ans[]=new int[n]; int finalsans=Integer.MAX_VALUE; for(int i=0;i<n;i++){ int c=s.charAt(i); if(c>='a'&&c<='z'){ islow[c-'a']=true; } else{ isupper[c-'A']=true; } } for(int i=n-1;i>=0;i--){ int c=s.charAt(i); if(c>='a'&&c<='z'){ low[c-'a']=i; } else{ upper[c-'A']=i; } for(int j=0;j<26;j++){ if(islow[j]==true){ ans[i]=Math.max(ans[i], low[j]); } } for(int j=0;j<26;j++){ if(isupper[j]==true){ ans[i]=Math.max(ans[i], upper[j]); } } finalsans=Math.min(ans[i]-i+1, finalsans); } System.out.println(finalsans); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } class IOUtils { public static int[] readIntArray(InputReader in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.readInt(); return array; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedWriter; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.Writer; import java.util.Arrays; import java.util.InputMismatchException; public class TestClass11 { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub InputReader in=new InputReader(System.in); OutputWriter out=new OutputWriter(System.out); int n=in.readInt(); String s=in.readString(); int low[]=new int[26]; int upper[]=new int[26]; boolean islow[]=new boolean[26]; boolean isupper[]=new boolean[26]; Arrays.fill(low,Integer.MAX_VALUE); Arrays.fill(upper, Integer.MAX_VALUE); int ans[]=new int[n]; int finalsans=Integer.MAX_VALUE; for(int i=0;i<n;i++){ int c=s.charAt(i); if(c>='a'&&c<='z'){ islow[c-'a']=true; } else{ isupper[c-'A']=true; } } for(int i=n-1;i>=0;i--){ int c=s.charAt(i); if(c>='a'&&c<='z'){ low[c-'a']=i; } else{ upper[c-'A']=i; } for(int j=0;j<26;j++){ if(islow[j]==true){ ans[i]=Math.max(ans[i], low[j]); } } for(int j=0;j<26;j++){ if(isupper[j]==true){ ans[i]=Math.max(ans[i], upper[j]); } } finalsans=Math.min(ans[i]-i+1, finalsans); } System.out.println(finalsans); } } class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuilder res = new StringBuilder(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } public boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public String next() { return readString(); } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object...objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) writer.print(' '); writer.print(objects[i]); } } public void printLine(Object...objects) { print(objects); writer.println(); } public void close() { writer.close(); } public void flush() { writer.flush(); } } class IOUtils { public static int[] readIntArray(InputReader in, int size) { int[] array = new int[size]; for (int i = 0; i < size; i++) array[i] = in.readInt(); return array; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,396
773
3,310
import java.io.IOException; import java.util.Scanner; public class A199 { static int n[][] = new int[][] { { -1, 0 }, { 1, 0 }, { 0, -1 }, { 0, 1 } }; public static void main(String[] args) throws IOException { new A199().solve(); } public void solve() throws IOException { Scanner scan = new Scanner(System.in); int N = scan.nextInt(); // int f1 = 0; // int f2 = 1; // // while(true){ // int t = f1 + f2; // if(t == N){ // //guaranteed that n is a Fibonacci number // break; // } // f1 = f2; // f2 = t; // } System.out.println("0 0 " + N ); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.util.Scanner; public class A199 { static int n[][] = new int[][] { { -1, 0 }, { 1, 0 }, { 0, -1 }, { 0, 1 } }; public static void main(String[] args) throws IOException { new A199().solve(); } public void solve() throws IOException { Scanner scan = new Scanner(System.in); int N = scan.nextInt(); // int f1 = 0; // int f2 = 1; // // while(true){ // int t = f1 + f2; // if(t == N){ // //guaranteed that n is a Fibonacci number // break; // } // f1 = f2; // f2 = t; // } System.out.println("0 0 " + N ); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.util.Scanner; public class A199 { static int n[][] = new int[][] { { -1, 0 }, { 1, 0 }, { 0, -1 }, { 0, 1 } }; public static void main(String[] args) throws IOException { new A199().solve(); } public void solve() throws IOException { Scanner scan = new Scanner(System.in); int N = scan.nextInt(); // int f1 = 0; // int f2 = 1; // // while(true){ // int t = f1 + f2; // if(t == N){ // //guaranteed that n is a Fibonacci number // break; // } // f1 = f2; // f2 = t; // } System.out.println("0 0 " + N ); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
550
3,304
162
import java.util.Scanner; public class New_Year_and_Curling { static final double E = 0.00001; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int r = sc.nextInt(); double[] y = new double[n]; int arr[] = new int[n]; for (int i = 0; i < n; i++) { arr[i] =sc.nextInt(); double top = r; // if we make it 0 and subtract from the result will get WA (do not know why!!!) int x = arr[i]; for(int j =0 ;j<i;j++) { if(Math.abs(arr[j] -x )<=2*r) { top = Math.max(top , y[j] + Math.sqrt((4 * r * r) - ((arr[j] - x) * (arr[j] - x)))); } } y[i] = top ; double res = y[i] ; System.out.print(res+" "); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class New_Year_and_Curling { static final double E = 0.00001; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int r = sc.nextInt(); double[] y = new double[n]; int arr[] = new int[n]; for (int i = 0; i < n; i++) { arr[i] =sc.nextInt(); double top = r; // if we make it 0 and subtract from the result will get WA (do not know why!!!) int x = arr[i]; for(int j =0 ;j<i;j++) { if(Math.abs(arr[j] -x )<=2*r) { top = Math.max(top , y[j] + Math.sqrt((4 * r * r) - ((arr[j] - x) * (arr[j] - x)))); } } y[i] = top ; double res = y[i] ; System.out.print(res+" "); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class New_Year_and_Curling { static final double E = 0.00001; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int r = sc.nextInt(); double[] y = new double[n]; int arr[] = new int[n]; for (int i = 0; i < n; i++) { arr[i] =sc.nextInt(); double top = r; // if we make it 0 and subtract from the result will get WA (do not know why!!!) int x = arr[i]; for(int j =0 ;j<i;j++) { if(Math.abs(arr[j] -x )<=2*r) { top = Math.max(top , y[j] + Math.sqrt((4 * r * r) - ((arr[j] - x) * (arr[j] - x)))); } } y[i] = top ; double res = y[i] ; System.out.print(res+" "); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
578
162
3,485
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); EPhoenixAndComputers solver = new EPhoenixAndComputers(); solver.solve(1, in, out); out.close(); } static class EPhoenixAndComputers { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(), m = in.nextInt(); ModInt mod = new ModInt(m); int[] factorial = new int[n + 1]; int[][] binomial = new int[n + 1][n + 1]; int[] two = new int[n + 1]; for (int i = 0; i <= n; i++) { binomial[i][0] = 1; for (int j = 1; j <= i; j++) binomial[i][j] = mod.add(binomial[i - 1][j], binomial[i - 1][j - 1]); factorial[i] = i == 0 ? 1 : mod.multiply(factorial[i - 1], i); two[i] = i == 0 ? 1 : mod.multiply(2, two[i - 1]); } int[][] dp = new int[n + 1][n + 1]; dp[0][0] = 1; int answer = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= i; j++) { for (int x = 1; x <= i; x++) { dp[i][j] = mod.add(dp[i][j], mod.multiply(binomial[i][x], mod.multiply(two[x - 1], dp[i - x][j - 1]))); } } } for (int k = 0; k < n; k++) { answer = mod.add(answer, dp[n - k][k + 1]); } out.println(answer); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void println(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } writer.print('\n'); } public void close() { writer.close(); } } static class ModInt { int modulo; public ModInt(int m) { modulo = m; } public int add(int x, int y) { x += y; if (x >= modulo) x -= modulo; return x; } public int multiply(int x, int y) { return (int) ((x * 1L * y) % modulo); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); EPhoenixAndComputers solver = new EPhoenixAndComputers(); solver.solve(1, in, out); out.close(); } static class EPhoenixAndComputers { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(), m = in.nextInt(); ModInt mod = new ModInt(m); int[] factorial = new int[n + 1]; int[][] binomial = new int[n + 1][n + 1]; int[] two = new int[n + 1]; for (int i = 0; i <= n; i++) { binomial[i][0] = 1; for (int j = 1; j <= i; j++) binomial[i][j] = mod.add(binomial[i - 1][j], binomial[i - 1][j - 1]); factorial[i] = i == 0 ? 1 : mod.multiply(factorial[i - 1], i); two[i] = i == 0 ? 1 : mod.multiply(2, two[i - 1]); } int[][] dp = new int[n + 1][n + 1]; dp[0][0] = 1; int answer = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= i; j++) { for (int x = 1; x <= i; x++) { dp[i][j] = mod.add(dp[i][j], mod.multiply(binomial[i][x], mod.multiply(two[x - 1], dp[i - x][j - 1]))); } } } for (int k = 0; k < n; k++) { answer = mod.add(answer, dp[n - k][k + 1]); } out.println(answer); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void println(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } writer.print('\n'); } public void close() { writer.close(); } } static class ModInt { int modulo; public ModInt(int m) { modulo = m; } public int add(int x, int y) { x += y; if (x >= modulo) x -= modulo; return x; } public int multiply(int x, int y) { return (int) ((x * 1L * y) % modulo); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); EPhoenixAndComputers solver = new EPhoenixAndComputers(); solver.solve(1, in, out); out.close(); } static class EPhoenixAndComputers { public void solve(int testNumber, InputReader in, OutputWriter out) { int n = in.nextInt(), m = in.nextInt(); ModInt mod = new ModInt(m); int[] factorial = new int[n + 1]; int[][] binomial = new int[n + 1][n + 1]; int[] two = new int[n + 1]; for (int i = 0; i <= n; i++) { binomial[i][0] = 1; for (int j = 1; j <= i; j++) binomial[i][j] = mod.add(binomial[i - 1][j], binomial[i - 1][j - 1]); factorial[i] = i == 0 ? 1 : mod.multiply(factorial[i - 1], i); two[i] = i == 0 ? 1 : mod.multiply(2, two[i - 1]); } int[][] dp = new int[n + 1][n + 1]; dp[0][0] = 1; int answer = 0; for (int i = 1; i <= n; i++) { for (int j = 1; j <= i; j++) { for (int x = 1; x <= i; x++) { dp[i][j] = mod.add(dp[i][j], mod.multiply(binomial[i][x], mod.multiply(two[x - 1], dp[i - x][j - 1]))); } } } for (int k = 0; k < n; k++) { answer = mod.add(answer, dp[n - k][k + 1]); } out.println(answer); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void println(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } writer.print('\n'); } public void close() { writer.close(); } } static class ModInt { int modulo; public ModInt(int m) { modulo = m; } public int add(int x, int y) { x += y; if (x >= modulo) x -= modulo; return x; } public int multiply(int x, int y) { return (int) ((x * 1L * y) % modulo); } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int nextInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,475
3,479
868
import java.io.*; import java.util.*; public class B { static int i(String s) { return Integer.parseInt(s); } public static void main(String[] args) throws Exception { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String[] arr = in.readLine().split(" "); int n = i(arr[0]); int k = i(arr[1]); int[] A = new int[n]; arr = in.readLine().split(" "); for(int i=0; i<n; i++) A[i] = i(arr[i]); int st = 0; int cnt = 0; int[] cnts = new int[100*100*10+1]; for(int i=0; i<n; i++) { cnts[A[i]]++; if(cnts[A[i]] == 1) cnt++; else while(cnts[A[st]] > 1) { cnts[A[st]]--; st++; } if(cnt == k) { System.out.println((st+1)+" "+(i+1)); return; } } System.out.println(-1+" "+-1); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class B { static int i(String s) { return Integer.parseInt(s); } public static void main(String[] args) throws Exception { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String[] arr = in.readLine().split(" "); int n = i(arr[0]); int k = i(arr[1]); int[] A = new int[n]; arr = in.readLine().split(" "); for(int i=0; i<n; i++) A[i] = i(arr[i]); int st = 0; int cnt = 0; int[] cnts = new int[100*100*10+1]; for(int i=0; i<n; i++) { cnts[A[i]]++; if(cnts[A[i]] == 1) cnt++; else while(cnts[A[st]] > 1) { cnts[A[st]]--; st++; } if(cnt == k) { System.out.println((st+1)+" "+(i+1)); return; } } System.out.println(-1+" "+-1); } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class B { static int i(String s) { return Integer.parseInt(s); } public static void main(String[] args) throws Exception { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); String[] arr = in.readLine().split(" "); int n = i(arr[0]); int k = i(arr[1]); int[] A = new int[n]; arr = in.readLine().split(" "); for(int i=0; i<n; i++) A[i] = i(arr[i]); int st = 0; int cnt = 0; int[] cnts = new int[100*100*10+1]; for(int i=0; i<n; i++) { cnts[A[i]]++; if(cnts[A[i]] == 1) cnt++; else while(cnts[A[st]] > 1) { cnts[A[st]]--; st++; } if(cnt == k) { System.out.println((st+1)+" "+(i+1)); return; } } System.out.println(-1+" "+-1); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
590
867
2,354
import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { Reader.init(System.in); int n = Reader.nextInt(); int[] arr = new int[n]; int initial = 0; for (int i = 0; i < n; i++) arr[i] = Reader.nextInt(); for (int i = 0; i < arr.length; i++) { for (int j = i + 1; j < arr.length; j++) if (arr[i] > arr[j]) initial++; } int m = Reader.nextInt(); boolean parity = initial % 2 == 0; // System.out.println(parity ? "even": "odd"); for (int i = 0; i < m; i++) { int l = Reader.nextInt(); int r = Reader.nextInt(); int elems = r - l + 1; boolean change = (elems/2) % 2 == 0; parity = parity == change; System.out.println(parity ? "even": "odd"); } } } /** * Reader class based on the article at "https://www.cpe.ku.ac.th/~jim/java-io.html" * */ class Reader{ private static BufferedReader reader; private static StringTokenizer tokenizer; static void init(InputStream inputStream){ reader = new BufferedReader(new InputStreamReader(inputStream)); tokenizer = new StringTokenizer(""); } static String next() throws IOException { String read; while (!tokenizer.hasMoreTokens()){ read = reader.readLine(); if (read == null || read.equals("")) return "-1"; tokenizer = new StringTokenizer(read); } return tokenizer.nextToken(); } static int nextInt() throws IOException{ return Integer.parseInt(next()); } // static long nextLong() throws IOException{ // return Long.parseLong(next()); // } //Get a whole line. // static String line() throws IOException{ // return reader.readLine(); // } // // static double nextDouble() throws IOException{return Double.parseDouble(next());} }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { Reader.init(System.in); int n = Reader.nextInt(); int[] arr = new int[n]; int initial = 0; for (int i = 0; i < n; i++) arr[i] = Reader.nextInt(); for (int i = 0; i < arr.length; i++) { for (int j = i + 1; j < arr.length; j++) if (arr[i] > arr[j]) initial++; } int m = Reader.nextInt(); boolean parity = initial % 2 == 0; // System.out.println(parity ? "even": "odd"); for (int i = 0; i < m; i++) { int l = Reader.nextInt(); int r = Reader.nextInt(); int elems = r - l + 1; boolean change = (elems/2) % 2 == 0; parity = parity == change; System.out.println(parity ? "even": "odd"); } } } /** * Reader class based on the article at "https://www.cpe.ku.ac.th/~jim/java-io.html" * */ class Reader{ private static BufferedReader reader; private static StringTokenizer tokenizer; static void init(InputStream inputStream){ reader = new BufferedReader(new InputStreamReader(inputStream)); tokenizer = new StringTokenizer(""); } static String next() throws IOException { String read; while (!tokenizer.hasMoreTokens()){ read = reader.readLine(); if (read == null || read.equals("")) return "-1"; tokenizer = new StringTokenizer(read); } return tokenizer.nextToken(); } static int nextInt() throws IOException{ return Integer.parseInt(next()); } // static long nextLong() throws IOException{ // return Long.parseLong(next()); // } //Get a whole line. // static String line() throws IOException{ // return reader.readLine(); // } // // static double nextDouble() throws IOException{return Double.parseDouble(next());} } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { public static void main(String[] args) throws IOException { Reader.init(System.in); int n = Reader.nextInt(); int[] arr = new int[n]; int initial = 0; for (int i = 0; i < n; i++) arr[i] = Reader.nextInt(); for (int i = 0; i < arr.length; i++) { for (int j = i + 1; j < arr.length; j++) if (arr[i] > arr[j]) initial++; } int m = Reader.nextInt(); boolean parity = initial % 2 == 0; // System.out.println(parity ? "even": "odd"); for (int i = 0; i < m; i++) { int l = Reader.nextInt(); int r = Reader.nextInt(); int elems = r - l + 1; boolean change = (elems/2) % 2 == 0; parity = parity == change; System.out.println(parity ? "even": "odd"); } } } /** * Reader class based on the article at "https://www.cpe.ku.ac.th/~jim/java-io.html" * */ class Reader{ private static BufferedReader reader; private static StringTokenizer tokenizer; static void init(InputStream inputStream){ reader = new BufferedReader(new InputStreamReader(inputStream)); tokenizer = new StringTokenizer(""); } static String next() throws IOException { String read; while (!tokenizer.hasMoreTokens()){ read = reader.readLine(); if (read == null || read.equals("")) return "-1"; tokenizer = new StringTokenizer(read); } return tokenizer.nextToken(); } static int nextInt() throws IOException{ return Integer.parseInt(next()); } // static long nextLong() throws IOException{ // return Long.parseLong(next()); // } //Get a whole line. // static String line() throws IOException{ // return reader.readLine(); // } // // static double nextDouble() throws IOException{return Double.parseDouble(next());} } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
792
2,349
2,738
import java.util.Scanner; public class test5{ public static void main(String[] args){ Scanner in=new Scanner(System.in); long x=in.nextLong(); if(x>=3){ if(x%2!=0) System.out.println(x*(x-1)*(x-2)); else if(x%3==0) System.out.println((x-3)*(x-1)*(x-2)); else System.out.println(x*(x-1)*(x-3)); } else System.out.println(x); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class test5{ public static void main(String[] args){ Scanner in=new Scanner(System.in); long x=in.nextLong(); if(x>=3){ if(x%2!=0) System.out.println(x*(x-1)*(x-2)); else if(x%3==0) System.out.println((x-3)*(x-1)*(x-2)); else System.out.println(x*(x-1)*(x-3)); } else System.out.println(x); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class test5{ public static void main(String[] args){ Scanner in=new Scanner(System.in); long x=in.nextLong(); if(x>=3){ if(x%2!=0) System.out.println(x*(x-1)*(x-2)); else if(x%3==0) System.out.println((x-3)*(x-1)*(x-2)); else System.out.println(x*(x-1)*(x-3)); } else System.out.println(x); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
468
2,732
3,454
import java.util.HashSet; import java.util.Scanner; import java.util.Set; public class R023A { String str; int n; public R023A() { Scanner scanner = new Scanner(System.in); str = scanner.next(); n = str.length(); } private void process() { int length = -1; for(int i=1; i<n; i++) { Set<String> set = new HashSet<String>(); length = n - i; for(int j=0; j<=i; j++) { String sub = str.substring(j, j+length); set.add(sub); } if(set.size() < i+1) { System.out.println(length); return; } } System.out.println(0); } public static void main(String[] args) { new R023A().process(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.HashSet; import java.util.Scanner; import java.util.Set; public class R023A { String str; int n; public R023A() { Scanner scanner = new Scanner(System.in); str = scanner.next(); n = str.length(); } private void process() { int length = -1; for(int i=1; i<n; i++) { Set<String> set = new HashSet<String>(); length = n - i; for(int j=0; j<=i; j++) { String sub = str.substring(j, j+length); set.add(sub); } if(set.size() < i+1) { System.out.println(length); return; } } System.out.println(0); } public static void main(String[] args) { new R023A().process(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.HashSet; import java.util.Scanner; import java.util.Set; public class R023A { String str; int n; public R023A() { Scanner scanner = new Scanner(System.in); str = scanner.next(); n = str.length(); } private void process() { int length = -1; for(int i=1; i<n; i++) { Set<String> set = new HashSet<String>(); length = n - i; for(int j=0; j<=i; j++) { String sub = str.substring(j, j+length); set.add(sub); } if(set.size() < i+1) { System.out.println(length); return; } } System.out.println(0); } public static void main(String[] args) { new R023A().process(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
526
3,448
2,113
import java.util.Arrays; import java.util.Scanner; public class Solution { private static int[] a; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(), m = sc.nextInt(); a = new int[101]; for (int i = 0; i < m; i++) { int type = sc.nextInt(); a[type] = a[type] + 1; } int lo=1, hi=100, max=0; while (lo <= hi) { int mid = lo + (hi - lo)/2; if (check(n, mid)) { max = mid; lo = mid+1; } else { hi = mid -1; } } System.out.println(max); } public static boolean check(int n, int target) { int result = 0; for (int i=0; i <a.length; i++) { result = result + (a[i] / target); } if (result >= n) {return true;} return false; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class Solution { private static int[] a; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(), m = sc.nextInt(); a = new int[101]; for (int i = 0; i < m; i++) { int type = sc.nextInt(); a[type] = a[type] + 1; } int lo=1, hi=100, max=0; while (lo <= hi) { int mid = lo + (hi - lo)/2; if (check(n, mid)) { max = mid; lo = mid+1; } else { hi = mid -1; } } System.out.println(max); } public static boolean check(int n, int target) { int result = 0; for (int i=0; i <a.length; i++) { result = result + (a[i] / target); } if (result >= n) {return true;} return false; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class Solution { private static int[] a; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(), m = sc.nextInt(); a = new int[101]; for (int i = 0; i < m; i++) { int type = sc.nextInt(); a[type] = a[type] + 1; } int lo=1, hi=100, max=0; while (lo <= hi) { int mid = lo + (hi - lo)/2; if (check(n, mid)) { max = mid; lo = mid+1; } else { hi = mid -1; } } System.out.println(max); } public static boolean check(int n, int target) { int result = 0; for (int i=0; i <a.length; i++) { result = result + (a[i] / target); } if (result >= n) {return true;} return false; } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
576
2,109
3,387
import java.util.*; import java.io.*; public class Main { static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); static StringBuilder out = new StringBuilder(); public static void main(String[] args){ solve(); return; } // the followings are methods to take care of inputs. static int nextInt(){ return Integer.parseInt(nextLine()); } static long nextLong(){ return Long.parseLong(nextLine()); } static int[] nextIntArray(){ String[] inp = nextLine().split("\\s+"); int[] ary = new int[inp.length]; for (int i = 0; i < ary.length; i++){ ary[i] = Integer.parseInt(inp[i]); } return ary; } static int[] nextIntArrayFrom1(){ String[] inp = nextLine().split("\\s+"); int[] ary = new int[inp.length + 1]; for (int i = 0; i < inp.length; i++){ ary[i+1] = Integer.parseInt(inp[i]); } return ary; } static long[] nextLongArray(){ String[] inp = nextLine().split("\\s+"); long[] ary = new long[inp.length]; for (int i = 0; i < inp.length; i++){ ary[i] = Long.parseLong(inp[i]); } return ary; } static long[] nextLongArrayFrom1(){ String[] inp = nextLine().split("\\s+"); long[] ary = new long[inp.length + 1]; for (int i = 0; i < inp.length; i++){ ary[i+1] = Long.parseLong(inp[i]); } return ary; } static String nextLine(){ try { return reader.readLine().trim(); } catch (Exception e){} return null; } static void solve(){ String str = nextLine(); int max=0; int index=0; for(int i=0;i<str.length();i++){ for(int j=i+1;j<str.length();j++){ if(str.charAt(i)==str.charAt(j)){ int count=1; while(true){ if(str.length()<=i+count || str.length()<=j+count || str.charAt(i+count)!=str.charAt(j+count) ) break; count++; } if(max<count){ max=count; index=i; } } } } System.out.println(max); return; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); static StringBuilder out = new StringBuilder(); public static void main(String[] args){ solve(); return; } // the followings are methods to take care of inputs. static int nextInt(){ return Integer.parseInt(nextLine()); } static long nextLong(){ return Long.parseLong(nextLine()); } static int[] nextIntArray(){ String[] inp = nextLine().split("\\s+"); int[] ary = new int[inp.length]; for (int i = 0; i < ary.length; i++){ ary[i] = Integer.parseInt(inp[i]); } return ary; } static int[] nextIntArrayFrom1(){ String[] inp = nextLine().split("\\s+"); int[] ary = new int[inp.length + 1]; for (int i = 0; i < inp.length; i++){ ary[i+1] = Integer.parseInt(inp[i]); } return ary; } static long[] nextLongArray(){ String[] inp = nextLine().split("\\s+"); long[] ary = new long[inp.length]; for (int i = 0; i < inp.length; i++){ ary[i] = Long.parseLong(inp[i]); } return ary; } static long[] nextLongArrayFrom1(){ String[] inp = nextLine().split("\\s+"); long[] ary = new long[inp.length + 1]; for (int i = 0; i < inp.length; i++){ ary[i+1] = Long.parseLong(inp[i]); } return ary; } static String nextLine(){ try { return reader.readLine().trim(); } catch (Exception e){} return null; } static void solve(){ String str = nextLine(); int max=0; int index=0; for(int i=0;i<str.length();i++){ for(int j=i+1;j<str.length();j++){ if(str.charAt(i)==str.charAt(j)){ int count=1; while(true){ if(str.length()<=i+count || str.length()<=j+count || str.charAt(i+count)!=str.charAt(j+count) ) break; count++; } if(max<count){ max=count; index=i; } } } } System.out.println(max); return; } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in)); static StringBuilder out = new StringBuilder(); public static void main(String[] args){ solve(); return; } // the followings are methods to take care of inputs. static int nextInt(){ return Integer.parseInt(nextLine()); } static long nextLong(){ return Long.parseLong(nextLine()); } static int[] nextIntArray(){ String[] inp = nextLine().split("\\s+"); int[] ary = new int[inp.length]; for (int i = 0; i < ary.length; i++){ ary[i] = Integer.parseInt(inp[i]); } return ary; } static int[] nextIntArrayFrom1(){ String[] inp = nextLine().split("\\s+"); int[] ary = new int[inp.length + 1]; for (int i = 0; i < inp.length; i++){ ary[i+1] = Integer.parseInt(inp[i]); } return ary; } static long[] nextLongArray(){ String[] inp = nextLine().split("\\s+"); long[] ary = new long[inp.length]; for (int i = 0; i < inp.length; i++){ ary[i] = Long.parseLong(inp[i]); } return ary; } static long[] nextLongArrayFrom1(){ String[] inp = nextLine().split("\\s+"); long[] ary = new long[inp.length + 1]; for (int i = 0; i < inp.length; i++){ ary[i+1] = Long.parseLong(inp[i]); } return ary; } static String nextLine(){ try { return reader.readLine().trim(); } catch (Exception e){} return null; } static void solve(){ String str = nextLine(); int max=0; int index=0; for(int i=0;i<str.length();i++){ for(int j=i+1;j<str.length();j++){ if(str.charAt(i)==str.charAt(j)){ int count=1; while(true){ if(str.length()<=i+count || str.length()<=j+count || str.charAt(i+count)!=str.charAt(j+count) ) break; count++; } if(max<count){ max=count; index=i; } } } } System.out.println(max); return; } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
873
3,381
3,669
import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.util.Scanner; public class FireAgain { public static void main(String[] args) throws IOException { FileInputStream in = null; FileOutputStream out = null; try { in = new FileInputStream("input.txt"); out = new FileOutputStream("output.txt"); Scanner sc = new Scanner(in); int h = sc.nextInt(); int w = sc.nextInt(); int k = sc.nextInt(); int[] xk = new int[k]; int[] yk = new int[k]; for(int i = 0; i < k; i++) { int y = sc.nextInt()-1; int x = sc.nextInt()-1; xk[i] = x; yk[i] = y; } int best = -1; int bestx = -1; int besty = -1; for(int x = 0; x < w; x++) { for(int y = 0; y < h; y++) { int cur = 99999; for(int f = 0; f < k; f++) { cur = Math.min(cur, Math.abs(xk[f] - x)+Math.abs(yk[f] - y)); } if(cur > best) { best = cur; bestx = x; besty = y; } } } // System.out.println((besty+1) + " " + (bestx+1)); String s = (besty+1) + " " + (bestx+1); out.write(s.getBytes()); }finally { if (in != null) { in.close(); } if (out != null) { out.close(); } } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.util.Scanner; public class FireAgain { public static void main(String[] args) throws IOException { FileInputStream in = null; FileOutputStream out = null; try { in = new FileInputStream("input.txt"); out = new FileOutputStream("output.txt"); Scanner sc = new Scanner(in); int h = sc.nextInt(); int w = sc.nextInt(); int k = sc.nextInt(); int[] xk = new int[k]; int[] yk = new int[k]; for(int i = 0; i < k; i++) { int y = sc.nextInt()-1; int x = sc.nextInt()-1; xk[i] = x; yk[i] = y; } int best = -1; int bestx = -1; int besty = -1; for(int x = 0; x < w; x++) { for(int y = 0; y < h; y++) { int cur = 99999; for(int f = 0; f < k; f++) { cur = Math.min(cur, Math.abs(xk[f] - x)+Math.abs(yk[f] - y)); } if(cur > best) { best = cur; bestx = x; besty = y; } } } // System.out.println((besty+1) + " " + (bestx+1)); String s = (besty+1) + " " + (bestx+1); out.write(s.getBytes()); }finally { if (in != null) { in.close(); } if (out != null) { out.close(); } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.util.Scanner; public class FireAgain { public static void main(String[] args) throws IOException { FileInputStream in = null; FileOutputStream out = null; try { in = new FileInputStream("input.txt"); out = new FileOutputStream("output.txt"); Scanner sc = new Scanner(in); int h = sc.nextInt(); int w = sc.nextInt(); int k = sc.nextInt(); int[] xk = new int[k]; int[] yk = new int[k]; for(int i = 0; i < k; i++) { int y = sc.nextInt()-1; int x = sc.nextInt()-1; xk[i] = x; yk[i] = y; } int best = -1; int bestx = -1; int besty = -1; for(int x = 0; x < w; x++) { for(int y = 0; y < h; y++) { int cur = 99999; for(int f = 0; f < k; f++) { cur = Math.min(cur, Math.abs(xk[f] - x)+Math.abs(yk[f] - y)); } if(cur > best) { best = cur; bestx = x; besty = y; } } } // System.out.println((besty+1) + " " + (bestx+1)); String s = (besty+1) + " " + (bestx+1); out.write(s.getBytes()); }finally { if (in != null) { in.close(); } if (out != null) { out.close(); } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
758
3,661
4,448
import java.io.*; import java.util.*; public class A { FastScanner in; PrintWriter out; void solve() { int tc = in.nextInt(); for (int t = 0; t < tc; t++) { int n = in.nextInt(); int m = in.nextInt(); O[] a = new O[n * m]; int[][] cols = new int[m][n + n]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cols[j][i] = cols[j][i + n] = in.nextInt(); a[i * m + j] = new O(i, j, cols[j][i]); } } Arrays.sort(a); boolean[] used = new boolean[m]; int cntUsed = 0; for (O o : a) { if (!used[o.y]) { used[o.y] = true; cntUsed++; if (cntUsed == n) { break; } } } int[] dp = new int[1 << n]; int[] ndp = new int[1 << n]; int[] maxndp = new int[1 << n]; for (int col = 0; col < m; col++) { if (!used[col]) { continue; } int[] curColumn = cols[col]; for (int shift = 0; shift < n; shift++) { System.arraycopy(dp, 0, ndp, 0, ndp.length); for (int mask = 0; mask < 1 << n; mask++) { for (int bit = 0; bit < n; bit++) { if (((1 << bit) & mask) == 0) { int nmask = mask | (1 << bit); ndp[nmask] = Math.max(ndp[nmask], ndp[mask] + curColumn[bit + shift]); } } } for (int i = 0; i < ndp.length; i++) { maxndp[i] = Math.max(maxndp[i], ndp[i]); } } int[] tmp = dp; dp = maxndp; maxndp = tmp; } out.println(dp[dp.length - 1]); } } class O implements Comparable<O> { int x, y, value; public O(int x, int y, int value) { this.x = x; this.y = y; this.value = value; } @Override public int compareTo(O o) { return -Integer.compare(value, o.value); } } void run() { try { in = new FastScanner(new File("A.in")); out = new PrintWriter(new File("A.out")); solve(); out.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } } void runIO() { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static void main(String[] args) { new A().runIO(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { FastScanner in; PrintWriter out; void solve() { int tc = in.nextInt(); for (int t = 0; t < tc; t++) { int n = in.nextInt(); int m = in.nextInt(); O[] a = new O[n * m]; int[][] cols = new int[m][n + n]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cols[j][i] = cols[j][i + n] = in.nextInt(); a[i * m + j] = new O(i, j, cols[j][i]); } } Arrays.sort(a); boolean[] used = new boolean[m]; int cntUsed = 0; for (O o : a) { if (!used[o.y]) { used[o.y] = true; cntUsed++; if (cntUsed == n) { break; } } } int[] dp = new int[1 << n]; int[] ndp = new int[1 << n]; int[] maxndp = new int[1 << n]; for (int col = 0; col < m; col++) { if (!used[col]) { continue; } int[] curColumn = cols[col]; for (int shift = 0; shift < n; shift++) { System.arraycopy(dp, 0, ndp, 0, ndp.length); for (int mask = 0; mask < 1 << n; mask++) { for (int bit = 0; bit < n; bit++) { if (((1 << bit) & mask) == 0) { int nmask = mask | (1 << bit); ndp[nmask] = Math.max(ndp[nmask], ndp[mask] + curColumn[bit + shift]); } } } for (int i = 0; i < ndp.length; i++) { maxndp[i] = Math.max(maxndp[i], ndp[i]); } } int[] tmp = dp; dp = maxndp; maxndp = tmp; } out.println(dp[dp.length - 1]); } } class O implements Comparable<O> { int x, y, value; public O(int x, int y, int value) { this.x = x; this.y = y; this.value = value; } @Override public int compareTo(O o) { return -Integer.compare(value, o.value); } } void run() { try { in = new FastScanner(new File("A.in")); out = new PrintWriter(new File("A.out")); solve(); out.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } } void runIO() { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static void main(String[] args) { new A().runIO(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class A { FastScanner in; PrintWriter out; void solve() { int tc = in.nextInt(); for (int t = 0; t < tc; t++) { int n = in.nextInt(); int m = in.nextInt(); O[] a = new O[n * m]; int[][] cols = new int[m][n + n]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { cols[j][i] = cols[j][i + n] = in.nextInt(); a[i * m + j] = new O(i, j, cols[j][i]); } } Arrays.sort(a); boolean[] used = new boolean[m]; int cntUsed = 0; for (O o : a) { if (!used[o.y]) { used[o.y] = true; cntUsed++; if (cntUsed == n) { break; } } } int[] dp = new int[1 << n]; int[] ndp = new int[1 << n]; int[] maxndp = new int[1 << n]; for (int col = 0; col < m; col++) { if (!used[col]) { continue; } int[] curColumn = cols[col]; for (int shift = 0; shift < n; shift++) { System.arraycopy(dp, 0, ndp, 0, ndp.length); for (int mask = 0; mask < 1 << n; mask++) { for (int bit = 0; bit < n; bit++) { if (((1 << bit) & mask) == 0) { int nmask = mask | (1 << bit); ndp[nmask] = Math.max(ndp[nmask], ndp[mask] + curColumn[bit + shift]); } } } for (int i = 0; i < ndp.length; i++) { maxndp[i] = Math.max(maxndp[i], ndp[i]); } } int[] tmp = dp; dp = maxndp; maxndp = tmp; } out.println(dp[dp.length - 1]); } } class O implements Comparable<O> { int x, y, value; public O(int x, int y, int value) { this.x = x; this.y = y; this.value = value; } @Override public int compareTo(O o) { return -Integer.compare(value, o.value); } } void run() { try { in = new FastScanner(new File("A.in")); out = new PrintWriter(new File("A.out")); solve(); out.close(); } catch (FileNotFoundException e) { e.printStackTrace(); } } void runIO() { in = new FastScanner(System.in); out = new PrintWriter(System.out); solve(); out.close(); } class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(File f) { try { br = new BufferedReader(new FileReader(f)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner(InputStream f) { br = new BufferedReader(new InputStreamReader(f)); } String next() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return null; st = new StringTokenizer(s); } return st.nextToken(); } boolean hasMoreTokens() { while (st == null || !st.hasMoreTokens()) { String s = null; try { s = br.readLine(); } catch (IOException e) { e.printStackTrace(); } if (s == null) return false; st = new StringTokenizer(s); } return true; } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } } public static void main(String[] args) { new A().runIO(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,286
4,437
4,020
import java.io.IOException; import java.io.InputStream; import java.util.NoSuchElementException; public class Main { private static FastScanner sc = new FastScanner(); private static long mod = 1000000007; public static void main(String[] args) { int n = sc.nextInt(); int T = sc.nextInt(); int[] t = new int[n]; int[] g = new int[n]; for(int i=0; i<n; i++) { t[i] = sc.nextInt(); g[i] = sc.nextInt() - 1; } long[][][] dp = new long[T+1][3][1 << 15]; for(int i=1; i<=T; i++) { for(int j=0; j<n; j++) { if(i - t[j] == 0) { dp[i][g[j]][1 << j] = (dp[i][g[j]][1 << j] + 1) % mod; } else if(i - t[j] > 0) { for(int k=0; k<(1 << 15); k++) { if((k >> j & 1) == 1) { continue; } dp[i][g[j]][k + (1 << j)] = (dp[i][g[j]][k + (1 << j)] + dp[i - t[j]][(g[j] + 1) % 3][k] + dp[i - t[j]][(g[j] + 2) % 3][k]) % mod; } } } } long ans = 0; for(int j=0; j<3; j++) { for(int k=0; k<(1 << 15); k++) { ans = (ans + dp[T][j][k]) % mod; } } System.out.println(ans); } static long power(long m , long n){ if(n == 0) { return 1; }else if(n == 1){ return m; }else if(n % 2 == 0){ long s = power(m, n/2); return ( (s % mod) * (s % mod) ) % mod; }else{ return ( (m % mod) * (power(m, n-1) % mod) ) % mod; } } static class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if(ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch(IOException e) { e.printStackTrace(); } if(buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} private void skipUnprintable() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;} public boolean hasNext() { skipUnprintable(); return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt(){ return Integer.parseInt(next()); } public double nextDouble(){ return Double.parseDouble(next()); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.NoSuchElementException; public class Main { private static FastScanner sc = new FastScanner(); private static long mod = 1000000007; public static void main(String[] args) { int n = sc.nextInt(); int T = sc.nextInt(); int[] t = new int[n]; int[] g = new int[n]; for(int i=0; i<n; i++) { t[i] = sc.nextInt(); g[i] = sc.nextInt() - 1; } long[][][] dp = new long[T+1][3][1 << 15]; for(int i=1; i<=T; i++) { for(int j=0; j<n; j++) { if(i - t[j] == 0) { dp[i][g[j]][1 << j] = (dp[i][g[j]][1 << j] + 1) % mod; } else if(i - t[j] > 0) { for(int k=0; k<(1 << 15); k++) { if((k >> j & 1) == 1) { continue; } dp[i][g[j]][k + (1 << j)] = (dp[i][g[j]][k + (1 << j)] + dp[i - t[j]][(g[j] + 1) % 3][k] + dp[i - t[j]][(g[j] + 2) % 3][k]) % mod; } } } } long ans = 0; for(int j=0; j<3; j++) { for(int k=0; k<(1 << 15); k++) { ans = (ans + dp[T][j][k]) % mod; } } System.out.println(ans); } static long power(long m , long n){ if(n == 0) { return 1; }else if(n == 1){ return m; }else if(n % 2 == 0){ long s = power(m, n/2); return ( (s % mod) * (s % mod) ) % mod; }else{ return ( (m % mod) * (power(m, n-1) % mod) ) % mod; } } static class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if(ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch(IOException e) { e.printStackTrace(); } if(buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} private void skipUnprintable() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;} public boolean hasNext() { skipUnprintable(); return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt(){ return Integer.parseInt(next()); } public double nextDouble(){ return Double.parseDouble(next()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.NoSuchElementException; public class Main { private static FastScanner sc = new FastScanner(); private static long mod = 1000000007; public static void main(String[] args) { int n = sc.nextInt(); int T = sc.nextInt(); int[] t = new int[n]; int[] g = new int[n]; for(int i=0; i<n; i++) { t[i] = sc.nextInt(); g[i] = sc.nextInt() - 1; } long[][][] dp = new long[T+1][3][1 << 15]; for(int i=1; i<=T; i++) { for(int j=0; j<n; j++) { if(i - t[j] == 0) { dp[i][g[j]][1 << j] = (dp[i][g[j]][1 << j] + 1) % mod; } else if(i - t[j] > 0) { for(int k=0; k<(1 << 15); k++) { if((k >> j & 1) == 1) { continue; } dp[i][g[j]][k + (1 << j)] = (dp[i][g[j]][k + (1 << j)] + dp[i - t[j]][(g[j] + 1) % 3][k] + dp[i - t[j]][(g[j] + 2) % 3][k]) % mod; } } } } long ans = 0; for(int j=0; j<3; j++) { for(int k=0; k<(1 << 15); k++) { ans = (ans + dp[T][j][k]) % mod; } } System.out.println(ans); } static long power(long m , long n){ if(n == 0) { return 1; }else if(n == 1){ return m; }else if(n % 2 == 0){ long s = power(m, n/2); return ( (s % mod) * (s % mod) ) % mod; }else{ return ( (m % mod) * (power(m, n-1) % mod) ) % mod; } } static class FastScanner { private final InputStream in = System.in; private final byte[] buffer = new byte[1024]; private int ptr = 0; private int buflen = 0; private boolean hasNextByte() { if(ptr < buflen) { return true; } else { ptr = 0; try { buflen = in.read(buffer); } catch(IOException e) { e.printStackTrace(); } if(buflen <= 0) { return false; } } return true; } private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;} private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;} private void skipUnprintable() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;} public boolean hasNext() { skipUnprintable(); return hasNextByte();} public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while(isPrintableChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public long nextLong() { return Long.parseLong(next()); } public int nextInt(){ return Integer.parseInt(next()); } public double nextDouble(){ return Double.parseDouble(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,186
4,009
1,634
import java.io.BufferedReader; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; import java.util.Arrays; public class A { public static void main(String[] args) throws Exception { int n = nextInt(), b = nextInt(), a = nextInt(); int[] mas = new int[n]; for(int i = 0; i<n; i++) { mas[i] = nextInt(); } Arrays.sort(mas); if(mas[a - 1] == mas[a]) { exit(0); } println(mas[a] - mas[a-1]); } ///////////////////////////////////////////////////////////////// // IO ///////////////////////////////////////////////////////////////// private static StreamTokenizer in; private static PrintWriter out; private static BufferedReader inB; private static boolean FILE=false; private static int nextInt() throws Exception{ in.nextToken(); return (int)in.nval; } private static String nextString() throws Exception{ in.nextToken(); return in.sval; } static{ try { out = new PrintWriter(FILE ? (new FileOutputStream("output.txt")) : System.out); inB = new BufferedReader(new InputStreamReader(FILE ? new FileInputStream("input.txt") : System.in)); } catch(Exception e) {e.printStackTrace();} in = new StreamTokenizer(inB); } ///////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////// // pre - written ///////////////////////////////////////////////////////////////// private static void println(Object o) throws Exception { out.println(o); out.flush(); } private static void exit(Object o) throws Exception { println(o); exit(); } private static void exit() { System.exit(0); } private static final int INF = Integer.MAX_VALUE; private static final int MINF = Integer.MIN_VALUE; ////////////////////////////////////////////////////////////////// }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; import java.util.Arrays; public class A { public static void main(String[] args) throws Exception { int n = nextInt(), b = nextInt(), a = nextInt(); int[] mas = new int[n]; for(int i = 0; i<n; i++) { mas[i] = nextInt(); } Arrays.sort(mas); if(mas[a - 1] == mas[a]) { exit(0); } println(mas[a] - mas[a-1]); } ///////////////////////////////////////////////////////////////// // IO ///////////////////////////////////////////////////////////////// private static StreamTokenizer in; private static PrintWriter out; private static BufferedReader inB; private static boolean FILE=false; private static int nextInt() throws Exception{ in.nextToken(); return (int)in.nval; } private static String nextString() throws Exception{ in.nextToken(); return in.sval; } static{ try { out = new PrintWriter(FILE ? (new FileOutputStream("output.txt")) : System.out); inB = new BufferedReader(new InputStreamReader(FILE ? new FileInputStream("input.txt") : System.in)); } catch(Exception e) {e.printStackTrace();} in = new StreamTokenizer(inB); } ///////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////// // pre - written ///////////////////////////////////////////////////////////////// private static void println(Object o) throws Exception { out.println(o); out.flush(); } private static void exit(Object o) throws Exception { println(o); exit(); } private static void exit() { System.exit(0); } private static final int INF = Integer.MAX_VALUE; private static final int MINF = Integer.MIN_VALUE; ////////////////////////////////////////////////////////////////// } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.InputStreamReader; import java.io.PrintWriter; import java.io.StreamTokenizer; import java.util.Arrays; public class A { public static void main(String[] args) throws Exception { int n = nextInt(), b = nextInt(), a = nextInt(); int[] mas = new int[n]; for(int i = 0; i<n; i++) { mas[i] = nextInt(); } Arrays.sort(mas); if(mas[a - 1] == mas[a]) { exit(0); } println(mas[a] - mas[a-1]); } ///////////////////////////////////////////////////////////////// // IO ///////////////////////////////////////////////////////////////// private static StreamTokenizer in; private static PrintWriter out; private static BufferedReader inB; private static boolean FILE=false; private static int nextInt() throws Exception{ in.nextToken(); return (int)in.nval; } private static String nextString() throws Exception{ in.nextToken(); return in.sval; } static{ try { out = new PrintWriter(FILE ? (new FileOutputStream("output.txt")) : System.out); inB = new BufferedReader(new InputStreamReader(FILE ? new FileInputStream("input.txt") : System.in)); } catch(Exception e) {e.printStackTrace();} in = new StreamTokenizer(inB); } ///////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////// // pre - written ///////////////////////////////////////////////////////////////// private static void println(Object o) throws Exception { out.println(o); out.flush(); } private static void exit(Object o) throws Exception { println(o); exit(); } private static void exit() { System.exit(0); } private static final int INF = Integer.MAX_VALUE; private static final int MINF = Integer.MIN_VALUE; ////////////////////////////////////////////////////////////////// } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
740
1,631
3,438
import java.util.*; public class A { public static void main(String args[]) { Scanner scan = new Scanner(System.in); String str = scan.next(); for(int i=str.length();i >= 1;i--) { for(int j=0;j + i <= str.length();j++) { String sub = str.substring(j, j+i); int index = str.indexOf(sub, j+1); if(index > -1) { System.out.println(i); return; } } } System.out.println(0); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class A { public static void main(String args[]) { Scanner scan = new Scanner(System.in); String str = scan.next(); for(int i=str.length();i >= 1;i--) { for(int j=0;j + i <= str.length();j++) { String sub = str.substring(j, j+i); int index = str.indexOf(sub, j+1); if(index > -1) { System.out.println(i); return; } } } System.out.println(0); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class A { public static void main(String args[]) { Scanner scan = new Scanner(System.in); String str = scan.next(); for(int i=str.length();i >= 1;i--) { for(int j=0;j + i <= str.length();j++) { String sub = str.substring(j, j+i); int index = str.indexOf(sub, j+1); if(index > -1) { System.out.println(i); return; } } } System.out.println(0); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
481
3,432
521
import java.util.*; import java.io.*; public class X { public static void main(String args[])throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String s1 = br.readLine(); String s2 = br.readLine(); int i=0; char c1,c2; int cost = 0; while(i<n) { c1 = s1.charAt(i); c2 = s2.charAt(i); if(c1 != c2) { if((i+1)<n && s1.charAt(i+1) != s2.charAt(i+1) && s1.charAt(i) != s1.charAt(i+1)) { cost +=1; i++; } else { cost +=1; } } i++; } System.out.println(cost); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class X { public static void main(String args[])throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String s1 = br.readLine(); String s2 = br.readLine(); int i=0; char c1,c2; int cost = 0; while(i<n) { c1 = s1.charAt(i); c2 = s2.charAt(i); if(c1 != c2) { if((i+1)<n && s1.charAt(i+1) != s2.charAt(i+1) && s1.charAt(i) != s1.charAt(i+1)) { cost +=1; i++; } else { cost +=1; } } i++; } System.out.println(cost); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class X { public static void main(String args[])throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String s1 = br.readLine(); String s2 = br.readLine(); int i=0; char c1,c2; int cost = 0; while(i<n) { c1 = s1.charAt(i); c2 = s2.charAt(i); if(c1 != c2) { if((i+1)<n && s1.charAt(i+1) != s2.charAt(i+1) && s1.charAt(i) != s1.charAt(i+1)) { cost +=1; i++; } else { cost +=1; } } i++; } System.out.println(cost); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
533
520
3,548
// upsolve with rainboy import java.io.*; import java.util.*; public class CF1187G extends PrintWriter { CF1187G() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; int k, l; byte[] bb = new byte[1 << 15]; byte getc() { if (k >= l) { k = 0; try { l = in.read(bb); } catch (IOException e) { l = 0; } if (l <= 0) return -1; } return bb[k++]; } int nextInt() { byte c = 0; while (c <= 32) c = getc(); int a = 0; while (c > 32) { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1187G o = new CF1187G(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; ArrayList[] aa_; int n_, m_; int[] pi, kk, bb; int[] uu, vv, uv, cost, cost_; int[] cc; void init() { aa_ = new ArrayList[n_]; for (int u = 0; u < n_; u++) aa_[u] = new ArrayList<Integer>(); pi = new int[n_]; kk = new int[n_]; bb = new int[n_]; uu = new int[m_]; vv = new int[m_]; uv = new int[m_]; cost = new int[m_]; cost_ = new int[m_]; cc = new int[m_ * 2]; m_ = 0; } void link(int u, int v, int cap, int cos) { int h = m_++; uu[h] = u; vv[h] = v; uv[h] = u ^ v; cost[h] = cos; cc[h << 1 ^ 0] = cap; aa_[u].add(h << 1 ^ 0); aa_[v].add(h << 1 ^ 1); } void dijkstra(int s) { Arrays.fill(pi, INF); pi[s] = 0; TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v); pq.add(s); Integer first; while ((first = pq.pollFirst()) != null) { int u = first; int k = kk[u] + 1; ArrayList<Integer> adj = aa_[u]; for (int h_ : adj) if (cc[h_] > 0) { int h = h_ >> 1; int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]); int v = u ^ uv[h]; if (pi[v] > p || pi[v] == p && kk[v] > k) { if (pi[v] < INF) pq.remove(v); pi[v] = p; kk[v] = k; bb[v] = h_; pq.add(v); } } } } void push(int s, int t) { int c = INF; for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; c = Math.min(c, cc[h_]); } for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_] -= c; cc[h_ ^ 1] += c; } } void push1(int s, int t) { for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_]--; cc[h_ ^ 1]++; } } int edmonds_karp(int s, int t) { System.arraycopy(cost, 0, cost_, 0, m_); while (true) { dijkstra(s); if (pi[t] == INF) break; push1(s, t); for (int h = 0; h < m_; h++) { int u = uu[h], v = vv[h]; if (pi[u] != INF && pi[v] != INF) cost_[h] += pi[u] - pi[v]; } } int c = 0; for (int h = 0; h < m_; h++) c += cost[h] * cc[h << 1 ^ 1]; return c; } void main() { int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int c = sc.nextInt(); int d = sc.nextInt(); int[] ii = new int[k]; for (int h = 0; h < k; h++) ii[h] = sc.nextInt() - 1; ArrayList[] aa = new ArrayList[n]; for (int i = 0; i < n; i++) aa[i] = new ArrayList<Integer>(); for (int h = 0; h < m; h++) { int i = sc.nextInt() - 1; int j = sc.nextInt() - 1; aa[i].add(j); aa[j].add(i); } int t = n + k + 1; n_ = n * t + 1; m_ = k + (m * 2 * k + n) * (t - 1); init(); for (int i = 0; i < n; i++) { ArrayList<Integer> adj = aa[i]; for (int s = 0; s < t - 1; s++) { int u = i * t + s; for (int j : adj) { int v = j * t + s + 1; for (int x = 1; x <= k; x++) link(u, v, 1, c + (x * 2 - 1) * d); } } } for (int i = 0; i < n; i++) for (int s = 0; s < t - 1; s++) { int u = i * t + s, v = u + 1; link(u, v, k, i == 0 ? 0 : c); } for (int h = 0; h < k; h++) link(n_ - 1, ii[h] * t + 0, 1, 0); println(edmonds_karp(n_ - 1, 0 * t + t - 1)); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // upsolve with rainboy import java.io.*; import java.util.*; public class CF1187G extends PrintWriter { CF1187G() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; int k, l; byte[] bb = new byte[1 << 15]; byte getc() { if (k >= l) { k = 0; try { l = in.read(bb); } catch (IOException e) { l = 0; } if (l <= 0) return -1; } return bb[k++]; } int nextInt() { byte c = 0; while (c <= 32) c = getc(); int a = 0; while (c > 32) { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1187G o = new CF1187G(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; ArrayList[] aa_; int n_, m_; int[] pi, kk, bb; int[] uu, vv, uv, cost, cost_; int[] cc; void init() { aa_ = new ArrayList[n_]; for (int u = 0; u < n_; u++) aa_[u] = new ArrayList<Integer>(); pi = new int[n_]; kk = new int[n_]; bb = new int[n_]; uu = new int[m_]; vv = new int[m_]; uv = new int[m_]; cost = new int[m_]; cost_ = new int[m_]; cc = new int[m_ * 2]; m_ = 0; } void link(int u, int v, int cap, int cos) { int h = m_++; uu[h] = u; vv[h] = v; uv[h] = u ^ v; cost[h] = cos; cc[h << 1 ^ 0] = cap; aa_[u].add(h << 1 ^ 0); aa_[v].add(h << 1 ^ 1); } void dijkstra(int s) { Arrays.fill(pi, INF); pi[s] = 0; TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v); pq.add(s); Integer first; while ((first = pq.pollFirst()) != null) { int u = first; int k = kk[u] + 1; ArrayList<Integer> adj = aa_[u]; for (int h_ : adj) if (cc[h_] > 0) { int h = h_ >> 1; int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]); int v = u ^ uv[h]; if (pi[v] > p || pi[v] == p && kk[v] > k) { if (pi[v] < INF) pq.remove(v); pi[v] = p; kk[v] = k; bb[v] = h_; pq.add(v); } } } } void push(int s, int t) { int c = INF; for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; c = Math.min(c, cc[h_]); } for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_] -= c; cc[h_ ^ 1] += c; } } void push1(int s, int t) { for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_]--; cc[h_ ^ 1]++; } } int edmonds_karp(int s, int t) { System.arraycopy(cost, 0, cost_, 0, m_); while (true) { dijkstra(s); if (pi[t] == INF) break; push1(s, t); for (int h = 0; h < m_; h++) { int u = uu[h], v = vv[h]; if (pi[u] != INF && pi[v] != INF) cost_[h] += pi[u] - pi[v]; } } int c = 0; for (int h = 0; h < m_; h++) c += cost[h] * cc[h << 1 ^ 1]; return c; } void main() { int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int c = sc.nextInt(); int d = sc.nextInt(); int[] ii = new int[k]; for (int h = 0; h < k; h++) ii[h] = sc.nextInt() - 1; ArrayList[] aa = new ArrayList[n]; for (int i = 0; i < n; i++) aa[i] = new ArrayList<Integer>(); for (int h = 0; h < m; h++) { int i = sc.nextInt() - 1; int j = sc.nextInt() - 1; aa[i].add(j); aa[j].add(i); } int t = n + k + 1; n_ = n * t + 1; m_ = k + (m * 2 * k + n) * (t - 1); init(); for (int i = 0; i < n; i++) { ArrayList<Integer> adj = aa[i]; for (int s = 0; s < t - 1; s++) { int u = i * t + s; for (int j : adj) { int v = j * t + s + 1; for (int x = 1; x <= k; x++) link(u, v, 1, c + (x * 2 - 1) * d); } } } for (int i = 0; i < n; i++) for (int s = 0; s < t - 1; s++) { int u = i * t + s, v = u + 1; link(u, v, k, i == 0 ? 0 : c); } for (int h = 0; h < k; h++) link(n_ - 1, ii[h] * t + 0, 1, 0); println(edmonds_karp(n_ - 1, 0 * t + t - 1)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // upsolve with rainboy import java.io.*; import java.util.*; public class CF1187G extends PrintWriter { CF1187G() { super(System.out); } static class Scanner { Scanner(InputStream in) { this.in = in; } InputStream in; int k, l; byte[] bb = new byte[1 << 15]; byte getc() { if (k >= l) { k = 0; try { l = in.read(bb); } catch (IOException e) { l = 0; } if (l <= 0) return -1; } return bb[k++]; } int nextInt() { byte c = 0; while (c <= 32) c = getc(); int a = 0; while (c > 32) { a = a * 10 + c - '0'; c = getc(); } return a; } } Scanner sc = new Scanner(System.in); public static void main(String[] $) { CF1187G o = new CF1187G(); o.main(); o.flush(); } static final int INF = 0x3f3f3f3f; ArrayList[] aa_; int n_, m_; int[] pi, kk, bb; int[] uu, vv, uv, cost, cost_; int[] cc; void init() { aa_ = new ArrayList[n_]; for (int u = 0; u < n_; u++) aa_[u] = new ArrayList<Integer>(); pi = new int[n_]; kk = new int[n_]; bb = new int[n_]; uu = new int[m_]; vv = new int[m_]; uv = new int[m_]; cost = new int[m_]; cost_ = new int[m_]; cc = new int[m_ * 2]; m_ = 0; } void link(int u, int v, int cap, int cos) { int h = m_++; uu[h] = u; vv[h] = v; uv[h] = u ^ v; cost[h] = cos; cc[h << 1 ^ 0] = cap; aa_[u].add(h << 1 ^ 0); aa_[v].add(h << 1 ^ 1); } void dijkstra(int s) { Arrays.fill(pi, INF); pi[s] = 0; TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v); pq.add(s); Integer first; while ((first = pq.pollFirst()) != null) { int u = first; int k = kk[u] + 1; ArrayList<Integer> adj = aa_[u]; for (int h_ : adj) if (cc[h_] > 0) { int h = h_ >> 1; int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]); int v = u ^ uv[h]; if (pi[v] > p || pi[v] == p && kk[v] > k) { if (pi[v] < INF) pq.remove(v); pi[v] = p; kk[v] = k; bb[v] = h_; pq.add(v); } } } } void push(int s, int t) { int c = INF; for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; c = Math.min(c, cc[h_]); } for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_] -= c; cc[h_ ^ 1] += c; } } void push1(int s, int t) { for (int u = t, h_, h; u != s; u ^= uv[h]) { h = (h_ = bb[u]) >> 1; cc[h_]--; cc[h_ ^ 1]++; } } int edmonds_karp(int s, int t) { System.arraycopy(cost, 0, cost_, 0, m_); while (true) { dijkstra(s); if (pi[t] == INF) break; push1(s, t); for (int h = 0; h < m_; h++) { int u = uu[h], v = vv[h]; if (pi[u] != INF && pi[v] != INF) cost_[h] += pi[u] - pi[v]; } } int c = 0; for (int h = 0; h < m_; h++) c += cost[h] * cc[h << 1 ^ 1]; return c; } void main() { int n = sc.nextInt(); int m = sc.nextInt(); int k = sc.nextInt(); int c = sc.nextInt(); int d = sc.nextInt(); int[] ii = new int[k]; for (int h = 0; h < k; h++) ii[h] = sc.nextInt() - 1; ArrayList[] aa = new ArrayList[n]; for (int i = 0; i < n; i++) aa[i] = new ArrayList<Integer>(); for (int h = 0; h < m; h++) { int i = sc.nextInt() - 1; int j = sc.nextInt() - 1; aa[i].add(j); aa[j].add(i); } int t = n + k + 1; n_ = n * t + 1; m_ = k + (m * 2 * k + n) * (t - 1); init(); for (int i = 0; i < n; i++) { ArrayList<Integer> adj = aa[i]; for (int s = 0; s < t - 1; s++) { int u = i * t + s; for (int j : adj) { int v = j * t + s + 1; for (int x = 1; x <= k; x++) link(u, v, 1, c + (x * 2 - 1) * d); } } } for (int i = 0; i < n; i++) for (int s = 0; s < t - 1; s++) { int u = i * t + s, v = u + 1; link(u, v, k, i == 0 ? 0 : c); } for (int h = 0; h < k; h++) link(n_ - 1, ii[h] * t + 0, 1, 0); println(edmonds_karp(n_ - 1, 0 * t + t - 1)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,965
3,541
1,058
import java.util.Scanner; public class cf_contest_1177_problem_B { public static void main(String[] args) { Scanner s = new Scanner(System.in); long k = s.nextLong(); if (k<=9) System.out.println(k); else { int c = 1; while(k>c*((Math.pow(10,c)) - Math.pow(10,c-1))) { k-=c*((Math.pow(10,c)) - Math.pow(10,c-1)); // System.out.println(k + " hello " + c); c++; } // System.out.println("k is " + k); long mo = k%c; // System.out.println("mo is " + mo); k = k/c; if (mo == 0) { mo = c; k--; } mo--; // k = Math.max(k-1,0); // System.out.println("k/c is " + k); long j = (long) (Math.pow(10,c-1) + k); String j1 = "" + j; // System.out.println("j1 is " + j1); // System.out.println("final ans= " + j1.charAt((int)mo)); // System.out.println(); System.out.println(j1.charAt((int)mo)); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class cf_contest_1177_problem_B { public static void main(String[] args) { Scanner s = new Scanner(System.in); long k = s.nextLong(); if (k<=9) System.out.println(k); else { int c = 1; while(k>c*((Math.pow(10,c)) - Math.pow(10,c-1))) { k-=c*((Math.pow(10,c)) - Math.pow(10,c-1)); // System.out.println(k + " hello " + c); c++; } // System.out.println("k is " + k); long mo = k%c; // System.out.println("mo is " + mo); k = k/c; if (mo == 0) { mo = c; k--; } mo--; // k = Math.max(k-1,0); // System.out.println("k/c is " + k); long j = (long) (Math.pow(10,c-1) + k); String j1 = "" + j; // System.out.println("j1 is " + j1); // System.out.println("final ans= " + j1.charAt((int)mo)); // System.out.println(); System.out.println(j1.charAt((int)mo)); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class cf_contest_1177_problem_B { public static void main(String[] args) { Scanner s = new Scanner(System.in); long k = s.nextLong(); if (k<=9) System.out.println(k); else { int c = 1; while(k>c*((Math.pow(10,c)) - Math.pow(10,c-1))) { k-=c*((Math.pow(10,c)) - Math.pow(10,c-1)); // System.out.println(k + " hello " + c); c++; } // System.out.println("k is " + k); long mo = k%c; // System.out.println("mo is " + mo); k = k/c; if (mo == 0) { mo = c; k--; } mo--; // k = Math.max(k-1,0); // System.out.println("k/c is " + k); long j = (long) (Math.pow(10,c-1) + k); String j1 = "" + j; // System.out.println("j1 is " + j1); // System.out.println("final ans= " + j1.charAt((int)mo)); // System.out.println(); System.out.println(j1.charAt((int)mo)); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
654
1,057
1,959
import java.io.IOException; import java.io.InputStream; import java.util.Arrays; import java.util.InputMismatchException; public class R113_D2_A { public static void main(String[] args) throws NumberFormatException, IOException { // BufferedReader in = new BufferedReader(new // InputStreamReader(System.in)); InputReader4 in = new InputReader4(System.in); int n = in.readInt(); int k = in.readInt(); p[] inp = new p[n]; for (int i = 0; i < inp.length; i++) { inp[i] = new p(in.readInt(), in.readInt()); } Arrays.sort(inp); for (int i = 0; i < inp.length;) { int j = i + 1; while (j < inp.length && inp[i].x == inp[j].x && inp[i].y == inp[j].y) { j++; } int num = j - i; if (k <= num) { System.out.println(num); return; } else k -= num; i = j; } } static class p implements Comparable<p> { int x; int y; public p(int a, int b) { x = a; y = b; } public int compareTo(p o) { if (x > o.x) return -1; if (x < o.x) return 1; return y - o.y; } } static class InputReader4 { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader4(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.Arrays; import java.util.InputMismatchException; public class R113_D2_A { public static void main(String[] args) throws NumberFormatException, IOException { // BufferedReader in = new BufferedReader(new // InputStreamReader(System.in)); InputReader4 in = new InputReader4(System.in); int n = in.readInt(); int k = in.readInt(); p[] inp = new p[n]; for (int i = 0; i < inp.length; i++) { inp[i] = new p(in.readInt(), in.readInt()); } Arrays.sort(inp); for (int i = 0; i < inp.length;) { int j = i + 1; while (j < inp.length && inp[i].x == inp[j].x && inp[i].y == inp[j].y) { j++; } int num = j - i; if (k <= num) { System.out.println(num); return; } else k -= num; i = j; } } static class p implements Comparable<p> { int x; int y; public p(int a, int b) { x = a; y = b; } public int compareTo(p o) { if (x > o.x) return -1; if (x < o.x) return 1; return y - o.y; } } static class InputReader4 { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader4(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.Arrays; import java.util.InputMismatchException; public class R113_D2_A { public static void main(String[] args) throws NumberFormatException, IOException { // BufferedReader in = new BufferedReader(new // InputStreamReader(System.in)); InputReader4 in = new InputReader4(System.in); int n = in.readInt(); int k = in.readInt(); p[] inp = new p[n]; for (int i = 0; i < inp.length; i++) { inp[i] = new p(in.readInt(), in.readInt()); } Arrays.sort(inp); for (int i = 0; i < inp.length;) { int j = i + 1; while (j < inp.length && inp[i].x == inp[j].x && inp[i].y == inp[j].y) { j++; } int num = j - i; if (k <= num) { System.out.println(num); return; } else k -= num; i = j; } } static class p implements Comparable<p> { int x; int y; public p(int a, int b) { x = a; y = b; } public int compareTo(p o) { if (x > o.x) return -1; if (x < o.x) return 1; return y - o.y; } } static class InputReader4 { private InputStream stream; private byte[] buf = new byte[1000]; private int curChar, numChars; public InputReader4(InputStream stream) { this.stream = stream; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public String readString() { int c = read(); while (isSpaceChar(c)) c = read(); StringBuffer res = new StringBuffer(); do { res.appendCodePoint(c); c = read(); } while (!isSpaceChar(c)); return res.toString(); } private boolean isSpaceChar(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private String readLine0() { StringBuffer buf = new StringBuffer(); int c = read(); while (c != '\n' && c != -1) { buf.appendCodePoint(c); c = read(); } return buf.toString(); } public String readLine() { String s = readLine0(); while (s.trim().length() == 0) s = readLine0(); return s; } public String readLine(boolean ignoreEmptyLines) { if (ignoreEmptyLines) return readLine(); else return readLine0(); } public char readCharacter() { int c = read(); while (isSpaceChar(c)) c = read(); return (char) c; } public double readDouble() { int c = read(); while (isSpaceChar(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } double res = 0; while (!isSpaceChar(c) && c != '.') { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } if (c == '.') { c = read(); double m = 1; while (!isSpaceChar(c)) { if (c == 'e' || c == 'E') return res * Math.pow(10, readInt()); if (c < '0' || c > '9') throw new InputMismatchException(); m /= 10; res += (c - '0') * m; c = read(); } } return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,598
1,955
837
import java.util.*; import java.io.*; public class Main { public static void main(String args[]) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(), k = sc.nextInt(), kol = 0, prev; boolean ok; ArrayList<Integer> al = new ArrayList<Integer>(); al.add(2); prev = 2; for(int i=3;i<=n;i+=2) { ok = true; for(Integer x: al) if (i%x == 0) { ok = false; break; } if (ok) { for(Integer x: al) if (ok) { prev = x; ok = false; } else { if (x + prev + 1 == i) { kol++; break; } if (x + prev + 1 > i) break; prev = x; } al.add(i); } } if (kol >= k) System.out.print("YES"); else System.out.print("NO"); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String args[]) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(), k = sc.nextInt(), kol = 0, prev; boolean ok; ArrayList<Integer> al = new ArrayList<Integer>(); al.add(2); prev = 2; for(int i=3;i<=n;i+=2) { ok = true; for(Integer x: al) if (i%x == 0) { ok = false; break; } if (ok) { for(Integer x: al) if (ok) { prev = x; ok = false; } else { if (x + prev + 1 == i) { kol++; break; } if (x + prev + 1 > i) break; prev = x; } al.add(i); } } if (kol >= k) System.out.print("YES"); else System.out.print("NO"); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String args[]) throws IOException { Scanner sc = new Scanner(System.in); int n = sc.nextInt(), k = sc.nextInt(), kol = 0, prev; boolean ok; ArrayList<Integer> al = new ArrayList<Integer>(); al.add(2); prev = 2; for(int i=3;i<=n;i+=2) { ok = true; for(Integer x: al) if (i%x == 0) { ok = false; break; } if (ok) { for(Integer x: al) if (ok) { prev = x; ok = false; } else { if (x + prev + 1 == i) { kol++; break; } if (x + prev + 1 > i) break; prev = x; } al.add(i); } } if (kol >= k) System.out.print("YES"); else System.out.print("NO"); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
593
836
3,644
// package Practice1.CF35; import java.io.*; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class CF035C { public static void main(String[] args) throws IOException { Scanner s = new Scanner(new File("input.txt")/*System.in*/); int n = s.nextInt(); int m = s.nextInt(); int k = s.nextInt(); // pair[] arr = new pair[n]; Queue<pair> q = new LinkedList<>(); PrintWriter out = new PrintWriter(new FileWriter("output.txt")); boolean[][] visited = new boolean[n][m]; for (int i = 0; i < k; i++) { int x = s.nextInt() - 1; int y = s.nextInt() - 1; visited[x][y] = true; pair p = new pair(x,y); // arr[i] = p; q.add(p); } q.add(null); int[] dx = {0,0,1,-1}; int[] dy = {1,-1,0,0}; int ansX = q.peek().x; int ansY = q.peek().y; while(true){ if(q.peek() == null){ q.poll(); q.add(null); } pair p = q.poll(); if(p == null){ break; } for (int i = 0; i < 4; i++) { if(isValid(p.x + dx[i],p.y+dy[i],n,m) && !visited[p.x + dx[i]][p.y+dy[i]]){ q.add(new pair(p.x + dx[i],p.y+dy[i])); ansX = p.x + dx[i]; ansY = p.y + dy[i]; visited[ansX][ansY] = true; } } } out.println((ansX+1) + " " + (ansY+1)); out.close(); } public static boolean isValid(int x, int y,int n, int m){ return x >= 0 && x < n && y >= 0 && y < m; } private static class pair{ int x; int y; public pair(int x, int y) { this.x = x; this.y = y; } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> // package Practice1.CF35; import java.io.*; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class CF035C { public static void main(String[] args) throws IOException { Scanner s = new Scanner(new File("input.txt")/*System.in*/); int n = s.nextInt(); int m = s.nextInt(); int k = s.nextInt(); // pair[] arr = new pair[n]; Queue<pair> q = new LinkedList<>(); PrintWriter out = new PrintWriter(new FileWriter("output.txt")); boolean[][] visited = new boolean[n][m]; for (int i = 0; i < k; i++) { int x = s.nextInt() - 1; int y = s.nextInt() - 1; visited[x][y] = true; pair p = new pair(x,y); // arr[i] = p; q.add(p); } q.add(null); int[] dx = {0,0,1,-1}; int[] dy = {1,-1,0,0}; int ansX = q.peek().x; int ansY = q.peek().y; while(true){ if(q.peek() == null){ q.poll(); q.add(null); } pair p = q.poll(); if(p == null){ break; } for (int i = 0; i < 4; i++) { if(isValid(p.x + dx[i],p.y+dy[i],n,m) && !visited[p.x + dx[i]][p.y+dy[i]]){ q.add(new pair(p.x + dx[i],p.y+dy[i])); ansX = p.x + dx[i]; ansY = p.y + dy[i]; visited[ansX][ansY] = true; } } } out.println((ansX+1) + " " + (ansY+1)); out.close(); } public static boolean isValid(int x, int y,int n, int m){ return x >= 0 && x < n && y >= 0 && y < m; } private static class pair{ int x; int y; public pair(int x, int y) { this.x = x; this.y = y; } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> // package Practice1.CF35; import java.io.*; import java.util.LinkedList; import java.util.Queue; import java.util.Scanner; public class CF035C { public static void main(String[] args) throws IOException { Scanner s = new Scanner(new File("input.txt")/*System.in*/); int n = s.nextInt(); int m = s.nextInt(); int k = s.nextInt(); // pair[] arr = new pair[n]; Queue<pair> q = new LinkedList<>(); PrintWriter out = new PrintWriter(new FileWriter("output.txt")); boolean[][] visited = new boolean[n][m]; for (int i = 0; i < k; i++) { int x = s.nextInt() - 1; int y = s.nextInt() - 1; visited[x][y] = true; pair p = new pair(x,y); // arr[i] = p; q.add(p); } q.add(null); int[] dx = {0,0,1,-1}; int[] dy = {1,-1,0,0}; int ansX = q.peek().x; int ansY = q.peek().y; while(true){ if(q.peek() == null){ q.poll(); q.add(null); } pair p = q.poll(); if(p == null){ break; } for (int i = 0; i < 4; i++) { if(isValid(p.x + dx[i],p.y+dy[i],n,m) && !visited[p.x + dx[i]][p.y+dy[i]]){ q.add(new pair(p.x + dx[i],p.y+dy[i])); ansX = p.x + dx[i]; ansY = p.y + dy[i]; visited[ansX][ansY] = true; } } } out.println((ansX+1) + " " + (ansY+1)); out.close(); } public static boolean isValid(int x, int y,int n, int m){ return x >= 0 && x < n && y >= 0 && y < m; } private static class pair{ int x; int y; public pair(int x, int y) { this.x = x; this.y = y; } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
834
3,636
2,645
import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; public class wef { public static class FastReader { BufferedReader br; StringTokenizer st; //it reads the data about the specified point and divide the data about it ,it is quite fast //than using direct public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception r) { r.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next());//converts string to integer } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception r) { r.printStackTrace(); } return str; } } static ArrayList<String>list1=new ArrayList<String>(); static void combine(String instr, StringBuffer outstr, int index,int k) { if(outstr.length()==k) { list1.add(outstr.toString());return; } if(outstr.toString().length()==0) outstr.append(instr.charAt(index)); for (int i = 0; i < instr.length(); i++) { outstr.append(instr.charAt(i)); combine(instr, outstr, i + 1,k); outstr.deleteCharAt(outstr.length() - 1); } index++; } static ArrayList<ArrayList<Integer>>l=new ArrayList<>(); static void comb(int n,int k,int ind,ArrayList<Integer>list) { if(k==0) { l.add(new ArrayList<>(list)); return; } for(int i=ind;i<=n;i++) { list.add(i); comb(n,k-1,ind+1,list); list.remove(list.size()-1); } } static long sum(long n) { long sum=0; while(n!=0) { sum+=n%10; n/=10; } return sum; } static boolean check(HashMap<Integer,Integer>map) { for(int h:map.values()) if(h>1) return false; return true; } static class Pair implements Comparable<Pair>{ int x;int y; Pair(int x,int y){ this.x=x; this.y=y; // this.i=i; } @Override public int compareTo(Pair o) { // TODO Auto-generated method stub return x-o.x; } } static boolean isPrime(int n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so // that we can skip // middle five numbers // in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out)); public static void main(String[] args) { // TODO Auto-generated method stub FastReader in=new FastReader(); HashMap<Integer,Integer>map=new HashMap<Integer,Integer>(); ArrayList<Integer>list=new ArrayList<Integer>(); TreeSet<Integer>set=new TreeSet<Integer>(); int n=in.nextInt(); for(int i=0;i<n;i++) set.add(in.nextInt()); int ans=0; while(!set.isEmpty()) { int f=set.first(); int s=f; while(!set.isEmpty()&&s<=set.last()) { if(set.contains(s)) set.remove(new Integer(s)); s+=f; } ans++; } out.println(ans); out.close(); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; public class wef { public static class FastReader { BufferedReader br; StringTokenizer st; //it reads the data about the specified point and divide the data about it ,it is quite fast //than using direct public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception r) { r.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next());//converts string to integer } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception r) { r.printStackTrace(); } return str; } } static ArrayList<String>list1=new ArrayList<String>(); static void combine(String instr, StringBuffer outstr, int index,int k) { if(outstr.length()==k) { list1.add(outstr.toString());return; } if(outstr.toString().length()==0) outstr.append(instr.charAt(index)); for (int i = 0; i < instr.length(); i++) { outstr.append(instr.charAt(i)); combine(instr, outstr, i + 1,k); outstr.deleteCharAt(outstr.length() - 1); } index++; } static ArrayList<ArrayList<Integer>>l=new ArrayList<>(); static void comb(int n,int k,int ind,ArrayList<Integer>list) { if(k==0) { l.add(new ArrayList<>(list)); return; } for(int i=ind;i<=n;i++) { list.add(i); comb(n,k-1,ind+1,list); list.remove(list.size()-1); } } static long sum(long n) { long sum=0; while(n!=0) { sum+=n%10; n/=10; } return sum; } static boolean check(HashMap<Integer,Integer>map) { for(int h:map.values()) if(h>1) return false; return true; } static class Pair implements Comparable<Pair>{ int x;int y; Pair(int x,int y){ this.x=x; this.y=y; // this.i=i; } @Override public int compareTo(Pair o) { // TODO Auto-generated method stub return x-o.x; } } static boolean isPrime(int n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so // that we can skip // middle five numbers // in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out)); public static void main(String[] args) { // TODO Auto-generated method stub FastReader in=new FastReader(); HashMap<Integer,Integer>map=new HashMap<Integer,Integer>(); ArrayList<Integer>list=new ArrayList<Integer>(); TreeSet<Integer>set=new TreeSet<Integer>(); int n=in.nextInt(); for(int i=0;i<n;i++) set.add(in.nextInt()); int ans=0; while(!set.isEmpty()) { int f=set.first(); int s=f; while(!set.isEmpty()&&s<=set.last()) { if(set.contains(s)) set.remove(new Integer(s)); s+=f; } ans++; } out.println(ans); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedOutputStream; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.math.BigInteger; import java.util.*; public class wef { public static class FastReader { BufferedReader br; StringTokenizer st; //it reads the data about the specified point and divide the data about it ,it is quite fast //than using direct public FastReader() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception r) { r.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next());//converts string to integer } double nextDouble() { return Double.parseDouble(next()); } long nextLong() { return Long.parseLong(next()); } String nextLine() { String str = ""; try { str = br.readLine(); } catch (Exception r) { r.printStackTrace(); } return str; } } static ArrayList<String>list1=new ArrayList<String>(); static void combine(String instr, StringBuffer outstr, int index,int k) { if(outstr.length()==k) { list1.add(outstr.toString());return; } if(outstr.toString().length()==0) outstr.append(instr.charAt(index)); for (int i = 0; i < instr.length(); i++) { outstr.append(instr.charAt(i)); combine(instr, outstr, i + 1,k); outstr.deleteCharAt(outstr.length() - 1); } index++; } static ArrayList<ArrayList<Integer>>l=new ArrayList<>(); static void comb(int n,int k,int ind,ArrayList<Integer>list) { if(k==0) { l.add(new ArrayList<>(list)); return; } for(int i=ind;i<=n;i++) { list.add(i); comb(n,k-1,ind+1,list); list.remove(list.size()-1); } } static long sum(long n) { long sum=0; while(n!=0) { sum+=n%10; n/=10; } return sum; } static boolean check(HashMap<Integer,Integer>map) { for(int h:map.values()) if(h>1) return false; return true; } static class Pair implements Comparable<Pair>{ int x;int y; Pair(int x,int y){ this.x=x; this.y=y; // this.i=i; } @Override public int compareTo(Pair o) { // TODO Auto-generated method stub return x-o.x; } } static boolean isPrime(int n) { // Corner cases if (n <= 1) return false; if (n <= 3) return true; // This is checked so // that we can skip // middle five numbers // in below loop if (n % 2 == 0 || n % 3 == 0) return false; for (int i = 5; i * i <= n; i = i + 6) if (n % i == 0 || n % (i + 2) == 0) return false; return true; } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out)); public static void main(String[] args) { // TODO Auto-generated method stub FastReader in=new FastReader(); HashMap<Integer,Integer>map=new HashMap<Integer,Integer>(); ArrayList<Integer>list=new ArrayList<Integer>(); TreeSet<Integer>set=new TreeSet<Integer>(); int n=in.nextInt(); for(int i=0;i<n;i++) set.add(in.nextInt()); int ans=0; while(!set.isEmpty()) { int f=set.first(); int s=f; while(!set.isEmpty()&&s<=set.last()) { if(set.contains(s)) set.remove(new Integer(s)); s+=f; } ans++; } out.println(ans); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,288
2,639
3,941
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.PrintStream; import java.util.Arrays; import java.util.Random; import java.io.IOException; import java.io.Reader; import java.io.InputStreamReader; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author tanzaku */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; MyInput in = new MyInput(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.close(); } static class TaskE { int n; int k; long[] neigibor; Random random = new Random(); long maxClique; public void solve(int testNumber, MyInput in, PrintWriter out) { n = in.nextInt(); k = in.nextInt(); neigibor = new long[n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { neigibor[i] |= in.nextLong() << j; } } long maxClique = bronKerbosch(); long a = Long.bitCount(maxClique); dump(a); out.printf("%.12f\n", a * (a - 1.0) / 2 * k / a * k / a); } static void dump(Object... o) { System.err.println(Arrays.deepToString(o)); } long bronKerbosch() { maxClique = 0; bronKerbosch2(0, (1L << n) - 1, 0); return maxClique; } void bronKerbosch2(long r, long p, long x) { if (Long.bitCount(maxClique) >= Long.bitCount(r | p | x)) return; long px = p | x; if (px == 0) { if (Long.bitCount(maxClique) < Long.bitCount(r)) { maxClique = r; } return; } int cnt = Long.bitCount(px); int choice = random.nextInt(cnt); int u; for (int i = 0; ; i++) { if ((px >>> i & 1) != 0 && choice-- == 0) { u = i; break; } } // dump(r, p, x, u, neigibor); long ne = p & ~neigibor[u]; for (int v = 0; v < n; v++) if ((ne >>> v & 1) != 0) { bronKerbosch2(r | 1L << v, p & neigibor[v], x & neigibor[v]); p &= ~(1L << v); x |= 1L << v; } } } static class MyInput { private final BufferedReader in; private static int pos; private static int readLen; private static final char[] buffer = new char[1024 * 8]; private static char[] str = new char[500 * 8 * 2]; private static boolean[] isDigit = new boolean[256]; private static boolean[] isSpace = new boolean[256]; private static boolean[] isLineSep = new boolean[256]; static { for (int i = 0; i < 10; i++) { isDigit['0' + i] = true; } isDigit['-'] = true; isSpace[' '] = isSpace['\r'] = isSpace['\n'] = isSpace['\t'] = true; isLineSep['\r'] = isLineSep['\n'] = true; } public MyInput(InputStream is) { in = new BufferedReader(new InputStreamReader(is)); } public int read() { if (pos >= readLen) { pos = 0; try { readLen = in.read(buffer); } catch (IOException e) { throw new RuntimeException(); } if (readLen <= 0) { throw new MyInput.EndOfFileRuntimeException(); } } return buffer[pos++]; } public int nextInt() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; int ret = 0; if (str[0] == '-') { i = 1; } for (; i < len; i++) ret = ret * 10 + str[i] - '0'; if (str[0] == '-') { ret = -ret; } return ret; } public long nextLong() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; long ret = 0; if (str[0] == '-') { i = 1; } for (; i < len; i++) ret = ret * 10 + str[i] - '0'; if (str[0] == '-') { ret = -ret; } return ret; } public char nextChar() { while (true) { final int c = read(); if (!isSpace[c]) { return (char) c; } } } int reads(int len, boolean[] accept) { try { while (true) { final int c = read(); if (accept[c]) { break; } if (str.length == len) { char[] rep = new char[str.length * 3 / 2]; System.arraycopy(str, 0, rep, 0, str.length); str = rep; } str[len++] = (char) c; } } catch (MyInput.EndOfFileRuntimeException e) { } return len; } static class EndOfFileRuntimeException extends RuntimeException { } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.PrintStream; import java.util.Arrays; import java.util.Random; import java.io.IOException; import java.io.Reader; import java.io.InputStreamReader; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author tanzaku */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; MyInput in = new MyInput(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.close(); } static class TaskE { int n; int k; long[] neigibor; Random random = new Random(); long maxClique; public void solve(int testNumber, MyInput in, PrintWriter out) { n = in.nextInt(); k = in.nextInt(); neigibor = new long[n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { neigibor[i] |= in.nextLong() << j; } } long maxClique = bronKerbosch(); long a = Long.bitCount(maxClique); dump(a); out.printf("%.12f\n", a * (a - 1.0) / 2 * k / a * k / a); } static void dump(Object... o) { System.err.println(Arrays.deepToString(o)); } long bronKerbosch() { maxClique = 0; bronKerbosch2(0, (1L << n) - 1, 0); return maxClique; } void bronKerbosch2(long r, long p, long x) { if (Long.bitCount(maxClique) >= Long.bitCount(r | p | x)) return; long px = p | x; if (px == 0) { if (Long.bitCount(maxClique) < Long.bitCount(r)) { maxClique = r; } return; } int cnt = Long.bitCount(px); int choice = random.nextInt(cnt); int u; for (int i = 0; ; i++) { if ((px >>> i & 1) != 0 && choice-- == 0) { u = i; break; } } // dump(r, p, x, u, neigibor); long ne = p & ~neigibor[u]; for (int v = 0; v < n; v++) if ((ne >>> v & 1) != 0) { bronKerbosch2(r | 1L << v, p & neigibor[v], x & neigibor[v]); p &= ~(1L << v); x |= 1L << v; } } } static class MyInput { private final BufferedReader in; private static int pos; private static int readLen; private static final char[] buffer = new char[1024 * 8]; private static char[] str = new char[500 * 8 * 2]; private static boolean[] isDigit = new boolean[256]; private static boolean[] isSpace = new boolean[256]; private static boolean[] isLineSep = new boolean[256]; static { for (int i = 0; i < 10; i++) { isDigit['0' + i] = true; } isDigit['-'] = true; isSpace[' '] = isSpace['\r'] = isSpace['\n'] = isSpace['\t'] = true; isLineSep['\r'] = isLineSep['\n'] = true; } public MyInput(InputStream is) { in = new BufferedReader(new InputStreamReader(is)); } public int read() { if (pos >= readLen) { pos = 0; try { readLen = in.read(buffer); } catch (IOException e) { throw new RuntimeException(); } if (readLen <= 0) { throw new MyInput.EndOfFileRuntimeException(); } } return buffer[pos++]; } public int nextInt() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; int ret = 0; if (str[0] == '-') { i = 1; } for (; i < len; i++) ret = ret * 10 + str[i] - '0'; if (str[0] == '-') { ret = -ret; } return ret; } public long nextLong() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; long ret = 0; if (str[0] == '-') { i = 1; } for (; i < len; i++) ret = ret * 10 + str[i] - '0'; if (str[0] == '-') { ret = -ret; } return ret; } public char nextChar() { while (true) { final int c = read(); if (!isSpace[c]) { return (char) c; } } } int reads(int len, boolean[] accept) { try { while (true) { final int c = read(); if (accept[c]) { break; } if (str.length == len) { char[] rep = new char[str.length * 3 / 2]; System.arraycopy(str, 0, rep, 0, str.length); str = rep; } str[len++] = (char) c; } } catch (MyInput.EndOfFileRuntimeException e) { } return len; } static class EndOfFileRuntimeException extends RuntimeException { } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.PrintStream; import java.util.Arrays; import java.util.Random; import java.io.IOException; import java.io.Reader; import java.io.InputStreamReader; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author tanzaku */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; MyInput in = new MyInput(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE solver = new TaskE(); solver.solve(1, in, out); out.close(); } static class TaskE { int n; int k; long[] neigibor; Random random = new Random(); long maxClique; public void solve(int testNumber, MyInput in, PrintWriter out) { n = in.nextInt(); k = in.nextInt(); neigibor = new long[n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { neigibor[i] |= in.nextLong() << j; } } long maxClique = bronKerbosch(); long a = Long.bitCount(maxClique); dump(a); out.printf("%.12f\n", a * (a - 1.0) / 2 * k / a * k / a); } static void dump(Object... o) { System.err.println(Arrays.deepToString(o)); } long bronKerbosch() { maxClique = 0; bronKerbosch2(0, (1L << n) - 1, 0); return maxClique; } void bronKerbosch2(long r, long p, long x) { if (Long.bitCount(maxClique) >= Long.bitCount(r | p | x)) return; long px = p | x; if (px == 0) { if (Long.bitCount(maxClique) < Long.bitCount(r)) { maxClique = r; } return; } int cnt = Long.bitCount(px); int choice = random.nextInt(cnt); int u; for (int i = 0; ; i++) { if ((px >>> i & 1) != 0 && choice-- == 0) { u = i; break; } } // dump(r, p, x, u, neigibor); long ne = p & ~neigibor[u]; for (int v = 0; v < n; v++) if ((ne >>> v & 1) != 0) { bronKerbosch2(r | 1L << v, p & neigibor[v], x & neigibor[v]); p &= ~(1L << v); x |= 1L << v; } } } static class MyInput { private final BufferedReader in; private static int pos; private static int readLen; private static final char[] buffer = new char[1024 * 8]; private static char[] str = new char[500 * 8 * 2]; private static boolean[] isDigit = new boolean[256]; private static boolean[] isSpace = new boolean[256]; private static boolean[] isLineSep = new boolean[256]; static { for (int i = 0; i < 10; i++) { isDigit['0' + i] = true; } isDigit['-'] = true; isSpace[' '] = isSpace['\r'] = isSpace['\n'] = isSpace['\t'] = true; isLineSep['\r'] = isLineSep['\n'] = true; } public MyInput(InputStream is) { in = new BufferedReader(new InputStreamReader(is)); } public int read() { if (pos >= readLen) { pos = 0; try { readLen = in.read(buffer); } catch (IOException e) { throw new RuntimeException(); } if (readLen <= 0) { throw new MyInput.EndOfFileRuntimeException(); } } return buffer[pos++]; } public int nextInt() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; int ret = 0; if (str[0] == '-') { i = 1; } for (; i < len; i++) ret = ret * 10 + str[i] - '0'; if (str[0] == '-') { ret = -ret; } return ret; } public long nextLong() { int len = 0; str[len++] = nextChar(); len = reads(len, isSpace); int i = 0; long ret = 0; if (str[0] == '-') { i = 1; } for (; i < len; i++) ret = ret * 10 + str[i] - '0'; if (str[0] == '-') { ret = -ret; } return ret; } public char nextChar() { while (true) { final int c = read(); if (!isSpace[c]) { return (char) c; } } } int reads(int len, boolean[] accept) { try { while (true) { final int c = read(); if (accept[c]) { break; } if (str.length == len) { char[] rep = new char[str.length * 3 / 2]; System.arraycopy(str, 0, rep, 0, str.length); str = rep; } str[len++] = (char) c; } } catch (MyInput.EndOfFileRuntimeException e) { } return len; } static class EndOfFileRuntimeException extends RuntimeException { } } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,727
3,930
3,352
import java.io.*; import java.util.*; public class Main{ public static void main( String[] args ){ Scanner cin = new Scanner( System.in ); String s = cin.next(); int n = s.length(); char[] ss = new char[ n ]; ss = s.toCharArray(); int ans = 0; for (int i=0; i<n; i++) for (int j=i+1; j<n; j++){ int k = 0; while ( i+k<n && j+k<n && ss[i+k] == ss[j+k] ) k++; ans = Math.max( ans, k ); } System.out.println( ans ); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main{ public static void main( String[] args ){ Scanner cin = new Scanner( System.in ); String s = cin.next(); int n = s.length(); char[] ss = new char[ n ]; ss = s.toCharArray(); int ans = 0; for (int i=0; i<n; i++) for (int j=i+1; j<n; j++){ int k = 0; while ( i+k<n && j+k<n && ss[i+k] == ss[j+k] ) k++; ans = Math.max( ans, k ); } System.out.println( ans ); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main{ public static void main( String[] args ){ Scanner cin = new Scanner( System.in ); String s = cin.next(); int n = s.length(); char[] ss = new char[ n ]; ss = s.toCharArray(); int ans = 0; for (int i=0; i<n; i++) for (int j=i+1; j<n; j++){ int k = 0; while ( i+k<n && j+k<n && ss[i+k] == ss[j+k] ) k++; ans = Math.max( ans, k ); } System.out.println( ans ); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
481
3,346
3,156
import java.util.Scanner; public class AlexAndARhombus { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); System.out.println(n*n+(n-1)*(n-1)); sc.close(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class AlexAndARhombus { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); System.out.println(n*n+(n-1)*(n-1)); sc.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class AlexAndARhombus { public static void main(String args[]) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); System.out.println(n*n+(n-1)*(n-1)); sc.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
410
3,150
1,117
import java.util.*; public class mad{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int cura = 0,curb = 0; int ver; System.out.println("? 0 0"); System.out.flush(); ver = sc.nextInt(); for(int i=29;i>=0;i--){ System.out.println("? "+(cura+(1<<i))+" "+curb); System.out.flush(); int temp1 = sc.nextInt(); System.out.println("? "+cura+" "+(curb+(1<<i))); System.out.flush(); int temp2 = sc.nextInt(); if(temp1!=temp2){ if(temp2==1){ cura += (1<<i); curb += (1<<i); } } else{ if(ver==1) cura += (1<<i); if(ver==-1) curb += (1<<i); ver = temp1; } } System.out.println("! "+cura+" "+curb); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class mad{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int cura = 0,curb = 0; int ver; System.out.println("? 0 0"); System.out.flush(); ver = sc.nextInt(); for(int i=29;i>=0;i--){ System.out.println("? "+(cura+(1<<i))+" "+curb); System.out.flush(); int temp1 = sc.nextInt(); System.out.println("? "+cura+" "+(curb+(1<<i))); System.out.flush(); int temp2 = sc.nextInt(); if(temp1!=temp2){ if(temp2==1){ cura += (1<<i); curb += (1<<i); } } else{ if(ver==1) cura += (1<<i); if(ver==-1) curb += (1<<i); ver = temp1; } } System.out.println("! "+cura+" "+curb); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class mad{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int cura = 0,curb = 0; int ver; System.out.println("? 0 0"); System.out.flush(); ver = sc.nextInt(); for(int i=29;i>=0;i--){ System.out.println("? "+(cura+(1<<i))+" "+curb); System.out.flush(); int temp1 = sc.nextInt(); System.out.println("? "+cura+" "+(curb+(1<<i))); System.out.flush(); int temp2 = sc.nextInt(); if(temp1!=temp2){ if(temp2==1){ cura += (1<<i); curb += (1<<i); } } else{ if(ver==1) cura += (1<<i); if(ver==-1) curb += (1<<i); ver = temp1; } } System.out.println("! "+cura+" "+curb); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
561
1,116
1,909
import java.util.Arrays; import java.util.Scanner; public class A { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] A = new int[n]; int sum = 0; for (int i = 0; i < n; i++) { A[i] = in.nextInt(); sum += A[i]; } Arrays.sort(A); int cnt = 0; int temp = 0; for (int i = n - 1; i >= 0; i--) { temp += A[i]; sum -= A[i]; cnt++; if (temp > sum) break; } System.out.println(cnt); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class A { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] A = new int[n]; int sum = 0; for (int i = 0; i < n; i++) { A[i] = in.nextInt(); sum += A[i]; } Arrays.sort(A); int cnt = 0; int temp = 0; for (int i = n - 1; i >= 0; i--) { temp += A[i]; sum -= A[i]; cnt++; if (temp > sum) break; } System.out.println(cnt); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class A { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] A = new int[n]; int sum = 0; for (int i = 0; i < n; i++) { A[i] = in.nextInt(); sum += A[i]; } Arrays.sort(A); int cnt = 0; int temp = 0; for (int i = n - 1; i >= 0; i--) { temp += A[i]; sum -= A[i]; cnt++; if (temp > sum) break; } System.out.println(cnt); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
494
1,905
3,001
import java.io.*; import java.util.*; public class Test{ public static void main(String[] args) { Scanner in= new Scanner(System.in); int n=in.nextInt(); if(n%7==0 || n%4==0 || n%47==0 || n%74==0 || n%447==0 || n%474==0 || n%477==0 || n%747==0 || n%774==0){ System.out.println("YES"); }else System.out.println("NO"); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Test{ public static void main(String[] args) { Scanner in= new Scanner(System.in); int n=in.nextInt(); if(n%7==0 || n%4==0 || n%47==0 || n%74==0 || n%447==0 || n%474==0 || n%477==0 || n%747==0 || n%774==0){ System.out.println("YES"); }else System.out.println("NO"); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Test{ public static void main(String[] args) { Scanner in= new Scanner(System.in); int n=in.nextInt(); if(n%7==0 || n%4==0 || n%47==0 || n%74==0 || n%447==0 || n%474==0 || n%477==0 || n%747==0 || n%774==0){ System.out.println("YES"); }else System.out.println("NO"); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
478
2,995
312
import java.util.*; import java.io.*; public class D { static final boolean stdin = true; static final String filename = ""; static FastScanner br; static PrintWriter pw; public static void main(String[] args) throws IOException { if (stdin) { br = new FastScanner(); pw = new PrintWriter(new OutputStreamWriter(System.out)); } else { br = new FastScanner(filename + ".in"); pw = new PrintWriter(new FileWriter(filename + ".out")); } Solver solver = new Solver(); solver.solve(br, pw); } static class Solver { static long mod = (long) (1e10); public void solve(FastScanner br, PrintWriter pw) throws IOException { int n = br.ni(); Integer[] in = br.nIa(n); TreeSet<Integer> ts = new TreeSet<Integer>(); for (int i = 0; i < n; i++) { ts.add(in[i]); } String twoSol = ""; for (int i = 0; i <= 30; i++) { for (int j : in) { if (ts.contains(j + (int) Math.pow(2, i))) { if (ts.contains(j - (int) Math.pow(2, i))) { pw.println(3); pw.println(j + " " + (j + (int) Math.pow(2, i)) + " " + (j - (int) Math.pow(2, i))); pw.close(); System.exit(0); }else{ twoSol = (j + " " + (j + (int) Math.pow(2, i))); } } } } if (twoSol.isEmpty()) { pw.println(1); pw.println(in[0]); } else { pw.println(2); pw.println(twoSol); } pw.close(); } static long gcd(long a, long b) { if (a > b) return gcd(b, a); if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return a * (b / gcd(a, b)); } static long pow(long a, long b) { if (b == 0) return 1L; long val = pow(a, b / 2); if (b % 2 == 0) return val * val % mod; else return val * val % mod * a % mod; } } static class Point implements Comparable<Point> { int a; int b; Point(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(Point o) { return this.a - o.a; } } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } ArrayList<Integer>[] ng(int n, int e) { ArrayList<Integer>[] adj = new ArrayList[n]; for (int i = 0; i < n; i++) { adj[i] = new ArrayList<Integer>(); } for (int i = 0; i < e; i++) { int a = ni() - 1; int b = ni() - 1; adj[a].add(b); adj[b].add(a); } return adj; } Integer[] nIa(int n) { Integer[] arr = new Integer[n]; for (int i = 0; i < n; i++) { arr[i] = ni(); } return arr; } int[] nia(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ni(); } return arr; } Long[] nLa(int n) { Long[] arr = new Long[n]; for (int i = 0; i < n; i++) { arr[i] = nl(); } return arr; } long[] nla(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nl(); } return arr; } String[] nsa(int n) { String[] arr = new String[n]; for (int i = 0; i < n; i++) { arr[i] = nt(); } return arr; } String nt() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(nt()); } long nl() { return Long.parseLong(nt()); } double nd() { return Double.parseDouble(nt()); } } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class D { static final boolean stdin = true; static final String filename = ""; static FastScanner br; static PrintWriter pw; public static void main(String[] args) throws IOException { if (stdin) { br = new FastScanner(); pw = new PrintWriter(new OutputStreamWriter(System.out)); } else { br = new FastScanner(filename + ".in"); pw = new PrintWriter(new FileWriter(filename + ".out")); } Solver solver = new Solver(); solver.solve(br, pw); } static class Solver { static long mod = (long) (1e10); public void solve(FastScanner br, PrintWriter pw) throws IOException { int n = br.ni(); Integer[] in = br.nIa(n); TreeSet<Integer> ts = new TreeSet<Integer>(); for (int i = 0; i < n; i++) { ts.add(in[i]); } String twoSol = ""; for (int i = 0; i <= 30; i++) { for (int j : in) { if (ts.contains(j + (int) Math.pow(2, i))) { if (ts.contains(j - (int) Math.pow(2, i))) { pw.println(3); pw.println(j + " " + (j + (int) Math.pow(2, i)) + " " + (j - (int) Math.pow(2, i))); pw.close(); System.exit(0); }else{ twoSol = (j + " " + (j + (int) Math.pow(2, i))); } } } } if (twoSol.isEmpty()) { pw.println(1); pw.println(in[0]); } else { pw.println(2); pw.println(twoSol); } pw.close(); } static long gcd(long a, long b) { if (a > b) return gcd(b, a); if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return a * (b / gcd(a, b)); } static long pow(long a, long b) { if (b == 0) return 1L; long val = pow(a, b / 2); if (b % 2 == 0) return val * val % mod; else return val * val % mod * a % mod; } } static class Point implements Comparable<Point> { int a; int b; Point(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(Point o) { return this.a - o.a; } } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } ArrayList<Integer>[] ng(int n, int e) { ArrayList<Integer>[] adj = new ArrayList[n]; for (int i = 0; i < n; i++) { adj[i] = new ArrayList<Integer>(); } for (int i = 0; i < e; i++) { int a = ni() - 1; int b = ni() - 1; adj[a].add(b); adj[b].add(a); } return adj; } Integer[] nIa(int n) { Integer[] arr = new Integer[n]; for (int i = 0; i < n; i++) { arr[i] = ni(); } return arr; } int[] nia(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ni(); } return arr; } Long[] nLa(int n) { Long[] arr = new Long[n]; for (int i = 0; i < n; i++) { arr[i] = nl(); } return arr; } long[] nla(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nl(); } return arr; } String[] nsa(int n) { String[] arr = new String[n]; for (int i = 0; i < n; i++) { arr[i] = nt(); } return arr; } String nt() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(nt()); } long nl() { return Long.parseLong(nt()); } double nd() { return Double.parseDouble(nt()); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class D { static final boolean stdin = true; static final String filename = ""; static FastScanner br; static PrintWriter pw; public static void main(String[] args) throws IOException { if (stdin) { br = new FastScanner(); pw = new PrintWriter(new OutputStreamWriter(System.out)); } else { br = new FastScanner(filename + ".in"); pw = new PrintWriter(new FileWriter(filename + ".out")); } Solver solver = new Solver(); solver.solve(br, pw); } static class Solver { static long mod = (long) (1e10); public void solve(FastScanner br, PrintWriter pw) throws IOException { int n = br.ni(); Integer[] in = br.nIa(n); TreeSet<Integer> ts = new TreeSet<Integer>(); for (int i = 0; i < n; i++) { ts.add(in[i]); } String twoSol = ""; for (int i = 0; i <= 30; i++) { for (int j : in) { if (ts.contains(j + (int) Math.pow(2, i))) { if (ts.contains(j - (int) Math.pow(2, i))) { pw.println(3); pw.println(j + " " + (j + (int) Math.pow(2, i)) + " " + (j - (int) Math.pow(2, i))); pw.close(); System.exit(0); }else{ twoSol = (j + " " + (j + (int) Math.pow(2, i))); } } } } if (twoSol.isEmpty()) { pw.println(1); pw.println(in[0]); } else { pw.println(2); pw.println(twoSol); } pw.close(); } static long gcd(long a, long b) { if (a > b) return gcd(b, a); if (a == 0) return b; return gcd(b % a, a); } static long lcm(long a, long b) { return a * (b / gcd(a, b)); } static long pow(long a, long b) { if (b == 0) return 1L; long val = pow(a, b / 2); if (b % 2 == 0) return val * val % mod; else return val * val % mod * a % mod; } } static class Point implements Comparable<Point> { int a; int b; Point(int a, int b) { this.a = a; this.b = b; } @Override public int compareTo(Point o) { return this.a - o.a; } } public static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(String s) { try { br = new BufferedReader(new FileReader(s)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public FastScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } ArrayList<Integer>[] ng(int n, int e) { ArrayList<Integer>[] adj = new ArrayList[n]; for (int i = 0; i < n; i++) { adj[i] = new ArrayList<Integer>(); } for (int i = 0; i < e; i++) { int a = ni() - 1; int b = ni() - 1; adj[a].add(b); adj[b].add(a); } return adj; } Integer[] nIa(int n) { Integer[] arr = new Integer[n]; for (int i = 0; i < n; i++) { arr[i] = ni(); } return arr; } int[] nia(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ni(); } return arr; } Long[] nLa(int n) { Long[] arr = new Long[n]; for (int i = 0; i < n; i++) { arr[i] = nl(); } return arr; } long[] nla(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = nl(); } return arr; } String[] nsa(int n) { String[] arr = new String[n]; for (int i = 0; i < n; i++) { arr[i] = nt(); } return arr; } String nt() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int ni() { return Integer.parseInt(nt()); } long nl() { return Long.parseLong(nt()); } double nd() { return Double.parseDouble(nt()); } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,529
312
2,599
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } int min; int count = 0; int c = 0; while (count != n) { min = 1000; for (int i = 0; i < n; i++) { if (a[i] < min) { min = a[i]; } } for (int i = 0; i < n; i++) { if (a[i] != 1000 && a[i] % min == 0) { count++; a[i] = 1000; } } c++; } System.out.println(c); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } int min; int count = 0; int c = 0; while (count != n) { min = 1000; for (int i = 0; i < n; i++) { if (a[i] < min) { min = a[i]; } } for (int i = 0; i < n; i++) { if (a[i] != 1000 && a[i] % min == 0) { count++; a[i] = 1000; } } c++; } System.out.println(c); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = in.nextInt(); } int min; int count = 0; int c = 0; while (count != n) { min = 1000; for (int i = 0; i < n; i++) { if (a[i] < min) { min = a[i]; } } for (int i = 0; i < n; i++) { if (a[i] != 1000 && a[i] % min == 0) { count++; a[i] = 1000; } } c++; } System.out.println(c); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
541
2,593
3,467
import java.io.*; import java.util.*; import java.math.*; import java.util.regex.Matcher; import java.util.regex.Pattern; import static java.lang.Math.*; public class Main { //StreamTokenizer in; BufferedReader in; PrintWriter out; public static void main(String[] args) throws IOException { new Main().run(); } void run() throws IOException { //in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); String s = in.readLine(); int n = s.length(); for(int len = n; len > 0; len--) { for(int i = 0; i + len <= n; i++) { for(int j = 0; j + len <= n; j++) if(i != j) { boolean f = true; for(int k = 0; k < len; k++) if(s.charAt(i + k) != s.charAt(j + k)) { f = false; break; } if(f) { out.println(len); out.flush(); return; } } } } out.println(0); out.flush(); } void solve() throws IOException { } //int ni() throws IOException { in.nextToken(); return (int) in.nval; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; import java.util.regex.Matcher; import java.util.regex.Pattern; import static java.lang.Math.*; public class Main { //StreamTokenizer in; BufferedReader in; PrintWriter out; public static void main(String[] args) throws IOException { new Main().run(); } void run() throws IOException { //in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); String s = in.readLine(); int n = s.length(); for(int len = n; len > 0; len--) { for(int i = 0; i + len <= n; i++) { for(int j = 0; j + len <= n; j++) if(i != j) { boolean f = true; for(int k = 0; k < len; k++) if(s.charAt(i + k) != s.charAt(j + k)) { f = false; break; } if(f) { out.println(len); out.flush(); return; } } } } out.println(0); out.flush(); } void solve() throws IOException { } //int ni() throws IOException { in.nextToken(); return (int) in.nval; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.math.*; import java.util.regex.Matcher; import java.util.regex.Pattern; import static java.lang.Math.*; public class Main { //StreamTokenizer in; BufferedReader in; PrintWriter out; public static void main(String[] args) throws IOException { new Main().run(); } void run() throws IOException { //in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(new OutputStreamWriter(System.out)); String s = in.readLine(); int n = s.length(); for(int len = n; len > 0; len--) { for(int i = 0; i + len <= n; i++) { for(int j = 0; j + len <= n; j++) if(i != j) { boolean f = true; for(int k = 0; k < len; k++) if(s.charAt(i + k) != s.charAt(j + k)) { f = false; break; } if(f) { out.println(len); out.flush(); return; } } } } out.println(0); out.flush(); } void solve() throws IOException { } //int ni() throws IOException { in.nextToken(); return (int) in.nval; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
626
3,461
4,447
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.FileNotFoundException; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.FileReader; import java.util.Comparator; import java.util.Collections; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE2 solver = new TaskE2(); solver.solve(1, in, out); out.close(); } static class TaskE2 { public void solve(int testNumber, FastScanner in, PrintWriter out) { int t = in.nextInt(); while (t-- > 0) { int n = in.nextInt(), m = in.nextInt(); int[][] a = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = in.nextInt(); } } boolean[][] interesting = new boolean[n][m]; boolean[] hasInteresting = new boolean[m]; for (int i = 0; i < n; i++) { List<Pair> list = new ArrayList<>(); for (int j = 0; j < m; j++) { list.add(new Pair(a[i][j], j)); } Collections.sort(list, Comparator.comparing(pair -> -pair.val)); for (int j = 0; j < m && j <= n; j++) { interesting[i][list.get(j).pos] = true; hasInteresting[list.get(j).pos] = true; } } boolean[] goodMask = new boolean[1 << n]; for (int mask = 0; mask < 1 << n; mask++) { int best = Integer.MAX_VALUE; int cur = mask; do { best = Math.min(best, cur); cur = (cur >> 1) | ((cur & 1) << (n - 1)); } while (cur != mask); goodMask[mask] = (mask == best); } int[] dp = new int[1 << n]; for (int i = 0; i < m; i++) { if (!hasInteresting[i]) { continue; } for (int j = 0; j < n; j++) { if (!interesting[j][i]) { continue; } int supermask = (1 << n) - 1 - (1 << j); int val = a[j][i]; for (int mask = supermask; ; mask = (mask - 1) & supermask) { if (dp[mask] + val > dp[mask | (1 << j)]) { dp[mask | (1 << j)] = dp[mask] + val; } if (mask == 0) { break; } } } for (int mask = 0; mask < 1 << n; mask++) { if (!goodMask[mask]) { continue; } int best = 0; int cur = mask; do { best = Math.max(best, dp[cur]); cur = (cur >> 1) | ((cur & 1) << (n - 1)); } while (cur != mask); do { dp[cur] = best; cur = (cur >> 1) | ((cur & 1) << (n - 1)); } while (cur != mask); } } out.println(dp[(1 << n) - 1]); } } class Pair { int val; int pos; public Pair(int val, int pos) { this.val = val; this.pos = pos; } } } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); } public FastScanner(String fileName) { try { br = new BufferedReader(new FileReader(fileName)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public int nextInt() { return Integer.parseInt(next()); } public String next() { while (st == null || !st.hasMoreElements()) { String line = null; try { line = br.readLine(); } catch (IOException e) { } st = new StringTokenizer(line); } return st.nextToken(); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.FileNotFoundException; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.FileReader; import java.util.Comparator; import java.util.Collections; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE2 solver = new TaskE2(); solver.solve(1, in, out); out.close(); } static class TaskE2 { public void solve(int testNumber, FastScanner in, PrintWriter out) { int t = in.nextInt(); while (t-- > 0) { int n = in.nextInt(), m = in.nextInt(); int[][] a = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = in.nextInt(); } } boolean[][] interesting = new boolean[n][m]; boolean[] hasInteresting = new boolean[m]; for (int i = 0; i < n; i++) { List<Pair> list = new ArrayList<>(); for (int j = 0; j < m; j++) { list.add(new Pair(a[i][j], j)); } Collections.sort(list, Comparator.comparing(pair -> -pair.val)); for (int j = 0; j < m && j <= n; j++) { interesting[i][list.get(j).pos] = true; hasInteresting[list.get(j).pos] = true; } } boolean[] goodMask = new boolean[1 << n]; for (int mask = 0; mask < 1 << n; mask++) { int best = Integer.MAX_VALUE; int cur = mask; do { best = Math.min(best, cur); cur = (cur >> 1) | ((cur & 1) << (n - 1)); } while (cur != mask); goodMask[mask] = (mask == best); } int[] dp = new int[1 << n]; for (int i = 0; i < m; i++) { if (!hasInteresting[i]) { continue; } for (int j = 0; j < n; j++) { if (!interesting[j][i]) { continue; } int supermask = (1 << n) - 1 - (1 << j); int val = a[j][i]; for (int mask = supermask; ; mask = (mask - 1) & supermask) { if (dp[mask] + val > dp[mask | (1 << j)]) { dp[mask | (1 << j)] = dp[mask] + val; } if (mask == 0) { break; } } } for (int mask = 0; mask < 1 << n; mask++) { if (!goodMask[mask]) { continue; } int best = 0; int cur = mask; do { best = Math.max(best, dp[cur]); cur = (cur >> 1) | ((cur & 1) << (n - 1)); } while (cur != mask); do { dp[cur] = best; cur = (cur >> 1) | ((cur & 1) << (n - 1)); } while (cur != mask); } } out.println(dp[(1 << n) - 1]); } } class Pair { int val; int pos; public Pair(int val, int pos) { this.val = val; this.pos = pos; } } } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); } public FastScanner(String fileName) { try { br = new BufferedReader(new FileReader(fileName)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public int nextInt() { return Integer.parseInt(next()); } public String next() { while (st == null || !st.hasMoreElements()) { String line = null; try { line = br.readLine(); } catch (IOException e) { } st = new StringTokenizer(line); } return st.nextToken(); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.FileNotFoundException; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.FileReader; import java.util.Comparator; import java.util.Collections; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; FastScanner in = new FastScanner(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskE2 solver = new TaskE2(); solver.solve(1, in, out); out.close(); } static class TaskE2 { public void solve(int testNumber, FastScanner in, PrintWriter out) { int t = in.nextInt(); while (t-- > 0) { int n = in.nextInt(), m = in.nextInt(); int[][] a = new int[n][m]; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { a[i][j] = in.nextInt(); } } boolean[][] interesting = new boolean[n][m]; boolean[] hasInteresting = new boolean[m]; for (int i = 0; i < n; i++) { List<Pair> list = new ArrayList<>(); for (int j = 0; j < m; j++) { list.add(new Pair(a[i][j], j)); } Collections.sort(list, Comparator.comparing(pair -> -pair.val)); for (int j = 0; j < m && j <= n; j++) { interesting[i][list.get(j).pos] = true; hasInteresting[list.get(j).pos] = true; } } boolean[] goodMask = new boolean[1 << n]; for (int mask = 0; mask < 1 << n; mask++) { int best = Integer.MAX_VALUE; int cur = mask; do { best = Math.min(best, cur); cur = (cur >> 1) | ((cur & 1) << (n - 1)); } while (cur != mask); goodMask[mask] = (mask == best); } int[] dp = new int[1 << n]; for (int i = 0; i < m; i++) { if (!hasInteresting[i]) { continue; } for (int j = 0; j < n; j++) { if (!interesting[j][i]) { continue; } int supermask = (1 << n) - 1 - (1 << j); int val = a[j][i]; for (int mask = supermask; ; mask = (mask - 1) & supermask) { if (dp[mask] + val > dp[mask | (1 << j)]) { dp[mask | (1 << j)] = dp[mask] + val; } if (mask == 0) { break; } } } for (int mask = 0; mask < 1 << n; mask++) { if (!goodMask[mask]) { continue; } int best = 0; int cur = mask; do { best = Math.max(best, dp[cur]); cur = (cur >> 1) | ((cur & 1) << (n - 1)); } while (cur != mask); do { dp[cur] = best; cur = (cur >> 1) | ((cur & 1) << (n - 1)); } while (cur != mask); } } out.println(dp[(1 << n) - 1]); } } class Pair { int val; int pos; public Pair(int val, int pos) { this.val = val; this.pos = pos; } } } static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner(InputStream in) { br = new BufferedReader(new InputStreamReader(in)); } public FastScanner(String fileName) { try { br = new BufferedReader(new FileReader(fileName)); } catch (FileNotFoundException e) { e.printStackTrace(); } } public int nextInt() { return Integer.parseInt(next()); } public String next() { while (st == null || !st.hasMoreElements()) { String line = null; try { line = br.readLine(); } catch (IOException e) { } st = new StringTokenizer(line); } return st.nextToken(); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,383
4,436
700
/** * Created by IntelliJ IDEA. * User: Nick * Date: 08.08.2010 * Time: 20:44:02 * To change this template use File | Settings | File Templates. */ import java.io.*; import java.util.*; import java.util.regex.*; public class B { public static void main(String[] args) { Scanner input = new Scanner (System.in); Pattern rc_style = Pattern.compile("R[0-9]+C[0-9]+"); int n = input.nextInt(); while(n-- > 0) { String str = input.next(); Matcher m = rc_style.matcher(str); if (m.matches()) { String nums[] = str.split("[RC]"); String row = nums[1]; String col = nums[2]; String buffer = ""; int col_num = Integer.valueOf(col); while(col_num > 0) { if (col_num % 26 > 0) { buffer += (char)(col_num % 26 + 'A' - 1); col_num /= 26; } else { buffer += 'Z'; col_num /= 26; col_num--; } } for (int i = buffer.length() - 1; i >= 0; --i) { System.out.print(buffer.charAt(i)); } System.out.println(row); } else { String col = str.split("[0-9]+")[0]; String row = str.split("[A-Z]+")[1]; int col_num = 0; int shift = 1; for (int i = col.length() - 1; i >= 0; --i){ col_num += (int)(col.charAt(i) - 'A' + 1) * shift; shift *= 26; } System.out.println("R" + row + "C" + col_num); } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /** * Created by IntelliJ IDEA. * User: Nick * Date: 08.08.2010 * Time: 20:44:02 * To change this template use File | Settings | File Templates. */ import java.io.*; import java.util.*; import java.util.regex.*; public class B { public static void main(String[] args) { Scanner input = new Scanner (System.in); Pattern rc_style = Pattern.compile("R[0-9]+C[0-9]+"); int n = input.nextInt(); while(n-- > 0) { String str = input.next(); Matcher m = rc_style.matcher(str); if (m.matches()) { String nums[] = str.split("[RC]"); String row = nums[1]; String col = nums[2]; String buffer = ""; int col_num = Integer.valueOf(col); while(col_num > 0) { if (col_num % 26 > 0) { buffer += (char)(col_num % 26 + 'A' - 1); col_num /= 26; } else { buffer += 'Z'; col_num /= 26; col_num--; } } for (int i = buffer.length() - 1; i >= 0; --i) { System.out.print(buffer.charAt(i)); } System.out.println(row); } else { String col = str.split("[0-9]+")[0]; String row = str.split("[A-Z]+")[1]; int col_num = 0; int shift = 1; for (int i = col.length() - 1; i >= 0; --i){ col_num += (int)(col.charAt(i) - 'A' + 1) * shift; shift *= 26; } System.out.println("R" + row + "C" + col_num); } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /** * Created by IntelliJ IDEA. * User: Nick * Date: 08.08.2010 * Time: 20:44:02 * To change this template use File | Settings | File Templates. */ import java.io.*; import java.util.*; import java.util.regex.*; public class B { public static void main(String[] args) { Scanner input = new Scanner (System.in); Pattern rc_style = Pattern.compile("R[0-9]+C[0-9]+"); int n = input.nextInt(); while(n-- > 0) { String str = input.next(); Matcher m = rc_style.matcher(str); if (m.matches()) { String nums[] = str.split("[RC]"); String row = nums[1]; String col = nums[2]; String buffer = ""; int col_num = Integer.valueOf(col); while(col_num > 0) { if (col_num % 26 > 0) { buffer += (char)(col_num % 26 + 'A' - 1); col_num /= 26; } else { buffer += 'Z'; col_num /= 26; col_num--; } } for (int i = buffer.length() - 1; i >= 0; --i) { System.out.print(buffer.charAt(i)); } System.out.println(row); } else { String col = str.split("[0-9]+")[0]; String row = str.split("[A-Z]+")[1]; int col_num = 0; int shift = 1; for (int i = col.length() - 1; i >= 0; --i){ col_num += (int)(col.charAt(i) - 'A' + 1) * shift; shift *= 26; } System.out.println("R" + row + "C" + col_num); } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
760
699
2,297
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class CFC { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; final long MOD = 1000L * 1000L * 1000L + 7; int[] dx = {0, -1, 0, 1}; int[] dy = {1, 0, -1, 0}; void solve() throws IOException { int n = nextInt(); long[] dp0 = new long[10 + n]; long[] dp1 = new long[10 + n]; long[] pre = new long[10 + n]; dp0[0] = 1; String[] arr = new String[n]; for (int i = 0; i < n; i++) { arr[i] = nextString(); } String s = "s"; for (int i = 0; i < n; i++) { Arrays.fill(dp1, 0); if (i == 0) { dp0[0] = 1; dp1[0] = 1; } else { if (arr[i - 1].equals(s)) { for (int j = 0; j <= n + 5; j++) { dp1[j] = pre[j]; } } else { for (int j = 1; j <= n + 5; j++) { dp1[j] = dp0[j - 1]; } } } Arrays.fill(pre, 0); pre[n + 5] = dp1[n + 5]; for (int j = n + 4; j >= 0; j--) { pre[j] = pre[j + 1] + dp1[j]; pre[j] %= MOD; } for (int j = 0; j <= n + 5; j++) { dp0[j] = dp1[j]; } } long res = 0; for (int j = 0; j <= n + 5; j++) { res += dp0[j]; res %= MOD; } out(res); } void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } int gcd(int a, int b) { while(a != 0 && b != 0) { int c = b; b = a % b; a = c; } return a + b; } private void outln(Object o) { out.println(o); } private void out(Object o) { out.print(o); } public CFC() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new CFC(); } public long[] nextLongArr(int n) throws IOException{ long[] res = new long[n]; for(int i = 0; i < n; i++) res[i] = nextLong(); return res; } public int[] nextIntArr(int n) throws IOException { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } public String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class CFC { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; final long MOD = 1000L * 1000L * 1000L + 7; int[] dx = {0, -1, 0, 1}; int[] dy = {1, 0, -1, 0}; void solve() throws IOException { int n = nextInt(); long[] dp0 = new long[10 + n]; long[] dp1 = new long[10 + n]; long[] pre = new long[10 + n]; dp0[0] = 1; String[] arr = new String[n]; for (int i = 0; i < n; i++) { arr[i] = nextString(); } String s = "s"; for (int i = 0; i < n; i++) { Arrays.fill(dp1, 0); if (i == 0) { dp0[0] = 1; dp1[0] = 1; } else { if (arr[i - 1].equals(s)) { for (int j = 0; j <= n + 5; j++) { dp1[j] = pre[j]; } } else { for (int j = 1; j <= n + 5; j++) { dp1[j] = dp0[j - 1]; } } } Arrays.fill(pre, 0); pre[n + 5] = dp1[n + 5]; for (int j = n + 4; j >= 0; j--) { pre[j] = pre[j + 1] + dp1[j]; pre[j] %= MOD; } for (int j = 0; j <= n + 5; j++) { dp0[j] = dp1[j]; } } long res = 0; for (int j = 0; j <= n + 5; j++) { res += dp0[j]; res %= MOD; } out(res); } void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } int gcd(int a, int b) { while(a != 0 && b != 0) { int c = b; b = a % b; a = c; } return a + b; } private void outln(Object o) { out.println(o); } private void out(Object o) { out.print(o); } public CFC() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new CFC(); } public long[] nextLongArr(int n) throws IOException{ long[] res = new long[n]; for(int i = 0; i < n; i++) res[i] = nextLong(); return res; } public int[] nextIntArr(int n) throws IOException { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } public String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; public class CFC { BufferedReader br; PrintWriter out; StringTokenizer st; boolean eof; final long MOD = 1000L * 1000L * 1000L + 7; int[] dx = {0, -1, 0, 1}; int[] dy = {1, 0, -1, 0}; void solve() throws IOException { int n = nextInt(); long[] dp0 = new long[10 + n]; long[] dp1 = new long[10 + n]; long[] pre = new long[10 + n]; dp0[0] = 1; String[] arr = new String[n]; for (int i = 0; i < n; i++) { arr[i] = nextString(); } String s = "s"; for (int i = 0; i < n; i++) { Arrays.fill(dp1, 0); if (i == 0) { dp0[0] = 1; dp1[0] = 1; } else { if (arr[i - 1].equals(s)) { for (int j = 0; j <= n + 5; j++) { dp1[j] = pre[j]; } } else { for (int j = 1; j <= n + 5; j++) { dp1[j] = dp0[j - 1]; } } } Arrays.fill(pre, 0); pre[n + 5] = dp1[n + 5]; for (int j = n + 4; j >= 0; j--) { pre[j] = pre[j + 1] + dp1[j]; pre[j] %= MOD; } for (int j = 0; j <= n + 5; j++) { dp0[j] = dp1[j]; } } long res = 0; for (int j = 0; j <= n + 5; j++) { res += dp0[j]; res %= MOD; } out(res); } void shuffle(int[] a) { int n = a.length; for(int i = 0; i < n; i++) { int r = i + (int) (Math.random() * (n - i)); int tmp = a[i]; a[i] = a[r]; a[r] = tmp; } } int gcd(int a, int b) { while(a != 0 && b != 0) { int c = b; b = a % b; a = c; } return a + b; } private void outln(Object o) { out.println(o); } private void out(Object o) { out.print(o); } public CFC() throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); out.close(); } public static void main(String[] args) throws IOException { new CFC(); } public long[] nextLongArr(int n) throws IOException{ long[] res = new long[n]; for(int i = 0; i < n; i++) res[i] = nextLong(); return res; } public int[] nextIntArr(int n) throws IOException { int[] res = new int[n]; for(int i = 0; i < n; i++) res[i] = nextInt(); return res; } public String nextToken() { while (st == null || !st.hasMoreTokens()) { try { st = new StringTokenizer(br.readLine()); } catch (Exception e) { eof = true; return null; } } return st.nextToken(); } public String nextString() { try { return br.readLine(); } catch (IOException e) { eof = true; return null; } } public int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public long nextLong() throws IOException { return Long.parseLong(nextToken()); } public double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,318
2,292
1,717
import java.util.Scanner; /** * @author Son-Huy TRAN * */ public class P15A_CottageVillage { /** * @param args */ public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int t = scanner.nextInt(); scanner.nextLine(); int[] x = new int[n]; int[] a = new int[n]; for (int i = 0; i < n; i++) { x[i] = scanner.nextInt(); a[i] = scanner.nextInt(); scanner.nextLine(); } scanner.close(); for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (x[i] > x[j]) { swap(x, i, j); swap(a, i, j); } } } int countPositions = 2; for (int i = 1; i < n; i++) { double left = x[i - 1] + a[i - 1] * 1.0 / 2; double right = x[i] - a[i] * 1.0 / 2; double length = right - left; if (length == (double) t) { countPositions++; } else if (length > t) { countPositions += 2; } } System.out.println(countPositions); } private static void swap(int[] numbers, int i, int j) { int temp = numbers[i]; numbers[i] = numbers[j]; numbers[j] = temp; } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; /** * @author Son-Huy TRAN * */ public class P15A_CottageVillage { /** * @param args */ public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int t = scanner.nextInt(); scanner.nextLine(); int[] x = new int[n]; int[] a = new int[n]; for (int i = 0; i < n; i++) { x[i] = scanner.nextInt(); a[i] = scanner.nextInt(); scanner.nextLine(); } scanner.close(); for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (x[i] > x[j]) { swap(x, i, j); swap(a, i, j); } } } int countPositions = 2; for (int i = 1; i < n; i++) { double left = x[i - 1] + a[i - 1] * 1.0 / 2; double right = x[i] - a[i] * 1.0 / 2; double length = right - left; if (length == (double) t) { countPositions++; } else if (length > t) { countPositions += 2; } } System.out.println(countPositions); } private static void swap(int[] numbers, int i, int j) { int temp = numbers[i]; numbers[i] = numbers[j]; numbers[j] = temp; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; /** * @author Son-Huy TRAN * */ public class P15A_CottageVillage { /** * @param args */ public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); int t = scanner.nextInt(); scanner.nextLine(); int[] x = new int[n]; int[] a = new int[n]; for (int i = 0; i < n; i++) { x[i] = scanner.nextInt(); a[i] = scanner.nextInt(); scanner.nextLine(); } scanner.close(); for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) { if (x[i] > x[j]) { swap(x, i, j); swap(a, i, j); } } } int countPositions = 2; for (int i = 1; i < n; i++) { double left = x[i - 1] + a[i - 1] * 1.0 / 2; double right = x[i] - a[i] * 1.0 / 2; double length = right - left; if (length == (double) t) { countPositions++; } else if (length > t) { countPositions += 2; } } System.out.println(countPositions); } private static void swap(int[] numbers, int i, int j) { int temp = numbers[i]; numbers[i] = numbers[j]; numbers[j] = temp; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
708
1,713
2,129
import java.util.*; import java.io.*; import java.math.*; public class Solution{ public static void main(String[] args) throws Exception { int n=nextInt(); int r=nextInt(); int x[]=new int[n]; double y[]=new double[n]; for(int i=0;i<n;i++) x[i]=nextInt(); for(int i=0;i<n;i++){ //(x1-x2)2+(y1-y2)2=r2 y[i]=r; for(int j=0;j<i;j++){ int d=sq(2*r)-sq(x[i]-x[j]); if(d>=0){ double y1=Math.sqrt(d)+y[j]; y[i]=Math.max(y1,y[i]); } } } for(int i=0;i<n;i++) System.out.printf("%.12g ",y[i]); } static int sq(int a){ return a*a; } static int nextInt()throws IOException{ InputStream in=System.in; int ans=0; boolean flag=true; byte b=0; while ((b>47 && b<58) || flag){ if(b>=48 && b<58){ ans=ans*10+(b-48); flag=false; } b=(byte)in.read(); } return ans; } static String next()throws Exception{ StringBuilder sb=new StringBuilder(1<<16); InputStream in=System.in; byte b=0; do{ if(!isWhiteSpace(b)) sb.append((char)b); b=(byte)in.read(); }while(!isWhiteSpace(b) || sb.length()==0); return sb.toString(); } static boolean isWhiteSpace(byte b){ char ch=(char)b; return ch=='\0' || ch==' ' || ch=='\n'; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class Solution{ public static void main(String[] args) throws Exception { int n=nextInt(); int r=nextInt(); int x[]=new int[n]; double y[]=new double[n]; for(int i=0;i<n;i++) x[i]=nextInt(); for(int i=0;i<n;i++){ //(x1-x2)2+(y1-y2)2=r2 y[i]=r; for(int j=0;j<i;j++){ int d=sq(2*r)-sq(x[i]-x[j]); if(d>=0){ double y1=Math.sqrt(d)+y[j]; y[i]=Math.max(y1,y[i]); } } } for(int i=0;i<n;i++) System.out.printf("%.12g ",y[i]); } static int sq(int a){ return a*a; } static int nextInt()throws IOException{ InputStream in=System.in; int ans=0; boolean flag=true; byte b=0; while ((b>47 && b<58) || flag){ if(b>=48 && b<58){ ans=ans*10+(b-48); flag=false; } b=(byte)in.read(); } return ans; } static String next()throws Exception{ StringBuilder sb=new StringBuilder(1<<16); InputStream in=System.in; byte b=0; do{ if(!isWhiteSpace(b)) sb.append((char)b); b=(byte)in.read(); }while(!isWhiteSpace(b) || sb.length()==0); return sb.toString(); } static boolean isWhiteSpace(byte b){ char ch=(char)b; return ch=='\0' || ch==' ' || ch=='\n'; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.math.*; public class Solution{ public static void main(String[] args) throws Exception { int n=nextInt(); int r=nextInt(); int x[]=new int[n]; double y[]=new double[n]; for(int i=0;i<n;i++) x[i]=nextInt(); for(int i=0;i<n;i++){ //(x1-x2)2+(y1-y2)2=r2 y[i]=r; for(int j=0;j<i;j++){ int d=sq(2*r)-sq(x[i]-x[j]); if(d>=0){ double y1=Math.sqrt(d)+y[j]; y[i]=Math.max(y1,y[i]); } } } for(int i=0;i<n;i++) System.out.printf("%.12g ",y[i]); } static int sq(int a){ return a*a; } static int nextInt()throws IOException{ InputStream in=System.in; int ans=0; boolean flag=true; byte b=0; while ((b>47 && b<58) || flag){ if(b>=48 && b<58){ ans=ans*10+(b-48); flag=false; } b=(byte)in.read(); } return ans; } static String next()throws Exception{ StringBuilder sb=new StringBuilder(1<<16); InputStream in=System.in; byte b=0; do{ if(!isWhiteSpace(b)) sb.append((char)b); b=(byte)in.read(); }while(!isWhiteSpace(b) || sb.length()==0); return sb.toString(); } static boolean isWhiteSpace(byte b){ char ch=(char)b; return ch=='\0' || ch==' ' || ch=='\n'; } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
764
2,125
3,843
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.*; import java.io.*; public class Main { public static void main(String[] args){ InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); solve(in, out); out.close(); } static String reverse(String s) { return (new StringBuilder(s)).reverse().toString(); } static void sieveOfEratosthenes(int n, int factors[], ArrayList<Integer> ar) { factors[1]=1; int p; for(p = 2; p*p <=n; p++) { if(factors[p] == 0) { ar.add(p); factors[p]=p; for(int i = p*p; i <= n; i += p) factors[i] = p; } } for(;p<=n;p++){ if(factors[p] == 0) { ar.add(p); } } } static void sort(int ar[]) { int n = ar.length; ArrayList<Integer> a = new ArrayList<>(); for (int i = 0; i < n; i++) a.add(ar[i]); Collections.sort(a); for (int i = 0; i < n; i++) ar[i] = a.get(i); } static void sort1(long ar[]) { int n = ar.length; ArrayList<Long> a = new ArrayList<>(); for (int i = 0; i < n; i++) a.add(ar[i]); Collections.sort(a); for (int i = 0; i < n; i++) ar[i] = a.get(i); } static long ncr(long n, long r, long mod) { if (r == 0) return 1; long val = ncr(n - 1, r - 1, mod); val = (n * val) % mod; val = (val * modInverse(r, mod)) % mod; return val; } static int findMax(int a[], int n, int vis[], int i, int d){ if(i>=n) return 0; if(vis[i]==1) return findMax(a, n, vis, i+1, d); int max = 0; for(int j=i+1;j<n;j++){ if(Math.abs(a[i]-a[j])>d||vis[j]==1) continue; vis[j] = 1; max = Math.max(max, 1 + findMax(a, n, vis, i+1, d)); vis[j] = 0; } return max; } public static void solve(InputReader sc, PrintWriter pw){ int i, j = 0; // int t = 1; int t = sc.nextInt(); u: while (t-- > 0) { int n = sc.nextInt(); int a[] = new int[n]; ArrayList<Integer> ar = new ArrayList<>(); ar.add(0); for(i=0;i<1000;i++){ ar.add(0); } int m = 1; for(i=0;i<n;i++){ a[i] = sc.nextInt(); if(a[i]==1){ ar.set(m,1); m++; } else{ while(m>0&&ar.get(m-1)!=a[i]-1){ m--; } ar.set(m-1,a[i]); } pw.print(ar.get(1)); for(j=2;j<m;j++){ pw.print("."+ar.get(j)); } pw.println(); } } } static long findOne(int n, int sz[], ArrayList<Integer> ar){ long paths = n-1; long till = 0; for(int v:ar){ paths += till*sz[v]; till += sz[v]; } return paths; } static void assignAnc(ArrayList<Integer> ar[],int sz[], int pa[] ,int curr, int par){ sz[curr] = 1; pa[curr] = par; for(int v:ar[curr]){ if(par==v) continue; assignAnc(ar, sz, pa, v, curr); sz[curr] += sz[v]; } } static int findLCA(int a, int b, int par[][], int depth[]){ if(depth[a]>depth[b]){ a = a^b; b = a^b; a = a^b; } int diff = depth[b] - depth[a]; for(int i=19;i>=0;i--){ if((diff&(1<<i))>0){ b = par[b][i]; } } if(a==b) return a; for(int i=19;i>=0;i--){ if(par[b][i]!=par[a][i]){ b = par[b][i]; a = par[a][i]; } } return par[a][0]; } static void formArrayForBinaryLifting(int n, int par[][]){ for(int j=1;j<20;j++){ for(int i=0;i<n;i++){ if(par[i][j-1]==-1) continue; par[i][j] = par[par[i][j-1]][j-1]; } } } static long lcm(int a, int b){ return a*b/gcd(a,b); } static class Pair1 { long a; long b; Pair1(long a, long b) { this.a = a; this.b = b; } } static class Pair implements Comparable<Pair> { int a; int b; int c; Pair(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } public int compareTo(Pair p) { // if(a!=p.a) // return a-p.a; // return b-p.b; return p.c - c; } } // static boolean isPrime(long n) { // if (n <= 1) // return false; // if (n <= 999) // return true; // if (n % 2 == 0 || n % 999 == 0) // return false; // for (int i = 5; i * i <= n; i = i + 6) // if (n % i == 0 || n % (i + 2) == 0) // return false; // return true; // } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long fast_pow(long base, long n, long M) { if (n == 0) return 1; if (n == 1) return base % M; long halfn = fast_pow(base, n / 2, M); if (n % 2 == 0) return (halfn * halfn) % M; else return (((halfn * halfn) % M) * base) % M; } static long modInverse(long n, long M) { return fast_pow(n, M - 2, M); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 9992768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.*; import java.io.*; public class Main { public static void main(String[] args){ InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); solve(in, out); out.close(); } static String reverse(String s) { return (new StringBuilder(s)).reverse().toString(); } static void sieveOfEratosthenes(int n, int factors[], ArrayList<Integer> ar) { factors[1]=1; int p; for(p = 2; p*p <=n; p++) { if(factors[p] == 0) { ar.add(p); factors[p]=p; for(int i = p*p; i <= n; i += p) factors[i] = p; } } for(;p<=n;p++){ if(factors[p] == 0) { ar.add(p); } } } static void sort(int ar[]) { int n = ar.length; ArrayList<Integer> a = new ArrayList<>(); for (int i = 0; i < n; i++) a.add(ar[i]); Collections.sort(a); for (int i = 0; i < n; i++) ar[i] = a.get(i); } static void sort1(long ar[]) { int n = ar.length; ArrayList<Long> a = new ArrayList<>(); for (int i = 0; i < n; i++) a.add(ar[i]); Collections.sort(a); for (int i = 0; i < n; i++) ar[i] = a.get(i); } static long ncr(long n, long r, long mod) { if (r == 0) return 1; long val = ncr(n - 1, r - 1, mod); val = (n * val) % mod; val = (val * modInverse(r, mod)) % mod; return val; } static int findMax(int a[], int n, int vis[], int i, int d){ if(i>=n) return 0; if(vis[i]==1) return findMax(a, n, vis, i+1, d); int max = 0; for(int j=i+1;j<n;j++){ if(Math.abs(a[i]-a[j])>d||vis[j]==1) continue; vis[j] = 1; max = Math.max(max, 1 + findMax(a, n, vis, i+1, d)); vis[j] = 0; } return max; } public static void solve(InputReader sc, PrintWriter pw){ int i, j = 0; // int t = 1; int t = sc.nextInt(); u: while (t-- > 0) { int n = sc.nextInt(); int a[] = new int[n]; ArrayList<Integer> ar = new ArrayList<>(); ar.add(0); for(i=0;i<1000;i++){ ar.add(0); } int m = 1; for(i=0;i<n;i++){ a[i] = sc.nextInt(); if(a[i]==1){ ar.set(m,1); m++; } else{ while(m>0&&ar.get(m-1)!=a[i]-1){ m--; } ar.set(m-1,a[i]); } pw.print(ar.get(1)); for(j=2;j<m;j++){ pw.print("."+ar.get(j)); } pw.println(); } } } static long findOne(int n, int sz[], ArrayList<Integer> ar){ long paths = n-1; long till = 0; for(int v:ar){ paths += till*sz[v]; till += sz[v]; } return paths; } static void assignAnc(ArrayList<Integer> ar[],int sz[], int pa[] ,int curr, int par){ sz[curr] = 1; pa[curr] = par; for(int v:ar[curr]){ if(par==v) continue; assignAnc(ar, sz, pa, v, curr); sz[curr] += sz[v]; } } static int findLCA(int a, int b, int par[][], int depth[]){ if(depth[a]>depth[b]){ a = a^b; b = a^b; a = a^b; } int diff = depth[b] - depth[a]; for(int i=19;i>=0;i--){ if((diff&(1<<i))>0){ b = par[b][i]; } } if(a==b) return a; for(int i=19;i>=0;i--){ if(par[b][i]!=par[a][i]){ b = par[b][i]; a = par[a][i]; } } return par[a][0]; } static void formArrayForBinaryLifting(int n, int par[][]){ for(int j=1;j<20;j++){ for(int i=0;i<n;i++){ if(par[i][j-1]==-1) continue; par[i][j] = par[par[i][j-1]][j-1]; } } } static long lcm(int a, int b){ return a*b/gcd(a,b); } static class Pair1 { long a; long b; Pair1(long a, long b) { this.a = a; this.b = b; } } static class Pair implements Comparable<Pair> { int a; int b; int c; Pair(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } public int compareTo(Pair p) { // if(a!=p.a) // return a-p.a; // return b-p.b; return p.c - c; } } // static boolean isPrime(long n) { // if (n <= 1) // return false; // if (n <= 999) // return true; // if (n % 2 == 0 || n % 999 == 0) // return false; // for (int i = 5; i * i <= n; i = i + 6) // if (n % i == 0 || n % (i + 2) == 0) // return false; // return true; // } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long fast_pow(long base, long n, long M) { if (n == 0) return 1; if (n == 1) return base % M; long halfn = fast_pow(base, n / 2, M); if (n % 2 == 0) return (halfn * halfn) % M; else return (((halfn * halfn) % M) * base) % M; } static long modInverse(long n, long M) { return fast_pow(n, M - 2, M); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 9992768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.*; import java.io.*; public class Main { public static void main(String[] args){ InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); solve(in, out); out.close(); } static String reverse(String s) { return (new StringBuilder(s)).reverse().toString(); } static void sieveOfEratosthenes(int n, int factors[], ArrayList<Integer> ar) { factors[1]=1; int p; for(p = 2; p*p <=n; p++) { if(factors[p] == 0) { ar.add(p); factors[p]=p; for(int i = p*p; i <= n; i += p) factors[i] = p; } } for(;p<=n;p++){ if(factors[p] == 0) { ar.add(p); } } } static void sort(int ar[]) { int n = ar.length; ArrayList<Integer> a = new ArrayList<>(); for (int i = 0; i < n; i++) a.add(ar[i]); Collections.sort(a); for (int i = 0; i < n; i++) ar[i] = a.get(i); } static void sort1(long ar[]) { int n = ar.length; ArrayList<Long> a = new ArrayList<>(); for (int i = 0; i < n; i++) a.add(ar[i]); Collections.sort(a); for (int i = 0; i < n; i++) ar[i] = a.get(i); } static long ncr(long n, long r, long mod) { if (r == 0) return 1; long val = ncr(n - 1, r - 1, mod); val = (n * val) % mod; val = (val * modInverse(r, mod)) % mod; return val; } static int findMax(int a[], int n, int vis[], int i, int d){ if(i>=n) return 0; if(vis[i]==1) return findMax(a, n, vis, i+1, d); int max = 0; for(int j=i+1;j<n;j++){ if(Math.abs(a[i]-a[j])>d||vis[j]==1) continue; vis[j] = 1; max = Math.max(max, 1 + findMax(a, n, vis, i+1, d)); vis[j] = 0; } return max; } public static void solve(InputReader sc, PrintWriter pw){ int i, j = 0; // int t = 1; int t = sc.nextInt(); u: while (t-- > 0) { int n = sc.nextInt(); int a[] = new int[n]; ArrayList<Integer> ar = new ArrayList<>(); ar.add(0); for(i=0;i<1000;i++){ ar.add(0); } int m = 1; for(i=0;i<n;i++){ a[i] = sc.nextInt(); if(a[i]==1){ ar.set(m,1); m++; } else{ while(m>0&&ar.get(m-1)!=a[i]-1){ m--; } ar.set(m-1,a[i]); } pw.print(ar.get(1)); for(j=2;j<m;j++){ pw.print("."+ar.get(j)); } pw.println(); } } } static long findOne(int n, int sz[], ArrayList<Integer> ar){ long paths = n-1; long till = 0; for(int v:ar){ paths += till*sz[v]; till += sz[v]; } return paths; } static void assignAnc(ArrayList<Integer> ar[],int sz[], int pa[] ,int curr, int par){ sz[curr] = 1; pa[curr] = par; for(int v:ar[curr]){ if(par==v) continue; assignAnc(ar, sz, pa, v, curr); sz[curr] += sz[v]; } } static int findLCA(int a, int b, int par[][], int depth[]){ if(depth[a]>depth[b]){ a = a^b; b = a^b; a = a^b; } int diff = depth[b] - depth[a]; for(int i=19;i>=0;i--){ if((diff&(1<<i))>0){ b = par[b][i]; } } if(a==b) return a; for(int i=19;i>=0;i--){ if(par[b][i]!=par[a][i]){ b = par[b][i]; a = par[a][i]; } } return par[a][0]; } static void formArrayForBinaryLifting(int n, int par[][]){ for(int j=1;j<20;j++){ for(int i=0;i<n;i++){ if(par[i][j-1]==-1) continue; par[i][j] = par[par[i][j-1]][j-1]; } } } static long lcm(int a, int b){ return a*b/gcd(a,b); } static class Pair1 { long a; long b; Pair1(long a, long b) { this.a = a; this.b = b; } } static class Pair implements Comparable<Pair> { int a; int b; int c; Pair(int a, int b, int c) { this.a = a; this.b = b; this.c = c; } public int compareTo(Pair p) { // if(a!=p.a) // return a-p.a; // return b-p.b; return p.c - c; } } // static boolean isPrime(long n) { // if (n <= 1) // return false; // if (n <= 999) // return true; // if (n % 2 == 0 || n % 999 == 0) // return false; // for (int i = 5; i * i <= n; i = i + 6) // if (n % i == 0 || n % (i + 2) == 0) // return false; // return true; // } static long gcd(long a, long b) { if (b == 0) return a; return gcd(b, a % b); } static long fast_pow(long base, long n, long M) { if (n == 0) return 1; if (n == 1) return base % M; long halfn = fast_pow(base, n / 2, M); if (n % 2 == 0) return (halfn * halfn) % M; else return (((halfn * halfn) % M) * base) % M; } static long modInverse(long n, long M) { return fast_pow(n, M - 2, M); } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 9992768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } public long nextLong() { return Long.parseLong(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
2,178
3,833
964
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner s=new Scanner(System.in); double n=s.nextLong(); double k=s.nextLong(); double num=(-3+Math.sqrt(9+8*(n+k)))/2; System.out.println((long)(n-num)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner s=new Scanner(System.in); double n=s.nextLong(); double k=s.nextLong(); double num=(-3+Math.sqrt(9+8*(n+k)))/2; System.out.println((long)(n-num)); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner s=new Scanner(System.in); double n=s.nextLong(); double k=s.nextLong(); double num=(-3+Math.sqrt(9+8*(n+k)))/2; System.out.println((long)(n-num)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
411
963
301
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; public class CoveredPointsCount { //UPSOLVE public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); long[] myArray = new long[2 * n]; for (int i = 0; i < n; i++) { StringTokenizer st1 = new StringTokenizer(br.readLine()); myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2; myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1; } Arrays.sort(myArray); long[] ans = new long[n + 1]; int cnt = 0; for (int i = 0; i < 2 * n - 1; i++) { if (myArray[i] % 2 == 0) cnt++; else cnt--; ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2; } StringBuilder answer = new StringBuilder(); for (int i = 1; i < n + 1; i++) { answer.append(ans[i]); answer.append(" "); } System.out.println(answer); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; public class CoveredPointsCount { //UPSOLVE public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); long[] myArray = new long[2 * n]; for (int i = 0; i < n; i++) { StringTokenizer st1 = new StringTokenizer(br.readLine()); myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2; myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1; } Arrays.sort(myArray); long[] ans = new long[n + 1]; int cnt = 0; for (int i = 0; i < 2 * n - 1; i++) { if (myArray[i] % 2 == 0) cnt++; else cnt--; ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2; } StringBuilder answer = new StringBuilder(); for (int i = 1; i < n + 1; i++) { answer.append(ans[i]); answer.append(" "); } System.out.println(answer); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Arrays; import java.util.StringTokenizer; public class CoveredPointsCount { //UPSOLVE public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st = new StringTokenizer(br.readLine()); int n = Integer.parseInt(st.nextToken()); long[] myArray = new long[2 * n]; for (int i = 0; i < n; i++) { StringTokenizer st1 = new StringTokenizer(br.readLine()); myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2; myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1; } Arrays.sort(myArray); long[] ans = new long[n + 1]; int cnt = 0; for (int i = 0; i < 2 * n - 1; i++) { if (myArray[i] % 2 == 0) cnt++; else cnt--; ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2; } StringBuilder answer = new StringBuilder(); for (int i = 1; i < n + 1; i++) { answer.append(ans[i]); answer.append(" "); } System.out.println(answer); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
682
301
3,881
import java.io.IOException; import java.io.InputStream; import java.util.ArrayList; import java.util.HashSet; public class Solution { public static void main(String[] args)throws IOException { FastReader in=new FastReader(System.in); int t=in.nextInt(); StringBuilder sb=new StringBuilder(); int i,j,tc=0; while(tc++<t) { int n=in.nextInt(); int arr[]=new int[n]; for(i=0;i<n;i++) arr[i]=in.nextInt(); int ans[]=new int[n+4]; ans[0]=1; int pos=0; sb.append("1\n"); for(i=1;i<n;i++){ if(arr[i]==arr[i-1]+1){ ans[pos]=ans[pos]+1; } else if(arr[i]==1){ pos++; ans[pos]=1; } else{ while(ans[pos]!=arr[i]-1) pos--; ans[pos]=ans[pos]+1; } for(j=0;j<=pos;j++){ if(j<pos) sb.append(ans[j]).append("."); else sb.append(ans[j]).append("\n"); } } } System.out.println(sb); } } class Node { int setroot, dist; public Node(int setroot, int dist){ this.setroot = setroot; this.dist = dist; } @Override public String toString() { return String.format(setroot + ", " + dist); } } class FastReader { byte[] buf = new byte[2048]; int index, total; InputStream in; FastReader(InputStream is) { in = is; } int scan() throws IOException { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) { return -1; } } return buf[index++]; } String next() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) { sb.append((char) c); } return sb.toString(); } int nextInt() throws IOException { int c, val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } long nextLong() throws IOException { int c; long val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.ArrayList; import java.util.HashSet; public class Solution { public static void main(String[] args)throws IOException { FastReader in=new FastReader(System.in); int t=in.nextInt(); StringBuilder sb=new StringBuilder(); int i,j,tc=0; while(tc++<t) { int n=in.nextInt(); int arr[]=new int[n]; for(i=0;i<n;i++) arr[i]=in.nextInt(); int ans[]=new int[n+4]; ans[0]=1; int pos=0; sb.append("1\n"); for(i=1;i<n;i++){ if(arr[i]==arr[i-1]+1){ ans[pos]=ans[pos]+1; } else if(arr[i]==1){ pos++; ans[pos]=1; } else{ while(ans[pos]!=arr[i]-1) pos--; ans[pos]=ans[pos]+1; } for(j=0;j<=pos;j++){ if(j<pos) sb.append(ans[j]).append("."); else sb.append(ans[j]).append("\n"); } } } System.out.println(sb); } } class Node { int setroot, dist; public Node(int setroot, int dist){ this.setroot = setroot; this.dist = dist; } @Override public String toString() { return String.format(setroot + ", " + dist); } } class FastReader { byte[] buf = new byte[2048]; int index, total; InputStream in; FastReader(InputStream is) { in = is; } int scan() throws IOException { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) { return -1; } } return buf[index++]; } String next() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) { sb.append((char) c); } return sb.toString(); } int nextInt() throws IOException { int c, val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } long nextLong() throws IOException { int c; long val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.IOException; import java.io.InputStream; import java.util.ArrayList; import java.util.HashSet; public class Solution { public static void main(String[] args)throws IOException { FastReader in=new FastReader(System.in); int t=in.nextInt(); StringBuilder sb=new StringBuilder(); int i,j,tc=0; while(tc++<t) { int n=in.nextInt(); int arr[]=new int[n]; for(i=0;i<n;i++) arr[i]=in.nextInt(); int ans[]=new int[n+4]; ans[0]=1; int pos=0; sb.append("1\n"); for(i=1;i<n;i++){ if(arr[i]==arr[i-1]+1){ ans[pos]=ans[pos]+1; } else if(arr[i]==1){ pos++; ans[pos]=1; } else{ while(ans[pos]!=arr[i]-1) pos--; ans[pos]=ans[pos]+1; } for(j=0;j<=pos;j++){ if(j<pos) sb.append(ans[j]).append("."); else sb.append(ans[j]).append("\n"); } } } System.out.println(sb); } } class Node { int setroot, dist; public Node(int setroot, int dist){ this.setroot = setroot; this.dist = dist; } @Override public String toString() { return String.format(setroot + ", " + dist); } } class FastReader { byte[] buf = new byte[2048]; int index, total; InputStream in; FastReader(InputStream is) { in = is; } int scan() throws IOException { if (index >= total) { index = 0; total = in.read(buf); if (total <= 0) { return -1; } } return buf[index++]; } String next() throws IOException { int c; for (c = scan(); c <= 32; c = scan()) ; StringBuilder sb = new StringBuilder(); for (; c > 32; c = scan()) { sb.append((char) c); } return sb.toString(); } int nextInt() throws IOException { int c, val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } long nextLong() throws IOException { int c; long val = 0; for (c = scan(); c <= 32; c = scan()) ; boolean neg = c == '-'; if (c == '-' || c == '+') { c = scan(); } for (; c >= '0' && c <= '9'; c = scan()) { val = (val << 3) + (val << 1) + (c & 15); } return neg ? -val : val; } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,074
3,871
4,277
/** * Created by IntelliJ IDEA. * User: Taras_Brzezinsky * Date: 8/13/11 * Time: 6:10 PM * To change this template use File | Settings | File Templates. */ import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import java.io.IOException; public class DarkAssembly extends Thread { public DarkAssembly() { this.input = new BufferedReader(new InputStreamReader(System.in)); this.output = new PrintWriter(System.out); this.setPriority(Thread.MAX_PRIORITY); } class Senator { int loyalty; int level; public Senator(int level, int loyalty) { this.level = level; this.loyalty = loyalty; } } private static double doIt(Senator[] senators, int A) { double probability = .0; for (int mask = 0; mask < (1 << senators.length); ++mask) { int sum = A; double current = 1.0; for (int i = 0; i < senators.length; ++i) { if ((mask & (1 << i)) != 0) { current *= .01 * senators[i].loyalty; } else { current *= .01 * (100 - senators[i].loyalty); sum += senators[i].level; } } if (getOnes(mask) > senators.length / 2) { probability += current; } else { probability += current * (double)A / sum; } } return probability; } private static double go(Senator []senators, int candies, int A, int current) { if (current == senators.length) { return doIt(senators, A); } else { double result = go(senators, candies, A, current + 1); if (candies > 0 && senators[current].loyalty < 100) { senators[current].loyalty += 10; result = Math.max(result, go(senators, candies - 1, A, current)); senators[current].loyalty -= 10; } return result; } } static int getOnes(int mask) { int result = 0; while (mask != 0) { mask &= mask - 1; ++result; } return result; } public void run() { try { int n = nextInt(); int k = nextInt(); int A = nextInt(); Senator[] senators = new Senator[n]; for (int i = 0; i < n; ++i) { senators[i] = new Senator(nextInt(), nextInt()); } output.printf("%.10f", go(senators, k, A, 0)); output.flush(); output.close(); } catch (Throwable e) { System.err.println(e.getMessage()); System.err.println(Arrays.deepToString(e.getStackTrace())); } } public static void main(String[] args) { new DarkAssembly().start(); } private String nextToken() throws IOException { while (tokens == null || !tokens.hasMoreTokens()) { tokens = new StringTokenizer(input.readLine()); } return tokens.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private BufferedReader input; private PrintWriter output; private StringTokenizer tokens = null; }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /** * Created by IntelliJ IDEA. * User: Taras_Brzezinsky * Date: 8/13/11 * Time: 6:10 PM * To change this template use File | Settings | File Templates. */ import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import java.io.IOException; public class DarkAssembly extends Thread { public DarkAssembly() { this.input = new BufferedReader(new InputStreamReader(System.in)); this.output = new PrintWriter(System.out); this.setPriority(Thread.MAX_PRIORITY); } class Senator { int loyalty; int level; public Senator(int level, int loyalty) { this.level = level; this.loyalty = loyalty; } } private static double doIt(Senator[] senators, int A) { double probability = .0; for (int mask = 0; mask < (1 << senators.length); ++mask) { int sum = A; double current = 1.0; for (int i = 0; i < senators.length; ++i) { if ((mask & (1 << i)) != 0) { current *= .01 * senators[i].loyalty; } else { current *= .01 * (100 - senators[i].loyalty); sum += senators[i].level; } } if (getOnes(mask) > senators.length / 2) { probability += current; } else { probability += current * (double)A / sum; } } return probability; } private static double go(Senator []senators, int candies, int A, int current) { if (current == senators.length) { return doIt(senators, A); } else { double result = go(senators, candies, A, current + 1); if (candies > 0 && senators[current].loyalty < 100) { senators[current].loyalty += 10; result = Math.max(result, go(senators, candies - 1, A, current)); senators[current].loyalty -= 10; } return result; } } static int getOnes(int mask) { int result = 0; while (mask != 0) { mask &= mask - 1; ++result; } return result; } public void run() { try { int n = nextInt(); int k = nextInt(); int A = nextInt(); Senator[] senators = new Senator[n]; for (int i = 0; i < n; ++i) { senators[i] = new Senator(nextInt(), nextInt()); } output.printf("%.10f", go(senators, k, A, 0)); output.flush(); output.close(); } catch (Throwable e) { System.err.println(e.getMessage()); System.err.println(Arrays.deepToString(e.getStackTrace())); } } public static void main(String[] args) { new DarkAssembly().start(); } private String nextToken() throws IOException { while (tokens == null || !tokens.hasMoreTokens()) { tokens = new StringTokenizer(input.readLine()); } return tokens.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private BufferedReader input; private PrintWriter output; private StringTokenizer tokens = null; } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /** * Created by IntelliJ IDEA. * User: Taras_Brzezinsky * Date: 8/13/11 * Time: 6:10 PM * To change this template use File | Settings | File Templates. */ import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import java.io.IOException; public class DarkAssembly extends Thread { public DarkAssembly() { this.input = new BufferedReader(new InputStreamReader(System.in)); this.output = new PrintWriter(System.out); this.setPriority(Thread.MAX_PRIORITY); } class Senator { int loyalty; int level; public Senator(int level, int loyalty) { this.level = level; this.loyalty = loyalty; } } private static double doIt(Senator[] senators, int A) { double probability = .0; for (int mask = 0; mask < (1 << senators.length); ++mask) { int sum = A; double current = 1.0; for (int i = 0; i < senators.length; ++i) { if ((mask & (1 << i)) != 0) { current *= .01 * senators[i].loyalty; } else { current *= .01 * (100 - senators[i].loyalty); sum += senators[i].level; } } if (getOnes(mask) > senators.length / 2) { probability += current; } else { probability += current * (double)A / sum; } } return probability; } private static double go(Senator []senators, int candies, int A, int current) { if (current == senators.length) { return doIt(senators, A); } else { double result = go(senators, candies, A, current + 1); if (candies > 0 && senators[current].loyalty < 100) { senators[current].loyalty += 10; result = Math.max(result, go(senators, candies - 1, A, current)); senators[current].loyalty -= 10; } return result; } } static int getOnes(int mask) { int result = 0; while (mask != 0) { mask &= mask - 1; ++result; } return result; } public void run() { try { int n = nextInt(); int k = nextInt(); int A = nextInt(); Senator[] senators = new Senator[n]; for (int i = 0; i < n; ++i) { senators[i] = new Senator(nextInt(), nextInt()); } output.printf("%.10f", go(senators, k, A, 0)); output.flush(); output.close(); } catch (Throwable e) { System.err.println(e.getMessage()); System.err.println(Arrays.deepToString(e.getStackTrace())); } } public static void main(String[] args) { new DarkAssembly().start(); } private String nextToken() throws IOException { while (tokens == null || !tokens.hasMoreTokens()) { tokens = new StringTokenizer(input.readLine()); } return tokens.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private BufferedReader input; private PrintWriter output; private StringTokenizer tokens = null; } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,141
4,266
2,854
import java.io.InputStreamReader; import java.io.IOException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { long l = in.nextLong(); long r = in.nextLong(); int max = (int) (r - l); if (max >= 2) { if ((l & 1) == 0) { out.println(l + " " + (l + 1) + " " + (l + 2)); return; } else { if (max >= 3) { out.println((l + 1) + " " + (l + 2) + " " + (l + 3)); return; } } } out.println(-1); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public long nextLong() { return Long.parseLong(next()); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.InputStreamReader; import java.io.IOException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { long l = in.nextLong(); long r = in.nextLong(); int max = (int) (r - l); if (max >= 2) { if ((l & 1) == 0) { out.println(l + " " + (l + 1) + " " + (l + 2)); return; } else { if (max >= 3) { out.println((l + 1) + " " + (l + 2) + " " + (l + 3)); return; } } } out.println(-1); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public long nextLong() { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.InputStreamReader; import java.io.IOException; import java.io.BufferedReader; import java.io.OutputStream; import java.io.PrintWriter; import java.util.StringTokenizer; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskA solver = new TaskA(); solver.solve(1, in, out); out.close(); } } class TaskA { public void solve(int testNumber, InputReader in, PrintWriter out) { long l = in.nextLong(); long r = in.nextLong(); int max = (int) (r - l); if (max >= 2) { if ((l & 1) == 0) { out.println(l + " " + (l + 1) + " " + (l + 2)); return; } else { if (max >= 3) { out.println((l + 1) + " " + (l + 2) + " " + (l + 3)); return; } } } out.println(-1); } } class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public long nextLong() { return Long.parseLong(next()); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
756
2,848
2,238
import java.util.* ; public class PythonIndentation { public static void main(String args[]) { Scanner in = new Scanner(System.in) ; int n = in.nextInt() ; boolean[] lst = new boolean[n] ; for(int i=0;i<n;i++) { lst[i] = (in.next().equals("s"))?false:true ; } System.out.println(dp(lst)) ; } static void arrayPrinter(int[][] dp) { System.out.println(":::") ; for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { System.out.print(dp[i][j]+" ") ; } System.out.println() ; } } static int dp(boolean[] lst) {//false in lst means an "s" (simple statement), and true a "f"(for loop) int[][] dp = new int[2][lst.length] ; dp[0][0] = 1 ; for(int i=1;i<lst.length;i++) { // arrayPrinter(dp) ; for(int j=0;j<lst.length;j++) { if(lst[i-1])//(i-1)st statement is a for loop { if(j==0) dp[i%2][j] = 0 ; else dp[i%2][j] = dp[(i-1)%2][j-1] ; } else//i-1 st statement is a simple statement { if(j==0) { int temp = 0 ; for(int k=0;k<lst.length;k++) temp = (temp+dp[(i-1)%2][k])%1000000007 ; dp[i%2][j] = temp ; } else dp[i%2][j] = (dp[i%2][j-1]-dp[(i-1)%2][j-1])%1000000007 ; } } } int ans = 0 ; for(int i=0;i<lst.length;i++) { ans = (ans + dp[(lst.length-1)%2][i])%1000000007 ; } if(ans<0) ans = ans + 1000000007 ; // arrayPrinter(dp) ; return ans ; } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.* ; public class PythonIndentation { public static void main(String args[]) { Scanner in = new Scanner(System.in) ; int n = in.nextInt() ; boolean[] lst = new boolean[n] ; for(int i=0;i<n;i++) { lst[i] = (in.next().equals("s"))?false:true ; } System.out.println(dp(lst)) ; } static void arrayPrinter(int[][] dp) { System.out.println(":::") ; for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { System.out.print(dp[i][j]+" ") ; } System.out.println() ; } } static int dp(boolean[] lst) {//false in lst means an "s" (simple statement), and true a "f"(for loop) int[][] dp = new int[2][lst.length] ; dp[0][0] = 1 ; for(int i=1;i<lst.length;i++) { // arrayPrinter(dp) ; for(int j=0;j<lst.length;j++) { if(lst[i-1])//(i-1)st statement is a for loop { if(j==0) dp[i%2][j] = 0 ; else dp[i%2][j] = dp[(i-1)%2][j-1] ; } else//i-1 st statement is a simple statement { if(j==0) { int temp = 0 ; for(int k=0;k<lst.length;k++) temp = (temp+dp[(i-1)%2][k])%1000000007 ; dp[i%2][j] = temp ; } else dp[i%2][j] = (dp[i%2][j-1]-dp[(i-1)%2][j-1])%1000000007 ; } } } int ans = 0 ; for(int i=0;i<lst.length;i++) { ans = (ans + dp[(lst.length-1)%2][i])%1000000007 ; } if(ans<0) ans = ans + 1000000007 ; // arrayPrinter(dp) ; return ans ; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.* ; public class PythonIndentation { public static void main(String args[]) { Scanner in = new Scanner(System.in) ; int n = in.nextInt() ; boolean[] lst = new boolean[n] ; for(int i=0;i<n;i++) { lst[i] = (in.next().equals("s"))?false:true ; } System.out.println(dp(lst)) ; } static void arrayPrinter(int[][] dp) { System.out.println(":::") ; for(int i=0;i<dp.length;i++) { for(int j=0;j<dp[0].length;j++) { System.out.print(dp[i][j]+" ") ; } System.out.println() ; } } static int dp(boolean[] lst) {//false in lst means an "s" (simple statement), and true a "f"(for loop) int[][] dp = new int[2][lst.length] ; dp[0][0] = 1 ; for(int i=1;i<lst.length;i++) { // arrayPrinter(dp) ; for(int j=0;j<lst.length;j++) { if(lst[i-1])//(i-1)st statement is a for loop { if(j==0) dp[i%2][j] = 0 ; else dp[i%2][j] = dp[(i-1)%2][j-1] ; } else//i-1 st statement is a simple statement { if(j==0) { int temp = 0 ; for(int k=0;k<lst.length;k++) temp = (temp+dp[(i-1)%2][k])%1000000007 ; dp[i%2][j] = temp ; } else dp[i%2][j] = (dp[i%2][j-1]-dp[(i-1)%2][j-1])%1000000007 ; } } } int ans = 0 ; for(int i=0;i<lst.length;i++) { ans = (ans + dp[(lst.length-1)%2][i])%1000000007 ; } if(ans<0) ans = ans + 1000000007 ; // arrayPrinter(dp) ; return ans ; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
916
2,234
2,865
import java.util.*; public class Counterexample483A { public static void main(String[] args) { // Set up scanner Scanner sc = new Scanner(System.in); // System.out.println("Enter l"); long l = sc.nextLong(); // System.out.println("Enter r"); long r = sc.nextLong(); if (l==r || l+1 == r) { System.out.println(-1); return; } if (l+2 == r && l%2 == 1) { System.out.println(-1); return; } if (l%2 == 0) { System.out.println(l + " " + (l+1) + " " + (l+2)); return; } System.out.println((l+1) + " " + (l+2) + " " + (l+3)); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; public class Counterexample483A { public static void main(String[] args) { // Set up scanner Scanner sc = new Scanner(System.in); // System.out.println("Enter l"); long l = sc.nextLong(); // System.out.println("Enter r"); long r = sc.nextLong(); if (l==r || l+1 == r) { System.out.println(-1); return; } if (l+2 == r && l%2 == 1) { System.out.println(-1); return; } if (l%2 == 0) { System.out.println(l + " " + (l+1) + " " + (l+2)); return; } System.out.println((l+1) + " " + (l+2) + " " + (l+3)); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; public class Counterexample483A { public static void main(String[] args) { // Set up scanner Scanner sc = new Scanner(System.in); // System.out.println("Enter l"); long l = sc.nextLong(); // System.out.println("Enter r"); long r = sc.nextLong(); if (l==r || l+1 == r) { System.out.println(-1); return; } if (l+2 == r && l%2 == 1) { System.out.println(-1); return; } if (l%2 == 0) { System.out.println(l + " " + (l+1) + " " + (l+2)); return; } System.out.println((l+1) + " " + (l+2) + " " + (l+3)); } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
557
2,859
1,087
import java.util.Scanner; public class Solution { public static void main(String[] args) { Solution solution = new Solution(); solution.solve(); } private void solve() { Scanner in = new Scanner(System.in); int t = in.nextInt(); while (t -- > 0) { long n = in.nextLong(); long k = in.nextLong(); System.out.println(solve(n, k)); } } private String solve(long n, long k) { if (n > 31) return "YES " + (n - 1); if (k > f(n)) return "NO"; long square = 1; long splitDone = 0; long size = n; long splitLeft = 0; while (splitDone + square <= k && size > 0) { splitDone += square; --size; splitLeft += (square * 2 - 1) * f(size); square = square * 2 + 1; } // System.out.println(square + " " + splitDone + " " + size + " " + splitLeft); if (k > splitDone + splitLeft) return "NO"; else return "YES " + size; } private long f(long x) { return ((1L << (2 * x)) - 1) / 3; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class Solution { public static void main(String[] args) { Solution solution = new Solution(); solution.solve(); } private void solve() { Scanner in = new Scanner(System.in); int t = in.nextInt(); while (t -- > 0) { long n = in.nextLong(); long k = in.nextLong(); System.out.println(solve(n, k)); } } private String solve(long n, long k) { if (n > 31) return "YES " + (n - 1); if (k > f(n)) return "NO"; long square = 1; long splitDone = 0; long size = n; long splitLeft = 0; while (splitDone + square <= k && size > 0) { splitDone += square; --size; splitLeft += (square * 2 - 1) * f(size); square = square * 2 + 1; } // System.out.println(square + " " + splitDone + " " + size + " " + splitLeft); if (k > splitDone + splitLeft) return "NO"; else return "YES " + size; } private long f(long x) { return ((1L << (2 * x)) - 1) / 3; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class Solution { public static void main(String[] args) { Solution solution = new Solution(); solution.solve(); } private void solve() { Scanner in = new Scanner(System.in); int t = in.nextInt(); while (t -- > 0) { long n = in.nextLong(); long k = in.nextLong(); System.out.println(solve(n, k)); } } private String solve(long n, long k) { if (n > 31) return "YES " + (n - 1); if (k > f(n)) return "NO"; long square = 1; long splitDone = 0; long size = n; long splitLeft = 0; while (splitDone + square <= k && size > 0) { splitDone += square; --size; splitLeft += (square * 2 - 1) * f(size); square = square * 2 + 1; } // System.out.println(square + " " + splitDone + " " + size + " " + splitLeft); if (k > splitDone + splitLeft) return "NO"; else return "YES " + size; } private long f(long x) { return ((1L << (2 * x)) - 1) / 3; } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
636
1,086
2,939
import java.util.Scanner; public class A { public static final boolean DEBUG = false; Scanner sc; public void debug(Object o) { if (DEBUG) { int ln = Thread.currentThread().getStackTrace()[2].getLineNumber(); String fn = Thread.currentThread().getStackTrace()[2].getFileName(); System.out.println("(" + fn + ":" + ln+ "): " + o); } } public void pln(Object o) { System.out.println(o); } public void run() { sc = new Scanner(System.in); long a = sc.nextLong(); long b = sc.nextLong(); long nr = 0; if (a < b) { long aux = a; a = b; b = aux; } while (a != 0 && b != 0) { nr += a / b; long c = a % b; a = b; b = c; } pln(nr); return; } public static void main(String[] args) { A t = new A(); t.run(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class A { public static final boolean DEBUG = false; Scanner sc; public void debug(Object o) { if (DEBUG) { int ln = Thread.currentThread().getStackTrace()[2].getLineNumber(); String fn = Thread.currentThread().getStackTrace()[2].getFileName(); System.out.println("(" + fn + ":" + ln+ "): " + o); } } public void pln(Object o) { System.out.println(o); } public void run() { sc = new Scanner(System.in); long a = sc.nextLong(); long b = sc.nextLong(); long nr = 0; if (a < b) { long aux = a; a = b; b = aux; } while (a != 0 && b != 0) { nr += a / b; long c = a % b; a = b; b = c; } pln(nr); return; } public static void main(String[] args) { A t = new A(); t.run(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class A { public static final boolean DEBUG = false; Scanner sc; public void debug(Object o) { if (DEBUG) { int ln = Thread.currentThread().getStackTrace()[2].getLineNumber(); String fn = Thread.currentThread().getStackTrace()[2].getFileName(); System.out.println("(" + fn + ":" + ln+ "): " + o); } } public void pln(Object o) { System.out.println(o); } public void run() { sc = new Scanner(System.in); long a = sc.nextLong(); long b = sc.nextLong(); long nr = 0; if (a < b) { long aux = a; a = b; b = aux; } while (a != 0 && b != 0) { nr += a / b; long c = a % b; a = b; b = c; } pln(nr); return; } public static void main(String[] args) { A t = new A(); t.run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
576
2,933
862
import java.io.*; import java.lang.*; import java.util.*; import static java.lang.Integer.*; import static java.lang.Long.*; import static java.lang.Math.*; import static java.lang.System.*; import static java.util.Arrays.*; import static java.util.Collections.*; public class Main { Main() throws IOException { String a = nextLine(); String b = nextLine(); long ans = 0; int s = 0; for (int i = 0; i < b.length() - a.length(); ++i) { s += b.charAt(i) == '1' ? 1 : 0; } for (int i = 0; i < a.length(); ++i) { s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0; ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s; s -= b.charAt(i) == '1' ? 1 : 0; } out.println(ans); } ////////////////////////////// PrintWriter out = new PrintWriter(System.out, false); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer stok = null; String nextLine() throws IOException { while (stok == null || !stok.hasMoreTokens()) { stok = new StringTokenizer(in.readLine()); } return stok.nextToken(); } public static void main(String args[]) throws IOException { if (args.length > 0) { setIn(new FileInputStream(args[0] + ".inp")); setOut(new PrintStream(args[0] + ".out")); } Main solver = new Main(); solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.lang.*; import java.util.*; import static java.lang.Integer.*; import static java.lang.Long.*; import static java.lang.Math.*; import static java.lang.System.*; import static java.util.Arrays.*; import static java.util.Collections.*; public class Main { Main() throws IOException { String a = nextLine(); String b = nextLine(); long ans = 0; int s = 0; for (int i = 0; i < b.length() - a.length(); ++i) { s += b.charAt(i) == '1' ? 1 : 0; } for (int i = 0; i < a.length(); ++i) { s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0; ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s; s -= b.charAt(i) == '1' ? 1 : 0; } out.println(ans); } ////////////////////////////// PrintWriter out = new PrintWriter(System.out, false); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer stok = null; String nextLine() throws IOException { while (stok == null || !stok.hasMoreTokens()) { stok = new StringTokenizer(in.readLine()); } return stok.nextToken(); } public static void main(String args[]) throws IOException { if (args.length > 0) { setIn(new FileInputStream(args[0] + ".inp")); setOut(new PrintStream(args[0] + ".out")); } Main solver = new Main(); solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.lang.*; import java.util.*; import static java.lang.Integer.*; import static java.lang.Long.*; import static java.lang.Math.*; import static java.lang.System.*; import static java.util.Arrays.*; import static java.util.Collections.*; public class Main { Main() throws IOException { String a = nextLine(); String b = nextLine(); long ans = 0; int s = 0; for (int i = 0; i < b.length() - a.length(); ++i) { s += b.charAt(i) == '1' ? 1 : 0; } for (int i = 0; i < a.length(); ++i) { s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0; ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s; s -= b.charAt(i) == '1' ? 1 : 0; } out.println(ans); } ////////////////////////////// PrintWriter out = new PrintWriter(System.out, false); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer stok = null; String nextLine() throws IOException { while (stok == null || !stok.hasMoreTokens()) { stok = new StringTokenizer(in.readLine()); } return stok.nextToken(); } public static void main(String args[]) throws IOException { if (args.length > 0) { setIn(new FileInputStream(args[0] + ".inp")); setOut(new PrintStream(args[0] + ".out")); } Main solver = new Main(); solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
737
861
1,354
import javax.crypto.AEADBadTagException; import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.List; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author AlexFetisov */ public class TaskB_AF { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB_cf371 solver = new TaskB_cf371(); solver.solve(1, in, out); out.close(); } static class TaskB_cf371 { List<Rectangle> rects; public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int xLeft = 1, xRight = n; int xSeparate = -1; while (xLeft <= xRight) { int e = (xLeft + xRight) / 2; int t = makeRequest(in, out, 1, 1, e, n); if (t == 1) { xSeparate = e; xRight = e - 1; } else if (t == 0) { xLeft = e + 1; } else { xRight = e - 1; } } rects = new ArrayList<Rectangle>(); if (xSeparate != -1 && makeRequest(in, out, xSeparate + 1, 1, n, n) == 1) { detectRectangle(in, out, 1, 1, xSeparate, n); detectRectangle(in, out, xSeparate + 1, 1, n, n); out.print("! "); for (Rectangle r : rects) { out.print(r.toString() + " "); } out.println(); out.flush(); return; } int yLeft = 1, yRight = n; int ySeparate = -1; while (yLeft <= yRight) { int e = (yLeft + yRight) / 2; int t = makeRequest(in, out, 1, 1, n, e); if (t == 1) { ySeparate = e; yRight = e - 1; } else if (t == 0) { yLeft = e + 1; } else { yRight = e - 1; } } if (ySeparate != -1) { detectRectangle(in, out, 1, 1, n, ySeparate); detectRectangle(in, out, 1, ySeparate + 1, n, n); out.print("! "); for (Rectangle r : rects) { out.print(r.toString() + " "); } out.println(); out.flush(); return; } throw new AssertionError("!"); } private void detectRectangle(InputReader in, PrintWriter out, int xMin, int yMin, int xMax, int yMax) { int xLeft = -1, xRight = -1, yLeft = -1, yRight = -1; int left = xMin, right = xMax; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, xMin, yMin, e, yMax) == 1) { xRight = e; right = e - 1; } else { left = e + 1; } } left = xMin; right = xRight; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, e, yMin, xRight, yMax) == 1) { xLeft = e; left = e + 1; } else { right = e - 1; } } left = yMin; right = yMax; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, xLeft, yMin, xRight, e) == 1) { yRight = e; right = e - 1; } else { left = e + 1; } } left = yMin; right = yRight; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, xLeft, e, xRight, yRight) == 1) { yLeft = e; left = e + 1; } else { right = e - 1; } } rects.add(new Rectangle(xLeft, yLeft, xRight, yRight)); } private int makeRequest(InputReader in, PrintWriter out, int x1, int y1, int x2, int y2) { out.print("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.println(); out.flush(); return in.nextInt(); } class Rectangle { int x1; int x2; int y1; int y2; public Rectangle(int x1, int y1, int x2, int y2) { this.x1 = x1; this.x2 = x2; this.y1 = y1; this.y2 = y2; } public String toString() { StringBuilder b = new StringBuilder(""); b.append(x1).append(' '); b.append(y1).append(' '); b.append(x2).append(' '); b.append(y2); return b.toString(); } } } static class InputReader { private BufferedReader reader; private StringTokenizer stt; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { return null; } } public String nextString() { while (stt == null || !stt.hasMoreTokens()) { stt = new StringTokenizer(nextLine()); } return stt.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import javax.crypto.AEADBadTagException; import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.List; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author AlexFetisov */ public class TaskB_AF { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB_cf371 solver = new TaskB_cf371(); solver.solve(1, in, out); out.close(); } static class TaskB_cf371 { List<Rectangle> rects; public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int xLeft = 1, xRight = n; int xSeparate = -1; while (xLeft <= xRight) { int e = (xLeft + xRight) / 2; int t = makeRequest(in, out, 1, 1, e, n); if (t == 1) { xSeparate = e; xRight = e - 1; } else if (t == 0) { xLeft = e + 1; } else { xRight = e - 1; } } rects = new ArrayList<Rectangle>(); if (xSeparate != -1 && makeRequest(in, out, xSeparate + 1, 1, n, n) == 1) { detectRectangle(in, out, 1, 1, xSeparate, n); detectRectangle(in, out, xSeparate + 1, 1, n, n); out.print("! "); for (Rectangle r : rects) { out.print(r.toString() + " "); } out.println(); out.flush(); return; } int yLeft = 1, yRight = n; int ySeparate = -1; while (yLeft <= yRight) { int e = (yLeft + yRight) / 2; int t = makeRequest(in, out, 1, 1, n, e); if (t == 1) { ySeparate = e; yRight = e - 1; } else if (t == 0) { yLeft = e + 1; } else { yRight = e - 1; } } if (ySeparate != -1) { detectRectangle(in, out, 1, 1, n, ySeparate); detectRectangle(in, out, 1, ySeparate + 1, n, n); out.print("! "); for (Rectangle r : rects) { out.print(r.toString() + " "); } out.println(); out.flush(); return; } throw new AssertionError("!"); } private void detectRectangle(InputReader in, PrintWriter out, int xMin, int yMin, int xMax, int yMax) { int xLeft = -1, xRight = -1, yLeft = -1, yRight = -1; int left = xMin, right = xMax; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, xMin, yMin, e, yMax) == 1) { xRight = e; right = e - 1; } else { left = e + 1; } } left = xMin; right = xRight; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, e, yMin, xRight, yMax) == 1) { xLeft = e; left = e + 1; } else { right = e - 1; } } left = yMin; right = yMax; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, xLeft, yMin, xRight, e) == 1) { yRight = e; right = e - 1; } else { left = e + 1; } } left = yMin; right = yRight; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, xLeft, e, xRight, yRight) == 1) { yLeft = e; left = e + 1; } else { right = e - 1; } } rects.add(new Rectangle(xLeft, yLeft, xRight, yRight)); } private int makeRequest(InputReader in, PrintWriter out, int x1, int y1, int x2, int y2) { out.print("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.println(); out.flush(); return in.nextInt(); } class Rectangle { int x1; int x2; int y1; int y2; public Rectangle(int x1, int y1, int x2, int y2) { this.x1 = x1; this.x2 = x2; this.y1 = y1; this.y2 = y2; } public String toString() { StringBuilder b = new StringBuilder(""); b.append(x1).append(' '); b.append(y1).append(' '); b.append(x2).append(' '); b.append(y2); return b.toString(); } } } static class InputReader { private BufferedReader reader; private StringTokenizer stt; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { return null; } } public String nextString() { while (stt == null || !stt.hasMoreTokens()) { stt = new StringTokenizer(nextLine()); } return stt.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import javax.crypto.AEADBadTagException; import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.List; import java.util.StringTokenizer; import java.io.IOException; import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.ArrayList; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author AlexFetisov */ public class TaskB_AF { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskB_cf371 solver = new TaskB_cf371(); solver.solve(1, in, out); out.close(); } static class TaskB_cf371 { List<Rectangle> rects; public void solve(int testNumber, InputReader in, PrintWriter out) { int n = in.nextInt(); int xLeft = 1, xRight = n; int xSeparate = -1; while (xLeft <= xRight) { int e = (xLeft + xRight) / 2; int t = makeRequest(in, out, 1, 1, e, n); if (t == 1) { xSeparate = e; xRight = e - 1; } else if (t == 0) { xLeft = e + 1; } else { xRight = e - 1; } } rects = new ArrayList<Rectangle>(); if (xSeparate != -1 && makeRequest(in, out, xSeparate + 1, 1, n, n) == 1) { detectRectangle(in, out, 1, 1, xSeparate, n); detectRectangle(in, out, xSeparate + 1, 1, n, n); out.print("! "); for (Rectangle r : rects) { out.print(r.toString() + " "); } out.println(); out.flush(); return; } int yLeft = 1, yRight = n; int ySeparate = -1; while (yLeft <= yRight) { int e = (yLeft + yRight) / 2; int t = makeRequest(in, out, 1, 1, n, e); if (t == 1) { ySeparate = e; yRight = e - 1; } else if (t == 0) { yLeft = e + 1; } else { yRight = e - 1; } } if (ySeparate != -1) { detectRectangle(in, out, 1, 1, n, ySeparate); detectRectangle(in, out, 1, ySeparate + 1, n, n); out.print("! "); for (Rectangle r : rects) { out.print(r.toString() + " "); } out.println(); out.flush(); return; } throw new AssertionError("!"); } private void detectRectangle(InputReader in, PrintWriter out, int xMin, int yMin, int xMax, int yMax) { int xLeft = -1, xRight = -1, yLeft = -1, yRight = -1; int left = xMin, right = xMax; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, xMin, yMin, e, yMax) == 1) { xRight = e; right = e - 1; } else { left = e + 1; } } left = xMin; right = xRight; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, e, yMin, xRight, yMax) == 1) { xLeft = e; left = e + 1; } else { right = e - 1; } } left = yMin; right = yMax; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, xLeft, yMin, xRight, e) == 1) { yRight = e; right = e - 1; } else { left = e + 1; } } left = yMin; right = yRight; while (left <= right) { int e = (left + right) / 2; if (makeRequest(in, out, xLeft, e, xRight, yRight) == 1) { yLeft = e; left = e + 1; } else { right = e - 1; } } rects.add(new Rectangle(xLeft, yLeft, xRight, yRight)); } private int makeRequest(InputReader in, PrintWriter out, int x1, int y1, int x2, int y2) { out.print("? " + x1 + " " + y1 + " " + x2 + " " + y2); out.println(); out.flush(); return in.nextInt(); } class Rectangle { int x1; int x2; int y1; int y2; public Rectangle(int x1, int y1, int x2, int y2) { this.x1 = x1; this.x2 = x2; this.y1 = y1; this.y2 = y2; } public String toString() { StringBuilder b = new StringBuilder(""); b.append(x1).append(' '); b.append(y1).append(' '); b.append(x2).append(' '); b.append(y2); return b.toString(); } } } static class InputReader { private BufferedReader reader; private StringTokenizer stt; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream)); } public String nextLine() { try { return reader.readLine(); } catch (IOException e) { return null; } } public String nextString() { while (stt == null || !stt.hasMoreTokens()) { stt = new StringTokenizer(nextLine()); } return stt.nextToken(); } public int nextInt() { return Integer.parseInt(nextString()); } } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,783
1,352
315
import java.util.Scanner; public class origami { public static void main(String args[]){ Scanner input = new Scanner(System.in); double n = input.nextInt(); double k = input.nextInt(); double red = 0; double green = 0; double blue = 0; double ans = 0; red = (2 * n) / k; green = (5 * n) / k; blue = (8 * n) / k; double red1 = Math.ceil(red) ; double green1 = Math.ceil(green); double blue1 = Math.ceil(blue); ans+=red1; ans+=green1; ans+=blue1; Double answer = new Double(ans); int finished = answer.intValue(); System.out.println(finished); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Scanner; public class origami { public static void main(String args[]){ Scanner input = new Scanner(System.in); double n = input.nextInt(); double k = input.nextInt(); double red = 0; double green = 0; double blue = 0; double ans = 0; red = (2 * n) / k; green = (5 * n) / k; blue = (8 * n) / k; double red1 = Math.ceil(red) ; double green1 = Math.ceil(green); double blue1 = Math.ceil(blue); ans+=red1; ans+=green1; ans+=blue1; Double answer = new Double(ans); int finished = answer.intValue(); System.out.println(finished); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class origami { public static void main(String args[]){ Scanner input = new Scanner(System.in); double n = input.nextInt(); double k = input.nextInt(); double red = 0; double green = 0; double blue = 0; double ans = 0; red = (2 * n) / k; green = (5 * n) / k; blue = (8 * n) / k; double red1 = Math.ceil(red) ; double green1 = Math.ceil(green); double blue1 = Math.ceil(blue); ans+=red1; ans+=green1; ans+=blue1; Double answer = new Double(ans); int finished = answer.intValue(); System.out.println(finished); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
506
315
23
/* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; import java.math.*; /* Name of the class has to be "Main" only if the class is public. */ public class Main { public static void main (String[] args) throws java.lang.Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(br.readLine()); int[] A=new int[n]; String[] s=br.readLine().split(" "); for(int i=0;i<n;i++){ A[i]=Integer.parseInt(s[i]); } Map memo=new HashMap(); int[] f=new int[n]; for(int i=0;i<n;i++){ if(!memo.containsKey(A[i])){ memo.put(A[i],1); } else{ int ct=(int)memo.get(A[i]); memo.put(A[i],ct+1); } int tot=0; if(memo.containsKey(A[i]-1)){ tot+=(int)memo.get(A[i]-1); } if(memo.containsKey(A[i]+1)){ tot+=(int)memo.get(A[i]+1); } tot+=(int)memo.get(A[i]); f[i]=tot; } BigInteger res=new BigInteger("0"); for(int i=0;i<n;i++){ int tot1=i+1-f[i]; int tot2=0; if(memo.containsKey(A[i]-1)){ tot2+=(int)memo.get(A[i]-1); } if(memo.containsKey(A[i]+1)){ tot2+=(int)memo.get(A[i]+1); } tot2+=(int)memo.get(A[i]); tot2=n-i-1-(tot2-f[i]); //res+=(long)(tot1-tot2)*(long)A[i]; res=res.add(BigInteger.valueOf((long)(tot1-tot2)*(long)A[i])); } System.out.println(res); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> /* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; import java.math.*; /* Name of the class has to be "Main" only if the class is public. */ public class Main { public static void main (String[] args) throws java.lang.Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(br.readLine()); int[] A=new int[n]; String[] s=br.readLine().split(" "); for(int i=0;i<n;i++){ A[i]=Integer.parseInt(s[i]); } Map memo=new HashMap(); int[] f=new int[n]; for(int i=0;i<n;i++){ if(!memo.containsKey(A[i])){ memo.put(A[i],1); } else{ int ct=(int)memo.get(A[i]); memo.put(A[i],ct+1); } int tot=0; if(memo.containsKey(A[i]-1)){ tot+=(int)memo.get(A[i]-1); } if(memo.containsKey(A[i]+1)){ tot+=(int)memo.get(A[i]+1); } tot+=(int)memo.get(A[i]); f[i]=tot; } BigInteger res=new BigInteger("0"); for(int i=0;i<n;i++){ int tot1=i+1-f[i]; int tot2=0; if(memo.containsKey(A[i]-1)){ tot2+=(int)memo.get(A[i]-1); } if(memo.containsKey(A[i]+1)){ tot2+=(int)memo.get(A[i]+1); } tot2+=(int)memo.get(A[i]); tot2=n-i-1-(tot2-f[i]); //res+=(long)(tot1-tot2)*(long)A[i]; res=res.add(BigInteger.valueOf((long)(tot1-tot2)*(long)A[i])); } System.out.println(res); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /* package whatever; // don't place package name! */ import java.util.*; import java.lang.*; import java.io.*; import java.math.*; /* Name of the class has to be "Main" only if the class is public. */ public class Main { public static void main (String[] args) throws java.lang.Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); int n=Integer.parseInt(br.readLine()); int[] A=new int[n]; String[] s=br.readLine().split(" "); for(int i=0;i<n;i++){ A[i]=Integer.parseInt(s[i]); } Map memo=new HashMap(); int[] f=new int[n]; for(int i=0;i<n;i++){ if(!memo.containsKey(A[i])){ memo.put(A[i],1); } else{ int ct=(int)memo.get(A[i]); memo.put(A[i],ct+1); } int tot=0; if(memo.containsKey(A[i]-1)){ tot+=(int)memo.get(A[i]-1); } if(memo.containsKey(A[i]+1)){ tot+=(int)memo.get(A[i]+1); } tot+=(int)memo.get(A[i]); f[i]=tot; } BigInteger res=new BigInteger("0"); for(int i=0;i<n;i++){ int tot1=i+1-f[i]; int tot2=0; if(memo.containsKey(A[i]-1)){ tot2+=(int)memo.get(A[i]-1); } if(memo.containsKey(A[i]+1)){ tot2+=(int)memo.get(A[i]+1); } tot2+=(int)memo.get(A[i]); tot2=n-i-1-(tot2-f[i]); //res+=(long)(tot1-tot2)*(long)A[i]; res=res.add(BigInteger.valueOf((long)(tot1-tot2)*(long)A[i])); } System.out.println(res); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
772
23
118
import java.io.*; import java.lang.*; public class CF1003E{ public static void main(String args[]) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] s = br.readLine().split(" "); int n = Integer.parseInt(s[0]); int d = Integer.parseInt(s[1]); int k = Integer.parseInt(s[2]); StringBuffer sb = new StringBuffer(); int[] rem = new int[n]; int[] deg = new int[n]; int i = 0; if(k == 1){ if(n <= 2){ }else{ System.out.println("NO"); return; } } for(i=0;i<d;i++){ if(i>=n-1){ System.out.println("NO"); return; } sb.append((i+1) +" " + (i+2)+"\n"); rem[i] = Math.min(i, d-i); deg[i]++; if(i+1<n) deg[i+1]++; } if(i<n){ rem[i] = 0; deg[i] = 1; } i++; int j = 0; for(;i<n;i++){ //For all remaining Nodes while(true){ if(j>=n){ System.out.println("NO"); return; } if(rem[j] > 0 && deg[j]<k){ deg[j]++; rem[i] = rem[j] - 1; sb.append((j+1)+" "+(i+1)+"\n"); deg[i]++; break; }else{ j++; } } } System.out.println("YES"); System.out.println(sb); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.lang.*; public class CF1003E{ public static void main(String args[]) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] s = br.readLine().split(" "); int n = Integer.parseInt(s[0]); int d = Integer.parseInt(s[1]); int k = Integer.parseInt(s[2]); StringBuffer sb = new StringBuffer(); int[] rem = new int[n]; int[] deg = new int[n]; int i = 0; if(k == 1){ if(n <= 2){ }else{ System.out.println("NO"); return; } } for(i=0;i<d;i++){ if(i>=n-1){ System.out.println("NO"); return; } sb.append((i+1) +" " + (i+2)+"\n"); rem[i] = Math.min(i, d-i); deg[i]++; if(i+1<n) deg[i+1]++; } if(i<n){ rem[i] = 0; deg[i] = 1; } i++; int j = 0; for(;i<n;i++){ //For all remaining Nodes while(true){ if(j>=n){ System.out.println("NO"); return; } if(rem[j] > 0 && deg[j]<k){ deg[j]++; rem[i] = rem[j] - 1; sb.append((j+1)+" "+(i+1)+"\n"); deg[i]++; break; }else{ j++; } } } System.out.println("YES"); System.out.println(sb); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.lang.*; public class CF1003E{ public static void main(String args[]) throws IOException{ BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); String[] s = br.readLine().split(" "); int n = Integer.parseInt(s[0]); int d = Integer.parseInt(s[1]); int k = Integer.parseInt(s[2]); StringBuffer sb = new StringBuffer(); int[] rem = new int[n]; int[] deg = new int[n]; int i = 0; if(k == 1){ if(n <= 2){ }else{ System.out.println("NO"); return; } } for(i=0;i<d;i++){ if(i>=n-1){ System.out.println("NO"); return; } sb.append((i+1) +" " + (i+2)+"\n"); rem[i] = Math.min(i, d-i); deg[i]++; if(i+1<n) deg[i+1]++; } if(i<n){ rem[i] = 0; deg[i] = 1; } i++; int j = 0; for(;i<n;i++){ //For all remaining Nodes while(true){ if(j>=n){ System.out.println("NO"); return; } if(rem[j] > 0 && deg[j]<k){ deg[j]++; rem[i] = rem[j] - 1; sb.append((j+1)+" "+(i+1)+"\n"); deg[i]++; break; }else{ j++; } } } System.out.println("YES"); System.out.println(sb); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
706
118
3,920
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.StringTokenizer; public class C { public static void main(String[] args) { FastScanner fs=new FastScanner(); int nBoxes=fs.nextInt(); long[] sums=new long[nBoxes]; HashMap<Long, Integer> boxOf=new HashMap<>(); int[][] boxes=new int[nBoxes][]; long total=0; for (int i=0; i<nBoxes; i++) { int size=fs.nextInt(); boxes[i]=new int[size]; for (int j=0; j<size; j++) { boxes[i][j]=fs.nextInt(); boxOf.put((long)boxes[i][j], i); sums[i]+=boxes[i][j]; } total+=sums[i]; } if (total%nBoxes!=0) { System.out.println("No"); return; } long target=total/nBoxes; int[][] masks=new int[nBoxes][]; ArrayList<Integer>[][] maskLoops=new ArrayList[nBoxes][]; for (int i=0; i<nBoxes; i++) { masks[i]=new int[boxes[i].length]; maskLoops[i]=new ArrayList[boxes[i].length]; for (int j=0; j<maskLoops[i].length; j++) maskLoops[i][j]=new ArrayList<>(); inner:for (int j=0; j<boxes[i].length; j++) { long startVal=boxes[i][j], lookingFor=target-(sums[i]-startVal); maskLoops[i][j].add((int)lookingFor); int mask=1<<i; while (lookingFor!=startVal) { if (!boxOf.containsKey(lookingFor)) continue inner; int nextBox=boxOf.get(lookingFor); //if we have already used this box, it won't work if ((mask&(1<<nextBox))!=0) continue inner; mask|=1<<nextBox; lookingFor=target-(sums[nextBox]-lookingFor); /*if (lookingFor!=startVal) */maskLoops[i][j].add((int)lookingFor); } // System.out.println("Mask loops for box: "+i+" starting at "+startVal+" gives "+); //otherwise it worked masks[i][j]=mask; } } boolean[] possible=new boolean[1<<nBoxes]; int[] maskFrom=new int[1<<nBoxes]; int[] indexToUse=new int[1<<nBoxes]; possible[0]=true; for (int mask=1; mask<1<<nBoxes; mask++) { int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask)); /* for (int i:masks[lowestBit]) { if ((mask&i)==i && possible[mask^i]) { possible[mask]=true; break; } } */ for (int i=0; i<masks[lowestBit].length; i++) { int m=masks[lowestBit][i]; if ((mask&m)==m && possible[mask^m]) { possible[mask]=true; maskFrom[mask]=mask^m; indexToUse[mask]=i; break; } } } if (!possible[(1<<nBoxes)-1]) { System.out.println("No"); return; } System.out.println("Yes"); ArrayList<ArrayList<Integer>> loops=new ArrayList<>(); int mask=(1<<nBoxes)-1; while (mask!=0) { // System.out.println("At mask: "+Integer.toBinaryString(mask)); int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask)); loops.add(maskLoops[lowestBit][indexToUse[mask]]); mask=maskFrom[mask]; } // System.out.println("Loops: "+loops); int[] takeFrom=new int[nBoxes]; int[] boxGiveTo=new int[nBoxes]; for (ArrayList<Integer> loop:loops) { for (int i=0; i<loop.size(); i++) { int cur=loop.get(i), next=loop.get((i+1)%loop.size()); int curBox=boxOf.get((long)cur), nextBox=boxOf.get((long)next); takeFrom[nextBox]=next; boxGiveTo[nextBox]=curBox; } } for (int i=0; i<nBoxes; i++) { System.out.println(takeFrom[i]+" "+(boxGiveTo[i]+1)); } } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.StringTokenizer; public class C { public static void main(String[] args) { FastScanner fs=new FastScanner(); int nBoxes=fs.nextInt(); long[] sums=new long[nBoxes]; HashMap<Long, Integer> boxOf=new HashMap<>(); int[][] boxes=new int[nBoxes][]; long total=0; for (int i=0; i<nBoxes; i++) { int size=fs.nextInt(); boxes[i]=new int[size]; for (int j=0; j<size; j++) { boxes[i][j]=fs.nextInt(); boxOf.put((long)boxes[i][j], i); sums[i]+=boxes[i][j]; } total+=sums[i]; } if (total%nBoxes!=0) { System.out.println("No"); return; } long target=total/nBoxes; int[][] masks=new int[nBoxes][]; ArrayList<Integer>[][] maskLoops=new ArrayList[nBoxes][]; for (int i=0; i<nBoxes; i++) { masks[i]=new int[boxes[i].length]; maskLoops[i]=new ArrayList[boxes[i].length]; for (int j=0; j<maskLoops[i].length; j++) maskLoops[i][j]=new ArrayList<>(); inner:for (int j=0; j<boxes[i].length; j++) { long startVal=boxes[i][j], lookingFor=target-(sums[i]-startVal); maskLoops[i][j].add((int)lookingFor); int mask=1<<i; while (lookingFor!=startVal) { if (!boxOf.containsKey(lookingFor)) continue inner; int nextBox=boxOf.get(lookingFor); //if we have already used this box, it won't work if ((mask&(1<<nextBox))!=0) continue inner; mask|=1<<nextBox; lookingFor=target-(sums[nextBox]-lookingFor); /*if (lookingFor!=startVal) */maskLoops[i][j].add((int)lookingFor); } // System.out.println("Mask loops for box: "+i+" starting at "+startVal+" gives "+); //otherwise it worked masks[i][j]=mask; } } boolean[] possible=new boolean[1<<nBoxes]; int[] maskFrom=new int[1<<nBoxes]; int[] indexToUse=new int[1<<nBoxes]; possible[0]=true; for (int mask=1; mask<1<<nBoxes; mask++) { int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask)); /* for (int i:masks[lowestBit]) { if ((mask&i)==i && possible[mask^i]) { possible[mask]=true; break; } } */ for (int i=0; i<masks[lowestBit].length; i++) { int m=masks[lowestBit][i]; if ((mask&m)==m && possible[mask^m]) { possible[mask]=true; maskFrom[mask]=mask^m; indexToUse[mask]=i; break; } } } if (!possible[(1<<nBoxes)-1]) { System.out.println("No"); return; } System.out.println("Yes"); ArrayList<ArrayList<Integer>> loops=new ArrayList<>(); int mask=(1<<nBoxes)-1; while (mask!=0) { // System.out.println("At mask: "+Integer.toBinaryString(mask)); int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask)); loops.add(maskLoops[lowestBit][indexToUse[mask]]); mask=maskFrom[mask]; } // System.out.println("Loops: "+loops); int[] takeFrom=new int[nBoxes]; int[] boxGiveTo=new int[nBoxes]; for (ArrayList<Integer> loop:loops) { for (int i=0; i<loop.size(); i++) { int cur=loop.get(i), next=loop.get((i+1)%loop.size()); int curBox=boxOf.get((long)cur), nextBox=boxOf.get((long)next); takeFrom[nextBox]=next; boxGiveTo[nextBox]=curBox; } } for (int i=0; i<nBoxes; i++) { System.out.println(takeFrom[i]+" "+(boxGiveTo[i]+1)); } } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.HashMap; import java.util.StringTokenizer; public class C { public static void main(String[] args) { FastScanner fs=new FastScanner(); int nBoxes=fs.nextInt(); long[] sums=new long[nBoxes]; HashMap<Long, Integer> boxOf=new HashMap<>(); int[][] boxes=new int[nBoxes][]; long total=0; for (int i=0; i<nBoxes; i++) { int size=fs.nextInt(); boxes[i]=new int[size]; for (int j=0; j<size; j++) { boxes[i][j]=fs.nextInt(); boxOf.put((long)boxes[i][j], i); sums[i]+=boxes[i][j]; } total+=sums[i]; } if (total%nBoxes!=0) { System.out.println("No"); return; } long target=total/nBoxes; int[][] masks=new int[nBoxes][]; ArrayList<Integer>[][] maskLoops=new ArrayList[nBoxes][]; for (int i=0; i<nBoxes; i++) { masks[i]=new int[boxes[i].length]; maskLoops[i]=new ArrayList[boxes[i].length]; for (int j=0; j<maskLoops[i].length; j++) maskLoops[i][j]=new ArrayList<>(); inner:for (int j=0; j<boxes[i].length; j++) { long startVal=boxes[i][j], lookingFor=target-(sums[i]-startVal); maskLoops[i][j].add((int)lookingFor); int mask=1<<i; while (lookingFor!=startVal) { if (!boxOf.containsKey(lookingFor)) continue inner; int nextBox=boxOf.get(lookingFor); //if we have already used this box, it won't work if ((mask&(1<<nextBox))!=0) continue inner; mask|=1<<nextBox; lookingFor=target-(sums[nextBox]-lookingFor); /*if (lookingFor!=startVal) */maskLoops[i][j].add((int)lookingFor); } // System.out.println("Mask loops for box: "+i+" starting at "+startVal+" gives "+); //otherwise it worked masks[i][j]=mask; } } boolean[] possible=new boolean[1<<nBoxes]; int[] maskFrom=new int[1<<nBoxes]; int[] indexToUse=new int[1<<nBoxes]; possible[0]=true; for (int mask=1; mask<1<<nBoxes; mask++) { int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask)); /* for (int i:masks[lowestBit]) { if ((mask&i)==i && possible[mask^i]) { possible[mask]=true; break; } } */ for (int i=0; i<masks[lowestBit].length; i++) { int m=masks[lowestBit][i]; if ((mask&m)==m && possible[mask^m]) { possible[mask]=true; maskFrom[mask]=mask^m; indexToUse[mask]=i; break; } } } if (!possible[(1<<nBoxes)-1]) { System.out.println("No"); return; } System.out.println("Yes"); ArrayList<ArrayList<Integer>> loops=new ArrayList<>(); int mask=(1<<nBoxes)-1; while (mask!=0) { // System.out.println("At mask: "+Integer.toBinaryString(mask)); int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask)); loops.add(maskLoops[lowestBit][indexToUse[mask]]); mask=maskFrom[mask]; } // System.out.println("Loops: "+loops); int[] takeFrom=new int[nBoxes]; int[] boxGiveTo=new int[nBoxes]; for (ArrayList<Integer> loop:loops) { for (int i=0; i<loop.size(); i++) { int cur=loop.get(i), next=loop.get((i+1)%loop.size()); int curBox=boxOf.get((long)cur), nextBox=boxOf.get((long)next); takeFrom[nextBox]=next; boxGiveTo[nextBox]=curBox; } } for (int i=0; i<nBoxes; i++) { System.out.println(takeFrom[i]+" "+(boxGiveTo[i]+1)); } } static class FastScanner { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); StringTokenizer st=new StringTokenizer(""); public String next() { while (!st.hasMoreElements()) try { st=new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } return st.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,493
3,910
732
import java.io.*; import java.util.*; public class Main { static Scanner in = new Scanner(System.in); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int n = in.nextInt(); int m = in.nextInt(); long boyMax = 0; int NBoyMax = 0; long sweets = 0; TreeSet<Long> boyMember = new TreeSet<>(); for (int i = 0; i < n; i++) { long input = in.nextLong(); boyMember.add(input); if (boyMax < input) { boyMax = input; NBoyMax = 1; } else if (boyMax == input) NBoyMax++; sweets += (input * m); } long smallestGirl = (long) 1e8 + 1; long sum = 0; for (int i = 0; i < m; i++) { long input = in.nextLong(); sum += input; if (smallestGirl > input) smallestGirl = input; } if (smallestGirl < boyMember.last()) { out.println(-1); } else if (smallestGirl == boyMember.last()) { sweets += sum - boyMember.last() * m; out.println(sweets); } else { if (NBoyMax > 1) { sweets += sum - boyMember.last() * m; out.println(sweets); } else { Object[] boyList = boyMember.toArray(); if (boyList.length > 1) { long boy = 0; boy = (long)boyList[boyList.length - 2]; sweets += (sum - smallestGirl - boyMember.last() * (m - 1)); sweets += (smallestGirl - boy); out.println(sweets); } else { out.println(-1); } } } in.close(); out.close(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static Scanner in = new Scanner(System.in); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int n = in.nextInt(); int m = in.nextInt(); long boyMax = 0; int NBoyMax = 0; long sweets = 0; TreeSet<Long> boyMember = new TreeSet<>(); for (int i = 0; i < n; i++) { long input = in.nextLong(); boyMember.add(input); if (boyMax < input) { boyMax = input; NBoyMax = 1; } else if (boyMax == input) NBoyMax++; sweets += (input * m); } long smallestGirl = (long) 1e8 + 1; long sum = 0; for (int i = 0; i < m; i++) { long input = in.nextLong(); sum += input; if (smallestGirl > input) smallestGirl = input; } if (smallestGirl < boyMember.last()) { out.println(-1); } else if (smallestGirl == boyMember.last()) { sweets += sum - boyMember.last() * m; out.println(sweets); } else { if (NBoyMax > 1) { sweets += sum - boyMember.last() * m; out.println(sweets); } else { Object[] boyList = boyMember.toArray(); if (boyList.length > 1) { long boy = 0; boy = (long)boyList[boyList.length - 2]; sweets += (sum - smallestGirl - boyMember.last() * (m - 1)); sweets += (smallestGirl - boy); out.println(sweets); } else { out.println(-1); } } } in.close(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { static Scanner in = new Scanner(System.in); static PrintWriter out = new PrintWriter(System.out); public static void main(String[] args) { int n = in.nextInt(); int m = in.nextInt(); long boyMax = 0; int NBoyMax = 0; long sweets = 0; TreeSet<Long> boyMember = new TreeSet<>(); for (int i = 0; i < n; i++) { long input = in.nextLong(); boyMember.add(input); if (boyMax < input) { boyMax = input; NBoyMax = 1; } else if (boyMax == input) NBoyMax++; sweets += (input * m); } long smallestGirl = (long) 1e8 + 1; long sum = 0; for (int i = 0; i < m; i++) { long input = in.nextLong(); sum += input; if (smallestGirl > input) smallestGirl = input; } if (smallestGirl < boyMember.last()) { out.println(-1); } else if (smallestGirl == boyMember.last()) { sweets += sum - boyMember.last() * m; out.println(sweets); } else { if (NBoyMax > 1) { sweets += sum - boyMember.last() * m; out.println(sweets); } else { Object[] boyList = boyMember.toArray(); if (boyList.length > 1) { long boy = 0; boy = (long)boyList[boyList.length - 2]; sweets += (sum - smallestGirl - boyMember.last() * (m - 1)); sweets += (smallestGirl - boy); out.println(sweets); } else { out.println(-1); } } } in.close(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
781
731
4,416
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskF solver = new TaskF(); solver.solve(1, in, out); out.close(); } static class TaskF { final int INF = (int) 1e9 + 5; int n; int m; int[][][] dp; int[][] diff; int[][] diffStartLast; int two(int x) { return 1 << x; } boolean contain(int mask, int x) { return (mask & two(x)) > 0; } int rec(int start, int pre, int mask) { if (mask == two(n) - 1) return INF; int res = dp[start][pre][mask]; if (res != -1) return res; res = 0; for (int i = 0; i < n; i++) if (contain(mask, i) == false) { int diffPre = mask == 0 ? INF : diff[pre][i]; // mask == 0 should never happen int diffLast = (mask | two(i)) == two(n) - 1 ? diffStartLast[start][i] : INF; res = Math.max(res, Math.min(rec(start, i, mask | two(i)), Math.min(diffLast, diffPre))); } dp[start][pre][mask] = res; return res; } public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); int[][] grid = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) grid[i][j] = in.nextInt(); if (n == 1) { int res = INF; for (int i = 0; i + 1 < m; i++) { res = Math.min(res, Math.abs(grid[0][i] - grid[0][i + 1])); } out.println(res); return; } diff = new int[n][n]; diffStartLast = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { diff[i][j] = INF; diffStartLast[i][j] = INF; for (int k = 0; k < m; k++) { diff[i][j] = Math.min(diff[i][j], Math.abs(grid[i][k] - grid[j][k])); if (k + 1 < m) { diffStartLast[i][j] = Math.min(diffStartLast[i][j], Math.abs(grid[i][k + 1] - grid[j][k])); } } } } dp = new int[n][n][two(n)]; for (int[][] aux : dp) for (int[] aux2 : aux) Arrays.fill(aux2, -1); int ans = 0; for (int start = 0; start < n; start++) { ans = Math.max(ans, rec(start, start, two(start))); } out.println(ans); } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskF solver = new TaskF(); solver.solve(1, in, out); out.close(); } static class TaskF { final int INF = (int) 1e9 + 5; int n; int m; int[][][] dp; int[][] diff; int[][] diffStartLast; int two(int x) { return 1 << x; } boolean contain(int mask, int x) { return (mask & two(x)) > 0; } int rec(int start, int pre, int mask) { if (mask == two(n) - 1) return INF; int res = dp[start][pre][mask]; if (res != -1) return res; res = 0; for (int i = 0; i < n; i++) if (contain(mask, i) == false) { int diffPre = mask == 0 ? INF : diff[pre][i]; // mask == 0 should never happen int diffLast = (mask | two(i)) == two(n) - 1 ? diffStartLast[start][i] : INF; res = Math.max(res, Math.min(rec(start, i, mask | two(i)), Math.min(diffLast, diffPre))); } dp[start][pre][mask] = res; return res; } public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); int[][] grid = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) grid[i][j] = in.nextInt(); if (n == 1) { int res = INF; for (int i = 0; i + 1 < m; i++) { res = Math.min(res, Math.abs(grid[0][i] - grid[0][i + 1])); } out.println(res); return; } diff = new int[n][n]; diffStartLast = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { diff[i][j] = INF; diffStartLast[i][j] = INF; for (int k = 0; k < m; k++) { diff[i][j] = Math.min(diff[i][j], Math.abs(grid[i][k] - grid[j][k])); if (k + 1 < m) { diffStartLast[i][j] = Math.min(diffStartLast[i][j], Math.abs(grid[i][k + 1] - grid[j][k])); } } } } dp = new int[n][n][two(n)]; for (int[][] aux : dp) for (int[] aux2 : aux) Arrays.fill(aux2, -1); int ans = 0; for (int start = 0; start < n; start++) { ans = Math.max(ans, rec(start, start, two(start))); } out.println(ans); } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.Arrays; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author beginner1010 */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskF solver = new TaskF(); solver.solve(1, in, out); out.close(); } static class TaskF { final int INF = (int) 1e9 + 5; int n; int m; int[][][] dp; int[][] diff; int[][] diffStartLast; int two(int x) { return 1 << x; } boolean contain(int mask, int x) { return (mask & two(x)) > 0; } int rec(int start, int pre, int mask) { if (mask == two(n) - 1) return INF; int res = dp[start][pre][mask]; if (res != -1) return res; res = 0; for (int i = 0; i < n; i++) if (contain(mask, i) == false) { int diffPre = mask == 0 ? INF : diff[pre][i]; // mask == 0 should never happen int diffLast = (mask | two(i)) == two(n) - 1 ? diffStartLast[start][i] : INF; res = Math.max(res, Math.min(rec(start, i, mask | two(i)), Math.min(diffLast, diffPre))); } dp[start][pre][mask] = res; return res; } public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); m = in.nextInt(); int[][] grid = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) grid[i][j] = in.nextInt(); if (n == 1) { int res = INF; for (int i = 0; i + 1 < m; i++) { res = Math.min(res, Math.abs(grid[0][i] - grid[0][i + 1])); } out.println(res); return; } diff = new int[n][n]; diffStartLast = new int[n][n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { diff[i][j] = INF; diffStartLast[i][j] = INF; for (int k = 0; k < m; k++) { diff[i][j] = Math.min(diff[i][j], Math.abs(grid[i][k] - grid[j][k])); if (k + 1 < m) { diffStartLast[i][j] = Math.min(diffStartLast[i][j], Math.abs(grid[i][k + 1] - grid[j][k])); } } } } dp = new int[n][n][two(n)]; for (int[][] aux : dp) for (int[] aux2 : aux) Arrays.fill(aux2, -1); int ans = 0; for (int start = 0; start < n; start++) { ans = Math.max(ans, rec(start, start, two(start))); } out.println(ans); } } static class InputReader { private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputStream stream; public InputReader(InputStream stream) { this.stream = stream; } private boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } private int read() { if (numChars == -1) throw new InputMismatchException(); if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) return -1; } return buf[curChar++]; } public int nextInt() { int c = read(); while (isWhitespace(c)) c = read(); int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = read(); } while (!isWhitespace(c)); return res * sgn; } } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,463
4,405
1,305
import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { new Solver().run(1); } } class Solver { private BufferedReader reader = null; private StringTokenizer st = null; private static final long MOD = (long)1e9 + 7; private long x, k; public void run(int inputType) throws Exception { if (inputType == 0) reader = new BufferedReader(new FileReader("input.txt")); else reader = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(reader.readLine()); x = Long.parseLong(st.nextToken()); k = Long.parseLong(st.nextToken()); if (x == 0) { System.out.println(0); return; } long pow = binpow(2, k); long m = (2 * x) % MOD; m = (m - 1 < 0) ? MOD - 1 : m - 1; m = (m * pow) % MOD; m = (m + 1) % MOD; System.out.println(m); reader.close(); } long binpow(long v, long p) { long res = 1L; while(p > 0) { if ((p & 1) > 0) res = (res * v) % MOD; v = (v * v) % MOD; p /= 2; } return res; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { new Solver().run(1); } } class Solver { private BufferedReader reader = null; private StringTokenizer st = null; private static final long MOD = (long)1e9 + 7; private long x, k; public void run(int inputType) throws Exception { if (inputType == 0) reader = new BufferedReader(new FileReader("input.txt")); else reader = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(reader.readLine()); x = Long.parseLong(st.nextToken()); k = Long.parseLong(st.nextToken()); if (x == 0) { System.out.println(0); return; } long pow = binpow(2, k); long m = (2 * x) % MOD; m = (m - 1 < 0) ? MOD - 1 : m - 1; m = (m * pow) % MOD; m = (m + 1) % MOD; System.out.println(m); reader.close(); } long binpow(long v, long p) { long res = 1L; while(p > 0) { if ((p & 1) > 0) res = (res * v) % MOD; v = (v * v) % MOD; p /= 2; } return res; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class Main { public static void main(String[] args) throws Exception { new Solver().run(1); } } class Solver { private BufferedReader reader = null; private StringTokenizer st = null; private static final long MOD = (long)1e9 + 7; private long x, k; public void run(int inputType) throws Exception { if (inputType == 0) reader = new BufferedReader(new FileReader("input.txt")); else reader = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(reader.readLine()); x = Long.parseLong(st.nextToken()); k = Long.parseLong(st.nextToken()); if (x == 0) { System.out.println(0); return; } long pow = binpow(2, k); long m = (2 * x) % MOD; m = (m - 1 < 0) ? MOD - 1 : m - 1; m = (m * pow) % MOD; m = (m + 1) % MOD; System.out.println(m); reader.close(); } long binpow(long v, long p) { long res = 1L; while(p > 0) { if ((p & 1) > 0) res = (res * v) % MOD; v = (v * v) % MOD; p /= 2; } return res; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
673
1,303
1,898
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.Arrays; import java.util.Scanner; import java.util.StringTokenizer; public class a implements Comparable<a>{ int x, y, id; //static BufferedReader in; //static StringTokenizer st; public a(int x1, int y1, int id1){ this.x = x1; this.y = y1; this.id = id1; } public int compareTo(a o) { return x - o.x; } static int n; static int arr[]; public static void main(String[] args) { Scanner in = new Scanner(System.in); //in = new BufferedReader(new InputStreamReader(System.in)); //st = new StringTokenizer(""," "); int n = in.nextInt(); arr = new int[n]; int sum = 0; for (int i=0; i<n; i++){ arr[i] = in.nextInt(); sum +=arr[i]; } Arrays.sort(arr); int sum2= 0; int ans = 0; for (int i=n-1; i>=0; i--){ sum2+=arr[i]; //System.out.println(sum2 + " " + sum); if (sum2>sum-sum2){ ans = n - i; break; } } System.out.println(ans); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.Arrays; import java.util.Scanner; import java.util.StringTokenizer; public class a implements Comparable<a>{ int x, y, id; //static BufferedReader in; //static StringTokenizer st; public a(int x1, int y1, int id1){ this.x = x1; this.y = y1; this.id = id1; } public int compareTo(a o) { return x - o.x; } static int n; static int arr[]; public static void main(String[] args) { Scanner in = new Scanner(System.in); //in = new BufferedReader(new InputStreamReader(System.in)); //st = new StringTokenizer(""," "); int n = in.nextInt(); arr = new int[n]; int sum = 0; for (int i=0; i<n; i++){ arr[i] = in.nextInt(); sum +=arr[i]; } Arrays.sort(arr); int sum2= 0; int ans = 0; for (int i=n-1; i>=0; i--){ sum2+=arr[i]; //System.out.println(sum2 + " " + sum); if (sum2>sum-sum2){ ans = n - i; break; } } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.Arrays; import java.util.Scanner; import java.util.StringTokenizer; public class a implements Comparable<a>{ int x, y, id; //static BufferedReader in; //static StringTokenizer st; public a(int x1, int y1, int id1){ this.x = x1; this.y = y1; this.id = id1; } public int compareTo(a o) { return x - o.x; } static int n; static int arr[]; public static void main(String[] args) { Scanner in = new Scanner(System.in); //in = new BufferedReader(new InputStreamReader(System.in)); //st = new StringTokenizer(""," "); int n = in.nextInt(); arr = new int[n]; int sum = 0; for (int i=0; i<n; i++){ arr[i] = in.nextInt(); sum +=arr[i]; } Arrays.sort(arr); int sum2= 0; int ans = 0; for (int i=n-1; i>=0; i--){ sum2+=arr[i]; //System.out.println(sum2 + " " + sum); if (sum2>sum-sum2){ ans = n - i; break; } } System.out.println(ans); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
631
1,894
2,875
import java.util.*; import java.math.*; public class Counterexample { public static void main(String[] args) { System.out.println(new Counterexample().solve()); } String solve() { Scanner sc = new Scanner(System.in); final long l = sc.nextLong(); final long r = sc.nextLong(); if ((r - l) > 1) { long a = l; long b = l + 1; long c = l + 2; while (a < (r - 1)) { while (b < r) { while (c <= r) { if (gcd(a,b) == 1 && gcd(b,c) == 1 && gcd(a,c) > 1) { return Long.toString(a) + " " + Long.toString(b) + " " + Long.toString(c); } c += 1; } c = b + 1; b += 1; } b = a + 1; a += 1; } } return "-1"; } long gcd(long a, long b) { while (b != 0) { long t = b; b = a % b; a = t; } return a; } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.math.*; public class Counterexample { public static void main(String[] args) { System.out.println(new Counterexample().solve()); } String solve() { Scanner sc = new Scanner(System.in); final long l = sc.nextLong(); final long r = sc.nextLong(); if ((r - l) > 1) { long a = l; long b = l + 1; long c = l + 2; while (a < (r - 1)) { while (b < r) { while (c <= r) { if (gcd(a,b) == 1 && gcd(b,c) == 1 && gcd(a,c) > 1) { return Long.toString(a) + " " + Long.toString(b) + " " + Long.toString(c); } c += 1; } c = b + 1; b += 1; } b = a + 1; a += 1; } } return "-1"; } long gcd(long a, long b) { while (b != 0) { long t = b; b = a % b; a = t; } return a; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.math.*; public class Counterexample { public static void main(String[] args) { System.out.println(new Counterexample().solve()); } String solve() { Scanner sc = new Scanner(System.in); final long l = sc.nextLong(); final long r = sc.nextLong(); if ((r - l) > 1) { long a = l; long b = l + 1; long c = l + 2; while (a < (r - 1)) { while (b < r) { while (c <= r) { if (gcd(a,b) == 1 && gcd(b,c) == 1 && gcd(a,c) > 1) { return Long.toString(a) + " " + Long.toString(b) + " " + Long.toString(c); } c += 1; } c = b + 1; b += 1; } b = a + 1; a += 1; } } return "-1"; } long gcd(long a, long b) { while (b != 0) { long t = b; b = a % b; a = t; } return a; } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
618
2,869
3,865
//Implemented By Aman Kotiyal Date:-30-May-2021 Time:-7:54:28 pm import java.io.*; import java.util.*; public class ques3 { public static void main(String[] args)throws Exception{ new ques3().run();} long mod=1000000000+7; void solve() throws Exception { for(int ii=ni();ii>0;ii--) { int n=ni(); //ArrayList<Integer> al=new ArrayList<Integer>(); Stack<Integer> st=new Stack<Integer>(); int x=ni(); //al.add(1); st.add(1); out.println("1"); for(int i=2;i<=n;i++) { x=ni(); if(x==1) { st.add(1); Stack<Integer> tep=(Stack<Integer>) st.clone(); display(tep); continue; } int top=st.peek(); if(top+1==x) { st.pop(); st.add(x); Stack<Integer> tep=(Stack<Integer>) st.clone(); display(tep); continue; } while(true) { top=st.peek(); if(top+1==x) { st.pop(); st.add(x); Stack<Integer> tep=(Stack<Integer>) st.clone(); display(tep); break; } top=st.pop(); } } } } void display(Stack<Integer> st) { ArrayList<Integer> al = new ArrayList<>(); while(st.size()!=0) { int tem=st.pop(); al.add(tem); } Collections.reverse(al); for (int i = 0; i <al.size()-1; i++) { out.print(al.get(i)+"."); } out.println(al.get(al.size()-1)); } /*FAST INPUT OUTPUT & METHODS BELOW*/ private byte[] buf=new byte[1024]; private int index; private InputStream in; private int total; private SpaceCharFilter filter; PrintWriter out; int min(int... ar){int min=Integer.MAX_VALUE;for(int i:ar)min=Math.min(min, i);return min;} long min(long... ar){long min=Long.MAX_VALUE;for(long i:ar)min=Math.min(min, i);return min;} int max(int... ar) {int max=Integer.MIN_VALUE;for(int i:ar)max=Math.max(max, i);return max;} long max(long... ar) {long max=Long.MIN_VALUE;for(long i:ar)max=Math.max(max, i);return max;} void reverse(int a[]){for(int i=0;i<a.length>>1;i++){int tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}} void reverse(long a[]){for(int i=0;i<a.length>>1;i++){long tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}} String reverse(String s){StringBuilder sb=new StringBuilder(s);sb.reverse();return sb.toString();} void shuffle(int a[]) { ArrayList<Integer> al = new ArrayList<>(); for(int i=0;i<a.length;i++) al.add(a[i]); Collections.sort(al); for(int i=0;i<a.length;i++) a[i]=al.get(i); } long lcm(long a,long b) { return (a*b)/(gcd(a,b)); } int gcd(int a, int b) { if (a == 0) return b; return gcd(b%a, a); } long gcd(long a, long b) { if (a == 0) return b; return gcd(b%a, a); } /* for (1/a)%mod = ( a^(mod-2) )%mod ----> use expo to calc -->(a^(mod-2)) */ long expo(long p,long q) /* (p^q)%mod */ { long z = 1; while (q>0) { if (q%2 == 1) { z = (z * p)%mod; } p = (p*p)%mod; q >>= 1; } return z; } void run()throws Exception { in=System.in; out = new PrintWriter(System.out); solve(); out.flush(); } private int scan()throws IOException { if(total<0) throw new InputMismatchException(); if(index>=total) { index=0; total=in.read(buf); if(total<=0) return -1; } return buf[index++]; } private int ni() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); int sgn = 1; if (c == '-') { sgn = -1; c = scan(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = scan(); } while (!isSpaceChar(c)); return res * sgn; } private long nl() throws IOException { long num = 0; int b; boolean minus = false; while ((b = scan()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = scan(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = scan(); } } private double nd() throws IOException{ return Double.parseDouble(ns()); } private String ns() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) res.appendCodePoint(c); c = scan(); } while (!isSpaceChar(c)); return res.toString(); } private String nss() throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); return br.readLine(); } private char nc() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); return (char) c; } private boolean isWhiteSpace(int n) { if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1) return true; return false; } private boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhiteSpace(c); } private interface SpaceCharFilter { public boolean isSpaceChar(int ch); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //Implemented By Aman Kotiyal Date:-30-May-2021 Time:-7:54:28 pm import java.io.*; import java.util.*; public class ques3 { public static void main(String[] args)throws Exception{ new ques3().run();} long mod=1000000000+7; void solve() throws Exception { for(int ii=ni();ii>0;ii--) { int n=ni(); //ArrayList<Integer> al=new ArrayList<Integer>(); Stack<Integer> st=new Stack<Integer>(); int x=ni(); //al.add(1); st.add(1); out.println("1"); for(int i=2;i<=n;i++) { x=ni(); if(x==1) { st.add(1); Stack<Integer> tep=(Stack<Integer>) st.clone(); display(tep); continue; } int top=st.peek(); if(top+1==x) { st.pop(); st.add(x); Stack<Integer> tep=(Stack<Integer>) st.clone(); display(tep); continue; } while(true) { top=st.peek(); if(top+1==x) { st.pop(); st.add(x); Stack<Integer> tep=(Stack<Integer>) st.clone(); display(tep); break; } top=st.pop(); } } } } void display(Stack<Integer> st) { ArrayList<Integer> al = new ArrayList<>(); while(st.size()!=0) { int tem=st.pop(); al.add(tem); } Collections.reverse(al); for (int i = 0; i <al.size()-1; i++) { out.print(al.get(i)+"."); } out.println(al.get(al.size()-1)); } /*FAST INPUT OUTPUT & METHODS BELOW*/ private byte[] buf=new byte[1024]; private int index; private InputStream in; private int total; private SpaceCharFilter filter; PrintWriter out; int min(int... ar){int min=Integer.MAX_VALUE;for(int i:ar)min=Math.min(min, i);return min;} long min(long... ar){long min=Long.MAX_VALUE;for(long i:ar)min=Math.min(min, i);return min;} int max(int... ar) {int max=Integer.MIN_VALUE;for(int i:ar)max=Math.max(max, i);return max;} long max(long... ar) {long max=Long.MIN_VALUE;for(long i:ar)max=Math.max(max, i);return max;} void reverse(int a[]){for(int i=0;i<a.length>>1;i++){int tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}} void reverse(long a[]){for(int i=0;i<a.length>>1;i++){long tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}} String reverse(String s){StringBuilder sb=new StringBuilder(s);sb.reverse();return sb.toString();} void shuffle(int a[]) { ArrayList<Integer> al = new ArrayList<>(); for(int i=0;i<a.length;i++) al.add(a[i]); Collections.sort(al); for(int i=0;i<a.length;i++) a[i]=al.get(i); } long lcm(long a,long b) { return (a*b)/(gcd(a,b)); } int gcd(int a, int b) { if (a == 0) return b; return gcd(b%a, a); } long gcd(long a, long b) { if (a == 0) return b; return gcd(b%a, a); } /* for (1/a)%mod = ( a^(mod-2) )%mod ----> use expo to calc -->(a^(mod-2)) */ long expo(long p,long q) /* (p^q)%mod */ { long z = 1; while (q>0) { if (q%2 == 1) { z = (z * p)%mod; } p = (p*p)%mod; q >>= 1; } return z; } void run()throws Exception { in=System.in; out = new PrintWriter(System.out); solve(); out.flush(); } private int scan()throws IOException { if(total<0) throw new InputMismatchException(); if(index>=total) { index=0; total=in.read(buf); if(total<=0) return -1; } return buf[index++]; } private int ni() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); int sgn = 1; if (c == '-') { sgn = -1; c = scan(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = scan(); } while (!isSpaceChar(c)); return res * sgn; } private long nl() throws IOException { long num = 0; int b; boolean minus = false; while ((b = scan()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = scan(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = scan(); } } private double nd() throws IOException{ return Double.parseDouble(ns()); } private String ns() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) res.appendCodePoint(c); c = scan(); } while (!isSpaceChar(c)); return res.toString(); } private String nss() throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); return br.readLine(); } private char nc() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); return (char) c; } private boolean isWhiteSpace(int n) { if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1) return true; return false; } private boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhiteSpace(c); } private interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //Implemented By Aman Kotiyal Date:-30-May-2021 Time:-7:54:28 pm import java.io.*; import java.util.*; public class ques3 { public static void main(String[] args)throws Exception{ new ques3().run();} long mod=1000000000+7; void solve() throws Exception { for(int ii=ni();ii>0;ii--) { int n=ni(); //ArrayList<Integer> al=new ArrayList<Integer>(); Stack<Integer> st=new Stack<Integer>(); int x=ni(); //al.add(1); st.add(1); out.println("1"); for(int i=2;i<=n;i++) { x=ni(); if(x==1) { st.add(1); Stack<Integer> tep=(Stack<Integer>) st.clone(); display(tep); continue; } int top=st.peek(); if(top+1==x) { st.pop(); st.add(x); Stack<Integer> tep=(Stack<Integer>) st.clone(); display(tep); continue; } while(true) { top=st.peek(); if(top+1==x) { st.pop(); st.add(x); Stack<Integer> tep=(Stack<Integer>) st.clone(); display(tep); break; } top=st.pop(); } } } } void display(Stack<Integer> st) { ArrayList<Integer> al = new ArrayList<>(); while(st.size()!=0) { int tem=st.pop(); al.add(tem); } Collections.reverse(al); for (int i = 0; i <al.size()-1; i++) { out.print(al.get(i)+"."); } out.println(al.get(al.size()-1)); } /*FAST INPUT OUTPUT & METHODS BELOW*/ private byte[] buf=new byte[1024]; private int index; private InputStream in; private int total; private SpaceCharFilter filter; PrintWriter out; int min(int... ar){int min=Integer.MAX_VALUE;for(int i:ar)min=Math.min(min, i);return min;} long min(long... ar){long min=Long.MAX_VALUE;for(long i:ar)min=Math.min(min, i);return min;} int max(int... ar) {int max=Integer.MIN_VALUE;for(int i:ar)max=Math.max(max, i);return max;} long max(long... ar) {long max=Long.MIN_VALUE;for(long i:ar)max=Math.max(max, i);return max;} void reverse(int a[]){for(int i=0;i<a.length>>1;i++){int tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}} void reverse(long a[]){for(int i=0;i<a.length>>1;i++){long tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}} String reverse(String s){StringBuilder sb=new StringBuilder(s);sb.reverse();return sb.toString();} void shuffle(int a[]) { ArrayList<Integer> al = new ArrayList<>(); for(int i=0;i<a.length;i++) al.add(a[i]); Collections.sort(al); for(int i=0;i<a.length;i++) a[i]=al.get(i); } long lcm(long a,long b) { return (a*b)/(gcd(a,b)); } int gcd(int a, int b) { if (a == 0) return b; return gcd(b%a, a); } long gcd(long a, long b) { if (a == 0) return b; return gcd(b%a, a); } /* for (1/a)%mod = ( a^(mod-2) )%mod ----> use expo to calc -->(a^(mod-2)) */ long expo(long p,long q) /* (p^q)%mod */ { long z = 1; while (q>0) { if (q%2 == 1) { z = (z * p)%mod; } p = (p*p)%mod; q >>= 1; } return z; } void run()throws Exception { in=System.in; out = new PrintWriter(System.out); solve(); out.flush(); } private int scan()throws IOException { if(total<0) throw new InputMismatchException(); if(index>=total) { index=0; total=in.read(buf); if(total<=0) return -1; } return buf[index++]; } private int ni() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); int sgn = 1; if (c == '-') { sgn = -1; c = scan(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res *= 10; res += c - '0'; c = scan(); } while (!isSpaceChar(c)); return res * sgn; } private long nl() throws IOException { long num = 0; int b; boolean minus = false; while ((b = scan()) != -1 && !((b >= '0' && b <= '9') || b == '-')) ; if (b == '-') { minus = true; b = scan(); } while (true) { if (b >= '0' && b <= '9') { num = num * 10 + (b - '0'); } else { return minus ? -num : num; } b = scan(); } } private double nd() throws IOException{ return Double.parseDouble(ns()); } private String ns() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); StringBuilder res = new StringBuilder(); do { if (Character.isValidCodePoint(c)) res.appendCodePoint(c); c = scan(); } while (!isSpaceChar(c)); return res.toString(); } private String nss() throws IOException { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); return br.readLine(); } private char nc() throws IOException { int c = scan(); while (isSpaceChar(c)) c = scan(); return (char) c; } private boolean isWhiteSpace(int n) { if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1) return true; return false; } private boolean isSpaceChar(int c) { if (filter != null) return filter.isSpaceChar(c); return isWhiteSpace(c); } private interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,931
3,855
256
import java.util.Scanner; public class codef8 { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); int num = sc.nextInt(); int beacon[] = new int[1000001]; int pos[] = new int[num]; for (int i = 0; i < num; i++) { int position = sc.nextInt(); beacon[position] = sc.nextInt(); pos[i] = position; } int dp[] = new int[1000001]; int max = 1; if (beacon[0] != 0) dp[0] = 1; for (int i = 1; i <= 1000000; i++) { if (beacon[i] == 0) { dp[i] = dp[i-1]; } else { int j = i - beacon[i] - 1; if (j < 0) { dp[i] = 1; } else { dp[i] = dp[j] + 1; } } max = Math.max(max, dp[i]); } System.out.println(num-max); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class codef8 { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); int num = sc.nextInt(); int beacon[] = new int[1000001]; int pos[] = new int[num]; for (int i = 0; i < num; i++) { int position = sc.nextInt(); beacon[position] = sc.nextInt(); pos[i] = position; } int dp[] = new int[1000001]; int max = 1; if (beacon[0] != 0) dp[0] = 1; for (int i = 1; i <= 1000000; i++) { if (beacon[i] == 0) { dp[i] = dp[i-1]; } else { int j = i - beacon[i] - 1; if (j < 0) { dp[i] = 1; } else { dp[i] = dp[j] + 1; } } max = Math.max(max, dp[i]); } System.out.println(num-max); } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class codef8 { public static void main(String[] args) { // TODO Auto-generated method stub Scanner sc = new Scanner(System.in); int num = sc.nextInt(); int beacon[] = new int[1000001]; int pos[] = new int[num]; for (int i = 0; i < num; i++) { int position = sc.nextInt(); beacon[position] = sc.nextInt(); pos[i] = position; } int dp[] = new int[1000001]; int max = 1; if (beacon[0] != 0) dp[0] = 1; for (int i = 1; i <= 1000000; i++) { if (beacon[i] == 0) { dp[i] = dp[i-1]; } else { int j = i - beacon[i] - 1; if (j < 0) { dp[i] = 1; } else { dp[i] = dp[j] + 1; } } max = Math.max(max, dp[i]); } System.out.println(num-max); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
639
256
2,744
import java.io.*; import java.util.*; public class Lcm { public static void main(String args[])throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); long n=Long.parseLong(br.readLine()); if(n<=2) System.out.println(n); else { if(n%6==0) { System.out.println(((n-1)*(n-2)*(n-3))); } else if(n%2==0) { System.out.println((n*(n-1)*(n-3))); } else { System.out.println((n*(n-1)*(n-2))); } } } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Lcm { public static void main(String args[])throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); long n=Long.parseLong(br.readLine()); if(n<=2) System.out.println(n); else { if(n%6==0) { System.out.println(((n-1)*(n-2)*(n-3))); } else if(n%2==0) { System.out.println((n*(n-1)*(n-3))); } else { System.out.println((n*(n-1)*(n-2))); } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Lcm { public static void main(String args[])throws Exception { BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); long n=Long.parseLong(br.readLine()); if(n<=2) System.out.println(n); else { if(n%6==0) { System.out.println(((n-1)*(n-2)*(n-3))); } else if(n%2==0) { System.out.println((n*(n-1)*(n-3))); } else { System.out.println((n*(n-1)*(n-2))); } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
460
2,738
145
import java.io.*; public class First { StreamTokenizer in; PrintWriter out; int nextInt() throws IOException { in.nextToken(); return (int)in.nval; } long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } String nextString() throws IOException { in.nextToken(); return in.sval; } void run() throws IOException { in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); solve(); out.flush(); } void solve() throws IOException { int n = nextInt(), k = nextInt(), sum = 0, count = 0; String str = nextString(); char[] arr = str.toCharArray(); boolean[] bool = new boolean[26]; for(char ch: arr){ bool[((int)ch)-97] = true; } for(int i = 0; i < 26; i++){ if(bool[i]){ sum += i+1; count++; i += 1; } if(count == k) break; } if(count == k) out.println(sum); else out.println(-1); } public static void main(String[] args) throws IOException { new First().run(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; public class First { StreamTokenizer in; PrintWriter out; int nextInt() throws IOException { in.nextToken(); return (int)in.nval; } long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } String nextString() throws IOException { in.nextToken(); return in.sval; } void run() throws IOException { in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); solve(); out.flush(); } void solve() throws IOException { int n = nextInt(), k = nextInt(), sum = 0, count = 0; String str = nextString(); char[] arr = str.toCharArray(); boolean[] bool = new boolean[26]; for(char ch: arr){ bool[((int)ch)-97] = true; } for(int i = 0; i < 26; i++){ if(bool[i]){ sum += i+1; count++; i += 1; } if(count == k) break; } if(count == k) out.println(sum); else out.println(-1); } public static void main(String[] args) throws IOException { new First().run(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; public class First { StreamTokenizer in; PrintWriter out; int nextInt() throws IOException { in.nextToken(); return (int)in.nval; } long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } String nextString() throws IOException { in.nextToken(); return in.sval; } void run() throws IOException { in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in))); out = new PrintWriter(System.out); solve(); out.flush(); } void solve() throws IOException { int n = nextInt(), k = nextInt(), sum = 0, count = 0; String str = nextString(); char[] arr = str.toCharArray(); boolean[] bool = new boolean[26]; for(char ch: arr){ bool[((int)ch)-97] = true; } for(int i = 0; i < 26; i++){ if(bool[i]){ sum += i+1; count++; i += 1; } if(count == k) break; } if(count == k) out.println(sum); else out.println(-1); } public static void main(String[] args) throws IOException { new First().run(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
638
145
4,249
import java.io.*; import java.util.*; public class E { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tok; public void go() throws IOException { StringTokenizer tok = new StringTokenizer(in.readLine()); int zzz = Integer.parseInt(tok.nextToken()); for (int zz = 0; zz < zzz; zz++) { ntok(); int n = ipar(); int m = ipar(); int[][] mat = new int[n][m]; for (int i = 0; i < n; i++) { ntok(); mat[i] = iapar(m); } long[][] dp = new long[1 << n][m+1]; for (int i = 0; i < 1 << n; i++) { dp[i][m] = -1000000000; } dp[(1 << n) - 1][m] = 0; for (int i = m-1; i >= 0; i--) { for (int e = 0; e < 1 << n; e++) { dp[e][i] = dp[e][i+1]; for (int w = 0; w < 1 << n; w++) { if ((e & w) == 0) { dp[e][i] = Math.max(dp[e][i], best(w, mat, i) + dp[e|w][i+1]); } } } } // for (long[] arr : dp) // { // out.println(Arrays.toString(arr)); // } out.println(dp[0][0]); } out.flush(); in.close(); } public long best(int mask, int[][] mat, int col) { long max = 0; for (int t = 0; t < mat.length; t++) { long sum = 0; int mk = mask; for (int i = 0; i < mat.length; i++) { if (mk % 2 == 1) { sum += mat[i][col]; } mk /= 2; } max = Math.max(max, sum); cycle(mat, col); } return max; } public void cycle(int[][] mat, int col) { int temp = mat[0][col]; for (int i = 0; i < mat.length-1; i++) { mat[i][col] = mat[i+1][col]; } mat[mat.length-1][col] = temp; } public void ntok() throws IOException { tok = new StringTokenizer(in.readLine()); } public int ipar() { return Integer.parseInt(tok.nextToken()); } public int[] iapar(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ipar(); } return arr; } public long lpar() { return Long.parseLong(tok.nextToken()); } public long[] lapar(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = lpar(); } return arr; } public double dpar() { return Double.parseDouble(tok.nextToken()); } public String spar() { return tok.nextToken(); } public static void main(String[] args) throws IOException { new E().go(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class E { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tok; public void go() throws IOException { StringTokenizer tok = new StringTokenizer(in.readLine()); int zzz = Integer.parseInt(tok.nextToken()); for (int zz = 0; zz < zzz; zz++) { ntok(); int n = ipar(); int m = ipar(); int[][] mat = new int[n][m]; for (int i = 0; i < n; i++) { ntok(); mat[i] = iapar(m); } long[][] dp = new long[1 << n][m+1]; for (int i = 0; i < 1 << n; i++) { dp[i][m] = -1000000000; } dp[(1 << n) - 1][m] = 0; for (int i = m-1; i >= 0; i--) { for (int e = 0; e < 1 << n; e++) { dp[e][i] = dp[e][i+1]; for (int w = 0; w < 1 << n; w++) { if ((e & w) == 0) { dp[e][i] = Math.max(dp[e][i], best(w, mat, i) + dp[e|w][i+1]); } } } } // for (long[] arr : dp) // { // out.println(Arrays.toString(arr)); // } out.println(dp[0][0]); } out.flush(); in.close(); } public long best(int mask, int[][] mat, int col) { long max = 0; for (int t = 0; t < mat.length; t++) { long sum = 0; int mk = mask; for (int i = 0; i < mat.length; i++) { if (mk % 2 == 1) { sum += mat[i][col]; } mk /= 2; } max = Math.max(max, sum); cycle(mat, col); } return max; } public void cycle(int[][] mat, int col) { int temp = mat[0][col]; for (int i = 0; i < mat.length-1; i++) { mat[i][col] = mat[i+1][col]; } mat[mat.length-1][col] = temp; } public void ntok() throws IOException { tok = new StringTokenizer(in.readLine()); } public int ipar() { return Integer.parseInt(tok.nextToken()); } public int[] iapar(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ipar(); } return arr; } public long lpar() { return Long.parseLong(tok.nextToken()); } public long[] lapar(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = lpar(); } return arr; } public double dpar() { return Double.parseDouble(tok.nextToken()); } public String spar() { return tok.nextToken(); } public static void main(String[] args) throws IOException { new E().go(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class E { PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out))); BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); StringTokenizer tok; public void go() throws IOException { StringTokenizer tok = new StringTokenizer(in.readLine()); int zzz = Integer.parseInt(tok.nextToken()); for (int zz = 0; zz < zzz; zz++) { ntok(); int n = ipar(); int m = ipar(); int[][] mat = new int[n][m]; for (int i = 0; i < n; i++) { ntok(); mat[i] = iapar(m); } long[][] dp = new long[1 << n][m+1]; for (int i = 0; i < 1 << n; i++) { dp[i][m] = -1000000000; } dp[(1 << n) - 1][m] = 0; for (int i = m-1; i >= 0; i--) { for (int e = 0; e < 1 << n; e++) { dp[e][i] = dp[e][i+1]; for (int w = 0; w < 1 << n; w++) { if ((e & w) == 0) { dp[e][i] = Math.max(dp[e][i], best(w, mat, i) + dp[e|w][i+1]); } } } } // for (long[] arr : dp) // { // out.println(Arrays.toString(arr)); // } out.println(dp[0][0]); } out.flush(); in.close(); } public long best(int mask, int[][] mat, int col) { long max = 0; for (int t = 0; t < mat.length; t++) { long sum = 0; int mk = mask; for (int i = 0; i < mat.length; i++) { if (mk % 2 == 1) { sum += mat[i][col]; } mk /= 2; } max = Math.max(max, sum); cycle(mat, col); } return max; } public void cycle(int[][] mat, int col) { int temp = mat[0][col]; for (int i = 0; i < mat.length-1; i++) { mat[i][col] = mat[i+1][col]; } mat[mat.length-1][col] = temp; } public void ntok() throws IOException { tok = new StringTokenizer(in.readLine()); } public int ipar() { return Integer.parseInt(tok.nextToken()); } public int[] iapar(int n) { int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = ipar(); } return arr; } public long lpar() { return Long.parseLong(tok.nextToken()); } public long[] lapar(int n) { long[] arr = new long[n]; for (int i = 0; i < n; i++) { arr[i] = lpar(); } return arr; } public double dpar() { return Double.parseDouble(tok.nextToken()); } public String spar() { return tok.nextToken(); } public static void main(String[] args) throws IOException { new E().go(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,141
4,238
412
import java.io.*; import java.util.*; import java.util.List; public class Main { private static StringTokenizer st; private static BufferedReader br; public static long MOD = 1000000007; public static long tenFive = 100000; public static int INF = 100000; public static void print(Object x) { System.out.println(x + ""); } public static void printArr(long[] x) { StringBuilder s = new StringBuilder(); for (int i = 0; i < x.length; i++) { s.append(x[i] + " "); } print(s); } public static void printArr(int[] x) { StringBuilder s = new StringBuilder(); for (int i = 0; i < x.length; i++) { s.append(x[i] + " "); } print(s); } public static String join(Collection<?> x, String space) { if (x.size() == 0) return ""; StringBuilder sb = new StringBuilder(); boolean first = true; for (Object elt : x) { if (first) first = false; else sb.append(space); sb.append(elt); } return sb.toString(); } public static String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = br.readLine(); st = new StringTokenizer(line.trim()); } return st.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public static long nextLong() throws IOException { return Long.parseLong(nextToken()); } public static List<Integer> nextInts(int N) throws IOException { List<Integer> ret = new ArrayList<Integer>(); for (int i = 0; i < N; i++) { ret.add(nextInt()); } return ret; } public static void solve(int a, int b, List<Integer> orig) { boolean swap = false; if (a > b) { swap = true; int tmp = a; a = b; b = tmp; } List<Integer> nums = new ArrayList<Integer>(orig); Collections.sort(nums); Collections.reverse(nums); Set<Integer> all = new HashSet<Integer>(nums); Set<Integer> done = new HashSet<Integer>(); Set<Integer> inB = new HashSet<Integer>(); for (int x : nums) { if (done.contains(x)) continue; if (all.contains(a - x) && !done.contains(a - x)) { done.add(x); done.add(a - x); //print(x + " " + (a - x)); } else if (all.contains(b - x) && !done.contains(b - x)) { done.add(x); done.add(b - x); inB.add(x); inB.add(b - x); } else { print("NO"); return; } } print("YES"); List<Integer> out = new ArrayList<Integer>(); for (int x : orig) { if (inB.contains(x) ^ swap) out.add(1); else out.add(0); } print(join(out, " ")); } public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); int n = nextInt(); int a = nextInt(); int b = nextInt(); List<Integer> nums = nextInts(n); solve(a, b, nums); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.util.List; public class Main { private static StringTokenizer st; private static BufferedReader br; public static long MOD = 1000000007; public static long tenFive = 100000; public static int INF = 100000; public static void print(Object x) { System.out.println(x + ""); } public static void printArr(long[] x) { StringBuilder s = new StringBuilder(); for (int i = 0; i < x.length; i++) { s.append(x[i] + " "); } print(s); } public static void printArr(int[] x) { StringBuilder s = new StringBuilder(); for (int i = 0; i < x.length; i++) { s.append(x[i] + " "); } print(s); } public static String join(Collection<?> x, String space) { if (x.size() == 0) return ""; StringBuilder sb = new StringBuilder(); boolean first = true; for (Object elt : x) { if (first) first = false; else sb.append(space); sb.append(elt); } return sb.toString(); } public static String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = br.readLine(); st = new StringTokenizer(line.trim()); } return st.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public static long nextLong() throws IOException { return Long.parseLong(nextToken()); } public static List<Integer> nextInts(int N) throws IOException { List<Integer> ret = new ArrayList<Integer>(); for (int i = 0; i < N; i++) { ret.add(nextInt()); } return ret; } public static void solve(int a, int b, List<Integer> orig) { boolean swap = false; if (a > b) { swap = true; int tmp = a; a = b; b = tmp; } List<Integer> nums = new ArrayList<Integer>(orig); Collections.sort(nums); Collections.reverse(nums); Set<Integer> all = new HashSet<Integer>(nums); Set<Integer> done = new HashSet<Integer>(); Set<Integer> inB = new HashSet<Integer>(); for (int x : nums) { if (done.contains(x)) continue; if (all.contains(a - x) && !done.contains(a - x)) { done.add(x); done.add(a - x); //print(x + " " + (a - x)); } else if (all.contains(b - x) && !done.contains(b - x)) { done.add(x); done.add(b - x); inB.add(x); inB.add(b - x); } else { print("NO"); return; } } print("YES"); List<Integer> out = new ArrayList<Integer>(); for (int x : orig) { if (inB.contains(x) ^ swap) out.add(1); else out.add(0); } print(join(out, " ")); } public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); int n = nextInt(); int a = nextInt(); int b = nextInt(); List<Integer> nums = nextInts(n); solve(a, b, nums); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import java.util.List; public class Main { private static StringTokenizer st; private static BufferedReader br; public static long MOD = 1000000007; public static long tenFive = 100000; public static int INF = 100000; public static void print(Object x) { System.out.println(x + ""); } public static void printArr(long[] x) { StringBuilder s = new StringBuilder(); for (int i = 0; i < x.length; i++) { s.append(x[i] + " "); } print(s); } public static void printArr(int[] x) { StringBuilder s = new StringBuilder(); for (int i = 0; i < x.length; i++) { s.append(x[i] + " "); } print(s); } public static String join(Collection<?> x, String space) { if (x.size() == 0) return ""; StringBuilder sb = new StringBuilder(); boolean first = true; for (Object elt : x) { if (first) first = false; else sb.append(space); sb.append(elt); } return sb.toString(); } public static String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) { String line = br.readLine(); st = new StringTokenizer(line.trim()); } return st.nextToken(); } public static int nextInt() throws IOException { return Integer.parseInt(nextToken()); } public static long nextLong() throws IOException { return Long.parseLong(nextToken()); } public static List<Integer> nextInts(int N) throws IOException { List<Integer> ret = new ArrayList<Integer>(); for (int i = 0; i < N; i++) { ret.add(nextInt()); } return ret; } public static void solve(int a, int b, List<Integer> orig) { boolean swap = false; if (a > b) { swap = true; int tmp = a; a = b; b = tmp; } List<Integer> nums = new ArrayList<Integer>(orig); Collections.sort(nums); Collections.reverse(nums); Set<Integer> all = new HashSet<Integer>(nums); Set<Integer> done = new HashSet<Integer>(); Set<Integer> inB = new HashSet<Integer>(); for (int x : nums) { if (done.contains(x)) continue; if (all.contains(a - x) && !done.contains(a - x)) { done.add(x); done.add(a - x); //print(x + " " + (a - x)); } else if (all.contains(b - x) && !done.contains(b - x)) { done.add(x); done.add(b - x); inB.add(x); inB.add(b - x); } else { print("NO"); return; } } print("YES"); List<Integer> out = new ArrayList<Integer>(); for (int x : orig) { if (inB.contains(x) ^ swap) out.add(1); else out.add(0); } print(join(out, " ")); } public static void main(String[] args) throws IOException { br = new BufferedReader(new InputStreamReader(System.in)); int n = nextInt(); int a = nextInt(); int b = nextInt(); List<Integer> nums = nextInts(n); solve(a, b, nums); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,099
411
777
import com.sun.org.apache.xml.internal.utils.StringComparable; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.text.DecimalFormat; import java.text.NumberFormat; import java.util.*; public class Main { public static void main(String[] args) { // Test.testing(); ConsoleIO io = new ConsoleIO(); new Main(io).solve(); io.close(); } ConsoleIO io; Main(ConsoleIO io) { this.io = io; } ArrayList<ArrayList<Integer>> gr; boolean[] visit; class Edge { public Edge(int u, int v, int c) { this.u = u; this.v = v; this.c = c; } public int u; public int v; public int c; } long MOD = 1_000_000_007; int N, M, K; double[][] map; public void solve() { String s = io.readLine(); N = Integer.parseInt(s); char[] a = io.readLine().toCharArray(); int[] look = new int[256]; Arrays.fill(look, 10000); int k = 0; for (int i = 0; i < a.length; i++) { if (look[a[i]] == 10000) { look[a[i]] = k; k++; } } int res = N; long need = (1L << k) - 1; long mask = 0; int head = 0; int tail = 0; int[] c = new int[k]; while (head < a.length) { while (head < a.length && mask != need) { int v = look[a[head]]; if (c[v] == 0) mask |= (1L << v); c[v]++; head++; } while (tail < head && mask == need) { res = Math.min(res, head - tail); int v = look[a[tail]]; c[v]--; if (c[v] == 0) mask ^= (1L << v); tail++; } } io.writeLine(res + ""); } long gcd(long a, long b) { if (a < b) return gcd(b, a); if (b == 0) return a; return gcd(b, a % b); } } class ConsoleIO { BufferedReader br; PrintWriter out; public ConsoleIO(){br = new BufferedReader(new InputStreamReader(System.in));out = new PrintWriter(System.out);} public void flush(){this.out.flush();} public void close(){this.out.close();} public void writeLine(String s) {this.out.println(s);} public void writeInt(int a) {this.out.print(a);this.out.print(' ');} public void writeWord(String s){ this.out.print(s); } public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }} public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}} public long readLong() { return Long.parseLong(this.readLine()); } public long[] readLongArray() { String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length]; for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]); return r; } public int[] readIntArray() { String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length]; for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]); return r; } public int[] readIntArray(int n) { int[] res = new int[n]; char[] all = this.readLine().toCharArray(); int cur = 0;boolean have = false; int k = 0; boolean neg = false; for(int i = 0;i<all.length;i++){ if(all[i]>='0' && all[i]<='9'){ cur = cur*10+all[i]-'0'; have = true; }else if(all[i]=='-') { neg = true; } else if(have){ res[k++] = neg?-cur:cur; cur = 0; have = false; neg = false; } } if(have)res[k++] = neg?-cur:cur; return res; } public int readInt() { try { int r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public void writeIntArray(int[] a) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < a.length; i++) {if (i > 0) sb.append(' ');sb.append(a[i]);} this.writeLine(sb.toString()); } } class Pair { public Pair(int a, int b) {this.a = a;this.b = b;} public int a; public int b; } class Tri { public Tri(int a, int b, int c) {this.a = a;this.b = b;this.c = c;} public int a; public int b; public int c; } class PairLL { public PairLL(long a, long b) {this.a = a;this.b = b;} public long a; public long b; }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import com.sun.org.apache.xml.internal.utils.StringComparable; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.text.DecimalFormat; import java.text.NumberFormat; import java.util.*; public class Main { public static void main(String[] args) { // Test.testing(); ConsoleIO io = new ConsoleIO(); new Main(io).solve(); io.close(); } ConsoleIO io; Main(ConsoleIO io) { this.io = io; } ArrayList<ArrayList<Integer>> gr; boolean[] visit; class Edge { public Edge(int u, int v, int c) { this.u = u; this.v = v; this.c = c; } public int u; public int v; public int c; } long MOD = 1_000_000_007; int N, M, K; double[][] map; public void solve() { String s = io.readLine(); N = Integer.parseInt(s); char[] a = io.readLine().toCharArray(); int[] look = new int[256]; Arrays.fill(look, 10000); int k = 0; for (int i = 0; i < a.length; i++) { if (look[a[i]] == 10000) { look[a[i]] = k; k++; } } int res = N; long need = (1L << k) - 1; long mask = 0; int head = 0; int tail = 0; int[] c = new int[k]; while (head < a.length) { while (head < a.length && mask != need) { int v = look[a[head]]; if (c[v] == 0) mask |= (1L << v); c[v]++; head++; } while (tail < head && mask == need) { res = Math.min(res, head - tail); int v = look[a[tail]]; c[v]--; if (c[v] == 0) mask ^= (1L << v); tail++; } } io.writeLine(res + ""); } long gcd(long a, long b) { if (a < b) return gcd(b, a); if (b == 0) return a; return gcd(b, a % b); } } class ConsoleIO { BufferedReader br; PrintWriter out; public ConsoleIO(){br = new BufferedReader(new InputStreamReader(System.in));out = new PrintWriter(System.out);} public void flush(){this.out.flush();} public void close(){this.out.close();} public void writeLine(String s) {this.out.println(s);} public void writeInt(int a) {this.out.print(a);this.out.print(' ');} public void writeWord(String s){ this.out.print(s); } public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }} public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}} public long readLong() { return Long.parseLong(this.readLine()); } public long[] readLongArray() { String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length]; for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]); return r; } public int[] readIntArray() { String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length]; for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]); return r; } public int[] readIntArray(int n) { int[] res = new int[n]; char[] all = this.readLine().toCharArray(); int cur = 0;boolean have = false; int k = 0; boolean neg = false; for(int i = 0;i<all.length;i++){ if(all[i]>='0' && all[i]<='9'){ cur = cur*10+all[i]-'0'; have = true; }else if(all[i]=='-') { neg = true; } else if(have){ res[k++] = neg?-cur:cur; cur = 0; have = false; neg = false; } } if(have)res[k++] = neg?-cur:cur; return res; } public int readInt() { try { int r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public void writeIntArray(int[] a) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < a.length; i++) {if (i > 0) sb.append(' ');sb.append(a[i]);} this.writeLine(sb.toString()); } } class Pair { public Pair(int a, int b) {this.a = a;this.b = b;} public int a; public int b; } class Tri { public Tri(int a, int b, int c) {this.a = a;this.b = b;this.c = c;} public int a; public int b; public int c; } class PairLL { public PairLL(long a, long b) {this.a = a;this.b = b;} public long a; public long b; } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import com.sun.org.apache.xml.internal.utils.StringComparable; import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.text.DecimalFormat; import java.text.NumberFormat; import java.util.*; public class Main { public static void main(String[] args) { // Test.testing(); ConsoleIO io = new ConsoleIO(); new Main(io).solve(); io.close(); } ConsoleIO io; Main(ConsoleIO io) { this.io = io; } ArrayList<ArrayList<Integer>> gr; boolean[] visit; class Edge { public Edge(int u, int v, int c) { this.u = u; this.v = v; this.c = c; } public int u; public int v; public int c; } long MOD = 1_000_000_007; int N, M, K; double[][] map; public void solve() { String s = io.readLine(); N = Integer.parseInt(s); char[] a = io.readLine().toCharArray(); int[] look = new int[256]; Arrays.fill(look, 10000); int k = 0; for (int i = 0; i < a.length; i++) { if (look[a[i]] == 10000) { look[a[i]] = k; k++; } } int res = N; long need = (1L << k) - 1; long mask = 0; int head = 0; int tail = 0; int[] c = new int[k]; while (head < a.length) { while (head < a.length && mask != need) { int v = look[a[head]]; if (c[v] == 0) mask |= (1L << v); c[v]++; head++; } while (tail < head && mask == need) { res = Math.min(res, head - tail); int v = look[a[tail]]; c[v]--; if (c[v] == 0) mask ^= (1L << v); tail++; } } io.writeLine(res + ""); } long gcd(long a, long b) { if (a < b) return gcd(b, a); if (b == 0) return a; return gcd(b, a % b); } } class ConsoleIO { BufferedReader br; PrintWriter out; public ConsoleIO(){br = new BufferedReader(new InputStreamReader(System.in));out = new PrintWriter(System.out);} public void flush(){this.out.flush();} public void close(){this.out.close();} public void writeLine(String s) {this.out.println(s);} public void writeInt(int a) {this.out.print(a);this.out.print(' ');} public void writeWord(String s){ this.out.print(s); } public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }} public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}} public long readLong() { return Long.parseLong(this.readLine()); } public long[] readLongArray() { String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length]; for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]); return r; } public int[] readIntArray() { String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length]; for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]); return r; } public int[] readIntArray(int n) { int[] res = new int[n]; char[] all = this.readLine().toCharArray(); int cur = 0;boolean have = false; int k = 0; boolean neg = false; for(int i = 0;i<all.length;i++){ if(all[i]>='0' && all[i]<='9'){ cur = cur*10+all[i]-'0'; have = true; }else if(all[i]=='-') { neg = true; } else if(have){ res[k++] = neg?-cur:cur; cur = 0; have = false; neg = false; } } if(have)res[k++] = neg?-cur:cur; return res; } public int readInt() { try { int r = 0; boolean start = false; boolean neg = false; while (true) { int c = br.read(); if (c >= '0' && c <= '9') { r = r * 10 + c - '0'; start = true; } else if (!start && c == '-') { start = true; neg = true; } else if (start || c == -1) return neg ? -r : r; } } catch (Exception ex) { return -1; } } public void writeIntArray(int[] a) { StringBuilder sb = new StringBuilder(); for (int i = 0; i < a.length; i++) {if (i > 0) sb.append(' ');sb.append(a[i]);} this.writeLine(sb.toString()); } } class Pair { public Pair(int a, int b) {this.a = a;this.b = b;} public int a; public int b; } class Tri { public Tri(int a, int b, int c) {this.a = a;this.b = b;this.c = c;} public int a; public int b; public int c; } class PairLL { public PairLL(long a, long b) {this.a = a;this.b = b;} public long a; public long b; } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,641
776
3,691
import java.io.File; import java.io.FileNotFoundException; import java.io.PrintWriter; import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author madis */ public class Pjar { static int a[][]; public static void main(String[] args) throws FileNotFoundException { Scanner in = new Scanner(new File("input.txt")); PrintWriter out = new PrintWriter("output.txt"); int N = in.nextInt(); int M = in.nextInt(); a = new int[N][M]; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { a[i][j] = Integer.MAX_VALUE; } } int k = in.nextInt(); in.nextLine(); for (int i = 0; i < k; i++) { int x = in.nextInt(); int y = in.nextInt(); a[x - 1][y - 1] = 1; burn(x - 1, y - 1); } int max = Integer.MIN_VALUE; int x = 0; int y = 0; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { if(a[i][j]>max){ max = a[i][j]; x = i+1; y = j+1; } } } out.printf("%d %d",x,y); out.close(); in.close(); } static void burn(int i, int j) { for(int k = 0;k<a.length;k++){ for(int l=0;l<a[k].length;l++){ if(a[k][l]>Math.abs(k-i) + Math.abs(l-j)){ a[k][l]=Math.abs(k-i) + Math.abs(l-j); } } } } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.File; import java.io.FileNotFoundException; import java.io.PrintWriter; import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author madis */ public class Pjar { static int a[][]; public static void main(String[] args) throws FileNotFoundException { Scanner in = new Scanner(new File("input.txt")); PrintWriter out = new PrintWriter("output.txt"); int N = in.nextInt(); int M = in.nextInt(); a = new int[N][M]; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { a[i][j] = Integer.MAX_VALUE; } } int k = in.nextInt(); in.nextLine(); for (int i = 0; i < k; i++) { int x = in.nextInt(); int y = in.nextInt(); a[x - 1][y - 1] = 1; burn(x - 1, y - 1); } int max = Integer.MIN_VALUE; int x = 0; int y = 0; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { if(a[i][j]>max){ max = a[i][j]; x = i+1; y = j+1; } } } out.printf("%d %d",x,y); out.close(); in.close(); } static void burn(int i, int j) { for(int k = 0;k<a.length;k++){ for(int l=0;l<a[k].length;l++){ if(a[k][l]>Math.abs(k-i) + Math.abs(l-j)){ a[k][l]=Math.abs(k-i) + Math.abs(l-j); } } } } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.File; import java.io.FileNotFoundException; import java.io.PrintWriter; import java.util.Scanner; /* * To change this template, choose Tools | Templates * and open the template in the editor. */ /** * * @author madis */ public class Pjar { static int a[][]; public static void main(String[] args) throws FileNotFoundException { Scanner in = new Scanner(new File("input.txt")); PrintWriter out = new PrintWriter("output.txt"); int N = in.nextInt(); int M = in.nextInt(); a = new int[N][M]; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { a[i][j] = Integer.MAX_VALUE; } } int k = in.nextInt(); in.nextLine(); for (int i = 0; i < k; i++) { int x = in.nextInt(); int y = in.nextInt(); a[x - 1][y - 1] = 1; burn(x - 1, y - 1); } int max = Integer.MIN_VALUE; int x = 0; int y = 0; for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { if(a[i][j]>max){ max = a[i][j]; x = i+1; y = j+1; } } } out.printf("%d %d",x,y); out.close(); in.close(); } static void burn(int i, int j) { for(int k = 0;k<a.length;k++){ for(int l=0;l<a[k].length;l++){ if(a[k][l]>Math.abs(k-i) + Math.abs(l-j)){ a[k][l]=Math.abs(k-i) + Math.abs(l-j); } } } } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The time complexity increases logarithmically in relation to the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
758
3,683
114
import java.io.*; import java.util.*; public class Main { class node{ int data; node next; public node(int val){ data=val; next=null; } } class linkedlist{ node start; node end; int size; int turn; public linkedlist(){ start=null; end=null; size=0; } void add(int val){ if(size==0){ node t=new node(val); start=t; end=t; size++; } else{ node t=new node(val); end.next=t; end=end.next; size++; } } void myfunc(){ if(start.data>start.next.data){ // System.out.println("me ni hu"); node t=new node(start.next.data); start.next=start.next.next; end.next=t; end=end.next; } else{ // System.out.println("me hu"); int t=start.data; start=start.next; add(t); size--; } } int findmax(){ int m=0; node temp=start; for(int i=0;i<size;i++){ if(temp.data>m){ m=temp.data; } temp=temp.next; } return m; } void display(){ node temp=start; for(int i=0;i<size;i++){ System.out.print(temp.data+" "); temp=temp.next; } System.out.println(""); } } linkedlist l; public Main(){ l=new linkedlist(); } public static void main(String [] argv) throws IOException { BufferedReader in=new BufferedReader(new InputStreamReader(System.in)); Main ma=new Main(); String[] l1=in.readLine().split(" "); int n=Integer.parseInt(l1[0]); int q=Integer.parseInt(l1[1]); String[] ar=in.readLine().split(" "); int a1=Integer.parseInt(ar[0]); int b1=Integer.parseInt(ar[1]); for(int i=0;i<n;i++){ ma.l.add(Integer.parseInt(ar[i])); } int m=ma.l.findmax(); int[][] pair=new int[n][2]; int t=0; for(int i=0;i<n;i++){ if(ma.l.start.data==m) break; ma.l.myfunc(); pair[t][0]=ma.l.start.data; pair[t][1]=ma.l.start.next.data; t++; } int rl[]=new int[n]; node temp=ma.l.start; for(int i=0;i<n;i++){ rl[i]=temp.data; temp=temp.next; } for(int i=0;i<q;i++){ long a=Long.parseLong(in.readLine()); if(a==1){ System.out.println(a1 + " " + b1); } else{ if(a<=t+1){ System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]); } else{ if((a-t)%(n-1)==0){ System.out.println(rl[0]+" "+rl[n-1]); } else{ System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]); } } } } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { class node{ int data; node next; public node(int val){ data=val; next=null; } } class linkedlist{ node start; node end; int size; int turn; public linkedlist(){ start=null; end=null; size=0; } void add(int val){ if(size==0){ node t=new node(val); start=t; end=t; size++; } else{ node t=new node(val); end.next=t; end=end.next; size++; } } void myfunc(){ if(start.data>start.next.data){ // System.out.println("me ni hu"); node t=new node(start.next.data); start.next=start.next.next; end.next=t; end=end.next; } else{ // System.out.println("me hu"); int t=start.data; start=start.next; add(t); size--; } } int findmax(){ int m=0; node temp=start; for(int i=0;i<size;i++){ if(temp.data>m){ m=temp.data; } temp=temp.next; } return m; } void display(){ node temp=start; for(int i=0;i<size;i++){ System.out.print(temp.data+" "); temp=temp.next; } System.out.println(""); } } linkedlist l; public Main(){ l=new linkedlist(); } public static void main(String [] argv) throws IOException { BufferedReader in=new BufferedReader(new InputStreamReader(System.in)); Main ma=new Main(); String[] l1=in.readLine().split(" "); int n=Integer.parseInt(l1[0]); int q=Integer.parseInt(l1[1]); String[] ar=in.readLine().split(" "); int a1=Integer.parseInt(ar[0]); int b1=Integer.parseInt(ar[1]); for(int i=0;i<n;i++){ ma.l.add(Integer.parseInt(ar[i])); } int m=ma.l.findmax(); int[][] pair=new int[n][2]; int t=0; for(int i=0;i<n;i++){ if(ma.l.start.data==m) break; ma.l.myfunc(); pair[t][0]=ma.l.start.data; pair[t][1]=ma.l.start.next.data; t++; } int rl[]=new int[n]; node temp=ma.l.start; for(int i=0;i<n;i++){ rl[i]=temp.data; temp=temp.next; } for(int i=0;i<q;i++){ long a=Long.parseLong(in.readLine()); if(a==1){ System.out.println(a1 + " " + b1); } else{ if(a<=t+1){ System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]); } else{ if((a-t)%(n-1)==0){ System.out.println(rl[0]+" "+rl[n-1]); } else{ System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]); } } } } } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Main { class node{ int data; node next; public node(int val){ data=val; next=null; } } class linkedlist{ node start; node end; int size; int turn; public linkedlist(){ start=null; end=null; size=0; } void add(int val){ if(size==0){ node t=new node(val); start=t; end=t; size++; } else{ node t=new node(val); end.next=t; end=end.next; size++; } } void myfunc(){ if(start.data>start.next.data){ // System.out.println("me ni hu"); node t=new node(start.next.data); start.next=start.next.next; end.next=t; end=end.next; } else{ // System.out.println("me hu"); int t=start.data; start=start.next; add(t); size--; } } int findmax(){ int m=0; node temp=start; for(int i=0;i<size;i++){ if(temp.data>m){ m=temp.data; } temp=temp.next; } return m; } void display(){ node temp=start; for(int i=0;i<size;i++){ System.out.print(temp.data+" "); temp=temp.next; } System.out.println(""); } } linkedlist l; public Main(){ l=new linkedlist(); } public static void main(String [] argv) throws IOException { BufferedReader in=new BufferedReader(new InputStreamReader(System.in)); Main ma=new Main(); String[] l1=in.readLine().split(" "); int n=Integer.parseInt(l1[0]); int q=Integer.parseInt(l1[1]); String[] ar=in.readLine().split(" "); int a1=Integer.parseInt(ar[0]); int b1=Integer.parseInt(ar[1]); for(int i=0;i<n;i++){ ma.l.add(Integer.parseInt(ar[i])); } int m=ma.l.findmax(); int[][] pair=new int[n][2]; int t=0; for(int i=0;i<n;i++){ if(ma.l.start.data==m) break; ma.l.myfunc(); pair[t][0]=ma.l.start.data; pair[t][1]=ma.l.start.next.data; t++; } int rl[]=new int[n]; node temp=ma.l.start; for(int i=0;i<n;i++){ rl[i]=temp.data; temp=temp.next; } for(int i=0;i<q;i++){ long a=Long.parseLong(in.readLine()); if(a==1){ System.out.println(a1 + " " + b1); } else{ if(a<=t+1){ System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]); } else{ if((a-t)%(n-1)==0){ System.out.println(rl[0]+" "+rl[n-1]); } else{ System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]); } } } } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(1): The time complexity is constant to the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,082
114
3,915
import java.util.*; import java.io.*; public class _1523_C { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int t = Integer.parseInt(in.readLine()); while(t-- > 0) { int n = Integer.parseInt(in.readLine()); int[] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = Integer.parseInt(in.readLine()); } boolean[][] used = new boolean[n][n + 1]; boolean[] used2 = new boolean[n]; String[][] res = new String[n][2]; res[0][0] = "1"; res[0][1] = ""; for(int i = 1; i < n; i++) { if(a[i] == 1) { for(int j = i - 1; j >= 0; j--) { if(!used[j][a[i]] && !used2[j]) { res[i][0] = res[j][0] + ".1"; res[i][1] = res[j][0]; used[j][a[i]] = true; break; } } }else { for(int j = i - 1; j >= 0; j--) { if(!used[j][a[i]] && !used2[j] && a[j] == a[i] - 1) { if(res[j][1].equals("")) { res[i][0] = "" + a[i]; }else { res[i][0] = res[j][1] + "." + a[i]; } res[i][1] = res[j][1]; used[j][a[i]] = true; break; } used2[j] = true; } } } for(int i = 0; i < n; i++) { out.println(res[i][0]); } } in.close(); out.close(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class _1523_C { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int t = Integer.parseInt(in.readLine()); while(t-- > 0) { int n = Integer.parseInt(in.readLine()); int[] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = Integer.parseInt(in.readLine()); } boolean[][] used = new boolean[n][n + 1]; boolean[] used2 = new boolean[n]; String[][] res = new String[n][2]; res[0][0] = "1"; res[0][1] = ""; for(int i = 1; i < n; i++) { if(a[i] == 1) { for(int j = i - 1; j >= 0; j--) { if(!used[j][a[i]] && !used2[j]) { res[i][0] = res[j][0] + ".1"; res[i][1] = res[j][0]; used[j][a[i]] = true; break; } } }else { for(int j = i - 1; j >= 0; j--) { if(!used[j][a[i]] && !used2[j] && a[j] == a[i] - 1) { if(res[j][1].equals("")) { res[i][0] = "" + a[i]; }else { res[i][0] = res[j][1] + "." + a[i]; } res[i][1] = res[j][1]; used[j][a[i]] = true; break; } used2[j] = true; } } } for(int i = 0; i < n; i++) { out.println(res[i][0]); } } in.close(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class _1523_C { public static void main(String[] args) throws IOException { BufferedReader in = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(System.out); int t = Integer.parseInt(in.readLine()); while(t-- > 0) { int n = Integer.parseInt(in.readLine()); int[] a = new int[n]; for(int i = 0; i < n; i++) { a[i] = Integer.parseInt(in.readLine()); } boolean[][] used = new boolean[n][n + 1]; boolean[] used2 = new boolean[n]; String[][] res = new String[n][2]; res[0][0] = "1"; res[0][1] = ""; for(int i = 1; i < n; i++) { if(a[i] == 1) { for(int j = i - 1; j >= 0; j--) { if(!used[j][a[i]] && !used2[j]) { res[i][0] = res[j][0] + ".1"; res[i][1] = res[j][0]; used[j][a[i]] = true; break; } } }else { for(int j = i - 1; j >= 0; j--) { if(!used[j][a[i]] && !used2[j] && a[j] == a[i] - 1) { if(res[j][1].equals("")) { res[i][0] = "" + a[i]; }else { res[i][0] = res[j][1] + "." + a[i]; } res[i][1] = res[j][1]; used[j][a[i]] = true; break; } used2[j] = true; } } } for(int i = 0; i < n; i++) { out.println(res[i][0]); } } in.close(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
778
3,905
380
import java.util.HashMap; import java.util.HashSet; import java.util.Scanner; public class Main { static int n; static int a; static int b; static int g; static int ref; static int refg; static HashSet<Integer> cgroup; static HashMap<Integer,Integer> indexmap; static HashSet<Integer> nums; static HashSet<Integer> used; public static void main(String[] args) { Scanner scan = new Scanner(System.in); n = scan.nextInt(); a = scan.nextInt(); b = scan.nextInt(); boolean[] where = new boolean[n]; indexmap = new HashMap<Integer,Integer>(); used = new HashSet<Integer>(); nums = new HashSet<Integer>(); if (a==b) b = 0; for (int i = 0; i<n; i++) { int x = scan.nextInt(); nums.add(x); indexmap.put(x,i); } scan.close(); for (int x : nums) { if (used.contains(x)) continue; cgroup = new HashSet<Integer>(); cgroup.add(x); g = -1; refg = -1; ref = -1; used.add(x); if (!spawn(x,a,b) || !spawn(x,b,a)) { System.out.println("NO"); return; } if (cgroup.size()%2==1 && ref == -1) { System.out.println("NO"); return; } else { boolean w = true; if (g == a) w = false; for (int k : cgroup) { where[indexmap.get(k)] = w; } } } System.out.println("YES"); for (int i = 0; i<where.length; i++) if (where[i]) System.out.print("1 "); else System.out.print("0 "); } private static boolean spawn(int x, int ab, int abo) { int xab = ab-x; if (xab == x) { ref = x; refg = ab; } else { if (nums.contains(xab)) { cgroup.add(xab); used.add(xab); spawn(xab,abo,ab); } else { if (g == -1) g = abo; else if (g != abo) { return false; } } } return true; } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.HashMap; import java.util.HashSet; import java.util.Scanner; public class Main { static int n; static int a; static int b; static int g; static int ref; static int refg; static HashSet<Integer> cgroup; static HashMap<Integer,Integer> indexmap; static HashSet<Integer> nums; static HashSet<Integer> used; public static void main(String[] args) { Scanner scan = new Scanner(System.in); n = scan.nextInt(); a = scan.nextInt(); b = scan.nextInt(); boolean[] where = new boolean[n]; indexmap = new HashMap<Integer,Integer>(); used = new HashSet<Integer>(); nums = new HashSet<Integer>(); if (a==b) b = 0; for (int i = 0; i<n; i++) { int x = scan.nextInt(); nums.add(x); indexmap.put(x,i); } scan.close(); for (int x : nums) { if (used.contains(x)) continue; cgroup = new HashSet<Integer>(); cgroup.add(x); g = -1; refg = -1; ref = -1; used.add(x); if (!spawn(x,a,b) || !spawn(x,b,a)) { System.out.println("NO"); return; } if (cgroup.size()%2==1 && ref == -1) { System.out.println("NO"); return; } else { boolean w = true; if (g == a) w = false; for (int k : cgroup) { where[indexmap.get(k)] = w; } } } System.out.println("YES"); for (int i = 0; i<where.length; i++) if (where[i]) System.out.print("1 "); else System.out.print("0 "); } private static boolean spawn(int x, int ab, int abo) { int xab = ab-x; if (xab == x) { ref = x; refg = ab; } else { if (nums.contains(xab)) { cgroup.add(xab); used.add(xab); spawn(xab,abo,ab); } else { if (g == -1) g = abo; else if (g != abo) { return false; } } } return true; } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.HashMap; import java.util.HashSet; import java.util.Scanner; public class Main { static int n; static int a; static int b; static int g; static int ref; static int refg; static HashSet<Integer> cgroup; static HashMap<Integer,Integer> indexmap; static HashSet<Integer> nums; static HashSet<Integer> used; public static void main(String[] args) { Scanner scan = new Scanner(System.in); n = scan.nextInt(); a = scan.nextInt(); b = scan.nextInt(); boolean[] where = new boolean[n]; indexmap = new HashMap<Integer,Integer>(); used = new HashSet<Integer>(); nums = new HashSet<Integer>(); if (a==b) b = 0; for (int i = 0; i<n; i++) { int x = scan.nextInt(); nums.add(x); indexmap.put(x,i); } scan.close(); for (int x : nums) { if (used.contains(x)) continue; cgroup = new HashSet<Integer>(); cgroup.add(x); g = -1; refg = -1; ref = -1; used.add(x); if (!spawn(x,a,b) || !spawn(x,b,a)) { System.out.println("NO"); return; } if (cgroup.size()%2==1 && ref == -1) { System.out.println("NO"); return; } else { boolean w = true; if (g == a) w = false; for (int k : cgroup) { where[indexmap.get(k)] = w; } } } System.out.println("YES"); for (int i = 0; i<where.length; i++) if (where[i]) System.out.print("1 "); else System.out.print("0 "); } private static boolean spawn(int x, int ab, int abo) { int xab = ab-x; if (xab == x) { ref = x; refg = ab; } else { if (nums.contains(xab)) { cgroup.add(xab); used.add(xab); spawn(xab,abo,ab); } else { if (g == -1) g = abo; else if (g != abo) { return false; } } } return true; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
880
379
2,043
//package timus; import java.io.BufferedReader; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.Reader; import java.io.StreamTokenizer; import java.io.Writer; import java.util.Arrays; public class Abra { public static void main(String[] args) throws IOException { new Abra().run(); } StreamTokenizer in; PrintWriter out; boolean oj; void init() throws IOException { oj = System.getProperty("ONLINE_JUDGE") != null; Reader reader = oj ? new InputStreamReader(System.in) : new FileReader( "input.txt"); Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("output.txt"); // Writer writer = new OutputStreamWriter(System.out); in = new StreamTokenizer(new BufferedReader(reader)); out = new PrintWriter(writer); } void run() throws IOException { long beginTime = System.currentTimeMillis(); init(); solve(); out.flush(); } void printMem() { if (!oj) { System.out.println("Memory used = " + (Runtime.getRuntime().totalMemory() - Runtime .getRuntime().freeMemory())); } } int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } String nextString() throws IOException { in.nextToken(); return in.sval; } double nextDouble() throws IOException { in.nextToken(); return in.nval; } long deg(long x, long y) { long a = x; for (long i = 2; i <= y; i++) { a *= x; } return a; } long fact(long x) { long a = 1; for (long i = 2; i <= x; i++) { a *= i; } return a; } long digitSum(String x) { long a = 0; for (int i = 0; i < x.length(); i++) { a += x.codePointAt(i) - 48; } return a; } long digitSum(long x) { long a = 0; while (x > 0) { a += x % 10; x /= 10; } return a; } long digitMul(long x) { long a = 1; while (x > 0) { a *= x % 10; x /= 10; } return a; } double pif(double ax, double ay, double bx, double by) { return Math.sqrt((ax - bx) * (ax - bx) + (ay - by) * (ay - by)); } double getPosPart(double x) { if (x <= 0) return 0; else return x; } double max(double x, double y) { if (x > y) return x; else return y; } long gcd(long a, long b) { if (a < b) { long c = b; b = a; a = c; } while (a % b != 0) { a = a % b; if (a < b) { long c = b; b = a; a = c; } } return b; } int gcd(int a, int b) { if (a < b) { int c = b; b = a; a = c; } while (a % b != 0) { a = a % b; if (a < b) { int c = b; b = a; a = c; } } return b; } long lcm(long a, long b) throws IOException { return a * b / gcd(a, b); } int lcm(int a, int b) throws IOException { return a * b / gcd(a, b); } int countOccurences(String x, String y) { int a = 0, i = 0; while (true) { i = y.indexOf(x); if (i == -1) break; a++; y = y.substring(i + 1); } return a; } int[] primes; int findPrimes(int x) { boolean[] forErato = new boolean[x]; primes = new int[x]; int l = 0, j = 0; for (int i = 2; i < x; i++) { if (forErato[i]) continue; l++; primes[l] = i; j = i * 2; while (j < x) { forErato[j] = true; j += i; } } return l; } int rev(int x) { int a = 0; while (x > 0) { a = a * 10 + x % 10; x /= 10; } return a; } class myDate { int d, m, y; public myDate(int da, int ma, int ya) { d = da; m = ma; y = ya; } int[] ml = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; void inc() { if ((d == 31) && (m == 12)) { y++; d = 1; m = 1; } else { if (((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0)) { ml[1] = 29; } if (d == ml[m - 1]) { m++; d = 1; } else d++; } } } int partition(int n, int l, int m) {// n - sum, l - length, m - every part // <= m if (n < l) return 0; if (n < l + 2) return 1; if (l == 1) return 1; int c = 0; for (int i = Math.min(n - l + 1, m); i >= (n + l - 1) / l; i--) { c += partition(n - i, l - 1, i); } return c; } void solve() throws IOException { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } Arrays.sort(a); int min = a[0]; for (int i = 1; i < n; i++) { if (a[i] != min) { out.print(a[i]); return; } } out.print("NO"); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package timus; import java.io.BufferedReader; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.Reader; import java.io.StreamTokenizer; import java.io.Writer; import java.util.Arrays; public class Abra { public static void main(String[] args) throws IOException { new Abra().run(); } StreamTokenizer in; PrintWriter out; boolean oj; void init() throws IOException { oj = System.getProperty("ONLINE_JUDGE") != null; Reader reader = oj ? new InputStreamReader(System.in) : new FileReader( "input.txt"); Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("output.txt"); // Writer writer = new OutputStreamWriter(System.out); in = new StreamTokenizer(new BufferedReader(reader)); out = new PrintWriter(writer); } void run() throws IOException { long beginTime = System.currentTimeMillis(); init(); solve(); out.flush(); } void printMem() { if (!oj) { System.out.println("Memory used = " + (Runtime.getRuntime().totalMemory() - Runtime .getRuntime().freeMemory())); } } int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } String nextString() throws IOException { in.nextToken(); return in.sval; } double nextDouble() throws IOException { in.nextToken(); return in.nval; } long deg(long x, long y) { long a = x; for (long i = 2; i <= y; i++) { a *= x; } return a; } long fact(long x) { long a = 1; for (long i = 2; i <= x; i++) { a *= i; } return a; } long digitSum(String x) { long a = 0; for (int i = 0; i < x.length(); i++) { a += x.codePointAt(i) - 48; } return a; } long digitSum(long x) { long a = 0; while (x > 0) { a += x % 10; x /= 10; } return a; } long digitMul(long x) { long a = 1; while (x > 0) { a *= x % 10; x /= 10; } return a; } double pif(double ax, double ay, double bx, double by) { return Math.sqrt((ax - bx) * (ax - bx) + (ay - by) * (ay - by)); } double getPosPart(double x) { if (x <= 0) return 0; else return x; } double max(double x, double y) { if (x > y) return x; else return y; } long gcd(long a, long b) { if (a < b) { long c = b; b = a; a = c; } while (a % b != 0) { a = a % b; if (a < b) { long c = b; b = a; a = c; } } return b; } int gcd(int a, int b) { if (a < b) { int c = b; b = a; a = c; } while (a % b != 0) { a = a % b; if (a < b) { int c = b; b = a; a = c; } } return b; } long lcm(long a, long b) throws IOException { return a * b / gcd(a, b); } int lcm(int a, int b) throws IOException { return a * b / gcd(a, b); } int countOccurences(String x, String y) { int a = 0, i = 0; while (true) { i = y.indexOf(x); if (i == -1) break; a++; y = y.substring(i + 1); } return a; } int[] primes; int findPrimes(int x) { boolean[] forErato = new boolean[x]; primes = new int[x]; int l = 0, j = 0; for (int i = 2; i < x; i++) { if (forErato[i]) continue; l++; primes[l] = i; j = i * 2; while (j < x) { forErato[j] = true; j += i; } } return l; } int rev(int x) { int a = 0; while (x > 0) { a = a * 10 + x % 10; x /= 10; } return a; } class myDate { int d, m, y; public myDate(int da, int ma, int ya) { d = da; m = ma; y = ya; } int[] ml = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; void inc() { if ((d == 31) && (m == 12)) { y++; d = 1; m = 1; } else { if (((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0)) { ml[1] = 29; } if (d == ml[m - 1]) { m++; d = 1; } else d++; } } } int partition(int n, int l, int m) {// n - sum, l - length, m - every part // <= m if (n < l) return 0; if (n < l + 2) return 1; if (l == 1) return 1; int c = 0; for (int i = Math.min(n - l + 1, m); i >= (n + l - 1) / l; i--) { c += partition(n - i, l - 1, i); } return c; } void solve() throws IOException { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } Arrays.sort(a); int min = a[0]; for (int i = 1; i < n; i++) { if (a[i] != min) { out.print(a[i]); return; } } out.print("NO"); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> //package timus; import java.io.BufferedReader; import java.io.FileReader; import java.io.FileWriter; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStreamWriter; import java.io.PrintWriter; import java.io.Reader; import java.io.StreamTokenizer; import java.io.Writer; import java.util.Arrays; public class Abra { public static void main(String[] args) throws IOException { new Abra().run(); } StreamTokenizer in; PrintWriter out; boolean oj; void init() throws IOException { oj = System.getProperty("ONLINE_JUDGE") != null; Reader reader = oj ? new InputStreamReader(System.in) : new FileReader( "input.txt"); Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("output.txt"); // Writer writer = new OutputStreamWriter(System.out); in = new StreamTokenizer(new BufferedReader(reader)); out = new PrintWriter(writer); } void run() throws IOException { long beginTime = System.currentTimeMillis(); init(); solve(); out.flush(); } void printMem() { if (!oj) { System.out.println("Memory used = " + (Runtime.getRuntime().totalMemory() - Runtime .getRuntime().freeMemory())); } } int nextInt() throws IOException { in.nextToken(); return (int) in.nval; } long nextLong() throws IOException { in.nextToken(); return (long) in.nval; } String nextString() throws IOException { in.nextToken(); return in.sval; } double nextDouble() throws IOException { in.nextToken(); return in.nval; } long deg(long x, long y) { long a = x; for (long i = 2; i <= y; i++) { a *= x; } return a; } long fact(long x) { long a = 1; for (long i = 2; i <= x; i++) { a *= i; } return a; } long digitSum(String x) { long a = 0; for (int i = 0; i < x.length(); i++) { a += x.codePointAt(i) - 48; } return a; } long digitSum(long x) { long a = 0; while (x > 0) { a += x % 10; x /= 10; } return a; } long digitMul(long x) { long a = 1; while (x > 0) { a *= x % 10; x /= 10; } return a; } double pif(double ax, double ay, double bx, double by) { return Math.sqrt((ax - bx) * (ax - bx) + (ay - by) * (ay - by)); } double getPosPart(double x) { if (x <= 0) return 0; else return x; } double max(double x, double y) { if (x > y) return x; else return y; } long gcd(long a, long b) { if (a < b) { long c = b; b = a; a = c; } while (a % b != 0) { a = a % b; if (a < b) { long c = b; b = a; a = c; } } return b; } int gcd(int a, int b) { if (a < b) { int c = b; b = a; a = c; } while (a % b != 0) { a = a % b; if (a < b) { int c = b; b = a; a = c; } } return b; } long lcm(long a, long b) throws IOException { return a * b / gcd(a, b); } int lcm(int a, int b) throws IOException { return a * b / gcd(a, b); } int countOccurences(String x, String y) { int a = 0, i = 0; while (true) { i = y.indexOf(x); if (i == -1) break; a++; y = y.substring(i + 1); } return a; } int[] primes; int findPrimes(int x) { boolean[] forErato = new boolean[x]; primes = new int[x]; int l = 0, j = 0; for (int i = 2; i < x; i++) { if (forErato[i]) continue; l++; primes[l] = i; j = i * 2; while (j < x) { forErato[j] = true; j += i; } } return l; } int rev(int x) { int a = 0; while (x > 0) { a = a * 10 + x % 10; x /= 10; } return a; } class myDate { int d, m, y; public myDate(int da, int ma, int ya) { d = da; m = ma; y = ya; } int[] ml = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; void inc() { if ((d == 31) && (m == 12)) { y++; d = 1; m = 1; } else { if (((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0)) { ml[1] = 29; } if (d == ml[m - 1]) { m++; d = 1; } else d++; } } } int partition(int n, int l, int m) {// n - sum, l - length, m - every part // <= m if (n < l) return 0; if (n < l + 2) return 1; if (l == 1) return 1; int c = 0; for (int i = Math.min(n - l + 1, m); i >= (n + l - 1) / l; i--) { c += partition(n - i, l - 1, i); } return c; } void solve() throws IOException { int n = nextInt(); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = nextInt(); } Arrays.sort(a); int min = a[0]; for (int i = 1; i < n; i++) { if (a[i] != min) { out.print(a[i]); return; } } out.print("NO"); } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,986
2,039
3,805
import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.PriorityQueue; import java.util.StringTokenizer; import java.io.*; public class ExplorerSpace { private static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static int[][][] dp; public static boolean valid(int i, int j, int n, int m) { return i>=0 && i<n &&j>=0 && j<m; } public static void solution(int n, int m, int k, int[][] h, int[][] v) { if(k%2==1) { for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) out.print(-1+" "); out.println(); } return; } dp = new int[n][m][k/2+1]; for(int t = 1; t<=k/2; t++) { for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) { dp[i][j][t] = Integer.MAX_VALUE; } } } for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) { dp[i][j][0] = 0; } } for(int t = 1; t<=k/2; t++) { for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) { if(valid(i,j+1,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], h[i][j] + dp[i][j+1][t-1]); if(valid(i,j-1,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], h[i][j-1] + dp[i][j-1][t-1]); if(valid(i+1,j,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], v[i][j] + dp[i+1][j][t-1]); if(valid(i-1,j,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], v[i-1][j] + dp[i-1][j][t-1]); } } } for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) out.print((dp[i][j][k/2]*2)+" "); out.println(); } } private static PrintWriter out = new PrintWriter(System.out); public static void main (String[] args) { MyScanner s = new MyScanner(); int n = s.nextInt(); int m = s.nextInt(); int k = s.nextInt(); int[][] h = new int[n][m-1]; for(int i = 0; i<n; i++) { for(int j = 0; j<m-1; j++) { h[i][j] = s.nextInt(); } } int[][] v = new int[n-1][m]; for(int i = 0; i<n-1; i++) { for(int j = 0; j<m; j++) { v[i][j] = s.nextInt(); } } solution(n,m,k,h,v); out.flush(); out.close(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.PriorityQueue; import java.util.StringTokenizer; import java.io.*; public class ExplorerSpace { private static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static int[][][] dp; public static boolean valid(int i, int j, int n, int m) { return i>=0 && i<n &&j>=0 && j<m; } public static void solution(int n, int m, int k, int[][] h, int[][] v) { if(k%2==1) { for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) out.print(-1+" "); out.println(); } return; } dp = new int[n][m][k/2+1]; for(int t = 1; t<=k/2; t++) { for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) { dp[i][j][t] = Integer.MAX_VALUE; } } } for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) { dp[i][j][0] = 0; } } for(int t = 1; t<=k/2; t++) { for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) { if(valid(i,j+1,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], h[i][j] + dp[i][j+1][t-1]); if(valid(i,j-1,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], h[i][j-1] + dp[i][j-1][t-1]); if(valid(i+1,j,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], v[i][j] + dp[i+1][j][t-1]); if(valid(i-1,j,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], v[i-1][j] + dp[i-1][j][t-1]); } } } for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) out.print((dp[i][j][k/2]*2)+" "); out.println(); } } private static PrintWriter out = new PrintWriter(System.out); public static void main (String[] args) { MyScanner s = new MyScanner(); int n = s.nextInt(); int m = s.nextInt(); int k = s.nextInt(); int[][] h = new int[n][m-1]; for(int i = 0; i<n; i++) { for(int j = 0; j<m-1; j++) { h[i][j] = s.nextInt(); } } int[][] v = new int[n-1][m]; for(int i = 0; i<n-1; i++) { for(int j = 0; j<m; j++) { v[i][j] = s.nextInt(); } } solution(n,m,k,h,v); out.flush(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.ArrayList; import java.util.Collections; import java.util.HashMap; import java.util.PriorityQueue; import java.util.StringTokenizer; import java.io.*; public class ExplorerSpace { private static class MyScanner { BufferedReader br; StringTokenizer st; public MyScanner() { br = new BufferedReader(new InputStreamReader(System.in)); } String next() { while (st == null || !st.hasMoreElements()) { try { st = new StringTokenizer(br.readLine()); } catch (IOException e) { e.printStackTrace(); } } return st.nextToken(); } int nextInt() { return Integer.parseInt(next()); } long nextLong() { return Long.parseLong(next()); } double nextDouble() { return Double.parseDouble(next()); } String nextLine(){ String str = ""; try { str = br.readLine(); } catch (IOException e) { e.printStackTrace(); } return str; } } public static int[][][] dp; public static boolean valid(int i, int j, int n, int m) { return i>=0 && i<n &&j>=0 && j<m; } public static void solution(int n, int m, int k, int[][] h, int[][] v) { if(k%2==1) { for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) out.print(-1+" "); out.println(); } return; } dp = new int[n][m][k/2+1]; for(int t = 1; t<=k/2; t++) { for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) { dp[i][j][t] = Integer.MAX_VALUE; } } } for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) { dp[i][j][0] = 0; } } for(int t = 1; t<=k/2; t++) { for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) { if(valid(i,j+1,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], h[i][j] + dp[i][j+1][t-1]); if(valid(i,j-1,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], h[i][j-1] + dp[i][j-1][t-1]); if(valid(i+1,j,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], v[i][j] + dp[i+1][j][t-1]); if(valid(i-1,j,n,m)) dp[i][j][t] = Math.min(dp[i][j][t], v[i-1][j] + dp[i-1][j][t-1]); } } } for(int i = 0; i<n; i++) { for(int j = 0; j<m; j++) out.print((dp[i][j][k/2]*2)+" "); out.println(); } } private static PrintWriter out = new PrintWriter(System.out); public static void main (String[] args) { MyScanner s = new MyScanner(); int n = s.nextInt(); int m = s.nextInt(); int k = s.nextInt(); int[][] h = new int[n][m-1]; for(int i = 0; i<n; i++) { for(int j = 0; j<m-1; j++) { h[i][j] = s.nextInt(); } } int[][] v = new int[n-1][m]; for(int i = 0; i<n-1; i++) { for(int j = 0; j<m; j++) { v[i][j] = s.nextInt(); } } solution(n,m,k,h,v); out.flush(); out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,321
3,796
2,657
import java.io.*; import java.util.*; public class Hack{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int n=sc.nextInt(); int[] arr = new int[n]; for(int i=0;i<n;i++) arr[i]=sc.nextInt(); Arrays.sort(arr); Set<Integer> set = new TreeSet<Integer>(); for(int i=0;i<n;i++){ boolean flag=false; for(Integer x:set){ if(arr[i]%x==0){ flag=true; break; } } if(!flag) set.add(arr[i]); } System.out.println(set.size()); } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Hack{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int n=sc.nextInt(); int[] arr = new int[n]; for(int i=0;i<n;i++) arr[i]=sc.nextInt(); Arrays.sort(arr); Set<Integer> set = new TreeSet<Integer>(); for(int i=0;i<n;i++){ boolean flag=false; for(Integer x:set){ if(arr[i]%x==0){ flag=true; break; } } if(!flag) set.add(arr[i]); } System.out.println(set.size()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class Hack{ public static void main(String[] args){ Scanner sc = new Scanner(System.in); int n=sc.nextInt(); int[] arr = new int[n]; for(int i=0;i<n;i++) arr[i]=sc.nextInt(); Arrays.sort(arr); Set<Integer> set = new TreeSet<Integer>(); for(int i=0;i<n;i++){ boolean flag=false; for(Integer x:set){ if(arr[i]%x==0){ flag=true; break; } } if(!flag) set.add(arr[i]); } System.out.println(set.size()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
449
2,651
1,022
import java.util.*; import java.io.*; import java.util.stream.Collectors; public class P1177A { public static void main(String[] args) throws Exception { BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); long n = Long.parseLong(r.readLine()); if (n < 10) { System.out.print(n); return; } int len = 1; long edge = 10; long prev = 0; long prepow = 0; while (edge - 1 < n) { prepow = (long)Math.pow(10, len); long pow = prepow * 10; prev = edge; edge = edge + (pow - prepow) * (len + 1); len += 1; } long b = n - prev; long c = b / len; int rem = (int)(b % len); String s = Long.toString(prepow + c).charAt(rem) + ""; System.out.print(s); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.util.stream.Collectors; public class P1177A { public static void main(String[] args) throws Exception { BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); long n = Long.parseLong(r.readLine()); if (n < 10) { System.out.print(n); return; } int len = 1; long edge = 10; long prev = 0; long prepow = 0; while (edge - 1 < n) { prepow = (long)Math.pow(10, len); long pow = prepow * 10; prev = edge; edge = edge + (pow - prepow) * (len + 1); len += 1; } long b = n - prev; long c = b / len; int rem = (int)(b % len); String s = Long.toString(prepow + c).charAt(rem) + ""; System.out.print(s); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.*; import java.io.*; import java.util.stream.Collectors; public class P1177A { public static void main(String[] args) throws Exception { BufferedReader r = new BufferedReader(new InputStreamReader(System.in)); long n = Long.parseLong(r.readLine()); if (n < 10) { System.out.print(n); return; } int len = 1; long edge = 10; long prev = 0; long prepow = 0; while (edge - 1 < n) { prepow = (long)Math.pow(10, len); long pow = prepow * 10; prev = edge; edge = edge + (pow - prepow) * (len + 1); len += 1; } long b = n - prev; long c = b / len; int rem = (int)(b % len); String s = Long.toString(prepow + c).charAt(rem) + ""; System.out.print(s); } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
579
1,021
1,012
import java.io.*; import java.util.*; public class digits { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); long k = Long.parseLong(br.readLine()); long temp = 9 * (int)Math.pow(10,0); int count = 0; long initial = 0; while(k > temp) { count++; initial = temp; temp += 9 * (long)Math.pow(10,count)*(count+1); } long index = (k-initial-1)%(count+1); long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1); System.out.println((num+"").charAt((int)index)); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class digits { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); long k = Long.parseLong(br.readLine()); long temp = 9 * (int)Math.pow(10,0); int count = 0; long initial = 0; while(k > temp) { count++; initial = temp; temp += 9 * (long)Math.pow(10,count)*(count+1); } long index = (k-initial-1)%(count+1); long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1); System.out.println((num+"").charAt((int)index)); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class digits { public static void main(String[] args) throws IOException { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); long k = Long.parseLong(br.readLine()); long temp = 9 * (int)Math.pow(10,0); int count = 0; long initial = 0; while(k > temp) { count++; initial = temp; temp += 9 * (long)Math.pow(10,count)*(count+1); } long index = (k-initial-1)%(count+1); long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1); System.out.println((num+"").charAt((int)index)); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
498
1,011
3,603
import java.io.*; import java.util.*; public class C { String line; StringTokenizer inputParser; BufferedReader is; FileInputStream fstream; DataInputStream in; void openInput(String file) { if(file==null)is = new BufferedReader(new InputStreamReader(System.in));//stdin else { try{ fstream = new FileInputStream(file); in = new DataInputStream(fstream); is = new BufferedReader(new InputStreamReader(in)); }catch(Exception e) { System.err.println(e); } } } void readNextLine() { try { line = is.readLine(); inputParser = new StringTokenizer(line, " "); //System.err.println("Input: " + line); } catch (IOException e) { System.err.println("Unexpected IO ERROR: " + e); } } int NextInt() { String n = inputParser.nextToken(); int val = Integer.parseInt(n); //System.out.println("I read this number: " + val); return val; } String NextString() { String n = inputParser.nextToken(); return n; } void closeInput() { try { is.close(); } catch (IOException e) { System.err.println("Unexpected IO ERROR: " + e); } } public static void main(String [] argv) { String filePath=null; if(argv.length>0)filePath=argv[0]; C c = new C(filePath); } public C(String inputFile) { inputFile="input.txt"; openInput(inputFile); PrintWriter writer=null; try { writer = new PrintWriter("output.txt"); } catch (FileNotFoundException e) { e.printStackTrace(); } readNextLine(); int N=NextInt(); int M=NextInt(); readNextLine(); int K=NextInt(); readNextLine(); int [] [] p = new int[N][M]; int [] [] init = new int [K][2]; for(int i=0; i<K; i++) { int x=NextInt()-1; int y=NextInt()-1; p[x][y]=0; init[i][0]=x; init[i][1]=y; } int max=-1; int maxX=-1, maxY=-1; for(int i=0; i<N; i++) for(int j=0; j<M; j++) { p[i][j]=10000; for(int k=0; k<K; k++) { int n=Math.abs(init[k][0]-i)+Math.abs(init[k][1]-j); if(n<p[i][j])p[i][j]=n; } if(p[i][j]>max) { max=p[i][j]; maxX=i+1; maxY=j+1; } } writer.println( maxX+" "+maxY); closeInput(); writer.close(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class C { String line; StringTokenizer inputParser; BufferedReader is; FileInputStream fstream; DataInputStream in; void openInput(String file) { if(file==null)is = new BufferedReader(new InputStreamReader(System.in));//stdin else { try{ fstream = new FileInputStream(file); in = new DataInputStream(fstream); is = new BufferedReader(new InputStreamReader(in)); }catch(Exception e) { System.err.println(e); } } } void readNextLine() { try { line = is.readLine(); inputParser = new StringTokenizer(line, " "); //System.err.println("Input: " + line); } catch (IOException e) { System.err.println("Unexpected IO ERROR: " + e); } } int NextInt() { String n = inputParser.nextToken(); int val = Integer.parseInt(n); //System.out.println("I read this number: " + val); return val; } String NextString() { String n = inputParser.nextToken(); return n; } void closeInput() { try { is.close(); } catch (IOException e) { System.err.println("Unexpected IO ERROR: " + e); } } public static void main(String [] argv) { String filePath=null; if(argv.length>0)filePath=argv[0]; C c = new C(filePath); } public C(String inputFile) { inputFile="input.txt"; openInput(inputFile); PrintWriter writer=null; try { writer = new PrintWriter("output.txt"); } catch (FileNotFoundException e) { e.printStackTrace(); } readNextLine(); int N=NextInt(); int M=NextInt(); readNextLine(); int K=NextInt(); readNextLine(); int [] [] p = new int[N][M]; int [] [] init = new int [K][2]; for(int i=0; i<K; i++) { int x=NextInt()-1; int y=NextInt()-1; p[x][y]=0; init[i][0]=x; init[i][1]=y; } int max=-1; int maxX=-1, maxY=-1; for(int i=0; i<N; i++) for(int j=0; j<M; j++) { p[i][j]=10000; for(int k=0; k<K; k++) { int n=Math.abs(init[k][0]-i)+Math.abs(init[k][1]-j); if(n<p[i][j])p[i][j]=n; } if(p[i][j]>max) { max=p[i][j]; maxX=i+1; maxY=j+1; } } writer.println( maxX+" "+maxY); closeInput(); writer.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class C { String line; StringTokenizer inputParser; BufferedReader is; FileInputStream fstream; DataInputStream in; void openInput(String file) { if(file==null)is = new BufferedReader(new InputStreamReader(System.in));//stdin else { try{ fstream = new FileInputStream(file); in = new DataInputStream(fstream); is = new BufferedReader(new InputStreamReader(in)); }catch(Exception e) { System.err.println(e); } } } void readNextLine() { try { line = is.readLine(); inputParser = new StringTokenizer(line, " "); //System.err.println("Input: " + line); } catch (IOException e) { System.err.println("Unexpected IO ERROR: " + e); } } int NextInt() { String n = inputParser.nextToken(); int val = Integer.parseInt(n); //System.out.println("I read this number: " + val); return val; } String NextString() { String n = inputParser.nextToken(); return n; } void closeInput() { try { is.close(); } catch (IOException e) { System.err.println("Unexpected IO ERROR: " + e); } } public static void main(String [] argv) { String filePath=null; if(argv.length>0)filePath=argv[0]; C c = new C(filePath); } public C(String inputFile) { inputFile="input.txt"; openInput(inputFile); PrintWriter writer=null; try { writer = new PrintWriter("output.txt"); } catch (FileNotFoundException e) { e.printStackTrace(); } readNextLine(); int N=NextInt(); int M=NextInt(); readNextLine(); int K=NextInt(); readNextLine(); int [] [] p = new int[N][M]; int [] [] init = new int [K][2]; for(int i=0; i<K; i++) { int x=NextInt()-1; int y=NextInt()-1; p[x][y]=0; init[i][0]=x; init[i][1]=y; } int max=-1; int maxX=-1, maxY=-1; for(int i=0; i<N; i++) for(int j=0; j<M; j++) { p[i][j]=10000; for(int k=0; k<K; k++) { int n=Math.abs(init[k][0]-i)+Math.abs(init[k][1]-j); if(n<p[i][j])p[i][j]=n; } if(p[i][j]>max) { max=p[i][j]; maxX=i+1; maxY=j+1; } } writer.println( maxX+" "+maxY); closeInput(); writer.close(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,022
3,595
1,132
import java.util.Scanner; public class ReallyBigNumbers { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); long s = sc.nextLong(); long m = s; while(m-digitAdd(m)<s && m<=n){ m++; } System.out.println(Math.max(n-m+1, 0)); } private static int digitAdd(long s){ int sum = 0; for(long i = 0,j=1L;i<(int)Math.log10(s)+1; i++,j*=10){ sum += (s/j)%10; } return sum; } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Scanner; public class ReallyBigNumbers { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); long s = sc.nextLong(); long m = s; while(m-digitAdd(m)<s && m<=n){ m++; } System.out.println(Math.max(n-m+1, 0)); } private static int digitAdd(long s){ int sum = 0; for(long i = 0,j=1L;i<(int)Math.log10(s)+1; i++,j*=10){ sum += (s/j)%10; } return sum; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The running time increases with the square of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.util.Scanner; public class ReallyBigNumbers { public static void main(String[] args) { Scanner sc = new Scanner(System.in); long n = sc.nextLong(); long s = sc.nextLong(); long m = s; while(m-digitAdd(m)<s && m<=n){ m++; } System.out.println(Math.max(n-m+1, 0)); } private static int digitAdd(long s){ int sum = 0; for(long i = 0,j=1L;i<(int)Math.log10(s)+1; i++,j*=10){ sum += (s/j)%10; } return sum; } } </CODE> <EVALUATION_RUBRIC> - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
489
1,131
818
import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Locale; import java.util.StringTokenizer; public class Solution implements Runnable { public static void main(String[] args) { (new Thread(new Solution())).start(); } BufferedReader in; PrintWriter out; StringTokenizer st; String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } void solve() throws Exception { boolean[] r = new boolean[1010]; Arrays.fill(r, true); r[0] = r[1] = false; for (int i = 2; i < 1010; i++) { if (r[i]) { for (int j = i + i; j < 1010; j += i) { r[j] = false; } } } int[] pr = new int[1010]; int l = 0; for (int i = 2; i < 1010; i++) if (r[i]) pr[l++] = i; int n = nextInt(); int k = nextInt(); int ans = 0; int j = 0; for (int i = 2; i <= n; i++) { if (r[i]) { for (; j < l - 1; j++) { if (i == pr[j] + pr[j + 1] + 1) { ans++; break; } if (i < pr[j] + pr[j + 1] + 1) break; } } } if (ans >= k) out.println("YES"); else out.println("NO"); } public void run() { try { Locale.setDefault(Locale.US); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } catch (Exception e) { e.printStackTrace(); } out.flush(); } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Locale; import java.util.StringTokenizer; public class Solution implements Runnable { public static void main(String[] args) { (new Thread(new Solution())).start(); } BufferedReader in; PrintWriter out; StringTokenizer st; String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } void solve() throws Exception { boolean[] r = new boolean[1010]; Arrays.fill(r, true); r[0] = r[1] = false; for (int i = 2; i < 1010; i++) { if (r[i]) { for (int j = i + i; j < 1010; j += i) { r[j] = false; } } } int[] pr = new int[1010]; int l = 0; for (int i = 2; i < 1010; i++) if (r[i]) pr[l++] = i; int n = nextInt(); int k = nextInt(); int ans = 0; int j = 0; for (int i = 2; i <= n; i++) { if (r[i]) { for (; j < l - 1; j++) { if (i == pr[j] + pr[j + 1] + 1) { ans++; break; } if (i < pr[j] + pr[j + 1] + 1) break; } } } if (ans >= k) out.println("YES"); else out.println("NO"); } public void run() { try { Locale.setDefault(Locale.US); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } catch (Exception e) { e.printStackTrace(); } out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.FileReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.Arrays; import java.util.Locale; import java.util.StringTokenizer; public class Solution implements Runnable { public static void main(String[] args) { (new Thread(new Solution())).start(); } BufferedReader in; PrintWriter out; StringTokenizer st; String nextToken() throws IOException { while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine()); return st.nextToken(); } int nextInt() throws IOException { return Integer.parseInt(nextToken()); } long nextLong() throws IOException { return Long.parseLong(nextToken()); } double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } void solve() throws Exception { boolean[] r = new boolean[1010]; Arrays.fill(r, true); r[0] = r[1] = false; for (int i = 2; i < 1010; i++) { if (r[i]) { for (int j = i + i; j < 1010; j += i) { r[j] = false; } } } int[] pr = new int[1010]; int l = 0; for (int i = 2; i < 1010; i++) if (r[i]) pr[l++] = i; int n = nextInt(); int k = nextInt(); int ans = 0; int j = 0; for (int i = 2; i <= n; i++) { if (r[i]) { for (; j < l - 1; j++) { if (i == pr[j] + pr[j + 1] + 1) { ans++; break; } if (i < pr[j] + pr[j + 1] + 1) break; } } } if (ans >= k) out.println("YES"); else out.println("NO"); } public void run() { try { Locale.setDefault(Locale.US); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); } catch (Exception e) { e.printStackTrace(); } out.flush(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
868
817
853
import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.StringTokenizer; public class B { static ArrayList<Integer> [] adj; static int [] num; static int dfs(int u, int p){ int cnt = 0; for(int v:adj[u]){ if(v != p) cnt += dfs(v, u); } if(adj[u].size() == 1 && u != 0 || u == 0 && adj[0].size() == 0) cnt++; num[cnt]++; return cnt; } public static void main(String[] args) throws NumberFormatException, IOException { Scanner sc = new Scanner(); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt(); adj = new ArrayList[n]; for (int i = 0; i < adj.length; ++i) { adj[i] = new ArrayList<>(); } for (int i = 1; i < n; ++i) { int p = sc.nextInt()-1; adj[p].add(i); adj[i].add(p); } num = new int[n+1]; dfs(0, -1); for (int i = 1; i < num.length; ++i) { num[i] += num[i-1]; } int cur = 1; for (int i = 0; i < num.length; ++i) { while(cur <= num[i]){ out.print(i + " "); ++cur; } } out.close(); } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { br = new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); } } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.StringTokenizer; public class B { static ArrayList<Integer> [] adj; static int [] num; static int dfs(int u, int p){ int cnt = 0; for(int v:adj[u]){ if(v != p) cnt += dfs(v, u); } if(adj[u].size() == 1 && u != 0 || u == 0 && adj[0].size() == 0) cnt++; num[cnt]++; return cnt; } public static void main(String[] args) throws NumberFormatException, IOException { Scanner sc = new Scanner(); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt(); adj = new ArrayList[n]; for (int i = 0; i < adj.length; ++i) { adj[i] = new ArrayList<>(); } for (int i = 1; i < n; ++i) { int p = sc.nextInt()-1; adj[p].add(i); adj[i].add(p); } num = new int[n+1]; dfs(0, -1); for (int i = 1; i < num.length; ++i) { num[i] += num[i-1]; } int cur = 1; for (int i = 0; i < num.length; ++i) { while(cur <= num[i]){ out.print(i + " "); ++cur; } } out.close(); } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { br = new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.ArrayList; import java.util.Arrays; import java.util.HashSet; import java.util.StringTokenizer; public class B { static ArrayList<Integer> [] adj; static int [] num; static int dfs(int u, int p){ int cnt = 0; for(int v:adj[u]){ if(v != p) cnt += dfs(v, u); } if(adj[u].size() == 1 && u != 0 || u == 0 && adj[0].size() == 0) cnt++; num[cnt]++; return cnt; } public static void main(String[] args) throws NumberFormatException, IOException { Scanner sc = new Scanner(); PrintWriter out = new PrintWriter(System.out); int n = sc.nextInt(); adj = new ArrayList[n]; for (int i = 0; i < adj.length; ++i) { adj[i] = new ArrayList<>(); } for (int i = 1; i < n; ++i) { int p = sc.nextInt()-1; adj[p].add(i); adj[i].add(p); } num = new int[n+1]; dfs(0, -1); for (int i = 1; i < num.length; ++i) { num[i] += num[i-1]; } int cur = 1; for (int i = 0; i < num.length; ++i) { while(cur <= num[i]){ out.print(i + " "); ++cur; } } out.close(); } static class Scanner { BufferedReader br; StringTokenizer st; public Scanner() { br = new BufferedReader(new InputStreamReader(System.in)); } public String next() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(br.readLine()); } return st.nextToken(); } public int nextInt() throws NumberFormatException, IOException { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
795
852
754
/** * Created by Omar on 7/22/2016. */ import java.util.*; import java.io.*; public class CF364C { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); int n=Integer.parseInt(br.readLine()); String input=br.readLine(); Set<Character> set = new HashSet<Character>(); for(int i=0;i<input.length();i++){ set.add(input.charAt(i)); } StringBuilder sb= new StringBuilder(); for(char x:set){ sb.append(x); } String substring1=sb.toString(); // //System.out.println(substring1); // int[] count= new int[52]; // int[] b= new int[52]; // // char k; // for(int i=0;i<substring1.length();i++){ // k=substring1.charAt(i); // //System.out.println((int)'a'); // count[(k-'A')]++; // // } // for(int i=0;i<52;i++){ // b[i]=count[i]; // // //System.out.println("count "+count[i]); // } // int answer=set.size(); // // // for(int i=0;i<input.length();i++){ // // } // System.out.println(answer); // //System.out.println("WAIT"); System.out.println(solve(input,substring1).length()); pw.close(); br.close(); } public static boolean isEmpty(int[] a){ for(int i=0;i<a.length;i++){ if(a[i]!=0){ return false; } } return true; } public static String solve(String S, String T) { HashMap<Character, Integer> D = new HashMap<>(); HashMap<Character, Integer> GET = new HashMap<>(); int B,E; for (int i=0; i<T.length();i++) { char c=T.charAt(i); if (!D.containsKey(c)) { D.put(c, 1); } else { D.put(c, D.get(c) + 1); } } int ccc = 0; B=0; E=0; int min = Integer.MAX_VALUE; // int max = Integer.MIN_VALUE; String RESULT = ""; while (E < S.length()) { char c = S.charAt(E); if (D.containsKey(c)) { if (GET.containsKey(c)) { if (GET.get(c) < D.get(c)) ccc++; //ccc-- GET.put(c, GET.get(c) + 1); } else { GET.put(c, 1); ccc++; //ccc-- } } if (ccc == T.length()) { // if (ccc != B.length()) { char test = S.charAt(B); while (!GET.containsKey(test) || GET.get(test) > D.get(test)) { if (GET.containsKey(test) && GET.get(test) > D.get(test)) // GET.put(test, GET.get(test) - 24); GET.put(test, GET.get(test) - 1); //B-=B; B++; test = S.charAt(B); //test += S.charAt(B); } if (E - B + 1 < min) { RESULT = S.substring(B, E + 1); min = E - B + 1; } //} } E++; } //if(E==0) return RESULT; } }
O(n)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /** * Created by Omar on 7/22/2016. */ import java.util.*; import java.io.*; public class CF364C { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); int n=Integer.parseInt(br.readLine()); String input=br.readLine(); Set<Character> set = new HashSet<Character>(); for(int i=0;i<input.length();i++){ set.add(input.charAt(i)); } StringBuilder sb= new StringBuilder(); for(char x:set){ sb.append(x); } String substring1=sb.toString(); // //System.out.println(substring1); // int[] count= new int[52]; // int[] b= new int[52]; // // char k; // for(int i=0;i<substring1.length();i++){ // k=substring1.charAt(i); // //System.out.println((int)'a'); // count[(k-'A')]++; // // } // for(int i=0;i<52;i++){ // b[i]=count[i]; // // //System.out.println("count "+count[i]); // } // int answer=set.size(); // // // for(int i=0;i<input.length();i++){ // // } // System.out.println(answer); // //System.out.println("WAIT"); System.out.println(solve(input,substring1).length()); pw.close(); br.close(); } public static boolean isEmpty(int[] a){ for(int i=0;i<a.length;i++){ if(a[i]!=0){ return false; } } return true; } public static String solve(String S, String T) { HashMap<Character, Integer> D = new HashMap<>(); HashMap<Character, Integer> GET = new HashMap<>(); int B,E; for (int i=0; i<T.length();i++) { char c=T.charAt(i); if (!D.containsKey(c)) { D.put(c, 1); } else { D.put(c, D.get(c) + 1); } } int ccc = 0; B=0; E=0; int min = Integer.MAX_VALUE; // int max = Integer.MIN_VALUE; String RESULT = ""; while (E < S.length()) { char c = S.charAt(E); if (D.containsKey(c)) { if (GET.containsKey(c)) { if (GET.get(c) < D.get(c)) ccc++; //ccc-- GET.put(c, GET.get(c) + 1); } else { GET.put(c, 1); ccc++; //ccc-- } } if (ccc == T.length()) { // if (ccc != B.length()) { char test = S.charAt(B); while (!GET.containsKey(test) || GET.get(test) > D.get(test)) { if (GET.containsKey(test) && GET.get(test) > D.get(test)) // GET.put(test, GET.get(test) - 24); GET.put(test, GET.get(test) - 1); //B-=B; B++; test = S.charAt(B); //test += S.charAt(B); } if (E - B + 1 < min) { RESULT = S.substring(B, E + 1); min = E - B + 1; } //} } E++; } //if(E==0) return RESULT; } } </CODE> <EVALUATION_RUBRIC> - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /** * Created by Omar on 7/22/2016. */ import java.util.*; import java.io.*; public class CF364C { public static void main(String[] args) throws Exception { BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); PrintWriter pw = new PrintWriter(System.out); int n=Integer.parseInt(br.readLine()); String input=br.readLine(); Set<Character> set = new HashSet<Character>(); for(int i=0;i<input.length();i++){ set.add(input.charAt(i)); } StringBuilder sb= new StringBuilder(); for(char x:set){ sb.append(x); } String substring1=sb.toString(); // //System.out.println(substring1); // int[] count= new int[52]; // int[] b= new int[52]; // // char k; // for(int i=0;i<substring1.length();i++){ // k=substring1.charAt(i); // //System.out.println((int)'a'); // count[(k-'A')]++; // // } // for(int i=0;i<52;i++){ // b[i]=count[i]; // // //System.out.println("count "+count[i]); // } // int answer=set.size(); // // // for(int i=0;i<input.length();i++){ // // } // System.out.println(answer); // //System.out.println("WAIT"); System.out.println(solve(input,substring1).length()); pw.close(); br.close(); } public static boolean isEmpty(int[] a){ for(int i=0;i<a.length;i++){ if(a[i]!=0){ return false; } } return true; } public static String solve(String S, String T) { HashMap<Character, Integer> D = new HashMap<>(); HashMap<Character, Integer> GET = new HashMap<>(); int B,E; for (int i=0; i<T.length();i++) { char c=T.charAt(i); if (!D.containsKey(c)) { D.put(c, 1); } else { D.put(c, D.get(c) + 1); } } int ccc = 0; B=0; E=0; int min = Integer.MAX_VALUE; // int max = Integer.MIN_VALUE; String RESULT = ""; while (E < S.length()) { char c = S.charAt(E); if (D.containsKey(c)) { if (GET.containsKey(c)) { if (GET.get(c) < D.get(c)) ccc++; //ccc-- GET.put(c, GET.get(c) + 1); } else { GET.put(c, 1); ccc++; //ccc-- } } if (ccc == T.length()) { // if (ccc != B.length()) { char test = S.charAt(B); while (!GET.containsKey(test) || GET.get(test) > D.get(test)) { if (GET.containsKey(test) && GET.get(test) > D.get(test)) // GET.put(test, GET.get(test) - 24); GET.put(test, GET.get(test) - 1); //B-=B; B++; test = S.charAt(B); //test += S.charAt(B); } if (E - B + 1 < min) { RESULT = S.substring(B, E + 1); min = E - B + 1; } //} } E++; } //if(E==0) return RESULT; } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,129
753
2,103
import java.util.Arrays; import java.util.Scanner; public class A { static final Scanner sc = new Scanner(System.in); void run() { int n = sc.nextInt(); int[] xs = new int[n]; for(int i = 0; i < n; i++) { xs[i] = sc.nextInt(); } Arrays.sort(xs); xs[n-1] = xs[n-1] == 1 ? 2 : 1; Arrays.sort(xs); for(int i = 0; i < n; i++) System.out.print(xs[i] + " "); } public static void main(String[] args) { new A().run(); } }
O(nlog(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class A { static final Scanner sc = new Scanner(System.in); void run() { int n = sc.nextInt(); int[] xs = new int[n]; for(int i = 0; i < n; i++) { xs[i] = sc.nextInt(); } Arrays.sort(xs); xs[n-1] = xs[n-1] == 1 ? 2 : 1; Arrays.sort(xs); for(int i = 0; i < n; i++) System.out.print(xs[i] + " "); } public static void main(String[] args) { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The running time increases with the logarithm of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class A { static final Scanner sc = new Scanner(System.in); void run() { int n = sc.nextInt(); int[] xs = new int[n]; for(int i = 0; i < n; i++) { xs[i] = sc.nextInt(); } Arrays.sort(xs); xs[n-1] = xs[n-1] == 1 ? 2 : 1; Arrays.sort(xs); for(int i = 0; i < n; i++) System.out.print(xs[i] + " "); } public static void main(String[] args) { new A().run(); } } </CODE> <EVALUATION_RUBRIC> - O(1): The running time does not change regardless of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
482
2,099
3,666
import java.io.*; import java.lang.reflect.Array; import java.util.*; public class Problem implements Runnable { private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; private BufferedReader in; private PrintWriter out; private StringTokenizer tok = new StringTokenizer(""); private void init() throws FileNotFoundException { Locale.setDefault(Locale.US); String fileName = ""; /* if (ONLINE_JUDGE && fileName.isEmpty()) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } else { if (fileName.isEmpty()) {*/ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); /* } else { in = new BufferedReader(new FileReader(fileName + ".in")); out = new PrintWriter(fileName + ".out"); /* } }*/ } String readString() { while (!tok.hasMoreTokens()) { try { tok = new StringTokenizer(in.readLine()); } catch (Exception e) { return null; } } return tok.nextToken(); } int readInt() { return Integer.parseInt(readString()); } long readLong() { return Long.parseLong(readString()); } double readDouble() { return Double.parseDouble(readString()); } int[] readIntArray(int size) { int[] a = new int[size]; for (int i = 0; i < size; i++) { a[i] = readInt(); } return a; } public static void main(String[] args) { //new Thread(null, new _Solution(), "", 128 * (1L << 20)).start(); new Problem().run(); } long timeBegin, timeEnd; void time() { timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } @Override public void run() { try { timeBegin = System.currentTimeMillis(); init(); solve(); out.close(); time(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } int[][] dist; int n, m; private void solve() throws IOException { n = readInt(); m = readInt(); int k=readInt(); dist = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) dist[i][j] = -1; for (int i = 0; i < k; i++) { dist[readInt()-1][readInt()-1]=0; } for (int i=0;i<n;i++) for (int j=0;j<m;j++) if (dist[i][j]==0) bfs(i, j); int max=0,X=0,Y=0; for (int i=0;i<n;i++) for (int j=0;j<m;j++) if (dist[i][j]>=max){ max=dist[i][j]; X=i+1; Y=j+1; } out.println(X+" "+Y); } public void bfs(int x, int y) { int[] dx = {0, 1, 0, -1}; int[] dy = {1, 0, -1, 0}; dist[x][y] = 0; ArrayDeque<P> q = new ArrayDeque<>(); q.add(new P(x, y)); while (!q.isEmpty()) { P v = q.poll(); for (int i = 0; i < 4; i++) { int nx = v.x + dx[i]; int ny = v.y + dy[i]; if (inside(nx, ny) && (dist[nx][ny] == -1 || (dist[nx][ny] > dist[v.x][v.y] + 1&&dist[nx][ny]!=0))) { q.add(new P(nx, ny)); dist[nx][ny] = dist[v.x][v.y] + 1; } } } } public boolean inside(int x, int y) { if (x < n && y < m && x >= 0 && y >= 0) { return true; } return false; } } class P { int x, y; public P(int x, int y) { this.x = x; this.y = y; } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.lang.reflect.Array; import java.util.*; public class Problem implements Runnable { private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; private BufferedReader in; private PrintWriter out; private StringTokenizer tok = new StringTokenizer(""); private void init() throws FileNotFoundException { Locale.setDefault(Locale.US); String fileName = ""; /* if (ONLINE_JUDGE && fileName.isEmpty()) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } else { if (fileName.isEmpty()) {*/ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); /* } else { in = new BufferedReader(new FileReader(fileName + ".in")); out = new PrintWriter(fileName + ".out"); /* } }*/ } String readString() { while (!tok.hasMoreTokens()) { try { tok = new StringTokenizer(in.readLine()); } catch (Exception e) { return null; } } return tok.nextToken(); } int readInt() { return Integer.parseInt(readString()); } long readLong() { return Long.parseLong(readString()); } double readDouble() { return Double.parseDouble(readString()); } int[] readIntArray(int size) { int[] a = new int[size]; for (int i = 0; i < size; i++) { a[i] = readInt(); } return a; } public static void main(String[] args) { //new Thread(null, new _Solution(), "", 128 * (1L << 20)).start(); new Problem().run(); } long timeBegin, timeEnd; void time() { timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } @Override public void run() { try { timeBegin = System.currentTimeMillis(); init(); solve(); out.close(); time(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } int[][] dist; int n, m; private void solve() throws IOException { n = readInt(); m = readInt(); int k=readInt(); dist = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) dist[i][j] = -1; for (int i = 0; i < k; i++) { dist[readInt()-1][readInt()-1]=0; } for (int i=0;i<n;i++) for (int j=0;j<m;j++) if (dist[i][j]==0) bfs(i, j); int max=0,X=0,Y=0; for (int i=0;i<n;i++) for (int j=0;j<m;j++) if (dist[i][j]>=max){ max=dist[i][j]; X=i+1; Y=j+1; } out.println(X+" "+Y); } public void bfs(int x, int y) { int[] dx = {0, 1, 0, -1}; int[] dy = {1, 0, -1, 0}; dist[x][y] = 0; ArrayDeque<P> q = new ArrayDeque<>(); q.add(new P(x, y)); while (!q.isEmpty()) { P v = q.poll(); for (int i = 0; i < 4; i++) { int nx = v.x + dx[i]; int ny = v.y + dy[i]; if (inside(nx, ny) && (dist[nx][ny] == -1 || (dist[nx][ny] > dist[v.x][v.y] + 1&&dist[nx][ny]!=0))) { q.add(new P(nx, ny)); dist[nx][ny] = dist[v.x][v.y] + 1; } } } } public boolean inside(int x, int y) { if (x < n && y < m && x >= 0 && y >= 0) { return true; } return false; } } class P { int x, y; public P(int x, int y) { this.x = x; this.y = y; } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.lang.reflect.Array; import java.util.*; public class Problem implements Runnable { private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null; private BufferedReader in; private PrintWriter out; private StringTokenizer tok = new StringTokenizer(""); private void init() throws FileNotFoundException { Locale.setDefault(Locale.US); String fileName = ""; /* if (ONLINE_JUDGE && fileName.isEmpty()) { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); } else { if (fileName.isEmpty()) {*/ in = new BufferedReader(new FileReader("input.txt")); out = new PrintWriter("output.txt"); /* } else { in = new BufferedReader(new FileReader(fileName + ".in")); out = new PrintWriter(fileName + ".out"); /* } }*/ } String readString() { while (!tok.hasMoreTokens()) { try { tok = new StringTokenizer(in.readLine()); } catch (Exception e) { return null; } } return tok.nextToken(); } int readInt() { return Integer.parseInt(readString()); } long readLong() { return Long.parseLong(readString()); } double readDouble() { return Double.parseDouble(readString()); } int[] readIntArray(int size) { int[] a = new int[size]; for (int i = 0; i < size; i++) { a[i] = readInt(); } return a; } public static void main(String[] args) { //new Thread(null, new _Solution(), "", 128 * (1L << 20)).start(); new Problem().run(); } long timeBegin, timeEnd; void time() { timeEnd = System.currentTimeMillis(); System.err.println("Time = " + (timeEnd - timeBegin)); } @Override public void run() { try { timeBegin = System.currentTimeMillis(); init(); solve(); out.close(); time(); } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } int[][] dist; int n, m; private void solve() throws IOException { n = readInt(); m = readInt(); int k=readInt(); dist = new int[n][m]; for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) dist[i][j] = -1; for (int i = 0; i < k; i++) { dist[readInt()-1][readInt()-1]=0; } for (int i=0;i<n;i++) for (int j=0;j<m;j++) if (dist[i][j]==0) bfs(i, j); int max=0,X=0,Y=0; for (int i=0;i<n;i++) for (int j=0;j<m;j++) if (dist[i][j]>=max){ max=dist[i][j]; X=i+1; Y=j+1; } out.println(X+" "+Y); } public void bfs(int x, int y) { int[] dx = {0, 1, 0, -1}; int[] dy = {1, 0, -1, 0}; dist[x][y] = 0; ArrayDeque<P> q = new ArrayDeque<>(); q.add(new P(x, y)); while (!q.isEmpty()) { P v = q.poll(); for (int i = 0; i < 4; i++) { int nx = v.x + dx[i]; int ny = v.y + dy[i]; if (inside(nx, ny) && (dist[nx][ny] == -1 || (dist[nx][ny] > dist[v.x][v.y] + 1&&dist[nx][ny]!=0))) { q.add(new P(nx, ny)); dist[nx][ny] = dist[v.x][v.y] + 1; } } } } public boolean inside(int x, int y) { if (x < n && y < m && x >= 0 && y >= 0) { return true; } return false; } } class P { int x, y; public P(int x, int y) { this.x = x; this.y = y; } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,307
3,658
3,872
import java.util.*; import java.io.*; public class C { public static void main(String[] args) throws IOException{ BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int t = Integer.parseInt(f.readLine()); while(t-->0){ int n = Integer.parseInt(f.readLine()); int[] arr = new int[n]; for(int i = 0; i < n; i++){ arr[i] = Integer.parseInt(f.readLine()); } int[] levels = new int[n]; int curr_level = 0; for(int i = 0; i < n; i++){ if(levels[curr_level] == arr[i]-1){ levels[curr_level]++; }else if(arr[i] == 1){ curr_level++; levels[curr_level]++; }else if(arr[i] > 1){ while(curr_level > 0 && levels[curr_level] != arr[i]-1){ levels[curr_level] = 0; curr_level--; } levels[curr_level]++; } StringBuilder ostring = new StringBuilder(); for(int level = 0; level <= curr_level; level++){ ostring.append(levels[level]); if(level != curr_level) ostring.append("."); } out.println(ostring); } } out.close(); } }
O(n^3)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class C { public static void main(String[] args) throws IOException{ BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int t = Integer.parseInt(f.readLine()); while(t-->0){ int n = Integer.parseInt(f.readLine()); int[] arr = new int[n]; for(int i = 0; i < n; i++){ arr[i] = Integer.parseInt(f.readLine()); } int[] levels = new int[n]; int curr_level = 0; for(int i = 0; i < n; i++){ if(levels[curr_level] == arr[i]-1){ levels[curr_level]++; }else if(arr[i] == 1){ curr_level++; levels[curr_level]++; }else if(arr[i] > 1){ while(curr_level > 0 && levels[curr_level] != arr[i]-1){ levels[curr_level] = 0; curr_level--; } levels[curr_level]++; } StringBuilder ostring = new StringBuilder(); for(int level = 0; level <= curr_level; level++){ ostring.append(levels[level]); if(level != curr_level) ostring.append("."); } out.println(ostring); } } out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class C { public static void main(String[] args) throws IOException{ BufferedReader f = new BufferedReader(new InputStreamReader(System.in)); PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out)); int t = Integer.parseInt(f.readLine()); while(t-->0){ int n = Integer.parseInt(f.readLine()); int[] arr = new int[n]; for(int i = 0; i < n; i++){ arr[i] = Integer.parseInt(f.readLine()); } int[] levels = new int[n]; int curr_level = 0; for(int i = 0; i < n; i++){ if(levels[curr_level] == arr[i]-1){ levels[curr_level]++; }else if(arr[i] == 1){ curr_level++; levels[curr_level]++; }else if(arr[i] > 1){ while(curr_level > 0 && levels[curr_level] != arr[i]-1){ levels[curr_level] = 0; curr_level--; } levels[curr_level]++; } StringBuilder ostring = new StringBuilder(); for(int level = 0; level <= curr_level; level++){ ostring.append(levels[level]); if(level != curr_level) ostring.append("."); } out.println(ostring); } } out.close(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
614
3,862
1,499
import java.io.InputStream; import java.io.PrintStream; import java.util.Arrays; import java.util.Scanner; /** * @author Abhimanyu Singh * */ public class LittleGirlAndMaximumXOR { private InputStream input; private PrintStream output; private Scanner inputSc; static final boolean ONE = true; static final boolean ZERO = false; char dp[][][]; public LittleGirlAndMaximumXOR(InputStream input, PrintStream output) { this.input = input; this.output = output; init(); } private void init() { inputSc = new Scanner(input); } static int lineToInt(String line) { return Integer.parseInt(line); } public void solve() { solveTestCase(1); } void fill(char a[], long value) { String str = Long.toBinaryString(value); char array[] = str.toCharArray(); int len = array.length; int index = 63; while (len > 0) { a[index] = array[len - 1]; len--; index--; } } void init(char a[]) { for (int i = 0; i < 64; i++) { a[i] = '0'; } } /* char[] getMax0(char lBit[], char rBit[], int lIndex, int rIndex) { char ans[]=new char[64]; if(lIndex) } char[] getMax(char lBit[], char rBit[], int lIndex, int rIndex) { }*/ private void solveTestCase(int testN) { long l = inputSc.nextLong(); long r = inputSc.nextLong(); char lBit[] = new char[64]; char rBit[] = new char[64]; init(lBit); init(rBit); fill(lBit, l); fill(rBit, r); int i = 0; char ansBit[] = new char[64]; char a[] = new char[64]; char b[] = new char[64]; init(a); init(b); init(ansBit); for (; i < 64; i++) { if (lBit[i] == '0' && rBit[i] == '0') { } else if (lBit[i] == '1' && rBit[i] == '0') { throw new RuntimeException("Wrong Input"); } else if (lBit[i] == '0' && rBit[i] == '1') { a[i] = '0'; b[i] = '1'; break; } else { a[i] = '1'; b[i] = '1'; } } boolean aLessB = true; boolean aBig = false; boolean bSmall = false; for (; i < 64; i++) { if (lBit[i] == '0' && rBit[i] == '0') { a[i] = '1'; b[i] = '0'; aBig = true; } else if (lBit[i] == '1' && rBit[i] == '0') { a[i] = '1'; b[i] = '0'; } else if (lBit[i] == '0' && rBit[i] == '1') { a[i] = '0'; b[i] = '1'; } else { a[i] = '1'; b[i] = '0'; bSmall = true; } } for (i = 0; i < 64; i++) { if (a[i] == '0' && b[i] == '0') { ansBit[i] = '0'; } else if (a[i] == '1' && b[i] == '0') { ansBit[i] = '1'; } else if (a[i] == '0' && b[i] == '1') { ansBit[i] = '1'; } else { ansBit[i] = '0'; } } String ansStr = new String(ansBit); long ansValue = Long.parseLong(ansStr, 2); output.println(ansValue); } /** * @param args the command line arguments */ public static void main(String[] args) { LittleGirlAndMaximumXOR lgamx = new LittleGirlAndMaximumXOR(System.in, System.out); lgamx.solve(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.InputStream; import java.io.PrintStream; import java.util.Arrays; import java.util.Scanner; /** * @author Abhimanyu Singh * */ public class LittleGirlAndMaximumXOR { private InputStream input; private PrintStream output; private Scanner inputSc; static final boolean ONE = true; static final boolean ZERO = false; char dp[][][]; public LittleGirlAndMaximumXOR(InputStream input, PrintStream output) { this.input = input; this.output = output; init(); } private void init() { inputSc = new Scanner(input); } static int lineToInt(String line) { return Integer.parseInt(line); } public void solve() { solveTestCase(1); } void fill(char a[], long value) { String str = Long.toBinaryString(value); char array[] = str.toCharArray(); int len = array.length; int index = 63; while (len > 0) { a[index] = array[len - 1]; len--; index--; } } void init(char a[]) { for (int i = 0; i < 64; i++) { a[i] = '0'; } } /* char[] getMax0(char lBit[], char rBit[], int lIndex, int rIndex) { char ans[]=new char[64]; if(lIndex) } char[] getMax(char lBit[], char rBit[], int lIndex, int rIndex) { }*/ private void solveTestCase(int testN) { long l = inputSc.nextLong(); long r = inputSc.nextLong(); char lBit[] = new char[64]; char rBit[] = new char[64]; init(lBit); init(rBit); fill(lBit, l); fill(rBit, r); int i = 0; char ansBit[] = new char[64]; char a[] = new char[64]; char b[] = new char[64]; init(a); init(b); init(ansBit); for (; i < 64; i++) { if (lBit[i] == '0' && rBit[i] == '0') { } else if (lBit[i] == '1' && rBit[i] == '0') { throw new RuntimeException("Wrong Input"); } else if (lBit[i] == '0' && rBit[i] == '1') { a[i] = '0'; b[i] = '1'; break; } else { a[i] = '1'; b[i] = '1'; } } boolean aLessB = true; boolean aBig = false; boolean bSmall = false; for (; i < 64; i++) { if (lBit[i] == '0' && rBit[i] == '0') { a[i] = '1'; b[i] = '0'; aBig = true; } else if (lBit[i] == '1' && rBit[i] == '0') { a[i] = '1'; b[i] = '0'; } else if (lBit[i] == '0' && rBit[i] == '1') { a[i] = '0'; b[i] = '1'; } else { a[i] = '1'; b[i] = '0'; bSmall = true; } } for (i = 0; i < 64; i++) { if (a[i] == '0' && b[i] == '0') { ansBit[i] = '0'; } else if (a[i] == '1' && b[i] == '0') { ansBit[i] = '1'; } else if (a[i] == '0' && b[i] == '1') { ansBit[i] = '1'; } else { ansBit[i] = '0'; } } String ansStr = new String(ansBit); long ansValue = Long.parseLong(ansStr, 2); output.println(ansValue); } /** * @param args the command line arguments */ public static void main(String[] args) { LittleGirlAndMaximumXOR lgamx = new LittleGirlAndMaximumXOR(System.in, System.out); lgamx.solve(); } } </CODE> <EVALUATION_RUBRIC> - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.InputStream; import java.io.PrintStream; import java.util.Arrays; import java.util.Scanner; /** * @author Abhimanyu Singh * */ public class LittleGirlAndMaximumXOR { private InputStream input; private PrintStream output; private Scanner inputSc; static final boolean ONE = true; static final boolean ZERO = false; char dp[][][]; public LittleGirlAndMaximumXOR(InputStream input, PrintStream output) { this.input = input; this.output = output; init(); } private void init() { inputSc = new Scanner(input); } static int lineToInt(String line) { return Integer.parseInt(line); } public void solve() { solveTestCase(1); } void fill(char a[], long value) { String str = Long.toBinaryString(value); char array[] = str.toCharArray(); int len = array.length; int index = 63; while (len > 0) { a[index] = array[len - 1]; len--; index--; } } void init(char a[]) { for (int i = 0; i < 64; i++) { a[i] = '0'; } } /* char[] getMax0(char lBit[], char rBit[], int lIndex, int rIndex) { char ans[]=new char[64]; if(lIndex) } char[] getMax(char lBit[], char rBit[], int lIndex, int rIndex) { }*/ private void solveTestCase(int testN) { long l = inputSc.nextLong(); long r = inputSc.nextLong(); char lBit[] = new char[64]; char rBit[] = new char[64]; init(lBit); init(rBit); fill(lBit, l); fill(rBit, r); int i = 0; char ansBit[] = new char[64]; char a[] = new char[64]; char b[] = new char[64]; init(a); init(b); init(ansBit); for (; i < 64; i++) { if (lBit[i] == '0' && rBit[i] == '0') { } else if (lBit[i] == '1' && rBit[i] == '0') { throw new RuntimeException("Wrong Input"); } else if (lBit[i] == '0' && rBit[i] == '1') { a[i] = '0'; b[i] = '1'; break; } else { a[i] = '1'; b[i] = '1'; } } boolean aLessB = true; boolean aBig = false; boolean bSmall = false; for (; i < 64; i++) { if (lBit[i] == '0' && rBit[i] == '0') { a[i] = '1'; b[i] = '0'; aBig = true; } else if (lBit[i] == '1' && rBit[i] == '0') { a[i] = '1'; b[i] = '0'; } else if (lBit[i] == '0' && rBit[i] == '1') { a[i] = '0'; b[i] = '1'; } else { a[i] = '1'; b[i] = '0'; bSmall = true; } } for (i = 0; i < 64; i++) { if (a[i] == '0' && b[i] == '0') { ansBit[i] = '0'; } else if (a[i] == '1' && b[i] == '0') { ansBit[i] = '1'; } else if (a[i] == '0' && b[i] == '1') { ansBit[i] = '1'; } else { ansBit[i] = '0'; } } String ansStr = new String(ansBit); long ansValue = Long.parseLong(ansStr, 2); output.println(ansValue); } /** * @param args the command line arguments */ public static void main(String[] args) { LittleGirlAndMaximumXOR lgamx = new LittleGirlAndMaximumXOR(System.in, System.out); lgamx.solve(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^2): The time complexity grows proportionally to the square of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,341
1,497
2,988
import java.io.*; import java.util.*; public class cf { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); pw.println(n/2+1); pw.close(); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; public class cf { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); pw.println(n/2+1); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; public class cf { static class FastScanner { BufferedReader br; StringTokenizer st; public FastScanner() { try { br = new BufferedReader(new InputStreamReader(System.in)); st = new StringTokenizer(br.readLine()); } catch (Exception e){e.printStackTrace();} } public String next() { if (st.hasMoreTokens()) return st.nextToken(); try {st = new StringTokenizer(br.readLine());} catch (Exception e) {e.printStackTrace();} return st.nextToken(); } public int nextInt() {return Integer.parseInt(next());} public long nextLong() {return Long.parseLong(next());} public double nextDouble() {return Double.parseDouble(next());} public String nextLine() { String line = ""; if(st.hasMoreTokens()) line = st.nextToken(); else try {return br.readLine();}catch(IOException e){e.printStackTrace();} while(st.hasMoreTokens()) line += " "+st.nextToken(); return line; } } public static void main(String[] args) { FastScanner sc = new FastScanner(); PrintWriter pw = new PrintWriter(System.out); int n = sc.nextInt(); pw.println(n/2+1); pw.close(); } } </CODE> <EVALUATION_RUBRIC> - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
610
2,982
46
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskG solver = new TaskG(); solver.solve(1, in, out); out.close(); } static class TaskG { static final long MODULO = (long) 1e9 + 7; static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO; static final int[] ONE = new int[]{1}; int k; int n; long[] globalRes; int[] p2; public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); k = in.nextInt(); globalRes = new long[k + 1]; p2 = new int[n + 1]; p2[0] = 1; for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO); Vertex[] vs = new Vertex[n]; for (int i = 0; i < n; ++i) vs[i] = new Vertex(); for (int i = 0; i < n - 1; ++i) { Vertex a = vs[in.nextInt() - 1]; Vertex b = vs[in.nextInt() - 1]; a.adj.add(b); b.adj.add(a); } vs[0].dfs(null); long[][] ways = new long[k + 1][k + 1]; ways[0][0] = 1; for (int i = 1; i <= k; ++i) { for (int j = 1; j <= k; ++j) { ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO; } } long sum = 0; for (int i = 1; i <= k; ++i) { long s = globalRes[i]; s %= MODULO; sum = (sum + s * ways[k][i]) % MODULO; } out.println(sum); } class Vertex { int[] res; int subtreeSize; List<Vertex> adj = new ArrayList<>(); public void dfs(Vertex parent) { subtreeSize = 1; int[] prod = ONE; for (Vertex child : adj) if (child != parent) { child.dfs(this); subtreeSize += child.subtreeSize; } int mult = 2;//p2[n - subtreeSize]; for (Vertex child : adj) if (child != parent) { int[] c = child.res; prod = mul(prod, c); subFrom(globalRes, c, 1); } addTo(globalRes, prod, mult); res = insertEdge(prod); } private int[] insertEdge(int[] a) { int len = a.length + 1; if (len > k) len = k + 1; int[] b = new int[len]; b[0] = a[0] * 2; if (b[0] >= MODULO) b[0] -= MODULO; for (int i = 1; i < len; ++i) { long s = a[i - 1]; if (i < a.length) s += a[i]; if (s >= MODULO) s -= MODULO; s = s * 2; if (s >= MODULO) s -= MODULO; b[i] = (int) s; } b[1] -= 1; if (b[1] < 0) b[1] += MODULO; return b; } private void addTo(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + b[i] * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private void subFrom(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + (MODULO - b[i]) * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private int[] mul(int[] a, int[] b) { int len = a.length + b.length - 1; if (len > k) len = k + 1; int[] c = new int[len]; for (int i = 0; i < len; ++i) { long s = 0; int left = Math.max(0, i - (b.length - 1)); int right = Math.min(a.length - 1, i); for (int ia = left; ia <= right; ++ia) { int ib = i - ia; s += a[ia] * (long) b[ib]; if (s < 0) s -= BIG; } c[i] = (int) (s % MODULO); } return c; } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } }
O(n^2)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskG solver = new TaskG(); solver.solve(1, in, out); out.close(); } static class TaskG { static final long MODULO = (long) 1e9 + 7; static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO; static final int[] ONE = new int[]{1}; int k; int n; long[] globalRes; int[] p2; public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); k = in.nextInt(); globalRes = new long[k + 1]; p2 = new int[n + 1]; p2[0] = 1; for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO); Vertex[] vs = new Vertex[n]; for (int i = 0; i < n; ++i) vs[i] = new Vertex(); for (int i = 0; i < n - 1; ++i) { Vertex a = vs[in.nextInt() - 1]; Vertex b = vs[in.nextInt() - 1]; a.adj.add(b); b.adj.add(a); } vs[0].dfs(null); long[][] ways = new long[k + 1][k + 1]; ways[0][0] = 1; for (int i = 1; i <= k; ++i) { for (int j = 1; j <= k; ++j) { ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO; } } long sum = 0; for (int i = 1; i <= k; ++i) { long s = globalRes[i]; s %= MODULO; sum = (sum + s * ways[k][i]) % MODULO; } out.println(sum); } class Vertex { int[] res; int subtreeSize; List<Vertex> adj = new ArrayList<>(); public void dfs(Vertex parent) { subtreeSize = 1; int[] prod = ONE; for (Vertex child : adj) if (child != parent) { child.dfs(this); subtreeSize += child.subtreeSize; } int mult = 2;//p2[n - subtreeSize]; for (Vertex child : adj) if (child != parent) { int[] c = child.res; prod = mul(prod, c); subFrom(globalRes, c, 1); } addTo(globalRes, prod, mult); res = insertEdge(prod); } private int[] insertEdge(int[] a) { int len = a.length + 1; if (len > k) len = k + 1; int[] b = new int[len]; b[0] = a[0] * 2; if (b[0] >= MODULO) b[0] -= MODULO; for (int i = 1; i < len; ++i) { long s = a[i - 1]; if (i < a.length) s += a[i]; if (s >= MODULO) s -= MODULO; s = s * 2; if (s >= MODULO) s -= MODULO; b[i] = (int) s; } b[1] -= 1; if (b[1] < 0) b[1] += MODULO; return b; } private void addTo(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + b[i] * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private void subFrom(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + (MODULO - b[i]) * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private int[] mul(int[] a, int[] b) { int len = a.length + b.length - 1; if (len > k) len = k + 1; int[] c = new int[len]; for (int i = 0; i < len; ++i) { long s = 0; int left = Math.max(0, i - (b.length - 1)); int right = Math.min(a.length - 1, i); for (int ia = left; ia <= right; ++ia) { int ib = i - ia; s += a[ia] * (long) b[ib]; if (s < 0) s -= BIG; } c[i] = (int) (s % MODULO); } return c; } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(1): The running time does not change regardless of the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n): The running time grows linearly with the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.io.IOException; import java.io.InputStreamReader; import java.util.ArrayList; import java.util.List; import java.util.StringTokenizer; import java.io.BufferedReader; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); PrintWriter out = new PrintWriter(outputStream); TaskG solver = new TaskG(); solver.solve(1, in, out); out.close(); } static class TaskG { static final long MODULO = (long) 1e9 + 7; static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO; static final int[] ONE = new int[]{1}; int k; int n; long[] globalRes; int[] p2; public void solve(int testNumber, InputReader in, PrintWriter out) { n = in.nextInt(); k = in.nextInt(); globalRes = new long[k + 1]; p2 = new int[n + 1]; p2[0] = 1; for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO); Vertex[] vs = new Vertex[n]; for (int i = 0; i < n; ++i) vs[i] = new Vertex(); for (int i = 0; i < n - 1; ++i) { Vertex a = vs[in.nextInt() - 1]; Vertex b = vs[in.nextInt() - 1]; a.adj.add(b); b.adj.add(a); } vs[0].dfs(null); long[][] ways = new long[k + 1][k + 1]; ways[0][0] = 1; for (int i = 1; i <= k; ++i) { for (int j = 1; j <= k; ++j) { ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO; } } long sum = 0; for (int i = 1; i <= k; ++i) { long s = globalRes[i]; s %= MODULO; sum = (sum + s * ways[k][i]) % MODULO; } out.println(sum); } class Vertex { int[] res; int subtreeSize; List<Vertex> adj = new ArrayList<>(); public void dfs(Vertex parent) { subtreeSize = 1; int[] prod = ONE; for (Vertex child : adj) if (child != parent) { child.dfs(this); subtreeSize += child.subtreeSize; } int mult = 2;//p2[n - subtreeSize]; for (Vertex child : adj) if (child != parent) { int[] c = child.res; prod = mul(prod, c); subFrom(globalRes, c, 1); } addTo(globalRes, prod, mult); res = insertEdge(prod); } private int[] insertEdge(int[] a) { int len = a.length + 1; if (len > k) len = k + 1; int[] b = new int[len]; b[0] = a[0] * 2; if (b[0] >= MODULO) b[0] -= MODULO; for (int i = 1; i < len; ++i) { long s = a[i - 1]; if (i < a.length) s += a[i]; if (s >= MODULO) s -= MODULO; s = s * 2; if (s >= MODULO) s -= MODULO; b[i] = (int) s; } b[1] -= 1; if (b[1] < 0) b[1] += MODULO; return b; } private void addTo(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + b[i] * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private void subFrom(long[] a, int[] b, int mult) { for (int i = 0; i < b.length; ++i) { long s = a[i] + (MODULO - b[i]) * (long) mult; if (s < 0) s -= BIG; a[i] = s; } } private int[] mul(int[] a, int[] b) { int len = a.length + b.length - 1; if (len > k) len = k + 1; int[] c = new int[len]; for (int i = 0; i < len; ++i) { long s = 0; int left = Math.max(0, i - (b.length - 1)); int right = Math.min(a.length - 1, i); for (int ia = left; ia <= right; ++ia) { int ib = i - ia; s += a[ia] * (long) b[ib]; if (s < 0) s -= BIG; } c[i] = (int) (s % MODULO); } return c; } } } static class InputReader { public BufferedReader reader; public StringTokenizer tokenizer; public InputReader(InputStream stream) { reader = new BufferedReader(new InputStreamReader(stream), 32768); tokenizer = null; } public String next() { while (tokenizer == null || !tokenizer.hasMoreTokens()) { try { tokenizer = new StringTokenizer(reader.readLine()); } catch (IOException e) { throw new RuntimeException(e); } } return tokenizer.nextToken(); } public int nextInt() { return Integer.parseInt(next()); } } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,721
46
4,274
import java.io.*; import java.util.*; import java.lang.reflect.Array; import java.math.*; public class Solution { private BufferedReader in; private PrintWriter out; private StringTokenizer st; private Random rnd; int[] levels; int[] loyal; int n, k; double A; int[] choices; int[] new_loyal; double[] koef; double ans = 0.0; int total; void rec(int step, int start) { if(step == k) { for(int i = 0; i < n; i++) { new_loyal[i] = loyal[i]; } for(int i = 0; i < k; i++) { new_loyal[choices[i]] = Math.min(100, new_loyal[choices[i]] + 10); } int full = 0; for(int i = 0; i < n; i++) { if(new_loyal[i] == 100) { ++full; } } if(full > (n / 2)) { ans = 1.0; return; } for(int i = 0; i < n; i++) { koef[i] = (double) new_loyal[i] / 100.0; } int bits_needed = (n / 2) + 1; double total_win = 0.0; double total_fights = 0.0; for(int mask = 0; mask < total; mask++) { int bits = 0; double win = 1.0; double loose = 1.0; double b = 0.0; for(int bit = 0; bit < n; bit++) { if((mask & (1 << bit)) != 0) { ++bits; win *= koef[bit]; } else { loose *= (1.0 - koef[bit]); b += levels[bit]; } } double prob = win * loose; if(bits >= bits_needed) { total_win += prob; } else { total_fights += prob * (A / (A + b)); } } ans = Math.max(ans, total_win + total_fights); } else { for(int i = start; i < n; i++) { choices[step] = i; rec(step + 1, i); } } } public void solve() throws IOException { n = nextInt(); k = nextInt(); A = nextInt(); levels = new int[n]; loyal = new int[n]; new_loyal = new int[n]; choices = new int[k]; koef = new double[n]; for(int i = 0; i < n; i++) { levels[i] = nextInt(); loyal[i] = nextInt(); } total = 1 << n; rec(0, 0); out.println(ans); } public static void main(String[] args) { new Solution().run(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); st = null; rnd = new Random(); solve(); out.close(); } catch(IOException e) { e.printStackTrace(); } } private String nextToken() throws IOException, NullPointerException { while(st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.lang.reflect.Array; import java.math.*; public class Solution { private BufferedReader in; private PrintWriter out; private StringTokenizer st; private Random rnd; int[] levels; int[] loyal; int n, k; double A; int[] choices; int[] new_loyal; double[] koef; double ans = 0.0; int total; void rec(int step, int start) { if(step == k) { for(int i = 0; i < n; i++) { new_loyal[i] = loyal[i]; } for(int i = 0; i < k; i++) { new_loyal[choices[i]] = Math.min(100, new_loyal[choices[i]] + 10); } int full = 0; for(int i = 0; i < n; i++) { if(new_loyal[i] == 100) { ++full; } } if(full > (n / 2)) { ans = 1.0; return; } for(int i = 0; i < n; i++) { koef[i] = (double) new_loyal[i] / 100.0; } int bits_needed = (n / 2) + 1; double total_win = 0.0; double total_fights = 0.0; for(int mask = 0; mask < total; mask++) { int bits = 0; double win = 1.0; double loose = 1.0; double b = 0.0; for(int bit = 0; bit < n; bit++) { if((mask & (1 << bit)) != 0) { ++bits; win *= koef[bit]; } else { loose *= (1.0 - koef[bit]); b += levels[bit]; } } double prob = win * loose; if(bits >= bits_needed) { total_win += prob; } else { total_fights += prob * (A / (A + b)); } } ans = Math.max(ans, total_win + total_fights); } else { for(int i = start; i < n; i++) { choices[step] = i; rec(step + 1, i); } } } public void solve() throws IOException { n = nextInt(); k = nextInt(); A = nextInt(); levels = new int[n]; loyal = new int[n]; new_loyal = new int[n]; choices = new int[k]; koef = new double[n]; for(int i = 0; i < n; i++) { levels[i] = nextInt(); loyal[i] = nextInt(); } total = 1 << n; rec(0, 0); out.println(ans); } public static void main(String[] args) { new Solution().run(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); st = null; rnd = new Random(); solve(); out.close(); } catch(IOException e) { e.printStackTrace(); } } private String nextToken() throws IOException, NullPointerException { while(st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> import java.io.*; import java.util.*; import java.lang.reflect.Array; import java.math.*; public class Solution { private BufferedReader in; private PrintWriter out; private StringTokenizer st; private Random rnd; int[] levels; int[] loyal; int n, k; double A; int[] choices; int[] new_loyal; double[] koef; double ans = 0.0; int total; void rec(int step, int start) { if(step == k) { for(int i = 0; i < n; i++) { new_loyal[i] = loyal[i]; } for(int i = 0; i < k; i++) { new_loyal[choices[i]] = Math.min(100, new_loyal[choices[i]] + 10); } int full = 0; for(int i = 0; i < n; i++) { if(new_loyal[i] == 100) { ++full; } } if(full > (n / 2)) { ans = 1.0; return; } for(int i = 0; i < n; i++) { koef[i] = (double) new_loyal[i] / 100.0; } int bits_needed = (n / 2) + 1; double total_win = 0.0; double total_fights = 0.0; for(int mask = 0; mask < total; mask++) { int bits = 0; double win = 1.0; double loose = 1.0; double b = 0.0; for(int bit = 0; bit < n; bit++) { if((mask & (1 << bit)) != 0) { ++bits; win *= koef[bit]; } else { loose *= (1.0 - koef[bit]); b += levels[bit]; } } double prob = win * loose; if(bits >= bits_needed) { total_win += prob; } else { total_fights += prob * (A / (A + b)); } } ans = Math.max(ans, total_win + total_fights); } else { for(int i = start; i < n; i++) { choices[step] = i; rec(step + 1, i); } } } public void solve() throws IOException { n = nextInt(); k = nextInt(); A = nextInt(); levels = new int[n]; loyal = new int[n]; new_loyal = new int[n]; choices = new int[k]; koef = new double[n]; for(int i = 0; i < n; i++) { levels[i] = nextInt(); loyal[i] = nextInt(); } total = 1 << n; rec(0, 0); out.println(ans); } public static void main(String[] args) { new Solution().run(); } public void run() { try { in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); st = null; rnd = new Random(); solve(); out.close(); } catch(IOException e) { e.printStackTrace(); } } private String nextToken() throws IOException, NullPointerException { while(st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The execution time ascends in proportion to the cube of the input size n. - O(1): The execution time is unaffected by the size of the input n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - O(n^2): The execution time ascends in proportion to the square of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. - O(n): The execution time ascends in a one-to-one ratio with the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,241
4,263
4,501
import java.util.Arrays; import java.util.Scanner; public class thing { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); String s = in.next(); int[][] count = new int[m][m]; int[] dp = new int[1 << m]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; for(int i = 1; i < n; i++) { int a = s.charAt(i)-'a'; int b = s.charAt(i-1)-'a'; count[a][b]++; count[b][a]++; } for(int i = 1; i < (1 << m); i++) { int pos = set_bits(i); for(int j = 0; (i >> j) != 0; j++) { if(((i >> j) & 1) == 0) continue; int sum = 0; for(int mask = i, y = 0; y < m; mask >>= 1, y++) { if(y == j) continue; if((mask & 1) == 1) sum += count[j][y]; else sum -= count[j][y]; } int calc = dp[i-(1<<j)] + pos*sum; dp[i] = Math.min(dp[i], calc); } } System.out.println(dp[(1 << m)-1]); } public static int set_bits(int n) { int count = 0; while (n > 0) { count += n & 1; n >>= 1; } return count; } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class thing { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); String s = in.next(); int[][] count = new int[m][m]; int[] dp = new int[1 << m]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; for(int i = 1; i < n; i++) { int a = s.charAt(i)-'a'; int b = s.charAt(i-1)-'a'; count[a][b]++; count[b][a]++; } for(int i = 1; i < (1 << m); i++) { int pos = set_bits(i); for(int j = 0; (i >> j) != 0; j++) { if(((i >> j) & 1) == 0) continue; int sum = 0; for(int mask = i, y = 0; y < m; mask >>= 1, y++) { if(y == j) continue; if((mask & 1) == 1) sum += count[j][y]; else sum -= count[j][y]; } int calc = dp[i-(1<<j)] + pos*sum; dp[i] = Math.min(dp[i], calc); } } System.out.println(dp[(1 << m)-1]); } public static int set_bits(int n) { int count = 0; while (n > 0) { count += n & 1; n >>= 1; } return count; } } </CODE> <EVALUATION_RUBRIC> - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.util.Arrays; import java.util.Scanner; public class thing { public static void main(String[] args) { Scanner in = new Scanner(System.in); int n = in.nextInt(); int m = in.nextInt(); String s = in.next(); int[][] count = new int[m][m]; int[] dp = new int[1 << m]; Arrays.fill(dp, Integer.MAX_VALUE); dp[0] = 0; for(int i = 1; i < n; i++) { int a = s.charAt(i)-'a'; int b = s.charAt(i-1)-'a'; count[a][b]++; count[b][a]++; } for(int i = 1; i < (1 << m); i++) { int pos = set_bits(i); for(int j = 0; (i >> j) != 0; j++) { if(((i >> j) & 1) == 0) continue; int sum = 0; for(int mask = i, y = 0; y < m; mask >>= 1, y++) { if(y == j) continue; if((mask & 1) == 1) sum += count[j][y]; else sum -= count[j][y]; } int calc = dp[i-(1<<j)] + pos*sum; dp[i] = Math.min(dp[i], calc); } } System.out.println(dp[(1 << m)-1]); } public static int set_bits(int n) { int count = 0; while (n > 0) { count += n & 1; n >>= 1; } return count; } } </CODE> <EVALUATION_RUBRIC> - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
731
4,490
289
import java.util.*; import java.io.*; public class code{ public static void main(String[] args) throws IOException{ Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int ok,ok2; int va,vb; va = 0; vb = 0; out.println("? "+va+" "+vb); out.flush(); ok = sc.nextInt(); for(int i=29;i>=0;i--){ if(ok==0){ va += (1<<i); out.println("? "+va+" "+vb); out.flush(); ok2 = sc.nextInt(); if(ok2==1){ va -= (1<<i); }else{ vb += (1<<i); } }else{ va += (1<<i); vb += (1<<i); out.println("? "+va+" "+vb); out.flush(); ok2 = sc.nextInt(); if(ok==ok2){ vb -= (1<<i); out.println("? "+va+" "+vb); out.flush(); ok2 = sc.nextInt(); if(ok2==1){ va -= (1<<i); }else{ vb += (1<<i); } }else{ if(ok==1){ vb -= (1<<i); out.println("? "+va+" "+vb); out.flush(); ok = sc.nextInt(); } else { va -= (1<<i); out.println("? "+va+" "+vb); out.flush(); ok = sc.nextInt(); } } } } out.println("! "+va+" "+vb); out.flush(); } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class code{ public static void main(String[] args) throws IOException{ Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int ok,ok2; int va,vb; va = 0; vb = 0; out.println("? "+va+" "+vb); out.flush(); ok = sc.nextInt(); for(int i=29;i>=0;i--){ if(ok==0){ va += (1<<i); out.println("? "+va+" "+vb); out.flush(); ok2 = sc.nextInt(); if(ok2==1){ va -= (1<<i); }else{ vb += (1<<i); } }else{ va += (1<<i); vb += (1<<i); out.println("? "+va+" "+vb); out.flush(); ok2 = sc.nextInt(); if(ok==ok2){ vb -= (1<<i); out.println("? "+va+" "+vb); out.flush(); ok2 = sc.nextInt(); if(ok2==1){ va -= (1<<i); }else{ vb += (1<<i); } }else{ if(ok==1){ vb -= (1<<i); out.println("? "+va+" "+vb); out.flush(); ok = sc.nextInt(); } else { va -= (1<<i); out.println("? "+va+" "+vb); out.flush(); ok = sc.nextInt(); } } } } out.println("! "+va+" "+vb); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^2): The running time increases with the square of the input size n. - O(n): The running time grows linearly with the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.util.*; import java.io.*; public class code{ public static void main(String[] args) throws IOException{ Scanner sc = new Scanner(System.in); PrintWriter out = new PrintWriter(System.out); int ok,ok2; int va,vb; va = 0; vb = 0; out.println("? "+va+" "+vb); out.flush(); ok = sc.nextInt(); for(int i=29;i>=0;i--){ if(ok==0){ va += (1<<i); out.println("? "+va+" "+vb); out.flush(); ok2 = sc.nextInt(); if(ok2==1){ va -= (1<<i); }else{ vb += (1<<i); } }else{ va += (1<<i); vb += (1<<i); out.println("? "+va+" "+vb); out.flush(); ok2 = sc.nextInt(); if(ok==ok2){ vb -= (1<<i); out.println("? "+va+" "+vb); out.flush(); ok2 = sc.nextInt(); if(ok2==1){ va -= (1<<i); }else{ vb += (1<<i); } }else{ if(ok==1){ vb -= (1<<i); out.println("? "+va+" "+vb); out.flush(); ok = sc.nextInt(); } else { va -= (1<<i); out.println("? "+va+" "+vb); out.flush(); ok = sc.nextInt(); } } } } out.println("! "+va+" "+vb); out.flush(); } } </CODE> <EVALUATION_RUBRIC> - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(n^2): The running time increases with the square of the input size n. - O(n^3): The running time increases with the cube of the input size n. - O(n): The running time grows linearly with the input size n. - O(1): The running time does not change regardless of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
697
289
4,270
/** * Created by IntelliJ IDEA. * User: Taras_Brzezinsky * Date: 8/13/11 * Time: 6:10 PM * To change this template use File | Settings | File Templates. */ import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import java.io.IOException; public class DarkAssembly extends Thread { public DarkAssembly() { this.input = new BufferedReader(new InputStreamReader(System.in)); this.output = new PrintWriter(System.out); this.setPriority(Thread.MAX_PRIORITY); } static class Senator { int loyalty; int level; public Senator(int level, int loyalty) { this.level = level; this.loyalty = loyalty; } } private static double doIt(Senator[] senators, int A) { double probability = .0; for (int mask = 0; mask < (1 << senators.length); ++mask) { int sum = A; double current = 1.0; for (int i = 0; i < senators.length; ++i) { if ((mask & (1 << i)) != 0) { current *= .01 * senators[i].loyalty; } else { current *= .01 * (100 - senators[i].loyalty); sum += senators[i].level; } } if (getOnes(mask) > senators.length / 2) { probability += current; } else { probability += current * (double)A / sum; } } return probability; } private static double go(Senator []senators, int candies, int A, int current) { if (current == senators.length) { return doIt(senators, A); } else { double result = go(senators, candies, A, current + 1); if (candies > 0 && senators[current].loyalty < 100) { senators[current].loyalty += 10; result = Math.max(result, go(senators, candies - 1, A, current)); senators[current].loyalty -= 10; } return result; } } static int getOnes(int mask) { int result = 0; while (mask != 0) { mask &= mask - 1; ++result; } return result; } public void run() { try { int n = nextInt(); int k = nextInt(); int A = nextInt(); Senator[] senators = new Senator[n]; for (int i = 0; i < n; ++i) { senators[i] = new Senator(nextInt(), nextInt()); } output.printf("%.10f", go(senators, k, A, 0)); output.flush(); output.close(); } catch (Throwable e) { System.err.println(e.getMessage()); System.err.println(Arrays.deepToString(e.getStackTrace())); } } public static void main(String[] args) { new DarkAssembly().start(); } private String nextToken() throws IOException { while (tokens == null || !tokens.hasMoreTokens()) { tokens = new StringTokenizer(input.readLine()); } return tokens.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private BufferedReader input; private PrintWriter output; private StringTokenizer tokens = null; }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> /** * Created by IntelliJ IDEA. * User: Taras_Brzezinsky * Date: 8/13/11 * Time: 6:10 PM * To change this template use File | Settings | File Templates. */ import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import java.io.IOException; public class DarkAssembly extends Thread { public DarkAssembly() { this.input = new BufferedReader(new InputStreamReader(System.in)); this.output = new PrintWriter(System.out); this.setPriority(Thread.MAX_PRIORITY); } static class Senator { int loyalty; int level; public Senator(int level, int loyalty) { this.level = level; this.loyalty = loyalty; } } private static double doIt(Senator[] senators, int A) { double probability = .0; for (int mask = 0; mask < (1 << senators.length); ++mask) { int sum = A; double current = 1.0; for (int i = 0; i < senators.length; ++i) { if ((mask & (1 << i)) != 0) { current *= .01 * senators[i].loyalty; } else { current *= .01 * (100 - senators[i].loyalty); sum += senators[i].level; } } if (getOnes(mask) > senators.length / 2) { probability += current; } else { probability += current * (double)A / sum; } } return probability; } private static double go(Senator []senators, int candies, int A, int current) { if (current == senators.length) { return doIt(senators, A); } else { double result = go(senators, candies, A, current + 1); if (candies > 0 && senators[current].loyalty < 100) { senators[current].loyalty += 10; result = Math.max(result, go(senators, candies - 1, A, current)); senators[current].loyalty -= 10; } return result; } } static int getOnes(int mask) { int result = 0; while (mask != 0) { mask &= mask - 1; ++result; } return result; } public void run() { try { int n = nextInt(); int k = nextInt(); int A = nextInt(); Senator[] senators = new Senator[n]; for (int i = 0; i < n; ++i) { senators[i] = new Senator(nextInt(), nextInt()); } output.printf("%.10f", go(senators, k, A, 0)); output.flush(); output.close(); } catch (Throwable e) { System.err.println(e.getMessage()); System.err.println(Arrays.deepToString(e.getStackTrace())); } } public static void main(String[] args) { new DarkAssembly().start(); } private String nextToken() throws IOException { while (tokens == null || !tokens.hasMoreTokens()) { tokens = new StringTokenizer(input.readLine()); } return tokens.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private BufferedReader input; private PrintWriter output; private StringTokenizer tokens = null; } </CODE> <EVALUATION_RUBRIC> - O(n^3): The running time increases with the cube of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - O(1): The running time does not change regardless of the input size n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(nlog(n)): The running time increases with the product of n and logarithm of n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n. </TASK> <CODE> /** * Created by IntelliJ IDEA. * User: Taras_Brzezinsky * Date: 8/13/11 * Time: 6:10 PM * To change this template use File | Settings | File Templates. */ import java.io.BufferedReader; import java.io.InputStreamReader; import java.io.PrintWriter; import java.util.*; import java.io.IOException; public class DarkAssembly extends Thread { public DarkAssembly() { this.input = new BufferedReader(new InputStreamReader(System.in)); this.output = new PrintWriter(System.out); this.setPriority(Thread.MAX_PRIORITY); } static class Senator { int loyalty; int level; public Senator(int level, int loyalty) { this.level = level; this.loyalty = loyalty; } } private static double doIt(Senator[] senators, int A) { double probability = .0; for (int mask = 0; mask < (1 << senators.length); ++mask) { int sum = A; double current = 1.0; for (int i = 0; i < senators.length; ++i) { if ((mask & (1 << i)) != 0) { current *= .01 * senators[i].loyalty; } else { current *= .01 * (100 - senators[i].loyalty); sum += senators[i].level; } } if (getOnes(mask) > senators.length / 2) { probability += current; } else { probability += current * (double)A / sum; } } return probability; } private static double go(Senator []senators, int candies, int A, int current) { if (current == senators.length) { return doIt(senators, A); } else { double result = go(senators, candies, A, current + 1); if (candies > 0 && senators[current].loyalty < 100) { senators[current].loyalty += 10; result = Math.max(result, go(senators, candies - 1, A, current)); senators[current].loyalty -= 10; } return result; } } static int getOnes(int mask) { int result = 0; while (mask != 0) { mask &= mask - 1; ++result; } return result; } public void run() { try { int n = nextInt(); int k = nextInt(); int A = nextInt(); Senator[] senators = new Senator[n]; for (int i = 0; i < n; ++i) { senators[i] = new Senator(nextInt(), nextInt()); } output.printf("%.10f", go(senators, k, A, 0)); output.flush(); output.close(); } catch (Throwable e) { System.err.println(e.getMessage()); System.err.println(Arrays.deepToString(e.getStackTrace())); } } public static void main(String[] args) { new DarkAssembly().start(); } private String nextToken() throws IOException { while (tokens == null || !tokens.hasMoreTokens()) { tokens = new StringTokenizer(input.readLine()); } return tokens.nextToken(); } private int nextInt() throws IOException { return Integer.parseInt(nextToken()); } private double nextDouble() throws IOException { return Double.parseDouble(nextToken()); } private long nextLong() throws IOException { return Long.parseLong(nextToken()); } private BufferedReader input; private PrintWriter output; private StringTokenizer tokens = null; } </CODE> <EVALUATION_RUBRIC> - O(n^2): The execution time ascends in proportion to the square of the input size n. - O(n^3): The execution time ascends in proportion to the cube of the input size n. - others: The time complexity does not fit to any of the given categories or is ambiguous. - O(n): The execution time ascends in a one-to-one ratio with the input size n. - O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The execution time is unaffected by the size of the input n. - O(log(n)): The execution time ascends in proportion to the logarithm of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,123
4,259
4,059
import java.io.*; import java.util.*; import static java.lang.Math.*; public class Solution { BufferedReader in; PrintWriter out; StringTokenizer st; int[] x; int[] y; int n; int X, Y; int[] d; int[][] dist; int sqr(int a) { return a * a; } int dist(int X, int Y, int i) { return sqr(X - x[i]) + sqr(Y - y[i]); } int[] dp; byte[][] pred; int rec(int mask) { if (dp[mask] == -1) { int res = 1 << 29; boolean ok = false; for (int i = 0; i < n; ++i) if ((mask & (1 << i)) > 0) { ok = true; int mm = mask & ~(1 << i); for (int j = i; j < n; j++) if ((mask & (1 << j)) > 0) { int nmask = mm & ~(1 << j); int a = rec(nmask) + d[i] + d[j] + dist[i][j]; if (a < res) { res = a; pred[0][mask] = (byte) (i); pred[1][mask] = (byte) (j); } } break; } if (!ok) res = 0; dp[mask] = res; } return dp[mask]; } void solve() throws IOException { X = ni(); Y = ni(); n = ni(); x = new int[n]; y = new int[n]; for (int i = 0; i < n; i++) { x[i] = ni(); y[i] = ni(); } d = new int[n]; dist = new int[n][n]; for (int i = 0; i < n; ++i) d[i] = dist(X, Y, i); for (int i = 0; i < n; ++i) for (int j = 0; j < n; j++) { dist[i][j] = dist(x[i], y[i], j); } pred = new byte[2][1 << n]; dp = new int[1 << n]; Arrays.fill(dp, -1); out.println(rec((1 << n) - 1)); int a = (1 << n) - 1; while (a > 0) { if (pred[0][a] != pred[1][a]) out.print(0 + " " + (pred[0][a] + 1) + " " + (pred[1][a] + 1) + " "); else out.print(0 + " " + (pred[0][a] + 1) + " "); int na = a & ~(1 << pred[0][a]); na &= ~(1 << pred[1][a]); a = na; } out.println(0); } public Solution() throws IOException { Locale.setDefault(Locale.US); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } String ns() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int ni() throws IOException { return Integer.valueOf(ns()); } long nl() throws IOException { return Long.valueOf(ns()); } double nd() throws IOException { return Double.valueOf(ns()); } public static void main(String[] args) throws IOException { new Solution(); } }
non-polynomial
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; public class Solution { BufferedReader in; PrintWriter out; StringTokenizer st; int[] x; int[] y; int n; int X, Y; int[] d; int[][] dist; int sqr(int a) { return a * a; } int dist(int X, int Y, int i) { return sqr(X - x[i]) + sqr(Y - y[i]); } int[] dp; byte[][] pred; int rec(int mask) { if (dp[mask] == -1) { int res = 1 << 29; boolean ok = false; for (int i = 0; i < n; ++i) if ((mask & (1 << i)) > 0) { ok = true; int mm = mask & ~(1 << i); for (int j = i; j < n; j++) if ((mask & (1 << j)) > 0) { int nmask = mm & ~(1 << j); int a = rec(nmask) + d[i] + d[j] + dist[i][j]; if (a < res) { res = a; pred[0][mask] = (byte) (i); pred[1][mask] = (byte) (j); } } break; } if (!ok) res = 0; dp[mask] = res; } return dp[mask]; } void solve() throws IOException { X = ni(); Y = ni(); n = ni(); x = new int[n]; y = new int[n]; for (int i = 0; i < n; i++) { x[i] = ni(); y[i] = ni(); } d = new int[n]; dist = new int[n][n]; for (int i = 0; i < n; ++i) d[i] = dist(X, Y, i); for (int i = 0; i < n; ++i) for (int j = 0; j < n; j++) { dist[i][j] = dist(x[i], y[i], j); } pred = new byte[2][1 << n]; dp = new int[1 << n]; Arrays.fill(dp, -1); out.println(rec((1 << n) - 1)); int a = (1 << n) - 1; while (a > 0) { if (pred[0][a] != pred[1][a]) out.print(0 + " " + (pred[0][a] + 1) + " " + (pred[1][a] + 1) + " "); else out.print(0 + " " + (pred[0][a] + 1) + " "); int na = a & ~(1 << pred[0][a]); na &= ~(1 << pred[1][a]); a = na; } out.println(0); } public Solution() throws IOException { Locale.setDefault(Locale.US); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } String ns() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int ni() throws IOException { return Integer.valueOf(ns()); } long nl() throws IOException { return Long.valueOf(ns()); } double nd() throws IOException { return Double.valueOf(ns()); } public static void main(String[] args) throws IOException { new Solution(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.*; import java.util.*; import static java.lang.Math.*; public class Solution { BufferedReader in; PrintWriter out; StringTokenizer st; int[] x; int[] y; int n; int X, Y; int[] d; int[][] dist; int sqr(int a) { return a * a; } int dist(int X, int Y, int i) { return sqr(X - x[i]) + sqr(Y - y[i]); } int[] dp; byte[][] pred; int rec(int mask) { if (dp[mask] == -1) { int res = 1 << 29; boolean ok = false; for (int i = 0; i < n; ++i) if ((mask & (1 << i)) > 0) { ok = true; int mm = mask & ~(1 << i); for (int j = i; j < n; j++) if ((mask & (1 << j)) > 0) { int nmask = mm & ~(1 << j); int a = rec(nmask) + d[i] + d[j] + dist[i][j]; if (a < res) { res = a; pred[0][mask] = (byte) (i); pred[1][mask] = (byte) (j); } } break; } if (!ok) res = 0; dp[mask] = res; } return dp[mask]; } void solve() throws IOException { X = ni(); Y = ni(); n = ni(); x = new int[n]; y = new int[n]; for (int i = 0; i < n; i++) { x[i] = ni(); y[i] = ni(); } d = new int[n]; dist = new int[n][n]; for (int i = 0; i < n; ++i) d[i] = dist(X, Y, i); for (int i = 0; i < n; ++i) for (int j = 0; j < n; j++) { dist[i][j] = dist(x[i], y[i], j); } pred = new byte[2][1 << n]; dp = new int[1 << n]; Arrays.fill(dp, -1); out.println(rec((1 << n) - 1)); int a = (1 << n) - 1; while (a > 0) { if (pred[0][a] != pred[1][a]) out.print(0 + " " + (pred[0][a] + 1) + " " + (pred[1][a] + 1) + " "); else out.print(0 + " " + (pred[0][a] + 1) + " "); int na = a & ~(1 << pred[0][a]); na &= ~(1 << pred[1][a]); a = na; } out.println(0); } public Solution() throws IOException { Locale.setDefault(Locale.US); in = new BufferedReader(new InputStreamReader(System.in)); out = new PrintWriter(System.out); solve(); in.close(); out.close(); } String ns() throws IOException { while (st == null || !st.hasMoreTokens()) { st = new StringTokenizer(in.readLine()); } return st.nextToken(); } int ni() throws IOException { return Integer.valueOf(ns()); } long nl() throws IOException { return Long.valueOf(ns()); } double nd() throws IOException { return Double.valueOf(ns()); } public static void main(String[] args) throws IOException { new Solution(); } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n^3): The running time increases with the cube of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - others: The code does not clearly correspond to the listed classes or has an unclassified time complexity. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,161
4,048
1,083
import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Rustam Musin (t.me/musin_acm) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); DOlyaIMagicheskiiKvadrat solver = new DOlyaIMagicheskiiKvadrat(); solver.solve(1, in, out); out.close(); } static class DOlyaIMagicheskiiKvadrat { long inf = (long) 1e18 + 1; long[] maxLen; public void solve(int testNumber, InputReader in, OutputWriter out) { maxLen = new long[100]; maxLen[1] = 0; for (int i = 1; i < maxLen.length; i++) { maxLen[i] = Math.min(inf, maxLen[i - 1] * 4 + 1); } if (false) { for (int n = 1; n <= 3; n++) { for (int k = 1; k <= maxSplitCount(n) + 20; k++) { out.print(n + " " + k + " "); int res = solve(n, k); if (res == -1) { out.printLine("NO"); } else { out.printLine("YES " + res); } } } return; } int q = in.readInt(); while (q-- > 0) { int n = in.readInt(); long k = in.readLong(); int res = solve(n, k); if (res == -1) { out.printLine("NO"); continue; } out.printLine("YES " + res); } } long maxSplitCount(int n) { if (n >= maxLen.length) { return inf; } return maxLen[n]; } int solve(int n, long k) { if (maxSplitCount(n) < k) { return -1; } int at = 0; while (maxSplitCount(at + 1) <= k) { at++; } int curSideLog = n - at; k -= maxSplitCount(at); double sideLen = Math.pow(2, n - curSideLog); double pathLen = sideLen * 2 - 1; if (curSideLog > 0 && pathLen <= k) { return curSideLog - 1; } double area = sideLen * sideLen; double otherArea = area - pathLen; if (otherArea * (double) maxSplitCount(curSideLog) >= k) { return curSideLog; } return -1; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } }
O(log(n))
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Classify the following Java code's worst-case time complexity according to its relationship to the input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Rustam Musin (t.me/musin_acm) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); DOlyaIMagicheskiiKvadrat solver = new DOlyaIMagicheskiiKvadrat(); solver.solve(1, in, out); out.close(); } static class DOlyaIMagicheskiiKvadrat { long inf = (long) 1e18 + 1; long[] maxLen; public void solve(int testNumber, InputReader in, OutputWriter out) { maxLen = new long[100]; maxLen[1] = 0; for (int i = 1; i < maxLen.length; i++) { maxLen[i] = Math.min(inf, maxLen[i - 1] * 4 + 1); } if (false) { for (int n = 1; n <= 3; n++) { for (int k = 1; k <= maxSplitCount(n) + 20; k++) { out.print(n + " " + k + " "); int res = solve(n, k); if (res == -1) { out.printLine("NO"); } else { out.printLine("YES " + res); } } } return; } int q = in.readInt(); while (q-- > 0) { int n = in.readInt(); long k = in.readLong(); int res = solve(n, k); if (res == -1) { out.printLine("NO"); continue; } out.printLine("YES " + res); } } long maxSplitCount(int n) { if (n >= maxLen.length) { return inf; } return maxLen[n]; } int solve(int n, long k) { if (maxSplitCount(n) < k) { return -1; } int at = 0; while (maxSplitCount(at + 1) <= k) { at++; } int curSideLog = n - at; k -= maxSplitCount(at); double sideLen = Math.pow(2, n - curSideLog); double pathLen = sideLen * 2 - 1; if (curSideLog > 0 && pathLen <= k) { return curSideLog - 1; } double area = sideLen * sideLen; double otherArea = area - pathLen; if (otherArea * (double) maxSplitCount(curSideLog) >= k) { return curSideLog; } return -1; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(nlog(n)): The running time increases with the product of n and logarithm of n. - O(n): The running time grows linearly with the input size n. - O(n^2): The running time increases with the square of the input size n. - O(1): The running time does not change regardless of the input size n. - O(log(n)): The running time increases with the logarithm of the input size n. - non-polynomial: The running time increases non-polynomially with input size n, typically exponentially. - O(n^3): The running time increases with the cube of the input size n. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.OutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.PrintWriter; import java.io.BufferedWriter; import java.io.Writer; import java.io.OutputStreamWriter; import java.util.InputMismatchException; import java.io.IOException; import java.io.InputStream; /** * Built using CHelper plug-in * Actual solution is at the top * * @author Rustam Musin (t.me/musin_acm) */ public class Main { public static void main(String[] args) { InputStream inputStream = System.in; OutputStream outputStream = System.out; InputReader in = new InputReader(inputStream); OutputWriter out = new OutputWriter(outputStream); DOlyaIMagicheskiiKvadrat solver = new DOlyaIMagicheskiiKvadrat(); solver.solve(1, in, out); out.close(); } static class DOlyaIMagicheskiiKvadrat { long inf = (long) 1e18 + 1; long[] maxLen; public void solve(int testNumber, InputReader in, OutputWriter out) { maxLen = new long[100]; maxLen[1] = 0; for (int i = 1; i < maxLen.length; i++) { maxLen[i] = Math.min(inf, maxLen[i - 1] * 4 + 1); } if (false) { for (int n = 1; n <= 3; n++) { for (int k = 1; k <= maxSplitCount(n) + 20; k++) { out.print(n + " " + k + " "); int res = solve(n, k); if (res == -1) { out.printLine("NO"); } else { out.printLine("YES " + res); } } } return; } int q = in.readInt(); while (q-- > 0) { int n = in.readInt(); long k = in.readLong(); int res = solve(n, k); if (res == -1) { out.printLine("NO"); continue; } out.printLine("YES " + res); } } long maxSplitCount(int n) { if (n >= maxLen.length) { return inf; } return maxLen[n]; } int solve(int n, long k) { if (maxSplitCount(n) < k) { return -1; } int at = 0; while (maxSplitCount(at + 1) <= k) { at++; } int curSideLog = n - at; k -= maxSplitCount(at); double sideLen = Math.pow(2, n - curSideLog); double pathLen = sideLen * 2 - 1; if (curSideLog > 0 && pathLen <= k) { return curSideLog - 1; } double area = sideLen * sideLen; double otherArea = area - pathLen; if (otherArea * (double) maxSplitCount(curSideLog) >= k) { return curSideLog; } return -1; } } static class InputReader { private InputStream stream; private byte[] buf = new byte[1024]; private int curChar; private int numChars; private InputReader.SpaceCharFilter filter; public InputReader(InputStream stream) { this.stream = stream; } public int read() { if (numChars == -1) { throw new InputMismatchException(); } if (curChar >= numChars) { curChar = 0; try { numChars = stream.read(buf); } catch (IOException e) { throw new InputMismatchException(); } if (numChars <= 0) { return -1; } } return buf[curChar++]; } public int readInt() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } int res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public long readLong() { int c = read(); while (isSpaceChar(c)) { c = read(); } int sgn = 1; if (c == '-') { sgn = -1; c = read(); } long res = 0; do { if (c < '0' || c > '9') { throw new InputMismatchException(); } res *= 10; res += c - '0'; c = read(); } while (!isSpaceChar(c)); return res * sgn; } public boolean isSpaceChar(int c) { if (filter != null) { return filter.isSpaceChar(c); } return isWhitespace(c); } public static boolean isWhitespace(int c) { return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1; } public interface SpaceCharFilter { public boolean isSpaceChar(int ch); } } static class OutputWriter { private final PrintWriter writer; public OutputWriter(OutputStream outputStream) { writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream))); } public OutputWriter(Writer writer) { this.writer = new PrintWriter(writer); } public void print(Object... objects) { for (int i = 0; i < objects.length; i++) { if (i != 0) { writer.print(' '); } writer.print(objects[i]); } } public void printLine(Object... objects) { print(objects); writer.println(); } public void close() { writer.close(); } } } </CODE> <EVALUATION_RUBRIC> - O(1): The time complexity is constant to the input size n. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n^3): The time complexity scales proportionally to the cube of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(log(n)): The time complexity increases logarithmically in relation to the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
1,703
1,082
2,990
import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.Scanner; public class CodeForces { public static void main(String[] args) { Scanner input = new Scanner(new BufferedReader(new InputStreamReader(System.in))); System.out.println(input.nextInt() / 2 + 1); } }
O(1)
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.Scanner; public class CodeForces { public static void main(String[] args) { Scanner input = new Scanner(new BufferedReader(new InputStreamReader(System.in))); System.out.println(input.nextInt() / 2 + 1); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(n^3): The time complexity scales proportionally to the cube of the input size. - O(1): The time complexity is constant to the input size n. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric. The XML tags are defined as follows: - <TASK>: Describes what the responses are supposed to accomplish. - <CODE>: The code provided to be evaluated. - <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate. - <OUTPUT_FORMAT>: Specifies the required format for your final answer. <TASK> Determine the worst-case time complexity category of a given Java code based on input size n. </TASK> <CODE> import java.io.BufferedReader; import java.io.InputStreamReader; import java.util.Scanner; public class CodeForces { public static void main(String[] args) { Scanner input = new Scanner(new BufferedReader(new InputStreamReader(System.in))); System.out.println(input.nextInt() / 2 + 1); } } </CODE> <EVALUATION_RUBRIC> - O(n^2): The time complexity grows proportionally to the square of the input size. - others: The time complexity does not fit any of the above categories or cannot be clearly classified. - O(log(n)): The time complexity increases logarithmically in relation to the input size. - non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially. - O(n): The time complexity increases proportionally to the input size n in a linear manner. - O(nlog(n)): The time complexity combines linear and logarithmic growth factors. - O(1): The time complexity is constant to the input size n. - O(n^3): The time complexity scales proportionally to the cube of the input size. </EVALUATION_RUBRIC> <OUTPUT_FORMAT> Return a JSON response in the following format: { "explanation": "Explanation of why the response received a particular time complexity", "time_complexity": "Time complexity assigned to the response based on the rubric" } </OUTPUT_FORMAT>
391
2,984