id
int64 0
4.52k
| code
stringlengths 142
31.2k
| answer
stringclasses 7
values | prompt
stringlengths 1.64k
32.6k
| test_prompt
stringlengths 1.7k
32.7k
| token_length
int64 373
7.8k
| __index_level_0__
int64 0
4.5k
|
---|---|---|---|---|---|---|
2,094 |
import java.util.Arrays;
import java.util.Scanner;
public class A {
void run(){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
boolean dif = false;
for(int i=0;i<n;i++)a[i]=sc.nextInt();
Arrays.sort(a);
if(n==1){
System.out.println(a[0]==1?2:1);return;
}
int[] m = new int[n];
for(int i=1;i<n;i++)if(a[i]!=a[i-1])dif=true;
m[0] = 1;
for(int i=1;i<n;i++)m[i]=a[i-1];
if(!dif&&a[0]==1)m[n-1]++;
for(int i=0;i<n;i++)System.out.print(m[i]+(i==n-1?"\n":" "));
}
public static void main(String[] args) {
new A().run();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class A {
void run(){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
boolean dif = false;
for(int i=0;i<n;i++)a[i]=sc.nextInt();
Arrays.sort(a);
if(n==1){
System.out.println(a[0]==1?2:1);return;
}
int[] m = new int[n];
for(int i=1;i<n;i++)if(a[i]!=a[i-1])dif=true;
m[0] = 1;
for(int i=1;i<n;i++)m[i]=a[i-1];
if(!dif&&a[0]==1)m[n-1]++;
for(int i=0;i<n;i++)System.out.print(m[i]+(i==n-1?"\n":" "));
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class A {
void run(){
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] a = new int[n];
boolean dif = false;
for(int i=0;i<n;i++)a[i]=sc.nextInt();
Arrays.sort(a);
if(n==1){
System.out.println(a[0]==1?2:1);return;
}
int[] m = new int[n];
for(int i=1;i<n;i++)if(a[i]!=a[i-1])dif=true;
m[0] = 1;
for(int i=1;i<n;i++)m[i]=a[i-1];
if(!dif&&a[0]==1)m[n-1]++;
for(int i=0;i<n;i++)System.out.print(m[i]+(i==n-1?"\n":" "));
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 549 | 2,090 |
4,184 |
import java.util.Arrays;
import java.util.Scanner;
public class Main {
static double[] dp;
static double[][] P;
public static void main(String[] args) {
Scanner r = new Scanner(System.in);
int n = r.nextInt();
double[][] g = new double[n][n];
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
g[i][j] = r.nextDouble();
dp = new double[1 << n];
P = new double[1 << n][n];
for(int mask = 0; mask < 1 << n; mask++){
for(int d = 0; d < n; d++)if((mask & (1 << d)) == 0)
for(int i = 0; i < n; i++)if((mask & (1 << i)) == 0){
if(i == d)continue;
P[mask][d] += g[i][d];
}
}
for(int i = 0; i < n; i++){
Arrays.fill(dp, -1);
double res = go(i, 0, g, n, n);
System.out.println(res);
}
}
private static double go(int a, int v, double[][] g, int cnt, int n) {
if(dp[v] != -1)return dp[v];
if(cnt == 1){
return 1;
}else{
double ret = 0;
for(int d = 0; d < n; d++)if((v & (1 << d)) == 0 && d != a){
double current = P[v][d] * go(a, v | 1 << d, g, cnt-1, n);
ret += current;
}
return dp[v] = ret/(cnt * (cnt-1) /2);
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Main {
static double[] dp;
static double[][] P;
public static void main(String[] args) {
Scanner r = new Scanner(System.in);
int n = r.nextInt();
double[][] g = new double[n][n];
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
g[i][j] = r.nextDouble();
dp = new double[1 << n];
P = new double[1 << n][n];
for(int mask = 0; mask < 1 << n; mask++){
for(int d = 0; d < n; d++)if((mask & (1 << d)) == 0)
for(int i = 0; i < n; i++)if((mask & (1 << i)) == 0){
if(i == d)continue;
P[mask][d] += g[i][d];
}
}
for(int i = 0; i < n; i++){
Arrays.fill(dp, -1);
double res = go(i, 0, g, n, n);
System.out.println(res);
}
}
private static double go(int a, int v, double[][] g, int cnt, int n) {
if(dp[v] != -1)return dp[v];
if(cnt == 1){
return 1;
}else{
double ret = 0;
for(int d = 0; d < n; d++)if((v & (1 << d)) == 0 && d != a){
double current = P[v][d] * go(a, v | 1 << d, g, cnt-1, n);
ret += current;
}
return dp[v] = ret/(cnt * (cnt-1) /2);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Main {
static double[] dp;
static double[][] P;
public static void main(String[] args) {
Scanner r = new Scanner(System.in);
int n = r.nextInt();
double[][] g = new double[n][n];
for(int i = 0; i < n; i++)
for(int j = 0; j < n; j++)
g[i][j] = r.nextDouble();
dp = new double[1 << n];
P = new double[1 << n][n];
for(int mask = 0; mask < 1 << n; mask++){
for(int d = 0; d < n; d++)if((mask & (1 << d)) == 0)
for(int i = 0; i < n; i++)if((mask & (1 << i)) == 0){
if(i == d)continue;
P[mask][d] += g[i][d];
}
}
for(int i = 0; i < n; i++){
Arrays.fill(dp, -1);
double res = go(i, 0, g, n, n);
System.out.println(res);
}
}
private static double go(int a, int v, double[][] g, int cnt, int n) {
if(dp[v] != -1)return dp[v];
if(cnt == 1){
return 1;
}else{
double ret = 0;
for(int d = 0; d < n; d++)if((v & (1 << d)) == 0 && d != a){
double current = P[v][d] * go(a, v | 1 << d, g, cnt-1, n);
ret += current;
}
return dp[v] = ret/(cnt * (cnt-1) /2);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 754 | 4,173 |
3,983 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import static java.lang.Math.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Map.Entry;
import java.util.StringTokenizer;
import java.util.TreeMap;
/**
*
* @author pttrung
*/
public class C {
public static double Epsilon = 1e-6;
public static long x, y, d;
public static long MOD = 1000000007;
public static int[][][] dp;
public static int min, max, need;
public static void main(String[] args) {
Scanner in = new Scanner();
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt();
int m = in.nextInt();
min = Math.min(n, m);
max = (m + n) - min;
dp = new int[max][1 << min][1 << min];
for (int[][] temp : dp) {
for (int[] val : temp) {
Arrays.fill(val, -1);
}
}
need = (1 << min) - 1;
//System.out.println(add + total);
// System.out.println(min + " " + max);
out.println(cal(0, 0, 0));
out.close();
}
public static int cal(int index, int last, int lastHold) {
if (index == max) {
return 0;
}
if (dp[index][lastHold][last] != -1) {
return dp[index][lastHold][last];
}
int result = 0;
for (int i = 0; i < 1 << min; i++) {
if ((i | last) == need || (index == 0)) {
// System.out.println("PREV " + index + " " + i + " " + last + " " + lastHold);
// System.out.println("NEXT " + index + " " + i + " " + (i | lastHold) + " " + i);
// System.out.println(Integer.bitCount(i) + " " + i);
// if (index == 3) {
// System.out.println(last + " " + i + " " + match(i, last) + " " + next);
// }
if(index + 1 == max && match(i,lastHold)!= need){
continue;
}
int temp = cal(index + 1, match(i,lastHold), i) + (min - Integer.bitCount(i));
result = result < temp ? temp : result;
// break;
}
}
dp[index][lastHold][last] = result;
return result;
}
public static int match(int mask, int last) {
int result = last;
for (int i = 0; i < min; i++) {
if (((1 << i) & mask) != 0) {
int a = i - 1;
int b = i + 1;
result |= (1 << i);
if (a >= 0) {
result |= (1 << a);
}
if (b < min) {
result |= (1 << b);
}
}
}
// System.out.println(mask + " " + result + " " + need);
return result ;
}
public static long pow(long a, long b) {
if (b == 0) {
return 1;
}
long val = pow(a, b / 2);
if (b % 2 == 0) {
return val * val % MOD;
} else {
return a * (val * val % MOD) % MOD;
}
}
public static void extendEuclid(long a, long b) {
if (b == 0) {
x = 1;
y = 0;
d = a;
return;
}
extendEuclid(b, a % b);
long x1 = y;
long y1 = x - (a / b) * y;
x = x1;
y = y1;
}
public static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
static class Line {
double a, b, c;
Line(double x1, double y1, double x2, double y2) {
if (Math.abs(x1 - x2) < Epsilon && Math.abs(y1 - y2) < Epsilon) {
throw new RuntimeException("Two point are the same");
}
a = y1 - y2;
b = x2 - x1;
c = -a * x1 - b * y1;
}
Line(Point x, Point y) {
this(x.x, x.y, y.x, y.y);
}
public Line perpendicular(Point p) {
return new Line(p, new Point(p.x + a, p.y + b));
}
public Point intersect(Line l) {
double d = a * l.b - b * l.a;
if (d == 0) {
throw new RuntimeException("Two lines are parallel");
}
return new Point((l.c * b - c * l.b) / d, (l.a * c - l.c * a) / d);
}
}
static void check(Point a, Point b, ArrayList<Point> p, Point[] rec, int index) {
for (int i = 0; i < 4; i++) {
int m = (i + index) % 4;
int j = (i + 1 + index) % 4;
Point k = intersect(minus(b, a), minus(rec[m], rec[j]), minus(rec[m], a));
if (k.x >= 0 && k.x <= 1 && k.y >= 0 && k.y <= 1) {
Point val = new Point(k.x * minus(b, a).x, k.x * minus(b, a).y);
p.add(add(val, a));
// System.out.println(a + " " + b + " " + rec[i] + " " + rec[j]);
// System.out.println(add(val, a));
}
}
}
static Point intersect(Point a, Point b, Point c) {
double D = cross(a, b);
if (D != 0) {
return new Point(cross(c, b) / D, cross(a, c) / D);
}
return null;
}
static Point convert(Point a, double angle) {
double x = a.x * cos(angle) - a.y * sin(angle);
double y = a.x * sin(angle) + a.y * cos(angle);
return new Point(x, y);
}
static Point minus(Point a, Point b) {
return new Point(a.x - b.x, a.y - b.y);
}
static Point add(Point a, Point b) {
return new Point(a.x + b.x, a.y + b.y);
}
static double cross(Point a, Point b) {
return a.x * b.y - a.y * b.x;
}
static class Point {
double x, y;
Point(double x, double y) {
this.x = x;
this.y = y;
}
@Override
public String toString() {
return "Point: " + x + " " + y;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import static java.lang.Math.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Map.Entry;
import java.util.StringTokenizer;
import java.util.TreeMap;
/**
*
* @author pttrung
*/
public class C {
public static double Epsilon = 1e-6;
public static long x, y, d;
public static long MOD = 1000000007;
public static int[][][] dp;
public static int min, max, need;
public static void main(String[] args) {
Scanner in = new Scanner();
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt();
int m = in.nextInt();
min = Math.min(n, m);
max = (m + n) - min;
dp = new int[max][1 << min][1 << min];
for (int[][] temp : dp) {
for (int[] val : temp) {
Arrays.fill(val, -1);
}
}
need = (1 << min) - 1;
//System.out.println(add + total);
// System.out.println(min + " " + max);
out.println(cal(0, 0, 0));
out.close();
}
public static int cal(int index, int last, int lastHold) {
if (index == max) {
return 0;
}
if (dp[index][lastHold][last] != -1) {
return dp[index][lastHold][last];
}
int result = 0;
for (int i = 0; i < 1 << min; i++) {
if ((i | last) == need || (index == 0)) {
// System.out.println("PREV " + index + " " + i + " " + last + " " + lastHold);
// System.out.println("NEXT " + index + " " + i + " " + (i | lastHold) + " " + i);
// System.out.println(Integer.bitCount(i) + " " + i);
// if (index == 3) {
// System.out.println(last + " " + i + " " + match(i, last) + " " + next);
// }
if(index + 1 == max && match(i,lastHold)!= need){
continue;
}
int temp = cal(index + 1, match(i,lastHold), i) + (min - Integer.bitCount(i));
result = result < temp ? temp : result;
// break;
}
}
dp[index][lastHold][last] = result;
return result;
}
public static int match(int mask, int last) {
int result = last;
for (int i = 0; i < min; i++) {
if (((1 << i) & mask) != 0) {
int a = i - 1;
int b = i + 1;
result |= (1 << i);
if (a >= 0) {
result |= (1 << a);
}
if (b < min) {
result |= (1 << b);
}
}
}
// System.out.println(mask + " " + result + " " + need);
return result ;
}
public static long pow(long a, long b) {
if (b == 0) {
return 1;
}
long val = pow(a, b / 2);
if (b % 2 == 0) {
return val * val % MOD;
} else {
return a * (val * val % MOD) % MOD;
}
}
public static void extendEuclid(long a, long b) {
if (b == 0) {
x = 1;
y = 0;
d = a;
return;
}
extendEuclid(b, a % b);
long x1 = y;
long y1 = x - (a / b) * y;
x = x1;
y = y1;
}
public static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
static class Line {
double a, b, c;
Line(double x1, double y1, double x2, double y2) {
if (Math.abs(x1 - x2) < Epsilon && Math.abs(y1 - y2) < Epsilon) {
throw new RuntimeException("Two point are the same");
}
a = y1 - y2;
b = x2 - x1;
c = -a * x1 - b * y1;
}
Line(Point x, Point y) {
this(x.x, x.y, y.x, y.y);
}
public Line perpendicular(Point p) {
return new Line(p, new Point(p.x + a, p.y + b));
}
public Point intersect(Line l) {
double d = a * l.b - b * l.a;
if (d == 0) {
throw new RuntimeException("Two lines are parallel");
}
return new Point((l.c * b - c * l.b) / d, (l.a * c - l.c * a) / d);
}
}
static void check(Point a, Point b, ArrayList<Point> p, Point[] rec, int index) {
for (int i = 0; i < 4; i++) {
int m = (i + index) % 4;
int j = (i + 1 + index) % 4;
Point k = intersect(minus(b, a), minus(rec[m], rec[j]), minus(rec[m], a));
if (k.x >= 0 && k.x <= 1 && k.y >= 0 && k.y <= 1) {
Point val = new Point(k.x * minus(b, a).x, k.x * minus(b, a).y);
p.add(add(val, a));
// System.out.println(a + " " + b + " " + rec[i] + " " + rec[j]);
// System.out.println(add(val, a));
}
}
}
static Point intersect(Point a, Point b, Point c) {
double D = cross(a, b);
if (D != 0) {
return new Point(cross(c, b) / D, cross(a, c) / D);
}
return null;
}
static Point convert(Point a, double angle) {
double x = a.x * cos(angle) - a.y * sin(angle);
double y = a.x * sin(angle) + a.y * cos(angle);
return new Point(x, y);
}
static Point minus(Point a, Point b) {
return new Point(a.x - b.x, a.y - b.y);
}
static Point add(Point a, Point b) {
return new Point(a.x + b.x, a.y + b.y);
}
static double cross(Point a, Point b) {
return a.x * b.y - a.y * b.x;
}
static class Point {
double x, y;
Point(double x, double y) {
this.x = x;
this.y = y;
}
@Override
public String toString() {
return "Point: " + x + " " + y;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import static java.lang.Math.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Map.Entry;
import java.util.StringTokenizer;
import java.util.TreeMap;
/**
*
* @author pttrung
*/
public class C {
public static double Epsilon = 1e-6;
public static long x, y, d;
public static long MOD = 1000000007;
public static int[][][] dp;
public static int min, max, need;
public static void main(String[] args) {
Scanner in = new Scanner();
PrintWriter out = new PrintWriter(System.out);
int n = in.nextInt();
int m = in.nextInt();
min = Math.min(n, m);
max = (m + n) - min;
dp = new int[max][1 << min][1 << min];
for (int[][] temp : dp) {
for (int[] val : temp) {
Arrays.fill(val, -1);
}
}
need = (1 << min) - 1;
//System.out.println(add + total);
// System.out.println(min + " " + max);
out.println(cal(0, 0, 0));
out.close();
}
public static int cal(int index, int last, int lastHold) {
if (index == max) {
return 0;
}
if (dp[index][lastHold][last] != -1) {
return dp[index][lastHold][last];
}
int result = 0;
for (int i = 0; i < 1 << min; i++) {
if ((i | last) == need || (index == 0)) {
// System.out.println("PREV " + index + " " + i + " " + last + " " + lastHold);
// System.out.println("NEXT " + index + " " + i + " " + (i | lastHold) + " " + i);
// System.out.println(Integer.bitCount(i) + " " + i);
// if (index == 3) {
// System.out.println(last + " " + i + " " + match(i, last) + " " + next);
// }
if(index + 1 == max && match(i,lastHold)!= need){
continue;
}
int temp = cal(index + 1, match(i,lastHold), i) + (min - Integer.bitCount(i));
result = result < temp ? temp : result;
// break;
}
}
dp[index][lastHold][last] = result;
return result;
}
public static int match(int mask, int last) {
int result = last;
for (int i = 0; i < min; i++) {
if (((1 << i) & mask) != 0) {
int a = i - 1;
int b = i + 1;
result |= (1 << i);
if (a >= 0) {
result |= (1 << a);
}
if (b < min) {
result |= (1 << b);
}
}
}
// System.out.println(mask + " " + result + " " + need);
return result ;
}
public static long pow(long a, long b) {
if (b == 0) {
return 1;
}
long val = pow(a, b / 2);
if (b % 2 == 0) {
return val * val % MOD;
} else {
return a * (val * val % MOD) % MOD;
}
}
public static void extendEuclid(long a, long b) {
if (b == 0) {
x = 1;
y = 0;
d = a;
return;
}
extendEuclid(b, a % b);
long x1 = y;
long y1 = x - (a / b) * y;
x = x1;
y = y1;
}
public static long gcd(long a, long b) {
if (b == 0) {
return a;
}
return gcd(b, a % b);
}
static class Line {
double a, b, c;
Line(double x1, double y1, double x2, double y2) {
if (Math.abs(x1 - x2) < Epsilon && Math.abs(y1 - y2) < Epsilon) {
throw new RuntimeException("Two point are the same");
}
a = y1 - y2;
b = x2 - x1;
c = -a * x1 - b * y1;
}
Line(Point x, Point y) {
this(x.x, x.y, y.x, y.y);
}
public Line perpendicular(Point p) {
return new Line(p, new Point(p.x + a, p.y + b));
}
public Point intersect(Line l) {
double d = a * l.b - b * l.a;
if (d == 0) {
throw new RuntimeException("Two lines are parallel");
}
return new Point((l.c * b - c * l.b) / d, (l.a * c - l.c * a) / d);
}
}
static void check(Point a, Point b, ArrayList<Point> p, Point[] rec, int index) {
for (int i = 0; i < 4; i++) {
int m = (i + index) % 4;
int j = (i + 1 + index) % 4;
Point k = intersect(minus(b, a), minus(rec[m], rec[j]), minus(rec[m], a));
if (k.x >= 0 && k.x <= 1 && k.y >= 0 && k.y <= 1) {
Point val = new Point(k.x * minus(b, a).x, k.x * minus(b, a).y);
p.add(add(val, a));
// System.out.println(a + " " + b + " " + rec[i] + " " + rec[j]);
// System.out.println(add(val, a));
}
}
}
static Point intersect(Point a, Point b, Point c) {
double D = cross(a, b);
if (D != 0) {
return new Point(cross(c, b) / D, cross(a, c) / D);
}
return null;
}
static Point convert(Point a, double angle) {
double x = a.x * cos(angle) - a.y * sin(angle);
double y = a.x * sin(angle) + a.y * cos(angle);
return new Point(x, y);
}
static Point minus(Point a, Point b) {
return new Point(a.x - b.x, a.y - b.y);
}
static Point add(Point a, Point b) {
return new Point(a.x + b.x, a.y + b.y);
}
static double cross(Point a, Point b) {
return a.x * b.y - a.y * b.x;
}
static class Point {
double x, y;
Point(double x, double y) {
this.x = x;
this.y = y;
}
@Override
public String toString() {
return "Point: " + x + " " + y;
}
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
// System.setOut(new PrintStream(new BufferedOutputStream(System.out), true));
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
throw new RuntimeException();
}
}
return st.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
public String nextLine() {
st = null;
try {
return br.readLine();
} catch (Exception e) {
throw new RuntimeException();
}
}
public boolean endLine() {
try {
String next = br.readLine();
while (next != null && next.trim().isEmpty()) {
next = br.readLine();
}
if (next == null) {
return true;
}
st = new StringTokenizer(next);
return st.hasMoreTokens();
} catch (Exception e) {
throw new RuntimeException();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,257 | 3,972 |
1,641 |
import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;
public class r114 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int a = sc.nextInt();
int b = sc.nextInt();
ArrayList<Integer> l = new ArrayList<Integer>();
for (int i = 0 ; i < n; i++) {
l.add(sc.nextInt());
}
Collections.sort(l);
int pet = l.get(n - a);
int vas = l.get(b - 1);
if (pet <= vas) {
System.out.println(0);
}
else System.out.println(pet - vas);
sc.close();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;
public class r114 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int a = sc.nextInt();
int b = sc.nextInt();
ArrayList<Integer> l = new ArrayList<Integer>();
for (int i = 0 ; i < n; i++) {
l.add(sc.nextInt());
}
Collections.sort(l);
int pet = l.get(n - a);
int vas = l.get(b - 1);
if (pet <= vas) {
System.out.println(0);
}
else System.out.println(pet - vas);
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Collections;
import java.util.Scanner;
public class r114 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int a = sc.nextInt();
int b = sc.nextInt();
ArrayList<Integer> l = new ArrayList<Integer>();
for (int i = 0 ; i < n; i++) {
l.add(sc.nextInt());
}
Collections.sort(l);
int pet = l.get(n - a);
int vas = l.get(b - 1);
if (pet <= vas) {
System.out.println(0);
}
else System.out.println(pet - vas);
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 490 | 1,638 |
2,015 |
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.InputMismatchException;
/**
* @author Egor Kulikov (egor@egork.net)
* Created on 14.03.2010
*/
public class TaskA implements Runnable {
private InputReader in;
private PrintWriter out;
public static void main(String[] args) {
// new Thread(new Template()).start();
new TaskA().run();
}
public TaskA() {
// String id = getClass().getName().toLowerCase();
// try {
// System.setIn(new FileInputStream(id + ".in"));
// System.setOut(new PrintStream(new FileOutputStream(id + ".out")));
// System.setIn(new FileInputStream("input.txt"));
// System.setOut(new PrintStream(new FileOutputStream("output.txt")));
// } catch (FileNotFoundException e) {
// throw new RuntimeException();
// }
in = new InputReader(System.in);
out = new PrintWriter(System.out);
}
public void run() {
// int numTests = in.readInt();
// for (int testNumber = 0; testNumber < numTests; testNumber++) {
// out.print("Case " + (testNumber + 1) + ": ");
// }
int n = in.readInt();
int min = 101;
int[] a = new int[n];
for (int i = 0; i < n; i++)
min = Math.min(min, a[i] = in.readInt());
int ans = 101;
for (int i = 0; i < n; i++) {
if (a[i] > min)
ans = Math.min(ans, a[i]);
}
if (ans == 101)
out.println("NO");
else
out.println(ans);
out.close();
}
private static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public BigInteger readBigInteger() {
try {
return new BigInteger(readString());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.InputMismatchException;
/**
* @author Egor Kulikov (egor@egork.net)
* Created on 14.03.2010
*/
public class TaskA implements Runnable {
private InputReader in;
private PrintWriter out;
public static void main(String[] args) {
// new Thread(new Template()).start();
new TaskA().run();
}
public TaskA() {
// String id = getClass().getName().toLowerCase();
// try {
// System.setIn(new FileInputStream(id + ".in"));
// System.setOut(new PrintStream(new FileOutputStream(id + ".out")));
// System.setIn(new FileInputStream("input.txt"));
// System.setOut(new PrintStream(new FileOutputStream("output.txt")));
// } catch (FileNotFoundException e) {
// throw new RuntimeException();
// }
in = new InputReader(System.in);
out = new PrintWriter(System.out);
}
public void run() {
// int numTests = in.readInt();
// for (int testNumber = 0; testNumber < numTests; testNumber++) {
// out.print("Case " + (testNumber + 1) + ": ");
// }
int n = in.readInt();
int min = 101;
int[] a = new int[n];
for (int i = 0; i < n; i++)
min = Math.min(min, a[i] = in.readInt());
int ans = 101;
for (int i = 0; i < n; i++) {
if (a[i] > min)
ans = Math.min(ans, a[i]);
}
if (ans == 101)
out.println("NO");
else
out.println(ans);
out.close();
}
private static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public BigInteger readBigInteger() {
try {
return new BigInteger(readString());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.InputMismatchException;
/**
* @author Egor Kulikov (egor@egork.net)
* Created on 14.03.2010
*/
public class TaskA implements Runnable {
private InputReader in;
private PrintWriter out;
public static void main(String[] args) {
// new Thread(new Template()).start();
new TaskA().run();
}
public TaskA() {
// String id = getClass().getName().toLowerCase();
// try {
// System.setIn(new FileInputStream(id + ".in"));
// System.setOut(new PrintStream(new FileOutputStream(id + ".out")));
// System.setIn(new FileInputStream("input.txt"));
// System.setOut(new PrintStream(new FileOutputStream("output.txt")));
// } catch (FileNotFoundException e) {
// throw new RuntimeException();
// }
in = new InputReader(System.in);
out = new PrintWriter(System.out);
}
public void run() {
// int numTests = in.readInt();
// for (int testNumber = 0; testNumber < numTests; testNumber++) {
// out.print("Case " + (testNumber + 1) + ": ");
// }
int n = in.readInt();
int min = 101;
int[] a = new int[n];
for (int i = 0; i < n; i++)
min = Math.min(min, a[i] = in.readInt());
int ans = 101;
for (int i = 0; i < n; i++) {
if (a[i] > min)
ans = Math.min(ans, a[i]);
}
if (ans == 101)
out.println("NO");
else
out.println(ans);
out.close();
}
private static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public BigInteger readBigInteger() {
try {
return new BigInteger(readString());
} catch (NumberFormatException e) {
throw new InputMismatchException();
}
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,662 | 2,011 |
1,262 |
import java.io.*;
import java.math.BigInteger;
public class C {
private static Solver solver = new Solver();
private static long m = 1000000000L + 7L;
public static void main(String[] args) throws IOException {
solver.withProcedure(() -> {
String[] input = solver.readString().split(" ");
BigInteger x = new BigInteger(input[0]);
BigInteger k = new BigInteger(input[1]);
if (x.compareTo(BigInteger.ZERO) == 0) {
solver.println("" + 0);
return;
}
BigInteger two = BigInteger.valueOf(2);
BigInteger mm = BigInteger.valueOf(m);
BigInteger binpowedK = two.modPow(k, mm);
BigInteger binpowedKPlusOne = two.modPow(k.add(BigInteger.ONE), mm);
BigInteger res = binpowedKPlusOne.multiply(x).subtract(binpowedK.subtract(BigInteger.ONE)).mod(mm);
if (res.compareTo(BigInteger.ZERO) < 0) {
res = BigInteger.ZERO;
}
solver.println("" + res);
}).solve();
}
private static long binpow(long a, long n) {
a = a % m;
long res = 1L;
while (n > 0) {
if ((n & 1L) != 0)
res = (res * a) % m;
a = (a * a) % m;
n >>= 1L;
}
return res;
}
@FunctionalInterface
private interface Procedure {
void run() throws IOException;
}
private static class Solver {
private Procedure procedure;
private StreamTokenizer in;
private PrintWriter out;
private BufferedReader bufferedReader;
Solver() {
try {
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("input.txt");
Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("output.txt");
bufferedReader = new BufferedReader(reader);
in = new StreamTokenizer(bufferedReader);
out = new PrintWriter(writer);
} catch (Exception e) {
throw new RuntimeException("Initialization has failed");
}
}
void solve() throws IOException {
procedure.run();
}
int readInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
long readLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
String readString() throws IOException {
return bufferedReader.readLine();
}
char readChar() throws IOException {
in.nextToken();
return in.sval.charAt(0);
}
void println(String str) {
out.println(str);
out.flush();
}
void print(String str) {
out.print(str);
out.flush();
}
Solver withProcedure(Procedure procedure) {
this.procedure = procedure;
return this;
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
public class C {
private static Solver solver = new Solver();
private static long m = 1000000000L + 7L;
public static void main(String[] args) throws IOException {
solver.withProcedure(() -> {
String[] input = solver.readString().split(" ");
BigInteger x = new BigInteger(input[0]);
BigInteger k = new BigInteger(input[1]);
if (x.compareTo(BigInteger.ZERO) == 0) {
solver.println("" + 0);
return;
}
BigInteger two = BigInteger.valueOf(2);
BigInteger mm = BigInteger.valueOf(m);
BigInteger binpowedK = two.modPow(k, mm);
BigInteger binpowedKPlusOne = two.modPow(k.add(BigInteger.ONE), mm);
BigInteger res = binpowedKPlusOne.multiply(x).subtract(binpowedK.subtract(BigInteger.ONE)).mod(mm);
if (res.compareTo(BigInteger.ZERO) < 0) {
res = BigInteger.ZERO;
}
solver.println("" + res);
}).solve();
}
private static long binpow(long a, long n) {
a = a % m;
long res = 1L;
while (n > 0) {
if ((n & 1L) != 0)
res = (res * a) % m;
a = (a * a) % m;
n >>= 1L;
}
return res;
}
@FunctionalInterface
private interface Procedure {
void run() throws IOException;
}
private static class Solver {
private Procedure procedure;
private StreamTokenizer in;
private PrintWriter out;
private BufferedReader bufferedReader;
Solver() {
try {
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("input.txt");
Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("output.txt");
bufferedReader = new BufferedReader(reader);
in = new StreamTokenizer(bufferedReader);
out = new PrintWriter(writer);
} catch (Exception e) {
throw new RuntimeException("Initialization has failed");
}
}
void solve() throws IOException {
procedure.run();
}
int readInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
long readLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
String readString() throws IOException {
return bufferedReader.readLine();
}
char readChar() throws IOException {
in.nextToken();
return in.sval.charAt(0);
}
void println(String str) {
out.println(str);
out.flush();
}
void print(String str) {
out.print(str);
out.flush();
}
Solver withProcedure(Procedure procedure) {
this.procedure = procedure;
return this;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.math.BigInteger;
public class C {
private static Solver solver = new Solver();
private static long m = 1000000000L + 7L;
public static void main(String[] args) throws IOException {
solver.withProcedure(() -> {
String[] input = solver.readString().split(" ");
BigInteger x = new BigInteger(input[0]);
BigInteger k = new BigInteger(input[1]);
if (x.compareTo(BigInteger.ZERO) == 0) {
solver.println("" + 0);
return;
}
BigInteger two = BigInteger.valueOf(2);
BigInteger mm = BigInteger.valueOf(m);
BigInteger binpowedK = two.modPow(k, mm);
BigInteger binpowedKPlusOne = two.modPow(k.add(BigInteger.ONE), mm);
BigInteger res = binpowedKPlusOne.multiply(x).subtract(binpowedK.subtract(BigInteger.ONE)).mod(mm);
if (res.compareTo(BigInteger.ZERO) < 0) {
res = BigInteger.ZERO;
}
solver.println("" + res);
}).solve();
}
private static long binpow(long a, long n) {
a = a % m;
long res = 1L;
while (n > 0) {
if ((n & 1L) != 0)
res = (res * a) % m;
a = (a * a) % m;
n >>= 1L;
}
return res;
}
@FunctionalInterface
private interface Procedure {
void run() throws IOException;
}
private static class Solver {
private Procedure procedure;
private StreamTokenizer in;
private PrintWriter out;
private BufferedReader bufferedReader;
Solver() {
try {
boolean oj = System.getProperty("ONLINE_JUDGE") != null;
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader("input.txt");
Writer writer = oj ? new OutputStreamWriter(System.out) : new FileWriter("output.txt");
bufferedReader = new BufferedReader(reader);
in = new StreamTokenizer(bufferedReader);
out = new PrintWriter(writer);
} catch (Exception e) {
throw new RuntimeException("Initialization has failed");
}
}
void solve() throws IOException {
procedure.run();
}
int readInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
long readLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
String readString() throws IOException {
return bufferedReader.readLine();
}
char readChar() throws IOException {
in.nextToken();
return in.sval.charAt(0);
}
void println(String str) {
out.println(str);
out.flush();
}
void print(String str) {
out.print(str);
out.flush();
}
Solver withProcedure(Procedure procedure) {
this.procedure = procedure;
return this;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 981 | 1,261 |
1,924 |
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.lang.reflect.Array;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class AA implements Runnable {
public static void main(String[] args) {
new Thread(new AA()).run();
}
static class Utils {
private Utils() {
}
public static void mergeSort(int[] a) {
mergeSort(a, 0, a.length - 1);
}
private static void mergeSort(int[] a, int leftIndex, int rightIndex) {
final int MAGIC_VALUE = 50;
if (leftIndex < rightIndex) {
if (rightIndex - leftIndex <= MAGIC_VALUE) {
insertionSort(a, leftIndex, rightIndex);
} else {
int middleIndex = (leftIndex + rightIndex) / 2;
mergeSort(a, leftIndex, middleIndex);
mergeSort(a, middleIndex + 1, rightIndex);
merge(a, leftIndex, middleIndex, rightIndex);
}
}
}
private static void merge(int[] a, int leftIndex, int middleIndex,
int rightIndex) {
int length1 = middleIndex - leftIndex + 1;
int length2 = rightIndex - middleIndex;
int[] leftArray = new int[length1];
int[] rightArray = new int[length2];
System.arraycopy(a, leftIndex, leftArray, 0, length1);
System.arraycopy(a, middleIndex + 1, rightArray, 0, length2);
for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) {
if (i == length1) {
a[k] = rightArray[j++];
} else if (j == length2) {
a[k] = leftArray[i++];
} else {
a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++]
: rightArray[j++];
}
}
}
private static void insertionSort(int[] a, int leftIndex, int rightIndex) {
for (int i = leftIndex + 1; i <= rightIndex; i++) {
int current = a[i];
int j = i - 1;
while (j >= leftIndex && a[j] > current) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = current;
}
}
}
BufferedReader br;
StringTokenizer str = new StringTokenizer("");
PrintWriter pw;
public Integer ni() {
return Integer.parseInt(nextToken());
}
public Double nd() {
return Double.parseDouble(nextToken());
}
public Long nl() {
return Long.parseLong(nextToken());
}
public boolean EOF() {
try {
if (!br.ready() && !str.hasMoreTokens()) {
return true;
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return false;
}
public String nextToken() {
while (!str.hasMoreTokens())
try {
str = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return str.nextToken();
}
@Override
public void run() {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new OutputStreamWriter(System.out));
// try {
// br = new BufferedReader(new FileReader("input.txt"));
// } catch (FileNotFoundException e) {
// e.printStackTrace();
// }
// try {
// pw = new PrintWriter(new FileWriter("output.txt"));
// } catch (IOException e) {
// // TODO Auto-generated catch block
// e.printStackTrace();
// }
solve();
pw.close();
}
public void solve() {
int n = ni();
int[] a = new int[n];
int total = 0;
for (int i = 0; i < n; i++) {
a[i] = ni();
total+=a[i];
}
Arrays.sort(a);
int c =0;
int left=0;
for(int i=n-1; i>=0;i--){
if (left<=total){
c++;
left+=a[i];
total-=a[i];
}
}
pw.print(c);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.lang.reflect.Array;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class AA implements Runnable {
public static void main(String[] args) {
new Thread(new AA()).run();
}
static class Utils {
private Utils() {
}
public static void mergeSort(int[] a) {
mergeSort(a, 0, a.length - 1);
}
private static void mergeSort(int[] a, int leftIndex, int rightIndex) {
final int MAGIC_VALUE = 50;
if (leftIndex < rightIndex) {
if (rightIndex - leftIndex <= MAGIC_VALUE) {
insertionSort(a, leftIndex, rightIndex);
} else {
int middleIndex = (leftIndex + rightIndex) / 2;
mergeSort(a, leftIndex, middleIndex);
mergeSort(a, middleIndex + 1, rightIndex);
merge(a, leftIndex, middleIndex, rightIndex);
}
}
}
private static void merge(int[] a, int leftIndex, int middleIndex,
int rightIndex) {
int length1 = middleIndex - leftIndex + 1;
int length2 = rightIndex - middleIndex;
int[] leftArray = new int[length1];
int[] rightArray = new int[length2];
System.arraycopy(a, leftIndex, leftArray, 0, length1);
System.arraycopy(a, middleIndex + 1, rightArray, 0, length2);
for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) {
if (i == length1) {
a[k] = rightArray[j++];
} else if (j == length2) {
a[k] = leftArray[i++];
} else {
a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++]
: rightArray[j++];
}
}
}
private static void insertionSort(int[] a, int leftIndex, int rightIndex) {
for (int i = leftIndex + 1; i <= rightIndex; i++) {
int current = a[i];
int j = i - 1;
while (j >= leftIndex && a[j] > current) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = current;
}
}
}
BufferedReader br;
StringTokenizer str = new StringTokenizer("");
PrintWriter pw;
public Integer ni() {
return Integer.parseInt(nextToken());
}
public Double nd() {
return Double.parseDouble(nextToken());
}
public Long nl() {
return Long.parseLong(nextToken());
}
public boolean EOF() {
try {
if (!br.ready() && !str.hasMoreTokens()) {
return true;
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return false;
}
public String nextToken() {
while (!str.hasMoreTokens())
try {
str = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return str.nextToken();
}
@Override
public void run() {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new OutputStreamWriter(System.out));
// try {
// br = new BufferedReader(new FileReader("input.txt"));
// } catch (FileNotFoundException e) {
// e.printStackTrace();
// }
// try {
// pw = new PrintWriter(new FileWriter("output.txt"));
// } catch (IOException e) {
// // TODO Auto-generated catch block
// e.printStackTrace();
// }
solve();
pw.close();
}
public void solve() {
int n = ni();
int[] a = new int[n];
int total = 0;
for (int i = 0; i < n; i++) {
a[i] = ni();
total+=a[i];
}
Arrays.sort(a);
int c =0;
int left=0;
for(int i=n-1; i>=0;i--){
if (left<=total){
c++;
left+=a[i];
total-=a[i];
}
}
pw.print(c);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.lang.reflect.Array;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.StringTokenizer;
import java.util.TreeSet;
public class AA implements Runnable {
public static void main(String[] args) {
new Thread(new AA()).run();
}
static class Utils {
private Utils() {
}
public static void mergeSort(int[] a) {
mergeSort(a, 0, a.length - 1);
}
private static void mergeSort(int[] a, int leftIndex, int rightIndex) {
final int MAGIC_VALUE = 50;
if (leftIndex < rightIndex) {
if (rightIndex - leftIndex <= MAGIC_VALUE) {
insertionSort(a, leftIndex, rightIndex);
} else {
int middleIndex = (leftIndex + rightIndex) / 2;
mergeSort(a, leftIndex, middleIndex);
mergeSort(a, middleIndex + 1, rightIndex);
merge(a, leftIndex, middleIndex, rightIndex);
}
}
}
private static void merge(int[] a, int leftIndex, int middleIndex,
int rightIndex) {
int length1 = middleIndex - leftIndex + 1;
int length2 = rightIndex - middleIndex;
int[] leftArray = new int[length1];
int[] rightArray = new int[length2];
System.arraycopy(a, leftIndex, leftArray, 0, length1);
System.arraycopy(a, middleIndex + 1, rightArray, 0, length2);
for (int k = leftIndex, i = 0, j = 0; k <= rightIndex; k++) {
if (i == length1) {
a[k] = rightArray[j++];
} else if (j == length2) {
a[k] = leftArray[i++];
} else {
a[k] = leftArray[i] <= rightArray[j] ? leftArray[i++]
: rightArray[j++];
}
}
}
private static void insertionSort(int[] a, int leftIndex, int rightIndex) {
for (int i = leftIndex + 1; i <= rightIndex; i++) {
int current = a[i];
int j = i - 1;
while (j >= leftIndex && a[j] > current) {
a[j + 1] = a[j];
j--;
}
a[j + 1] = current;
}
}
}
BufferedReader br;
StringTokenizer str = new StringTokenizer("");
PrintWriter pw;
public Integer ni() {
return Integer.parseInt(nextToken());
}
public Double nd() {
return Double.parseDouble(nextToken());
}
public Long nl() {
return Long.parseLong(nextToken());
}
public boolean EOF() {
try {
if (!br.ready() && !str.hasMoreTokens()) {
return true;
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return false;
}
public String nextToken() {
while (!str.hasMoreTokens())
try {
str = new StringTokenizer(br.readLine());
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
return str.nextToken();
}
@Override
public void run() {
br = new BufferedReader(new InputStreamReader(System.in));
pw = new PrintWriter(new OutputStreamWriter(System.out));
// try {
// br = new BufferedReader(new FileReader("input.txt"));
// } catch (FileNotFoundException e) {
// e.printStackTrace();
// }
// try {
// pw = new PrintWriter(new FileWriter("output.txt"));
// } catch (IOException e) {
// // TODO Auto-generated catch block
// e.printStackTrace();
// }
solve();
pw.close();
}
public void solve() {
int n = ni();
int[] a = new int[n];
int total = 0;
for (int i = 0; i < n; i++) {
a[i] = ni();
total+=a[i];
}
Arrays.sort(a);
int c =0;
int left=0;
for(int i=n-1; i>=0;i--){
if (left<=total){
c++;
left+=a[i];
total-=a[i];
}
}
pw.print(c);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,353 | 1,920 |
202 |
import java.util.*;
import java.io.*;
public class FirstClass {
public static void main(String[] args)throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(br.readLine());
int arr[] = new int [n];
StringTokenizer st1 = new StringTokenizer(br.readLine());
for(int i = 0 ; i < n ; i++)
{
arr[i] = Integer.parseInt(st1.nextToken());
}
int max = -1;
boolean flag = true;
for(int i = 0 ; i < n ; i++)
{
if(arr[i] > max+1)
{
flag = false;
out.println(i+1);
break;
}
else
{
max = Math.max(max, arr[i]);
}
}
if(flag)
out.println(-1);
out.flush();
out.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class FirstClass {
public static void main(String[] args)throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(br.readLine());
int arr[] = new int [n];
StringTokenizer st1 = new StringTokenizer(br.readLine());
for(int i = 0 ; i < n ; i++)
{
arr[i] = Integer.parseInt(st1.nextToken());
}
int max = -1;
boolean flag = true;
for(int i = 0 ; i < n ; i++)
{
if(arr[i] > max+1)
{
flag = false;
out.println(i+1);
break;
}
else
{
max = Math.max(max, arr[i]);
}
}
if(flag)
out.println(-1);
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class FirstClass {
public static void main(String[] args)throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int n = Integer.parseInt(br.readLine());
int arr[] = new int [n];
StringTokenizer st1 = new StringTokenizer(br.readLine());
for(int i = 0 ; i < n ; i++)
{
arr[i] = Integer.parseInt(st1.nextToken());
}
int max = -1;
boolean flag = true;
for(int i = 0 ; i < n ; i++)
{
if(arr[i] > max+1)
{
flag = false;
out.println(i+1);
break;
}
else
{
max = Math.max(max, arr[i]);
}
}
if(flag)
out.println(-1);
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 548 | 202 |
2,239 |
import java.io.*;
import java.util.*;
public final class PythonIndentation
{
public static void main(String[] args)
{
new PythonIndentation(System.in, System.out);
}
static class Solver implements Runnable
{
static final int MOD = (int) 1e9 + 7;
int n;
char[] arr;
long[][] dp;
BufferedReader in;
PrintWriter out;
void solve() throws IOException
{
n = Integer.parseInt(in.readLine());
arr = new char[n];
dp = new long[n + 1][n + 1];
for (int i = 0; i < n; i++)
arr[i] = in.readLine().charAt(0);
for (int i = 0; i <= n; i++)
Arrays.fill(dp[i], -1);
dp[0][0] = 1;
if (arr[0] == 's')
out.println(find(1, 0));
else
out.println(find(1, 1));
/* System.out.println("dp :");
for (int i = 0; i <= n; i++)
{
System.out.print("i : " + i + " => ");
for (int j = 0; j <= n; j++)
System.out.print(dp[i][j] + " ");
System.out.println();
}*/
}
long find(int curr, int backIndents)
{
// System.out.println("curr : " + curr + ", bI : " + backIndents);
if (backIndents < 0)
return 0;
if (curr == n)
return dp[curr][backIndents] = 1;
if (dp[curr][backIndents] != -1)
return dp[curr][backIndents];
long ans;
if (arr[curr] == 's')
{
if (arr[curr - 1] == 'f')
ans = find(curr + 1, backIndents);
else
ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD);
}
else
{
ans = find(curr + 1, backIndents + 1);
if (arr[curr - 1] != 'f')
{
// System.out.println("calling from curr : " + curr + ", bI : " + backIndents);
ans = CMath.mod(ans + find(curr, backIndents - 1), MOD);
}
}
return dp[curr][backIndents] = ans;
}
public Solver(BufferedReader in, PrintWriter out)
{
this.in = in;
this.out = out;
}
@Override public void run()
{
try
{
solve();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
static class CMath
{
static long mod(long number, long mod)
{
return number - (number / mod) * mod;
}
}
private PythonIndentation(InputStream inputStream, OutputStream outputStream)
{
BufferedReader in = new BufferedReader(new InputStreamReader(inputStream));
PrintWriter out = new PrintWriter(outputStream);
Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29);
try
{
thread.start();
thread.join();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
finally
{
try
{
in.close();
}
catch (IOException e)
{
e.printStackTrace();
}
out.flush();
out.close();
}
}
}
/*
6
f
f
s
s
s
s
: 10
*/
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public final class PythonIndentation
{
public static void main(String[] args)
{
new PythonIndentation(System.in, System.out);
}
static class Solver implements Runnable
{
static final int MOD = (int) 1e9 + 7;
int n;
char[] arr;
long[][] dp;
BufferedReader in;
PrintWriter out;
void solve() throws IOException
{
n = Integer.parseInt(in.readLine());
arr = new char[n];
dp = new long[n + 1][n + 1];
for (int i = 0; i < n; i++)
arr[i] = in.readLine().charAt(0);
for (int i = 0; i <= n; i++)
Arrays.fill(dp[i], -1);
dp[0][0] = 1;
if (arr[0] == 's')
out.println(find(1, 0));
else
out.println(find(1, 1));
/* System.out.println("dp :");
for (int i = 0; i <= n; i++)
{
System.out.print("i : " + i + " => ");
for (int j = 0; j <= n; j++)
System.out.print(dp[i][j] + " ");
System.out.println();
}*/
}
long find(int curr, int backIndents)
{
// System.out.println("curr : " + curr + ", bI : " + backIndents);
if (backIndents < 0)
return 0;
if (curr == n)
return dp[curr][backIndents] = 1;
if (dp[curr][backIndents] != -1)
return dp[curr][backIndents];
long ans;
if (arr[curr] == 's')
{
if (arr[curr - 1] == 'f')
ans = find(curr + 1, backIndents);
else
ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD);
}
else
{
ans = find(curr + 1, backIndents + 1);
if (arr[curr - 1] != 'f')
{
// System.out.println("calling from curr : " + curr + ", bI : " + backIndents);
ans = CMath.mod(ans + find(curr, backIndents - 1), MOD);
}
}
return dp[curr][backIndents] = ans;
}
public Solver(BufferedReader in, PrintWriter out)
{
this.in = in;
this.out = out;
}
@Override public void run()
{
try
{
solve();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
static class CMath
{
static long mod(long number, long mod)
{
return number - (number / mod) * mod;
}
}
private PythonIndentation(InputStream inputStream, OutputStream outputStream)
{
BufferedReader in = new BufferedReader(new InputStreamReader(inputStream));
PrintWriter out = new PrintWriter(outputStream);
Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29);
try
{
thread.start();
thread.join();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
finally
{
try
{
in.close();
}
catch (IOException e)
{
e.printStackTrace();
}
out.flush();
out.close();
}
}
}
/*
6
f
f
s
s
s
s
: 10
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public final class PythonIndentation
{
public static void main(String[] args)
{
new PythonIndentation(System.in, System.out);
}
static class Solver implements Runnable
{
static final int MOD = (int) 1e9 + 7;
int n;
char[] arr;
long[][] dp;
BufferedReader in;
PrintWriter out;
void solve() throws IOException
{
n = Integer.parseInt(in.readLine());
arr = new char[n];
dp = new long[n + 1][n + 1];
for (int i = 0; i < n; i++)
arr[i] = in.readLine().charAt(0);
for (int i = 0; i <= n; i++)
Arrays.fill(dp[i], -1);
dp[0][0] = 1;
if (arr[0] == 's')
out.println(find(1, 0));
else
out.println(find(1, 1));
/* System.out.println("dp :");
for (int i = 0; i <= n; i++)
{
System.out.print("i : " + i + " => ");
for (int j = 0; j <= n; j++)
System.out.print(dp[i][j] + " ");
System.out.println();
}*/
}
long find(int curr, int backIndents)
{
// System.out.println("curr : " + curr + ", bI : " + backIndents);
if (backIndents < 0)
return 0;
if (curr == n)
return dp[curr][backIndents] = 1;
if (dp[curr][backIndents] != -1)
return dp[curr][backIndents];
long ans;
if (arr[curr] == 's')
{
if (arr[curr - 1] == 'f')
ans = find(curr + 1, backIndents);
else
ans = CMath.mod(find(curr + 1, backIndents) + find(curr, backIndents - 1), MOD);
}
else
{
ans = find(curr + 1, backIndents + 1);
if (arr[curr - 1] != 'f')
{
// System.out.println("calling from curr : " + curr + ", bI : " + backIndents);
ans = CMath.mod(ans + find(curr, backIndents - 1), MOD);
}
}
return dp[curr][backIndents] = ans;
}
public Solver(BufferedReader in, PrintWriter out)
{
this.in = in;
this.out = out;
}
@Override public void run()
{
try
{
solve();
}
catch (IOException e)
{
e.printStackTrace();
}
}
}
static class CMath
{
static long mod(long number, long mod)
{
return number - (number / mod) * mod;
}
}
private PythonIndentation(InputStream inputStream, OutputStream outputStream)
{
BufferedReader in = new BufferedReader(new InputStreamReader(inputStream));
PrintWriter out = new PrintWriter(outputStream);
Thread thread = new Thread(null, new Solver(in, out), "PythonIndentation", 1 << 29);
try
{
thread.start();
thread.join();
}
catch (InterruptedException e)
{
e.printStackTrace();
}
finally
{
try
{
in.close();
}
catch (IOException e)
{
e.printStackTrace();
}
out.flush();
out.close();
}
}
}
/*
6
f
f
s
s
s
s
: 10
*/
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,180 | 2,235 |
774 |
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.Writer;
import java.util.Arrays;
import java.util.InputMismatchException;
public class TestClass11 {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
InputReader in=new InputReader(System.in);
OutputWriter out=new OutputWriter(System.out);
int n=in.readInt();
String s=in.readString();
int low[]=new int[26];
int upper[]=new int[26];
boolean islow[]=new boolean[26];
boolean isupper[]=new boolean[26];
Arrays.fill(low,Integer.MAX_VALUE);
Arrays.fill(upper, Integer.MAX_VALUE);
int ans[]=new int[n];
int finalsans=Integer.MAX_VALUE;
for(int i=0;i<n;i++){
int c=s.charAt(i);
if(c>='a'&&c<='z'){
islow[c-'a']=true;
}
else{
isupper[c-'A']=true;
}
}
for(int i=n-1;i>=0;i--){
int c=s.charAt(i);
if(c>='a'&&c<='z'){
low[c-'a']=i;
}
else{
upper[c-'A']=i;
}
for(int j=0;j<26;j++){
if(islow[j]==true){
ans[i]=Math.max(ans[i], low[j]);
}
}
for(int j=0;j<26;j++){
if(isupper[j]==true){
ans[i]=Math.max(ans[i], upper[j]);
}
}
finalsans=Math.min(ans[i]-i+1, finalsans);
}
System.out.println(finalsans);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.readInt();
return array;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.Writer;
import java.util.Arrays;
import java.util.InputMismatchException;
public class TestClass11 {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
InputReader in=new InputReader(System.in);
OutputWriter out=new OutputWriter(System.out);
int n=in.readInt();
String s=in.readString();
int low[]=new int[26];
int upper[]=new int[26];
boolean islow[]=new boolean[26];
boolean isupper[]=new boolean[26];
Arrays.fill(low,Integer.MAX_VALUE);
Arrays.fill(upper, Integer.MAX_VALUE);
int ans[]=new int[n];
int finalsans=Integer.MAX_VALUE;
for(int i=0;i<n;i++){
int c=s.charAt(i);
if(c>='a'&&c<='z'){
islow[c-'a']=true;
}
else{
isupper[c-'A']=true;
}
}
for(int i=n-1;i>=0;i--){
int c=s.charAt(i);
if(c>='a'&&c<='z'){
low[c-'a']=i;
}
else{
upper[c-'A']=i;
}
for(int j=0;j<26;j++){
if(islow[j]==true){
ans[i]=Math.max(ans[i], low[j]);
}
}
for(int j=0;j<26;j++){
if(isupper[j]==true){
ans[i]=Math.max(ans[i], upper[j]);
}
}
finalsans=Math.min(ans[i]-i+1, finalsans);
}
System.out.println(finalsans);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.readInt();
return array;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.Writer;
import java.util.Arrays;
import java.util.InputMismatchException;
public class TestClass11 {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
InputReader in=new InputReader(System.in);
OutputWriter out=new OutputWriter(System.out);
int n=in.readInt();
String s=in.readString();
int low[]=new int[26];
int upper[]=new int[26];
boolean islow[]=new boolean[26];
boolean isupper[]=new boolean[26];
Arrays.fill(low,Integer.MAX_VALUE);
Arrays.fill(upper, Integer.MAX_VALUE);
int ans[]=new int[n];
int finalsans=Integer.MAX_VALUE;
for(int i=0;i<n;i++){
int c=s.charAt(i);
if(c>='a'&&c<='z'){
islow[c-'a']=true;
}
else{
isupper[c-'A']=true;
}
}
for(int i=n-1;i>=0;i--){
int c=s.charAt(i);
if(c>='a'&&c<='z'){
low[c-'a']=i;
}
else{
upper[c-'A']=i;
}
for(int j=0;j<26;j++){
if(islow[j]==true){
ans[i]=Math.max(ans[i], low[j]);
}
}
for(int j=0;j<26;j++){
if(isupper[j]==true){
ans[i]=Math.max(ans[i], upper[j]);
}
}
finalsans=Math.min(ans[i]-i+1, finalsans);
}
System.out.println(finalsans);
}
}
class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuilder res = new StringBuilder();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
public boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public String next() {
return readString();
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object...objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0)
writer.print(' ');
writer.print(objects[i]);
}
}
public void printLine(Object...objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
public void flush() {
writer.flush();
}
}
class IOUtils {
public static int[] readIntArray(InputReader in, int size) {
int[] array = new int[size];
for (int i = 0; i < size; i++)
array[i] = in.readInt();
return array;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,396 | 773 |
3,310 |
import java.io.IOException;
import java.util.Scanner;
public class A199 {
static int n[][] = new int[][] { { -1, 0 }, { 1, 0 }, { 0, -1 }, { 0, 1 } };
public static void main(String[] args) throws IOException {
new A199().solve();
}
public void solve() throws IOException {
Scanner scan = new Scanner(System.in);
int N = scan.nextInt();
// int f1 = 0;
// int f2 = 1;
//
// while(true){
// int t = f1 + f2;
// if(t == N){
// //guaranteed that n is a Fibonacci number
// break;
// }
// f1 = f2;
// f2 = t;
// }
System.out.println("0 0 " + N );
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.util.Scanner;
public class A199 {
static int n[][] = new int[][] { { -1, 0 }, { 1, 0 }, { 0, -1 }, { 0, 1 } };
public static void main(String[] args) throws IOException {
new A199().solve();
}
public void solve() throws IOException {
Scanner scan = new Scanner(System.in);
int N = scan.nextInt();
// int f1 = 0;
// int f2 = 1;
//
// while(true){
// int t = f1 + f2;
// if(t == N){
// //guaranteed that n is a Fibonacci number
// break;
// }
// f1 = f2;
// f2 = t;
// }
System.out.println("0 0 " + N );
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.util.Scanner;
public class A199 {
static int n[][] = new int[][] { { -1, 0 }, { 1, 0 }, { 0, -1 }, { 0, 1 } };
public static void main(String[] args) throws IOException {
new A199().solve();
}
public void solve() throws IOException {
Scanner scan = new Scanner(System.in);
int N = scan.nextInt();
// int f1 = 0;
// int f2 = 1;
//
// while(true){
// int t = f1 + f2;
// if(t == N){
// //guaranteed that n is a Fibonacci number
// break;
// }
// f1 = f2;
// f2 = t;
// }
System.out.println("0 0 " + N );
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 550 | 3,304 |
162 |
import java.util.Scanner;
public class New_Year_and_Curling {
static final double E = 0.00001;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int r = sc.nextInt();
double[] y = new double[n];
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] =sc.nextInt();
double top = r; // if we make it 0 and subtract from the result will get WA (do not know why!!!)
int x = arr[i];
for(int j =0 ;j<i;j++)
{
if(Math.abs(arr[j] -x )<=2*r) {
top = Math.max(top , y[j] + Math.sqrt((4 * r * r) - ((arr[j] - x) * (arr[j] - x))));
}
}
y[i] = top ;
double res = y[i] ;
System.out.print(res+" ");
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class New_Year_and_Curling {
static final double E = 0.00001;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int r = sc.nextInt();
double[] y = new double[n];
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] =sc.nextInt();
double top = r; // if we make it 0 and subtract from the result will get WA (do not know why!!!)
int x = arr[i];
for(int j =0 ;j<i;j++)
{
if(Math.abs(arr[j] -x )<=2*r) {
top = Math.max(top , y[j] + Math.sqrt((4 * r * r) - ((arr[j] - x) * (arr[j] - x))));
}
}
y[i] = top ;
double res = y[i] ;
System.out.print(res+" ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class New_Year_and_Curling {
static final double E = 0.00001;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int r = sc.nextInt();
double[] y = new double[n];
int arr[] = new int[n];
for (int i = 0; i < n; i++) {
arr[i] =sc.nextInt();
double top = r; // if we make it 0 and subtract from the result will get WA (do not know why!!!)
int x = arr[i];
for(int j =0 ;j<i;j++)
{
if(Math.abs(arr[j] -x )<=2*r) {
top = Math.max(top , y[j] + Math.sqrt((4 * r * r) - ((arr[j] - x) * (arr[j] - x))));
}
}
y[i] = top ;
double res = y[i] ;
System.out.print(res+" ");
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 578 | 162 |
3,485 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
EPhoenixAndComputers solver = new EPhoenixAndComputers();
solver.solve(1, in, out);
out.close();
}
static class EPhoenixAndComputers {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt(), m = in.nextInt();
ModInt mod = new ModInt(m);
int[] factorial = new int[n + 1];
int[][] binomial = new int[n + 1][n + 1];
int[] two = new int[n + 1];
for (int i = 0; i <= n; i++) {
binomial[i][0] = 1;
for (int j = 1; j <= i; j++)
binomial[i][j] = mod.add(binomial[i - 1][j], binomial[i - 1][j - 1]);
factorial[i] = i == 0 ? 1 : mod.multiply(factorial[i - 1], i);
two[i] = i == 0 ? 1 : mod.multiply(2, two[i - 1]);
}
int[][] dp = new int[n + 1][n + 1];
dp[0][0] = 1;
int answer = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
for (int x = 1; x <= i; x++) {
dp[i][j] = mod.add(dp[i][j],
mod.multiply(binomial[i][x], mod.multiply(two[x - 1], dp[i - x][j - 1])));
}
}
}
for (int k = 0; k < n; k++) {
answer = mod.add(answer, dp[n - k][k + 1]);
}
out.println(answer);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void println(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
writer.print('\n');
}
public void close() {
writer.close();
}
}
static class ModInt {
int modulo;
public ModInt(int m) {
modulo = m;
}
public int add(int x, int y) {
x += y;
if (x >= modulo) x -= modulo;
return x;
}
public int multiply(int x, int y) {
return (int) ((x * 1L * y) % modulo);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
EPhoenixAndComputers solver = new EPhoenixAndComputers();
solver.solve(1, in, out);
out.close();
}
static class EPhoenixAndComputers {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt(), m = in.nextInt();
ModInt mod = new ModInt(m);
int[] factorial = new int[n + 1];
int[][] binomial = new int[n + 1][n + 1];
int[] two = new int[n + 1];
for (int i = 0; i <= n; i++) {
binomial[i][0] = 1;
for (int j = 1; j <= i; j++)
binomial[i][j] = mod.add(binomial[i - 1][j], binomial[i - 1][j - 1]);
factorial[i] = i == 0 ? 1 : mod.multiply(factorial[i - 1], i);
two[i] = i == 0 ? 1 : mod.multiply(2, two[i - 1]);
}
int[][] dp = new int[n + 1][n + 1];
dp[0][0] = 1;
int answer = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
for (int x = 1; x <= i; x++) {
dp[i][j] = mod.add(dp[i][j],
mod.multiply(binomial[i][x], mod.multiply(two[x - 1], dp[i - x][j - 1])));
}
}
}
for (int k = 0; k < n; k++) {
answer = mod.add(answer, dp[n - k][k + 1]);
}
out.println(answer);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void println(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
writer.print('\n');
}
public void close() {
writer.close();
}
}
static class ModInt {
int modulo;
public ModInt(int m) {
modulo = m;
}
public int add(int x, int y) {
x += y;
if (x >= modulo) x -= modulo;
return x;
}
public int multiply(int x, int y) {
return (int) ((x * 1L * y) % modulo);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
EPhoenixAndComputers solver = new EPhoenixAndComputers();
solver.solve(1, in, out);
out.close();
}
static class EPhoenixAndComputers {
public void solve(int testNumber, InputReader in, OutputWriter out) {
int n = in.nextInt(), m = in.nextInt();
ModInt mod = new ModInt(m);
int[] factorial = new int[n + 1];
int[][] binomial = new int[n + 1][n + 1];
int[] two = new int[n + 1];
for (int i = 0; i <= n; i++) {
binomial[i][0] = 1;
for (int j = 1; j <= i; j++)
binomial[i][j] = mod.add(binomial[i - 1][j], binomial[i - 1][j - 1]);
factorial[i] = i == 0 ? 1 : mod.multiply(factorial[i - 1], i);
two[i] = i == 0 ? 1 : mod.multiply(2, two[i - 1]);
}
int[][] dp = new int[n + 1][n + 1];
dp[0][0] = 1;
int answer = 0;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= i; j++) {
for (int x = 1; x <= i; x++) {
dp[i][j] = mod.add(dp[i][j],
mod.multiply(binomial[i][x], mod.multiply(two[x - 1], dp[i - x][j - 1])));
}
}
}
for (int k = 0; k < n; k++) {
answer = mod.add(answer, dp[n - k][k + 1]);
}
out.println(answer);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void println(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
writer.print('\n');
}
public void close() {
writer.close();
}
}
static class ModInt {
int modulo;
public ModInt(int m) {
modulo = m;
}
public int add(int x, int y) {
x += y;
if (x >= modulo) x -= modulo;
return x;
}
public int multiply(int x, int y) {
return (int) ((x * 1L * y) % modulo);
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isSpaceChar(c)) c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,475 | 3,479 |
868 |
import java.io.*;
import java.util.*;
public class B {
static int i(String s) { return Integer.parseInt(s); }
public static void main(String[] args) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String[] arr = in.readLine().split(" ");
int n = i(arr[0]);
int k = i(arr[1]);
int[] A = new int[n];
arr = in.readLine().split(" ");
for(int i=0; i<n; i++)
A[i] = i(arr[i]);
int st = 0;
int cnt = 0;
int[] cnts = new int[100*100*10+1];
for(int i=0; i<n; i++) {
cnts[A[i]]++;
if(cnts[A[i]] == 1) cnt++;
else while(cnts[A[st]] > 1) {
cnts[A[st]]--;
st++;
}
if(cnt == k) {
System.out.println((st+1)+" "+(i+1));
return;
}
}
System.out.println(-1+" "+-1);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
static int i(String s) { return Integer.parseInt(s); }
public static void main(String[] args) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String[] arr = in.readLine().split(" ");
int n = i(arr[0]);
int k = i(arr[1]);
int[] A = new int[n];
arr = in.readLine().split(" ");
for(int i=0; i<n; i++)
A[i] = i(arr[i]);
int st = 0;
int cnt = 0;
int[] cnts = new int[100*100*10+1];
for(int i=0; i<n; i++) {
cnts[A[i]]++;
if(cnts[A[i]] == 1) cnt++;
else while(cnts[A[st]] > 1) {
cnts[A[st]]--;
st++;
}
if(cnt == k) {
System.out.println((st+1)+" "+(i+1));
return;
}
}
System.out.println(-1+" "+-1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class B {
static int i(String s) { return Integer.parseInt(s); }
public static void main(String[] args) throws Exception {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
String[] arr = in.readLine().split(" ");
int n = i(arr[0]);
int k = i(arr[1]);
int[] A = new int[n];
arr = in.readLine().split(" ");
for(int i=0; i<n; i++)
A[i] = i(arr[i]);
int st = 0;
int cnt = 0;
int[] cnts = new int[100*100*10+1];
for(int i=0; i<n; i++) {
cnts[A[i]]++;
if(cnts[A[i]] == 1) cnt++;
else while(cnts[A[st]] > 1) {
cnts[A[st]]--;
st++;
}
if(cnt == k) {
System.out.println((st+1)+" "+(i+1));
return;
}
}
System.out.println(-1+" "+-1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 590 | 867 |
2,354 |
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
Reader.init(System.in);
int n = Reader.nextInt();
int[] arr = new int[n];
int initial = 0;
for (int i = 0; i < n; i++) arr[i] = Reader.nextInt();
for (int i = 0; i < arr.length; i++) {
for (int j = i + 1; j < arr.length; j++) if (arr[i] > arr[j]) initial++;
}
int m = Reader.nextInt();
boolean parity = initial % 2 == 0;
// System.out.println(parity ? "even": "odd");
for (int i = 0; i < m; i++) {
int l = Reader.nextInt();
int r = Reader.nextInt();
int elems = r - l + 1;
boolean change = (elems/2) % 2 == 0;
parity = parity == change;
System.out.println(parity ? "even": "odd");
}
}
}
/**
* Reader class based on the article at "https://www.cpe.ku.ac.th/~jim/java-io.html"
* */
class Reader{
private static BufferedReader reader;
private static StringTokenizer tokenizer;
static void init(InputStream inputStream){
reader = new BufferedReader(new InputStreamReader(inputStream));
tokenizer = new StringTokenizer("");
}
static String next() throws IOException {
String read;
while (!tokenizer.hasMoreTokens()){
read = reader.readLine();
if (read == null || read.equals(""))
return "-1";
tokenizer = new StringTokenizer(read);
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException{
return Integer.parseInt(next());
}
// static long nextLong() throws IOException{
// return Long.parseLong(next());
// }
//Get a whole line.
// static String line() throws IOException{
// return reader.readLine();
// }
//
// static double nextDouble() throws IOException{return Double.parseDouble(next());}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
Reader.init(System.in);
int n = Reader.nextInt();
int[] arr = new int[n];
int initial = 0;
for (int i = 0; i < n; i++) arr[i] = Reader.nextInt();
for (int i = 0; i < arr.length; i++) {
for (int j = i + 1; j < arr.length; j++) if (arr[i] > arr[j]) initial++;
}
int m = Reader.nextInt();
boolean parity = initial % 2 == 0;
// System.out.println(parity ? "even": "odd");
for (int i = 0; i < m; i++) {
int l = Reader.nextInt();
int r = Reader.nextInt();
int elems = r - l + 1;
boolean change = (elems/2) % 2 == 0;
parity = parity == change;
System.out.println(parity ? "even": "odd");
}
}
}
/**
* Reader class based on the article at "https://www.cpe.ku.ac.th/~jim/java-io.html"
* */
class Reader{
private static BufferedReader reader;
private static StringTokenizer tokenizer;
static void init(InputStream inputStream){
reader = new BufferedReader(new InputStreamReader(inputStream));
tokenizer = new StringTokenizer("");
}
static String next() throws IOException {
String read;
while (!tokenizer.hasMoreTokens()){
read = reader.readLine();
if (read == null || read.equals(""))
return "-1";
tokenizer = new StringTokenizer(read);
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException{
return Integer.parseInt(next());
}
// static long nextLong() throws IOException{
// return Long.parseLong(next());
// }
//Get a whole line.
// static String line() throws IOException{
// return reader.readLine();
// }
//
// static double nextDouble() throws IOException{return Double.parseDouble(next());}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
public static void main(String[] args) throws IOException {
Reader.init(System.in);
int n = Reader.nextInt();
int[] arr = new int[n];
int initial = 0;
for (int i = 0; i < n; i++) arr[i] = Reader.nextInt();
for (int i = 0; i < arr.length; i++) {
for (int j = i + 1; j < arr.length; j++) if (arr[i] > arr[j]) initial++;
}
int m = Reader.nextInt();
boolean parity = initial % 2 == 0;
// System.out.println(parity ? "even": "odd");
for (int i = 0; i < m; i++) {
int l = Reader.nextInt();
int r = Reader.nextInt();
int elems = r - l + 1;
boolean change = (elems/2) % 2 == 0;
parity = parity == change;
System.out.println(parity ? "even": "odd");
}
}
}
/**
* Reader class based on the article at "https://www.cpe.ku.ac.th/~jim/java-io.html"
* */
class Reader{
private static BufferedReader reader;
private static StringTokenizer tokenizer;
static void init(InputStream inputStream){
reader = new BufferedReader(new InputStreamReader(inputStream));
tokenizer = new StringTokenizer("");
}
static String next() throws IOException {
String read;
while (!tokenizer.hasMoreTokens()){
read = reader.readLine();
if (read == null || read.equals(""))
return "-1";
tokenizer = new StringTokenizer(read);
}
return tokenizer.nextToken();
}
static int nextInt() throws IOException{
return Integer.parseInt(next());
}
// static long nextLong() throws IOException{
// return Long.parseLong(next());
// }
//Get a whole line.
// static String line() throws IOException{
// return reader.readLine();
// }
//
// static double nextDouble() throws IOException{return Double.parseDouble(next());}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 792 | 2,349 |
2,738 |
import java.util.Scanner;
public class test5{
public static void main(String[] args){
Scanner in=new Scanner(System.in);
long x=in.nextLong();
if(x>=3){
if(x%2!=0)
System.out.println(x*(x-1)*(x-2));
else if(x%3==0)
System.out.println((x-3)*(x-1)*(x-2));
else
System.out.println(x*(x-1)*(x-3));
}
else System.out.println(x);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class test5{
public static void main(String[] args){
Scanner in=new Scanner(System.in);
long x=in.nextLong();
if(x>=3){
if(x%2!=0)
System.out.println(x*(x-1)*(x-2));
else if(x%3==0)
System.out.println((x-3)*(x-1)*(x-2));
else
System.out.println(x*(x-1)*(x-3));
}
else System.out.println(x);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class test5{
public static void main(String[] args){
Scanner in=new Scanner(System.in);
long x=in.nextLong();
if(x>=3){
if(x%2!=0)
System.out.println(x*(x-1)*(x-2));
else if(x%3==0)
System.out.println((x-3)*(x-1)*(x-2));
else
System.out.println(x*(x-1)*(x-3));
}
else System.out.println(x);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 468 | 2,732 |
3,454 |
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class R023A {
String str;
int n;
public R023A() {
Scanner scanner = new Scanner(System.in);
str = scanner.next();
n = str.length();
}
private void process() {
int length = -1;
for(int i=1; i<n; i++) {
Set<String> set = new HashSet<String>();
length = n - i;
for(int j=0; j<=i; j++) {
String sub = str.substring(j, j+length);
set.add(sub);
}
if(set.size() < i+1) {
System.out.println(length);
return;
}
}
System.out.println(0);
}
public static void main(String[] args) {
new R023A().process();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class R023A {
String str;
int n;
public R023A() {
Scanner scanner = new Scanner(System.in);
str = scanner.next();
n = str.length();
}
private void process() {
int length = -1;
for(int i=1; i<n; i++) {
Set<String> set = new HashSet<String>();
length = n - i;
for(int j=0; j<=i; j++) {
String sub = str.substring(j, j+length);
set.add(sub);
}
if(set.size() < i+1) {
System.out.println(length);
return;
}
}
System.out.println(0);
}
public static void main(String[] args) {
new R023A().process();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.HashSet;
import java.util.Scanner;
import java.util.Set;
public class R023A {
String str;
int n;
public R023A() {
Scanner scanner = new Scanner(System.in);
str = scanner.next();
n = str.length();
}
private void process() {
int length = -1;
for(int i=1; i<n; i++) {
Set<String> set = new HashSet<String>();
length = n - i;
for(int j=0; j<=i; j++) {
String sub = str.substring(j, j+length);
set.add(sub);
}
if(set.size() < i+1) {
System.out.println(length);
return;
}
}
System.out.println(0);
}
public static void main(String[] args) {
new R023A().process();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 526 | 3,448 |
2,113 |
import java.util.Arrays;
import java.util.Scanner;
public class Solution {
private static int[] a;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), m = sc.nextInt();
a = new int[101];
for (int i = 0; i < m; i++) {
int type = sc.nextInt();
a[type] = a[type] + 1;
}
int lo=1, hi=100, max=0;
while (lo <= hi) {
int mid = lo + (hi - lo)/2;
if (check(n, mid)) {
max = mid;
lo = mid+1;
} else {
hi = mid -1;
}
}
System.out.println(max);
}
public static boolean check(int n, int target) {
int result = 0;
for (int i=0; i <a.length; i++) {
result = result + (a[i] / target);
}
if (result >= n) {return true;}
return false;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Solution {
private static int[] a;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), m = sc.nextInt();
a = new int[101];
for (int i = 0; i < m; i++) {
int type = sc.nextInt();
a[type] = a[type] + 1;
}
int lo=1, hi=100, max=0;
while (lo <= hi) {
int mid = lo + (hi - lo)/2;
if (check(n, mid)) {
max = mid;
lo = mid+1;
} else {
hi = mid -1;
}
}
System.out.println(max);
}
public static boolean check(int n, int target) {
int result = 0;
for (int i=0; i <a.length; i++) {
result = result + (a[i] / target);
}
if (result >= n) {return true;}
return false;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class Solution {
private static int[] a;
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), m = sc.nextInt();
a = new int[101];
for (int i = 0; i < m; i++) {
int type = sc.nextInt();
a[type] = a[type] + 1;
}
int lo=1, hi=100, max=0;
while (lo <= hi) {
int mid = lo + (hi - lo)/2;
if (check(n, mid)) {
max = mid;
lo = mid+1;
} else {
hi = mid -1;
}
}
System.out.println(max);
}
public static boolean check(int n, int target) {
int result = 0;
for (int i=0; i <a.length; i++) {
result = result + (a[i] / target);
}
if (result >= n) {return true;}
return false;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 576 | 2,109 |
3,387 |
import java.util.*;
import java.io.*;
public class Main {
static BufferedReader reader
= new BufferedReader(new InputStreamReader(System.in));
static StringBuilder out = new StringBuilder();
public static void main(String[] args){
solve();
return;
}
// the followings are methods to take care of inputs.
static int nextInt(){
return Integer.parseInt(nextLine());
}
static long nextLong(){
return Long.parseLong(nextLine());
}
static int[] nextIntArray(){
String[] inp = nextLine().split("\\s+");
int[] ary = new int[inp.length];
for (int i = 0; i < ary.length; i++){
ary[i] = Integer.parseInt(inp[i]);
}
return ary;
}
static int[] nextIntArrayFrom1(){
String[] inp = nextLine().split("\\s+");
int[] ary = new int[inp.length + 1];
for (int i = 0; i < inp.length; i++){
ary[i+1] = Integer.parseInt(inp[i]);
}
return ary;
}
static long[] nextLongArray(){
String[] inp = nextLine().split("\\s+");
long[] ary = new long[inp.length];
for (int i = 0; i < inp.length; i++){
ary[i] = Long.parseLong(inp[i]);
}
return ary;
}
static long[] nextLongArrayFrom1(){
String[] inp = nextLine().split("\\s+");
long[] ary = new long[inp.length + 1];
for (int i = 0; i < inp.length; i++){
ary[i+1] = Long.parseLong(inp[i]);
}
return ary;
}
static String nextLine(){
try {
return reader.readLine().trim();
} catch (Exception e){}
return null;
}
static void solve(){
String str = nextLine();
int max=0;
int index=0;
for(int i=0;i<str.length();i++){
for(int j=i+1;j<str.length();j++){
if(str.charAt(i)==str.charAt(j)){
int count=1;
while(true){
if(str.length()<=i+count || str.length()<=j+count || str.charAt(i+count)!=str.charAt(j+count) )
break;
count++;
}
if(max<count){
max=count;
index=i;
}
}
}
}
System.out.println(max);
return;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
static BufferedReader reader
= new BufferedReader(new InputStreamReader(System.in));
static StringBuilder out = new StringBuilder();
public static void main(String[] args){
solve();
return;
}
// the followings are methods to take care of inputs.
static int nextInt(){
return Integer.parseInt(nextLine());
}
static long nextLong(){
return Long.parseLong(nextLine());
}
static int[] nextIntArray(){
String[] inp = nextLine().split("\\s+");
int[] ary = new int[inp.length];
for (int i = 0; i < ary.length; i++){
ary[i] = Integer.parseInt(inp[i]);
}
return ary;
}
static int[] nextIntArrayFrom1(){
String[] inp = nextLine().split("\\s+");
int[] ary = new int[inp.length + 1];
for (int i = 0; i < inp.length; i++){
ary[i+1] = Integer.parseInt(inp[i]);
}
return ary;
}
static long[] nextLongArray(){
String[] inp = nextLine().split("\\s+");
long[] ary = new long[inp.length];
for (int i = 0; i < inp.length; i++){
ary[i] = Long.parseLong(inp[i]);
}
return ary;
}
static long[] nextLongArrayFrom1(){
String[] inp = nextLine().split("\\s+");
long[] ary = new long[inp.length + 1];
for (int i = 0; i < inp.length; i++){
ary[i+1] = Long.parseLong(inp[i]);
}
return ary;
}
static String nextLine(){
try {
return reader.readLine().trim();
} catch (Exception e){}
return null;
}
static void solve(){
String str = nextLine();
int max=0;
int index=0;
for(int i=0;i<str.length();i++){
for(int j=i+1;j<str.length();j++){
if(str.charAt(i)==str.charAt(j)){
int count=1;
while(true){
if(str.length()<=i+count || str.length()<=j+count || str.charAt(i+count)!=str.charAt(j+count) )
break;
count++;
}
if(max<count){
max=count;
index=i;
}
}
}
}
System.out.println(max);
return;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
static BufferedReader reader
= new BufferedReader(new InputStreamReader(System.in));
static StringBuilder out = new StringBuilder();
public static void main(String[] args){
solve();
return;
}
// the followings are methods to take care of inputs.
static int nextInt(){
return Integer.parseInt(nextLine());
}
static long nextLong(){
return Long.parseLong(nextLine());
}
static int[] nextIntArray(){
String[] inp = nextLine().split("\\s+");
int[] ary = new int[inp.length];
for (int i = 0; i < ary.length; i++){
ary[i] = Integer.parseInt(inp[i]);
}
return ary;
}
static int[] nextIntArrayFrom1(){
String[] inp = nextLine().split("\\s+");
int[] ary = new int[inp.length + 1];
for (int i = 0; i < inp.length; i++){
ary[i+1] = Integer.parseInt(inp[i]);
}
return ary;
}
static long[] nextLongArray(){
String[] inp = nextLine().split("\\s+");
long[] ary = new long[inp.length];
for (int i = 0; i < inp.length; i++){
ary[i] = Long.parseLong(inp[i]);
}
return ary;
}
static long[] nextLongArrayFrom1(){
String[] inp = nextLine().split("\\s+");
long[] ary = new long[inp.length + 1];
for (int i = 0; i < inp.length; i++){
ary[i+1] = Long.parseLong(inp[i]);
}
return ary;
}
static String nextLine(){
try {
return reader.readLine().trim();
} catch (Exception e){}
return null;
}
static void solve(){
String str = nextLine();
int max=0;
int index=0;
for(int i=0;i<str.length();i++){
for(int j=i+1;j<str.length();j++){
if(str.charAt(i)==str.charAt(j)){
int count=1;
while(true){
if(str.length()<=i+count || str.length()<=j+count || str.charAt(i+count)!=str.charAt(j+count) )
break;
count++;
}
if(max<count){
max=count;
index=i;
}
}
}
}
System.out.println(max);
return;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 873 | 3,381 |
3,669 |
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Scanner;
public class FireAgain
{
public static void main(String[] args) throws IOException
{
FileInputStream in = null;
FileOutputStream out = null;
try
{
in = new FileInputStream("input.txt");
out = new FileOutputStream("output.txt");
Scanner sc = new Scanner(in);
int h = sc.nextInt();
int w = sc.nextInt();
int k = sc.nextInt();
int[] xk = new int[k];
int[] yk = new int[k];
for(int i = 0; i < k; i++)
{
int y = sc.nextInt()-1;
int x = sc.nextInt()-1;
xk[i] = x;
yk[i] = y;
}
int best = -1;
int bestx = -1;
int besty = -1;
for(int x = 0; x < w; x++)
{
for(int y = 0; y < h; y++)
{
int cur = 99999;
for(int f = 0; f < k; f++)
{
cur = Math.min(cur, Math.abs(xk[f] - x)+Math.abs(yk[f] - y));
}
if(cur > best)
{
best = cur;
bestx = x;
besty = y;
}
}
}
// System.out.println((besty+1) + " " + (bestx+1));
String s = (besty+1) + " " + (bestx+1);
out.write(s.getBytes());
}finally
{
if (in != null)
{
in.close();
}
if (out != null)
{
out.close();
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Scanner;
public class FireAgain
{
public static void main(String[] args) throws IOException
{
FileInputStream in = null;
FileOutputStream out = null;
try
{
in = new FileInputStream("input.txt");
out = new FileOutputStream("output.txt");
Scanner sc = new Scanner(in);
int h = sc.nextInt();
int w = sc.nextInt();
int k = sc.nextInt();
int[] xk = new int[k];
int[] yk = new int[k];
for(int i = 0; i < k; i++)
{
int y = sc.nextInt()-1;
int x = sc.nextInt()-1;
xk[i] = x;
yk[i] = y;
}
int best = -1;
int bestx = -1;
int besty = -1;
for(int x = 0; x < w; x++)
{
for(int y = 0; y < h; y++)
{
int cur = 99999;
for(int f = 0; f < k; f++)
{
cur = Math.min(cur, Math.abs(xk[f] - x)+Math.abs(yk[f] - y));
}
if(cur > best)
{
best = cur;
bestx = x;
besty = y;
}
}
}
// System.out.println((besty+1) + " " + (bestx+1));
String s = (besty+1) + " " + (bestx+1);
out.write(s.getBytes());
}finally
{
if (in != null)
{
in.close();
}
if (out != null)
{
out.close();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Scanner;
public class FireAgain
{
public static void main(String[] args) throws IOException
{
FileInputStream in = null;
FileOutputStream out = null;
try
{
in = new FileInputStream("input.txt");
out = new FileOutputStream("output.txt");
Scanner sc = new Scanner(in);
int h = sc.nextInt();
int w = sc.nextInt();
int k = sc.nextInt();
int[] xk = new int[k];
int[] yk = new int[k];
for(int i = 0; i < k; i++)
{
int y = sc.nextInt()-1;
int x = sc.nextInt()-1;
xk[i] = x;
yk[i] = y;
}
int best = -1;
int bestx = -1;
int besty = -1;
for(int x = 0; x < w; x++)
{
for(int y = 0; y < h; y++)
{
int cur = 99999;
for(int f = 0; f < k; f++)
{
cur = Math.min(cur, Math.abs(xk[f] - x)+Math.abs(yk[f] - y));
}
if(cur > best)
{
best = cur;
bestx = x;
besty = y;
}
}
}
// System.out.println((besty+1) + " " + (bestx+1));
String s = (besty+1) + " " + (bestx+1);
out.write(s.getBytes());
}finally
{
if (in != null)
{
in.close();
}
if (out != null)
{
out.close();
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 758 | 3,661 |
4,448 |
import java.io.*;
import java.util.*;
public class A {
FastScanner in;
PrintWriter out;
void solve() {
int tc = in.nextInt();
for (int t = 0; t < tc; t++) {
int n = in.nextInt();
int m = in.nextInt();
O[] a = new O[n * m];
int[][] cols = new int[m][n + n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cols[j][i] = cols[j][i + n] = in.nextInt();
a[i * m + j] = new O(i, j, cols[j][i]);
}
}
Arrays.sort(a);
boolean[] used = new boolean[m];
int cntUsed = 0;
for (O o : a) {
if (!used[o.y]) {
used[o.y] = true;
cntUsed++;
if (cntUsed == n) {
break;
}
}
}
int[] dp = new int[1 << n];
int[] ndp = new int[1 << n];
int[] maxndp = new int[1 << n];
for (int col = 0; col < m; col++) {
if (!used[col]) {
continue;
}
int[] curColumn = cols[col];
for (int shift = 0; shift < n; shift++) {
System.arraycopy(dp, 0, ndp, 0, ndp.length);
for (int mask = 0; mask < 1 << n; mask++) {
for (int bit = 0; bit < n; bit++) {
if (((1 << bit) & mask) == 0) {
int nmask = mask | (1 << bit);
ndp[nmask] = Math.max(ndp[nmask], ndp[mask] + curColumn[bit + shift]);
}
}
}
for (int i = 0; i < ndp.length; i++) {
maxndp[i] = Math.max(maxndp[i], ndp[i]);
}
}
int[] tmp = dp;
dp = maxndp;
maxndp = tmp;
}
out.println(dp[dp.length - 1]);
}
}
class O implements Comparable<O> {
int x, y, value;
public O(int x, int y, int value) {
this.x = x;
this.y = y;
this.value = value;
}
@Override
public int compareTo(O o) {
return -Integer.compare(value, o.value);
}
}
void run() {
try {
in = new FastScanner(new File("A.in"));
out = new PrintWriter(new File("A.out"));
solve();
out.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
void runIO() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
new A().runIO();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
FastScanner in;
PrintWriter out;
void solve() {
int tc = in.nextInt();
for (int t = 0; t < tc; t++) {
int n = in.nextInt();
int m = in.nextInt();
O[] a = new O[n * m];
int[][] cols = new int[m][n + n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cols[j][i] = cols[j][i + n] = in.nextInt();
a[i * m + j] = new O(i, j, cols[j][i]);
}
}
Arrays.sort(a);
boolean[] used = new boolean[m];
int cntUsed = 0;
for (O o : a) {
if (!used[o.y]) {
used[o.y] = true;
cntUsed++;
if (cntUsed == n) {
break;
}
}
}
int[] dp = new int[1 << n];
int[] ndp = new int[1 << n];
int[] maxndp = new int[1 << n];
for (int col = 0; col < m; col++) {
if (!used[col]) {
continue;
}
int[] curColumn = cols[col];
for (int shift = 0; shift < n; shift++) {
System.arraycopy(dp, 0, ndp, 0, ndp.length);
for (int mask = 0; mask < 1 << n; mask++) {
for (int bit = 0; bit < n; bit++) {
if (((1 << bit) & mask) == 0) {
int nmask = mask | (1 << bit);
ndp[nmask] = Math.max(ndp[nmask], ndp[mask] + curColumn[bit + shift]);
}
}
}
for (int i = 0; i < ndp.length; i++) {
maxndp[i] = Math.max(maxndp[i], ndp[i]);
}
}
int[] tmp = dp;
dp = maxndp;
maxndp = tmp;
}
out.println(dp[dp.length - 1]);
}
}
class O implements Comparable<O> {
int x, y, value;
public O(int x, int y, int value) {
this.x = x;
this.y = y;
this.value = value;
}
@Override
public int compareTo(O o) {
return -Integer.compare(value, o.value);
}
}
void run() {
try {
in = new FastScanner(new File("A.in"));
out = new PrintWriter(new File("A.out"));
solve();
out.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
void runIO() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
new A().runIO();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class A {
FastScanner in;
PrintWriter out;
void solve() {
int tc = in.nextInt();
for (int t = 0; t < tc; t++) {
int n = in.nextInt();
int m = in.nextInt();
O[] a = new O[n * m];
int[][] cols = new int[m][n + n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
cols[j][i] = cols[j][i + n] = in.nextInt();
a[i * m + j] = new O(i, j, cols[j][i]);
}
}
Arrays.sort(a);
boolean[] used = new boolean[m];
int cntUsed = 0;
for (O o : a) {
if (!used[o.y]) {
used[o.y] = true;
cntUsed++;
if (cntUsed == n) {
break;
}
}
}
int[] dp = new int[1 << n];
int[] ndp = new int[1 << n];
int[] maxndp = new int[1 << n];
for (int col = 0; col < m; col++) {
if (!used[col]) {
continue;
}
int[] curColumn = cols[col];
for (int shift = 0; shift < n; shift++) {
System.arraycopy(dp, 0, ndp, 0, ndp.length);
for (int mask = 0; mask < 1 << n; mask++) {
for (int bit = 0; bit < n; bit++) {
if (((1 << bit) & mask) == 0) {
int nmask = mask | (1 << bit);
ndp[nmask] = Math.max(ndp[nmask], ndp[mask] + curColumn[bit + shift]);
}
}
}
for (int i = 0; i < ndp.length; i++) {
maxndp[i] = Math.max(maxndp[i], ndp[i]);
}
}
int[] tmp = dp;
dp = maxndp;
maxndp = tmp;
}
out.println(dp[dp.length - 1]);
}
}
class O implements Comparable<O> {
int x, y, value;
public O(int x, int y, int value) {
this.x = x;
this.y = y;
this.value = value;
}
@Override
public int compareTo(O o) {
return -Integer.compare(value, o.value);
}
}
void run() {
try {
in = new FastScanner(new File("A.in"));
out = new PrintWriter(new File("A.out"));
solve();
out.close();
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
void runIO() {
in = new FastScanner(System.in);
out = new PrintWriter(System.out);
solve();
out.close();
}
class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(File f) {
try {
br = new BufferedReader(new FileReader(f));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner(InputStream f) {
br = new BufferedReader(new InputStreamReader(f));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return null;
st = new StringTokenizer(s);
}
return st.nextToken();
}
boolean hasMoreTokens() {
while (st == null || !st.hasMoreTokens()) {
String s = null;
try {
s = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
if (s == null)
return false;
st = new StringTokenizer(s);
}
return true;
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
}
public static void main(String[] args) {
new A().runIO();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,286 | 4,437 |
4,020 |
import java.io.IOException;
import java.io.InputStream;
import java.util.NoSuchElementException;
public class Main {
private static FastScanner sc = new FastScanner();
private static long mod = 1000000007;
public static void main(String[] args) {
int n = sc.nextInt();
int T = sc.nextInt();
int[] t = new int[n];
int[] g = new int[n];
for(int i=0; i<n; i++) {
t[i] = sc.nextInt();
g[i] = sc.nextInt() - 1;
}
long[][][] dp = new long[T+1][3][1 << 15];
for(int i=1; i<=T; i++) {
for(int j=0; j<n; j++) {
if(i - t[j] == 0) {
dp[i][g[j]][1 << j] = (dp[i][g[j]][1 << j] + 1) % mod;
} else if(i - t[j] > 0) {
for(int k=0; k<(1 << 15); k++) {
if((k >> j & 1) == 1) {
continue;
}
dp[i][g[j]][k + (1 << j)] = (dp[i][g[j]][k + (1 << j)] + dp[i - t[j]][(g[j] + 1) % 3][k] + dp[i - t[j]][(g[j] + 2) % 3][k]) % mod;
}
}
}
}
long ans = 0;
for(int j=0; j<3; j++) {
for(int k=0; k<(1 << 15); k++) {
ans = (ans + dp[T][j][k]) % mod;
}
}
System.out.println(ans);
}
static long power(long m , long n){
if(n == 0) {
return 1;
}else if(n == 1){
return m;
}else if(n % 2 == 0){
long s = power(m, n/2);
return ( (s % mod) * (s % mod) ) % mod;
}else{
return ( (m % mod) * (power(m, n-1) % mod) ) % mod;
}
}
static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if(ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch(IOException e) {
e.printStackTrace();
}
if(buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
private void skipUnprintable() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;}
public boolean hasNext() { skipUnprintable(); return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt(){
return Integer.parseInt(next());
}
public double nextDouble(){
return Double.parseDouble(next());
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.NoSuchElementException;
public class Main {
private static FastScanner sc = new FastScanner();
private static long mod = 1000000007;
public static void main(String[] args) {
int n = sc.nextInt();
int T = sc.nextInt();
int[] t = new int[n];
int[] g = new int[n];
for(int i=0; i<n; i++) {
t[i] = sc.nextInt();
g[i] = sc.nextInt() - 1;
}
long[][][] dp = new long[T+1][3][1 << 15];
for(int i=1; i<=T; i++) {
for(int j=0; j<n; j++) {
if(i - t[j] == 0) {
dp[i][g[j]][1 << j] = (dp[i][g[j]][1 << j] + 1) % mod;
} else if(i - t[j] > 0) {
for(int k=0; k<(1 << 15); k++) {
if((k >> j & 1) == 1) {
continue;
}
dp[i][g[j]][k + (1 << j)] = (dp[i][g[j]][k + (1 << j)] + dp[i - t[j]][(g[j] + 1) % 3][k] + dp[i - t[j]][(g[j] + 2) % 3][k]) % mod;
}
}
}
}
long ans = 0;
for(int j=0; j<3; j++) {
for(int k=0; k<(1 << 15); k++) {
ans = (ans + dp[T][j][k]) % mod;
}
}
System.out.println(ans);
}
static long power(long m , long n){
if(n == 0) {
return 1;
}else if(n == 1){
return m;
}else if(n % 2 == 0){
long s = power(m, n/2);
return ( (s % mod) * (s % mod) ) % mod;
}else{
return ( (m % mod) * (power(m, n-1) % mod) ) % mod;
}
}
static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if(ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch(IOException e) {
e.printStackTrace();
}
if(buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
private void skipUnprintable() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;}
public boolean hasNext() { skipUnprintable(); return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt(){
return Integer.parseInt(next());
}
public double nextDouble(){
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.NoSuchElementException;
public class Main {
private static FastScanner sc = new FastScanner();
private static long mod = 1000000007;
public static void main(String[] args) {
int n = sc.nextInt();
int T = sc.nextInt();
int[] t = new int[n];
int[] g = new int[n];
for(int i=0; i<n; i++) {
t[i] = sc.nextInt();
g[i] = sc.nextInt() - 1;
}
long[][][] dp = new long[T+1][3][1 << 15];
for(int i=1; i<=T; i++) {
for(int j=0; j<n; j++) {
if(i - t[j] == 0) {
dp[i][g[j]][1 << j] = (dp[i][g[j]][1 << j] + 1) % mod;
} else if(i - t[j] > 0) {
for(int k=0; k<(1 << 15); k++) {
if((k >> j & 1) == 1) {
continue;
}
dp[i][g[j]][k + (1 << j)] = (dp[i][g[j]][k + (1 << j)] + dp[i - t[j]][(g[j] + 1) % 3][k] + dp[i - t[j]][(g[j] + 2) % 3][k]) % mod;
}
}
}
}
long ans = 0;
for(int j=0; j<3; j++) {
for(int k=0; k<(1 << 15); k++) {
ans = (ans + dp[T][j][k]) % mod;
}
}
System.out.println(ans);
}
static long power(long m , long n){
if(n == 0) {
return 1;
}else if(n == 1){
return m;
}else if(n % 2 == 0){
long s = power(m, n/2);
return ( (s % mod) * (s % mod) ) % mod;
}else{
return ( (m % mod) * (power(m, n-1) % mod) ) % mod;
}
}
static class FastScanner {
private final InputStream in = System.in;
private final byte[] buffer = new byte[1024];
private int ptr = 0;
private int buflen = 0;
private boolean hasNextByte() {
if(ptr < buflen) {
return true;
} else {
ptr = 0;
try {
buflen = in.read(buffer);
} catch(IOException e) {
e.printStackTrace();
}
if(buflen <= 0) {
return false;
}
}
return true;
}
private int readByte() { if (hasNextByte()) return buffer[ptr++]; else return -1;}
private static boolean isPrintableChar(int c) { return 33 <= c && c <= 126;}
private void skipUnprintable() { while(hasNextByte() && !isPrintableChar(buffer[ptr])) ptr++;}
public boolean hasNext() { skipUnprintable(); return hasNextByte();}
public String next() {
if (!hasNext()) throw new NoSuchElementException();
StringBuilder sb = new StringBuilder();
int b = readByte();
while(isPrintableChar(b)) {
sb.appendCodePoint(b);
b = readByte();
}
return sb.toString();
}
public long nextLong() {
return Long.parseLong(next());
}
public int nextInt(){
return Integer.parseInt(next());
}
public double nextDouble(){
return Double.parseDouble(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,186 | 4,009 |
1,634 |
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;
public class A {
public static void main(String[] args) throws Exception {
int n = nextInt(), b = nextInt(), a = nextInt();
int[] mas = new int[n];
for(int i = 0; i<n; i++) {
mas[i] = nextInt();
}
Arrays.sort(mas);
if(mas[a - 1] == mas[a]) {
exit(0);
}
println(mas[a] - mas[a-1]);
}
/////////////////////////////////////////////////////////////////
// IO
/////////////////////////////////////////////////////////////////
private static StreamTokenizer in;
private static PrintWriter out;
private static BufferedReader inB;
private static boolean FILE=false;
private static int nextInt() throws Exception{
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception{
in.nextToken();
return in.sval;
}
static{
try {
out = new PrintWriter(FILE ? (new FileOutputStream("output.txt")) : System.out);
inB = new BufferedReader(new InputStreamReader(FILE ? new FileInputStream("input.txt") : System.in));
} catch(Exception e) {e.printStackTrace();}
in = new StreamTokenizer(inB);
}
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
// pre - written
/////////////////////////////////////////////////////////////////
private static void println(Object o) throws Exception {
out.println(o);
out.flush();
}
private static void exit(Object o) throws Exception {
println(o);
exit();
}
private static void exit() {
System.exit(0);
}
private static final int INF = Integer.MAX_VALUE;
private static final int MINF = Integer.MIN_VALUE;
//////////////////////////////////////////////////////////////////
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;
public class A {
public static void main(String[] args) throws Exception {
int n = nextInt(), b = nextInt(), a = nextInt();
int[] mas = new int[n];
for(int i = 0; i<n; i++) {
mas[i] = nextInt();
}
Arrays.sort(mas);
if(mas[a - 1] == mas[a]) {
exit(0);
}
println(mas[a] - mas[a-1]);
}
/////////////////////////////////////////////////////////////////
// IO
/////////////////////////////////////////////////////////////////
private static StreamTokenizer in;
private static PrintWriter out;
private static BufferedReader inB;
private static boolean FILE=false;
private static int nextInt() throws Exception{
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception{
in.nextToken();
return in.sval;
}
static{
try {
out = new PrintWriter(FILE ? (new FileOutputStream("output.txt")) : System.out);
inB = new BufferedReader(new InputStreamReader(FILE ? new FileInputStream("input.txt") : System.in));
} catch(Exception e) {e.printStackTrace();}
in = new StreamTokenizer(inB);
}
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
// pre - written
/////////////////////////////////////////////////////////////////
private static void println(Object o) throws Exception {
out.println(o);
out.flush();
}
private static void exit(Object o) throws Exception {
println(o);
exit();
}
private static void exit() {
System.exit(0);
}
private static final int INF = Integer.MAX_VALUE;
private static final int MINF = Integer.MIN_VALUE;
//////////////////////////////////////////////////////////////////
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;
public class A {
public static void main(String[] args) throws Exception {
int n = nextInt(), b = nextInt(), a = nextInt();
int[] mas = new int[n];
for(int i = 0; i<n; i++) {
mas[i] = nextInt();
}
Arrays.sort(mas);
if(mas[a - 1] == mas[a]) {
exit(0);
}
println(mas[a] - mas[a-1]);
}
/////////////////////////////////////////////////////////////////
// IO
/////////////////////////////////////////////////////////////////
private static StreamTokenizer in;
private static PrintWriter out;
private static BufferedReader inB;
private static boolean FILE=false;
private static int nextInt() throws Exception{
in.nextToken();
return (int)in.nval;
}
private static String nextString() throws Exception{
in.nextToken();
return in.sval;
}
static{
try {
out = new PrintWriter(FILE ? (new FileOutputStream("output.txt")) : System.out);
inB = new BufferedReader(new InputStreamReader(FILE ? new FileInputStream("input.txt") : System.in));
} catch(Exception e) {e.printStackTrace();}
in = new StreamTokenizer(inB);
}
/////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////
// pre - written
/////////////////////////////////////////////////////////////////
private static void println(Object o) throws Exception {
out.println(o);
out.flush();
}
private static void exit(Object o) throws Exception {
println(o);
exit();
}
private static void exit() {
System.exit(0);
}
private static final int INF = Integer.MAX_VALUE;
private static final int MINF = Integer.MIN_VALUE;
//////////////////////////////////////////////////////////////////
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 740 | 1,631 |
3,438 |
import java.util.*;
public class A
{
public static void main(String args[])
{
Scanner scan = new Scanner(System.in);
String str = scan.next();
for(int i=str.length();i >= 1;i--)
{
for(int j=0;j + i <= str.length();j++)
{
String sub = str.substring(j, j+i);
int index = str.indexOf(sub, j+1);
if(index > -1)
{
System.out.println(i);
return;
}
}
}
System.out.println(0);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class A
{
public static void main(String args[])
{
Scanner scan = new Scanner(System.in);
String str = scan.next();
for(int i=str.length();i >= 1;i--)
{
for(int j=0;j + i <= str.length();j++)
{
String sub = str.substring(j, j+i);
int index = str.indexOf(sub, j+1);
if(index > -1)
{
System.out.println(i);
return;
}
}
}
System.out.println(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class A
{
public static void main(String args[])
{
Scanner scan = new Scanner(System.in);
String str = scan.next();
for(int i=str.length();i >= 1;i--)
{
for(int j=0;j + i <= str.length();j++)
{
String sub = str.substring(j, j+i);
int index = str.indexOf(sub, j+1);
if(index > -1)
{
System.out.println(i);
return;
}
}
}
System.out.println(0);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 481 | 3,432 |
521 |
import java.util.*;
import java.io.*;
public class X
{
public static void main(String args[])throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String s1 = br.readLine();
String s2 = br.readLine();
int i=0;
char c1,c2;
int cost = 0;
while(i<n)
{
c1 = s1.charAt(i);
c2 = s2.charAt(i);
if(c1 != c2)
{
if((i+1)<n && s1.charAt(i+1) != s2.charAt(i+1) && s1.charAt(i) != s1.charAt(i+1))
{
cost +=1;
i++;
}
else
{
cost +=1;
}
}
i++;
}
System.out.println(cost);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class X
{
public static void main(String args[])throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String s1 = br.readLine();
String s2 = br.readLine();
int i=0;
char c1,c2;
int cost = 0;
while(i<n)
{
c1 = s1.charAt(i);
c2 = s2.charAt(i);
if(c1 != c2)
{
if((i+1)<n && s1.charAt(i+1) != s2.charAt(i+1) && s1.charAt(i) != s1.charAt(i+1))
{
cost +=1;
i++;
}
else
{
cost +=1;
}
}
i++;
}
System.out.println(cost);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class X
{
public static void main(String args[])throws IOException
{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
int n = Integer.parseInt(br.readLine());
String s1 = br.readLine();
String s2 = br.readLine();
int i=0;
char c1,c2;
int cost = 0;
while(i<n)
{
c1 = s1.charAt(i);
c2 = s2.charAt(i);
if(c1 != c2)
{
if((i+1)<n && s1.charAt(i+1) != s2.charAt(i+1) && s1.charAt(i) != s1.charAt(i+1))
{
cost +=1;
i++;
}
else
{
cost +=1;
}
}
i++;
}
System.out.println(cost);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 533 | 520 |
3,548 |
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, kk, bb;
int[] uu, vv, uv, cost, cost_;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
kk = new int[n_];
bb = new int[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cost_ = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
void dijkstra(int s) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v);
pq.add(s);
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
int k = kk[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && kk[v] > k) {
if (pi[v] < INF)
pq.remove(v);
pi[v] = p;
kk[v] = k;
bb[v] = h_;
pq.add(v);
}
}
}
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
System.arraycopy(cost, 0, cost_, 0, m_);
while (true) {
dijkstra(s);
if (pi[t] == INF)
break;
push1(s, t);
for (int h = 0; h < m_; h++) {
int u = uu[h], v = vv[h];
if (pi[u] != INF && pi[v] != INF)
cost_[h] += pi[u] - pi[v];
}
}
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, kk, bb;
int[] uu, vv, uv, cost, cost_;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
kk = new int[n_];
bb = new int[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cost_ = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
void dijkstra(int s) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v);
pq.add(s);
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
int k = kk[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && kk[v] > k) {
if (pi[v] < INF)
pq.remove(v);
pi[v] = p;
kk[v] = k;
bb[v] = h_;
pq.add(v);
}
}
}
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
System.arraycopy(cost, 0, cost_, 0, m_);
while (true) {
dijkstra(s);
if (pi[t] == INF)
break;
push1(s, t);
for (int h = 0; h < m_; h++) {
int u = uu[h], v = vv[h];
if (pi[u] != INF && pi[v] != INF)
cost_[h] += pi[u] - pi[v];
}
}
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// upsolve with rainboy
import java.io.*;
import java.util.*;
public class CF1187G extends PrintWriter {
CF1187G() { super(System.out); }
static class Scanner {
Scanner(InputStream in) { this.in = in; } InputStream in;
int k, l; byte[] bb = new byte[1 << 15];
byte getc() {
if (k >= l) {
k = 0;
try { l = in.read(bb); } catch (IOException e) { l = 0; }
if (l <= 0) return -1;
}
return bb[k++];
}
int nextInt() {
byte c = 0; while (c <= 32) c = getc();
int a = 0;
while (c > 32) { a = a * 10 + c - '0'; c = getc(); }
return a;
}
}
Scanner sc = new Scanner(System.in);
public static void main(String[] $) {
CF1187G o = new CF1187G(); o.main(); o.flush();
}
static final int INF = 0x3f3f3f3f;
ArrayList[] aa_;
int n_, m_;
int[] pi, kk, bb;
int[] uu, vv, uv, cost, cost_;
int[] cc;
void init() {
aa_ = new ArrayList[n_];
for (int u = 0; u < n_; u++)
aa_[u] = new ArrayList<Integer>();
pi = new int[n_];
kk = new int[n_];
bb = new int[n_];
uu = new int[m_];
vv = new int[m_];
uv = new int[m_];
cost = new int[m_];
cost_ = new int[m_];
cc = new int[m_ * 2];
m_ = 0;
}
void link(int u, int v, int cap, int cos) {
int h = m_++;
uu[h] = u;
vv[h] = v;
uv[h] = u ^ v;
cost[h] = cos;
cc[h << 1 ^ 0] = cap;
aa_[u].add(h << 1 ^ 0);
aa_[v].add(h << 1 ^ 1);
}
void dijkstra(int s) {
Arrays.fill(pi, INF);
pi[s] = 0;
TreeSet<Integer> pq = new TreeSet<>((u, v) -> pi[u] != pi[v] ? pi[u] - pi[v] : kk[u] != kk[v] ? kk[u] - kk[v] : u - v);
pq.add(s);
Integer first;
while ((first = pq.pollFirst()) != null) {
int u = first;
int k = kk[u] + 1;
ArrayList<Integer> adj = aa_[u];
for (int h_ : adj)
if (cc[h_] > 0) {
int h = h_ >> 1;
int p = pi[u] + ((h_ & 1) == 0 ? cost_[h] : -cost_[h]);
int v = u ^ uv[h];
if (pi[v] > p || pi[v] == p && kk[v] > k) {
if (pi[v] < INF)
pq.remove(v);
pi[v] = p;
kk[v] = k;
bb[v] = h_;
pq.add(v);
}
}
}
}
void push(int s, int t) {
int c = INF;
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
c = Math.min(c, cc[h_]);
}
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_] -= c; cc[h_ ^ 1] += c;
}
}
void push1(int s, int t) {
for (int u = t, h_, h; u != s; u ^= uv[h]) {
h = (h_ = bb[u]) >> 1;
cc[h_]--; cc[h_ ^ 1]++;
}
}
int edmonds_karp(int s, int t) {
System.arraycopy(cost, 0, cost_, 0, m_);
while (true) {
dijkstra(s);
if (pi[t] == INF)
break;
push1(s, t);
for (int h = 0; h < m_; h++) {
int u = uu[h], v = vv[h];
if (pi[u] != INF && pi[v] != INF)
cost_[h] += pi[u] - pi[v];
}
}
int c = 0;
for (int h = 0; h < m_; h++)
c += cost[h] * cc[h << 1 ^ 1];
return c;
}
void main() {
int n = sc.nextInt();
int m = sc.nextInt();
int k = sc.nextInt();
int c = sc.nextInt();
int d = sc.nextInt();
int[] ii = new int[k];
for (int h = 0; h < k; h++)
ii[h] = sc.nextInt() - 1;
ArrayList[] aa = new ArrayList[n];
for (int i = 0; i < n; i++)
aa[i] = new ArrayList<Integer>();
for (int h = 0; h < m; h++) {
int i = sc.nextInt() - 1;
int j = sc.nextInt() - 1;
aa[i].add(j);
aa[j].add(i);
}
int t = n + k + 1;
n_ = n * t + 1;
m_ = k + (m * 2 * k + n) * (t - 1);
init();
for (int i = 0; i < n; i++) {
ArrayList<Integer> adj = aa[i];
for (int s = 0; s < t - 1; s++) {
int u = i * t + s;
for (int j : adj) {
int v = j * t + s + 1;
for (int x = 1; x <= k; x++)
link(u, v, 1, c + (x * 2 - 1) * d);
}
}
}
for (int i = 0; i < n; i++)
for (int s = 0; s < t - 1; s++) {
int u = i * t + s, v = u + 1;
link(u, v, k, i == 0 ? 0 : c);
}
for (int h = 0; h < k; h++)
link(n_ - 1, ii[h] * t + 0, 1, 0);
println(edmonds_karp(n_ - 1, 0 * t + t - 1));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,965 | 3,541 |
1,058 |
import java.util.Scanner;
public class cf_contest_1177_problem_B {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long k = s.nextLong();
if (k<=9)
System.out.println(k);
else
{
int c = 1;
while(k>c*((Math.pow(10,c)) - Math.pow(10,c-1)))
{
k-=c*((Math.pow(10,c)) - Math.pow(10,c-1));
// System.out.println(k + " hello " + c);
c++;
}
// System.out.println("k is " + k);
long mo = k%c;
// System.out.println("mo is " + mo);
k = k/c;
if (mo == 0) {
mo = c;
k--;
}
mo--;
// k = Math.max(k-1,0);
// System.out.println("k/c is " + k);
long j = (long) (Math.pow(10,c-1) + k);
String j1 = "" + j;
// System.out.println("j1 is " + j1);
// System.out.println("final ans= " + j1.charAt((int)mo));
// System.out.println();
System.out.println(j1.charAt((int)mo));
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class cf_contest_1177_problem_B {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long k = s.nextLong();
if (k<=9)
System.out.println(k);
else
{
int c = 1;
while(k>c*((Math.pow(10,c)) - Math.pow(10,c-1)))
{
k-=c*((Math.pow(10,c)) - Math.pow(10,c-1));
// System.out.println(k + " hello " + c);
c++;
}
// System.out.println("k is " + k);
long mo = k%c;
// System.out.println("mo is " + mo);
k = k/c;
if (mo == 0) {
mo = c;
k--;
}
mo--;
// k = Math.max(k-1,0);
// System.out.println("k/c is " + k);
long j = (long) (Math.pow(10,c-1) + k);
String j1 = "" + j;
// System.out.println("j1 is " + j1);
// System.out.println("final ans= " + j1.charAt((int)mo));
// System.out.println();
System.out.println(j1.charAt((int)mo));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class cf_contest_1177_problem_B {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
long k = s.nextLong();
if (k<=9)
System.out.println(k);
else
{
int c = 1;
while(k>c*((Math.pow(10,c)) - Math.pow(10,c-1)))
{
k-=c*((Math.pow(10,c)) - Math.pow(10,c-1));
// System.out.println(k + " hello " + c);
c++;
}
// System.out.println("k is " + k);
long mo = k%c;
// System.out.println("mo is " + mo);
k = k/c;
if (mo == 0) {
mo = c;
k--;
}
mo--;
// k = Math.max(k-1,0);
// System.out.println("k/c is " + k);
long j = (long) (Math.pow(10,c-1) + k);
String j1 = "" + j;
// System.out.println("j1 is " + j1);
// System.out.println("final ans= " + j1.charAt((int)mo));
// System.out.println();
System.out.println(j1.charAt((int)mo));
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 654 | 1,057 |
1,959 |
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.InputMismatchException;
public class R113_D2_A {
public static void main(String[] args) throws NumberFormatException,
IOException {
// BufferedReader in = new BufferedReader(new
// InputStreamReader(System.in));
InputReader4 in = new InputReader4(System.in);
int n = in.readInt();
int k = in.readInt();
p[] inp = new p[n];
for (int i = 0; i < inp.length; i++) {
inp[i] = new p(in.readInt(), in.readInt());
}
Arrays.sort(inp);
for (int i = 0; i < inp.length;) {
int j = i + 1;
while (j < inp.length && inp[i].x == inp[j].x
&& inp[i].y == inp[j].y) {
j++;
}
int num = j - i;
if (k <= num) {
System.out.println(num);
return;
} else
k -= num;
i = j;
}
}
static class p implements Comparable<p> {
int x;
int y;
public p(int a, int b) {
x = a;
y = b;
}
public int compareTo(p o) {
if (x > o.x)
return -1;
if (x < o.x)
return 1;
return y - o.y;
}
}
static class InputReader4 {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader4(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.InputMismatchException;
public class R113_D2_A {
public static void main(String[] args) throws NumberFormatException,
IOException {
// BufferedReader in = new BufferedReader(new
// InputStreamReader(System.in));
InputReader4 in = new InputReader4(System.in);
int n = in.readInt();
int k = in.readInt();
p[] inp = new p[n];
for (int i = 0; i < inp.length; i++) {
inp[i] = new p(in.readInt(), in.readInt());
}
Arrays.sort(inp);
for (int i = 0; i < inp.length;) {
int j = i + 1;
while (j < inp.length && inp[i].x == inp[j].x
&& inp[i].y == inp[j].y) {
j++;
}
int num = j - i;
if (k <= num) {
System.out.println(num);
return;
} else
k -= num;
i = j;
}
}
static class p implements Comparable<p> {
int x;
int y;
public p(int a, int b) {
x = a;
y = b;
}
public int compareTo(p o) {
if (x > o.x)
return -1;
if (x < o.x)
return 1;
return y - o.y;
}
}
static class InputReader4 {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader4(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.Arrays;
import java.util.InputMismatchException;
public class R113_D2_A {
public static void main(String[] args) throws NumberFormatException,
IOException {
// BufferedReader in = new BufferedReader(new
// InputStreamReader(System.in));
InputReader4 in = new InputReader4(System.in);
int n = in.readInt();
int k = in.readInt();
p[] inp = new p[n];
for (int i = 0; i < inp.length; i++) {
inp[i] = new p(in.readInt(), in.readInt());
}
Arrays.sort(inp);
for (int i = 0; i < inp.length;) {
int j = i + 1;
while (j < inp.length && inp[i].x == inp[j].x
&& inp[i].y == inp[j].y) {
j++;
}
int num = j - i;
if (k <= num) {
System.out.println(num);
return;
} else
k -= num;
i = j;
}
}
static class p implements Comparable<p> {
int x;
int y;
public p(int a, int b) {
x = a;
y = b;
}
public int compareTo(p o) {
if (x > o.x)
return -1;
if (x < o.x)
return 1;
return y - o.y;
}
}
static class InputReader4 {
private InputStream stream;
private byte[] buf = new byte[1000];
private int curChar, numChars;
public InputReader4(InputStream stream) {
this.stream = stream;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public String readString() {
int c = read();
while (isSpaceChar(c))
c = read();
StringBuffer res = new StringBuffer();
do {
res.appendCodePoint(c);
c = read();
} while (!isSpaceChar(c));
return res.toString();
}
private boolean isSpaceChar(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private String readLine0() {
StringBuffer buf = new StringBuffer();
int c = read();
while (c != '\n' && c != -1) {
buf.appendCodePoint(c);
c = read();
}
return buf.toString();
}
public String readLine() {
String s = readLine0();
while (s.trim().length() == 0)
s = readLine0();
return s;
}
public String readLine(boolean ignoreEmptyLines) {
if (ignoreEmptyLines)
return readLine();
else
return readLine0();
}
public char readCharacter() {
int c = read();
while (isSpaceChar(c))
c = read();
return (char) c;
}
public double readDouble() {
int c = read();
while (isSpaceChar(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
double res = 0;
while (!isSpaceChar(c) && c != '.') {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
}
if (c == '.') {
c = read();
double m = 1;
while (!isSpaceChar(c)) {
if (c == 'e' || c == 'E')
return res * Math.pow(10, readInt());
if (c < '0' || c > '9')
throw new InputMismatchException();
m /= 10;
res += (c - '0') * m;
c = read();
}
}
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,598 | 1,955 |
837 |
import java.util.*;
import java.io.*;
public class Main
{
public static void main(String args[]) throws IOException
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), k = sc.nextInt(), kol = 0, prev;
boolean ok;
ArrayList<Integer> al = new ArrayList<Integer>();
al.add(2);
prev = 2;
for(int i=3;i<=n;i+=2)
{
ok = true;
for(Integer x: al)
if (i%x == 0)
{
ok = false;
break;
}
if (ok)
{
for(Integer x: al)
if (ok)
{
prev = x;
ok = false;
} else
{
if (x + prev + 1 == i)
{
kol++;
break;
}
if (x + prev + 1 > i) break;
prev = x;
}
al.add(i);
}
}
if (kol >= k) System.out.print("YES"); else System.out.print("NO");
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main
{
public static void main(String args[]) throws IOException
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), k = sc.nextInt(), kol = 0, prev;
boolean ok;
ArrayList<Integer> al = new ArrayList<Integer>();
al.add(2);
prev = 2;
for(int i=3;i<=n;i+=2)
{
ok = true;
for(Integer x: al)
if (i%x == 0)
{
ok = false;
break;
}
if (ok)
{
for(Integer x: al)
if (ok)
{
prev = x;
ok = false;
} else
{
if (x + prev + 1 == i)
{
kol++;
break;
}
if (x + prev + 1 > i) break;
prev = x;
}
al.add(i);
}
}
if (kol >= k) System.out.print("YES"); else System.out.print("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main
{
public static void main(String args[]) throws IOException
{
Scanner sc = new Scanner(System.in);
int n = sc.nextInt(), k = sc.nextInt(), kol = 0, prev;
boolean ok;
ArrayList<Integer> al = new ArrayList<Integer>();
al.add(2);
prev = 2;
for(int i=3;i<=n;i+=2)
{
ok = true;
for(Integer x: al)
if (i%x == 0)
{
ok = false;
break;
}
if (ok)
{
for(Integer x: al)
if (ok)
{
prev = x;
ok = false;
} else
{
if (x + prev + 1 == i)
{
kol++;
break;
}
if (x + prev + 1 > i) break;
prev = x;
}
al.add(i);
}
}
if (kol >= k) System.out.print("YES"); else System.out.print("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 593 | 836 |
3,644 |
// package Practice1.CF35;
import java.io.*;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class CF035C {
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(new File("input.txt")/*System.in*/);
int n = s.nextInt();
int m = s.nextInt();
int k = s.nextInt();
// pair[] arr = new pair[n];
Queue<pair> q = new LinkedList<>();
PrintWriter out = new PrintWriter(new FileWriter("output.txt"));
boolean[][] visited = new boolean[n][m];
for (int i = 0; i < k; i++) {
int x = s.nextInt() - 1;
int y = s.nextInt() - 1;
visited[x][y] = true;
pair p = new pair(x,y);
// arr[i] = p;
q.add(p);
}
q.add(null);
int[] dx = {0,0,1,-1};
int[] dy = {1,-1,0,0};
int ansX = q.peek().x;
int ansY = q.peek().y;
while(true){
if(q.peek() == null){
q.poll();
q.add(null);
}
pair p = q.poll();
if(p == null){
break;
}
for (int i = 0; i < 4; i++) {
if(isValid(p.x + dx[i],p.y+dy[i],n,m) && !visited[p.x + dx[i]][p.y+dy[i]]){
q.add(new pair(p.x + dx[i],p.y+dy[i]));
ansX = p.x + dx[i];
ansY = p.y + dy[i];
visited[ansX][ansY] = true;
}
}
}
out.println((ansX+1) + " " + (ansY+1));
out.close();
}
public static boolean isValid(int x, int y,int n, int m){
return x >= 0 && x < n && y >= 0 && y < m;
}
private static class pair{
int x;
int y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
// package Practice1.CF35;
import java.io.*;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class CF035C {
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(new File("input.txt")/*System.in*/);
int n = s.nextInt();
int m = s.nextInt();
int k = s.nextInt();
// pair[] arr = new pair[n];
Queue<pair> q = new LinkedList<>();
PrintWriter out = new PrintWriter(new FileWriter("output.txt"));
boolean[][] visited = new boolean[n][m];
for (int i = 0; i < k; i++) {
int x = s.nextInt() - 1;
int y = s.nextInt() - 1;
visited[x][y] = true;
pair p = new pair(x,y);
// arr[i] = p;
q.add(p);
}
q.add(null);
int[] dx = {0,0,1,-1};
int[] dy = {1,-1,0,0};
int ansX = q.peek().x;
int ansY = q.peek().y;
while(true){
if(q.peek() == null){
q.poll();
q.add(null);
}
pair p = q.poll();
if(p == null){
break;
}
for (int i = 0; i < 4; i++) {
if(isValid(p.x + dx[i],p.y+dy[i],n,m) && !visited[p.x + dx[i]][p.y+dy[i]]){
q.add(new pair(p.x + dx[i],p.y+dy[i]));
ansX = p.x + dx[i];
ansY = p.y + dy[i];
visited[ansX][ansY] = true;
}
}
}
out.println((ansX+1) + " " + (ansY+1));
out.close();
}
public static boolean isValid(int x, int y,int n, int m){
return x >= 0 && x < n && y >= 0 && y < m;
}
private static class pair{
int x;
int y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
// package Practice1.CF35;
import java.io.*;
import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
public class CF035C {
public static void main(String[] args) throws IOException {
Scanner s = new Scanner(new File("input.txt")/*System.in*/);
int n = s.nextInt();
int m = s.nextInt();
int k = s.nextInt();
// pair[] arr = new pair[n];
Queue<pair> q = new LinkedList<>();
PrintWriter out = new PrintWriter(new FileWriter("output.txt"));
boolean[][] visited = new boolean[n][m];
for (int i = 0; i < k; i++) {
int x = s.nextInt() - 1;
int y = s.nextInt() - 1;
visited[x][y] = true;
pair p = new pair(x,y);
// arr[i] = p;
q.add(p);
}
q.add(null);
int[] dx = {0,0,1,-1};
int[] dy = {1,-1,0,0};
int ansX = q.peek().x;
int ansY = q.peek().y;
while(true){
if(q.peek() == null){
q.poll();
q.add(null);
}
pair p = q.poll();
if(p == null){
break;
}
for (int i = 0; i < 4; i++) {
if(isValid(p.x + dx[i],p.y+dy[i],n,m) && !visited[p.x + dx[i]][p.y+dy[i]]){
q.add(new pair(p.x + dx[i],p.y+dy[i]));
ansX = p.x + dx[i];
ansY = p.y + dy[i];
visited[ansX][ansY] = true;
}
}
}
out.println((ansX+1) + " " + (ansY+1));
out.close();
}
public static boolean isValid(int x, int y,int n, int m){
return x >= 0 && x < n && y >= 0 && y < m;
}
private static class pair{
int x;
int y;
public pair(int x, int y) {
this.x = x;
this.y = y;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 834 | 3,636 |
2,645 |
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class wef {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
//it reads the data about the specified point and divide the data about it ,it is quite fast
//than using direct
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception r) {
r.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());//converts string to integer
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception r) {
r.printStackTrace();
}
return str;
}
}
static ArrayList<String>list1=new ArrayList<String>();
static void combine(String instr, StringBuffer outstr, int index,int k)
{
if(outstr.length()==k)
{
list1.add(outstr.toString());return;
}
if(outstr.toString().length()==0)
outstr.append(instr.charAt(index));
for (int i = 0; i < instr.length(); i++)
{
outstr.append(instr.charAt(i));
combine(instr, outstr, i + 1,k);
outstr.deleteCharAt(outstr.length() - 1);
}
index++;
}
static ArrayList<ArrayList<Integer>>l=new ArrayList<>();
static void comb(int n,int k,int ind,ArrayList<Integer>list)
{
if(k==0)
{
l.add(new ArrayList<>(list));
return;
}
for(int i=ind;i<=n;i++)
{
list.add(i);
comb(n,k-1,ind+1,list);
list.remove(list.size()-1);
}
}
static long sum(long n)
{
long sum=0;
while(n!=0)
{
sum+=n%10;
n/=10;
}
return sum;
}
static boolean check(HashMap<Integer,Integer>map)
{
for(int h:map.values())
if(h>1)
return false;
return true;
}
static class Pair implements Comparable<Pair>{
int x;int y;
Pair(int x,int y){
this.x=x;
this.y=y;
// this.i=i;
}
@Override
public int compareTo(Pair o) {
// TODO Auto-generated method stub
return x-o.x;
}
}
static boolean isPrime(int n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so
// that we can skip
// middle five numbers
// in below loop
if (n % 2 == 0 ||
n % 3 == 0)
return false;
for (int i = 5;
i * i <= n; i = i + 6)
if (n % i == 0 ||
n % (i + 2) == 0)
return false;
return true;
}
static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader in=new FastReader();
HashMap<Integer,Integer>map=new HashMap<Integer,Integer>();
ArrayList<Integer>list=new ArrayList<Integer>();
TreeSet<Integer>set=new TreeSet<Integer>();
int n=in.nextInt();
for(int i=0;i<n;i++)
set.add(in.nextInt());
int ans=0;
while(!set.isEmpty())
{
int f=set.first();
int s=f;
while(!set.isEmpty()&&s<=set.last())
{
if(set.contains(s))
set.remove(new Integer(s));
s+=f;
}
ans++;
}
out.println(ans);
out.close();
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class wef {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
//it reads the data about the specified point and divide the data about it ,it is quite fast
//than using direct
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception r) {
r.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());//converts string to integer
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception r) {
r.printStackTrace();
}
return str;
}
}
static ArrayList<String>list1=new ArrayList<String>();
static void combine(String instr, StringBuffer outstr, int index,int k)
{
if(outstr.length()==k)
{
list1.add(outstr.toString());return;
}
if(outstr.toString().length()==0)
outstr.append(instr.charAt(index));
for (int i = 0; i < instr.length(); i++)
{
outstr.append(instr.charAt(i));
combine(instr, outstr, i + 1,k);
outstr.deleteCharAt(outstr.length() - 1);
}
index++;
}
static ArrayList<ArrayList<Integer>>l=new ArrayList<>();
static void comb(int n,int k,int ind,ArrayList<Integer>list)
{
if(k==0)
{
l.add(new ArrayList<>(list));
return;
}
for(int i=ind;i<=n;i++)
{
list.add(i);
comb(n,k-1,ind+1,list);
list.remove(list.size()-1);
}
}
static long sum(long n)
{
long sum=0;
while(n!=0)
{
sum+=n%10;
n/=10;
}
return sum;
}
static boolean check(HashMap<Integer,Integer>map)
{
for(int h:map.values())
if(h>1)
return false;
return true;
}
static class Pair implements Comparable<Pair>{
int x;int y;
Pair(int x,int y){
this.x=x;
this.y=y;
// this.i=i;
}
@Override
public int compareTo(Pair o) {
// TODO Auto-generated method stub
return x-o.x;
}
}
static boolean isPrime(int n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so
// that we can skip
// middle five numbers
// in below loop
if (n % 2 == 0 ||
n % 3 == 0)
return false;
for (int i = 5;
i * i <= n; i = i + 6)
if (n % i == 0 ||
n % (i + 2) == 0)
return false;
return true;
}
static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader in=new FastReader();
HashMap<Integer,Integer>map=new HashMap<Integer,Integer>();
ArrayList<Integer>list=new ArrayList<Integer>();
TreeSet<Integer>set=new TreeSet<Integer>();
int n=in.nextInt();
for(int i=0;i<n;i++)
set.add(in.nextInt());
int ans=0;
while(!set.isEmpty())
{
int f=set.first();
int s=f;
while(!set.isEmpty()&&s<=set.last())
{
if(set.contains(s))
set.remove(new Integer(s));
s+=f;
}
ans++;
}
out.println(ans);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.math.BigInteger;
import java.util.*;
public class wef {
public static class FastReader {
BufferedReader br;
StringTokenizer st;
//it reads the data about the specified point and divide the data about it ,it is quite fast
//than using direct
public FastReader() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception r) {
r.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());//converts string to integer
}
double nextDouble() {
return Double.parseDouble(next());
}
long nextLong() {
return Long.parseLong(next());
}
String nextLine() {
String str = "";
try {
str = br.readLine();
} catch (Exception r) {
r.printStackTrace();
}
return str;
}
}
static ArrayList<String>list1=new ArrayList<String>();
static void combine(String instr, StringBuffer outstr, int index,int k)
{
if(outstr.length()==k)
{
list1.add(outstr.toString());return;
}
if(outstr.toString().length()==0)
outstr.append(instr.charAt(index));
for (int i = 0; i < instr.length(); i++)
{
outstr.append(instr.charAt(i));
combine(instr, outstr, i + 1,k);
outstr.deleteCharAt(outstr.length() - 1);
}
index++;
}
static ArrayList<ArrayList<Integer>>l=new ArrayList<>();
static void comb(int n,int k,int ind,ArrayList<Integer>list)
{
if(k==0)
{
l.add(new ArrayList<>(list));
return;
}
for(int i=ind;i<=n;i++)
{
list.add(i);
comb(n,k-1,ind+1,list);
list.remove(list.size()-1);
}
}
static long sum(long n)
{
long sum=0;
while(n!=0)
{
sum+=n%10;
n/=10;
}
return sum;
}
static boolean check(HashMap<Integer,Integer>map)
{
for(int h:map.values())
if(h>1)
return false;
return true;
}
static class Pair implements Comparable<Pair>{
int x;int y;
Pair(int x,int y){
this.x=x;
this.y=y;
// this.i=i;
}
@Override
public int compareTo(Pair o) {
// TODO Auto-generated method stub
return x-o.x;
}
}
static boolean isPrime(int n)
{
// Corner cases
if (n <= 1)
return false;
if (n <= 3)
return true;
// This is checked so
// that we can skip
// middle five numbers
// in below loop
if (n % 2 == 0 ||
n % 3 == 0)
return false;
for (int i = 5;
i * i <= n; i = i + 6)
if (n % i == 0 ||
n % (i + 2) == 0)
return false;
return true;
}
static long gcd(long a, long b)
{
if (b == 0)
return a;
return gcd(b, a % b);
}
public static PrintWriter out = new PrintWriter (new BufferedOutputStream(System.out));
public static void main(String[] args) {
// TODO Auto-generated method stub
FastReader in=new FastReader();
HashMap<Integer,Integer>map=new HashMap<Integer,Integer>();
ArrayList<Integer>list=new ArrayList<Integer>();
TreeSet<Integer>set=new TreeSet<Integer>();
int n=in.nextInt();
for(int i=0;i<n;i++)
set.add(in.nextInt());
int ans=0;
while(!set.isEmpty())
{
int f=set.first();
int s=f;
while(!set.isEmpty()&&s<=set.last())
{
if(set.contains(s))
set.remove(new Integer(s));
s+=f;
}
ans++;
}
out.println(ans);
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,288 | 2,639 |
3,941 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.Random;
import java.io.IOException;
import java.io.Reader;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author tanzaku
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
MyInput in = new MyInput(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
int n;
int k;
long[] neigibor;
Random random = new Random();
long maxClique;
public void solve(int testNumber, MyInput in, PrintWriter out) {
n = in.nextInt();
k = in.nextInt();
neigibor = new long[n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
neigibor[i] |= in.nextLong() << j;
}
}
long maxClique = bronKerbosch();
long a = Long.bitCount(maxClique);
dump(a);
out.printf("%.12f\n", a * (a - 1.0) / 2 * k / a * k / a);
}
static void dump(Object... o) {
System.err.println(Arrays.deepToString(o));
}
long bronKerbosch() {
maxClique = 0;
bronKerbosch2(0, (1L << n) - 1, 0);
return maxClique;
}
void bronKerbosch2(long r, long p, long x) {
if (Long.bitCount(maxClique) >= Long.bitCount(r | p | x)) return;
long px = p | x;
if (px == 0) {
if (Long.bitCount(maxClique) < Long.bitCount(r)) {
maxClique = r;
}
return;
}
int cnt = Long.bitCount(px);
int choice = random.nextInt(cnt);
int u;
for (int i = 0; ; i++) {
if ((px >>> i & 1) != 0 && choice-- == 0) {
u = i;
break;
}
}
// dump(r, p, x, u, neigibor);
long ne = p & ~neigibor[u];
for (int v = 0; v < n; v++)
if ((ne >>> v & 1) != 0) {
bronKerbosch2(r | 1L << v, p & neigibor[v], x & neigibor[v]);
p &= ~(1L << v);
x |= 1L << v;
}
}
}
static class MyInput {
private final BufferedReader in;
private static int pos;
private static int readLen;
private static final char[] buffer = new char[1024 * 8];
private static char[] str = new char[500 * 8 * 2];
private static boolean[] isDigit = new boolean[256];
private static boolean[] isSpace = new boolean[256];
private static boolean[] isLineSep = new boolean[256];
static {
for (int i = 0; i < 10; i++) {
isDigit['0' + i] = true;
}
isDigit['-'] = true;
isSpace[' '] = isSpace['\r'] = isSpace['\n'] = isSpace['\t'] = true;
isLineSep['\r'] = isLineSep['\n'] = true;
}
public MyInput(InputStream is) {
in = new BufferedReader(new InputStreamReader(is));
}
public int read() {
if (pos >= readLen) {
pos = 0;
try {
readLen = in.read(buffer);
} catch (IOException e) {
throw new RuntimeException();
}
if (readLen <= 0) {
throw new MyInput.EndOfFileRuntimeException();
}
}
return buffer[pos++];
}
public int nextInt() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
int ret = 0;
if (str[0] == '-') {
i = 1;
}
for (; i < len; i++) ret = ret * 10 + str[i] - '0';
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public long nextLong() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
long ret = 0;
if (str[0] == '-') {
i = 1;
}
for (; i < len; i++) ret = ret * 10 + str[i] - '0';
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public char nextChar() {
while (true) {
final int c = read();
if (!isSpace[c]) {
return (char) c;
}
}
}
int reads(int len, boolean[] accept) {
try {
while (true) {
final int c = read();
if (accept[c]) {
break;
}
if (str.length == len) {
char[] rep = new char[str.length * 3 / 2];
System.arraycopy(str, 0, rep, 0, str.length);
str = rep;
}
str[len++] = (char) c;
}
} catch (MyInput.EndOfFileRuntimeException e) {
}
return len;
}
static class EndOfFileRuntimeException extends RuntimeException {
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.Random;
import java.io.IOException;
import java.io.Reader;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author tanzaku
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
MyInput in = new MyInput(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
int n;
int k;
long[] neigibor;
Random random = new Random();
long maxClique;
public void solve(int testNumber, MyInput in, PrintWriter out) {
n = in.nextInt();
k = in.nextInt();
neigibor = new long[n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
neigibor[i] |= in.nextLong() << j;
}
}
long maxClique = bronKerbosch();
long a = Long.bitCount(maxClique);
dump(a);
out.printf("%.12f\n", a * (a - 1.0) / 2 * k / a * k / a);
}
static void dump(Object... o) {
System.err.println(Arrays.deepToString(o));
}
long bronKerbosch() {
maxClique = 0;
bronKerbosch2(0, (1L << n) - 1, 0);
return maxClique;
}
void bronKerbosch2(long r, long p, long x) {
if (Long.bitCount(maxClique) >= Long.bitCount(r | p | x)) return;
long px = p | x;
if (px == 0) {
if (Long.bitCount(maxClique) < Long.bitCount(r)) {
maxClique = r;
}
return;
}
int cnt = Long.bitCount(px);
int choice = random.nextInt(cnt);
int u;
for (int i = 0; ; i++) {
if ((px >>> i & 1) != 0 && choice-- == 0) {
u = i;
break;
}
}
// dump(r, p, x, u, neigibor);
long ne = p & ~neigibor[u];
for (int v = 0; v < n; v++)
if ((ne >>> v & 1) != 0) {
bronKerbosch2(r | 1L << v, p & neigibor[v], x & neigibor[v]);
p &= ~(1L << v);
x |= 1L << v;
}
}
}
static class MyInput {
private final BufferedReader in;
private static int pos;
private static int readLen;
private static final char[] buffer = new char[1024 * 8];
private static char[] str = new char[500 * 8 * 2];
private static boolean[] isDigit = new boolean[256];
private static boolean[] isSpace = new boolean[256];
private static boolean[] isLineSep = new boolean[256];
static {
for (int i = 0; i < 10; i++) {
isDigit['0' + i] = true;
}
isDigit['-'] = true;
isSpace[' '] = isSpace['\r'] = isSpace['\n'] = isSpace['\t'] = true;
isLineSep['\r'] = isLineSep['\n'] = true;
}
public MyInput(InputStream is) {
in = new BufferedReader(new InputStreamReader(is));
}
public int read() {
if (pos >= readLen) {
pos = 0;
try {
readLen = in.read(buffer);
} catch (IOException e) {
throw new RuntimeException();
}
if (readLen <= 0) {
throw new MyInput.EndOfFileRuntimeException();
}
}
return buffer[pos++];
}
public int nextInt() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
int ret = 0;
if (str[0] == '-') {
i = 1;
}
for (; i < len; i++) ret = ret * 10 + str[i] - '0';
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public long nextLong() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
long ret = 0;
if (str[0] == '-') {
i = 1;
}
for (; i < len; i++) ret = ret * 10 + str[i] - '0';
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public char nextChar() {
while (true) {
final int c = read();
if (!isSpace[c]) {
return (char) c;
}
}
}
int reads(int len, boolean[] accept) {
try {
while (true) {
final int c = read();
if (accept[c]) {
break;
}
if (str.length == len) {
char[] rep = new char[str.length * 3 / 2];
System.arraycopy(str, 0, rep, 0, str.length);
str = rep;
}
str[len++] = (char) c;
}
} catch (MyInput.EndOfFileRuntimeException e) {
}
return len;
}
static class EndOfFileRuntimeException extends RuntimeException {
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.Random;
import java.io.IOException;
import java.io.Reader;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author tanzaku
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
MyInput in = new MyInput(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE solver = new TaskE();
solver.solve(1, in, out);
out.close();
}
static class TaskE {
int n;
int k;
long[] neigibor;
Random random = new Random();
long maxClique;
public void solve(int testNumber, MyInput in, PrintWriter out) {
n = in.nextInt();
k = in.nextInt();
neigibor = new long[n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
neigibor[i] |= in.nextLong() << j;
}
}
long maxClique = bronKerbosch();
long a = Long.bitCount(maxClique);
dump(a);
out.printf("%.12f\n", a * (a - 1.0) / 2 * k / a * k / a);
}
static void dump(Object... o) {
System.err.println(Arrays.deepToString(o));
}
long bronKerbosch() {
maxClique = 0;
bronKerbosch2(0, (1L << n) - 1, 0);
return maxClique;
}
void bronKerbosch2(long r, long p, long x) {
if (Long.bitCount(maxClique) >= Long.bitCount(r | p | x)) return;
long px = p | x;
if (px == 0) {
if (Long.bitCount(maxClique) < Long.bitCount(r)) {
maxClique = r;
}
return;
}
int cnt = Long.bitCount(px);
int choice = random.nextInt(cnt);
int u;
for (int i = 0; ; i++) {
if ((px >>> i & 1) != 0 && choice-- == 0) {
u = i;
break;
}
}
// dump(r, p, x, u, neigibor);
long ne = p & ~neigibor[u];
for (int v = 0; v < n; v++)
if ((ne >>> v & 1) != 0) {
bronKerbosch2(r | 1L << v, p & neigibor[v], x & neigibor[v]);
p &= ~(1L << v);
x |= 1L << v;
}
}
}
static class MyInput {
private final BufferedReader in;
private static int pos;
private static int readLen;
private static final char[] buffer = new char[1024 * 8];
private static char[] str = new char[500 * 8 * 2];
private static boolean[] isDigit = new boolean[256];
private static boolean[] isSpace = new boolean[256];
private static boolean[] isLineSep = new boolean[256];
static {
for (int i = 0; i < 10; i++) {
isDigit['0' + i] = true;
}
isDigit['-'] = true;
isSpace[' '] = isSpace['\r'] = isSpace['\n'] = isSpace['\t'] = true;
isLineSep['\r'] = isLineSep['\n'] = true;
}
public MyInput(InputStream is) {
in = new BufferedReader(new InputStreamReader(is));
}
public int read() {
if (pos >= readLen) {
pos = 0;
try {
readLen = in.read(buffer);
} catch (IOException e) {
throw new RuntimeException();
}
if (readLen <= 0) {
throw new MyInput.EndOfFileRuntimeException();
}
}
return buffer[pos++];
}
public int nextInt() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
int ret = 0;
if (str[0] == '-') {
i = 1;
}
for (; i < len; i++) ret = ret * 10 + str[i] - '0';
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public long nextLong() {
int len = 0;
str[len++] = nextChar();
len = reads(len, isSpace);
int i = 0;
long ret = 0;
if (str[0] == '-') {
i = 1;
}
for (; i < len; i++) ret = ret * 10 + str[i] - '0';
if (str[0] == '-') {
ret = -ret;
}
return ret;
}
public char nextChar() {
while (true) {
final int c = read();
if (!isSpace[c]) {
return (char) c;
}
}
}
int reads(int len, boolean[] accept) {
try {
while (true) {
final int c = read();
if (accept[c]) {
break;
}
if (str.length == len) {
char[] rep = new char[str.length * 3 / 2];
System.arraycopy(str, 0, rep, 0, str.length);
str = rep;
}
str[len++] = (char) c;
}
} catch (MyInput.EndOfFileRuntimeException e) {
}
return len;
}
static class EndOfFileRuntimeException extends RuntimeException {
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,727 | 3,930 |
3,352 |
import java.io.*;
import java.util.*;
public class Main{
public static void main( String[] args ){
Scanner cin = new Scanner( System.in );
String s = cin.next();
int n = s.length();
char[] ss = new char[ n ];
ss = s.toCharArray();
int ans = 0;
for (int i=0; i<n; i++)
for (int j=i+1; j<n; j++){
int k = 0;
while ( i+k<n && j+k<n && ss[i+k] == ss[j+k] ) k++;
ans = Math.max( ans, k );
}
System.out.println( ans );
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main{
public static void main( String[] args ){
Scanner cin = new Scanner( System.in );
String s = cin.next();
int n = s.length();
char[] ss = new char[ n ];
ss = s.toCharArray();
int ans = 0;
for (int i=0; i<n; i++)
for (int j=i+1; j<n; j++){
int k = 0;
while ( i+k<n && j+k<n && ss[i+k] == ss[j+k] ) k++;
ans = Math.max( ans, k );
}
System.out.println( ans );
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main{
public static void main( String[] args ){
Scanner cin = new Scanner( System.in );
String s = cin.next();
int n = s.length();
char[] ss = new char[ n ];
ss = s.toCharArray();
int ans = 0;
for (int i=0; i<n; i++)
for (int j=i+1; j<n; j++){
int k = 0;
while ( i+k<n && j+k<n && ss[i+k] == ss[j+k] ) k++;
ans = Math.max( ans, k );
}
System.out.println( ans );
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 481 | 3,346 |
3,156 |
import java.util.Scanner;
public class AlexAndARhombus {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
System.out.println(n*n+(n-1)*(n-1));
sc.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class AlexAndARhombus {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
System.out.println(n*n+(n-1)*(n-1));
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class AlexAndARhombus {
public static void main(String args[])
{
Scanner sc=new Scanner(System.in);
int n=sc.nextInt();
System.out.println(n*n+(n-1)*(n-1));
sc.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 410 | 3,150 |
1,117 |
import java.util.*;
public class mad{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int cura = 0,curb = 0;
int ver;
System.out.println("? 0 0");
System.out.flush();
ver = sc.nextInt();
for(int i=29;i>=0;i--){
System.out.println("? "+(cura+(1<<i))+" "+curb);
System.out.flush();
int temp1 = sc.nextInt();
System.out.println("? "+cura+" "+(curb+(1<<i)));
System.out.flush();
int temp2 = sc.nextInt();
if(temp1!=temp2){
if(temp2==1){
cura += (1<<i);
curb += (1<<i);
}
}
else{
if(ver==1) cura += (1<<i);
if(ver==-1) curb += (1<<i);
ver = temp1;
}
}
System.out.println("! "+cura+" "+curb);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class mad{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int cura = 0,curb = 0;
int ver;
System.out.println("? 0 0");
System.out.flush();
ver = sc.nextInt();
for(int i=29;i>=0;i--){
System.out.println("? "+(cura+(1<<i))+" "+curb);
System.out.flush();
int temp1 = sc.nextInt();
System.out.println("? "+cura+" "+(curb+(1<<i)));
System.out.flush();
int temp2 = sc.nextInt();
if(temp1!=temp2){
if(temp2==1){
cura += (1<<i);
curb += (1<<i);
}
}
else{
if(ver==1) cura += (1<<i);
if(ver==-1) curb += (1<<i);
ver = temp1;
}
}
System.out.println("! "+cura+" "+curb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class mad{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int cura = 0,curb = 0;
int ver;
System.out.println("? 0 0");
System.out.flush();
ver = sc.nextInt();
for(int i=29;i>=0;i--){
System.out.println("? "+(cura+(1<<i))+" "+curb);
System.out.flush();
int temp1 = sc.nextInt();
System.out.println("? "+cura+" "+(curb+(1<<i)));
System.out.flush();
int temp2 = sc.nextInt();
if(temp1!=temp2){
if(temp2==1){
cura += (1<<i);
curb += (1<<i);
}
}
else{
if(ver==1) cura += (1<<i);
if(ver==-1) curb += (1<<i);
ver = temp1;
}
}
System.out.println("! "+cura+" "+curb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 561 | 1,116 |
1,909 |
import java.util.Arrays;
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] A = new int[n];
int sum = 0;
for (int i = 0; i < n; i++) {
A[i] = in.nextInt();
sum += A[i];
}
Arrays.sort(A);
int cnt = 0;
int temp = 0;
for (int i = n - 1; i >= 0; i--) {
temp += A[i];
sum -= A[i];
cnt++;
if (temp > sum)
break;
}
System.out.println(cnt);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] A = new int[n];
int sum = 0;
for (int i = 0; i < n; i++) {
A[i] = in.nextInt();
sum += A[i];
}
Arrays.sort(A);
int cnt = 0;
int temp = 0;
for (int i = n - 1; i >= 0; i--) {
temp += A[i];
sum -= A[i];
cnt++;
if (temp > sum)
break;
}
System.out.println(cnt);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class A {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] A = new int[n];
int sum = 0;
for (int i = 0; i < n; i++) {
A[i] = in.nextInt();
sum += A[i];
}
Arrays.sort(A);
int cnt = 0;
int temp = 0;
for (int i = n - 1; i >= 0; i--) {
temp += A[i];
sum -= A[i];
cnt++;
if (temp > sum)
break;
}
System.out.println(cnt);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 494 | 1,905 |
3,001 |
import java.io.*;
import java.util.*;
public class Test{
public static void main(String[] args) {
Scanner in= new Scanner(System.in);
int n=in.nextInt();
if(n%7==0 || n%4==0 || n%47==0 || n%74==0 || n%447==0 || n%474==0 || n%477==0 || n%747==0 || n%774==0){
System.out.println("YES");
}else
System.out.println("NO");
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Test{
public static void main(String[] args) {
Scanner in= new Scanner(System.in);
int n=in.nextInt();
if(n%7==0 || n%4==0 || n%47==0 || n%74==0 || n%447==0 || n%474==0 || n%477==0 || n%747==0 || n%774==0){
System.out.println("YES");
}else
System.out.println("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Test{
public static void main(String[] args) {
Scanner in= new Scanner(System.in);
int n=in.nextInt();
if(n%7==0 || n%4==0 || n%47==0 || n%74==0 || n%447==0 || n%474==0 || n%477==0 || n%747==0 || n%774==0){
System.out.println("YES");
}else
System.out.println("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 478 | 2,995 |
312 |
import java.util.*;
import java.io.*;
public class D {
static final boolean stdin = true;
static final String filename = "";
static FastScanner br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
if (stdin) {
br = new FastScanner();
pw = new PrintWriter(new OutputStreamWriter(System.out));
} else {
br = new FastScanner(filename + ".in");
pw = new PrintWriter(new FileWriter(filename + ".out"));
}
Solver solver = new Solver();
solver.solve(br, pw);
}
static class Solver {
static long mod = (long) (1e10);
public void solve(FastScanner br, PrintWriter pw) throws IOException {
int n = br.ni();
Integer[] in = br.nIa(n);
TreeSet<Integer> ts = new TreeSet<Integer>();
for (int i = 0; i < n; i++) {
ts.add(in[i]);
}
String twoSol = "";
for (int i = 0; i <= 30; i++) {
for (int j : in) {
if (ts.contains(j + (int) Math.pow(2, i))) {
if (ts.contains(j - (int) Math.pow(2, i))) {
pw.println(3);
pw.println(j + " " + (j + (int) Math.pow(2, i)) + " " + (j - (int) Math.pow(2, i)));
pw.close();
System.exit(0);
}else{
twoSol = (j + " " + (j + (int) Math.pow(2, i)));
}
}
}
}
if (twoSol.isEmpty()) {
pw.println(1);
pw.println(in[0]);
} else {
pw.println(2);
pw.println(twoSol);
}
pw.close();
}
static long gcd(long a, long b) {
if (a > b)
return gcd(b, a);
if (a == 0)
return b;
return gcd(b % a, a);
}
static long lcm(long a, long b) {
return a * (b / gcd(a, b));
}
static long pow(long a, long b) {
if (b == 0)
return 1L;
long val = pow(a, b / 2);
if (b % 2 == 0)
return val * val % mod;
else
return val * val % mod * a % mod;
}
}
static class Point implements Comparable<Point> {
int a;
int b;
Point(int a, int b) {
this.a = a;
this.b = b;
}
@Override
public int compareTo(Point o) {
return this.a - o.a;
}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
ArrayList<Integer>[] ng(int n, int e) {
ArrayList<Integer>[] adj = new ArrayList[n];
for (int i = 0; i < n; i++) {
adj[i] = new ArrayList<Integer>();
}
for (int i = 0; i < e; i++) {
int a = ni() - 1;
int b = ni() - 1;
adj[a].add(b);
adj[b].add(a);
}
return adj;
}
Integer[] nIa(int n) {
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
int[] nia(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
Long[] nLa(int n) {
Long[] arr = new Long[n];
for (int i = 0; i < n; i++) {
arr[i] = nl();
}
return arr;
}
long[] nla(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nl();
}
return arr;
}
String[] nsa(int n) {
String[] arr = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = nt();
}
return arr;
}
String nt() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(nt());
}
long nl() {
return Long.parseLong(nt());
}
double nd() {
return Double.parseDouble(nt());
}
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class D {
static final boolean stdin = true;
static final String filename = "";
static FastScanner br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
if (stdin) {
br = new FastScanner();
pw = new PrintWriter(new OutputStreamWriter(System.out));
} else {
br = new FastScanner(filename + ".in");
pw = new PrintWriter(new FileWriter(filename + ".out"));
}
Solver solver = new Solver();
solver.solve(br, pw);
}
static class Solver {
static long mod = (long) (1e10);
public void solve(FastScanner br, PrintWriter pw) throws IOException {
int n = br.ni();
Integer[] in = br.nIa(n);
TreeSet<Integer> ts = new TreeSet<Integer>();
for (int i = 0; i < n; i++) {
ts.add(in[i]);
}
String twoSol = "";
for (int i = 0; i <= 30; i++) {
for (int j : in) {
if (ts.contains(j + (int) Math.pow(2, i))) {
if (ts.contains(j - (int) Math.pow(2, i))) {
pw.println(3);
pw.println(j + " " + (j + (int) Math.pow(2, i)) + " " + (j - (int) Math.pow(2, i)));
pw.close();
System.exit(0);
}else{
twoSol = (j + " " + (j + (int) Math.pow(2, i)));
}
}
}
}
if (twoSol.isEmpty()) {
pw.println(1);
pw.println(in[0]);
} else {
pw.println(2);
pw.println(twoSol);
}
pw.close();
}
static long gcd(long a, long b) {
if (a > b)
return gcd(b, a);
if (a == 0)
return b;
return gcd(b % a, a);
}
static long lcm(long a, long b) {
return a * (b / gcd(a, b));
}
static long pow(long a, long b) {
if (b == 0)
return 1L;
long val = pow(a, b / 2);
if (b % 2 == 0)
return val * val % mod;
else
return val * val % mod * a % mod;
}
}
static class Point implements Comparable<Point> {
int a;
int b;
Point(int a, int b) {
this.a = a;
this.b = b;
}
@Override
public int compareTo(Point o) {
return this.a - o.a;
}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
ArrayList<Integer>[] ng(int n, int e) {
ArrayList<Integer>[] adj = new ArrayList[n];
for (int i = 0; i < n; i++) {
adj[i] = new ArrayList<Integer>();
}
for (int i = 0; i < e; i++) {
int a = ni() - 1;
int b = ni() - 1;
adj[a].add(b);
adj[b].add(a);
}
return adj;
}
Integer[] nIa(int n) {
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
int[] nia(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
Long[] nLa(int n) {
Long[] arr = new Long[n];
for (int i = 0; i < n; i++) {
arr[i] = nl();
}
return arr;
}
long[] nla(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nl();
}
return arr;
}
String[] nsa(int n) {
String[] arr = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = nt();
}
return arr;
}
String nt() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(nt());
}
long nl() {
return Long.parseLong(nt());
}
double nd() {
return Double.parseDouble(nt());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class D {
static final boolean stdin = true;
static final String filename = "";
static FastScanner br;
static PrintWriter pw;
public static void main(String[] args) throws IOException {
if (stdin) {
br = new FastScanner();
pw = new PrintWriter(new OutputStreamWriter(System.out));
} else {
br = new FastScanner(filename + ".in");
pw = new PrintWriter(new FileWriter(filename + ".out"));
}
Solver solver = new Solver();
solver.solve(br, pw);
}
static class Solver {
static long mod = (long) (1e10);
public void solve(FastScanner br, PrintWriter pw) throws IOException {
int n = br.ni();
Integer[] in = br.nIa(n);
TreeSet<Integer> ts = new TreeSet<Integer>();
for (int i = 0; i < n; i++) {
ts.add(in[i]);
}
String twoSol = "";
for (int i = 0; i <= 30; i++) {
for (int j : in) {
if (ts.contains(j + (int) Math.pow(2, i))) {
if (ts.contains(j - (int) Math.pow(2, i))) {
pw.println(3);
pw.println(j + " " + (j + (int) Math.pow(2, i)) + " " + (j - (int) Math.pow(2, i)));
pw.close();
System.exit(0);
}else{
twoSol = (j + " " + (j + (int) Math.pow(2, i)));
}
}
}
}
if (twoSol.isEmpty()) {
pw.println(1);
pw.println(in[0]);
} else {
pw.println(2);
pw.println(twoSol);
}
pw.close();
}
static long gcd(long a, long b) {
if (a > b)
return gcd(b, a);
if (a == 0)
return b;
return gcd(b % a, a);
}
static long lcm(long a, long b) {
return a * (b / gcd(a, b));
}
static long pow(long a, long b) {
if (b == 0)
return 1L;
long val = pow(a, b / 2);
if (b % 2 == 0)
return val * val % mod;
else
return val * val % mod * a % mod;
}
}
static class Point implements Comparable<Point> {
int a;
int b;
Point(int a, int b) {
this.a = a;
this.b = b;
}
@Override
public int compareTo(Point o) {
return this.a - o.a;
}
}
public static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(String s) {
try {
br = new BufferedReader(new FileReader(s));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public FastScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
ArrayList<Integer>[] ng(int n, int e) {
ArrayList<Integer>[] adj = new ArrayList[n];
for (int i = 0; i < n; i++) {
adj[i] = new ArrayList<Integer>();
}
for (int i = 0; i < e; i++) {
int a = ni() - 1;
int b = ni() - 1;
adj[a].add(b);
adj[b].add(a);
}
return adj;
}
Integer[] nIa(int n) {
Integer[] arr = new Integer[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
int[] nia(int n) {
int[] arr = new int[n];
for (int i = 0; i < n; i++) {
arr[i] = ni();
}
return arr;
}
Long[] nLa(int n) {
Long[] arr = new Long[n];
for (int i = 0; i < n; i++) {
arr[i] = nl();
}
return arr;
}
long[] nla(int n) {
long[] arr = new long[n];
for (int i = 0; i < n; i++) {
arr[i] = nl();
}
return arr;
}
String[] nsa(int n) {
String[] arr = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = nt();
}
return arr;
}
String nt() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int ni() {
return Integer.parseInt(nt());
}
long nl() {
return Long.parseLong(nt());
}
double nd() {
return Double.parseDouble(nt());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,529 | 312 |
2,599 |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
int min;
int count = 0;
int c = 0;
while (count != n) {
min = 1000;
for (int i = 0; i < n; i++) {
if (a[i] < min) {
min = a[i];
}
}
for (int i = 0; i < n; i++) {
if (a[i] != 1000 && a[i] % min == 0) {
count++;
a[i] = 1000;
}
}
c++;
}
System.out.println(c);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
int min;
int count = 0;
int c = 0;
while (count != n) {
min = 1000;
for (int i = 0; i < n; i++) {
if (a[i] < min) {
min = a[i];
}
}
for (int i = 0; i < n; i++) {
if (a[i] != 1000 && a[i] % min == 0) {
count++;
a[i] = 1000;
}
}
c++;
}
System.out.println(c);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = in.nextInt();
}
int min;
int count = 0;
int c = 0;
while (count != n) {
min = 1000;
for (int i = 0; i < n; i++) {
if (a[i] < min) {
min = a[i];
}
}
for (int i = 0; i < n; i++) {
if (a[i] != 1000 && a[i] % min == 0) {
count++;
a[i] = 1000;
}
}
c++;
}
System.out.println(c);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 541 | 2,593 |
3,467 |
import java.io.*;
import java.util.*;
import java.math.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import static java.lang.Math.*;
public class Main {
//StreamTokenizer in;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws IOException {
new Main().run();
}
void run() throws IOException {
//in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
String s = in.readLine();
int n = s.length();
for(int len = n; len > 0; len--) {
for(int i = 0; i + len <= n; i++) {
for(int j = 0; j + len <= n; j++)
if(i != j) {
boolean f = true;
for(int k = 0; k < len; k++)
if(s.charAt(i + k) != s.charAt(j + k)) {
f = false;
break;
}
if(f) {
out.println(len);
out.flush();
return;
}
}
}
}
out.println(0);
out.flush();
}
void solve() throws IOException {
}
//int ni() throws IOException { in.nextToken(); return (int) in.nval; }
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import static java.lang.Math.*;
public class Main {
//StreamTokenizer in;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws IOException {
new Main().run();
}
void run() throws IOException {
//in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
String s = in.readLine();
int n = s.length();
for(int len = n; len > 0; len--) {
for(int i = 0; i + len <= n; i++) {
for(int j = 0; j + len <= n; j++)
if(i != j) {
boolean f = true;
for(int k = 0; k < len; k++)
if(s.charAt(i + k) != s.charAt(j + k)) {
f = false;
break;
}
if(f) {
out.println(len);
out.flush();
return;
}
}
}
}
out.println(0);
out.flush();
}
void solve() throws IOException {
}
//int ni() throws IOException { in.nextToken(); return (int) in.nval; }
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.math.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import static java.lang.Math.*;
public class Main {
//StreamTokenizer in;
BufferedReader in;
PrintWriter out;
public static void main(String[] args) throws IOException {
new Main().run();
}
void run() throws IOException {
//in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(new OutputStreamWriter(System.out));
String s = in.readLine();
int n = s.length();
for(int len = n; len > 0; len--) {
for(int i = 0; i + len <= n; i++) {
for(int j = 0; j + len <= n; j++)
if(i != j) {
boolean f = true;
for(int k = 0; k < len; k++)
if(s.charAt(i + k) != s.charAt(j + k)) {
f = false;
break;
}
if(f) {
out.println(len);
out.flush();
return;
}
}
}
}
out.println(0);
out.flush();
}
void solve() throws IOException {
}
//int ni() throws IOException { in.nextToken(); return (int) in.nval; }
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 626 | 3,461 |
4,447 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
solver.solve(1, in, out);
out.close();
}
static class TaskE2 {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt(), m = in.nextInt();
int[][] a = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[i][j] = in.nextInt();
}
}
boolean[][] interesting = new boolean[n][m];
boolean[] hasInteresting = new boolean[m];
for (int i = 0; i < n; i++) {
List<Pair> list = new ArrayList<>();
for (int j = 0; j < m; j++) {
list.add(new Pair(a[i][j], j));
}
Collections.sort(list, Comparator.comparing(pair -> -pair.val));
for (int j = 0; j < m && j <= n; j++) {
interesting[i][list.get(j).pos] = true;
hasInteresting[list.get(j).pos] = true;
}
}
boolean[] goodMask = new boolean[1 << n];
for (int mask = 0; mask < 1 << n; mask++) {
int best = Integer.MAX_VALUE;
int cur = mask;
do {
best = Math.min(best, cur);
cur = (cur >> 1) | ((cur & 1) << (n - 1));
} while (cur != mask);
goodMask[mask] = (mask == best);
}
int[] dp = new int[1 << n];
for (int i = 0; i < m; i++) {
if (!hasInteresting[i]) {
continue;
}
for (int j = 0; j < n; j++) {
if (!interesting[j][i]) {
continue;
}
int supermask = (1 << n) - 1 - (1 << j);
int val = a[j][i];
for (int mask = supermask; ; mask = (mask - 1) & supermask) {
if (dp[mask] + val > dp[mask | (1 << j)]) {
dp[mask | (1 << j)] = dp[mask] + val;
}
if (mask == 0) {
break;
}
}
}
for (int mask = 0; mask < 1 << n; mask++) {
if (!goodMask[mask]) {
continue;
}
int best = 0;
int cur = mask;
do {
best = Math.max(best, dp[cur]);
cur = (cur >> 1) | ((cur & 1) << (n - 1));
} while (cur != mask);
do {
dp[cur] = best;
cur = (cur >> 1) | ((cur & 1) << (n - 1));
} while (cur != mask);
}
}
out.println(dp[(1 << n) - 1]);
}
}
class Pair {
int val;
int pos;
public Pair(int val, int pos) {
this.val = val;
this.pos = pos;
}
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public FastScanner(String fileName) {
try {
br = new BufferedReader(new FileReader(fileName));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public String next() {
while (st == null || !st.hasMoreElements()) {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
solver.solve(1, in, out);
out.close();
}
static class TaskE2 {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt(), m = in.nextInt();
int[][] a = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[i][j] = in.nextInt();
}
}
boolean[][] interesting = new boolean[n][m];
boolean[] hasInteresting = new boolean[m];
for (int i = 0; i < n; i++) {
List<Pair> list = new ArrayList<>();
for (int j = 0; j < m; j++) {
list.add(new Pair(a[i][j], j));
}
Collections.sort(list, Comparator.comparing(pair -> -pair.val));
for (int j = 0; j < m && j <= n; j++) {
interesting[i][list.get(j).pos] = true;
hasInteresting[list.get(j).pos] = true;
}
}
boolean[] goodMask = new boolean[1 << n];
for (int mask = 0; mask < 1 << n; mask++) {
int best = Integer.MAX_VALUE;
int cur = mask;
do {
best = Math.min(best, cur);
cur = (cur >> 1) | ((cur & 1) << (n - 1));
} while (cur != mask);
goodMask[mask] = (mask == best);
}
int[] dp = new int[1 << n];
for (int i = 0; i < m; i++) {
if (!hasInteresting[i]) {
continue;
}
for (int j = 0; j < n; j++) {
if (!interesting[j][i]) {
continue;
}
int supermask = (1 << n) - 1 - (1 << j);
int val = a[j][i];
for (int mask = supermask; ; mask = (mask - 1) & supermask) {
if (dp[mask] + val > dp[mask | (1 << j)]) {
dp[mask | (1 << j)] = dp[mask] + val;
}
if (mask == 0) {
break;
}
}
}
for (int mask = 0; mask < 1 << n; mask++) {
if (!goodMask[mask]) {
continue;
}
int best = 0;
int cur = mask;
do {
best = Math.max(best, dp[cur]);
cur = (cur >> 1) | ((cur & 1) << (n - 1));
} while (cur != mask);
do {
dp[cur] = best;
cur = (cur >> 1) | ((cur & 1) << (n - 1));
} while (cur != mask);
}
}
out.println(dp[(1 << n) - 1]);
}
}
class Pair {
int val;
int pos;
public Pair(int val, int pos) {
this.val = val;
this.pos = pos;
}
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public FastScanner(String fileName) {
try {
br = new BufferedReader(new FileReader(fileName));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public String next() {
while (st == null || !st.hasMoreElements()) {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.FileNotFoundException;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Comparator;
import java.util.Collections;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
FastScanner in = new FastScanner(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskE2 solver = new TaskE2();
solver.solve(1, in, out);
out.close();
}
static class TaskE2 {
public void solve(int testNumber, FastScanner in, PrintWriter out) {
int t = in.nextInt();
while (t-- > 0) {
int n = in.nextInt(), m = in.nextInt();
int[][] a = new int[n][m];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
a[i][j] = in.nextInt();
}
}
boolean[][] interesting = new boolean[n][m];
boolean[] hasInteresting = new boolean[m];
for (int i = 0; i < n; i++) {
List<Pair> list = new ArrayList<>();
for (int j = 0; j < m; j++) {
list.add(new Pair(a[i][j], j));
}
Collections.sort(list, Comparator.comparing(pair -> -pair.val));
for (int j = 0; j < m && j <= n; j++) {
interesting[i][list.get(j).pos] = true;
hasInteresting[list.get(j).pos] = true;
}
}
boolean[] goodMask = new boolean[1 << n];
for (int mask = 0; mask < 1 << n; mask++) {
int best = Integer.MAX_VALUE;
int cur = mask;
do {
best = Math.min(best, cur);
cur = (cur >> 1) | ((cur & 1) << (n - 1));
} while (cur != mask);
goodMask[mask] = (mask == best);
}
int[] dp = new int[1 << n];
for (int i = 0; i < m; i++) {
if (!hasInteresting[i]) {
continue;
}
for (int j = 0; j < n; j++) {
if (!interesting[j][i]) {
continue;
}
int supermask = (1 << n) - 1 - (1 << j);
int val = a[j][i];
for (int mask = supermask; ; mask = (mask - 1) & supermask) {
if (dp[mask] + val > dp[mask | (1 << j)]) {
dp[mask | (1 << j)] = dp[mask] + val;
}
if (mask == 0) {
break;
}
}
}
for (int mask = 0; mask < 1 << n; mask++) {
if (!goodMask[mask]) {
continue;
}
int best = 0;
int cur = mask;
do {
best = Math.max(best, dp[cur]);
cur = (cur >> 1) | ((cur & 1) << (n - 1));
} while (cur != mask);
do {
dp[cur] = best;
cur = (cur >> 1) | ((cur & 1) << (n - 1));
} while (cur != mask);
}
}
out.println(dp[(1 << n) - 1]);
}
}
class Pair {
int val;
int pos;
public Pair(int val, int pos) {
this.val = val;
this.pos = pos;
}
}
}
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner(InputStream in) {
br = new BufferedReader(new InputStreamReader(in));
}
public FastScanner(String fileName) {
try {
br = new BufferedReader(new FileReader(fileName));
} catch (FileNotFoundException e) {
e.printStackTrace();
}
}
public int nextInt() {
return Integer.parseInt(next());
}
public String next() {
while (st == null || !st.hasMoreElements()) {
String line = null;
try {
line = br.readLine();
} catch (IOException e) {
}
st = new StringTokenizer(line);
}
return st.nextToken();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,383 | 4,436 |
700 |
/**
* Created by IntelliJ IDEA.
* User: Nick
* Date: 08.08.2010
* Time: 20:44:02
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.util.*;
import java.util.regex.*;
public class B {
public static void main(String[] args) {
Scanner input = new Scanner (System.in);
Pattern rc_style = Pattern.compile("R[0-9]+C[0-9]+");
int n = input.nextInt();
while(n-- > 0) {
String str = input.next();
Matcher m = rc_style.matcher(str);
if (m.matches()) {
String nums[] = str.split("[RC]");
String row = nums[1];
String col = nums[2];
String buffer = "";
int col_num = Integer.valueOf(col);
while(col_num > 0) {
if (col_num % 26 > 0) {
buffer += (char)(col_num % 26 + 'A' - 1);
col_num /= 26;
} else {
buffer += 'Z';
col_num /= 26;
col_num--;
}
}
for (int i = buffer.length() - 1; i >= 0; --i) {
System.out.print(buffer.charAt(i));
}
System.out.println(row);
} else {
String col = str.split("[0-9]+")[0];
String row = str.split("[A-Z]+")[1];
int col_num = 0;
int shift = 1;
for (int i = col.length() - 1; i >= 0; --i){
col_num += (int)(col.charAt(i) - 'A' + 1) * shift;
shift *= 26;
}
System.out.println("R" + row + "C" + col_num);
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* Created by IntelliJ IDEA.
* User: Nick
* Date: 08.08.2010
* Time: 20:44:02
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.util.*;
import java.util.regex.*;
public class B {
public static void main(String[] args) {
Scanner input = new Scanner (System.in);
Pattern rc_style = Pattern.compile("R[0-9]+C[0-9]+");
int n = input.nextInt();
while(n-- > 0) {
String str = input.next();
Matcher m = rc_style.matcher(str);
if (m.matches()) {
String nums[] = str.split("[RC]");
String row = nums[1];
String col = nums[2];
String buffer = "";
int col_num = Integer.valueOf(col);
while(col_num > 0) {
if (col_num % 26 > 0) {
buffer += (char)(col_num % 26 + 'A' - 1);
col_num /= 26;
} else {
buffer += 'Z';
col_num /= 26;
col_num--;
}
}
for (int i = buffer.length() - 1; i >= 0; --i) {
System.out.print(buffer.charAt(i));
}
System.out.println(row);
} else {
String col = str.split("[0-9]+")[0];
String row = str.split("[A-Z]+")[1];
int col_num = 0;
int shift = 1;
for (int i = col.length() - 1; i >= 0; --i){
col_num += (int)(col.charAt(i) - 'A' + 1) * shift;
shift *= 26;
}
System.out.println("R" + row + "C" + col_num);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* Created by IntelliJ IDEA.
* User: Nick
* Date: 08.08.2010
* Time: 20:44:02
* To change this template use File | Settings | File Templates.
*/
import java.io.*;
import java.util.*;
import java.util.regex.*;
public class B {
public static void main(String[] args) {
Scanner input = new Scanner (System.in);
Pattern rc_style = Pattern.compile("R[0-9]+C[0-9]+");
int n = input.nextInt();
while(n-- > 0) {
String str = input.next();
Matcher m = rc_style.matcher(str);
if (m.matches()) {
String nums[] = str.split("[RC]");
String row = nums[1];
String col = nums[2];
String buffer = "";
int col_num = Integer.valueOf(col);
while(col_num > 0) {
if (col_num % 26 > 0) {
buffer += (char)(col_num % 26 + 'A' - 1);
col_num /= 26;
} else {
buffer += 'Z';
col_num /= 26;
col_num--;
}
}
for (int i = buffer.length() - 1; i >= 0; --i) {
System.out.print(buffer.charAt(i));
}
System.out.println(row);
} else {
String col = str.split("[0-9]+")[0];
String row = str.split("[A-Z]+")[1];
int col_num = 0;
int shift = 1;
for (int i = col.length() - 1; i >= 0; --i){
col_num += (int)(col.charAt(i) - 'A' + 1) * shift;
shift *= 26;
}
System.out.println("R" + row + "C" + col_num);
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 760 | 699 |
2,297 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class CFC {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
final long MOD = 1000L * 1000L * 1000L + 7;
int[] dx = {0, -1, 0, 1};
int[] dy = {1, 0, -1, 0};
void solve() throws IOException {
int n = nextInt();
long[] dp0 = new long[10 + n];
long[] dp1 = new long[10 + n];
long[] pre = new long[10 + n];
dp0[0] = 1;
String[] arr = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = nextString();
}
String s = "s";
for (int i = 0; i < n; i++) {
Arrays.fill(dp1, 0);
if (i == 0) {
dp0[0] = 1;
dp1[0] = 1;
}
else {
if (arr[i - 1].equals(s)) {
for (int j = 0; j <= n + 5; j++) {
dp1[j] = pre[j];
}
}
else {
for (int j = 1; j <= n + 5; j++) {
dp1[j] = dp0[j - 1];
}
}
}
Arrays.fill(pre, 0);
pre[n + 5] = dp1[n + 5];
for (int j = n + 4; j >= 0; j--) {
pre[j] = pre[j + 1] + dp1[j];
pre[j] %= MOD;
}
for (int j = 0; j <= n + 5; j++) {
dp0[j] = dp1[j];
}
}
long res = 0;
for (int j = 0; j <= n + 5; j++) {
res += dp0[j];
res %= MOD;
}
out(res);
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
int gcd(int a, int b) {
while(a != 0 && b != 0) {
int c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
public CFC() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFC();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class CFC {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
final long MOD = 1000L * 1000L * 1000L + 7;
int[] dx = {0, -1, 0, 1};
int[] dy = {1, 0, -1, 0};
void solve() throws IOException {
int n = nextInt();
long[] dp0 = new long[10 + n];
long[] dp1 = new long[10 + n];
long[] pre = new long[10 + n];
dp0[0] = 1;
String[] arr = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = nextString();
}
String s = "s";
for (int i = 0; i < n; i++) {
Arrays.fill(dp1, 0);
if (i == 0) {
dp0[0] = 1;
dp1[0] = 1;
}
else {
if (arr[i - 1].equals(s)) {
for (int j = 0; j <= n + 5; j++) {
dp1[j] = pre[j];
}
}
else {
for (int j = 1; j <= n + 5; j++) {
dp1[j] = dp0[j - 1];
}
}
}
Arrays.fill(pre, 0);
pre[n + 5] = dp1[n + 5];
for (int j = n + 4; j >= 0; j--) {
pre[j] = pre[j + 1] + dp1[j];
pre[j] %= MOD;
}
for (int j = 0; j <= n + 5; j++) {
dp0[j] = dp1[j];
}
}
long res = 0;
for (int j = 0; j <= n + 5; j++) {
res += dp0[j];
res %= MOD;
}
out(res);
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
int gcd(int a, int b) {
while(a != 0 && b != 0) {
int c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
public CFC() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFC();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
public class CFC {
BufferedReader br;
PrintWriter out;
StringTokenizer st;
boolean eof;
final long MOD = 1000L * 1000L * 1000L + 7;
int[] dx = {0, -1, 0, 1};
int[] dy = {1, 0, -1, 0};
void solve() throws IOException {
int n = nextInt();
long[] dp0 = new long[10 + n];
long[] dp1 = new long[10 + n];
long[] pre = new long[10 + n];
dp0[0] = 1;
String[] arr = new String[n];
for (int i = 0; i < n; i++) {
arr[i] = nextString();
}
String s = "s";
for (int i = 0; i < n; i++) {
Arrays.fill(dp1, 0);
if (i == 0) {
dp0[0] = 1;
dp1[0] = 1;
}
else {
if (arr[i - 1].equals(s)) {
for (int j = 0; j <= n + 5; j++) {
dp1[j] = pre[j];
}
}
else {
for (int j = 1; j <= n + 5; j++) {
dp1[j] = dp0[j - 1];
}
}
}
Arrays.fill(pre, 0);
pre[n + 5] = dp1[n + 5];
for (int j = n + 4; j >= 0; j--) {
pre[j] = pre[j + 1] + dp1[j];
pre[j] %= MOD;
}
for (int j = 0; j <= n + 5; j++) {
dp0[j] = dp1[j];
}
}
long res = 0;
for (int j = 0; j <= n + 5; j++) {
res += dp0[j];
res %= MOD;
}
out(res);
}
void shuffle(int[] a) {
int n = a.length;
for(int i = 0; i < n; i++) {
int r = i + (int) (Math.random() * (n - i));
int tmp = a[i];
a[i] = a[r];
a[r] = tmp;
}
}
int gcd(int a, int b) {
while(a != 0 && b != 0) {
int c = b;
b = a % b;
a = c;
}
return a + b;
}
private void outln(Object o) {
out.println(o);
}
private void out(Object o) {
out.print(o);
}
public CFC() throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
out.close();
}
public static void main(String[] args) throws IOException {
new CFC();
}
public long[] nextLongArr(int n) throws IOException{
long[] res = new long[n];
for(int i = 0; i < n; i++)
res[i] = nextLong();
return res;
}
public int[] nextIntArr(int n) throws IOException {
int[] res = new int[n];
for(int i = 0; i < n; i++)
res[i] = nextInt();
return res;
}
public String nextToken() {
while (st == null || !st.hasMoreTokens()) {
try {
st = new StringTokenizer(br.readLine());
} catch (Exception e) {
eof = true;
return null;
}
}
return st.nextToken();
}
public String nextString() {
try {
return br.readLine();
} catch (IOException e) {
eof = true;
return null;
}
}
public int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,318 | 2,292 |
1,717 |
import java.util.Scanner;
/**
* @author Son-Huy TRAN
*
*/
public class P15A_CottageVillage {
/**
* @param args
*/
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int t = scanner.nextInt();
scanner.nextLine();
int[] x = new int[n];
int[] a = new int[n];
for (int i = 0; i < n; i++) {
x[i] = scanner.nextInt();
a[i] = scanner.nextInt();
scanner.nextLine();
}
scanner.close();
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (x[i] > x[j]) {
swap(x, i, j);
swap(a, i, j);
}
}
}
int countPositions = 2;
for (int i = 1; i < n; i++) {
double left = x[i - 1] + a[i - 1] * 1.0 / 2;
double right = x[i] - a[i] * 1.0 / 2;
double length = right - left;
if (length == (double) t) {
countPositions++;
} else if (length > t) {
countPositions += 2;
}
}
System.out.println(countPositions);
}
private static void swap(int[] numbers, int i, int j) {
int temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
/**
* @author Son-Huy TRAN
*
*/
public class P15A_CottageVillage {
/**
* @param args
*/
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int t = scanner.nextInt();
scanner.nextLine();
int[] x = new int[n];
int[] a = new int[n];
for (int i = 0; i < n; i++) {
x[i] = scanner.nextInt();
a[i] = scanner.nextInt();
scanner.nextLine();
}
scanner.close();
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (x[i] > x[j]) {
swap(x, i, j);
swap(a, i, j);
}
}
}
int countPositions = 2;
for (int i = 1; i < n; i++) {
double left = x[i - 1] + a[i - 1] * 1.0 / 2;
double right = x[i] - a[i] * 1.0 / 2;
double length = right - left;
if (length == (double) t) {
countPositions++;
} else if (length > t) {
countPositions += 2;
}
}
System.out.println(countPositions);
}
private static void swap(int[] numbers, int i, int j) {
int temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
/**
* @author Son-Huy TRAN
*
*/
public class P15A_CottageVillage {
/**
* @param args
*/
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int t = scanner.nextInt();
scanner.nextLine();
int[] x = new int[n];
int[] a = new int[n];
for (int i = 0; i < n; i++) {
x[i] = scanner.nextInt();
a[i] = scanner.nextInt();
scanner.nextLine();
}
scanner.close();
for (int i = 0; i < n - 1; i++) {
for (int j = i + 1; j < n; j++) {
if (x[i] > x[j]) {
swap(x, i, j);
swap(a, i, j);
}
}
}
int countPositions = 2;
for (int i = 1; i < n; i++) {
double left = x[i - 1] + a[i - 1] * 1.0 / 2;
double right = x[i] - a[i] * 1.0 / 2;
double length = right - left;
if (length == (double) t) {
countPositions++;
} else if (length > t) {
countPositions += 2;
}
}
System.out.println(countPositions);
}
private static void swap(int[] numbers, int i, int j) {
int temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] = temp;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 708 | 1,713 |
2,129 |
import java.util.*;
import java.io.*;
import java.math.*;
public class Solution{
public static void main(String[] args) throws Exception {
int n=nextInt();
int r=nextInt();
int x[]=new int[n];
double y[]=new double[n];
for(int i=0;i<n;i++)
x[i]=nextInt();
for(int i=0;i<n;i++){
//(x1-x2)2+(y1-y2)2=r2
y[i]=r;
for(int j=0;j<i;j++){
int d=sq(2*r)-sq(x[i]-x[j]);
if(d>=0){
double y1=Math.sqrt(d)+y[j];
y[i]=Math.max(y1,y[i]);
}
}
}
for(int i=0;i<n;i++)
System.out.printf("%.12g ",y[i]);
}
static int sq(int a){
return a*a;
}
static int nextInt()throws IOException{
InputStream in=System.in;
int ans=0;
boolean flag=true;
byte b=0;
while ((b>47 && b<58) || flag){
if(b>=48 && b<58){
ans=ans*10+(b-48);
flag=false;
}
b=(byte)in.read();
}
return ans;
}
static String next()throws Exception{
StringBuilder sb=new StringBuilder(1<<16);
InputStream in=System.in;
byte b=0;
do{
if(!isWhiteSpace(b))
sb.append((char)b);
b=(byte)in.read();
}while(!isWhiteSpace(b) || sb.length()==0);
return sb.toString();
}
static boolean isWhiteSpace(byte b){
char ch=(char)b;
return ch=='\0' || ch==' ' || ch=='\n';
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Solution{
public static void main(String[] args) throws Exception {
int n=nextInt();
int r=nextInt();
int x[]=new int[n];
double y[]=new double[n];
for(int i=0;i<n;i++)
x[i]=nextInt();
for(int i=0;i<n;i++){
//(x1-x2)2+(y1-y2)2=r2
y[i]=r;
for(int j=0;j<i;j++){
int d=sq(2*r)-sq(x[i]-x[j]);
if(d>=0){
double y1=Math.sqrt(d)+y[j];
y[i]=Math.max(y1,y[i]);
}
}
}
for(int i=0;i<n;i++)
System.out.printf("%.12g ",y[i]);
}
static int sq(int a){
return a*a;
}
static int nextInt()throws IOException{
InputStream in=System.in;
int ans=0;
boolean flag=true;
byte b=0;
while ((b>47 && b<58) || flag){
if(b>=48 && b<58){
ans=ans*10+(b-48);
flag=false;
}
b=(byte)in.read();
}
return ans;
}
static String next()throws Exception{
StringBuilder sb=new StringBuilder(1<<16);
InputStream in=System.in;
byte b=0;
do{
if(!isWhiteSpace(b))
sb.append((char)b);
b=(byte)in.read();
}while(!isWhiteSpace(b) || sb.length()==0);
return sb.toString();
}
static boolean isWhiteSpace(byte b){
char ch=(char)b;
return ch=='\0' || ch==' ' || ch=='\n';
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.math.*;
public class Solution{
public static void main(String[] args) throws Exception {
int n=nextInt();
int r=nextInt();
int x[]=new int[n];
double y[]=new double[n];
for(int i=0;i<n;i++)
x[i]=nextInt();
for(int i=0;i<n;i++){
//(x1-x2)2+(y1-y2)2=r2
y[i]=r;
for(int j=0;j<i;j++){
int d=sq(2*r)-sq(x[i]-x[j]);
if(d>=0){
double y1=Math.sqrt(d)+y[j];
y[i]=Math.max(y1,y[i]);
}
}
}
for(int i=0;i<n;i++)
System.out.printf("%.12g ",y[i]);
}
static int sq(int a){
return a*a;
}
static int nextInt()throws IOException{
InputStream in=System.in;
int ans=0;
boolean flag=true;
byte b=0;
while ((b>47 && b<58) || flag){
if(b>=48 && b<58){
ans=ans*10+(b-48);
flag=false;
}
b=(byte)in.read();
}
return ans;
}
static String next()throws Exception{
StringBuilder sb=new StringBuilder(1<<16);
InputStream in=System.in;
byte b=0;
do{
if(!isWhiteSpace(b))
sb.append((char)b);
b=(byte)in.read();
}while(!isWhiteSpace(b) || sb.length()==0);
return sb.toString();
}
static boolean isWhiteSpace(byte b){
char ch=(char)b;
return ch=='\0' || ch==' ' || ch=='\n';
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 764 | 2,125 |
3,843 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args){
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
solve(in, out);
out.close();
}
static String reverse(String s) {
return (new StringBuilder(s)).reverse().toString();
}
static void sieveOfEratosthenes(int n, int factors[], ArrayList<Integer> ar)
{
factors[1]=1;
int p;
for(p = 2; p*p <=n; p++)
{
if(factors[p] == 0)
{
ar.add(p);
factors[p]=p;
for(int i = p*p; i <= n; i += p)
factors[i] = p;
}
}
for(;p<=n;p++){
if(factors[p] == 0)
{
ar.add(p);
}
}
}
static void sort(int ar[]) {
int n = ar.length;
ArrayList<Integer> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static void sort1(long ar[]) {
int n = ar.length;
ArrayList<Long> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static long ncr(long n, long r, long mod) {
if (r == 0)
return 1;
long val = ncr(n - 1, r - 1, mod);
val = (n * val) % mod;
val = (val * modInverse(r, mod)) % mod;
return val;
}
static int findMax(int a[], int n, int vis[], int i, int d){
if(i>=n)
return 0;
if(vis[i]==1)
return findMax(a, n, vis, i+1, d);
int max = 0;
for(int j=i+1;j<n;j++){
if(Math.abs(a[i]-a[j])>d||vis[j]==1)
continue;
vis[j] = 1;
max = Math.max(max, 1 + findMax(a, n, vis, i+1, d));
vis[j] = 0;
}
return max;
}
public static void solve(InputReader sc, PrintWriter pw){
int i, j = 0;
// int t = 1;
int t = sc.nextInt();
u: while (t-- > 0) {
int n = sc.nextInt();
int a[] = new int[n];
ArrayList<Integer> ar = new ArrayList<>();
ar.add(0);
for(i=0;i<1000;i++){
ar.add(0);
}
int m = 1;
for(i=0;i<n;i++){
a[i] = sc.nextInt();
if(a[i]==1){
ar.set(m,1);
m++;
}
else{
while(m>0&&ar.get(m-1)!=a[i]-1){
m--;
}
ar.set(m-1,a[i]);
}
pw.print(ar.get(1));
for(j=2;j<m;j++){
pw.print("."+ar.get(j));
}
pw.println();
}
}
}
static long findOne(int n, int sz[], ArrayList<Integer> ar){
long paths = n-1;
long till = 0;
for(int v:ar){
paths += till*sz[v];
till += sz[v];
}
return paths;
}
static void assignAnc(ArrayList<Integer> ar[],int sz[], int pa[] ,int curr, int par){
sz[curr] = 1;
pa[curr] = par;
for(int v:ar[curr]){
if(par==v)
continue;
assignAnc(ar, sz, pa, v, curr);
sz[curr] += sz[v];
}
}
static int findLCA(int a, int b, int par[][], int depth[]){
if(depth[a]>depth[b]){
a = a^b;
b = a^b;
a = a^b;
}
int diff = depth[b] - depth[a];
for(int i=19;i>=0;i--){
if((diff&(1<<i))>0){
b = par[b][i];
}
}
if(a==b)
return a;
for(int i=19;i>=0;i--){
if(par[b][i]!=par[a][i]){
b = par[b][i];
a = par[a][i];
}
}
return par[a][0];
}
static void formArrayForBinaryLifting(int n, int par[][]){
for(int j=1;j<20;j++){
for(int i=0;i<n;i++){
if(par[i][j-1]==-1)
continue;
par[i][j] = par[par[i][j-1]][j-1];
}
}
}
static long lcm(int a, int b){
return a*b/gcd(a,b);
}
static class Pair1 {
long a;
long b;
Pair1(long a, long b) {
this.a = a;
this.b = b;
}
}
static class Pair implements Comparable<Pair> {
int a;
int b;
int c;
Pair(int a, int b, int c) {
this.a = a;
this.b = b;
this.c = c;
}
public int compareTo(Pair p) {
// if(a!=p.a)
// return a-p.a;
// return b-p.b;
return p.c - c;
}
}
// static boolean isPrime(long n) {
// if (n <= 1)
// return false;
// if (n <= 999)
// return true;
// if (n % 2 == 0 || n % 999 == 0)
// return false;
// for (int i = 5; i * i <= n; i = i + 6)
// if (n % i == 0 || n % (i + 2) == 0)
// return false;
// return true;
// }
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static long fast_pow(long base, long n, long M) {
if (n == 0)
return 1;
if (n == 1)
return base % M;
long halfn = fast_pow(base, n / 2, M);
if (n % 2 == 0)
return (halfn * halfn) % M;
else
return (((halfn * halfn) % M) * base) % M;
}
static long modInverse(long n, long M) {
return fast_pow(n, M - 2, M);
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 9992768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args){
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
solve(in, out);
out.close();
}
static String reverse(String s) {
return (new StringBuilder(s)).reverse().toString();
}
static void sieveOfEratosthenes(int n, int factors[], ArrayList<Integer> ar)
{
factors[1]=1;
int p;
for(p = 2; p*p <=n; p++)
{
if(factors[p] == 0)
{
ar.add(p);
factors[p]=p;
for(int i = p*p; i <= n; i += p)
factors[i] = p;
}
}
for(;p<=n;p++){
if(factors[p] == 0)
{
ar.add(p);
}
}
}
static void sort(int ar[]) {
int n = ar.length;
ArrayList<Integer> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static void sort1(long ar[]) {
int n = ar.length;
ArrayList<Long> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static long ncr(long n, long r, long mod) {
if (r == 0)
return 1;
long val = ncr(n - 1, r - 1, mod);
val = (n * val) % mod;
val = (val * modInverse(r, mod)) % mod;
return val;
}
static int findMax(int a[], int n, int vis[], int i, int d){
if(i>=n)
return 0;
if(vis[i]==1)
return findMax(a, n, vis, i+1, d);
int max = 0;
for(int j=i+1;j<n;j++){
if(Math.abs(a[i]-a[j])>d||vis[j]==1)
continue;
vis[j] = 1;
max = Math.max(max, 1 + findMax(a, n, vis, i+1, d));
vis[j] = 0;
}
return max;
}
public static void solve(InputReader sc, PrintWriter pw){
int i, j = 0;
// int t = 1;
int t = sc.nextInt();
u: while (t-- > 0) {
int n = sc.nextInt();
int a[] = new int[n];
ArrayList<Integer> ar = new ArrayList<>();
ar.add(0);
for(i=0;i<1000;i++){
ar.add(0);
}
int m = 1;
for(i=0;i<n;i++){
a[i] = sc.nextInt();
if(a[i]==1){
ar.set(m,1);
m++;
}
else{
while(m>0&&ar.get(m-1)!=a[i]-1){
m--;
}
ar.set(m-1,a[i]);
}
pw.print(ar.get(1));
for(j=2;j<m;j++){
pw.print("."+ar.get(j));
}
pw.println();
}
}
}
static long findOne(int n, int sz[], ArrayList<Integer> ar){
long paths = n-1;
long till = 0;
for(int v:ar){
paths += till*sz[v];
till += sz[v];
}
return paths;
}
static void assignAnc(ArrayList<Integer> ar[],int sz[], int pa[] ,int curr, int par){
sz[curr] = 1;
pa[curr] = par;
for(int v:ar[curr]){
if(par==v)
continue;
assignAnc(ar, sz, pa, v, curr);
sz[curr] += sz[v];
}
}
static int findLCA(int a, int b, int par[][], int depth[]){
if(depth[a]>depth[b]){
a = a^b;
b = a^b;
a = a^b;
}
int diff = depth[b] - depth[a];
for(int i=19;i>=0;i--){
if((diff&(1<<i))>0){
b = par[b][i];
}
}
if(a==b)
return a;
for(int i=19;i>=0;i--){
if(par[b][i]!=par[a][i]){
b = par[b][i];
a = par[a][i];
}
}
return par[a][0];
}
static void formArrayForBinaryLifting(int n, int par[][]){
for(int j=1;j<20;j++){
for(int i=0;i<n;i++){
if(par[i][j-1]==-1)
continue;
par[i][j] = par[par[i][j-1]][j-1];
}
}
}
static long lcm(int a, int b){
return a*b/gcd(a,b);
}
static class Pair1 {
long a;
long b;
Pair1(long a, long b) {
this.a = a;
this.b = b;
}
}
static class Pair implements Comparable<Pair> {
int a;
int b;
int c;
Pair(int a, int b, int c) {
this.a = a;
this.b = b;
this.c = c;
}
public int compareTo(Pair p) {
// if(a!=p.a)
// return a-p.a;
// return b-p.b;
return p.c - c;
}
}
// static boolean isPrime(long n) {
// if (n <= 1)
// return false;
// if (n <= 999)
// return true;
// if (n % 2 == 0 || n % 999 == 0)
// return false;
// for (int i = 5; i * i <= n; i = i + 6)
// if (n % i == 0 || n % (i + 2) == 0)
// return false;
// return true;
// }
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static long fast_pow(long base, long n, long M) {
if (n == 0)
return 1;
if (n == 1)
return base % M;
long halfn = fast_pow(base, n / 2, M);
if (n % 2 == 0)
return (halfn * halfn) % M;
else
return (((halfn * halfn) % M) * base) % M;
}
static long modInverse(long n, long M) {
return fast_pow(n, M - 2, M);
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 9992768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args){
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
solve(in, out);
out.close();
}
static String reverse(String s) {
return (new StringBuilder(s)).reverse().toString();
}
static void sieveOfEratosthenes(int n, int factors[], ArrayList<Integer> ar)
{
factors[1]=1;
int p;
for(p = 2; p*p <=n; p++)
{
if(factors[p] == 0)
{
ar.add(p);
factors[p]=p;
for(int i = p*p; i <= n; i += p)
factors[i] = p;
}
}
for(;p<=n;p++){
if(factors[p] == 0)
{
ar.add(p);
}
}
}
static void sort(int ar[]) {
int n = ar.length;
ArrayList<Integer> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static void sort1(long ar[]) {
int n = ar.length;
ArrayList<Long> a = new ArrayList<>();
for (int i = 0; i < n; i++)
a.add(ar[i]);
Collections.sort(a);
for (int i = 0; i < n; i++)
ar[i] = a.get(i);
}
static long ncr(long n, long r, long mod) {
if (r == 0)
return 1;
long val = ncr(n - 1, r - 1, mod);
val = (n * val) % mod;
val = (val * modInverse(r, mod)) % mod;
return val;
}
static int findMax(int a[], int n, int vis[], int i, int d){
if(i>=n)
return 0;
if(vis[i]==1)
return findMax(a, n, vis, i+1, d);
int max = 0;
for(int j=i+1;j<n;j++){
if(Math.abs(a[i]-a[j])>d||vis[j]==1)
continue;
vis[j] = 1;
max = Math.max(max, 1 + findMax(a, n, vis, i+1, d));
vis[j] = 0;
}
return max;
}
public static void solve(InputReader sc, PrintWriter pw){
int i, j = 0;
// int t = 1;
int t = sc.nextInt();
u: while (t-- > 0) {
int n = sc.nextInt();
int a[] = new int[n];
ArrayList<Integer> ar = new ArrayList<>();
ar.add(0);
for(i=0;i<1000;i++){
ar.add(0);
}
int m = 1;
for(i=0;i<n;i++){
a[i] = sc.nextInt();
if(a[i]==1){
ar.set(m,1);
m++;
}
else{
while(m>0&&ar.get(m-1)!=a[i]-1){
m--;
}
ar.set(m-1,a[i]);
}
pw.print(ar.get(1));
for(j=2;j<m;j++){
pw.print("."+ar.get(j));
}
pw.println();
}
}
}
static long findOne(int n, int sz[], ArrayList<Integer> ar){
long paths = n-1;
long till = 0;
for(int v:ar){
paths += till*sz[v];
till += sz[v];
}
return paths;
}
static void assignAnc(ArrayList<Integer> ar[],int sz[], int pa[] ,int curr, int par){
sz[curr] = 1;
pa[curr] = par;
for(int v:ar[curr]){
if(par==v)
continue;
assignAnc(ar, sz, pa, v, curr);
sz[curr] += sz[v];
}
}
static int findLCA(int a, int b, int par[][], int depth[]){
if(depth[a]>depth[b]){
a = a^b;
b = a^b;
a = a^b;
}
int diff = depth[b] - depth[a];
for(int i=19;i>=0;i--){
if((diff&(1<<i))>0){
b = par[b][i];
}
}
if(a==b)
return a;
for(int i=19;i>=0;i--){
if(par[b][i]!=par[a][i]){
b = par[b][i];
a = par[a][i];
}
}
return par[a][0];
}
static void formArrayForBinaryLifting(int n, int par[][]){
for(int j=1;j<20;j++){
for(int i=0;i<n;i++){
if(par[i][j-1]==-1)
continue;
par[i][j] = par[par[i][j-1]][j-1];
}
}
}
static long lcm(int a, int b){
return a*b/gcd(a,b);
}
static class Pair1 {
long a;
long b;
Pair1(long a, long b) {
this.a = a;
this.b = b;
}
}
static class Pair implements Comparable<Pair> {
int a;
int b;
int c;
Pair(int a, int b, int c) {
this.a = a;
this.b = b;
this.c = c;
}
public int compareTo(Pair p) {
// if(a!=p.a)
// return a-p.a;
// return b-p.b;
return p.c - c;
}
}
// static boolean isPrime(long n) {
// if (n <= 1)
// return false;
// if (n <= 999)
// return true;
// if (n % 2 == 0 || n % 999 == 0)
// return false;
// for (int i = 5; i * i <= n; i = i + 6)
// if (n % i == 0 || n % (i + 2) == 0)
// return false;
// return true;
// }
static long gcd(long a, long b) {
if (b == 0)
return a;
return gcd(b, a % b);
}
static long fast_pow(long base, long n, long M) {
if (n == 0)
return 1;
if (n == 1)
return base % M;
long halfn = fast_pow(base, n / 2, M);
if (n % 2 == 0)
return (halfn * halfn) % M;
else
return (((halfn * halfn) % M) * base) % M;
}
static long modInverse(long n, long M) {
return fast_pow(n, M - 2, M);
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 9992768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
public long nextLong() {
return Long.parseLong(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 2,178 | 3,833 |
964 |
import java.util.Scanner;
public class Main {
public static void main(String[] args)
{
Scanner s=new Scanner(System.in);
double n=s.nextLong();
double k=s.nextLong();
double num=(-3+Math.sqrt(9+8*(n+k)))/2;
System.out.println((long)(n-num));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args)
{
Scanner s=new Scanner(System.in);
double n=s.nextLong();
double k=s.nextLong();
double num=(-3+Math.sqrt(9+8*(n+k)))/2;
System.out.println((long)(n-num));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Main {
public static void main(String[] args)
{
Scanner s=new Scanner(System.in);
double n=s.nextLong();
double k=s.nextLong();
double num=(-3+Math.sqrt(9+8*(n+k)))/2;
System.out.println((long)(n-num));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 411 | 963 |
301 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class CoveredPointsCount {
//UPSOLVE
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
long[] myArray = new long[2 * n];
for (int i = 0; i < n; i++) {
StringTokenizer st1 = new StringTokenizer(br.readLine());
myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2;
myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1;
}
Arrays.sort(myArray);
long[] ans = new long[n + 1];
int cnt = 0;
for (int i = 0; i < 2 * n - 1; i++) {
if (myArray[i] % 2 == 0) cnt++; else cnt--;
ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2;
}
StringBuilder answer = new StringBuilder();
for (int i = 1; i < n + 1; i++) {
answer.append(ans[i]);
answer.append(" ");
}
System.out.println(answer);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class CoveredPointsCount {
//UPSOLVE
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
long[] myArray = new long[2 * n];
for (int i = 0; i < n; i++) {
StringTokenizer st1 = new StringTokenizer(br.readLine());
myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2;
myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1;
}
Arrays.sort(myArray);
long[] ans = new long[n + 1];
int cnt = 0;
for (int i = 0; i < 2 * n - 1; i++) {
if (myArray[i] % 2 == 0) cnt++; else cnt--;
ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2;
}
StringBuilder answer = new StringBuilder();
for (int i = 1; i < n + 1; i++) {
answer.append(ans[i]);
answer.append(" ");
}
System.out.println(answer);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.StringTokenizer;
public class CoveredPointsCount {
//UPSOLVE
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st = new StringTokenizer(br.readLine());
int n = Integer.parseInt(st.nextToken());
long[] myArray = new long[2 * n];
for (int i = 0; i < n; i++) {
StringTokenizer st1 = new StringTokenizer(br.readLine());
myArray[2 * i] = Long.parseLong(st1.nextToken()) * 2;
myArray[2 * i + 1] = Long.parseLong(st1.nextToken()) * 2 + 1;
}
Arrays.sort(myArray);
long[] ans = new long[n + 1];
int cnt = 0;
for (int i = 0; i < 2 * n - 1; i++) {
if (myArray[i] % 2 == 0) cnt++; else cnt--;
ans[cnt] += (myArray[i + 1] + 1) / 2 - (myArray[i] + 1) / 2;
}
StringBuilder answer = new StringBuilder();
for (int i = 1; i < n + 1; i++) {
answer.append(ans[i]);
answer.append(" ");
}
System.out.println(answer);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 682 | 301 |
3,881 |
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.HashSet;
public class Solution {
public static void main(String[] args)throws IOException {
FastReader in=new FastReader(System.in);
int t=in.nextInt();
StringBuilder sb=new StringBuilder();
int i,j,tc=0;
while(tc++<t) {
int n=in.nextInt();
int arr[]=new int[n];
for(i=0;i<n;i++)
arr[i]=in.nextInt();
int ans[]=new int[n+4];
ans[0]=1;
int pos=0;
sb.append("1\n");
for(i=1;i<n;i++){
if(arr[i]==arr[i-1]+1){
ans[pos]=ans[pos]+1;
}
else if(arr[i]==1){
pos++;
ans[pos]=1;
}
else{
while(ans[pos]!=arr[i]-1)
pos--;
ans[pos]=ans[pos]+1;
}
for(j=0;j<=pos;j++){
if(j<pos)
sb.append(ans[j]).append(".");
else
sb.append(ans[j]).append("\n");
}
}
}
System.out.println(sb);
}
}
class Node {
int setroot, dist;
public Node(int setroot, int dist){
this.setroot = setroot;
this.dist = dist;
}
@Override
public String toString() {
return String.format(setroot + ", " + dist);
}
}
class FastReader {
byte[] buf = new byte[2048];
int index, total;
InputStream in;
FastReader(InputStream is) {
in = is;
}
int scan() throws IOException {
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0) {
return -1;
}
}
return buf[index++];
}
String next() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan()) ;
StringBuilder sb = new StringBuilder();
for (; c > 32; c = scan()) {
sb.append((char) c);
}
return sb.toString();
}
int nextInt() throws IOException {
int c, val = 0;
for (c = scan(); c <= 32; c = scan()) ;
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
long nextLong() throws IOException {
int c;
long val = 0;
for (c = scan(); c <= 32; c = scan()) ;
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.HashSet;
public class Solution {
public static void main(String[] args)throws IOException {
FastReader in=new FastReader(System.in);
int t=in.nextInt();
StringBuilder sb=new StringBuilder();
int i,j,tc=0;
while(tc++<t) {
int n=in.nextInt();
int arr[]=new int[n];
for(i=0;i<n;i++)
arr[i]=in.nextInt();
int ans[]=new int[n+4];
ans[0]=1;
int pos=0;
sb.append("1\n");
for(i=1;i<n;i++){
if(arr[i]==arr[i-1]+1){
ans[pos]=ans[pos]+1;
}
else if(arr[i]==1){
pos++;
ans[pos]=1;
}
else{
while(ans[pos]!=arr[i]-1)
pos--;
ans[pos]=ans[pos]+1;
}
for(j=0;j<=pos;j++){
if(j<pos)
sb.append(ans[j]).append(".");
else
sb.append(ans[j]).append("\n");
}
}
}
System.out.println(sb);
}
}
class Node {
int setroot, dist;
public Node(int setroot, int dist){
this.setroot = setroot;
this.dist = dist;
}
@Override
public String toString() {
return String.format(setroot + ", " + dist);
}
}
class FastReader {
byte[] buf = new byte[2048];
int index, total;
InputStream in;
FastReader(InputStream is) {
in = is;
}
int scan() throws IOException {
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0) {
return -1;
}
}
return buf[index++];
}
String next() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan()) ;
StringBuilder sb = new StringBuilder();
for (; c > 32; c = scan()) {
sb.append((char) c);
}
return sb.toString();
}
int nextInt() throws IOException {
int c, val = 0;
for (c = scan(); c <= 32; c = scan()) ;
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
long nextLong() throws IOException {
int c;
long val = 0;
for (c = scan(); c <= 32; c = scan()) ;
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.HashSet;
public class Solution {
public static void main(String[] args)throws IOException {
FastReader in=new FastReader(System.in);
int t=in.nextInt();
StringBuilder sb=new StringBuilder();
int i,j,tc=0;
while(tc++<t) {
int n=in.nextInt();
int arr[]=new int[n];
for(i=0;i<n;i++)
arr[i]=in.nextInt();
int ans[]=new int[n+4];
ans[0]=1;
int pos=0;
sb.append("1\n");
for(i=1;i<n;i++){
if(arr[i]==arr[i-1]+1){
ans[pos]=ans[pos]+1;
}
else if(arr[i]==1){
pos++;
ans[pos]=1;
}
else{
while(ans[pos]!=arr[i]-1)
pos--;
ans[pos]=ans[pos]+1;
}
for(j=0;j<=pos;j++){
if(j<pos)
sb.append(ans[j]).append(".");
else
sb.append(ans[j]).append("\n");
}
}
}
System.out.println(sb);
}
}
class Node {
int setroot, dist;
public Node(int setroot, int dist){
this.setroot = setroot;
this.dist = dist;
}
@Override
public String toString() {
return String.format(setroot + ", " + dist);
}
}
class FastReader {
byte[] buf = new byte[2048];
int index, total;
InputStream in;
FastReader(InputStream is) {
in = is;
}
int scan() throws IOException {
if (index >= total) {
index = 0;
total = in.read(buf);
if (total <= 0) {
return -1;
}
}
return buf[index++];
}
String next() throws IOException {
int c;
for (c = scan(); c <= 32; c = scan()) ;
StringBuilder sb = new StringBuilder();
for (; c > 32; c = scan()) {
sb.append((char) c);
}
return sb.toString();
}
int nextInt() throws IOException {
int c, val = 0;
for (c = scan(); c <= 32; c = scan()) ;
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
long nextLong() throws IOException {
int c;
long val = 0;
for (c = scan(); c <= 32; c = scan()) ;
boolean neg = c == '-';
if (c == '-' || c == '+') {
c = scan();
}
for (; c >= '0' && c <= '9'; c = scan()) {
val = (val << 3) + (val << 1) + (c & 15);
}
return neg ? -val : val;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,074 | 3,871 |
4,277 |
/**
* Created by IntelliJ IDEA.
* User: Taras_Brzezinsky
* Date: 8/13/11
* Time: 6:10 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
import java.io.IOException;
public class DarkAssembly extends Thread {
public DarkAssembly() {
this.input = new BufferedReader(new InputStreamReader(System.in));
this.output = new PrintWriter(System.out);
this.setPriority(Thread.MAX_PRIORITY);
}
class Senator {
int loyalty;
int level;
public Senator(int level, int loyalty) {
this.level = level;
this.loyalty = loyalty;
}
}
private static double doIt(Senator[] senators, int A) {
double probability = .0;
for (int mask = 0; mask < (1 << senators.length); ++mask) {
int sum = A;
double current = 1.0;
for (int i = 0; i < senators.length; ++i) {
if ((mask & (1 << i)) != 0) {
current *= .01 * senators[i].loyalty;
} else {
current *= .01 * (100 - senators[i].loyalty);
sum += senators[i].level;
}
}
if (getOnes(mask) > senators.length / 2) {
probability += current;
} else {
probability += current * (double)A / sum;
}
}
return probability;
}
private static double go(Senator []senators, int candies, int A, int current) {
if (current == senators.length) {
return doIt(senators, A);
} else {
double result = go(senators, candies, A, current + 1);
if (candies > 0 && senators[current].loyalty < 100) {
senators[current].loyalty += 10;
result = Math.max(result, go(senators, candies - 1, A, current));
senators[current].loyalty -= 10;
}
return result;
}
}
static int getOnes(int mask) {
int result = 0;
while (mask != 0) {
mask &= mask - 1;
++result;
}
return result;
}
public void run() {
try {
int n = nextInt();
int k = nextInt();
int A = nextInt();
Senator[] senators = new Senator[n];
for (int i = 0; i < n; ++i) {
senators[i] = new Senator(nextInt(), nextInt());
}
output.printf("%.10f", go(senators, k, A, 0));
output.flush();
output.close();
} catch (Throwable e) {
System.err.println(e.getMessage());
System.err.println(Arrays.deepToString(e.getStackTrace()));
}
}
public static void main(String[] args) {
new DarkAssembly().start();
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/**
* Created by IntelliJ IDEA.
* User: Taras_Brzezinsky
* Date: 8/13/11
* Time: 6:10 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
import java.io.IOException;
public class DarkAssembly extends Thread {
public DarkAssembly() {
this.input = new BufferedReader(new InputStreamReader(System.in));
this.output = new PrintWriter(System.out);
this.setPriority(Thread.MAX_PRIORITY);
}
class Senator {
int loyalty;
int level;
public Senator(int level, int loyalty) {
this.level = level;
this.loyalty = loyalty;
}
}
private static double doIt(Senator[] senators, int A) {
double probability = .0;
for (int mask = 0; mask < (1 << senators.length); ++mask) {
int sum = A;
double current = 1.0;
for (int i = 0; i < senators.length; ++i) {
if ((mask & (1 << i)) != 0) {
current *= .01 * senators[i].loyalty;
} else {
current *= .01 * (100 - senators[i].loyalty);
sum += senators[i].level;
}
}
if (getOnes(mask) > senators.length / 2) {
probability += current;
} else {
probability += current * (double)A / sum;
}
}
return probability;
}
private static double go(Senator []senators, int candies, int A, int current) {
if (current == senators.length) {
return doIt(senators, A);
} else {
double result = go(senators, candies, A, current + 1);
if (candies > 0 && senators[current].loyalty < 100) {
senators[current].loyalty += 10;
result = Math.max(result, go(senators, candies - 1, A, current));
senators[current].loyalty -= 10;
}
return result;
}
}
static int getOnes(int mask) {
int result = 0;
while (mask != 0) {
mask &= mask - 1;
++result;
}
return result;
}
public void run() {
try {
int n = nextInt();
int k = nextInt();
int A = nextInt();
Senator[] senators = new Senator[n];
for (int i = 0; i < n; ++i) {
senators[i] = new Senator(nextInt(), nextInt());
}
output.printf("%.10f", go(senators, k, A, 0));
output.flush();
output.close();
} catch (Throwable e) {
System.err.println(e.getMessage());
System.err.println(Arrays.deepToString(e.getStackTrace()));
}
}
public static void main(String[] args) {
new DarkAssembly().start();
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* Created by IntelliJ IDEA.
* User: Taras_Brzezinsky
* Date: 8/13/11
* Time: 6:10 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
import java.io.IOException;
public class DarkAssembly extends Thread {
public DarkAssembly() {
this.input = new BufferedReader(new InputStreamReader(System.in));
this.output = new PrintWriter(System.out);
this.setPriority(Thread.MAX_PRIORITY);
}
class Senator {
int loyalty;
int level;
public Senator(int level, int loyalty) {
this.level = level;
this.loyalty = loyalty;
}
}
private static double doIt(Senator[] senators, int A) {
double probability = .0;
for (int mask = 0; mask < (1 << senators.length); ++mask) {
int sum = A;
double current = 1.0;
for (int i = 0; i < senators.length; ++i) {
if ((mask & (1 << i)) != 0) {
current *= .01 * senators[i].loyalty;
} else {
current *= .01 * (100 - senators[i].loyalty);
sum += senators[i].level;
}
}
if (getOnes(mask) > senators.length / 2) {
probability += current;
} else {
probability += current * (double)A / sum;
}
}
return probability;
}
private static double go(Senator []senators, int candies, int A, int current) {
if (current == senators.length) {
return doIt(senators, A);
} else {
double result = go(senators, candies, A, current + 1);
if (candies > 0 && senators[current].loyalty < 100) {
senators[current].loyalty += 10;
result = Math.max(result, go(senators, candies - 1, A, current));
senators[current].loyalty -= 10;
}
return result;
}
}
static int getOnes(int mask) {
int result = 0;
while (mask != 0) {
mask &= mask - 1;
++result;
}
return result;
}
public void run() {
try {
int n = nextInt();
int k = nextInt();
int A = nextInt();
Senator[] senators = new Senator[n];
for (int i = 0; i < n; ++i) {
senators[i] = new Senator(nextInt(), nextInt());
}
output.printf("%.10f", go(senators, k, A, 0));
output.flush();
output.close();
} catch (Throwable e) {
System.err.println(e.getMessage());
System.err.println(Arrays.deepToString(e.getStackTrace()));
}
}
public static void main(String[] args) {
new DarkAssembly().start();
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,141 | 4,266 |
2,854 |
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long l = in.nextLong();
long r = in.nextLong();
int max = (int) (r - l);
if (max >= 2) {
if ((l & 1) == 0) {
out.println(l + " " + (l + 1) + " " + (l + 2));
return;
} else {
if (max >= 3) {
out.println((l + 1) + " " + (l + 2) + " " + (l + 3));
return;
}
}
}
out.println(-1);
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long l = in.nextLong();
long r = in.nextLong();
int max = (int) (r - l);
if (max >= 2) {
if ((l & 1) == 0) {
out.println(l + " " + (l + 1) + " " + (l + 2));
return;
} else {
if (max >= 3) {
out.println((l + 1) + " " + (l + 2) + " " + (l + 3));
return;
}
}
}
out.println(-1);
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.InputStreamReader;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.util.StringTokenizer;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskA solver = new TaskA();
solver.solve(1, in, out);
out.close();
}
}
class TaskA {
public void solve(int testNumber, InputReader in, PrintWriter out) {
long l = in.nextLong();
long r = in.nextLong();
int max = (int) (r - l);
if (max >= 2) {
if ((l & 1) == 0) {
out.println(l + " " + (l + 1) + " " + (l + 2));
return;
} else {
if (max >= 3) {
out.println((l + 1) + " " + (l + 2) + " " + (l + 3));
return;
}
}
}
out.println(-1);
}
}
class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public long nextLong() {
return Long.parseLong(next());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 756 | 2,848 |
2,238 |
import java.util.* ;
public class PythonIndentation
{
public static void main(String args[])
{
Scanner in = new Scanner(System.in) ;
int n = in.nextInt() ;
boolean[] lst = new boolean[n] ;
for(int i=0;i<n;i++)
{
lst[i] = (in.next().equals("s"))?false:true ;
}
System.out.println(dp(lst)) ;
}
static void arrayPrinter(int[][] dp)
{
System.out.println(":::") ;
for(int i=0;i<dp.length;i++)
{
for(int j=0;j<dp[0].length;j++)
{
System.out.print(dp[i][j]+" ") ;
}
System.out.println() ;
}
}
static int dp(boolean[] lst)
{//false in lst means an "s" (simple statement), and true a "f"(for loop)
int[][] dp = new int[2][lst.length] ;
dp[0][0] = 1 ;
for(int i=1;i<lst.length;i++)
{
// arrayPrinter(dp) ;
for(int j=0;j<lst.length;j++)
{
if(lst[i-1])//(i-1)st statement is a for loop
{
if(j==0)
dp[i%2][j] = 0 ;
else
dp[i%2][j] = dp[(i-1)%2][j-1] ;
}
else//i-1 st statement is a simple statement
{
if(j==0)
{
int temp = 0 ;
for(int k=0;k<lst.length;k++)
temp = (temp+dp[(i-1)%2][k])%1000000007 ;
dp[i%2][j] = temp ;
}
else
dp[i%2][j] = (dp[i%2][j-1]-dp[(i-1)%2][j-1])%1000000007 ;
}
}
}
int ans = 0 ;
for(int i=0;i<lst.length;i++)
{
ans = (ans + dp[(lst.length-1)%2][i])%1000000007 ;
}
if(ans<0)
ans = ans + 1000000007 ;
// arrayPrinter(dp) ;
return ans ;
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.* ;
public class PythonIndentation
{
public static void main(String args[])
{
Scanner in = new Scanner(System.in) ;
int n = in.nextInt() ;
boolean[] lst = new boolean[n] ;
for(int i=0;i<n;i++)
{
lst[i] = (in.next().equals("s"))?false:true ;
}
System.out.println(dp(lst)) ;
}
static void arrayPrinter(int[][] dp)
{
System.out.println(":::") ;
for(int i=0;i<dp.length;i++)
{
for(int j=0;j<dp[0].length;j++)
{
System.out.print(dp[i][j]+" ") ;
}
System.out.println() ;
}
}
static int dp(boolean[] lst)
{//false in lst means an "s" (simple statement), and true a "f"(for loop)
int[][] dp = new int[2][lst.length] ;
dp[0][0] = 1 ;
for(int i=1;i<lst.length;i++)
{
// arrayPrinter(dp) ;
for(int j=0;j<lst.length;j++)
{
if(lst[i-1])//(i-1)st statement is a for loop
{
if(j==0)
dp[i%2][j] = 0 ;
else
dp[i%2][j] = dp[(i-1)%2][j-1] ;
}
else//i-1 st statement is a simple statement
{
if(j==0)
{
int temp = 0 ;
for(int k=0;k<lst.length;k++)
temp = (temp+dp[(i-1)%2][k])%1000000007 ;
dp[i%2][j] = temp ;
}
else
dp[i%2][j] = (dp[i%2][j-1]-dp[(i-1)%2][j-1])%1000000007 ;
}
}
}
int ans = 0 ;
for(int i=0;i<lst.length;i++)
{
ans = (ans + dp[(lst.length-1)%2][i])%1000000007 ;
}
if(ans<0)
ans = ans + 1000000007 ;
// arrayPrinter(dp) ;
return ans ;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.* ;
public class PythonIndentation
{
public static void main(String args[])
{
Scanner in = new Scanner(System.in) ;
int n = in.nextInt() ;
boolean[] lst = new boolean[n] ;
for(int i=0;i<n;i++)
{
lst[i] = (in.next().equals("s"))?false:true ;
}
System.out.println(dp(lst)) ;
}
static void arrayPrinter(int[][] dp)
{
System.out.println(":::") ;
for(int i=0;i<dp.length;i++)
{
for(int j=0;j<dp[0].length;j++)
{
System.out.print(dp[i][j]+" ") ;
}
System.out.println() ;
}
}
static int dp(boolean[] lst)
{//false in lst means an "s" (simple statement), and true a "f"(for loop)
int[][] dp = new int[2][lst.length] ;
dp[0][0] = 1 ;
for(int i=1;i<lst.length;i++)
{
// arrayPrinter(dp) ;
for(int j=0;j<lst.length;j++)
{
if(lst[i-1])//(i-1)st statement is a for loop
{
if(j==0)
dp[i%2][j] = 0 ;
else
dp[i%2][j] = dp[(i-1)%2][j-1] ;
}
else//i-1 st statement is a simple statement
{
if(j==0)
{
int temp = 0 ;
for(int k=0;k<lst.length;k++)
temp = (temp+dp[(i-1)%2][k])%1000000007 ;
dp[i%2][j] = temp ;
}
else
dp[i%2][j] = (dp[i%2][j-1]-dp[(i-1)%2][j-1])%1000000007 ;
}
}
}
int ans = 0 ;
for(int i=0;i<lst.length;i++)
{
ans = (ans + dp[(lst.length-1)%2][i])%1000000007 ;
}
if(ans<0)
ans = ans + 1000000007 ;
// arrayPrinter(dp) ;
return ans ;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 916 | 2,234 |
2,865 |
import java.util.*;
public class Counterexample483A
{
public static void main(String[] args)
{
// Set up scanner
Scanner sc = new Scanner(System.in);
// System.out.println("Enter l");
long l = sc.nextLong();
// System.out.println("Enter r");
long r = sc.nextLong();
if (l==r || l+1 == r)
{
System.out.println(-1);
return;
}
if (l+2 == r && l%2 == 1)
{
System.out.println(-1);
return;
}
if (l%2 == 0)
{
System.out.println(l + " " + (l+1) + " " + (l+2));
return;
}
System.out.println((l+1) + " " + (l+2) + " " + (l+3));
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
public class Counterexample483A
{
public static void main(String[] args)
{
// Set up scanner
Scanner sc = new Scanner(System.in);
// System.out.println("Enter l");
long l = sc.nextLong();
// System.out.println("Enter r");
long r = sc.nextLong();
if (l==r || l+1 == r)
{
System.out.println(-1);
return;
}
if (l+2 == r && l%2 == 1)
{
System.out.println(-1);
return;
}
if (l%2 == 0)
{
System.out.println(l + " " + (l+1) + " " + (l+2));
return;
}
System.out.println((l+1) + " " + (l+2) + " " + (l+3));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
public class Counterexample483A
{
public static void main(String[] args)
{
// Set up scanner
Scanner sc = new Scanner(System.in);
// System.out.println("Enter l");
long l = sc.nextLong();
// System.out.println("Enter r");
long r = sc.nextLong();
if (l==r || l+1 == r)
{
System.out.println(-1);
return;
}
if (l+2 == r && l%2 == 1)
{
System.out.println(-1);
return;
}
if (l%2 == 0)
{
System.out.println(l + " " + (l+1) + " " + (l+2));
return;
}
System.out.println((l+1) + " " + (l+2) + " " + (l+3));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 557 | 2,859 |
1,087 |
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
Solution solution = new Solution();
solution.solve();
}
private void solve() {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while (t -- > 0) {
long n = in.nextLong();
long k = in.nextLong();
System.out.println(solve(n, k));
}
}
private String solve(long n, long k) {
if (n > 31) return "YES " + (n - 1);
if (k > f(n)) return "NO";
long square = 1;
long splitDone = 0;
long size = n;
long splitLeft = 0;
while (splitDone + square <= k && size > 0) {
splitDone += square;
--size;
splitLeft += (square * 2 - 1) * f(size);
square = square * 2 + 1;
}
// System.out.println(square + " " + splitDone + " " + size + " " + splitLeft);
if (k > splitDone + splitLeft) return "NO";
else return "YES " + size;
}
private long f(long x) {
return ((1L << (2 * x)) - 1) / 3;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
Solution solution = new Solution();
solution.solve();
}
private void solve() {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while (t -- > 0) {
long n = in.nextLong();
long k = in.nextLong();
System.out.println(solve(n, k));
}
}
private String solve(long n, long k) {
if (n > 31) return "YES " + (n - 1);
if (k > f(n)) return "NO";
long square = 1;
long splitDone = 0;
long size = n;
long splitLeft = 0;
while (splitDone + square <= k && size > 0) {
splitDone += square;
--size;
splitLeft += (square * 2 - 1) * f(size);
square = square * 2 + 1;
}
// System.out.println(square + " " + splitDone + " " + size + " " + splitLeft);
if (k > splitDone + splitLeft) return "NO";
else return "YES " + size;
}
private long f(long x) {
return ((1L << (2 * x)) - 1) / 3;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class Solution {
public static void main(String[] args) {
Solution solution = new Solution();
solution.solve();
}
private void solve() {
Scanner in = new Scanner(System.in);
int t = in.nextInt();
while (t -- > 0) {
long n = in.nextLong();
long k = in.nextLong();
System.out.println(solve(n, k));
}
}
private String solve(long n, long k) {
if (n > 31) return "YES " + (n - 1);
if (k > f(n)) return "NO";
long square = 1;
long splitDone = 0;
long size = n;
long splitLeft = 0;
while (splitDone + square <= k && size > 0) {
splitDone += square;
--size;
splitLeft += (square * 2 - 1) * f(size);
square = square * 2 + 1;
}
// System.out.println(square + " " + splitDone + " " + size + " " + splitLeft);
if (k > splitDone + splitLeft) return "NO";
else return "YES " + size;
}
private long f(long x) {
return ((1L << (2 * x)) - 1) / 3;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 636 | 1,086 |
2,939 |
import java.util.Scanner;
public class A {
public static final boolean DEBUG = false;
Scanner sc;
public void debug(Object o) {
if (DEBUG) {
int ln = Thread.currentThread().getStackTrace()[2].getLineNumber();
String fn = Thread.currentThread().getStackTrace()[2].getFileName();
System.out.println("(" + fn + ":" + ln+ "): " + o);
}
}
public void pln(Object o) {
System.out.println(o);
}
public void run() {
sc = new Scanner(System.in);
long a = sc.nextLong();
long b = sc.nextLong();
long nr = 0;
if (a < b) {
long aux = a;
a = b;
b = aux;
}
while (a != 0 && b != 0) {
nr += a / b;
long c = a % b;
a = b;
b = c;
}
pln(nr);
return;
}
public static void main(String[] args) {
A t = new A();
t.run();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static final boolean DEBUG = false;
Scanner sc;
public void debug(Object o) {
if (DEBUG) {
int ln = Thread.currentThread().getStackTrace()[2].getLineNumber();
String fn = Thread.currentThread().getStackTrace()[2].getFileName();
System.out.println("(" + fn + ":" + ln+ "): " + o);
}
}
public void pln(Object o) {
System.out.println(o);
}
public void run() {
sc = new Scanner(System.in);
long a = sc.nextLong();
long b = sc.nextLong();
long nr = 0;
if (a < b) {
long aux = a;
a = b;
b = aux;
}
while (a != 0 && b != 0) {
nr += a / b;
long c = a % b;
a = b;
b = c;
}
pln(nr);
return;
}
public static void main(String[] args) {
A t = new A();
t.run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class A {
public static final boolean DEBUG = false;
Scanner sc;
public void debug(Object o) {
if (DEBUG) {
int ln = Thread.currentThread().getStackTrace()[2].getLineNumber();
String fn = Thread.currentThread().getStackTrace()[2].getFileName();
System.out.println("(" + fn + ":" + ln+ "): " + o);
}
}
public void pln(Object o) {
System.out.println(o);
}
public void run() {
sc = new Scanner(System.in);
long a = sc.nextLong();
long b = sc.nextLong();
long nr = 0;
if (a < b) {
long aux = a;
a = b;
b = aux;
}
while (a != 0 && b != 0) {
nr += a / b;
long c = a % b;
a = b;
b = c;
}
pln(nr);
return;
}
public static void main(String[] args) {
A t = new A();
t.run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 576 | 2,933 |
862 |
import java.io.*;
import java.lang.*;
import java.util.*;
import static java.lang.Integer.*;
import static java.lang.Long.*;
import static java.lang.Math.*;
import static java.lang.System.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main {
Main() throws IOException {
String a = nextLine();
String b = nextLine();
long ans = 0;
int s = 0;
for (int i = 0; i < b.length() - a.length(); ++i) {
s += b.charAt(i) == '1' ? 1 : 0;
}
for (int i = 0; i < a.length(); ++i) {
s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0;
ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s;
s -= b.charAt(i) == '1' ? 1 : 0;
}
out.println(ans);
}
//////////////////////////////
PrintWriter out = new PrintWriter(System.out, false);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer stok = null;
String nextLine() throws IOException {
while (stok == null || !stok.hasMoreTokens()) {
stok = new StringTokenizer(in.readLine());
}
return stok.nextToken();
}
public static void main(String args[]) throws IOException {
if (args.length > 0) {
setIn(new FileInputStream(args[0] + ".inp"));
setOut(new PrintStream(args[0] + ".out"));
}
Main solver = new Main();
solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.lang.*;
import java.util.*;
import static java.lang.Integer.*;
import static java.lang.Long.*;
import static java.lang.Math.*;
import static java.lang.System.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main {
Main() throws IOException {
String a = nextLine();
String b = nextLine();
long ans = 0;
int s = 0;
for (int i = 0; i < b.length() - a.length(); ++i) {
s += b.charAt(i) == '1' ? 1 : 0;
}
for (int i = 0; i < a.length(); ++i) {
s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0;
ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s;
s -= b.charAt(i) == '1' ? 1 : 0;
}
out.println(ans);
}
//////////////////////////////
PrintWriter out = new PrintWriter(System.out, false);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer stok = null;
String nextLine() throws IOException {
while (stok == null || !stok.hasMoreTokens()) {
stok = new StringTokenizer(in.readLine());
}
return stok.nextToken();
}
public static void main(String args[]) throws IOException {
if (args.length > 0) {
setIn(new FileInputStream(args[0] + ".inp"));
setOut(new PrintStream(args[0] + ".out"));
}
Main solver = new Main();
solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.*;
import java.util.*;
import static java.lang.Integer.*;
import static java.lang.Long.*;
import static java.lang.Math.*;
import static java.lang.System.*;
import static java.util.Arrays.*;
import static java.util.Collections.*;
public class Main {
Main() throws IOException {
String a = nextLine();
String b = nextLine();
long ans = 0;
int s = 0;
for (int i = 0; i < b.length() - a.length(); ++i) {
s += b.charAt(i) == '1' ? 1 : 0;
}
for (int i = 0; i < a.length(); ++i) {
s += b.charAt(i + b.length() - a.length()) == '1' ? 1 : 0;
ans += a.charAt(i) == '1' ? b.length() - a.length() + 1 - s : s;
s -= b.charAt(i) == '1' ? 1 : 0;
}
out.println(ans);
}
//////////////////////////////
PrintWriter out = new PrintWriter(System.out, false);
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer stok = null;
String nextLine() throws IOException {
while (stok == null || !stok.hasMoreTokens()) {
stok = new StringTokenizer(in.readLine());
}
return stok.nextToken();
}
public static void main(String args[]) throws IOException {
if (args.length > 0) {
setIn(new FileInputStream(args[0] + ".inp"));
setOut(new PrintStream(args[0] + ".out"));
}
Main solver = new Main();
solver.out.flush(); // could be replace with a method, but nah, this is just competitive programming :p
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 737 | 861 |
1,354 |
import javax.crypto.AEADBadTagException;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.List;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author AlexFetisov
*/
public class TaskB_AF {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB_cf371 solver = new TaskB_cf371();
solver.solve(1, in, out);
out.close();
}
static class TaskB_cf371 {
List<Rectangle> rects;
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int xLeft = 1, xRight = n;
int xSeparate = -1;
while (xLeft <= xRight) {
int e = (xLeft + xRight) / 2;
int t = makeRequest(in, out, 1, 1, e, n);
if (t == 1) {
xSeparate = e;
xRight = e - 1;
} else if (t == 0) {
xLeft = e + 1;
} else {
xRight = e - 1;
}
}
rects = new ArrayList<Rectangle>();
if (xSeparate != -1 && makeRequest(in, out, xSeparate + 1, 1, n, n) == 1) {
detectRectangle(in, out, 1, 1, xSeparate, n);
detectRectangle(in, out, xSeparate + 1, 1, n, n);
out.print("! ");
for (Rectangle r : rects) {
out.print(r.toString() + " ");
}
out.println();
out.flush();
return;
}
int yLeft = 1, yRight = n;
int ySeparate = -1;
while (yLeft <= yRight) {
int e = (yLeft + yRight) / 2;
int t = makeRequest(in, out, 1, 1, n, e);
if (t == 1) {
ySeparate = e;
yRight = e - 1;
} else if (t == 0) {
yLeft = e + 1;
} else {
yRight = e - 1;
}
}
if (ySeparate != -1) {
detectRectangle(in, out, 1, 1, n, ySeparate);
detectRectangle(in, out, 1, ySeparate + 1, n, n);
out.print("! ");
for (Rectangle r : rects) {
out.print(r.toString() + " ");
}
out.println();
out.flush();
return;
}
throw new AssertionError("!");
}
private void detectRectangle(InputReader in, PrintWriter out, int xMin, int yMin, int xMax, int yMax) {
int xLeft = -1, xRight = -1, yLeft = -1, yRight = -1;
int left = xMin, right = xMax;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, xMin, yMin, e, yMax) == 1) {
xRight = e;
right = e - 1;
} else {
left = e + 1;
}
}
left = xMin;
right = xRight;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, e, yMin, xRight, yMax) == 1) {
xLeft = e;
left = e + 1;
} else {
right = e - 1;
}
}
left = yMin;
right = yMax;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, xLeft, yMin, xRight, e) == 1) {
yRight = e;
right = e - 1;
} else {
left = e + 1;
}
}
left = yMin;
right = yRight;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, xLeft, e, xRight, yRight) == 1) {
yLeft = e;
left = e + 1;
} else {
right = e - 1;
}
}
rects.add(new Rectangle(xLeft, yLeft, xRight, yRight));
}
private int makeRequest(InputReader in, PrintWriter out, int x1, int y1, int x2, int y2) {
out.print("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.println();
out.flush();
return in.nextInt();
}
class Rectangle {
int x1;
int x2;
int y1;
int y2;
public Rectangle(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.x2 = x2;
this.y1 = y1;
this.y2 = y2;
}
public String toString() {
StringBuilder b = new StringBuilder("");
b.append(x1).append(' ');
b.append(y1).append(' ');
b.append(x2).append(' ');
b.append(y2);
return b.toString();
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer stt;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
return null;
}
}
public String nextString() {
while (stt == null || !stt.hasMoreTokens()) {
stt = new StringTokenizer(nextLine());
}
return stt.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextString());
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import javax.crypto.AEADBadTagException;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.List;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author AlexFetisov
*/
public class TaskB_AF {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB_cf371 solver = new TaskB_cf371();
solver.solve(1, in, out);
out.close();
}
static class TaskB_cf371 {
List<Rectangle> rects;
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int xLeft = 1, xRight = n;
int xSeparate = -1;
while (xLeft <= xRight) {
int e = (xLeft + xRight) / 2;
int t = makeRequest(in, out, 1, 1, e, n);
if (t == 1) {
xSeparate = e;
xRight = e - 1;
} else if (t == 0) {
xLeft = e + 1;
} else {
xRight = e - 1;
}
}
rects = new ArrayList<Rectangle>();
if (xSeparate != -1 && makeRequest(in, out, xSeparate + 1, 1, n, n) == 1) {
detectRectangle(in, out, 1, 1, xSeparate, n);
detectRectangle(in, out, xSeparate + 1, 1, n, n);
out.print("! ");
for (Rectangle r : rects) {
out.print(r.toString() + " ");
}
out.println();
out.flush();
return;
}
int yLeft = 1, yRight = n;
int ySeparate = -1;
while (yLeft <= yRight) {
int e = (yLeft + yRight) / 2;
int t = makeRequest(in, out, 1, 1, n, e);
if (t == 1) {
ySeparate = e;
yRight = e - 1;
} else if (t == 0) {
yLeft = e + 1;
} else {
yRight = e - 1;
}
}
if (ySeparate != -1) {
detectRectangle(in, out, 1, 1, n, ySeparate);
detectRectangle(in, out, 1, ySeparate + 1, n, n);
out.print("! ");
for (Rectangle r : rects) {
out.print(r.toString() + " ");
}
out.println();
out.flush();
return;
}
throw new AssertionError("!");
}
private void detectRectangle(InputReader in, PrintWriter out, int xMin, int yMin, int xMax, int yMax) {
int xLeft = -1, xRight = -1, yLeft = -1, yRight = -1;
int left = xMin, right = xMax;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, xMin, yMin, e, yMax) == 1) {
xRight = e;
right = e - 1;
} else {
left = e + 1;
}
}
left = xMin;
right = xRight;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, e, yMin, xRight, yMax) == 1) {
xLeft = e;
left = e + 1;
} else {
right = e - 1;
}
}
left = yMin;
right = yMax;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, xLeft, yMin, xRight, e) == 1) {
yRight = e;
right = e - 1;
} else {
left = e + 1;
}
}
left = yMin;
right = yRight;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, xLeft, e, xRight, yRight) == 1) {
yLeft = e;
left = e + 1;
} else {
right = e - 1;
}
}
rects.add(new Rectangle(xLeft, yLeft, xRight, yRight));
}
private int makeRequest(InputReader in, PrintWriter out, int x1, int y1, int x2, int y2) {
out.print("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.println();
out.flush();
return in.nextInt();
}
class Rectangle {
int x1;
int x2;
int y1;
int y2;
public Rectangle(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.x2 = x2;
this.y1 = y1;
this.y2 = y2;
}
public String toString() {
StringBuilder b = new StringBuilder("");
b.append(x1).append(' ');
b.append(y1).append(' ');
b.append(x2).append(' ');
b.append(y2);
return b.toString();
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer stt;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
return null;
}
}
public String nextString() {
while (stt == null || !stt.hasMoreTokens()) {
stt = new StringTokenizer(nextLine());
}
return stt.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextString());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import javax.crypto.AEADBadTagException;
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.List;
import java.util.StringTokenizer;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author AlexFetisov
*/
public class TaskB_AF {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskB_cf371 solver = new TaskB_cf371();
solver.solve(1, in, out);
out.close();
}
static class TaskB_cf371 {
List<Rectangle> rects;
public void solve(int testNumber, InputReader in, PrintWriter out) {
int n = in.nextInt();
int xLeft = 1, xRight = n;
int xSeparate = -1;
while (xLeft <= xRight) {
int e = (xLeft + xRight) / 2;
int t = makeRequest(in, out, 1, 1, e, n);
if (t == 1) {
xSeparate = e;
xRight = e - 1;
} else if (t == 0) {
xLeft = e + 1;
} else {
xRight = e - 1;
}
}
rects = new ArrayList<Rectangle>();
if (xSeparate != -1 && makeRequest(in, out, xSeparate + 1, 1, n, n) == 1) {
detectRectangle(in, out, 1, 1, xSeparate, n);
detectRectangle(in, out, xSeparate + 1, 1, n, n);
out.print("! ");
for (Rectangle r : rects) {
out.print(r.toString() + " ");
}
out.println();
out.flush();
return;
}
int yLeft = 1, yRight = n;
int ySeparate = -1;
while (yLeft <= yRight) {
int e = (yLeft + yRight) / 2;
int t = makeRequest(in, out, 1, 1, n, e);
if (t == 1) {
ySeparate = e;
yRight = e - 1;
} else if (t == 0) {
yLeft = e + 1;
} else {
yRight = e - 1;
}
}
if (ySeparate != -1) {
detectRectangle(in, out, 1, 1, n, ySeparate);
detectRectangle(in, out, 1, ySeparate + 1, n, n);
out.print("! ");
for (Rectangle r : rects) {
out.print(r.toString() + " ");
}
out.println();
out.flush();
return;
}
throw new AssertionError("!");
}
private void detectRectangle(InputReader in, PrintWriter out, int xMin, int yMin, int xMax, int yMax) {
int xLeft = -1, xRight = -1, yLeft = -1, yRight = -1;
int left = xMin, right = xMax;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, xMin, yMin, e, yMax) == 1) {
xRight = e;
right = e - 1;
} else {
left = e + 1;
}
}
left = xMin;
right = xRight;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, e, yMin, xRight, yMax) == 1) {
xLeft = e;
left = e + 1;
} else {
right = e - 1;
}
}
left = yMin;
right = yMax;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, xLeft, yMin, xRight, e) == 1) {
yRight = e;
right = e - 1;
} else {
left = e + 1;
}
}
left = yMin;
right = yRight;
while (left <= right) {
int e = (left + right) / 2;
if (makeRequest(in, out, xLeft, e, xRight, yRight) == 1) {
yLeft = e;
left = e + 1;
} else {
right = e - 1;
}
}
rects.add(new Rectangle(xLeft, yLeft, xRight, yRight));
}
private int makeRequest(InputReader in, PrintWriter out, int x1, int y1, int x2, int y2) {
out.print("? " + x1 + " " + y1 + " " + x2 + " " + y2);
out.println();
out.flush();
return in.nextInt();
}
class Rectangle {
int x1;
int x2;
int y1;
int y2;
public Rectangle(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.x2 = x2;
this.y1 = y1;
this.y2 = y2;
}
public String toString() {
StringBuilder b = new StringBuilder("");
b.append(x1).append(' ');
b.append(y1).append(' ');
b.append(x2).append(' ');
b.append(y2);
return b.toString();
}
}
}
static class InputReader {
private BufferedReader reader;
private StringTokenizer stt;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream));
}
public String nextLine() {
try {
return reader.readLine();
} catch (IOException e) {
return null;
}
}
public String nextString() {
while (stt == null || !stt.hasMoreTokens()) {
stt = new StringTokenizer(nextLine());
}
return stt.nextToken();
}
public int nextInt() {
return Integer.parseInt(nextString());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,783 | 1,352 |
315 |
import java.util.Scanner;
public class origami {
public static void main(String args[]){
Scanner input = new Scanner(System.in);
double n = input.nextInt();
double k = input.nextInt();
double red = 0;
double green = 0;
double blue = 0;
double ans = 0;
red = (2 * n) / k;
green = (5 * n) / k;
blue = (8 * n) / k;
double red1 = Math.ceil(red) ;
double green1 = Math.ceil(green);
double blue1 = Math.ceil(blue);
ans+=red1;
ans+=green1;
ans+=blue1;
Double answer = new Double(ans);
int finished = answer.intValue();
System.out.println(finished);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class origami {
public static void main(String args[]){
Scanner input = new Scanner(System.in);
double n = input.nextInt();
double k = input.nextInt();
double red = 0;
double green = 0;
double blue = 0;
double ans = 0;
red = (2 * n) / k;
green = (5 * n) / k;
blue = (8 * n) / k;
double red1 = Math.ceil(red) ;
double green1 = Math.ceil(green);
double blue1 = Math.ceil(blue);
ans+=red1;
ans+=green1;
ans+=blue1;
Double answer = new Double(ans);
int finished = answer.intValue();
System.out.println(finished);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class origami {
public static void main(String args[]){
Scanner input = new Scanner(System.in);
double n = input.nextInt();
double k = input.nextInt();
double red = 0;
double green = 0;
double blue = 0;
double ans = 0;
red = (2 * n) / k;
green = (5 * n) / k;
blue = (8 * n) / k;
double red1 = Math.ceil(red) ;
double green1 = Math.ceil(green);
double blue1 = Math.ceil(blue);
ans+=red1;
ans+=green1;
ans+=blue1;
Double answer = new Double(ans);
int finished = answer.intValue();
System.out.println(finished);
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 506 | 315 |
23 |
/* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Main
{
public static void main (String[] args) throws java.lang.Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(br.readLine());
int[] A=new int[n];
String[] s=br.readLine().split(" ");
for(int i=0;i<n;i++){
A[i]=Integer.parseInt(s[i]);
}
Map memo=new HashMap();
int[] f=new int[n];
for(int i=0;i<n;i++){
if(!memo.containsKey(A[i])){
memo.put(A[i],1);
}
else{
int ct=(int)memo.get(A[i]);
memo.put(A[i],ct+1);
}
int tot=0;
if(memo.containsKey(A[i]-1)){
tot+=(int)memo.get(A[i]-1);
}
if(memo.containsKey(A[i]+1)){
tot+=(int)memo.get(A[i]+1);
}
tot+=(int)memo.get(A[i]);
f[i]=tot;
}
BigInteger res=new BigInteger("0");
for(int i=0;i<n;i++){
int tot1=i+1-f[i];
int tot2=0;
if(memo.containsKey(A[i]-1)){
tot2+=(int)memo.get(A[i]-1);
}
if(memo.containsKey(A[i]+1)){
tot2+=(int)memo.get(A[i]+1);
}
tot2+=(int)memo.get(A[i]);
tot2=n-i-1-(tot2-f[i]);
//res+=(long)(tot1-tot2)*(long)A[i];
res=res.add(BigInteger.valueOf((long)(tot1-tot2)*(long)A[i]));
}
System.out.println(res);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
/* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Main
{
public static void main (String[] args) throws java.lang.Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(br.readLine());
int[] A=new int[n];
String[] s=br.readLine().split(" ");
for(int i=0;i<n;i++){
A[i]=Integer.parseInt(s[i]);
}
Map memo=new HashMap();
int[] f=new int[n];
for(int i=0;i<n;i++){
if(!memo.containsKey(A[i])){
memo.put(A[i],1);
}
else{
int ct=(int)memo.get(A[i]);
memo.put(A[i],ct+1);
}
int tot=0;
if(memo.containsKey(A[i]-1)){
tot+=(int)memo.get(A[i]-1);
}
if(memo.containsKey(A[i]+1)){
tot+=(int)memo.get(A[i]+1);
}
tot+=(int)memo.get(A[i]);
f[i]=tot;
}
BigInteger res=new BigInteger("0");
for(int i=0;i<n;i++){
int tot1=i+1-f[i];
int tot2=0;
if(memo.containsKey(A[i]-1)){
tot2+=(int)memo.get(A[i]-1);
}
if(memo.containsKey(A[i]+1)){
tot2+=(int)memo.get(A[i]+1);
}
tot2+=(int)memo.get(A[i]);
tot2=n-i-1-(tot2-f[i]);
//res+=(long)(tot1-tot2)*(long)A[i];
res=res.add(BigInteger.valueOf((long)(tot1-tot2)*(long)A[i]));
}
System.out.println(res);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
import java.math.*;
/* Name of the class has to be "Main" only if the class is public. */
public class Main
{
public static void main (String[] args) throws java.lang.Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
int n=Integer.parseInt(br.readLine());
int[] A=new int[n];
String[] s=br.readLine().split(" ");
for(int i=0;i<n;i++){
A[i]=Integer.parseInt(s[i]);
}
Map memo=new HashMap();
int[] f=new int[n];
for(int i=0;i<n;i++){
if(!memo.containsKey(A[i])){
memo.put(A[i],1);
}
else{
int ct=(int)memo.get(A[i]);
memo.put(A[i],ct+1);
}
int tot=0;
if(memo.containsKey(A[i]-1)){
tot+=(int)memo.get(A[i]-1);
}
if(memo.containsKey(A[i]+1)){
tot+=(int)memo.get(A[i]+1);
}
tot+=(int)memo.get(A[i]);
f[i]=tot;
}
BigInteger res=new BigInteger("0");
for(int i=0;i<n;i++){
int tot1=i+1-f[i];
int tot2=0;
if(memo.containsKey(A[i]-1)){
tot2+=(int)memo.get(A[i]-1);
}
if(memo.containsKey(A[i]+1)){
tot2+=(int)memo.get(A[i]+1);
}
tot2+=(int)memo.get(A[i]);
tot2=n-i-1-(tot2-f[i]);
//res+=(long)(tot1-tot2)*(long)A[i];
res=res.add(BigInteger.valueOf((long)(tot1-tot2)*(long)A[i]));
}
System.out.println(res);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 772 | 23 |
118 |
import java.io.*;
import java.lang.*;
public class CF1003E{
public static void main(String args[]) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] s = br.readLine().split(" ");
int n = Integer.parseInt(s[0]);
int d = Integer.parseInt(s[1]);
int k = Integer.parseInt(s[2]);
StringBuffer sb = new StringBuffer();
int[] rem = new int[n];
int[] deg = new int[n];
int i = 0;
if(k == 1){
if(n <= 2){
}else{
System.out.println("NO");
return;
}
}
for(i=0;i<d;i++){
if(i>=n-1){
System.out.println("NO");
return;
}
sb.append((i+1) +" " + (i+2)+"\n");
rem[i] = Math.min(i, d-i);
deg[i]++;
if(i+1<n)
deg[i+1]++;
}
if(i<n){
rem[i] = 0;
deg[i] = 1;
}
i++;
int j = 0;
for(;i<n;i++){
//For all remaining Nodes
while(true){
if(j>=n){
System.out.println("NO");
return;
}
if(rem[j] > 0 && deg[j]<k){
deg[j]++;
rem[i] = rem[j] - 1;
sb.append((j+1)+" "+(i+1)+"\n");
deg[i]++;
break;
}else{
j++;
}
}
}
System.out.println("YES");
System.out.println(sb);
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.*;
public class CF1003E{
public static void main(String args[]) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] s = br.readLine().split(" ");
int n = Integer.parseInt(s[0]);
int d = Integer.parseInt(s[1]);
int k = Integer.parseInt(s[2]);
StringBuffer sb = new StringBuffer();
int[] rem = new int[n];
int[] deg = new int[n];
int i = 0;
if(k == 1){
if(n <= 2){
}else{
System.out.println("NO");
return;
}
}
for(i=0;i<d;i++){
if(i>=n-1){
System.out.println("NO");
return;
}
sb.append((i+1) +" " + (i+2)+"\n");
rem[i] = Math.min(i, d-i);
deg[i]++;
if(i+1<n)
deg[i+1]++;
}
if(i<n){
rem[i] = 0;
deg[i] = 1;
}
i++;
int j = 0;
for(;i<n;i++){
//For all remaining Nodes
while(true){
if(j>=n){
System.out.println("NO");
return;
}
if(rem[j] > 0 && deg[j]<k){
deg[j]++;
rem[i] = rem[j] - 1;
sb.append((j+1)+" "+(i+1)+"\n");
deg[i]++;
break;
}else{
j++;
}
}
}
System.out.println("YES");
System.out.println(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.*;
public class CF1003E{
public static void main(String args[]) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] s = br.readLine().split(" ");
int n = Integer.parseInt(s[0]);
int d = Integer.parseInt(s[1]);
int k = Integer.parseInt(s[2]);
StringBuffer sb = new StringBuffer();
int[] rem = new int[n];
int[] deg = new int[n];
int i = 0;
if(k == 1){
if(n <= 2){
}else{
System.out.println("NO");
return;
}
}
for(i=0;i<d;i++){
if(i>=n-1){
System.out.println("NO");
return;
}
sb.append((i+1) +" " + (i+2)+"\n");
rem[i] = Math.min(i, d-i);
deg[i]++;
if(i+1<n)
deg[i+1]++;
}
if(i<n){
rem[i] = 0;
deg[i] = 1;
}
i++;
int j = 0;
for(;i<n;i++){
//For all remaining Nodes
while(true){
if(j>=n){
System.out.println("NO");
return;
}
if(rem[j] > 0 && deg[j]<k){
deg[j]++;
rem[i] = rem[j] - 1;
sb.append((j+1)+" "+(i+1)+"\n");
deg[i]++;
break;
}else{
j++;
}
}
}
System.out.println("YES");
System.out.println(sb);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 706 | 118 |
3,920 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) {
FastScanner fs=new FastScanner();
int nBoxes=fs.nextInt();
long[] sums=new long[nBoxes];
HashMap<Long, Integer> boxOf=new HashMap<>();
int[][] boxes=new int[nBoxes][];
long total=0;
for (int i=0; i<nBoxes; i++) {
int size=fs.nextInt();
boxes[i]=new int[size];
for (int j=0; j<size; j++) {
boxes[i][j]=fs.nextInt();
boxOf.put((long)boxes[i][j], i);
sums[i]+=boxes[i][j];
}
total+=sums[i];
}
if (total%nBoxes!=0) {
System.out.println("No");
return;
}
long target=total/nBoxes;
int[][] masks=new int[nBoxes][];
ArrayList<Integer>[][] maskLoops=new ArrayList[nBoxes][];
for (int i=0; i<nBoxes; i++) {
masks[i]=new int[boxes[i].length];
maskLoops[i]=new ArrayList[boxes[i].length];
for (int j=0; j<maskLoops[i].length; j++) maskLoops[i][j]=new ArrayList<>();
inner:for (int j=0; j<boxes[i].length; j++) {
long startVal=boxes[i][j], lookingFor=target-(sums[i]-startVal);
maskLoops[i][j].add((int)lookingFor);
int mask=1<<i;
while (lookingFor!=startVal) {
if (!boxOf.containsKey(lookingFor)) continue inner;
int nextBox=boxOf.get(lookingFor);
//if we have already used this box, it won't work
if ((mask&(1<<nextBox))!=0) continue inner;
mask|=1<<nextBox;
lookingFor=target-(sums[nextBox]-lookingFor);
/*if (lookingFor!=startVal) */maskLoops[i][j].add((int)lookingFor);
}
// System.out.println("Mask loops for box: "+i+" starting at "+startVal+" gives "+);
//otherwise it worked
masks[i][j]=mask;
}
}
boolean[] possible=new boolean[1<<nBoxes];
int[] maskFrom=new int[1<<nBoxes];
int[] indexToUse=new int[1<<nBoxes];
possible[0]=true;
for (int mask=1; mask<1<<nBoxes; mask++) {
int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask));
/*
for (int i:masks[lowestBit]) {
if ((mask&i)==i && possible[mask^i]) {
possible[mask]=true;
break;
}
}
*/
for (int i=0; i<masks[lowestBit].length; i++) {
int m=masks[lowestBit][i];
if ((mask&m)==m && possible[mask^m]) {
possible[mask]=true;
maskFrom[mask]=mask^m;
indexToUse[mask]=i;
break;
}
}
}
if (!possible[(1<<nBoxes)-1]) {
System.out.println("No");
return;
}
System.out.println("Yes");
ArrayList<ArrayList<Integer>> loops=new ArrayList<>();
int mask=(1<<nBoxes)-1;
while (mask!=0) {
// System.out.println("At mask: "+Integer.toBinaryString(mask));
int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask));
loops.add(maskLoops[lowestBit][indexToUse[mask]]);
mask=maskFrom[mask];
}
// System.out.println("Loops: "+loops);
int[] takeFrom=new int[nBoxes];
int[] boxGiveTo=new int[nBoxes];
for (ArrayList<Integer> loop:loops) {
for (int i=0; i<loop.size(); i++) {
int cur=loop.get(i), next=loop.get((i+1)%loop.size());
int curBox=boxOf.get((long)cur), nextBox=boxOf.get((long)next);
takeFrom[nextBox]=next;
boxGiveTo[nextBox]=curBox;
}
}
for (int i=0; i<nBoxes; i++) {
System.out.println(takeFrom[i]+" "+(boxGiveTo[i]+1));
}
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) {
FastScanner fs=new FastScanner();
int nBoxes=fs.nextInt();
long[] sums=new long[nBoxes];
HashMap<Long, Integer> boxOf=new HashMap<>();
int[][] boxes=new int[nBoxes][];
long total=0;
for (int i=0; i<nBoxes; i++) {
int size=fs.nextInt();
boxes[i]=new int[size];
for (int j=0; j<size; j++) {
boxes[i][j]=fs.nextInt();
boxOf.put((long)boxes[i][j], i);
sums[i]+=boxes[i][j];
}
total+=sums[i];
}
if (total%nBoxes!=0) {
System.out.println("No");
return;
}
long target=total/nBoxes;
int[][] masks=new int[nBoxes][];
ArrayList<Integer>[][] maskLoops=new ArrayList[nBoxes][];
for (int i=0; i<nBoxes; i++) {
masks[i]=new int[boxes[i].length];
maskLoops[i]=new ArrayList[boxes[i].length];
for (int j=0; j<maskLoops[i].length; j++) maskLoops[i][j]=new ArrayList<>();
inner:for (int j=0; j<boxes[i].length; j++) {
long startVal=boxes[i][j], lookingFor=target-(sums[i]-startVal);
maskLoops[i][j].add((int)lookingFor);
int mask=1<<i;
while (lookingFor!=startVal) {
if (!boxOf.containsKey(lookingFor)) continue inner;
int nextBox=boxOf.get(lookingFor);
//if we have already used this box, it won't work
if ((mask&(1<<nextBox))!=0) continue inner;
mask|=1<<nextBox;
lookingFor=target-(sums[nextBox]-lookingFor);
/*if (lookingFor!=startVal) */maskLoops[i][j].add((int)lookingFor);
}
// System.out.println("Mask loops for box: "+i+" starting at "+startVal+" gives "+);
//otherwise it worked
masks[i][j]=mask;
}
}
boolean[] possible=new boolean[1<<nBoxes];
int[] maskFrom=new int[1<<nBoxes];
int[] indexToUse=new int[1<<nBoxes];
possible[0]=true;
for (int mask=1; mask<1<<nBoxes; mask++) {
int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask));
/*
for (int i:masks[lowestBit]) {
if ((mask&i)==i && possible[mask^i]) {
possible[mask]=true;
break;
}
}
*/
for (int i=0; i<masks[lowestBit].length; i++) {
int m=masks[lowestBit][i];
if ((mask&m)==m && possible[mask^m]) {
possible[mask]=true;
maskFrom[mask]=mask^m;
indexToUse[mask]=i;
break;
}
}
}
if (!possible[(1<<nBoxes)-1]) {
System.out.println("No");
return;
}
System.out.println("Yes");
ArrayList<ArrayList<Integer>> loops=new ArrayList<>();
int mask=(1<<nBoxes)-1;
while (mask!=0) {
// System.out.println("At mask: "+Integer.toBinaryString(mask));
int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask));
loops.add(maskLoops[lowestBit][indexToUse[mask]]);
mask=maskFrom[mask];
}
// System.out.println("Loops: "+loops);
int[] takeFrom=new int[nBoxes];
int[] boxGiveTo=new int[nBoxes];
for (ArrayList<Integer> loop:loops) {
for (int i=0; i<loop.size(); i++) {
int cur=loop.get(i), next=loop.get((i+1)%loop.size());
int curBox=boxOf.get((long)cur), nextBox=boxOf.get((long)next);
takeFrom[nextBox]=next;
boxGiveTo[nextBox]=curBox;
}
}
for (int i=0; i<nBoxes; i++) {
System.out.println(takeFrom[i]+" "+(boxGiveTo[i]+1));
}
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.StringTokenizer;
public class C {
public static void main(String[] args) {
FastScanner fs=new FastScanner();
int nBoxes=fs.nextInt();
long[] sums=new long[nBoxes];
HashMap<Long, Integer> boxOf=new HashMap<>();
int[][] boxes=new int[nBoxes][];
long total=0;
for (int i=0; i<nBoxes; i++) {
int size=fs.nextInt();
boxes[i]=new int[size];
for (int j=0; j<size; j++) {
boxes[i][j]=fs.nextInt();
boxOf.put((long)boxes[i][j], i);
sums[i]+=boxes[i][j];
}
total+=sums[i];
}
if (total%nBoxes!=0) {
System.out.println("No");
return;
}
long target=total/nBoxes;
int[][] masks=new int[nBoxes][];
ArrayList<Integer>[][] maskLoops=new ArrayList[nBoxes][];
for (int i=0; i<nBoxes; i++) {
masks[i]=new int[boxes[i].length];
maskLoops[i]=new ArrayList[boxes[i].length];
for (int j=0; j<maskLoops[i].length; j++) maskLoops[i][j]=new ArrayList<>();
inner:for (int j=0; j<boxes[i].length; j++) {
long startVal=boxes[i][j], lookingFor=target-(sums[i]-startVal);
maskLoops[i][j].add((int)lookingFor);
int mask=1<<i;
while (lookingFor!=startVal) {
if (!boxOf.containsKey(lookingFor)) continue inner;
int nextBox=boxOf.get(lookingFor);
//if we have already used this box, it won't work
if ((mask&(1<<nextBox))!=0) continue inner;
mask|=1<<nextBox;
lookingFor=target-(sums[nextBox]-lookingFor);
/*if (lookingFor!=startVal) */maskLoops[i][j].add((int)lookingFor);
}
// System.out.println("Mask loops for box: "+i+" starting at "+startVal+" gives "+);
//otherwise it worked
masks[i][j]=mask;
}
}
boolean[] possible=new boolean[1<<nBoxes];
int[] maskFrom=new int[1<<nBoxes];
int[] indexToUse=new int[1<<nBoxes];
possible[0]=true;
for (int mask=1; mask<1<<nBoxes; mask++) {
int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask));
/*
for (int i:masks[lowestBit]) {
if ((mask&i)==i && possible[mask^i]) {
possible[mask]=true;
break;
}
}
*/
for (int i=0; i<masks[lowestBit].length; i++) {
int m=masks[lowestBit][i];
if ((mask&m)==m && possible[mask^m]) {
possible[mask]=true;
maskFrom[mask]=mask^m;
indexToUse[mask]=i;
break;
}
}
}
if (!possible[(1<<nBoxes)-1]) {
System.out.println("No");
return;
}
System.out.println("Yes");
ArrayList<ArrayList<Integer>> loops=new ArrayList<>();
int mask=(1<<nBoxes)-1;
while (mask!=0) {
// System.out.println("At mask: "+Integer.toBinaryString(mask));
int lowestBit=Integer.numberOfTrailingZeros(Integer.lowestOneBit(mask));
loops.add(maskLoops[lowestBit][indexToUse[mask]]);
mask=maskFrom[mask];
}
// System.out.println("Loops: "+loops);
int[] takeFrom=new int[nBoxes];
int[] boxGiveTo=new int[nBoxes];
for (ArrayList<Integer> loop:loops) {
for (int i=0; i<loop.size(); i++) {
int cur=loop.get(i), next=loop.get((i+1)%loop.size());
int curBox=boxOf.get((long)cur), nextBox=boxOf.get((long)next);
takeFrom[nextBox]=next;
boxGiveTo[nextBox]=curBox;
}
}
for (int i=0; i<nBoxes; i++) {
System.out.println(takeFrom[i]+" "+(boxGiveTo[i]+1));
}
}
static class FastScanner {
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
StringTokenizer st=new StringTokenizer("");
public String next() {
while (!st.hasMoreElements())
try {
st=new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
return st.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,493 | 3,910 |
732 |
import java.io.*;
import java.util.*;
public class Main {
static Scanner in = new Scanner(System.in);
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
int n = in.nextInt();
int m = in.nextInt();
long boyMax = 0;
int NBoyMax = 0;
long sweets = 0;
TreeSet<Long> boyMember = new TreeSet<>();
for (int i = 0; i < n; i++) {
long input = in.nextLong();
boyMember.add(input);
if (boyMax < input) {
boyMax = input;
NBoyMax = 1;
} else if (boyMax == input) NBoyMax++;
sweets += (input * m);
}
long smallestGirl = (long) 1e8 + 1;
long sum = 0;
for (int i = 0; i < m; i++) {
long input = in.nextLong();
sum += input;
if (smallestGirl > input) smallestGirl = input;
}
if (smallestGirl < boyMember.last()) {
out.println(-1);
} else if (smallestGirl == boyMember.last()) {
sweets += sum - boyMember.last() * m;
out.println(sweets);
} else {
if (NBoyMax > 1) {
sweets += sum - boyMember.last() * m;
out.println(sweets);
} else {
Object[] boyList = boyMember.toArray();
if (boyList.length > 1) {
long boy = 0;
boy = (long)boyList[boyList.length - 2];
sweets += (sum - smallestGirl - boyMember.last() * (m - 1));
sweets += (smallestGirl - boy);
out.println(sweets);
} else {
out.println(-1);
}
}
}
in.close();
out.close();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static Scanner in = new Scanner(System.in);
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
int n = in.nextInt();
int m = in.nextInt();
long boyMax = 0;
int NBoyMax = 0;
long sweets = 0;
TreeSet<Long> boyMember = new TreeSet<>();
for (int i = 0; i < n; i++) {
long input = in.nextLong();
boyMember.add(input);
if (boyMax < input) {
boyMax = input;
NBoyMax = 1;
} else if (boyMax == input) NBoyMax++;
sweets += (input * m);
}
long smallestGirl = (long) 1e8 + 1;
long sum = 0;
for (int i = 0; i < m; i++) {
long input = in.nextLong();
sum += input;
if (smallestGirl > input) smallestGirl = input;
}
if (smallestGirl < boyMember.last()) {
out.println(-1);
} else if (smallestGirl == boyMember.last()) {
sweets += sum - boyMember.last() * m;
out.println(sweets);
} else {
if (NBoyMax > 1) {
sweets += sum - boyMember.last() * m;
out.println(sweets);
} else {
Object[] boyList = boyMember.toArray();
if (boyList.length > 1) {
long boy = 0;
boy = (long)boyList[boyList.length - 2];
sweets += (sum - smallestGirl - boyMember.last() * (m - 1));
sweets += (smallestGirl - boy);
out.println(sweets);
} else {
out.println(-1);
}
}
}
in.close();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main {
static Scanner in = new Scanner(System.in);
static PrintWriter out = new PrintWriter(System.out);
public static void main(String[] args) {
int n = in.nextInt();
int m = in.nextInt();
long boyMax = 0;
int NBoyMax = 0;
long sweets = 0;
TreeSet<Long> boyMember = new TreeSet<>();
for (int i = 0; i < n; i++) {
long input = in.nextLong();
boyMember.add(input);
if (boyMax < input) {
boyMax = input;
NBoyMax = 1;
} else if (boyMax == input) NBoyMax++;
sweets += (input * m);
}
long smallestGirl = (long) 1e8 + 1;
long sum = 0;
for (int i = 0; i < m; i++) {
long input = in.nextLong();
sum += input;
if (smallestGirl > input) smallestGirl = input;
}
if (smallestGirl < boyMember.last()) {
out.println(-1);
} else if (smallestGirl == boyMember.last()) {
sweets += sum - boyMember.last() * m;
out.println(sweets);
} else {
if (NBoyMax > 1) {
sweets += sum - boyMember.last() * m;
out.println(sweets);
} else {
Object[] boyList = boyMember.toArray();
if (boyList.length > 1) {
long boy = 0;
boy = (long)boyList[boyList.length - 2];
sweets += (sum - smallestGirl - boyMember.last() * (m - 1));
sweets += (smallestGirl - boy);
out.println(sweets);
} else {
out.println(-1);
}
}
}
in.close();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 781 | 731 |
4,416 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskF solver = new TaskF();
solver.solve(1, in, out);
out.close();
}
static class TaskF {
final int INF = (int) 1e9 + 5;
int n;
int m;
int[][][] dp;
int[][] diff;
int[][] diffStartLast;
int two(int x) {
return 1 << x;
}
boolean contain(int mask, int x) {
return (mask & two(x)) > 0;
}
int rec(int start, int pre, int mask) {
if (mask == two(n) - 1)
return INF;
int res = dp[start][pre][mask];
if (res != -1)
return res;
res = 0;
for (int i = 0; i < n; i++)
if (contain(mask, i) == false) {
int diffPre = mask == 0 ? INF : diff[pre][i]; // mask == 0 should never happen
int diffLast = (mask | two(i)) == two(n) - 1 ? diffStartLast[start][i] : INF;
res = Math.max(res, Math.min(rec(start, i, mask | two(i)), Math.min(diffLast, diffPre)));
}
dp[start][pre][mask] = res;
return res;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
int[][] grid = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
grid[i][j] = in.nextInt();
if (n == 1) {
int res = INF;
for (int i = 0; i + 1 < m; i++) {
res = Math.min(res, Math.abs(grid[0][i] - grid[0][i + 1]));
}
out.println(res);
return;
}
diff = new int[n][n];
diffStartLast = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
diff[i][j] = INF;
diffStartLast[i][j] = INF;
for (int k = 0; k < m; k++) {
diff[i][j] = Math.min(diff[i][j], Math.abs(grid[i][k] - grid[j][k]));
if (k + 1 < m) {
diffStartLast[i][j] = Math.min(diffStartLast[i][j], Math.abs(grid[i][k + 1] - grid[j][k]));
}
}
}
}
dp = new int[n][n][two(n)];
for (int[][] aux : dp)
for (int[] aux2 : aux)
Arrays.fill(aux2, -1);
int ans = 0;
for (int start = 0; start < n; start++) {
ans = Math.max(ans, rec(start, start, two(start)));
}
out.println(ans);
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskF solver = new TaskF();
solver.solve(1, in, out);
out.close();
}
static class TaskF {
final int INF = (int) 1e9 + 5;
int n;
int m;
int[][][] dp;
int[][] diff;
int[][] diffStartLast;
int two(int x) {
return 1 << x;
}
boolean contain(int mask, int x) {
return (mask & two(x)) > 0;
}
int rec(int start, int pre, int mask) {
if (mask == two(n) - 1)
return INF;
int res = dp[start][pre][mask];
if (res != -1)
return res;
res = 0;
for (int i = 0; i < n; i++)
if (contain(mask, i) == false) {
int diffPre = mask == 0 ? INF : diff[pre][i]; // mask == 0 should never happen
int diffLast = (mask | two(i)) == two(n) - 1 ? diffStartLast[start][i] : INF;
res = Math.max(res, Math.min(rec(start, i, mask | two(i)), Math.min(diffLast, diffPre)));
}
dp[start][pre][mask] = res;
return res;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
int[][] grid = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
grid[i][j] = in.nextInt();
if (n == 1) {
int res = INF;
for (int i = 0; i + 1 < m; i++) {
res = Math.min(res, Math.abs(grid[0][i] - grid[0][i + 1]));
}
out.println(res);
return;
}
diff = new int[n][n];
diffStartLast = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
diff[i][j] = INF;
diffStartLast[i][j] = INF;
for (int k = 0; k < m; k++) {
diff[i][j] = Math.min(diff[i][j], Math.abs(grid[i][k] - grid[j][k]));
if (k + 1 < m) {
diffStartLast[i][j] = Math.min(diffStartLast[i][j], Math.abs(grid[i][k + 1] - grid[j][k]));
}
}
}
}
dp = new int[n][n][two(n)];
for (int[][] aux : dp)
for (int[] aux2 : aux)
Arrays.fill(aux2, -1);
int ans = 0;
for (int start = 0; start < n; start++) {
ans = Math.max(ans, rec(start, start, two(start)));
}
out.println(ans);
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author beginner1010
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskF solver = new TaskF();
solver.solve(1, in, out);
out.close();
}
static class TaskF {
final int INF = (int) 1e9 + 5;
int n;
int m;
int[][][] dp;
int[][] diff;
int[][] diffStartLast;
int two(int x) {
return 1 << x;
}
boolean contain(int mask, int x) {
return (mask & two(x)) > 0;
}
int rec(int start, int pre, int mask) {
if (mask == two(n) - 1)
return INF;
int res = dp[start][pre][mask];
if (res != -1)
return res;
res = 0;
for (int i = 0; i < n; i++)
if (contain(mask, i) == false) {
int diffPre = mask == 0 ? INF : diff[pre][i]; // mask == 0 should never happen
int diffLast = (mask | two(i)) == two(n) - 1 ? diffStartLast[start][i] : INF;
res = Math.max(res, Math.min(rec(start, i, mask | two(i)), Math.min(diffLast, diffPre)));
}
dp[start][pre][mask] = res;
return res;
}
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
m = in.nextInt();
int[][] grid = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
grid[i][j] = in.nextInt();
if (n == 1) {
int res = INF;
for (int i = 0; i + 1 < m; i++) {
res = Math.min(res, Math.abs(grid[0][i] - grid[0][i + 1]));
}
out.println(res);
return;
}
diff = new int[n][n];
diffStartLast = new int[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
diff[i][j] = INF;
diffStartLast[i][j] = INF;
for (int k = 0; k < m; k++) {
diff[i][j] = Math.min(diff[i][j], Math.abs(grid[i][k] - grid[j][k]));
if (k + 1 < m) {
diffStartLast[i][j] = Math.min(diffStartLast[i][j], Math.abs(grid[i][k + 1] - grid[j][k]));
}
}
}
}
dp = new int[n][n][two(n)];
for (int[][] aux : dp)
for (int[] aux2 : aux)
Arrays.fill(aux2, -1);
int ans = 0;
for (int start = 0; start < n; start++) {
ans = Math.max(ans, rec(start, start, two(start)));
}
out.println(ans);
}
}
static class InputReader {
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputStream stream;
public InputReader(InputStream stream) {
this.stream = stream;
}
private boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
private int read() {
if (numChars == -1)
throw new InputMismatchException();
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0)
return -1;
}
return buf[curChar++];
}
public int nextInt() {
int c = read();
while (isWhitespace(c))
c = read();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = read();
} while (!isWhitespace(c));
return res * sgn;
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,463 | 4,405 |
1,305 |
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
new Solver().run(1);
}
}
class Solver {
private BufferedReader reader = null;
private StringTokenizer st = null;
private static final long MOD = (long)1e9 + 7;
private long x, k;
public void run(int inputType) throws Exception {
if (inputType == 0)
reader = new BufferedReader(new FileReader("input.txt"));
else
reader = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(reader.readLine());
x = Long.parseLong(st.nextToken());
k = Long.parseLong(st.nextToken());
if (x == 0) {
System.out.println(0);
return;
}
long pow = binpow(2, k);
long m = (2 * x) % MOD;
m = (m - 1 < 0) ? MOD - 1 : m - 1;
m = (m * pow) % MOD;
m = (m + 1) % MOD;
System.out.println(m);
reader.close();
}
long binpow(long v, long p) {
long res = 1L;
while(p > 0) {
if ((p & 1) > 0)
res = (res * v) % MOD;
v = (v * v) % MOD;
p /= 2;
}
return res;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
new Solver().run(1);
}
}
class Solver {
private BufferedReader reader = null;
private StringTokenizer st = null;
private static final long MOD = (long)1e9 + 7;
private long x, k;
public void run(int inputType) throws Exception {
if (inputType == 0)
reader = new BufferedReader(new FileReader("input.txt"));
else
reader = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(reader.readLine());
x = Long.parseLong(st.nextToken());
k = Long.parseLong(st.nextToken());
if (x == 0) {
System.out.println(0);
return;
}
long pow = binpow(2, k);
long m = (2 * x) % MOD;
m = (m - 1 < 0) ? MOD - 1 : m - 1;
m = (m * pow) % MOD;
m = (m + 1) % MOD;
System.out.println(m);
reader.close();
}
long binpow(long v, long p) {
long res = 1L;
while(p > 0) {
if ((p & 1) > 0)
res = (res * v) % MOD;
v = (v * v) % MOD;
p /= 2;
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class Main {
public static void main(String[] args) throws Exception {
new Solver().run(1);
}
}
class Solver {
private BufferedReader reader = null;
private StringTokenizer st = null;
private static final long MOD = (long)1e9 + 7;
private long x, k;
public void run(int inputType) throws Exception {
if (inputType == 0)
reader = new BufferedReader(new FileReader("input.txt"));
else
reader = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(reader.readLine());
x = Long.parseLong(st.nextToken());
k = Long.parseLong(st.nextToken());
if (x == 0) {
System.out.println(0);
return;
}
long pow = binpow(2, k);
long m = (2 * x) % MOD;
m = (m - 1 < 0) ? MOD - 1 : m - 1;
m = (m * pow) % MOD;
m = (m + 1) % MOD;
System.out.println(m);
reader.close();
}
long binpow(long v, long p) {
long res = 1L;
while(p > 0) {
if ((p & 1) > 0)
res = (res * v) % MOD;
v = (v * v) % MOD;
p /= 2;
}
return res;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 673 | 1,303 |
1,898 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
public class a implements Comparable<a>{
int x, y, id;
//static BufferedReader in;
//static StringTokenizer st;
public a(int x1, int y1, int id1){
this.x = x1; this.y = y1; this.id = id1;
}
public int compareTo(a o) {
return x - o.x;
}
static int n;
static int arr[];
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
//in = new BufferedReader(new InputStreamReader(System.in));
//st = new StringTokenizer(""," ");
int n = in.nextInt();
arr = new int[n];
int sum = 0;
for (int i=0; i<n; i++){
arr[i] = in.nextInt();
sum +=arr[i];
}
Arrays.sort(arr);
int sum2= 0;
int ans = 0;
for (int i=n-1; i>=0; i--){
sum2+=arr[i];
//System.out.println(sum2 + " " + sum);
if (sum2>sum-sum2){
ans = n - i;
break;
}
}
System.out.println(ans);
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
public class a implements Comparable<a>{
int x, y, id;
//static BufferedReader in;
//static StringTokenizer st;
public a(int x1, int y1, int id1){
this.x = x1; this.y = y1; this.id = id1;
}
public int compareTo(a o) {
return x - o.x;
}
static int n;
static int arr[];
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
//in = new BufferedReader(new InputStreamReader(System.in));
//st = new StringTokenizer(""," ");
int n = in.nextInt();
arr = new int[n];
int sum = 0;
for (int i=0; i<n; i++){
arr[i] = in.nextInt();
sum +=arr[i];
}
Arrays.sort(arr);
int sum2= 0;
int ans = 0;
for (int i=n-1; i>=0; i--){
sum2+=arr[i];
//System.out.println(sum2 + " " + sum);
if (sum2>sum-sum2){
ans = n - i;
break;
}
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Arrays;
import java.util.Scanner;
import java.util.StringTokenizer;
public class a implements Comparable<a>{
int x, y, id;
//static BufferedReader in;
//static StringTokenizer st;
public a(int x1, int y1, int id1){
this.x = x1; this.y = y1; this.id = id1;
}
public int compareTo(a o) {
return x - o.x;
}
static int n;
static int arr[];
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
//in = new BufferedReader(new InputStreamReader(System.in));
//st = new StringTokenizer(""," ");
int n = in.nextInt();
arr = new int[n];
int sum = 0;
for (int i=0; i<n; i++){
arr[i] = in.nextInt();
sum +=arr[i];
}
Arrays.sort(arr);
int sum2= 0;
int ans = 0;
for (int i=n-1; i>=0; i--){
sum2+=arr[i];
//System.out.println(sum2 + " " + sum);
if (sum2>sum-sum2){
ans = n - i;
break;
}
}
System.out.println(ans);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 631 | 1,894 |
2,875 |
import java.util.*;
import java.math.*;
public class Counterexample {
public static void main(String[] args) {
System.out.println(new Counterexample().solve());
}
String solve() {
Scanner sc = new Scanner(System.in);
final long l = sc.nextLong();
final long r = sc.nextLong();
if ((r - l) > 1) {
long a = l;
long b = l + 1;
long c = l + 2;
while (a < (r - 1)) {
while (b < r) {
while (c <= r) {
if (gcd(a,b) == 1
&& gcd(b,c) == 1
&& gcd(a,c) > 1) {
return Long.toString(a)
+ " "
+ Long.toString(b)
+ " "
+ Long.toString(c);
}
c += 1;
}
c = b + 1;
b += 1;
}
b = a + 1;
a += 1;
}
}
return "-1";
}
long gcd(long a, long b) {
while (b != 0) {
long t = b;
b = a % b;
a = t;
}
return a;
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
public class Counterexample {
public static void main(String[] args) {
System.out.println(new Counterexample().solve());
}
String solve() {
Scanner sc = new Scanner(System.in);
final long l = sc.nextLong();
final long r = sc.nextLong();
if ((r - l) > 1) {
long a = l;
long b = l + 1;
long c = l + 2;
while (a < (r - 1)) {
while (b < r) {
while (c <= r) {
if (gcd(a,b) == 1
&& gcd(b,c) == 1
&& gcd(a,c) > 1) {
return Long.toString(a)
+ " "
+ Long.toString(b)
+ " "
+ Long.toString(c);
}
c += 1;
}
c = b + 1;
b += 1;
}
b = a + 1;
a += 1;
}
}
return "-1";
}
long gcd(long a, long b) {
while (b != 0) {
long t = b;
b = a % b;
a = t;
}
return a;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.math.*;
public class Counterexample {
public static void main(String[] args) {
System.out.println(new Counterexample().solve());
}
String solve() {
Scanner sc = new Scanner(System.in);
final long l = sc.nextLong();
final long r = sc.nextLong();
if ((r - l) > 1) {
long a = l;
long b = l + 1;
long c = l + 2;
while (a < (r - 1)) {
while (b < r) {
while (c <= r) {
if (gcd(a,b) == 1
&& gcd(b,c) == 1
&& gcd(a,c) > 1) {
return Long.toString(a)
+ " "
+ Long.toString(b)
+ " "
+ Long.toString(c);
}
c += 1;
}
c = b + 1;
b += 1;
}
b = a + 1;
a += 1;
}
}
return "-1";
}
long gcd(long a, long b) {
while (b != 0) {
long t = b;
b = a % b;
a = t;
}
return a;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 618 | 2,869 |
3,865 |
//Implemented By Aman Kotiyal Date:-30-May-2021 Time:-7:54:28 pm
import java.io.*;
import java.util.*;
public class ques3
{
public static void main(String[] args)throws Exception{ new ques3().run();}
long mod=1000000000+7;
void solve() throws Exception
{
for(int ii=ni();ii>0;ii--)
{
int n=ni();
//ArrayList<Integer> al=new ArrayList<Integer>();
Stack<Integer> st=new Stack<Integer>();
int x=ni();
//al.add(1);
st.add(1);
out.println("1");
for(int i=2;i<=n;i++)
{
x=ni();
if(x==1)
{
st.add(1);
Stack<Integer> tep=(Stack<Integer>) st.clone();
display(tep);
continue;
}
int top=st.peek();
if(top+1==x)
{
st.pop();
st.add(x);
Stack<Integer> tep=(Stack<Integer>) st.clone();
display(tep);
continue;
}
while(true)
{
top=st.peek();
if(top+1==x)
{
st.pop();
st.add(x);
Stack<Integer> tep=(Stack<Integer>) st.clone();
display(tep);
break;
}
top=st.pop();
}
}
}
}
void display(Stack<Integer> st)
{
ArrayList<Integer> al = new ArrayList<>();
while(st.size()!=0)
{
int tem=st.pop();
al.add(tem);
}
Collections.reverse(al);
for (int i = 0; i <al.size()-1; i++) {
out.print(al.get(i)+".");
}
out.println(al.get(al.size()-1));
}
/*FAST INPUT OUTPUT & METHODS BELOW*/
private byte[] buf=new byte[1024];
private int index;
private InputStream in;
private int total;
private SpaceCharFilter filter;
PrintWriter out;
int min(int... ar){int min=Integer.MAX_VALUE;for(int i:ar)min=Math.min(min, i);return min;}
long min(long... ar){long min=Long.MAX_VALUE;for(long i:ar)min=Math.min(min, i);return min;}
int max(int... ar) {int max=Integer.MIN_VALUE;for(int i:ar)max=Math.max(max, i);return max;}
long max(long... ar) {long max=Long.MIN_VALUE;for(long i:ar)max=Math.max(max, i);return max;}
void reverse(int a[]){for(int i=0;i<a.length>>1;i++){int tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}}
void reverse(long a[]){for(int i=0;i<a.length>>1;i++){long tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}}
String reverse(String s){StringBuilder sb=new StringBuilder(s);sb.reverse();return sb.toString();}
void shuffle(int a[]) {
ArrayList<Integer> al = new ArrayList<>();
for(int i=0;i<a.length;i++)
al.add(a[i]);
Collections.sort(al);
for(int i=0;i<a.length;i++)
a[i]=al.get(i);
}
long lcm(long a,long b)
{
return (a*b)/(gcd(a,b));
}
int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
/* for (1/a)%mod = ( a^(mod-2) )%mod ----> use expo to calc -->(a^(mod-2)) */
long expo(long p,long q) /* (p^q)%mod */
{
long z = 1;
while (q>0) {
if (q%2 == 1) {
z = (z * p)%mod;
}
p = (p*p)%mod;
q >>= 1;
}
return z;
}
void run()throws Exception
{
in=System.in; out = new PrintWriter(System.out);
solve();
out.flush();
}
private int scan()throws IOException
{
if(total<0)
throw new InputMismatchException();
if(index>=total)
{
index=0;
total=in.read(buf);
if(total<=0)
return -1;
}
return buf[index++];
}
private int ni() throws IOException
{
int c = scan();
while (isSpaceChar(c))
c = scan();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = scan();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = scan();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nl() throws IOException
{
long num = 0;
int b;
boolean minus = false;
while ((b = scan()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = scan();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = scan();
}
}
private double nd() throws IOException{
return Double.parseDouble(ns());
}
private String ns() throws IOException {
int c = scan();
while (isSpaceChar(c))
c = scan();
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c))
res.appendCodePoint(c);
c = scan();
} while (!isSpaceChar(c));
return res.toString();
}
private String nss() throws IOException
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
return br.readLine();
}
private char nc() throws IOException
{
int c = scan();
while (isSpaceChar(c))
c = scan();
return (char) c;
}
private boolean isWhiteSpace(int n)
{
if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1)
return true;
return false;
}
private boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhiteSpace(c);
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//Implemented By Aman Kotiyal Date:-30-May-2021 Time:-7:54:28 pm
import java.io.*;
import java.util.*;
public class ques3
{
public static void main(String[] args)throws Exception{ new ques3().run();}
long mod=1000000000+7;
void solve() throws Exception
{
for(int ii=ni();ii>0;ii--)
{
int n=ni();
//ArrayList<Integer> al=new ArrayList<Integer>();
Stack<Integer> st=new Stack<Integer>();
int x=ni();
//al.add(1);
st.add(1);
out.println("1");
for(int i=2;i<=n;i++)
{
x=ni();
if(x==1)
{
st.add(1);
Stack<Integer> tep=(Stack<Integer>) st.clone();
display(tep);
continue;
}
int top=st.peek();
if(top+1==x)
{
st.pop();
st.add(x);
Stack<Integer> tep=(Stack<Integer>) st.clone();
display(tep);
continue;
}
while(true)
{
top=st.peek();
if(top+1==x)
{
st.pop();
st.add(x);
Stack<Integer> tep=(Stack<Integer>) st.clone();
display(tep);
break;
}
top=st.pop();
}
}
}
}
void display(Stack<Integer> st)
{
ArrayList<Integer> al = new ArrayList<>();
while(st.size()!=0)
{
int tem=st.pop();
al.add(tem);
}
Collections.reverse(al);
for (int i = 0; i <al.size()-1; i++) {
out.print(al.get(i)+".");
}
out.println(al.get(al.size()-1));
}
/*FAST INPUT OUTPUT & METHODS BELOW*/
private byte[] buf=new byte[1024];
private int index;
private InputStream in;
private int total;
private SpaceCharFilter filter;
PrintWriter out;
int min(int... ar){int min=Integer.MAX_VALUE;for(int i:ar)min=Math.min(min, i);return min;}
long min(long... ar){long min=Long.MAX_VALUE;for(long i:ar)min=Math.min(min, i);return min;}
int max(int... ar) {int max=Integer.MIN_VALUE;for(int i:ar)max=Math.max(max, i);return max;}
long max(long... ar) {long max=Long.MIN_VALUE;for(long i:ar)max=Math.max(max, i);return max;}
void reverse(int a[]){for(int i=0;i<a.length>>1;i++){int tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}}
void reverse(long a[]){for(int i=0;i<a.length>>1;i++){long tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}}
String reverse(String s){StringBuilder sb=new StringBuilder(s);sb.reverse();return sb.toString();}
void shuffle(int a[]) {
ArrayList<Integer> al = new ArrayList<>();
for(int i=0;i<a.length;i++)
al.add(a[i]);
Collections.sort(al);
for(int i=0;i<a.length;i++)
a[i]=al.get(i);
}
long lcm(long a,long b)
{
return (a*b)/(gcd(a,b));
}
int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
/* for (1/a)%mod = ( a^(mod-2) )%mod ----> use expo to calc -->(a^(mod-2)) */
long expo(long p,long q) /* (p^q)%mod */
{
long z = 1;
while (q>0) {
if (q%2 == 1) {
z = (z * p)%mod;
}
p = (p*p)%mod;
q >>= 1;
}
return z;
}
void run()throws Exception
{
in=System.in; out = new PrintWriter(System.out);
solve();
out.flush();
}
private int scan()throws IOException
{
if(total<0)
throw new InputMismatchException();
if(index>=total)
{
index=0;
total=in.read(buf);
if(total<=0)
return -1;
}
return buf[index++];
}
private int ni() throws IOException
{
int c = scan();
while (isSpaceChar(c))
c = scan();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = scan();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = scan();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nl() throws IOException
{
long num = 0;
int b;
boolean minus = false;
while ((b = scan()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = scan();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = scan();
}
}
private double nd() throws IOException{
return Double.parseDouble(ns());
}
private String ns() throws IOException {
int c = scan();
while (isSpaceChar(c))
c = scan();
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c))
res.appendCodePoint(c);
c = scan();
} while (!isSpaceChar(c));
return res.toString();
}
private String nss() throws IOException
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
return br.readLine();
}
private char nc() throws IOException
{
int c = scan();
while (isSpaceChar(c))
c = scan();
return (char) c;
}
private boolean isWhiteSpace(int n)
{
if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1)
return true;
return false;
}
private boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhiteSpace(c);
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//Implemented By Aman Kotiyal Date:-30-May-2021 Time:-7:54:28 pm
import java.io.*;
import java.util.*;
public class ques3
{
public static void main(String[] args)throws Exception{ new ques3().run();}
long mod=1000000000+7;
void solve() throws Exception
{
for(int ii=ni();ii>0;ii--)
{
int n=ni();
//ArrayList<Integer> al=new ArrayList<Integer>();
Stack<Integer> st=new Stack<Integer>();
int x=ni();
//al.add(1);
st.add(1);
out.println("1");
for(int i=2;i<=n;i++)
{
x=ni();
if(x==1)
{
st.add(1);
Stack<Integer> tep=(Stack<Integer>) st.clone();
display(tep);
continue;
}
int top=st.peek();
if(top+1==x)
{
st.pop();
st.add(x);
Stack<Integer> tep=(Stack<Integer>) st.clone();
display(tep);
continue;
}
while(true)
{
top=st.peek();
if(top+1==x)
{
st.pop();
st.add(x);
Stack<Integer> tep=(Stack<Integer>) st.clone();
display(tep);
break;
}
top=st.pop();
}
}
}
}
void display(Stack<Integer> st)
{
ArrayList<Integer> al = new ArrayList<>();
while(st.size()!=0)
{
int tem=st.pop();
al.add(tem);
}
Collections.reverse(al);
for (int i = 0; i <al.size()-1; i++) {
out.print(al.get(i)+".");
}
out.println(al.get(al.size()-1));
}
/*FAST INPUT OUTPUT & METHODS BELOW*/
private byte[] buf=new byte[1024];
private int index;
private InputStream in;
private int total;
private SpaceCharFilter filter;
PrintWriter out;
int min(int... ar){int min=Integer.MAX_VALUE;for(int i:ar)min=Math.min(min, i);return min;}
long min(long... ar){long min=Long.MAX_VALUE;for(long i:ar)min=Math.min(min, i);return min;}
int max(int... ar) {int max=Integer.MIN_VALUE;for(int i:ar)max=Math.max(max, i);return max;}
long max(long... ar) {long max=Long.MIN_VALUE;for(long i:ar)max=Math.max(max, i);return max;}
void reverse(int a[]){for(int i=0;i<a.length>>1;i++){int tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}}
void reverse(long a[]){for(int i=0;i<a.length>>1;i++){long tem=a[i];a[i]=a[a.length-1-i];a[a.length-1-i]=tem;}}
String reverse(String s){StringBuilder sb=new StringBuilder(s);sb.reverse();return sb.toString();}
void shuffle(int a[]) {
ArrayList<Integer> al = new ArrayList<>();
for(int i=0;i<a.length;i++)
al.add(a[i]);
Collections.sort(al);
for(int i=0;i<a.length;i++)
a[i]=al.get(i);
}
long lcm(long a,long b)
{
return (a*b)/(gcd(a,b));
}
int gcd(int a, int b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
long gcd(long a, long b)
{
if (a == 0)
return b;
return gcd(b%a, a);
}
/* for (1/a)%mod = ( a^(mod-2) )%mod ----> use expo to calc -->(a^(mod-2)) */
long expo(long p,long q) /* (p^q)%mod */
{
long z = 1;
while (q>0) {
if (q%2 == 1) {
z = (z * p)%mod;
}
p = (p*p)%mod;
q >>= 1;
}
return z;
}
void run()throws Exception
{
in=System.in; out = new PrintWriter(System.out);
solve();
out.flush();
}
private int scan()throws IOException
{
if(total<0)
throw new InputMismatchException();
if(index>=total)
{
index=0;
total=in.read(buf);
if(total<=0)
return -1;
}
return buf[index++];
}
private int ni() throws IOException
{
int c = scan();
while (isSpaceChar(c))
c = scan();
int sgn = 1;
if (c == '-') {
sgn = -1;
c = scan();
}
int res = 0;
do {
if (c < '0' || c > '9')
throw new InputMismatchException();
res *= 10;
res += c - '0';
c = scan();
} while (!isSpaceChar(c));
return res * sgn;
}
private long nl() throws IOException
{
long num = 0;
int b;
boolean minus = false;
while ((b = scan()) != -1 && !((b >= '0' && b <= '9') || b == '-'))
;
if (b == '-') {
minus = true;
b = scan();
}
while (true) {
if (b >= '0' && b <= '9') {
num = num * 10 + (b - '0');
} else {
return minus ? -num : num;
}
b = scan();
}
}
private double nd() throws IOException{
return Double.parseDouble(ns());
}
private String ns() throws IOException {
int c = scan();
while (isSpaceChar(c))
c = scan();
StringBuilder res = new StringBuilder();
do {
if (Character.isValidCodePoint(c))
res.appendCodePoint(c);
c = scan();
} while (!isSpaceChar(c));
return res.toString();
}
private String nss() throws IOException
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
return br.readLine();
}
private char nc() throws IOException
{
int c = scan();
while (isSpaceChar(c))
c = scan();
return (char) c;
}
private boolean isWhiteSpace(int n)
{
if(n==' '||n=='\n'||n=='\r'||n=='\t'||n==-1)
return true;
return false;
}
private boolean isSpaceChar(int c) {
if (filter != null)
return filter.isSpaceChar(c);
return isWhiteSpace(c);
}
private interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,931 | 3,855 |
256 |
import java.util.Scanner;
public class codef8 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int num = sc.nextInt();
int beacon[] = new int[1000001];
int pos[] = new int[num];
for (int i = 0; i < num; i++) {
int position = sc.nextInt();
beacon[position] = sc.nextInt();
pos[i] = position;
}
int dp[] = new int[1000001];
int max = 1;
if (beacon[0] != 0)
dp[0] = 1;
for (int i = 1; i <= 1000000; i++) {
if (beacon[i] == 0) {
dp[i] = dp[i-1];
}
else {
int j = i - beacon[i] - 1;
if (j < 0) {
dp[i] = 1;
}
else {
dp[i] = dp[j] + 1;
}
}
max = Math.max(max, dp[i]);
}
System.out.println(num-max);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class codef8 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int num = sc.nextInt();
int beacon[] = new int[1000001];
int pos[] = new int[num];
for (int i = 0; i < num; i++) {
int position = sc.nextInt();
beacon[position] = sc.nextInt();
pos[i] = position;
}
int dp[] = new int[1000001];
int max = 1;
if (beacon[0] != 0)
dp[0] = 1;
for (int i = 1; i <= 1000000; i++) {
if (beacon[i] == 0) {
dp[i] = dp[i-1];
}
else {
int j = i - beacon[i] - 1;
if (j < 0) {
dp[i] = 1;
}
else {
dp[i] = dp[j] + 1;
}
}
max = Math.max(max, dp[i]);
}
System.out.println(num-max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class codef8 {
public static void main(String[] args) {
// TODO Auto-generated method stub
Scanner sc = new Scanner(System.in);
int num = sc.nextInt();
int beacon[] = new int[1000001];
int pos[] = new int[num];
for (int i = 0; i < num; i++) {
int position = sc.nextInt();
beacon[position] = sc.nextInt();
pos[i] = position;
}
int dp[] = new int[1000001];
int max = 1;
if (beacon[0] != 0)
dp[0] = 1;
for (int i = 1; i <= 1000000; i++) {
if (beacon[i] == 0) {
dp[i] = dp[i-1];
}
else {
int j = i - beacon[i] - 1;
if (j < 0) {
dp[i] = 1;
}
else {
dp[i] = dp[j] + 1;
}
}
max = Math.max(max, dp[i]);
}
System.out.println(num-max);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 639 | 256 |
2,744 |
import java.io.*;
import java.util.*;
public class Lcm
{
public static void main(String args[])throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
long n=Long.parseLong(br.readLine());
if(n<=2)
System.out.println(n);
else
{
if(n%6==0)
{
System.out.println(((n-1)*(n-2)*(n-3)));
}
else if(n%2==0)
{
System.out.println((n*(n-1)*(n-3)));
}
else
{
System.out.println((n*(n-1)*(n-2)));
}
}
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Lcm
{
public static void main(String args[])throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
long n=Long.parseLong(br.readLine());
if(n<=2)
System.out.println(n);
else
{
if(n%6==0)
{
System.out.println(((n-1)*(n-2)*(n-3)));
}
else if(n%2==0)
{
System.out.println((n*(n-1)*(n-3)));
}
else
{
System.out.println((n*(n-1)*(n-2)));
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Lcm
{
public static void main(String args[])throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
long n=Long.parseLong(br.readLine());
if(n<=2)
System.out.println(n);
else
{
if(n%6==0)
{
System.out.println(((n-1)*(n-2)*(n-3)));
}
else if(n%2==0)
{
System.out.println((n*(n-1)*(n-3)));
}
else
{
System.out.println((n*(n-1)*(n-2)));
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 460 | 2,738 |
145 |
import java.io.*;
public class First {
StreamTokenizer in;
PrintWriter out;
int nextInt() throws IOException {
in.nextToken();
return (int)in.nval;
}
long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
String nextString() throws IOException {
in.nextToken();
return in.sval;
}
void run() throws IOException {
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
solve();
out.flush();
}
void solve() throws IOException {
int n = nextInt(), k = nextInt(), sum = 0, count = 0;
String str = nextString();
char[] arr = str.toCharArray();
boolean[] bool = new boolean[26];
for(char ch: arr){
bool[((int)ch)-97] = true;
}
for(int i = 0; i < 26; i++){
if(bool[i]){
sum += i+1;
count++;
i += 1;
}
if(count == k) break;
}
if(count == k) out.println(sum);
else out.println(-1);
}
public static void main(String[] args) throws IOException {
new First().run();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
public class First {
StreamTokenizer in;
PrintWriter out;
int nextInt() throws IOException {
in.nextToken();
return (int)in.nval;
}
long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
String nextString() throws IOException {
in.nextToken();
return in.sval;
}
void run() throws IOException {
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
solve();
out.flush();
}
void solve() throws IOException {
int n = nextInt(), k = nextInt(), sum = 0, count = 0;
String str = nextString();
char[] arr = str.toCharArray();
boolean[] bool = new boolean[26];
for(char ch: arr){
bool[((int)ch)-97] = true;
}
for(int i = 0; i < 26; i++){
if(bool[i]){
sum += i+1;
count++;
i += 1;
}
if(count == k) break;
}
if(count == k) out.println(sum);
else out.println(-1);
}
public static void main(String[] args) throws IOException {
new First().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
public class First {
StreamTokenizer in;
PrintWriter out;
int nextInt() throws IOException {
in.nextToken();
return (int)in.nval;
}
long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
String nextString() throws IOException {
in.nextToken();
return in.sval;
}
void run() throws IOException {
in = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
out = new PrintWriter(System.out);
solve();
out.flush();
}
void solve() throws IOException {
int n = nextInt(), k = nextInt(), sum = 0, count = 0;
String str = nextString();
char[] arr = str.toCharArray();
boolean[] bool = new boolean[26];
for(char ch: arr){
bool[((int)ch)-97] = true;
}
for(int i = 0; i < 26; i++){
if(bool[i]){
sum += i+1;
count++;
i += 1;
}
if(count == k) break;
}
if(count == k) out.println(sum);
else out.println(-1);
}
public static void main(String[] args) throws IOException {
new First().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 638 | 145 |
4,249 |
import java.io.*;
import java.util.*;
public class E
{
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok;
public void go() throws IOException
{
StringTokenizer tok = new StringTokenizer(in.readLine());
int zzz = Integer.parseInt(tok.nextToken());
for (int zz = 0; zz < zzz; zz++)
{
ntok();
int n = ipar();
int m = ipar();
int[][] mat = new int[n][m];
for (int i = 0; i < n; i++)
{
ntok();
mat[i] = iapar(m);
}
long[][] dp = new long[1 << n][m+1];
for (int i = 0; i < 1 << n; i++)
{
dp[i][m] = -1000000000;
}
dp[(1 << n) - 1][m] = 0;
for (int i = m-1; i >= 0; i--)
{
for (int e = 0; e < 1 << n; e++)
{
dp[e][i] = dp[e][i+1];
for (int w = 0; w < 1 << n; w++)
{
if ((e & w) == 0)
{
dp[e][i] = Math.max(dp[e][i], best(w, mat, i) + dp[e|w][i+1]);
}
}
}
}
// for (long[] arr : dp)
// {
// out.println(Arrays.toString(arr));
// }
out.println(dp[0][0]);
}
out.flush();
in.close();
}
public long best(int mask, int[][] mat, int col)
{
long max = 0;
for (int t = 0; t < mat.length; t++)
{
long sum = 0;
int mk = mask;
for (int i = 0; i < mat.length; i++)
{
if (mk % 2 == 1)
{
sum += mat[i][col];
}
mk /= 2;
}
max = Math.max(max, sum);
cycle(mat, col);
}
return max;
}
public void cycle(int[][] mat, int col)
{
int temp = mat[0][col];
for (int i = 0; i < mat.length-1; i++)
{
mat[i][col] = mat[i+1][col];
}
mat[mat.length-1][col] = temp;
}
public void ntok() throws IOException
{
tok = new StringTokenizer(in.readLine());
}
public int ipar()
{
return Integer.parseInt(tok.nextToken());
}
public int[] iapar(int n)
{
int[] arr = new int[n];
for (int i = 0; i < n; i++)
{
arr[i] = ipar();
}
return arr;
}
public long lpar()
{
return Long.parseLong(tok.nextToken());
}
public long[] lapar(int n)
{
long[] arr = new long[n];
for (int i = 0; i < n; i++)
{
arr[i] = lpar();
}
return arr;
}
public double dpar()
{
return Double.parseDouble(tok.nextToken());
}
public String spar()
{
return tok.nextToken();
}
public static void main(String[] args) throws IOException
{
new E().go();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class E
{
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok;
public void go() throws IOException
{
StringTokenizer tok = new StringTokenizer(in.readLine());
int zzz = Integer.parseInt(tok.nextToken());
for (int zz = 0; zz < zzz; zz++)
{
ntok();
int n = ipar();
int m = ipar();
int[][] mat = new int[n][m];
for (int i = 0; i < n; i++)
{
ntok();
mat[i] = iapar(m);
}
long[][] dp = new long[1 << n][m+1];
for (int i = 0; i < 1 << n; i++)
{
dp[i][m] = -1000000000;
}
dp[(1 << n) - 1][m] = 0;
for (int i = m-1; i >= 0; i--)
{
for (int e = 0; e < 1 << n; e++)
{
dp[e][i] = dp[e][i+1];
for (int w = 0; w < 1 << n; w++)
{
if ((e & w) == 0)
{
dp[e][i] = Math.max(dp[e][i], best(w, mat, i) + dp[e|w][i+1]);
}
}
}
}
// for (long[] arr : dp)
// {
// out.println(Arrays.toString(arr));
// }
out.println(dp[0][0]);
}
out.flush();
in.close();
}
public long best(int mask, int[][] mat, int col)
{
long max = 0;
for (int t = 0; t < mat.length; t++)
{
long sum = 0;
int mk = mask;
for (int i = 0; i < mat.length; i++)
{
if (mk % 2 == 1)
{
sum += mat[i][col];
}
mk /= 2;
}
max = Math.max(max, sum);
cycle(mat, col);
}
return max;
}
public void cycle(int[][] mat, int col)
{
int temp = mat[0][col];
for (int i = 0; i < mat.length-1; i++)
{
mat[i][col] = mat[i+1][col];
}
mat[mat.length-1][col] = temp;
}
public void ntok() throws IOException
{
tok = new StringTokenizer(in.readLine());
}
public int ipar()
{
return Integer.parseInt(tok.nextToken());
}
public int[] iapar(int n)
{
int[] arr = new int[n];
for (int i = 0; i < n; i++)
{
arr[i] = ipar();
}
return arr;
}
public long lpar()
{
return Long.parseLong(tok.nextToken());
}
public long[] lapar(int n)
{
long[] arr = new long[n];
for (int i = 0; i < n; i++)
{
arr[i] = lpar();
}
return arr;
}
public double dpar()
{
return Double.parseDouble(tok.nextToken());
}
public String spar()
{
return tok.nextToken();
}
public static void main(String[] args) throws IOException
{
new E().go();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class E
{
PrintWriter out = new PrintWriter(new BufferedWriter(new OutputStreamWriter(System.out)));
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
StringTokenizer tok;
public void go() throws IOException
{
StringTokenizer tok = new StringTokenizer(in.readLine());
int zzz = Integer.parseInt(tok.nextToken());
for (int zz = 0; zz < zzz; zz++)
{
ntok();
int n = ipar();
int m = ipar();
int[][] mat = new int[n][m];
for (int i = 0; i < n; i++)
{
ntok();
mat[i] = iapar(m);
}
long[][] dp = new long[1 << n][m+1];
for (int i = 0; i < 1 << n; i++)
{
dp[i][m] = -1000000000;
}
dp[(1 << n) - 1][m] = 0;
for (int i = m-1; i >= 0; i--)
{
for (int e = 0; e < 1 << n; e++)
{
dp[e][i] = dp[e][i+1];
for (int w = 0; w < 1 << n; w++)
{
if ((e & w) == 0)
{
dp[e][i] = Math.max(dp[e][i], best(w, mat, i) + dp[e|w][i+1]);
}
}
}
}
// for (long[] arr : dp)
// {
// out.println(Arrays.toString(arr));
// }
out.println(dp[0][0]);
}
out.flush();
in.close();
}
public long best(int mask, int[][] mat, int col)
{
long max = 0;
for (int t = 0; t < mat.length; t++)
{
long sum = 0;
int mk = mask;
for (int i = 0; i < mat.length; i++)
{
if (mk % 2 == 1)
{
sum += mat[i][col];
}
mk /= 2;
}
max = Math.max(max, sum);
cycle(mat, col);
}
return max;
}
public void cycle(int[][] mat, int col)
{
int temp = mat[0][col];
for (int i = 0; i < mat.length-1; i++)
{
mat[i][col] = mat[i+1][col];
}
mat[mat.length-1][col] = temp;
}
public void ntok() throws IOException
{
tok = new StringTokenizer(in.readLine());
}
public int ipar()
{
return Integer.parseInt(tok.nextToken());
}
public int[] iapar(int n)
{
int[] arr = new int[n];
for (int i = 0; i < n; i++)
{
arr[i] = ipar();
}
return arr;
}
public long lpar()
{
return Long.parseLong(tok.nextToken());
}
public long[] lapar(int n)
{
long[] arr = new long[n];
for (int i = 0; i < n; i++)
{
arr[i] = lpar();
}
return arr;
}
public double dpar()
{
return Double.parseDouble(tok.nextToken());
}
public String spar()
{
return tok.nextToken();
}
public static void main(String[] args) throws IOException
{
new E().go();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,141 | 4,238 |
412 |
import java.io.*;
import java.util.*;
import java.util.List;
public class Main {
private static StringTokenizer st;
private static BufferedReader br;
public static long MOD = 1000000007;
public static long tenFive = 100000;
public static int INF = 100000;
public static void print(Object x) {
System.out.println(x + "");
}
public static void printArr(long[] x) {
StringBuilder s = new StringBuilder();
for (int i = 0; i < x.length; i++) {
s.append(x[i] + " ");
}
print(s);
}
public static void printArr(int[] x) {
StringBuilder s = new StringBuilder();
for (int i = 0; i < x.length; i++) {
s.append(x[i] + " ");
}
print(s);
}
public static String join(Collection<?> x, String space) {
if (x.size() == 0) return "";
StringBuilder sb = new StringBuilder();
boolean first = true;
for (Object elt : x) {
if (first) first = false;
else sb.append(space);
sb.append(elt);
}
return sb.toString();
}
public static String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = br.readLine();
st = new StringTokenizer(line.trim());
}
return st.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public static long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public static List<Integer> nextInts(int N) throws IOException {
List<Integer> ret = new ArrayList<Integer>();
for (int i = 0; i < N; i++) {
ret.add(nextInt());
}
return ret;
}
public static void solve(int a, int b, List<Integer> orig) {
boolean swap = false;
if (a > b) {
swap = true;
int tmp = a;
a = b;
b = tmp;
}
List<Integer> nums = new ArrayList<Integer>(orig);
Collections.sort(nums);
Collections.reverse(nums);
Set<Integer> all = new HashSet<Integer>(nums);
Set<Integer> done = new HashSet<Integer>();
Set<Integer> inB = new HashSet<Integer>();
for (int x : nums) {
if (done.contains(x)) continue;
if (all.contains(a - x) && !done.contains(a - x)) {
done.add(x);
done.add(a - x);
//print(x + " " + (a - x));
} else if (all.contains(b - x) && !done.contains(b - x)) {
done.add(x);
done.add(b - x);
inB.add(x);
inB.add(b - x);
} else {
print("NO");
return;
}
}
print("YES");
List<Integer> out = new ArrayList<Integer>();
for (int x : orig) {
if (inB.contains(x) ^ swap) out.add(1);
else out.add(0);
}
print(join(out, " "));
}
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
int n = nextInt();
int a = nextInt();
int b = nextInt();
List<Integer> nums = nextInts(n);
solve(a, b, nums);
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.util.List;
public class Main {
private static StringTokenizer st;
private static BufferedReader br;
public static long MOD = 1000000007;
public static long tenFive = 100000;
public static int INF = 100000;
public static void print(Object x) {
System.out.println(x + "");
}
public static void printArr(long[] x) {
StringBuilder s = new StringBuilder();
for (int i = 0; i < x.length; i++) {
s.append(x[i] + " ");
}
print(s);
}
public static void printArr(int[] x) {
StringBuilder s = new StringBuilder();
for (int i = 0; i < x.length; i++) {
s.append(x[i] + " ");
}
print(s);
}
public static String join(Collection<?> x, String space) {
if (x.size() == 0) return "";
StringBuilder sb = new StringBuilder();
boolean first = true;
for (Object elt : x) {
if (first) first = false;
else sb.append(space);
sb.append(elt);
}
return sb.toString();
}
public static String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = br.readLine();
st = new StringTokenizer(line.trim());
}
return st.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public static long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public static List<Integer> nextInts(int N) throws IOException {
List<Integer> ret = new ArrayList<Integer>();
for (int i = 0; i < N; i++) {
ret.add(nextInt());
}
return ret;
}
public static void solve(int a, int b, List<Integer> orig) {
boolean swap = false;
if (a > b) {
swap = true;
int tmp = a;
a = b;
b = tmp;
}
List<Integer> nums = new ArrayList<Integer>(orig);
Collections.sort(nums);
Collections.reverse(nums);
Set<Integer> all = new HashSet<Integer>(nums);
Set<Integer> done = new HashSet<Integer>();
Set<Integer> inB = new HashSet<Integer>();
for (int x : nums) {
if (done.contains(x)) continue;
if (all.contains(a - x) && !done.contains(a - x)) {
done.add(x);
done.add(a - x);
//print(x + " " + (a - x));
} else if (all.contains(b - x) && !done.contains(b - x)) {
done.add(x);
done.add(b - x);
inB.add(x);
inB.add(b - x);
} else {
print("NO");
return;
}
}
print("YES");
List<Integer> out = new ArrayList<Integer>();
for (int x : orig) {
if (inB.contains(x) ^ swap) out.add(1);
else out.add(0);
}
print(join(out, " "));
}
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
int n = nextInt();
int a = nextInt();
int b = nextInt();
List<Integer> nums = nextInts(n);
solve(a, b, nums);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.util.List;
public class Main {
private static StringTokenizer st;
private static BufferedReader br;
public static long MOD = 1000000007;
public static long tenFive = 100000;
public static int INF = 100000;
public static void print(Object x) {
System.out.println(x + "");
}
public static void printArr(long[] x) {
StringBuilder s = new StringBuilder();
for (int i = 0; i < x.length; i++) {
s.append(x[i] + " ");
}
print(s);
}
public static void printArr(int[] x) {
StringBuilder s = new StringBuilder();
for (int i = 0; i < x.length; i++) {
s.append(x[i] + " ");
}
print(s);
}
public static String join(Collection<?> x, String space) {
if (x.size() == 0) return "";
StringBuilder sb = new StringBuilder();
boolean first = true;
for (Object elt : x) {
if (first) first = false;
else sb.append(space);
sb.append(elt);
}
return sb.toString();
}
public static String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) {
String line = br.readLine();
st = new StringTokenizer(line.trim());
}
return st.nextToken();
}
public static int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
public static long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
public static List<Integer> nextInts(int N) throws IOException {
List<Integer> ret = new ArrayList<Integer>();
for (int i = 0; i < N; i++) {
ret.add(nextInt());
}
return ret;
}
public static void solve(int a, int b, List<Integer> orig) {
boolean swap = false;
if (a > b) {
swap = true;
int tmp = a;
a = b;
b = tmp;
}
List<Integer> nums = new ArrayList<Integer>(orig);
Collections.sort(nums);
Collections.reverse(nums);
Set<Integer> all = new HashSet<Integer>(nums);
Set<Integer> done = new HashSet<Integer>();
Set<Integer> inB = new HashSet<Integer>();
for (int x : nums) {
if (done.contains(x)) continue;
if (all.contains(a - x) && !done.contains(a - x)) {
done.add(x);
done.add(a - x);
//print(x + " " + (a - x));
} else if (all.contains(b - x) && !done.contains(b - x)) {
done.add(x);
done.add(b - x);
inB.add(x);
inB.add(b - x);
} else {
print("NO");
return;
}
}
print("YES");
List<Integer> out = new ArrayList<Integer>();
for (int x : orig) {
if (inB.contains(x) ^ swap) out.add(1);
else out.add(0);
}
print(join(out, " "));
}
public static void main(String[] args) throws IOException {
br = new BufferedReader(new InputStreamReader(System.in));
int n = nextInt();
int a = nextInt();
int b = nextInt();
List<Integer> nums = nextInts(n);
solve(a, b, nums);
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,099 | 411 |
777 |
import com.sun.org.apache.xml.internal.utils.StringComparable;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.*;
public class Main {
public static void main(String[] args) {
// Test.testing();
ConsoleIO io = new ConsoleIO();
new Main(io).solve();
io.close();
}
ConsoleIO io;
Main(ConsoleIO io) {
this.io = io;
}
ArrayList<ArrayList<Integer>> gr;
boolean[] visit;
class Edge {
public Edge(int u, int v, int c) {
this.u = u;
this.v = v;
this.c = c;
}
public int u;
public int v;
public int c;
}
long MOD = 1_000_000_007;
int N, M, K;
double[][] map;
public void solve() {
String s = io.readLine();
N = Integer.parseInt(s);
char[] a = io.readLine().toCharArray();
int[] look = new int[256];
Arrays.fill(look, 10000);
int k = 0;
for (int i = 0; i < a.length; i++) {
if (look[a[i]] == 10000) {
look[a[i]] = k;
k++;
}
}
int res = N;
long need = (1L << k) - 1;
long mask = 0;
int head = 0;
int tail = 0;
int[] c = new int[k];
while (head < a.length) {
while (head < a.length && mask != need) {
int v = look[a[head]];
if (c[v] == 0)
mask |= (1L << v);
c[v]++;
head++;
}
while (tail < head && mask == need) {
res = Math.min(res, head - tail);
int v = look[a[tail]];
c[v]--;
if (c[v] == 0)
mask ^= (1L << v);
tail++;
}
}
io.writeLine(res + "");
}
long gcd(long a, long b) {
if (a < b) return gcd(b, a);
if (b == 0) return a;
return gcd(b, a % b);
}
}
class ConsoleIO {
BufferedReader br;
PrintWriter out;
public ConsoleIO(){br = new BufferedReader(new InputStreamReader(System.in));out = new PrintWriter(System.out);}
public void flush(){this.out.flush();}
public void close(){this.out.close();}
public void writeLine(String s) {this.out.println(s);}
public void writeInt(int a) {this.out.print(a);this.out.print(' ');}
public void writeWord(String s){
this.out.print(s);
}
public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }}
public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}}
public long readLong() {
return Long.parseLong(this.readLine());
}
public long[] readLongArray() {
String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length];
for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]);
return r;
}
public int[] readIntArray() {
String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length];
for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]);
return r;
}
public int[] readIntArray(int n) {
int[] res = new int[n];
char[] all = this.readLine().toCharArray();
int cur = 0;boolean have = false;
int k = 0;
boolean neg = false;
for(int i = 0;i<all.length;i++){
if(all[i]>='0' && all[i]<='9'){
cur = cur*10+all[i]-'0';
have = true;
}else if(all[i]=='-') {
neg = true;
}
else if(have){
res[k++] = neg?-cur:cur;
cur = 0;
have = false;
neg = false;
}
}
if(have)res[k++] = neg?-cur:cur;
return res;
}
public int readInt() {
try {
int r = 0;
boolean start = false;
boolean neg = false;
while (true) {
int c = br.read();
if (c >= '0' && c <= '9') {
r = r * 10 + c - '0';
start = true;
} else if (!start && c == '-') {
start = true;
neg = true;
} else if (start || c == -1) return neg ? -r : r;
}
} catch (Exception ex) {
return -1;
}
}
public void writeIntArray(int[] a) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < a.length; i++) {if (i > 0) sb.append(' ');sb.append(a[i]);}
this.writeLine(sb.toString());
}
}
class Pair {
public Pair(int a, int b) {this.a = a;this.b = b;}
public int a;
public int b;
}
class Tri {
public Tri(int a, int b, int c) {this.a = a;this.b = b;this.c = c;}
public int a;
public int b;
public int c;
}
class PairLL {
public PairLL(long a, long b) {this.a = a;this.b = b;}
public long a;
public long b;
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import com.sun.org.apache.xml.internal.utils.StringComparable;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.*;
public class Main {
public static void main(String[] args) {
// Test.testing();
ConsoleIO io = new ConsoleIO();
new Main(io).solve();
io.close();
}
ConsoleIO io;
Main(ConsoleIO io) {
this.io = io;
}
ArrayList<ArrayList<Integer>> gr;
boolean[] visit;
class Edge {
public Edge(int u, int v, int c) {
this.u = u;
this.v = v;
this.c = c;
}
public int u;
public int v;
public int c;
}
long MOD = 1_000_000_007;
int N, M, K;
double[][] map;
public void solve() {
String s = io.readLine();
N = Integer.parseInt(s);
char[] a = io.readLine().toCharArray();
int[] look = new int[256];
Arrays.fill(look, 10000);
int k = 0;
for (int i = 0; i < a.length; i++) {
if (look[a[i]] == 10000) {
look[a[i]] = k;
k++;
}
}
int res = N;
long need = (1L << k) - 1;
long mask = 0;
int head = 0;
int tail = 0;
int[] c = new int[k];
while (head < a.length) {
while (head < a.length && mask != need) {
int v = look[a[head]];
if (c[v] == 0)
mask |= (1L << v);
c[v]++;
head++;
}
while (tail < head && mask == need) {
res = Math.min(res, head - tail);
int v = look[a[tail]];
c[v]--;
if (c[v] == 0)
mask ^= (1L << v);
tail++;
}
}
io.writeLine(res + "");
}
long gcd(long a, long b) {
if (a < b) return gcd(b, a);
if (b == 0) return a;
return gcd(b, a % b);
}
}
class ConsoleIO {
BufferedReader br;
PrintWriter out;
public ConsoleIO(){br = new BufferedReader(new InputStreamReader(System.in));out = new PrintWriter(System.out);}
public void flush(){this.out.flush();}
public void close(){this.out.close();}
public void writeLine(String s) {this.out.println(s);}
public void writeInt(int a) {this.out.print(a);this.out.print(' ');}
public void writeWord(String s){
this.out.print(s);
}
public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }}
public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}}
public long readLong() {
return Long.parseLong(this.readLine());
}
public long[] readLongArray() {
String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length];
for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]);
return r;
}
public int[] readIntArray() {
String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length];
for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]);
return r;
}
public int[] readIntArray(int n) {
int[] res = new int[n];
char[] all = this.readLine().toCharArray();
int cur = 0;boolean have = false;
int k = 0;
boolean neg = false;
for(int i = 0;i<all.length;i++){
if(all[i]>='0' && all[i]<='9'){
cur = cur*10+all[i]-'0';
have = true;
}else if(all[i]=='-') {
neg = true;
}
else if(have){
res[k++] = neg?-cur:cur;
cur = 0;
have = false;
neg = false;
}
}
if(have)res[k++] = neg?-cur:cur;
return res;
}
public int readInt() {
try {
int r = 0;
boolean start = false;
boolean neg = false;
while (true) {
int c = br.read();
if (c >= '0' && c <= '9') {
r = r * 10 + c - '0';
start = true;
} else if (!start && c == '-') {
start = true;
neg = true;
} else if (start || c == -1) return neg ? -r : r;
}
} catch (Exception ex) {
return -1;
}
}
public void writeIntArray(int[] a) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < a.length; i++) {if (i > 0) sb.append(' ');sb.append(a[i]);}
this.writeLine(sb.toString());
}
}
class Pair {
public Pair(int a, int b) {this.a = a;this.b = b;}
public int a;
public int b;
}
class Tri {
public Tri(int a, int b, int c) {this.a = a;this.b = b;this.c = c;}
public int a;
public int b;
public int c;
}
class PairLL {
public PairLL(long a, long b) {this.a = a;this.b = b;}
public long a;
public long b;
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import com.sun.org.apache.xml.internal.utils.StringComparable;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.*;
public class Main {
public static void main(String[] args) {
// Test.testing();
ConsoleIO io = new ConsoleIO();
new Main(io).solve();
io.close();
}
ConsoleIO io;
Main(ConsoleIO io) {
this.io = io;
}
ArrayList<ArrayList<Integer>> gr;
boolean[] visit;
class Edge {
public Edge(int u, int v, int c) {
this.u = u;
this.v = v;
this.c = c;
}
public int u;
public int v;
public int c;
}
long MOD = 1_000_000_007;
int N, M, K;
double[][] map;
public void solve() {
String s = io.readLine();
N = Integer.parseInt(s);
char[] a = io.readLine().toCharArray();
int[] look = new int[256];
Arrays.fill(look, 10000);
int k = 0;
for (int i = 0; i < a.length; i++) {
if (look[a[i]] == 10000) {
look[a[i]] = k;
k++;
}
}
int res = N;
long need = (1L << k) - 1;
long mask = 0;
int head = 0;
int tail = 0;
int[] c = new int[k];
while (head < a.length) {
while (head < a.length && mask != need) {
int v = look[a[head]];
if (c[v] == 0)
mask |= (1L << v);
c[v]++;
head++;
}
while (tail < head && mask == need) {
res = Math.min(res, head - tail);
int v = look[a[tail]];
c[v]--;
if (c[v] == 0)
mask ^= (1L << v);
tail++;
}
}
io.writeLine(res + "");
}
long gcd(long a, long b) {
if (a < b) return gcd(b, a);
if (b == 0) return a;
return gcd(b, a % b);
}
}
class ConsoleIO {
BufferedReader br;
PrintWriter out;
public ConsoleIO(){br = new BufferedReader(new InputStreamReader(System.in));out = new PrintWriter(System.out);}
public void flush(){this.out.flush();}
public void close(){this.out.close();}
public void writeLine(String s) {this.out.println(s);}
public void writeInt(int a) {this.out.print(a);this.out.print(' ');}
public void writeWord(String s){
this.out.print(s);
}
public int read(char[] buf, int len){try {return br.read(buf,0,len);}catch (Exception ex){ return -1; }}
public String readLine() {try {return br.readLine();}catch (Exception ex){ return "";}}
public long readLong() {
return Long.parseLong(this.readLine());
}
public long[] readLongArray() {
String[]n=this.readLine().trim().split("\\s+");long[]r=new long[n.length];
for(int i=0;i<n.length;i++)r[i]=Long.parseLong(n[i]);
return r;
}
public int[] readIntArray() {
String[]n=this.readLine().trim().split("\\s+");int[]r=new int[n.length];
for(int i=0;i<n.length;i++)r[i]=Integer.parseInt(n[i]);
return r;
}
public int[] readIntArray(int n) {
int[] res = new int[n];
char[] all = this.readLine().toCharArray();
int cur = 0;boolean have = false;
int k = 0;
boolean neg = false;
for(int i = 0;i<all.length;i++){
if(all[i]>='0' && all[i]<='9'){
cur = cur*10+all[i]-'0';
have = true;
}else if(all[i]=='-') {
neg = true;
}
else if(have){
res[k++] = neg?-cur:cur;
cur = 0;
have = false;
neg = false;
}
}
if(have)res[k++] = neg?-cur:cur;
return res;
}
public int readInt() {
try {
int r = 0;
boolean start = false;
boolean neg = false;
while (true) {
int c = br.read();
if (c >= '0' && c <= '9') {
r = r * 10 + c - '0';
start = true;
} else if (!start && c == '-') {
start = true;
neg = true;
} else if (start || c == -1) return neg ? -r : r;
}
} catch (Exception ex) {
return -1;
}
}
public void writeIntArray(int[] a) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < a.length; i++) {if (i > 0) sb.append(' ');sb.append(a[i]);}
this.writeLine(sb.toString());
}
}
class Pair {
public Pair(int a, int b) {this.a = a;this.b = b;}
public int a;
public int b;
}
class Tri {
public Tri(int a, int b, int c) {this.a = a;this.b = b;this.c = c;}
public int a;
public int b;
public int c;
}
class PairLL {
public PairLL(long a, long b) {this.a = a;this.b = b;}
public long a;
public long b;
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,641 | 776 |
3,691 |
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author madis
*/
public class Pjar {
static int a[][];
public static void main(String[] args) throws FileNotFoundException {
Scanner in = new Scanner(new File("input.txt"));
PrintWriter out = new PrintWriter("output.txt");
int N = in.nextInt();
int M = in.nextInt();
a = new int[N][M];
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
a[i][j] = Integer.MAX_VALUE;
}
}
int k = in.nextInt();
in.nextLine();
for (int i = 0; i < k; i++) {
int x = in.nextInt();
int y = in.nextInt();
a[x - 1][y - 1] = 1;
burn(x - 1, y - 1);
}
int max = Integer.MIN_VALUE;
int x = 0;
int y = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
if(a[i][j]>max){
max = a[i][j];
x = i+1;
y = j+1;
}
}
}
out.printf("%d %d",x,y);
out.close();
in.close();
}
static void burn(int i, int j) {
for(int k = 0;k<a.length;k++){
for(int l=0;l<a[k].length;l++){
if(a[k][l]>Math.abs(k-i) + Math.abs(l-j)){
a[k][l]=Math.abs(k-i) + Math.abs(l-j);
}
}
}
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author madis
*/
public class Pjar {
static int a[][];
public static void main(String[] args) throws FileNotFoundException {
Scanner in = new Scanner(new File("input.txt"));
PrintWriter out = new PrintWriter("output.txt");
int N = in.nextInt();
int M = in.nextInt();
a = new int[N][M];
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
a[i][j] = Integer.MAX_VALUE;
}
}
int k = in.nextInt();
in.nextLine();
for (int i = 0; i < k; i++) {
int x = in.nextInt();
int y = in.nextInt();
a[x - 1][y - 1] = 1;
burn(x - 1, y - 1);
}
int max = Integer.MIN_VALUE;
int x = 0;
int y = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
if(a[i][j]>max){
max = a[i][j];
x = i+1;
y = j+1;
}
}
}
out.printf("%d %d",x,y);
out.close();
in.close();
}
static void burn(int i, int j) {
for(int k = 0;k<a.length;k++){
for(int l=0;l<a[k].length;l++){
if(a[k][l]>Math.abs(k-i) + Math.abs(l-j)){
a[k][l]=Math.abs(k-i) + Math.abs(l-j);
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;
/*
* To change this template, choose Tools | Templates
* and open the template in the editor.
*/
/**
*
* @author madis
*/
public class Pjar {
static int a[][];
public static void main(String[] args) throws FileNotFoundException {
Scanner in = new Scanner(new File("input.txt"));
PrintWriter out = new PrintWriter("output.txt");
int N = in.nextInt();
int M = in.nextInt();
a = new int[N][M];
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
a[i][j] = Integer.MAX_VALUE;
}
}
int k = in.nextInt();
in.nextLine();
for (int i = 0; i < k; i++) {
int x = in.nextInt();
int y = in.nextInt();
a[x - 1][y - 1] = 1;
burn(x - 1, y - 1);
}
int max = Integer.MIN_VALUE;
int x = 0;
int y = 0;
for (int i = 0; i < N; i++) {
for (int j = 0; j < M; j++) {
if(a[i][j]>max){
max = a[i][j];
x = i+1;
y = j+1;
}
}
}
out.printf("%d %d",x,y);
out.close();
in.close();
}
static void burn(int i, int j) {
for(int k = 0;k<a.length;k++){
for(int l=0;l<a[k].length;l++){
if(a[k][l]>Math.abs(k-i) + Math.abs(l-j)){
a[k][l]=Math.abs(k-i) + Math.abs(l-j);
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 758 | 3,683 |
114 |
import java.io.*;
import java.util.*;
public class Main
{
class node{
int data;
node next;
public node(int val){
data=val;
next=null;
}
}
class linkedlist{
node start;
node end;
int size;
int turn;
public linkedlist(){
start=null;
end=null;
size=0;
}
void add(int val){
if(size==0){
node t=new node(val);
start=t;
end=t;
size++;
}
else{
node t=new node(val);
end.next=t;
end=end.next;
size++;
}
}
void myfunc(){
if(start.data>start.next.data){
// System.out.println("me ni hu");
node t=new node(start.next.data);
start.next=start.next.next;
end.next=t;
end=end.next;
}
else{
// System.out.println("me hu");
int t=start.data;
start=start.next;
add(t);
size--;
}
}
int findmax(){
int m=0;
node temp=start;
for(int i=0;i<size;i++){
if(temp.data>m){
m=temp.data;
}
temp=temp.next;
}
return m;
}
void display(){
node temp=start;
for(int i=0;i<size;i++){
System.out.print(temp.data+" ");
temp=temp.next;
}
System.out.println("");
}
}
linkedlist l;
public Main(){
l=new linkedlist();
}
public static void main(String [] argv) throws IOException
{
BufferedReader in=new BufferedReader(new InputStreamReader(System.in));
Main ma=new Main();
String[] l1=in.readLine().split(" ");
int n=Integer.parseInt(l1[0]);
int q=Integer.parseInt(l1[1]);
String[] ar=in.readLine().split(" ");
int a1=Integer.parseInt(ar[0]);
int b1=Integer.parseInt(ar[1]);
for(int i=0;i<n;i++){
ma.l.add(Integer.parseInt(ar[i]));
}
int m=ma.l.findmax();
int[][] pair=new int[n][2];
int t=0;
for(int i=0;i<n;i++){
if(ma.l.start.data==m)
break;
ma.l.myfunc();
pair[t][0]=ma.l.start.data;
pair[t][1]=ma.l.start.next.data;
t++;
}
int rl[]=new int[n];
node temp=ma.l.start;
for(int i=0;i<n;i++){
rl[i]=temp.data;
temp=temp.next;
}
for(int i=0;i<q;i++){
long a=Long.parseLong(in.readLine());
if(a==1){
System.out.println(a1 + " " + b1);
}
else{
if(a<=t+1){
System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]);
}
else{
if((a-t)%(n-1)==0){
System.out.println(rl[0]+" "+rl[n-1]);
}
else{
System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]);
}
}
}
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main
{
class node{
int data;
node next;
public node(int val){
data=val;
next=null;
}
}
class linkedlist{
node start;
node end;
int size;
int turn;
public linkedlist(){
start=null;
end=null;
size=0;
}
void add(int val){
if(size==0){
node t=new node(val);
start=t;
end=t;
size++;
}
else{
node t=new node(val);
end.next=t;
end=end.next;
size++;
}
}
void myfunc(){
if(start.data>start.next.data){
// System.out.println("me ni hu");
node t=new node(start.next.data);
start.next=start.next.next;
end.next=t;
end=end.next;
}
else{
// System.out.println("me hu");
int t=start.data;
start=start.next;
add(t);
size--;
}
}
int findmax(){
int m=0;
node temp=start;
for(int i=0;i<size;i++){
if(temp.data>m){
m=temp.data;
}
temp=temp.next;
}
return m;
}
void display(){
node temp=start;
for(int i=0;i<size;i++){
System.out.print(temp.data+" ");
temp=temp.next;
}
System.out.println("");
}
}
linkedlist l;
public Main(){
l=new linkedlist();
}
public static void main(String [] argv) throws IOException
{
BufferedReader in=new BufferedReader(new InputStreamReader(System.in));
Main ma=new Main();
String[] l1=in.readLine().split(" ");
int n=Integer.parseInt(l1[0]);
int q=Integer.parseInt(l1[1]);
String[] ar=in.readLine().split(" ");
int a1=Integer.parseInt(ar[0]);
int b1=Integer.parseInt(ar[1]);
for(int i=0;i<n;i++){
ma.l.add(Integer.parseInt(ar[i]));
}
int m=ma.l.findmax();
int[][] pair=new int[n][2];
int t=0;
for(int i=0;i<n;i++){
if(ma.l.start.data==m)
break;
ma.l.myfunc();
pair[t][0]=ma.l.start.data;
pair[t][1]=ma.l.start.next.data;
t++;
}
int rl[]=new int[n];
node temp=ma.l.start;
for(int i=0;i<n;i++){
rl[i]=temp.data;
temp=temp.next;
}
for(int i=0;i<q;i++){
long a=Long.parseLong(in.readLine());
if(a==1){
System.out.println(a1 + " " + b1);
}
else{
if(a<=t+1){
System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]);
}
else{
if((a-t)%(n-1)==0){
System.out.println(rl[0]+" "+rl[n-1]);
}
else{
System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]);
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Main
{
class node{
int data;
node next;
public node(int val){
data=val;
next=null;
}
}
class linkedlist{
node start;
node end;
int size;
int turn;
public linkedlist(){
start=null;
end=null;
size=0;
}
void add(int val){
if(size==0){
node t=new node(val);
start=t;
end=t;
size++;
}
else{
node t=new node(val);
end.next=t;
end=end.next;
size++;
}
}
void myfunc(){
if(start.data>start.next.data){
// System.out.println("me ni hu");
node t=new node(start.next.data);
start.next=start.next.next;
end.next=t;
end=end.next;
}
else{
// System.out.println("me hu");
int t=start.data;
start=start.next;
add(t);
size--;
}
}
int findmax(){
int m=0;
node temp=start;
for(int i=0;i<size;i++){
if(temp.data>m){
m=temp.data;
}
temp=temp.next;
}
return m;
}
void display(){
node temp=start;
for(int i=0;i<size;i++){
System.out.print(temp.data+" ");
temp=temp.next;
}
System.out.println("");
}
}
linkedlist l;
public Main(){
l=new linkedlist();
}
public static void main(String [] argv) throws IOException
{
BufferedReader in=new BufferedReader(new InputStreamReader(System.in));
Main ma=new Main();
String[] l1=in.readLine().split(" ");
int n=Integer.parseInt(l1[0]);
int q=Integer.parseInt(l1[1]);
String[] ar=in.readLine().split(" ");
int a1=Integer.parseInt(ar[0]);
int b1=Integer.parseInt(ar[1]);
for(int i=0;i<n;i++){
ma.l.add(Integer.parseInt(ar[i]));
}
int m=ma.l.findmax();
int[][] pair=new int[n][2];
int t=0;
for(int i=0;i<n;i++){
if(ma.l.start.data==m)
break;
ma.l.myfunc();
pair[t][0]=ma.l.start.data;
pair[t][1]=ma.l.start.next.data;
t++;
}
int rl[]=new int[n];
node temp=ma.l.start;
for(int i=0;i<n;i++){
rl[i]=temp.data;
temp=temp.next;
}
for(int i=0;i<q;i++){
long a=Long.parseLong(in.readLine());
if(a==1){
System.out.println(a1 + " " + b1);
}
else{
if(a<=t+1){
System.out.println(pair[(int)(a-2)][0]+" "+pair[(int)(a-2)][1]);
}
else{
if((a-t)%(n-1)==0){
System.out.println(rl[0]+" "+rl[n-1]);
}
else{
System.out.println(rl[0]+" "+rl[(int)((a-t)%(n-1))]);
}
}
}
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(1): The time complexity is constant to the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,082 | 114 |
3,915 |
import java.util.*;
import java.io.*;
public class _1523_C {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int t = Integer.parseInt(in.readLine());
while(t-- > 0) {
int n = Integer.parseInt(in.readLine());
int[] a = new int[n];
for(int i = 0; i < n; i++) {
a[i] = Integer.parseInt(in.readLine());
}
boolean[][] used = new boolean[n][n + 1];
boolean[] used2 = new boolean[n];
String[][] res = new String[n][2];
res[0][0] = "1";
res[0][1] = "";
for(int i = 1; i < n; i++) {
if(a[i] == 1) {
for(int j = i - 1; j >= 0; j--) {
if(!used[j][a[i]] && !used2[j]) {
res[i][0] = res[j][0] + ".1";
res[i][1] = res[j][0];
used[j][a[i]] = true;
break;
}
}
}else {
for(int j = i - 1; j >= 0; j--) {
if(!used[j][a[i]] && !used2[j] && a[j] == a[i] - 1) {
if(res[j][1].equals("")) {
res[i][0] = "" + a[i];
}else {
res[i][0] = res[j][1] + "." + a[i];
}
res[i][1] = res[j][1];
used[j][a[i]] = true;
break;
}
used2[j] = true;
}
}
}
for(int i = 0; i < n; i++) {
out.println(res[i][0]);
}
}
in.close();
out.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class _1523_C {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int t = Integer.parseInt(in.readLine());
while(t-- > 0) {
int n = Integer.parseInt(in.readLine());
int[] a = new int[n];
for(int i = 0; i < n; i++) {
a[i] = Integer.parseInt(in.readLine());
}
boolean[][] used = new boolean[n][n + 1];
boolean[] used2 = new boolean[n];
String[][] res = new String[n][2];
res[0][0] = "1";
res[0][1] = "";
for(int i = 1; i < n; i++) {
if(a[i] == 1) {
for(int j = i - 1; j >= 0; j--) {
if(!used[j][a[i]] && !used2[j]) {
res[i][0] = res[j][0] + ".1";
res[i][1] = res[j][0];
used[j][a[i]] = true;
break;
}
}
}else {
for(int j = i - 1; j >= 0; j--) {
if(!used[j][a[i]] && !used2[j] && a[j] == a[i] - 1) {
if(res[j][1].equals("")) {
res[i][0] = "" + a[i];
}else {
res[i][0] = res[j][1] + "." + a[i];
}
res[i][1] = res[j][1];
used[j][a[i]] = true;
break;
}
used2[j] = true;
}
}
}
for(int i = 0; i < n; i++) {
out.println(res[i][0]);
}
}
in.close();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class _1523_C {
public static void main(String[] args) throws IOException {
BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(System.out);
int t = Integer.parseInt(in.readLine());
while(t-- > 0) {
int n = Integer.parseInt(in.readLine());
int[] a = new int[n];
for(int i = 0; i < n; i++) {
a[i] = Integer.parseInt(in.readLine());
}
boolean[][] used = new boolean[n][n + 1];
boolean[] used2 = new boolean[n];
String[][] res = new String[n][2];
res[0][0] = "1";
res[0][1] = "";
for(int i = 1; i < n; i++) {
if(a[i] == 1) {
for(int j = i - 1; j >= 0; j--) {
if(!used[j][a[i]] && !used2[j]) {
res[i][0] = res[j][0] + ".1";
res[i][1] = res[j][0];
used[j][a[i]] = true;
break;
}
}
}else {
for(int j = i - 1; j >= 0; j--) {
if(!used[j][a[i]] && !used2[j] && a[j] == a[i] - 1) {
if(res[j][1].equals("")) {
res[i][0] = "" + a[i];
}else {
res[i][0] = res[j][1] + "." + a[i];
}
res[i][1] = res[j][1];
used[j][a[i]] = true;
break;
}
used2[j] = true;
}
}
}
for(int i = 0; i < n; i++) {
out.println(res[i][0]);
}
}
in.close();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 778 | 3,905 |
380 |
import java.util.HashMap;
import java.util.HashSet;
import java.util.Scanner;
public class Main {
static int n;
static int a;
static int b;
static int g;
static int ref;
static int refg;
static HashSet<Integer> cgroup;
static HashMap<Integer,Integer> indexmap;
static HashSet<Integer> nums;
static HashSet<Integer> used;
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
n = scan.nextInt();
a = scan.nextInt();
b = scan.nextInt();
boolean[] where = new boolean[n];
indexmap = new HashMap<Integer,Integer>();
used = new HashSet<Integer>();
nums = new HashSet<Integer>();
if (a==b)
b = 0;
for (int i = 0; i<n; i++) {
int x = scan.nextInt();
nums.add(x);
indexmap.put(x,i);
}
scan.close();
for (int x : nums) {
if (used.contains(x))
continue;
cgroup = new HashSet<Integer>();
cgroup.add(x);
g = -1;
refg = -1;
ref = -1;
used.add(x);
if (!spawn(x,a,b) || !spawn(x,b,a)) {
System.out.println("NO");
return;
}
if (cgroup.size()%2==1 && ref == -1) {
System.out.println("NO");
return;
} else {
boolean w = true;
if (g == a)
w = false;
for (int k : cgroup) {
where[indexmap.get(k)] = w;
}
}
}
System.out.println("YES");
for (int i = 0; i<where.length; i++)
if (where[i])
System.out.print("1 ");
else
System.out.print("0 ");
}
private static boolean spawn(int x, int ab, int abo) {
int xab = ab-x;
if (xab == x) {
ref = x;
refg = ab;
} else {
if (nums.contains(xab)) {
cgroup.add(xab);
used.add(xab);
spawn(xab,abo,ab);
} else {
if (g == -1)
g = abo;
else if (g != abo) {
return false;
}
}
}
return true;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.HashMap;
import java.util.HashSet;
import java.util.Scanner;
public class Main {
static int n;
static int a;
static int b;
static int g;
static int ref;
static int refg;
static HashSet<Integer> cgroup;
static HashMap<Integer,Integer> indexmap;
static HashSet<Integer> nums;
static HashSet<Integer> used;
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
n = scan.nextInt();
a = scan.nextInt();
b = scan.nextInt();
boolean[] where = new boolean[n];
indexmap = new HashMap<Integer,Integer>();
used = new HashSet<Integer>();
nums = new HashSet<Integer>();
if (a==b)
b = 0;
for (int i = 0; i<n; i++) {
int x = scan.nextInt();
nums.add(x);
indexmap.put(x,i);
}
scan.close();
for (int x : nums) {
if (used.contains(x))
continue;
cgroup = new HashSet<Integer>();
cgroup.add(x);
g = -1;
refg = -1;
ref = -1;
used.add(x);
if (!spawn(x,a,b) || !spawn(x,b,a)) {
System.out.println("NO");
return;
}
if (cgroup.size()%2==1 && ref == -1) {
System.out.println("NO");
return;
} else {
boolean w = true;
if (g == a)
w = false;
for (int k : cgroup) {
where[indexmap.get(k)] = w;
}
}
}
System.out.println("YES");
for (int i = 0; i<where.length; i++)
if (where[i])
System.out.print("1 ");
else
System.out.print("0 ");
}
private static boolean spawn(int x, int ab, int abo) {
int xab = ab-x;
if (xab == x) {
ref = x;
refg = ab;
} else {
if (nums.contains(xab)) {
cgroup.add(xab);
used.add(xab);
spawn(xab,abo,ab);
} else {
if (g == -1)
g = abo;
else if (g != abo) {
return false;
}
}
}
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.HashMap;
import java.util.HashSet;
import java.util.Scanner;
public class Main {
static int n;
static int a;
static int b;
static int g;
static int ref;
static int refg;
static HashSet<Integer> cgroup;
static HashMap<Integer,Integer> indexmap;
static HashSet<Integer> nums;
static HashSet<Integer> used;
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
n = scan.nextInt();
a = scan.nextInt();
b = scan.nextInt();
boolean[] where = new boolean[n];
indexmap = new HashMap<Integer,Integer>();
used = new HashSet<Integer>();
nums = new HashSet<Integer>();
if (a==b)
b = 0;
for (int i = 0; i<n; i++) {
int x = scan.nextInt();
nums.add(x);
indexmap.put(x,i);
}
scan.close();
for (int x : nums) {
if (used.contains(x))
continue;
cgroup = new HashSet<Integer>();
cgroup.add(x);
g = -1;
refg = -1;
ref = -1;
used.add(x);
if (!spawn(x,a,b) || !spawn(x,b,a)) {
System.out.println("NO");
return;
}
if (cgroup.size()%2==1 && ref == -1) {
System.out.println("NO");
return;
} else {
boolean w = true;
if (g == a)
w = false;
for (int k : cgroup) {
where[indexmap.get(k)] = w;
}
}
}
System.out.println("YES");
for (int i = 0; i<where.length; i++)
if (where[i])
System.out.print("1 ");
else
System.out.print("0 ");
}
private static boolean spawn(int x, int ab, int abo) {
int xab = ab-x;
if (xab == x) {
ref = x;
refg = ab;
} else {
if (nums.contains(xab)) {
cgroup.add(xab);
used.add(xab);
spawn(xab,abo,ab);
} else {
if (g == -1)
g = abo;
else if (g != abo) {
return false;
}
}
}
return true;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 880 | 379 |
2,043 |
//package timus;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.StreamTokenizer;
import java.io.Writer;
import java.util.Arrays;
public class Abra {
public static void main(String[] args) throws IOException {
new Abra().run();
}
StreamTokenizer in;
PrintWriter out;
boolean oj;
void init() throws IOException {
oj = System.getProperty("ONLINE_JUDGE") != null;
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader(
"input.txt");
Writer writer = oj ? new OutputStreamWriter(System.out)
: new FileWriter("output.txt");
// Writer writer = new OutputStreamWriter(System.out);
in = new StreamTokenizer(new BufferedReader(reader));
out = new PrintWriter(writer);
}
void run() throws IOException {
long beginTime = System.currentTimeMillis();
init();
solve();
out.flush();
}
void printMem() {
if (!oj) {
System.out.println("Memory used = "
+ (Runtime.getRuntime().totalMemory() - Runtime
.getRuntime().freeMemory()));
}
}
int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
String nextString() throws IOException {
in.nextToken();
return in.sval;
}
double nextDouble() throws IOException {
in.nextToken();
return in.nval;
}
long deg(long x, long y) {
long a = x;
for (long i = 2; i <= y; i++) {
a *= x;
}
return a;
}
long fact(long x) {
long a = 1;
for (long i = 2; i <= x; i++) {
a *= i;
}
return a;
}
long digitSum(String x) {
long a = 0;
for (int i = 0; i < x.length(); i++) {
a += x.codePointAt(i) - 48;
}
return a;
}
long digitSum(long x) {
long a = 0;
while (x > 0) {
a += x % 10;
x /= 10;
}
return a;
}
long digitMul(long x) {
long a = 1;
while (x > 0) {
a *= x % 10;
x /= 10;
}
return a;
}
double pif(double ax, double ay, double bx, double by) {
return Math.sqrt((ax - bx) * (ax - bx) + (ay - by) * (ay - by));
}
double getPosPart(double x) {
if (x <= 0)
return 0;
else
return x;
}
double max(double x, double y) {
if (x > y)
return x;
else
return y;
}
long gcd(long a, long b) {
if (a < b) {
long c = b;
b = a;
a = c;
}
while (a % b != 0) {
a = a % b;
if (a < b) {
long c = b;
b = a;
a = c;
}
}
return b;
}
int gcd(int a, int b) {
if (a < b) {
int c = b;
b = a;
a = c;
}
while (a % b != 0) {
a = a % b;
if (a < b) {
int c = b;
b = a;
a = c;
}
}
return b;
}
long lcm(long a, long b) throws IOException {
return a * b / gcd(a, b);
}
int lcm(int a, int b) throws IOException {
return a * b / gcd(a, b);
}
int countOccurences(String x, String y) {
int a = 0, i = 0;
while (true) {
i = y.indexOf(x);
if (i == -1)
break;
a++;
y = y.substring(i + 1);
}
return a;
}
int[] primes;
int findPrimes(int x) {
boolean[] forErato = new boolean[x];
primes = new int[x];
int l = 0, j = 0;
for (int i = 2; i < x; i++) {
if (forErato[i])
continue;
l++;
primes[l] = i;
j = i * 2;
while (j < x) {
forErato[j] = true;
j += i;
}
}
return l;
}
int rev(int x) {
int a = 0;
while (x > 0) {
a = a * 10 + x % 10;
x /= 10;
}
return a;
}
class myDate {
int d, m, y;
public myDate(int da, int ma, int ya) {
d = da;
m = ma;
y = ya;
}
int[] ml = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
void inc() {
if ((d == 31) && (m == 12)) {
y++;
d = 1;
m = 1;
} else {
if (((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0)) {
ml[1] = 29;
}
if (d == ml[m - 1]) {
m++;
d = 1;
} else
d++;
}
}
}
int partition(int n, int l, int m) {// n - sum, l - length, m - every part
// <= m
if (n < l)
return 0;
if (n < l + 2)
return 1;
if (l == 1)
return 1;
int c = 0;
for (int i = Math.min(n - l + 1, m); i >= (n + l - 1) / l; i--) {
c += partition(n - i, l - 1, i);
}
return c;
}
void solve() throws IOException {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
Arrays.sort(a);
int min = a[0];
for (int i = 1; i < n; i++) {
if (a[i] != min) {
out.print(a[i]);
return;
}
}
out.print("NO");
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package timus;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.StreamTokenizer;
import java.io.Writer;
import java.util.Arrays;
public class Abra {
public static void main(String[] args) throws IOException {
new Abra().run();
}
StreamTokenizer in;
PrintWriter out;
boolean oj;
void init() throws IOException {
oj = System.getProperty("ONLINE_JUDGE") != null;
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader(
"input.txt");
Writer writer = oj ? new OutputStreamWriter(System.out)
: new FileWriter("output.txt");
// Writer writer = new OutputStreamWriter(System.out);
in = new StreamTokenizer(new BufferedReader(reader));
out = new PrintWriter(writer);
}
void run() throws IOException {
long beginTime = System.currentTimeMillis();
init();
solve();
out.flush();
}
void printMem() {
if (!oj) {
System.out.println("Memory used = "
+ (Runtime.getRuntime().totalMemory() - Runtime
.getRuntime().freeMemory()));
}
}
int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
String nextString() throws IOException {
in.nextToken();
return in.sval;
}
double nextDouble() throws IOException {
in.nextToken();
return in.nval;
}
long deg(long x, long y) {
long a = x;
for (long i = 2; i <= y; i++) {
a *= x;
}
return a;
}
long fact(long x) {
long a = 1;
for (long i = 2; i <= x; i++) {
a *= i;
}
return a;
}
long digitSum(String x) {
long a = 0;
for (int i = 0; i < x.length(); i++) {
a += x.codePointAt(i) - 48;
}
return a;
}
long digitSum(long x) {
long a = 0;
while (x > 0) {
a += x % 10;
x /= 10;
}
return a;
}
long digitMul(long x) {
long a = 1;
while (x > 0) {
a *= x % 10;
x /= 10;
}
return a;
}
double pif(double ax, double ay, double bx, double by) {
return Math.sqrt((ax - bx) * (ax - bx) + (ay - by) * (ay - by));
}
double getPosPart(double x) {
if (x <= 0)
return 0;
else
return x;
}
double max(double x, double y) {
if (x > y)
return x;
else
return y;
}
long gcd(long a, long b) {
if (a < b) {
long c = b;
b = a;
a = c;
}
while (a % b != 0) {
a = a % b;
if (a < b) {
long c = b;
b = a;
a = c;
}
}
return b;
}
int gcd(int a, int b) {
if (a < b) {
int c = b;
b = a;
a = c;
}
while (a % b != 0) {
a = a % b;
if (a < b) {
int c = b;
b = a;
a = c;
}
}
return b;
}
long lcm(long a, long b) throws IOException {
return a * b / gcd(a, b);
}
int lcm(int a, int b) throws IOException {
return a * b / gcd(a, b);
}
int countOccurences(String x, String y) {
int a = 0, i = 0;
while (true) {
i = y.indexOf(x);
if (i == -1)
break;
a++;
y = y.substring(i + 1);
}
return a;
}
int[] primes;
int findPrimes(int x) {
boolean[] forErato = new boolean[x];
primes = new int[x];
int l = 0, j = 0;
for (int i = 2; i < x; i++) {
if (forErato[i])
continue;
l++;
primes[l] = i;
j = i * 2;
while (j < x) {
forErato[j] = true;
j += i;
}
}
return l;
}
int rev(int x) {
int a = 0;
while (x > 0) {
a = a * 10 + x % 10;
x /= 10;
}
return a;
}
class myDate {
int d, m, y;
public myDate(int da, int ma, int ya) {
d = da;
m = ma;
y = ya;
}
int[] ml = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
void inc() {
if ((d == 31) && (m == 12)) {
y++;
d = 1;
m = 1;
} else {
if (((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0)) {
ml[1] = 29;
}
if (d == ml[m - 1]) {
m++;
d = 1;
} else
d++;
}
}
}
int partition(int n, int l, int m) {// n - sum, l - length, m - every part
// <= m
if (n < l)
return 0;
if (n < l + 2)
return 1;
if (l == 1)
return 1;
int c = 0;
for (int i = Math.min(n - l + 1, m); i >= (n + l - 1) / l; i--) {
c += partition(n - i, l - 1, i);
}
return c;
}
void solve() throws IOException {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
Arrays.sort(a);
int min = a[0];
for (int i = 1; i < n; i++) {
if (a[i] != min) {
out.print(a[i]);
return;
}
}
out.print("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
//package timus;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.Reader;
import java.io.StreamTokenizer;
import java.io.Writer;
import java.util.Arrays;
public class Abra {
public static void main(String[] args) throws IOException {
new Abra().run();
}
StreamTokenizer in;
PrintWriter out;
boolean oj;
void init() throws IOException {
oj = System.getProperty("ONLINE_JUDGE") != null;
Reader reader = oj ? new InputStreamReader(System.in) : new FileReader(
"input.txt");
Writer writer = oj ? new OutputStreamWriter(System.out)
: new FileWriter("output.txt");
// Writer writer = new OutputStreamWriter(System.out);
in = new StreamTokenizer(new BufferedReader(reader));
out = new PrintWriter(writer);
}
void run() throws IOException {
long beginTime = System.currentTimeMillis();
init();
solve();
out.flush();
}
void printMem() {
if (!oj) {
System.out.println("Memory used = "
+ (Runtime.getRuntime().totalMemory() - Runtime
.getRuntime().freeMemory()));
}
}
int nextInt() throws IOException {
in.nextToken();
return (int) in.nval;
}
long nextLong() throws IOException {
in.nextToken();
return (long) in.nval;
}
String nextString() throws IOException {
in.nextToken();
return in.sval;
}
double nextDouble() throws IOException {
in.nextToken();
return in.nval;
}
long deg(long x, long y) {
long a = x;
for (long i = 2; i <= y; i++) {
a *= x;
}
return a;
}
long fact(long x) {
long a = 1;
for (long i = 2; i <= x; i++) {
a *= i;
}
return a;
}
long digitSum(String x) {
long a = 0;
for (int i = 0; i < x.length(); i++) {
a += x.codePointAt(i) - 48;
}
return a;
}
long digitSum(long x) {
long a = 0;
while (x > 0) {
a += x % 10;
x /= 10;
}
return a;
}
long digitMul(long x) {
long a = 1;
while (x > 0) {
a *= x % 10;
x /= 10;
}
return a;
}
double pif(double ax, double ay, double bx, double by) {
return Math.sqrt((ax - bx) * (ax - bx) + (ay - by) * (ay - by));
}
double getPosPart(double x) {
if (x <= 0)
return 0;
else
return x;
}
double max(double x, double y) {
if (x > y)
return x;
else
return y;
}
long gcd(long a, long b) {
if (a < b) {
long c = b;
b = a;
a = c;
}
while (a % b != 0) {
a = a % b;
if (a < b) {
long c = b;
b = a;
a = c;
}
}
return b;
}
int gcd(int a, int b) {
if (a < b) {
int c = b;
b = a;
a = c;
}
while (a % b != 0) {
a = a % b;
if (a < b) {
int c = b;
b = a;
a = c;
}
}
return b;
}
long lcm(long a, long b) throws IOException {
return a * b / gcd(a, b);
}
int lcm(int a, int b) throws IOException {
return a * b / gcd(a, b);
}
int countOccurences(String x, String y) {
int a = 0, i = 0;
while (true) {
i = y.indexOf(x);
if (i == -1)
break;
a++;
y = y.substring(i + 1);
}
return a;
}
int[] primes;
int findPrimes(int x) {
boolean[] forErato = new boolean[x];
primes = new int[x];
int l = 0, j = 0;
for (int i = 2; i < x; i++) {
if (forErato[i])
continue;
l++;
primes[l] = i;
j = i * 2;
while (j < x) {
forErato[j] = true;
j += i;
}
}
return l;
}
int rev(int x) {
int a = 0;
while (x > 0) {
a = a * 10 + x % 10;
x /= 10;
}
return a;
}
class myDate {
int d, m, y;
public myDate(int da, int ma, int ya) {
d = da;
m = ma;
y = ya;
}
int[] ml = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
void inc() {
if ((d == 31) && (m == 12)) {
y++;
d = 1;
m = 1;
} else {
if (((y % 4 == 0) && (y % 100 != 0)) || (y % 400 == 0)) {
ml[1] = 29;
}
if (d == ml[m - 1]) {
m++;
d = 1;
} else
d++;
}
}
}
int partition(int n, int l, int m) {// n - sum, l - length, m - every part
// <= m
if (n < l)
return 0;
if (n < l + 2)
return 1;
if (l == 1)
return 1;
int c = 0;
for (int i = Math.min(n - l + 1, m); i >= (n + l - 1) / l; i--) {
c += partition(n - i, l - 1, i);
}
return c;
}
void solve() throws IOException {
int n = nextInt();
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = nextInt();
}
Arrays.sort(a);
int min = a[0];
for (int i = 1; i < n; i++) {
if (a[i] != min) {
out.print(a[i]);
return;
}
}
out.print("NO");
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,986 | 2,039 |
3,805 |
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
import java.io.*;
public class ExplorerSpace {
private static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static int[][][] dp;
public static boolean valid(int i, int j, int n, int m)
{
return i>=0 && i<n &&j>=0 && j<m;
}
public static void solution(int n, int m, int k, int[][] h, int[][] v)
{
if(k%2==1)
{
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
out.print(-1+" ");
out.println();
}
return;
}
dp = new int[n][m][k/2+1];
for(int t = 1; t<=k/2; t++)
{
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
{
dp[i][j][t] = Integer.MAX_VALUE;
}
}
}
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
{
dp[i][j][0] = 0;
}
}
for(int t = 1; t<=k/2; t++)
{
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
{
if(valid(i,j+1,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], h[i][j] + dp[i][j+1][t-1]);
if(valid(i,j-1,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], h[i][j-1] + dp[i][j-1][t-1]);
if(valid(i+1,j,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], v[i][j] + dp[i+1][j][t-1]);
if(valid(i-1,j,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], v[i-1][j] + dp[i-1][j][t-1]);
}
}
}
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
out.print((dp[i][j][k/2]*2)+" ");
out.println();
}
}
private static PrintWriter out = new PrintWriter(System.out);
public static void main (String[] args)
{
MyScanner s = new MyScanner();
int n = s.nextInt();
int m = s.nextInt();
int k = s.nextInt();
int[][] h = new int[n][m-1];
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m-1; j++)
{
h[i][j] = s.nextInt();
}
}
int[][] v = new int[n-1][m];
for(int i = 0; i<n-1; i++)
{
for(int j = 0; j<m; j++)
{
v[i][j] = s.nextInt();
}
}
solution(n,m,k,h,v);
out.flush();
out.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
import java.io.*;
public class ExplorerSpace {
private static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static int[][][] dp;
public static boolean valid(int i, int j, int n, int m)
{
return i>=0 && i<n &&j>=0 && j<m;
}
public static void solution(int n, int m, int k, int[][] h, int[][] v)
{
if(k%2==1)
{
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
out.print(-1+" ");
out.println();
}
return;
}
dp = new int[n][m][k/2+1];
for(int t = 1; t<=k/2; t++)
{
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
{
dp[i][j][t] = Integer.MAX_VALUE;
}
}
}
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
{
dp[i][j][0] = 0;
}
}
for(int t = 1; t<=k/2; t++)
{
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
{
if(valid(i,j+1,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], h[i][j] + dp[i][j+1][t-1]);
if(valid(i,j-1,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], h[i][j-1] + dp[i][j-1][t-1]);
if(valid(i+1,j,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], v[i][j] + dp[i+1][j][t-1]);
if(valid(i-1,j,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], v[i-1][j] + dp[i-1][j][t-1]);
}
}
}
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
out.print((dp[i][j][k/2]*2)+" ");
out.println();
}
}
private static PrintWriter out = new PrintWriter(System.out);
public static void main (String[] args)
{
MyScanner s = new MyScanner();
int n = s.nextInt();
int m = s.nextInt();
int k = s.nextInt();
int[][] h = new int[n][m-1];
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m-1; j++)
{
h[i][j] = s.nextInt();
}
}
int[][] v = new int[n-1][m];
for(int i = 0; i<n-1; i++)
{
for(int j = 0; j<m; j++)
{
v[i][j] = s.nextInt();
}
}
solution(n,m,k,h,v);
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.PriorityQueue;
import java.util.StringTokenizer;
import java.io.*;
public class ExplorerSpace {
private static class MyScanner {
BufferedReader br;
StringTokenizer st;
public MyScanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
String next() {
while (st == null || !st.hasMoreElements()) {
try {
st = new StringTokenizer(br.readLine());
} catch (IOException e) {
e.printStackTrace();
}
}
return st.nextToken();
}
int nextInt() {
return Integer.parseInt(next());
}
long nextLong() {
return Long.parseLong(next());
}
double nextDouble() {
return Double.parseDouble(next());
}
String nextLine(){
String str = "";
try {
str = br.readLine();
} catch (IOException e) {
e.printStackTrace();
}
return str;
}
}
public static int[][][] dp;
public static boolean valid(int i, int j, int n, int m)
{
return i>=0 && i<n &&j>=0 && j<m;
}
public static void solution(int n, int m, int k, int[][] h, int[][] v)
{
if(k%2==1)
{
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
out.print(-1+" ");
out.println();
}
return;
}
dp = new int[n][m][k/2+1];
for(int t = 1; t<=k/2; t++)
{
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
{
dp[i][j][t] = Integer.MAX_VALUE;
}
}
}
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
{
dp[i][j][0] = 0;
}
}
for(int t = 1; t<=k/2; t++)
{
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
{
if(valid(i,j+1,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], h[i][j] + dp[i][j+1][t-1]);
if(valid(i,j-1,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], h[i][j-1] + dp[i][j-1][t-1]);
if(valid(i+1,j,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], v[i][j] + dp[i+1][j][t-1]);
if(valid(i-1,j,n,m))
dp[i][j][t] = Math.min(dp[i][j][t], v[i-1][j] + dp[i-1][j][t-1]);
}
}
}
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m; j++)
out.print((dp[i][j][k/2]*2)+" ");
out.println();
}
}
private static PrintWriter out = new PrintWriter(System.out);
public static void main (String[] args)
{
MyScanner s = new MyScanner();
int n = s.nextInt();
int m = s.nextInt();
int k = s.nextInt();
int[][] h = new int[n][m-1];
for(int i = 0; i<n; i++)
{
for(int j = 0; j<m-1; j++)
{
h[i][j] = s.nextInt();
}
}
int[][] v = new int[n-1][m];
for(int i = 0; i<n-1; i++)
{
for(int j = 0; j<m; j++)
{
v[i][j] = s.nextInt();
}
}
solution(n,m,k,h,v);
out.flush();
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,321 | 3,796 |
2,657 |
import java.io.*;
import java.util.*;
public class Hack{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
int[] arr = new int[n];
for(int i=0;i<n;i++)
arr[i]=sc.nextInt();
Arrays.sort(arr);
Set<Integer> set = new TreeSet<Integer>();
for(int i=0;i<n;i++){
boolean flag=false;
for(Integer x:set){
if(arr[i]%x==0){
flag=true;
break;
}
}
if(!flag)
set.add(arr[i]);
}
System.out.println(set.size());
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Hack{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
int[] arr = new int[n];
for(int i=0;i<n;i++)
arr[i]=sc.nextInt();
Arrays.sort(arr);
Set<Integer> set = new TreeSet<Integer>();
for(int i=0;i<n;i++){
boolean flag=false;
for(Integer x:set){
if(arr[i]%x==0){
flag=true;
break;
}
}
if(!flag)
set.add(arr[i]);
}
System.out.println(set.size());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class Hack{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int n=sc.nextInt();
int[] arr = new int[n];
for(int i=0;i<n;i++)
arr[i]=sc.nextInt();
Arrays.sort(arr);
Set<Integer> set = new TreeSet<Integer>();
for(int i=0;i<n;i++){
boolean flag=false;
for(Integer x:set){
if(arr[i]%x==0){
flag=true;
break;
}
}
if(!flag)
set.add(arr[i]);
}
System.out.println(set.size());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 449 | 2,651 |
1,022 |
import java.util.*;
import java.io.*;
import java.util.stream.Collectors;
public class P1177A {
public static void main(String[] args) throws Exception {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
long n = Long.parseLong(r.readLine());
if (n < 10) {
System.out.print(n);
return;
}
int len = 1;
long edge = 10;
long prev = 0;
long prepow = 0;
while (edge - 1 < n) {
prepow = (long)Math.pow(10, len);
long pow = prepow * 10;
prev = edge;
edge = edge + (pow - prepow) * (len + 1);
len += 1;
}
long b = n - prev;
long c = b / len;
int rem = (int)(b % len);
String s = Long.toString(prepow + c).charAt(rem) + "";
System.out.print(s);
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.util.stream.Collectors;
public class P1177A {
public static void main(String[] args) throws Exception {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
long n = Long.parseLong(r.readLine());
if (n < 10) {
System.out.print(n);
return;
}
int len = 1;
long edge = 10;
long prev = 0;
long prepow = 0;
while (edge - 1 < n) {
prepow = (long)Math.pow(10, len);
long pow = prepow * 10;
prev = edge;
edge = edge + (pow - prepow) * (len + 1);
len += 1;
}
long b = n - prev;
long c = b / len;
int rem = (int)(b % len);
String s = Long.toString(prepow + c).charAt(rem) + "";
System.out.print(s);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
import java.util.stream.Collectors;
public class P1177A {
public static void main(String[] args) throws Exception {
BufferedReader r = new BufferedReader(new InputStreamReader(System.in));
long n = Long.parseLong(r.readLine());
if (n < 10) {
System.out.print(n);
return;
}
int len = 1;
long edge = 10;
long prev = 0;
long prepow = 0;
while (edge - 1 < n) {
prepow = (long)Math.pow(10, len);
long pow = prepow * 10;
prev = edge;
edge = edge + (pow - prepow) * (len + 1);
len += 1;
}
long b = n - prev;
long c = b / len;
int rem = (int)(b % len);
String s = Long.toString(prepow + c).charAt(rem) + "";
System.out.print(s);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 579 | 1,021 |
1,012 |
import java.io.*;
import java.util.*;
public class digits {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
long k = Long.parseLong(br.readLine());
long temp = 9 * (int)Math.pow(10,0);
int count = 0;
long initial = 0;
while(k > temp) {
count++;
initial = temp;
temp += 9 * (long)Math.pow(10,count)*(count+1);
}
long index = (k-initial-1)%(count+1);
long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1);
System.out.println((num+"").charAt((int)index));
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class digits {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
long k = Long.parseLong(br.readLine());
long temp = 9 * (int)Math.pow(10,0);
int count = 0;
long initial = 0;
while(k > temp) {
count++;
initial = temp;
temp += 9 * (long)Math.pow(10,count)*(count+1);
}
long index = (k-initial-1)%(count+1);
long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1);
System.out.println((num+"").charAt((int)index));
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class digits {
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
long k = Long.parseLong(br.readLine());
long temp = 9 * (int)Math.pow(10,0);
int count = 0;
long initial = 0;
while(k > temp) {
count++;
initial = temp;
temp += 9 * (long)Math.pow(10,count)*(count+1);
}
long index = (k-initial-1)%(count+1);
long num = (long)Math.pow(10,count) + (k-initial-1)/(count+1);
System.out.println((num+"").charAt((int)index));
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 498 | 1,011 |
3,603 |
import java.io.*;
import java.util.*;
public class C
{
String line;
StringTokenizer inputParser;
BufferedReader is;
FileInputStream fstream;
DataInputStream in;
void openInput(String file)
{
if(file==null)is = new BufferedReader(new InputStreamReader(System.in));//stdin
else
{
try{
fstream = new FileInputStream(file);
in = new DataInputStream(fstream);
is = new BufferedReader(new InputStreamReader(in));
}catch(Exception e)
{
System.err.println(e);
}
}
}
void readNextLine()
{
try {
line = is.readLine();
inputParser = new StringTokenizer(line, " ");
//System.err.println("Input: " + line);
} catch (IOException e) {
System.err.println("Unexpected IO ERROR: " + e);
}
}
int NextInt()
{
String n = inputParser.nextToken();
int val = Integer.parseInt(n);
//System.out.println("I read this number: " + val);
return val;
}
String NextString()
{
String n = inputParser.nextToken();
return n;
}
void closeInput()
{
try {
is.close();
} catch (IOException e) {
System.err.println("Unexpected IO ERROR: " + e);
}
}
public static void main(String [] argv)
{
String filePath=null;
if(argv.length>0)filePath=argv[0];
C c = new C(filePath);
}
public C(String inputFile)
{
inputFile="input.txt";
openInput(inputFile);
PrintWriter writer=null;
try {
writer = new PrintWriter("output.txt");
} catch (FileNotFoundException e) {
e.printStackTrace();
}
readNextLine();
int N=NextInt();
int M=NextInt();
readNextLine();
int K=NextInt();
readNextLine();
int [] [] p = new int[N][M];
int [] [] init = new int [K][2];
for(int i=0; i<K; i++)
{
int x=NextInt()-1;
int y=NextInt()-1;
p[x][y]=0;
init[i][0]=x;
init[i][1]=y;
}
int max=-1;
int maxX=-1, maxY=-1;
for(int i=0; i<N; i++)
for(int j=0; j<M; j++)
{
p[i][j]=10000;
for(int k=0; k<K; k++)
{
int n=Math.abs(init[k][0]-i)+Math.abs(init[k][1]-j);
if(n<p[i][j])p[i][j]=n;
}
if(p[i][j]>max)
{
max=p[i][j];
maxX=i+1;
maxY=j+1;
}
}
writer.println( maxX+" "+maxY);
closeInput();
writer.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C
{
String line;
StringTokenizer inputParser;
BufferedReader is;
FileInputStream fstream;
DataInputStream in;
void openInput(String file)
{
if(file==null)is = new BufferedReader(new InputStreamReader(System.in));//stdin
else
{
try{
fstream = new FileInputStream(file);
in = new DataInputStream(fstream);
is = new BufferedReader(new InputStreamReader(in));
}catch(Exception e)
{
System.err.println(e);
}
}
}
void readNextLine()
{
try {
line = is.readLine();
inputParser = new StringTokenizer(line, " ");
//System.err.println("Input: " + line);
} catch (IOException e) {
System.err.println("Unexpected IO ERROR: " + e);
}
}
int NextInt()
{
String n = inputParser.nextToken();
int val = Integer.parseInt(n);
//System.out.println("I read this number: " + val);
return val;
}
String NextString()
{
String n = inputParser.nextToken();
return n;
}
void closeInput()
{
try {
is.close();
} catch (IOException e) {
System.err.println("Unexpected IO ERROR: " + e);
}
}
public static void main(String [] argv)
{
String filePath=null;
if(argv.length>0)filePath=argv[0];
C c = new C(filePath);
}
public C(String inputFile)
{
inputFile="input.txt";
openInput(inputFile);
PrintWriter writer=null;
try {
writer = new PrintWriter("output.txt");
} catch (FileNotFoundException e) {
e.printStackTrace();
}
readNextLine();
int N=NextInt();
int M=NextInt();
readNextLine();
int K=NextInt();
readNextLine();
int [] [] p = new int[N][M];
int [] [] init = new int [K][2];
for(int i=0; i<K; i++)
{
int x=NextInt()-1;
int y=NextInt()-1;
p[x][y]=0;
init[i][0]=x;
init[i][1]=y;
}
int max=-1;
int maxX=-1, maxY=-1;
for(int i=0; i<N; i++)
for(int j=0; j<M; j++)
{
p[i][j]=10000;
for(int k=0; k<K; k++)
{
int n=Math.abs(init[k][0]-i)+Math.abs(init[k][1]-j);
if(n<p[i][j])p[i][j]=n;
}
if(p[i][j]>max)
{
max=p[i][j];
maxX=i+1;
maxY=j+1;
}
}
writer.println( maxX+" "+maxY);
closeInput();
writer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class C
{
String line;
StringTokenizer inputParser;
BufferedReader is;
FileInputStream fstream;
DataInputStream in;
void openInput(String file)
{
if(file==null)is = new BufferedReader(new InputStreamReader(System.in));//stdin
else
{
try{
fstream = new FileInputStream(file);
in = new DataInputStream(fstream);
is = new BufferedReader(new InputStreamReader(in));
}catch(Exception e)
{
System.err.println(e);
}
}
}
void readNextLine()
{
try {
line = is.readLine();
inputParser = new StringTokenizer(line, " ");
//System.err.println("Input: " + line);
} catch (IOException e) {
System.err.println("Unexpected IO ERROR: " + e);
}
}
int NextInt()
{
String n = inputParser.nextToken();
int val = Integer.parseInt(n);
//System.out.println("I read this number: " + val);
return val;
}
String NextString()
{
String n = inputParser.nextToken();
return n;
}
void closeInput()
{
try {
is.close();
} catch (IOException e) {
System.err.println("Unexpected IO ERROR: " + e);
}
}
public static void main(String [] argv)
{
String filePath=null;
if(argv.length>0)filePath=argv[0];
C c = new C(filePath);
}
public C(String inputFile)
{
inputFile="input.txt";
openInput(inputFile);
PrintWriter writer=null;
try {
writer = new PrintWriter("output.txt");
} catch (FileNotFoundException e) {
e.printStackTrace();
}
readNextLine();
int N=NextInt();
int M=NextInt();
readNextLine();
int K=NextInt();
readNextLine();
int [] [] p = new int[N][M];
int [] [] init = new int [K][2];
for(int i=0; i<K; i++)
{
int x=NextInt()-1;
int y=NextInt()-1;
p[x][y]=0;
init[i][0]=x;
init[i][1]=y;
}
int max=-1;
int maxX=-1, maxY=-1;
for(int i=0; i<N; i++)
for(int j=0; j<M; j++)
{
p[i][j]=10000;
for(int k=0; k<K; k++)
{
int n=Math.abs(init[k][0]-i)+Math.abs(init[k][1]-j);
if(n<p[i][j])p[i][j]=n;
}
if(p[i][j]>max)
{
max=p[i][j];
maxX=i+1;
maxY=j+1;
}
}
writer.println( maxX+" "+maxY);
closeInput();
writer.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,022 | 3,595 |
1,132 |
import java.util.Scanner;
public class ReallyBigNumbers {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
long s = sc.nextLong();
long m = s;
while(m-digitAdd(m)<s && m<=n){
m++;
}
System.out.println(Math.max(n-m+1, 0));
}
private static int digitAdd(long s){
int sum = 0;
for(long i = 0,j=1L;i<(int)Math.log10(s)+1; i++,j*=10){
sum += (s/j)%10;
}
return sum;
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Scanner;
public class ReallyBigNumbers {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
long s = sc.nextLong();
long m = s;
while(m-digitAdd(m)<s && m<=n){
m++;
}
System.out.println(Math.max(n-m+1, 0));
}
private static int digitAdd(long s){
int sum = 0;
for(long i = 0,j=1L;i<(int)Math.log10(s)+1; i++,j*=10){
sum += (s/j)%10;
}
return sum;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The running time increases with the square of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.util.Scanner;
public class ReallyBigNumbers {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
long s = sc.nextLong();
long m = s;
while(m-digitAdd(m)<s && m<=n){
m++;
}
System.out.println(Math.max(n-m+1, 0));
}
private static int digitAdd(long s){
int sum = 0;
for(long i = 0,j=1L;i<(int)Math.log10(s)+1; i++,j*=10){
sum += (s/j)%10;
}
return sum;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 489 | 1,131 |
818 |
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Locale;
import java.util.StringTokenizer;
public class Solution implements Runnable {
public static void main(String[] args) {
(new Thread(new Solution())).start();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
void solve() throws Exception {
boolean[] r = new boolean[1010];
Arrays.fill(r, true);
r[0] = r[1] = false;
for (int i = 2; i < 1010; i++) {
if (r[i]) {
for (int j = i + i; j < 1010; j += i) {
r[j] = false;
}
}
}
int[] pr = new int[1010];
int l = 0;
for (int i = 2; i < 1010; i++) if (r[i]) pr[l++] = i;
int n = nextInt();
int k = nextInt();
int ans = 0;
int j = 0;
for (int i = 2; i <= n; i++) {
if (r[i]) {
for (; j < l - 1; j++) {
if (i == pr[j] + pr[j + 1] + 1) {
ans++;
break;
}
if (i < pr[j] + pr[j + 1] + 1) break;
}
}
}
if (ans >= k) out.println("YES"); else out.println("NO");
}
public void run() {
try {
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
} catch (Exception e) {
e.printStackTrace();
}
out.flush();
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Locale;
import java.util.StringTokenizer;
public class Solution implements Runnable {
public static void main(String[] args) {
(new Thread(new Solution())).start();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
void solve() throws Exception {
boolean[] r = new boolean[1010];
Arrays.fill(r, true);
r[0] = r[1] = false;
for (int i = 2; i < 1010; i++) {
if (r[i]) {
for (int j = i + i; j < 1010; j += i) {
r[j] = false;
}
}
}
int[] pr = new int[1010];
int l = 0;
for (int i = 2; i < 1010; i++) if (r[i]) pr[l++] = i;
int n = nextInt();
int k = nextInt();
int ans = 0;
int j = 0;
for (int i = 2; i <= n; i++) {
if (r[i]) {
for (; j < l - 1; j++) {
if (i == pr[j] + pr[j + 1] + 1) {
ans++;
break;
}
if (i < pr[j] + pr[j + 1] + 1) break;
}
}
}
if (ans >= k) out.println("YES"); else out.println("NO");
}
public void run() {
try {
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
} catch (Exception e) {
e.printStackTrace();
}
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.Locale;
import java.util.StringTokenizer;
public class Solution implements Runnable {
public static void main(String[] args) {
(new Thread(new Solution())).start();
}
BufferedReader in;
PrintWriter out;
StringTokenizer st;
String nextToken() throws IOException {
while (st == null || !st.hasMoreTokens()) st = new StringTokenizer(in.readLine());
return st.nextToken();
}
int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
void solve() throws Exception {
boolean[] r = new boolean[1010];
Arrays.fill(r, true);
r[0] = r[1] = false;
for (int i = 2; i < 1010; i++) {
if (r[i]) {
for (int j = i + i; j < 1010; j += i) {
r[j] = false;
}
}
}
int[] pr = new int[1010];
int l = 0;
for (int i = 2; i < 1010; i++) if (r[i]) pr[l++] = i;
int n = nextInt();
int k = nextInt();
int ans = 0;
int j = 0;
for (int i = 2; i <= n; i++) {
if (r[i]) {
for (; j < l - 1; j++) {
if (i == pr[j] + pr[j + 1] + 1) {
ans++;
break;
}
if (i < pr[j] + pr[j + 1] + 1) break;
}
}
}
if (ans >= k) out.println("YES"); else out.println("NO");
}
public void run() {
try {
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
} catch (Exception e) {
e.printStackTrace();
}
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 868 | 817 |
853 |
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.StringTokenizer;
public class B {
static ArrayList<Integer> [] adj;
static int [] num;
static int dfs(int u, int p){
int cnt = 0;
for(int v:adj[u]){
if(v != p)
cnt += dfs(v, u);
}
if(adj[u].size() == 1 && u != 0 || u == 0 && adj[0].size() == 0)
cnt++;
num[cnt]++;
return cnt;
}
public static void main(String[] args) throws NumberFormatException, IOException {
Scanner sc = new Scanner();
PrintWriter out = new PrintWriter(System.out);
int n = sc.nextInt();
adj = new ArrayList[n];
for (int i = 0; i < adj.length; ++i) {
adj[i] = new ArrayList<>();
}
for (int i = 1; i < n; ++i) {
int p = sc.nextInt()-1;
adj[p].add(i);
adj[i].add(p);
}
num = new int[n+1];
dfs(0, -1);
for (int i = 1; i < num.length; ++i) {
num[i] += num[i-1];
}
int cur = 1;
for (int i = 0; i < num.length; ++i) {
while(cur <= num[i]){
out.print(i + " ");
++cur;
}
}
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(next());
}
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.StringTokenizer;
public class B {
static ArrayList<Integer> [] adj;
static int [] num;
static int dfs(int u, int p){
int cnt = 0;
for(int v:adj[u]){
if(v != p)
cnt += dfs(v, u);
}
if(adj[u].size() == 1 && u != 0 || u == 0 && adj[0].size() == 0)
cnt++;
num[cnt]++;
return cnt;
}
public static void main(String[] args) throws NumberFormatException, IOException {
Scanner sc = new Scanner();
PrintWriter out = new PrintWriter(System.out);
int n = sc.nextInt();
adj = new ArrayList[n];
for (int i = 0; i < adj.length; ++i) {
adj[i] = new ArrayList<>();
}
for (int i = 1; i < n; ++i) {
int p = sc.nextInt()-1;
adj[p].add(i);
adj[i].add(p);
}
num = new int[n+1];
dfs(0, -1);
for (int i = 1; i < num.length; ++i) {
num[i] += num[i-1];
}
int cur = 1;
for (int i = 0; i < num.length; ++i) {
while(cur <= num[i]){
out.print(i + " ");
++cur;
}
}
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.StringTokenizer;
public class B {
static ArrayList<Integer> [] adj;
static int [] num;
static int dfs(int u, int p){
int cnt = 0;
for(int v:adj[u]){
if(v != p)
cnt += dfs(v, u);
}
if(adj[u].size() == 1 && u != 0 || u == 0 && adj[0].size() == 0)
cnt++;
num[cnt]++;
return cnt;
}
public static void main(String[] args) throws NumberFormatException, IOException {
Scanner sc = new Scanner();
PrintWriter out = new PrintWriter(System.out);
int n = sc.nextInt();
adj = new ArrayList[n];
for (int i = 0; i < adj.length; ++i) {
adj[i] = new ArrayList<>();
}
for (int i = 1; i < n; ++i) {
int p = sc.nextInt()-1;
adj[p].add(i);
adj[i].add(p);
}
num = new int[n+1];
dfs(0, -1);
for (int i = 1; i < num.length; ++i) {
num[i] += num[i-1];
}
int cur = 1;
for (int i = 0; i < num.length; ++i) {
while(cur <= num[i]){
out.print(i + " ");
++cur;
}
}
out.close();
}
static class Scanner {
BufferedReader br;
StringTokenizer st;
public Scanner() {
br = new BufferedReader(new InputStreamReader(System.in));
}
public String next() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(br.readLine());
}
return st.nextToken();
}
public int nextInt() throws NumberFormatException, IOException {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 795 | 852 |
754 |
/**
* Created by Omar on 7/22/2016.
*/
import java.util.*;
import java.io.*;
public class CF364C {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int n=Integer.parseInt(br.readLine());
String input=br.readLine();
Set<Character> set = new HashSet<Character>();
for(int i=0;i<input.length();i++){
set.add(input.charAt(i));
}
StringBuilder sb= new StringBuilder();
for(char x:set){
sb.append(x);
}
String substring1=sb.toString();
// //System.out.println(substring1);
// int[] count= new int[52];
// int[] b= new int[52];
//
// char k;
// for(int i=0;i<substring1.length();i++){
// k=substring1.charAt(i);
// //System.out.println((int)'a');
// count[(k-'A')]++;
//
// }
// for(int i=0;i<52;i++){
// b[i]=count[i];
//
// //System.out.println("count "+count[i]);
// }
// int answer=set.size();
//
//
// for(int i=0;i<input.length();i++){
//
// }
// System.out.println(answer);
//
//System.out.println("WAIT");
System.out.println(solve(input,substring1).length());
pw.close();
br.close();
}
public static boolean isEmpty(int[] a){
for(int i=0;i<a.length;i++){
if(a[i]!=0){
return false;
}
}
return true;
}
public static String solve(String S, String T) {
HashMap<Character, Integer> D = new HashMap<>();
HashMap<Character, Integer> GET = new HashMap<>();
int B,E;
for (int i=0; i<T.length();i++) {
char c=T.charAt(i);
if (!D.containsKey(c))
{
D.put(c, 1);
}
else
{
D.put(c, D.get(c) + 1);
}
}
int ccc = 0;
B=0; E=0;
int min = Integer.MAX_VALUE;
// int max = Integer.MIN_VALUE;
String RESULT = "";
while (E < S.length()) {
char c = S.charAt(E);
if (D.containsKey(c)) {
if (GET.containsKey(c)) {
if (GET.get(c) < D.get(c))
ccc++;
//ccc--
GET.put(c, GET.get(c) + 1);
} else {
GET.put(c, 1);
ccc++;
//ccc--
}
}
if (ccc == T.length()) {
// if (ccc != B.length()) {
char test = S.charAt(B);
while (!GET.containsKey(test) ||
GET.get(test) > D.get(test)) {
if (GET.containsKey(test)
&& GET.get(test) >
D.get(test))
// GET.put(test, GET.get(test) - 24);
GET.put(test, GET.get(test) - 1);
//B-=B;
B++;
test = S.charAt(B);
//test += S.charAt(B);
}
if (E - B + 1 < min) {
RESULT = S.substring(B, E + 1);
min = E - B + 1;
}
//}
}
E++;
}
//if(E==0)
return RESULT;
}
}
|
O(n)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/**
* Created by Omar on 7/22/2016.
*/
import java.util.*;
import java.io.*;
public class CF364C {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int n=Integer.parseInt(br.readLine());
String input=br.readLine();
Set<Character> set = new HashSet<Character>();
for(int i=0;i<input.length();i++){
set.add(input.charAt(i));
}
StringBuilder sb= new StringBuilder();
for(char x:set){
sb.append(x);
}
String substring1=sb.toString();
// //System.out.println(substring1);
// int[] count= new int[52];
// int[] b= new int[52];
//
// char k;
// for(int i=0;i<substring1.length();i++){
// k=substring1.charAt(i);
// //System.out.println((int)'a');
// count[(k-'A')]++;
//
// }
// for(int i=0;i<52;i++){
// b[i]=count[i];
//
// //System.out.println("count "+count[i]);
// }
// int answer=set.size();
//
//
// for(int i=0;i<input.length();i++){
//
// }
// System.out.println(answer);
//
//System.out.println("WAIT");
System.out.println(solve(input,substring1).length());
pw.close();
br.close();
}
public static boolean isEmpty(int[] a){
for(int i=0;i<a.length;i++){
if(a[i]!=0){
return false;
}
}
return true;
}
public static String solve(String S, String T) {
HashMap<Character, Integer> D = new HashMap<>();
HashMap<Character, Integer> GET = new HashMap<>();
int B,E;
for (int i=0; i<T.length();i++) {
char c=T.charAt(i);
if (!D.containsKey(c))
{
D.put(c, 1);
}
else
{
D.put(c, D.get(c) + 1);
}
}
int ccc = 0;
B=0; E=0;
int min = Integer.MAX_VALUE;
// int max = Integer.MIN_VALUE;
String RESULT = "";
while (E < S.length()) {
char c = S.charAt(E);
if (D.containsKey(c)) {
if (GET.containsKey(c)) {
if (GET.get(c) < D.get(c))
ccc++;
//ccc--
GET.put(c, GET.get(c) + 1);
} else {
GET.put(c, 1);
ccc++;
//ccc--
}
}
if (ccc == T.length()) {
// if (ccc != B.length()) {
char test = S.charAt(B);
while (!GET.containsKey(test) ||
GET.get(test) > D.get(test)) {
if (GET.containsKey(test)
&& GET.get(test) >
D.get(test))
// GET.put(test, GET.get(test) - 24);
GET.put(test, GET.get(test) - 1);
//B-=B;
B++;
test = S.charAt(B);
//test += S.charAt(B);
}
if (E - B + 1 < min) {
RESULT = S.substring(B, E + 1);
min = E - B + 1;
}
//}
}
E++;
}
//if(E==0)
return RESULT;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* Created by Omar on 7/22/2016.
*/
import java.util.*;
import java.io.*;
public class CF364C {
public static void main(String[] args) throws Exception {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
PrintWriter pw = new PrintWriter(System.out);
int n=Integer.parseInt(br.readLine());
String input=br.readLine();
Set<Character> set = new HashSet<Character>();
for(int i=0;i<input.length();i++){
set.add(input.charAt(i));
}
StringBuilder sb= new StringBuilder();
for(char x:set){
sb.append(x);
}
String substring1=sb.toString();
// //System.out.println(substring1);
// int[] count= new int[52];
// int[] b= new int[52];
//
// char k;
// for(int i=0;i<substring1.length();i++){
// k=substring1.charAt(i);
// //System.out.println((int)'a');
// count[(k-'A')]++;
//
// }
// for(int i=0;i<52;i++){
// b[i]=count[i];
//
// //System.out.println("count "+count[i]);
// }
// int answer=set.size();
//
//
// for(int i=0;i<input.length();i++){
//
// }
// System.out.println(answer);
//
//System.out.println("WAIT");
System.out.println(solve(input,substring1).length());
pw.close();
br.close();
}
public static boolean isEmpty(int[] a){
for(int i=0;i<a.length;i++){
if(a[i]!=0){
return false;
}
}
return true;
}
public static String solve(String S, String T) {
HashMap<Character, Integer> D = new HashMap<>();
HashMap<Character, Integer> GET = new HashMap<>();
int B,E;
for (int i=0; i<T.length();i++) {
char c=T.charAt(i);
if (!D.containsKey(c))
{
D.put(c, 1);
}
else
{
D.put(c, D.get(c) + 1);
}
}
int ccc = 0;
B=0; E=0;
int min = Integer.MAX_VALUE;
// int max = Integer.MIN_VALUE;
String RESULT = "";
while (E < S.length()) {
char c = S.charAt(E);
if (D.containsKey(c)) {
if (GET.containsKey(c)) {
if (GET.get(c) < D.get(c))
ccc++;
//ccc--
GET.put(c, GET.get(c) + 1);
} else {
GET.put(c, 1);
ccc++;
//ccc--
}
}
if (ccc == T.length()) {
// if (ccc != B.length()) {
char test = S.charAt(B);
while (!GET.containsKey(test) ||
GET.get(test) > D.get(test)) {
if (GET.containsKey(test)
&& GET.get(test) >
D.get(test))
// GET.put(test, GET.get(test) - 24);
GET.put(test, GET.get(test) - 1);
//B-=B;
B++;
test = S.charAt(B);
//test += S.charAt(B);
}
if (E - B + 1 < min) {
RESULT = S.substring(B, E + 1);
min = E - B + 1;
}
//}
}
E++;
}
//if(E==0)
return RESULT;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,129 | 753 |
2,103 |
import java.util.Arrays;
import java.util.Scanner;
public class A {
static final Scanner sc = new Scanner(System.in);
void run() {
int n = sc.nextInt();
int[] xs = new int[n];
for(int i = 0; i < n; i++) {
xs[i] = sc.nextInt();
}
Arrays.sort(xs);
xs[n-1] = xs[n-1] == 1 ? 2 : 1;
Arrays.sort(xs);
for(int i = 0; i < n; i++)
System.out.print(xs[i] + " ");
}
public static void main(String[] args) {
new A().run();
}
}
|
O(nlog(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class A {
static final Scanner sc = new Scanner(System.in);
void run() {
int n = sc.nextInt();
int[] xs = new int[n];
for(int i = 0; i < n; i++) {
xs[i] = sc.nextInt();
}
Arrays.sort(xs);
xs[n-1] = xs[n-1] == 1 ? 2 : 1;
Arrays.sort(xs);
for(int i = 0; i < n; i++)
System.out.print(xs[i] + " ");
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class A {
static final Scanner sc = new Scanner(System.in);
void run() {
int n = sc.nextInt();
int[] xs = new int[n];
for(int i = 0; i < n; i++) {
xs[i] = sc.nextInt();
}
Arrays.sort(xs);
xs[n-1] = xs[n-1] == 1 ? 2 : 1;
Arrays.sort(xs);
for(int i = 0; i < n; i++)
System.out.print(xs[i] + " ");
}
public static void main(String[] args) {
new A().run();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The running time does not change regardless of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 482 | 2,099 |
3,666 |
import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Problem implements Runnable {
private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tok = new StringTokenizer("");
private void init() throws FileNotFoundException {
Locale.setDefault(Locale.US);
String fileName = "";
/* if (ONLINE_JUDGE && fileName.isEmpty()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
if (fileName.isEmpty()) {*/
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
/* } else {
in = new BufferedReader(new FileReader(fileName + ".in"));
out = new PrintWriter(fileName + ".out");
/* }
}*/
}
String readString() {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() {
return Integer.parseInt(readString());
}
long readLong() {
return Long.parseLong(readString());
}
double readDouble() {
return Double.parseDouble(readString());
}
int[] readIntArray(int size) {
int[] a = new int[size];
for (int i = 0; i < size; i++) {
a[i] = readInt();
}
return a;
}
public static void main(String[] args) {
//new Thread(null, new _Solution(), "", 128 * (1L << 20)).start();
new Problem().run();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
@Override
public void run() {
try {
timeBegin = System.currentTimeMillis();
init();
solve();
out.close();
time();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
int[][] dist;
int n, m;
private void solve() throws IOException {
n = readInt();
m = readInt();
int k=readInt();
dist = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
dist[i][j] = -1;
for (int i = 0; i < k; i++) {
dist[readInt()-1][readInt()-1]=0;
}
for (int i=0;i<n;i++)
for (int j=0;j<m;j++)
if (dist[i][j]==0)
bfs(i, j);
int max=0,X=0,Y=0;
for (int i=0;i<n;i++)
for (int j=0;j<m;j++)
if (dist[i][j]>=max){
max=dist[i][j];
X=i+1; Y=j+1;
}
out.println(X+" "+Y);
}
public void bfs(int x, int y) {
int[] dx = {0, 1, 0, -1};
int[] dy = {1, 0, -1, 0};
dist[x][y] = 0;
ArrayDeque<P> q = new ArrayDeque<>();
q.add(new P(x, y));
while (!q.isEmpty()) {
P v = q.poll();
for (int i = 0; i < 4; i++) {
int nx = v.x + dx[i];
int ny = v.y + dy[i];
if (inside(nx, ny) && (dist[nx][ny] == -1 || (dist[nx][ny] > dist[v.x][v.y] + 1&&dist[nx][ny]!=0))) {
q.add(new P(nx, ny));
dist[nx][ny] = dist[v.x][v.y] + 1;
}
}
}
}
public boolean inside(int x, int y) {
if (x < n && y < m && x >= 0 && y >= 0) {
return true;
}
return false;
}
}
class P {
int x, y;
public P(int x, int y) {
this.x = x;
this.y = y;
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Problem implements Runnable {
private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tok = new StringTokenizer("");
private void init() throws FileNotFoundException {
Locale.setDefault(Locale.US);
String fileName = "";
/* if (ONLINE_JUDGE && fileName.isEmpty()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
if (fileName.isEmpty()) {*/
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
/* } else {
in = new BufferedReader(new FileReader(fileName + ".in"));
out = new PrintWriter(fileName + ".out");
/* }
}*/
}
String readString() {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() {
return Integer.parseInt(readString());
}
long readLong() {
return Long.parseLong(readString());
}
double readDouble() {
return Double.parseDouble(readString());
}
int[] readIntArray(int size) {
int[] a = new int[size];
for (int i = 0; i < size; i++) {
a[i] = readInt();
}
return a;
}
public static void main(String[] args) {
//new Thread(null, new _Solution(), "", 128 * (1L << 20)).start();
new Problem().run();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
@Override
public void run() {
try {
timeBegin = System.currentTimeMillis();
init();
solve();
out.close();
time();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
int[][] dist;
int n, m;
private void solve() throws IOException {
n = readInt();
m = readInt();
int k=readInt();
dist = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
dist[i][j] = -1;
for (int i = 0; i < k; i++) {
dist[readInt()-1][readInt()-1]=0;
}
for (int i=0;i<n;i++)
for (int j=0;j<m;j++)
if (dist[i][j]==0)
bfs(i, j);
int max=0,X=0,Y=0;
for (int i=0;i<n;i++)
for (int j=0;j<m;j++)
if (dist[i][j]>=max){
max=dist[i][j];
X=i+1; Y=j+1;
}
out.println(X+" "+Y);
}
public void bfs(int x, int y) {
int[] dx = {0, 1, 0, -1};
int[] dy = {1, 0, -1, 0};
dist[x][y] = 0;
ArrayDeque<P> q = new ArrayDeque<>();
q.add(new P(x, y));
while (!q.isEmpty()) {
P v = q.poll();
for (int i = 0; i < 4; i++) {
int nx = v.x + dx[i];
int ny = v.y + dy[i];
if (inside(nx, ny) && (dist[nx][ny] == -1 || (dist[nx][ny] > dist[v.x][v.y] + 1&&dist[nx][ny]!=0))) {
q.add(new P(nx, ny));
dist[nx][ny] = dist[v.x][v.y] + 1;
}
}
}
}
public boolean inside(int x, int y) {
if (x < n && y < m && x >= 0 && y >= 0) {
return true;
}
return false;
}
}
class P {
int x, y;
public P(int x, int y) {
this.x = x;
this.y = y;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.lang.reflect.Array;
import java.util.*;
public class Problem implements Runnable {
private static final boolean ONLINE_JUDGE = System.getProperty("ONLINE_JUDGE") != null;
private BufferedReader in;
private PrintWriter out;
private StringTokenizer tok = new StringTokenizer("");
private void init() throws FileNotFoundException {
Locale.setDefault(Locale.US);
String fileName = "";
/* if (ONLINE_JUDGE && fileName.isEmpty()) {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
} else {
if (fileName.isEmpty()) {*/
in = new BufferedReader(new FileReader("input.txt"));
out = new PrintWriter("output.txt");
/* } else {
in = new BufferedReader(new FileReader(fileName + ".in"));
out = new PrintWriter(fileName + ".out");
/* }
}*/
}
String readString() {
while (!tok.hasMoreTokens()) {
try {
tok = new StringTokenizer(in.readLine());
} catch (Exception e) {
return null;
}
}
return tok.nextToken();
}
int readInt() {
return Integer.parseInt(readString());
}
long readLong() {
return Long.parseLong(readString());
}
double readDouble() {
return Double.parseDouble(readString());
}
int[] readIntArray(int size) {
int[] a = new int[size];
for (int i = 0; i < size; i++) {
a[i] = readInt();
}
return a;
}
public static void main(String[] args) {
//new Thread(null, new _Solution(), "", 128 * (1L << 20)).start();
new Problem().run();
}
long timeBegin, timeEnd;
void time() {
timeEnd = System.currentTimeMillis();
System.err.println("Time = " + (timeEnd - timeBegin));
}
@Override
public void run() {
try {
timeBegin = System.currentTimeMillis();
init();
solve();
out.close();
time();
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
}
int[][] dist;
int n, m;
private void solve() throws IOException {
n = readInt();
m = readInt();
int k=readInt();
dist = new int[n][m];
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
dist[i][j] = -1;
for (int i = 0; i < k; i++) {
dist[readInt()-1][readInt()-1]=0;
}
for (int i=0;i<n;i++)
for (int j=0;j<m;j++)
if (dist[i][j]==0)
bfs(i, j);
int max=0,X=0,Y=0;
for (int i=0;i<n;i++)
for (int j=0;j<m;j++)
if (dist[i][j]>=max){
max=dist[i][j];
X=i+1; Y=j+1;
}
out.println(X+" "+Y);
}
public void bfs(int x, int y) {
int[] dx = {0, 1, 0, -1};
int[] dy = {1, 0, -1, 0};
dist[x][y] = 0;
ArrayDeque<P> q = new ArrayDeque<>();
q.add(new P(x, y));
while (!q.isEmpty()) {
P v = q.poll();
for (int i = 0; i < 4; i++) {
int nx = v.x + dx[i];
int ny = v.y + dy[i];
if (inside(nx, ny) && (dist[nx][ny] == -1 || (dist[nx][ny] > dist[v.x][v.y] + 1&&dist[nx][ny]!=0))) {
q.add(new P(nx, ny));
dist[nx][ny] = dist[v.x][v.y] + 1;
}
}
}
}
public boolean inside(int x, int y) {
if (x < n && y < m && x >= 0 && y >= 0) {
return true;
}
return false;
}
}
class P {
int x, y;
public P(int x, int y) {
this.x = x;
this.y = y;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,307 | 3,658 |
3,872 |
import java.util.*;
import java.io.*;
public class C {
public static void main(String[] args) throws IOException{
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
int t = Integer.parseInt(f.readLine());
while(t-->0){
int n = Integer.parseInt(f.readLine());
int[] arr = new int[n];
for(int i = 0; i < n; i++){
arr[i] = Integer.parseInt(f.readLine());
}
int[] levels = new int[n];
int curr_level = 0;
for(int i = 0; i < n; i++){
if(levels[curr_level] == arr[i]-1){
levels[curr_level]++;
}else if(arr[i] == 1){
curr_level++;
levels[curr_level]++;
}else if(arr[i] > 1){
while(curr_level > 0 && levels[curr_level] != arr[i]-1){
levels[curr_level] = 0;
curr_level--;
}
levels[curr_level]++;
}
StringBuilder ostring = new StringBuilder();
for(int level = 0; level <= curr_level; level++){
ostring.append(levels[level]);
if(level != curr_level) ostring.append(".");
}
out.println(ostring);
}
}
out.close();
}
}
|
O(n^3)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C {
public static void main(String[] args) throws IOException{
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
int t = Integer.parseInt(f.readLine());
while(t-->0){
int n = Integer.parseInt(f.readLine());
int[] arr = new int[n];
for(int i = 0; i < n; i++){
arr[i] = Integer.parseInt(f.readLine());
}
int[] levels = new int[n];
int curr_level = 0;
for(int i = 0; i < n; i++){
if(levels[curr_level] == arr[i]-1){
levels[curr_level]++;
}else if(arr[i] == 1){
curr_level++;
levels[curr_level]++;
}else if(arr[i] > 1){
while(curr_level > 0 && levels[curr_level] != arr[i]-1){
levels[curr_level] = 0;
curr_level--;
}
levels[curr_level]++;
}
StringBuilder ostring = new StringBuilder();
for(int level = 0; level <= curr_level; level++){
ostring.append(levels[level]);
if(level != curr_level) ostring.append(".");
}
out.println(ostring);
}
}
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class C {
public static void main(String[] args) throws IOException{
BufferedReader f = new BufferedReader(new InputStreamReader(System.in));
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
int t = Integer.parseInt(f.readLine());
while(t-->0){
int n = Integer.parseInt(f.readLine());
int[] arr = new int[n];
for(int i = 0; i < n; i++){
arr[i] = Integer.parseInt(f.readLine());
}
int[] levels = new int[n];
int curr_level = 0;
for(int i = 0; i < n; i++){
if(levels[curr_level] == arr[i]-1){
levels[curr_level]++;
}else if(arr[i] == 1){
curr_level++;
levels[curr_level]++;
}else if(arr[i] > 1){
while(curr_level > 0 && levels[curr_level] != arr[i]-1){
levels[curr_level] = 0;
curr_level--;
}
levels[curr_level]++;
}
StringBuilder ostring = new StringBuilder();
for(int level = 0; level <= curr_level; level++){
ostring.append(levels[level]);
if(level != curr_level) ostring.append(".");
}
out.println(ostring);
}
}
out.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 614 | 3,862 |
1,499 |
import java.io.InputStream;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.Scanner;
/**
* @author Abhimanyu Singh
*
*/
public class LittleGirlAndMaximumXOR {
private InputStream input;
private PrintStream output;
private Scanner inputSc;
static final boolean ONE = true;
static final boolean ZERO = false;
char dp[][][];
public LittleGirlAndMaximumXOR(InputStream input, PrintStream output) {
this.input = input;
this.output = output;
init();
}
private void init() {
inputSc = new Scanner(input);
}
static int lineToInt(String line) {
return Integer.parseInt(line);
}
public void solve() {
solveTestCase(1);
}
void fill(char a[], long value) {
String str = Long.toBinaryString(value);
char array[] = str.toCharArray();
int len = array.length;
int index = 63;
while (len > 0) {
a[index] = array[len - 1];
len--;
index--;
}
}
void init(char a[]) {
for (int i = 0; i < 64; i++) {
a[i] = '0';
}
}
/*
char[] getMax0(char lBit[], char rBit[], int lIndex, int rIndex) {
char ans[]=new char[64];
if(lIndex)
}
char[] getMax(char lBit[], char rBit[], int lIndex, int rIndex) {
}*/
private void solveTestCase(int testN) {
long l = inputSc.nextLong();
long r = inputSc.nextLong();
char lBit[] = new char[64];
char rBit[] = new char[64];
init(lBit);
init(rBit);
fill(lBit, l);
fill(rBit, r);
int i = 0;
char ansBit[] = new char[64];
char a[] = new char[64];
char b[] = new char[64];
init(a);
init(b);
init(ansBit);
for (; i < 64; i++) {
if (lBit[i] == '0' && rBit[i] == '0') {
} else if (lBit[i] == '1' && rBit[i] == '0') {
throw new RuntimeException("Wrong Input");
} else if (lBit[i] == '0' && rBit[i] == '1') {
a[i] = '0';
b[i] = '1';
break;
} else {
a[i] = '1';
b[i] = '1';
}
}
boolean aLessB = true;
boolean aBig = false;
boolean bSmall = false;
for (; i < 64; i++) {
if (lBit[i] == '0' && rBit[i] == '0') {
a[i] = '1';
b[i] = '0';
aBig = true;
} else if (lBit[i] == '1' && rBit[i] == '0') {
a[i] = '1';
b[i] = '0';
} else if (lBit[i] == '0' && rBit[i] == '1') {
a[i] = '0';
b[i] = '1';
} else {
a[i] = '1';
b[i] = '0';
bSmall = true;
}
}
for (i = 0; i < 64; i++) {
if (a[i] == '0' && b[i] == '0') {
ansBit[i] = '0';
} else if (a[i] == '1' && b[i] == '0') {
ansBit[i] = '1';
} else if (a[i] == '0' && b[i] == '1') {
ansBit[i] = '1';
} else {
ansBit[i] = '0';
}
}
String ansStr = new String(ansBit);
long ansValue = Long.parseLong(ansStr, 2);
output.println(ansValue);
}
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
LittleGirlAndMaximumXOR lgamx = new LittleGirlAndMaximumXOR(System.in, System.out);
lgamx.solve();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.InputStream;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.Scanner;
/**
* @author Abhimanyu Singh
*
*/
public class LittleGirlAndMaximumXOR {
private InputStream input;
private PrintStream output;
private Scanner inputSc;
static final boolean ONE = true;
static final boolean ZERO = false;
char dp[][][];
public LittleGirlAndMaximumXOR(InputStream input, PrintStream output) {
this.input = input;
this.output = output;
init();
}
private void init() {
inputSc = new Scanner(input);
}
static int lineToInt(String line) {
return Integer.parseInt(line);
}
public void solve() {
solveTestCase(1);
}
void fill(char a[], long value) {
String str = Long.toBinaryString(value);
char array[] = str.toCharArray();
int len = array.length;
int index = 63;
while (len > 0) {
a[index] = array[len - 1];
len--;
index--;
}
}
void init(char a[]) {
for (int i = 0; i < 64; i++) {
a[i] = '0';
}
}
/*
char[] getMax0(char lBit[], char rBit[], int lIndex, int rIndex) {
char ans[]=new char[64];
if(lIndex)
}
char[] getMax(char lBit[], char rBit[], int lIndex, int rIndex) {
}*/
private void solveTestCase(int testN) {
long l = inputSc.nextLong();
long r = inputSc.nextLong();
char lBit[] = new char[64];
char rBit[] = new char[64];
init(lBit);
init(rBit);
fill(lBit, l);
fill(rBit, r);
int i = 0;
char ansBit[] = new char[64];
char a[] = new char[64];
char b[] = new char[64];
init(a);
init(b);
init(ansBit);
for (; i < 64; i++) {
if (lBit[i] == '0' && rBit[i] == '0') {
} else if (lBit[i] == '1' && rBit[i] == '0') {
throw new RuntimeException("Wrong Input");
} else if (lBit[i] == '0' && rBit[i] == '1') {
a[i] = '0';
b[i] = '1';
break;
} else {
a[i] = '1';
b[i] = '1';
}
}
boolean aLessB = true;
boolean aBig = false;
boolean bSmall = false;
for (; i < 64; i++) {
if (lBit[i] == '0' && rBit[i] == '0') {
a[i] = '1';
b[i] = '0';
aBig = true;
} else if (lBit[i] == '1' && rBit[i] == '0') {
a[i] = '1';
b[i] = '0';
} else if (lBit[i] == '0' && rBit[i] == '1') {
a[i] = '0';
b[i] = '1';
} else {
a[i] = '1';
b[i] = '0';
bSmall = true;
}
}
for (i = 0; i < 64; i++) {
if (a[i] == '0' && b[i] == '0') {
ansBit[i] = '0';
} else if (a[i] == '1' && b[i] == '0') {
ansBit[i] = '1';
} else if (a[i] == '0' && b[i] == '1') {
ansBit[i] = '1';
} else {
ansBit[i] = '0';
}
}
String ansStr = new String(ansBit);
long ansValue = Long.parseLong(ansStr, 2);
output.println(ansValue);
}
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
LittleGirlAndMaximumXOR lgamx = new LittleGirlAndMaximumXOR(System.in, System.out);
lgamx.solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.InputStream;
import java.io.PrintStream;
import java.util.Arrays;
import java.util.Scanner;
/**
* @author Abhimanyu Singh
*
*/
public class LittleGirlAndMaximumXOR {
private InputStream input;
private PrintStream output;
private Scanner inputSc;
static final boolean ONE = true;
static final boolean ZERO = false;
char dp[][][];
public LittleGirlAndMaximumXOR(InputStream input, PrintStream output) {
this.input = input;
this.output = output;
init();
}
private void init() {
inputSc = new Scanner(input);
}
static int lineToInt(String line) {
return Integer.parseInt(line);
}
public void solve() {
solveTestCase(1);
}
void fill(char a[], long value) {
String str = Long.toBinaryString(value);
char array[] = str.toCharArray();
int len = array.length;
int index = 63;
while (len > 0) {
a[index] = array[len - 1];
len--;
index--;
}
}
void init(char a[]) {
for (int i = 0; i < 64; i++) {
a[i] = '0';
}
}
/*
char[] getMax0(char lBit[], char rBit[], int lIndex, int rIndex) {
char ans[]=new char[64];
if(lIndex)
}
char[] getMax(char lBit[], char rBit[], int lIndex, int rIndex) {
}*/
private void solveTestCase(int testN) {
long l = inputSc.nextLong();
long r = inputSc.nextLong();
char lBit[] = new char[64];
char rBit[] = new char[64];
init(lBit);
init(rBit);
fill(lBit, l);
fill(rBit, r);
int i = 0;
char ansBit[] = new char[64];
char a[] = new char[64];
char b[] = new char[64];
init(a);
init(b);
init(ansBit);
for (; i < 64; i++) {
if (lBit[i] == '0' && rBit[i] == '0') {
} else if (lBit[i] == '1' && rBit[i] == '0') {
throw new RuntimeException("Wrong Input");
} else if (lBit[i] == '0' && rBit[i] == '1') {
a[i] = '0';
b[i] = '1';
break;
} else {
a[i] = '1';
b[i] = '1';
}
}
boolean aLessB = true;
boolean aBig = false;
boolean bSmall = false;
for (; i < 64; i++) {
if (lBit[i] == '0' && rBit[i] == '0') {
a[i] = '1';
b[i] = '0';
aBig = true;
} else if (lBit[i] == '1' && rBit[i] == '0') {
a[i] = '1';
b[i] = '0';
} else if (lBit[i] == '0' && rBit[i] == '1') {
a[i] = '0';
b[i] = '1';
} else {
a[i] = '1';
b[i] = '0';
bSmall = true;
}
}
for (i = 0; i < 64; i++) {
if (a[i] == '0' && b[i] == '0') {
ansBit[i] = '0';
} else if (a[i] == '1' && b[i] == '0') {
ansBit[i] = '1';
} else if (a[i] == '0' && b[i] == '1') {
ansBit[i] = '1';
} else {
ansBit[i] = '0';
}
}
String ansStr = new String(ansBit);
long ansValue = Long.parseLong(ansStr, 2);
output.println(ansValue);
}
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
LittleGirlAndMaximumXOR lgamx = new LittleGirlAndMaximumXOR(System.in, System.out);
lgamx.solve();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^2): The time complexity grows proportionally to the square of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,341 | 1,497 |
2,988 |
import java.io.*;
import java.util.*;
public class cf {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
pw.println(n/2+1);
pw.close();
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class cf {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
pw.println(n/2+1);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
public class cf {
static class FastScanner {
BufferedReader br;
StringTokenizer st;
public FastScanner() {
try {
br = new BufferedReader(new InputStreamReader(System.in));
st = new StringTokenizer(br.readLine());
} catch (Exception e){e.printStackTrace();}
}
public String next() {
if (st.hasMoreTokens()) return st.nextToken();
try {st = new StringTokenizer(br.readLine());}
catch (Exception e) {e.printStackTrace();}
return st.nextToken();
}
public int nextInt() {return Integer.parseInt(next());}
public long nextLong() {return Long.parseLong(next());}
public double nextDouble() {return Double.parseDouble(next());}
public String nextLine() {
String line = "";
if(st.hasMoreTokens()) line = st.nextToken();
else try {return br.readLine();}catch(IOException e){e.printStackTrace();}
while(st.hasMoreTokens()) line += " "+st.nextToken();
return line;
}
}
public static void main(String[] args) {
FastScanner sc = new FastScanner();
PrintWriter pw = new PrintWriter(System.out);
int n = sc.nextInt();
pw.println(n/2+1);
pw.close();
}
}
</CODE>
<EVALUATION_RUBRIC>
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 610 | 2,982 |
46 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskG solver = new TaskG();
solver.solve(1, in, out);
out.close();
}
static class TaskG {
static final long MODULO = (long) 1e9 + 7;
static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO;
static final int[] ONE = new int[]{1};
int k;
int n;
long[] globalRes;
int[] p2;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
k = in.nextInt();
globalRes = new long[k + 1];
p2 = new int[n + 1];
p2[0] = 1;
for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO);
Vertex[] vs = new Vertex[n];
for (int i = 0; i < n; ++i) vs[i] = new Vertex();
for (int i = 0; i < n - 1; ++i) {
Vertex a = vs[in.nextInt() - 1];
Vertex b = vs[in.nextInt() - 1];
a.adj.add(b);
b.adj.add(a);
}
vs[0].dfs(null);
long[][] ways = new long[k + 1][k + 1];
ways[0][0] = 1;
for (int i = 1; i <= k; ++i) {
for (int j = 1; j <= k; ++j) {
ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO;
}
}
long sum = 0;
for (int i = 1; i <= k; ++i) {
long s = globalRes[i];
s %= MODULO;
sum = (sum + s * ways[k][i]) % MODULO;
}
out.println(sum);
}
class Vertex {
int[] res;
int subtreeSize;
List<Vertex> adj = new ArrayList<>();
public void dfs(Vertex parent) {
subtreeSize = 1;
int[] prod = ONE;
for (Vertex child : adj)
if (child != parent) {
child.dfs(this);
subtreeSize += child.subtreeSize;
}
int mult = 2;//p2[n - subtreeSize];
for (Vertex child : adj)
if (child != parent) {
int[] c = child.res;
prod = mul(prod, c);
subFrom(globalRes, c, 1);
}
addTo(globalRes, prod, mult);
res = insertEdge(prod);
}
private int[] insertEdge(int[] a) {
int len = a.length + 1;
if (len > k) len = k + 1;
int[] b = new int[len];
b[0] = a[0] * 2;
if (b[0] >= MODULO) b[0] -= MODULO;
for (int i = 1; i < len; ++i) {
long s = a[i - 1];
if (i < a.length) s += a[i];
if (s >= MODULO) s -= MODULO;
s = s * 2;
if (s >= MODULO) s -= MODULO;
b[i] = (int) s;
}
b[1] -= 1;
if (b[1] < 0) b[1] += MODULO;
return b;
}
private void addTo(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + b[i] * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private void subFrom(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + (MODULO - b[i]) * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private int[] mul(int[] a, int[] b) {
int len = a.length + b.length - 1;
if (len > k) len = k + 1;
int[] c = new int[len];
for (int i = 0; i < len; ++i) {
long s = 0;
int left = Math.max(0, i - (b.length - 1));
int right = Math.min(a.length - 1, i);
for (int ia = left; ia <= right; ++ia) {
int ib = i - ia;
s += a[ia] * (long) b[ib];
if (s < 0) s -= BIG;
}
c[i] = (int) (s % MODULO);
}
return c;
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
|
O(n^2)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskG solver = new TaskG();
solver.solve(1, in, out);
out.close();
}
static class TaskG {
static final long MODULO = (long) 1e9 + 7;
static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO;
static final int[] ONE = new int[]{1};
int k;
int n;
long[] globalRes;
int[] p2;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
k = in.nextInt();
globalRes = new long[k + 1];
p2 = new int[n + 1];
p2[0] = 1;
for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO);
Vertex[] vs = new Vertex[n];
for (int i = 0; i < n; ++i) vs[i] = new Vertex();
for (int i = 0; i < n - 1; ++i) {
Vertex a = vs[in.nextInt() - 1];
Vertex b = vs[in.nextInt() - 1];
a.adj.add(b);
b.adj.add(a);
}
vs[0].dfs(null);
long[][] ways = new long[k + 1][k + 1];
ways[0][0] = 1;
for (int i = 1; i <= k; ++i) {
for (int j = 1; j <= k; ++j) {
ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO;
}
}
long sum = 0;
for (int i = 1; i <= k; ++i) {
long s = globalRes[i];
s %= MODULO;
sum = (sum + s * ways[k][i]) % MODULO;
}
out.println(sum);
}
class Vertex {
int[] res;
int subtreeSize;
List<Vertex> adj = new ArrayList<>();
public void dfs(Vertex parent) {
subtreeSize = 1;
int[] prod = ONE;
for (Vertex child : adj)
if (child != parent) {
child.dfs(this);
subtreeSize += child.subtreeSize;
}
int mult = 2;//p2[n - subtreeSize];
for (Vertex child : adj)
if (child != parent) {
int[] c = child.res;
prod = mul(prod, c);
subFrom(globalRes, c, 1);
}
addTo(globalRes, prod, mult);
res = insertEdge(prod);
}
private int[] insertEdge(int[] a) {
int len = a.length + 1;
if (len > k) len = k + 1;
int[] b = new int[len];
b[0] = a[0] * 2;
if (b[0] >= MODULO) b[0] -= MODULO;
for (int i = 1; i < len; ++i) {
long s = a[i - 1];
if (i < a.length) s += a[i];
if (s >= MODULO) s -= MODULO;
s = s * 2;
if (s >= MODULO) s -= MODULO;
b[i] = (int) s;
}
b[1] -= 1;
if (b[1] < 0) b[1] += MODULO;
return b;
}
private void addTo(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + b[i] * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private void subFrom(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + (MODULO - b[i]) * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private int[] mul(int[] a, int[] b) {
int len = a.length + b.length - 1;
if (len > k) len = k + 1;
int[] c = new int[len];
for (int i = 0; i < len; ++i) {
long s = 0;
int left = Math.max(0, i - (b.length - 1));
int right = Math.min(a.length - 1, i);
for (int ia = left; ia <= right; ++ia) {
int ib = i - ia;
s += a[ia] * (long) b[ib];
if (s < 0) s -= BIG;
}
c[i] = (int) (s % MODULO);
}
return c;
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(1): The running time does not change regardless of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n): The running time grows linearly with the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
import java.io.BufferedReader;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
PrintWriter out = new PrintWriter(outputStream);
TaskG solver = new TaskG();
solver.solve(1, in, out);
out.close();
}
static class TaskG {
static final long MODULO = (long) 1e9 + 7;
static final long BIG = Long.MAX_VALUE - Long.MAX_VALUE % MODULO;
static final int[] ONE = new int[]{1};
int k;
int n;
long[] globalRes;
int[] p2;
public void solve(int testNumber, InputReader in, PrintWriter out) {
n = in.nextInt();
k = in.nextInt();
globalRes = new long[k + 1];
p2 = new int[n + 1];
p2[0] = 1;
for (int i = 1; i <= n; ++i) p2[i] = (int) (2 * p2[i - 1] % MODULO);
Vertex[] vs = new Vertex[n];
for (int i = 0; i < n; ++i) vs[i] = new Vertex();
for (int i = 0; i < n - 1; ++i) {
Vertex a = vs[in.nextInt() - 1];
Vertex b = vs[in.nextInt() - 1];
a.adj.add(b);
b.adj.add(a);
}
vs[0].dfs(null);
long[][] ways = new long[k + 1][k + 1];
ways[0][0] = 1;
for (int i = 1; i <= k; ++i) {
for (int j = 1; j <= k; ++j) {
ways[i][j] = j * (ways[i - 1][j] + ways[i - 1][j - 1]) % MODULO;
}
}
long sum = 0;
for (int i = 1; i <= k; ++i) {
long s = globalRes[i];
s %= MODULO;
sum = (sum + s * ways[k][i]) % MODULO;
}
out.println(sum);
}
class Vertex {
int[] res;
int subtreeSize;
List<Vertex> adj = new ArrayList<>();
public void dfs(Vertex parent) {
subtreeSize = 1;
int[] prod = ONE;
for (Vertex child : adj)
if (child != parent) {
child.dfs(this);
subtreeSize += child.subtreeSize;
}
int mult = 2;//p2[n - subtreeSize];
for (Vertex child : adj)
if (child != parent) {
int[] c = child.res;
prod = mul(prod, c);
subFrom(globalRes, c, 1);
}
addTo(globalRes, prod, mult);
res = insertEdge(prod);
}
private int[] insertEdge(int[] a) {
int len = a.length + 1;
if (len > k) len = k + 1;
int[] b = new int[len];
b[0] = a[0] * 2;
if (b[0] >= MODULO) b[0] -= MODULO;
for (int i = 1; i < len; ++i) {
long s = a[i - 1];
if (i < a.length) s += a[i];
if (s >= MODULO) s -= MODULO;
s = s * 2;
if (s >= MODULO) s -= MODULO;
b[i] = (int) s;
}
b[1] -= 1;
if (b[1] < 0) b[1] += MODULO;
return b;
}
private void addTo(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + b[i] * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private void subFrom(long[] a, int[] b, int mult) {
for (int i = 0; i < b.length; ++i) {
long s = a[i] + (MODULO - b[i]) * (long) mult;
if (s < 0) s -= BIG;
a[i] = s;
}
}
private int[] mul(int[] a, int[] b) {
int len = a.length + b.length - 1;
if (len > k) len = k + 1;
int[] c = new int[len];
for (int i = 0; i < len; ++i) {
long s = 0;
int left = Math.max(0, i - (b.length - 1));
int right = Math.min(a.length - 1, i);
for (int ia = left; ia <= right; ++ia) {
int ib = i - ia;
s += a[ia] * (long) b[ib];
if (s < 0) s -= BIG;
}
c[i] = (int) (s % MODULO);
}
return c;
}
}
}
static class InputReader {
public BufferedReader reader;
public StringTokenizer tokenizer;
public InputReader(InputStream stream) {
reader = new BufferedReader(new InputStreamReader(stream), 32768);
tokenizer = null;
}
public String next() {
while (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,721 | 46 |
4,274 |
import java.io.*;
import java.util.*;
import java.lang.reflect.Array;
import java.math.*;
public class Solution {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private Random rnd;
int[] levels;
int[] loyal;
int n, k;
double A;
int[] choices;
int[] new_loyal;
double[] koef;
double ans = 0.0;
int total;
void rec(int step, int start) {
if(step == k) {
for(int i = 0; i < n; i++) {
new_loyal[i] = loyal[i];
}
for(int i = 0; i < k; i++) {
new_loyal[choices[i]] = Math.min(100, new_loyal[choices[i]] + 10);
}
int full = 0;
for(int i = 0; i < n; i++) {
if(new_loyal[i] == 100) {
++full;
}
}
if(full > (n / 2)) {
ans = 1.0;
return;
}
for(int i = 0; i < n; i++) {
koef[i] = (double) new_loyal[i] / 100.0;
}
int bits_needed = (n / 2) + 1;
double total_win = 0.0;
double total_fights = 0.0;
for(int mask = 0; mask < total; mask++) {
int bits = 0;
double win = 1.0;
double loose = 1.0;
double b = 0.0;
for(int bit = 0; bit < n; bit++) {
if((mask & (1 << bit)) != 0) {
++bits;
win *= koef[bit];
} else {
loose *= (1.0 - koef[bit]);
b += levels[bit];
}
}
double prob = win * loose;
if(bits >= bits_needed) {
total_win += prob;
} else {
total_fights += prob * (A / (A + b));
}
}
ans = Math.max(ans, total_win + total_fights);
} else {
for(int i = start; i < n; i++) {
choices[step] = i;
rec(step + 1, i);
}
}
}
public void solve() throws IOException {
n = nextInt();
k = nextInt();
A = nextInt();
levels = new int[n];
loyal = new int[n];
new_loyal = new int[n];
choices = new int[k];
koef = new double[n];
for(int i = 0; i < n; i++) {
levels[i] = nextInt();
loyal[i] = nextInt();
}
total = 1 << n;
rec(0, 0);
out.println(ans);
}
public static void main(String[] args) {
new Solution().run();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
st = null;
rnd = new Random();
solve();
out.close();
} catch(IOException e) {
e.printStackTrace();
}
}
private String nextToken() throws IOException, NullPointerException {
while(st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.lang.reflect.Array;
import java.math.*;
public class Solution {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private Random rnd;
int[] levels;
int[] loyal;
int n, k;
double A;
int[] choices;
int[] new_loyal;
double[] koef;
double ans = 0.0;
int total;
void rec(int step, int start) {
if(step == k) {
for(int i = 0; i < n; i++) {
new_loyal[i] = loyal[i];
}
for(int i = 0; i < k; i++) {
new_loyal[choices[i]] = Math.min(100, new_loyal[choices[i]] + 10);
}
int full = 0;
for(int i = 0; i < n; i++) {
if(new_loyal[i] == 100) {
++full;
}
}
if(full > (n / 2)) {
ans = 1.0;
return;
}
for(int i = 0; i < n; i++) {
koef[i] = (double) new_loyal[i] / 100.0;
}
int bits_needed = (n / 2) + 1;
double total_win = 0.0;
double total_fights = 0.0;
for(int mask = 0; mask < total; mask++) {
int bits = 0;
double win = 1.0;
double loose = 1.0;
double b = 0.0;
for(int bit = 0; bit < n; bit++) {
if((mask & (1 << bit)) != 0) {
++bits;
win *= koef[bit];
} else {
loose *= (1.0 - koef[bit]);
b += levels[bit];
}
}
double prob = win * loose;
if(bits >= bits_needed) {
total_win += prob;
} else {
total_fights += prob * (A / (A + b));
}
}
ans = Math.max(ans, total_win + total_fights);
} else {
for(int i = start; i < n; i++) {
choices[step] = i;
rec(step + 1, i);
}
}
}
public void solve() throws IOException {
n = nextInt();
k = nextInt();
A = nextInt();
levels = new int[n];
loyal = new int[n];
new_loyal = new int[n];
choices = new int[k];
koef = new double[n];
for(int i = 0; i < n; i++) {
levels[i] = nextInt();
loyal[i] = nextInt();
}
total = 1 << n;
rec(0, 0);
out.println(ans);
}
public static void main(String[] args) {
new Solution().run();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
st = null;
rnd = new Random();
solve();
out.close();
} catch(IOException e) {
e.printStackTrace();
}
}
private String nextToken() throws IOException, NullPointerException {
while(st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import java.lang.reflect.Array;
import java.math.*;
public class Solution {
private BufferedReader in;
private PrintWriter out;
private StringTokenizer st;
private Random rnd;
int[] levels;
int[] loyal;
int n, k;
double A;
int[] choices;
int[] new_loyal;
double[] koef;
double ans = 0.0;
int total;
void rec(int step, int start) {
if(step == k) {
for(int i = 0; i < n; i++) {
new_loyal[i] = loyal[i];
}
for(int i = 0; i < k; i++) {
new_loyal[choices[i]] = Math.min(100, new_loyal[choices[i]] + 10);
}
int full = 0;
for(int i = 0; i < n; i++) {
if(new_loyal[i] == 100) {
++full;
}
}
if(full > (n / 2)) {
ans = 1.0;
return;
}
for(int i = 0; i < n; i++) {
koef[i] = (double) new_loyal[i] / 100.0;
}
int bits_needed = (n / 2) + 1;
double total_win = 0.0;
double total_fights = 0.0;
for(int mask = 0; mask < total; mask++) {
int bits = 0;
double win = 1.0;
double loose = 1.0;
double b = 0.0;
for(int bit = 0; bit < n; bit++) {
if((mask & (1 << bit)) != 0) {
++bits;
win *= koef[bit];
} else {
loose *= (1.0 - koef[bit]);
b += levels[bit];
}
}
double prob = win * loose;
if(bits >= bits_needed) {
total_win += prob;
} else {
total_fights += prob * (A / (A + b));
}
}
ans = Math.max(ans, total_win + total_fights);
} else {
for(int i = start; i < n; i++) {
choices[step] = i;
rec(step + 1, i);
}
}
}
public void solve() throws IOException {
n = nextInt();
k = nextInt();
A = nextInt();
levels = new int[n];
loyal = new int[n];
new_loyal = new int[n];
choices = new int[k];
koef = new double[n];
for(int i = 0; i < n; i++) {
levels[i] = nextInt();
loyal[i] = nextInt();
}
total = 1 << n;
rec(0, 0);
out.println(ans);
}
public static void main(String[] args) {
new Solution().run();
}
public void run() {
try {
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
st = null;
rnd = new Random();
solve();
out.close();
} catch(IOException e) {
e.printStackTrace();
}
}
private String nextToken() throws IOException, NullPointerException {
while(st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- O(1): The execution time is unaffected by the size of the input n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,241 | 4,263 |
4,501 |
import java.util.Arrays;
import java.util.Scanner;
public class thing {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
String s = in.next();
int[][] count = new int[m][m];
int[] dp = new int[1 << m];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
for(int i = 1; i < n; i++) {
int a = s.charAt(i)-'a';
int b = s.charAt(i-1)-'a';
count[a][b]++;
count[b][a]++;
}
for(int i = 1; i < (1 << m); i++) {
int pos = set_bits(i);
for(int j = 0; (i >> j) != 0; j++) {
if(((i >> j) & 1) == 0) continue;
int sum = 0;
for(int mask = i, y = 0; y < m; mask >>= 1, y++) {
if(y == j) continue;
if((mask & 1) == 1) sum += count[j][y];
else sum -= count[j][y];
}
int calc = dp[i-(1<<j)] + pos*sum;
dp[i] = Math.min(dp[i], calc);
}
}
System.out.println(dp[(1 << m)-1]);
}
public static int set_bits(int n) {
int count = 0;
while (n > 0) {
count += n & 1;
n >>= 1;
}
return count;
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class thing {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
String s = in.next();
int[][] count = new int[m][m];
int[] dp = new int[1 << m];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
for(int i = 1; i < n; i++) {
int a = s.charAt(i)-'a';
int b = s.charAt(i-1)-'a';
count[a][b]++;
count[b][a]++;
}
for(int i = 1; i < (1 << m); i++) {
int pos = set_bits(i);
for(int j = 0; (i >> j) != 0; j++) {
if(((i >> j) & 1) == 0) continue;
int sum = 0;
for(int mask = i, y = 0; y < m; mask >>= 1, y++) {
if(y == j) continue;
if((mask & 1) == 1) sum += count[j][y];
else sum -= count[j][y];
}
int calc = dp[i-(1<<j)] + pos*sum;
dp[i] = Math.min(dp[i], calc);
}
}
System.out.println(dp[(1 << m)-1]);
}
public static int set_bits(int n) {
int count = 0;
while (n > 0) {
count += n & 1;
n >>= 1;
}
return count;
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.util.Arrays;
import java.util.Scanner;
public class thing {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
String s = in.next();
int[][] count = new int[m][m];
int[] dp = new int[1 << m];
Arrays.fill(dp, Integer.MAX_VALUE);
dp[0] = 0;
for(int i = 1; i < n; i++) {
int a = s.charAt(i)-'a';
int b = s.charAt(i-1)-'a';
count[a][b]++;
count[b][a]++;
}
for(int i = 1; i < (1 << m); i++) {
int pos = set_bits(i);
for(int j = 0; (i >> j) != 0; j++) {
if(((i >> j) & 1) == 0) continue;
int sum = 0;
for(int mask = i, y = 0; y < m; mask >>= 1, y++) {
if(y == j) continue;
if((mask & 1) == 1) sum += count[j][y];
else sum -= count[j][y];
}
int calc = dp[i-(1<<j)] + pos*sum;
dp[i] = Math.min(dp[i], calc);
}
}
System.out.println(dp[(1 << m)-1]);
}
public static int set_bits(int n) {
int count = 0;
while (n > 0) {
count += n & 1;
n >>= 1;
}
return count;
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 731 | 4,490 |
289 |
import java.util.*;
import java.io.*;
public class code{
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int ok,ok2;
int va,vb;
va = 0;
vb = 0;
out.println("? "+va+" "+vb);
out.flush();
ok = sc.nextInt();
for(int i=29;i>=0;i--){
if(ok==0){
va += (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok2 = sc.nextInt();
if(ok2==1){
va -= (1<<i);
}else{
vb += (1<<i);
}
}else{
va += (1<<i);
vb += (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok2 = sc.nextInt();
if(ok==ok2){
vb -= (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok2 = sc.nextInt();
if(ok2==1){
va -= (1<<i);
}else{
vb += (1<<i);
}
}else{
if(ok==1){
vb -= (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok = sc.nextInt();
}
else {
va -= (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok = sc.nextInt();
}
}
}
}
out.println("! "+va+" "+vb);
out.flush();
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class code{
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int ok,ok2;
int va,vb;
va = 0;
vb = 0;
out.println("? "+va+" "+vb);
out.flush();
ok = sc.nextInt();
for(int i=29;i>=0;i--){
if(ok==0){
va += (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok2 = sc.nextInt();
if(ok2==1){
va -= (1<<i);
}else{
vb += (1<<i);
}
}else{
va += (1<<i);
vb += (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok2 = sc.nextInt();
if(ok==ok2){
vb -= (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok2 = sc.nextInt();
if(ok2==1){
va -= (1<<i);
}else{
vb += (1<<i);
}
}else{
if(ok==1){
vb -= (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok = sc.nextInt();
}
else {
va -= (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok = sc.nextInt();
}
}
}
}
out.println("! "+va+" "+vb);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^2): The running time increases with the square of the input size n.
- O(n): The running time grows linearly with the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.util.*;
import java.io.*;
public class code{
public static void main(String[] args) throws IOException{
Scanner sc = new Scanner(System.in);
PrintWriter out = new PrintWriter(System.out);
int ok,ok2;
int va,vb;
va = 0;
vb = 0;
out.println("? "+va+" "+vb);
out.flush();
ok = sc.nextInt();
for(int i=29;i>=0;i--){
if(ok==0){
va += (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok2 = sc.nextInt();
if(ok2==1){
va -= (1<<i);
}else{
vb += (1<<i);
}
}else{
va += (1<<i);
vb += (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok2 = sc.nextInt();
if(ok==ok2){
vb -= (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok2 = sc.nextInt();
if(ok2==1){
va -= (1<<i);
}else{
vb += (1<<i);
}
}else{
if(ok==1){
vb -= (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok = sc.nextInt();
}
else {
va -= (1<<i);
out.println("? "+va+" "+vb);
out.flush();
ok = sc.nextInt();
}
}
}
}
out.println("! "+va+" "+vb);
out.flush();
}
}
</CODE>
<EVALUATION_RUBRIC>
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(n^3): The running time increases with the cube of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(1): The running time does not change regardless of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 697 | 289 |
4,270 |
/**
* Created by IntelliJ IDEA.
* User: Taras_Brzezinsky
* Date: 8/13/11
* Time: 6:10 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
import java.io.IOException;
public class DarkAssembly extends Thread {
public DarkAssembly() {
this.input = new BufferedReader(new InputStreamReader(System.in));
this.output = new PrintWriter(System.out);
this.setPriority(Thread.MAX_PRIORITY);
}
static class Senator {
int loyalty;
int level;
public Senator(int level, int loyalty) {
this.level = level;
this.loyalty = loyalty;
}
}
private static double doIt(Senator[] senators, int A) {
double probability = .0;
for (int mask = 0; mask < (1 << senators.length); ++mask) {
int sum = A;
double current = 1.0;
for (int i = 0; i < senators.length; ++i) {
if ((mask & (1 << i)) != 0) {
current *= .01 * senators[i].loyalty;
} else {
current *= .01 * (100 - senators[i].loyalty);
sum += senators[i].level;
}
}
if (getOnes(mask) > senators.length / 2) {
probability += current;
} else {
probability += current * (double)A / sum;
}
}
return probability;
}
private static double go(Senator []senators, int candies, int A, int current) {
if (current == senators.length) {
return doIt(senators, A);
} else {
double result = go(senators, candies, A, current + 1);
if (candies > 0 && senators[current].loyalty < 100) {
senators[current].loyalty += 10;
result = Math.max(result, go(senators, candies - 1, A, current));
senators[current].loyalty -= 10;
}
return result;
}
}
static int getOnes(int mask) {
int result = 0;
while (mask != 0) {
mask &= mask - 1;
++result;
}
return result;
}
public void run() {
try {
int n = nextInt();
int k = nextInt();
int A = nextInt();
Senator[] senators = new Senator[n];
for (int i = 0; i < n; ++i) {
senators[i] = new Senator(nextInt(), nextInt());
}
output.printf("%.10f", go(senators, k, A, 0));
output.flush();
output.close();
} catch (Throwable e) {
System.err.println(e.getMessage());
System.err.println(Arrays.deepToString(e.getStackTrace()));
}
}
public static void main(String[] args) {
new DarkAssembly().start();
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
/**
* Created by IntelliJ IDEA.
* User: Taras_Brzezinsky
* Date: 8/13/11
* Time: 6:10 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
import java.io.IOException;
public class DarkAssembly extends Thread {
public DarkAssembly() {
this.input = new BufferedReader(new InputStreamReader(System.in));
this.output = new PrintWriter(System.out);
this.setPriority(Thread.MAX_PRIORITY);
}
static class Senator {
int loyalty;
int level;
public Senator(int level, int loyalty) {
this.level = level;
this.loyalty = loyalty;
}
}
private static double doIt(Senator[] senators, int A) {
double probability = .0;
for (int mask = 0; mask < (1 << senators.length); ++mask) {
int sum = A;
double current = 1.0;
for (int i = 0; i < senators.length; ++i) {
if ((mask & (1 << i)) != 0) {
current *= .01 * senators[i].loyalty;
} else {
current *= .01 * (100 - senators[i].loyalty);
sum += senators[i].level;
}
}
if (getOnes(mask) > senators.length / 2) {
probability += current;
} else {
probability += current * (double)A / sum;
}
}
return probability;
}
private static double go(Senator []senators, int candies, int A, int current) {
if (current == senators.length) {
return doIt(senators, A);
} else {
double result = go(senators, candies, A, current + 1);
if (candies > 0 && senators[current].loyalty < 100) {
senators[current].loyalty += 10;
result = Math.max(result, go(senators, candies - 1, A, current));
senators[current].loyalty -= 10;
}
return result;
}
}
static int getOnes(int mask) {
int result = 0;
while (mask != 0) {
mask &= mask - 1;
++result;
}
return result;
}
public void run() {
try {
int n = nextInt();
int k = nextInt();
int A = nextInt();
Senator[] senators = new Senator[n];
for (int i = 0; i < n; ++i) {
senators[i] = new Senator(nextInt(), nextInt());
}
output.printf("%.10f", go(senators, k, A, 0));
output.flush();
output.close();
} catch (Throwable e) {
System.err.println(e.getMessage());
System.err.println(Arrays.deepToString(e.getStackTrace()));
}
}
public static void main(String[] args) {
new DarkAssembly().start();
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^3): The running time increases with the cube of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Identify the category of worst-case time complexity for the Java program, considering how algorithm performance grows with input n.
</TASK>
<CODE>
/**
* Created by IntelliJ IDEA.
* User: Taras_Brzezinsky
* Date: 8/13/11
* Time: 6:10 PM
* To change this template use File | Settings | File Templates.
*/
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.*;
import java.io.IOException;
public class DarkAssembly extends Thread {
public DarkAssembly() {
this.input = new BufferedReader(new InputStreamReader(System.in));
this.output = new PrintWriter(System.out);
this.setPriority(Thread.MAX_PRIORITY);
}
static class Senator {
int loyalty;
int level;
public Senator(int level, int loyalty) {
this.level = level;
this.loyalty = loyalty;
}
}
private static double doIt(Senator[] senators, int A) {
double probability = .0;
for (int mask = 0; mask < (1 << senators.length); ++mask) {
int sum = A;
double current = 1.0;
for (int i = 0; i < senators.length; ++i) {
if ((mask & (1 << i)) != 0) {
current *= .01 * senators[i].loyalty;
} else {
current *= .01 * (100 - senators[i].loyalty);
sum += senators[i].level;
}
}
if (getOnes(mask) > senators.length / 2) {
probability += current;
} else {
probability += current * (double)A / sum;
}
}
return probability;
}
private static double go(Senator []senators, int candies, int A, int current) {
if (current == senators.length) {
return doIt(senators, A);
} else {
double result = go(senators, candies, A, current + 1);
if (candies > 0 && senators[current].loyalty < 100) {
senators[current].loyalty += 10;
result = Math.max(result, go(senators, candies - 1, A, current));
senators[current].loyalty -= 10;
}
return result;
}
}
static int getOnes(int mask) {
int result = 0;
while (mask != 0) {
mask &= mask - 1;
++result;
}
return result;
}
public void run() {
try {
int n = nextInt();
int k = nextInt();
int A = nextInt();
Senator[] senators = new Senator[n];
for (int i = 0; i < n; ++i) {
senators[i] = new Senator(nextInt(), nextInt());
}
output.printf("%.10f", go(senators, k, A, 0));
output.flush();
output.close();
} catch (Throwable e) {
System.err.println(e.getMessage());
System.err.println(Arrays.deepToString(e.getStackTrace()));
}
}
public static void main(String[] args) {
new DarkAssembly().start();
}
private String nextToken() throws IOException {
while (tokens == null || !tokens.hasMoreTokens()) {
tokens = new StringTokenizer(input.readLine());
}
return tokens.nextToken();
}
private int nextInt() throws IOException {
return Integer.parseInt(nextToken());
}
private double nextDouble() throws IOException {
return Double.parseDouble(nextToken());
}
private long nextLong() throws IOException {
return Long.parseLong(nextToken());
}
private BufferedReader input;
private PrintWriter output;
private StringTokenizer tokens = null;
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The execution time ascends in proportion to the square of the input size n.
- O(n^3): The execution time ascends in proportion to the cube of the input size n.
- others: The time complexity does not fit to any of the given categories or is ambiguous.
- O(n): The execution time ascends in a one-to-one ratio with the input size n.
- O(nlog(n)): The execution time ascends in non-polynomial way with input size n, typically exponentially.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The execution time is unaffected by the size of the input n.
- O(log(n)): The execution time ascends in proportion to the logarithm of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,123 | 4,259 |
4,059 |
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class Solution {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
int[] x;
int[] y;
int n;
int X, Y;
int[] d;
int[][] dist;
int sqr(int a) {
return a * a;
}
int dist(int X, int Y, int i) {
return sqr(X - x[i]) + sqr(Y - y[i]);
}
int[] dp;
byte[][] pred;
int rec(int mask) {
if (dp[mask] == -1) {
int res = 1 << 29;
boolean ok = false;
for (int i = 0; i < n; ++i)
if ((mask & (1 << i)) > 0) {
ok = true;
int mm = mask & ~(1 << i);
for (int j = i; j < n; j++)
if ((mask & (1 << j)) > 0) {
int nmask = mm & ~(1 << j);
int a = rec(nmask) + d[i] + d[j] + dist[i][j];
if (a < res) {
res = a;
pred[0][mask] = (byte) (i);
pred[1][mask] = (byte) (j);
}
}
break;
}
if (!ok)
res = 0;
dp[mask] = res;
}
return dp[mask];
}
void solve() throws IOException {
X = ni();
Y = ni();
n = ni();
x = new int[n];
y = new int[n];
for (int i = 0; i < n; i++) {
x[i] = ni();
y[i] = ni();
}
d = new int[n];
dist = new int[n][n];
for (int i = 0; i < n; ++i)
d[i] = dist(X, Y, i);
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; j++) {
dist[i][j] = dist(x[i], y[i], j);
}
pred = new byte[2][1 << n];
dp = new int[1 << n];
Arrays.fill(dp, -1);
out.println(rec((1 << n) - 1));
int a = (1 << n) - 1;
while (a > 0) {
if (pred[0][a] != pred[1][a])
out.print(0 + " " + (pred[0][a] + 1) + " " + (pred[1][a] + 1)
+ " ");
else
out.print(0 + " " + (pred[0][a] + 1) + " ");
int na = a & ~(1 << pred[0][a]);
na &= ~(1 << pred[1][a]);
a = na;
}
out.println(0);
}
public Solution() throws IOException {
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
String ns() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int ni() throws IOException {
return Integer.valueOf(ns());
}
long nl() throws IOException {
return Long.valueOf(ns());
}
double nd() throws IOException {
return Double.valueOf(ns());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
|
non-polynomial
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class Solution {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
int[] x;
int[] y;
int n;
int X, Y;
int[] d;
int[][] dist;
int sqr(int a) {
return a * a;
}
int dist(int X, int Y, int i) {
return sqr(X - x[i]) + sqr(Y - y[i]);
}
int[] dp;
byte[][] pred;
int rec(int mask) {
if (dp[mask] == -1) {
int res = 1 << 29;
boolean ok = false;
for (int i = 0; i < n; ++i)
if ((mask & (1 << i)) > 0) {
ok = true;
int mm = mask & ~(1 << i);
for (int j = i; j < n; j++)
if ((mask & (1 << j)) > 0) {
int nmask = mm & ~(1 << j);
int a = rec(nmask) + d[i] + d[j] + dist[i][j];
if (a < res) {
res = a;
pred[0][mask] = (byte) (i);
pred[1][mask] = (byte) (j);
}
}
break;
}
if (!ok)
res = 0;
dp[mask] = res;
}
return dp[mask];
}
void solve() throws IOException {
X = ni();
Y = ni();
n = ni();
x = new int[n];
y = new int[n];
for (int i = 0; i < n; i++) {
x[i] = ni();
y[i] = ni();
}
d = new int[n];
dist = new int[n][n];
for (int i = 0; i < n; ++i)
d[i] = dist(X, Y, i);
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; j++) {
dist[i][j] = dist(x[i], y[i], j);
}
pred = new byte[2][1 << n];
dp = new int[1 << n];
Arrays.fill(dp, -1);
out.println(rec((1 << n) - 1));
int a = (1 << n) - 1;
while (a > 0) {
if (pred[0][a] != pred[1][a])
out.print(0 + " " + (pred[0][a] + 1) + " " + (pred[1][a] + 1)
+ " ");
else
out.print(0 + " " + (pred[0][a] + 1) + " ");
int na = a & ~(1 << pred[0][a]);
na &= ~(1 << pred[1][a]);
a = na;
}
out.println(0);
}
public Solution() throws IOException {
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
String ns() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int ni() throws IOException {
return Integer.valueOf(ns());
}
long nl() throws IOException {
return Long.valueOf(ns());
}
double nd() throws IOException {
return Double.valueOf(ns());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.*;
import java.util.*;
import static java.lang.Math.*;
public class Solution {
BufferedReader in;
PrintWriter out;
StringTokenizer st;
int[] x;
int[] y;
int n;
int X, Y;
int[] d;
int[][] dist;
int sqr(int a) {
return a * a;
}
int dist(int X, int Y, int i) {
return sqr(X - x[i]) + sqr(Y - y[i]);
}
int[] dp;
byte[][] pred;
int rec(int mask) {
if (dp[mask] == -1) {
int res = 1 << 29;
boolean ok = false;
for (int i = 0; i < n; ++i)
if ((mask & (1 << i)) > 0) {
ok = true;
int mm = mask & ~(1 << i);
for (int j = i; j < n; j++)
if ((mask & (1 << j)) > 0) {
int nmask = mm & ~(1 << j);
int a = rec(nmask) + d[i] + d[j] + dist[i][j];
if (a < res) {
res = a;
pred[0][mask] = (byte) (i);
pred[1][mask] = (byte) (j);
}
}
break;
}
if (!ok)
res = 0;
dp[mask] = res;
}
return dp[mask];
}
void solve() throws IOException {
X = ni();
Y = ni();
n = ni();
x = new int[n];
y = new int[n];
for (int i = 0; i < n; i++) {
x[i] = ni();
y[i] = ni();
}
d = new int[n];
dist = new int[n][n];
for (int i = 0; i < n; ++i)
d[i] = dist(X, Y, i);
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; j++) {
dist[i][j] = dist(x[i], y[i], j);
}
pred = new byte[2][1 << n];
dp = new int[1 << n];
Arrays.fill(dp, -1);
out.println(rec((1 << n) - 1));
int a = (1 << n) - 1;
while (a > 0) {
if (pred[0][a] != pred[1][a])
out.print(0 + " " + (pred[0][a] + 1) + " " + (pred[1][a] + 1)
+ " ");
else
out.print(0 + " " + (pred[0][a] + 1) + " ");
int na = a & ~(1 << pred[0][a]);
na &= ~(1 << pred[1][a]);
a = na;
}
out.println(0);
}
public Solution() throws IOException {
Locale.setDefault(Locale.US);
in = new BufferedReader(new InputStreamReader(System.in));
out = new PrintWriter(System.out);
solve();
in.close();
out.close();
}
String ns() throws IOException {
while (st == null || !st.hasMoreTokens()) {
st = new StringTokenizer(in.readLine());
}
return st.nextToken();
}
int ni() throws IOException {
return Integer.valueOf(ns());
}
long nl() throws IOException {
return Long.valueOf(ns());
}
double nd() throws IOException {
return Double.valueOf(ns());
}
public static void main(String[] args) throws IOException {
new Solution();
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n^3): The running time increases with the cube of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- others: The code does not clearly correspond to the listed classes or has an unclassified time complexity.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,161 | 4,048 |
1,083 |
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Rustam Musin (t.me/musin_acm)
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
DOlyaIMagicheskiiKvadrat solver = new DOlyaIMagicheskiiKvadrat();
solver.solve(1, in, out);
out.close();
}
static class DOlyaIMagicheskiiKvadrat {
long inf = (long) 1e18 + 1;
long[] maxLen;
public void solve(int testNumber, InputReader in, OutputWriter out) {
maxLen = new long[100];
maxLen[1] = 0;
for (int i = 1; i < maxLen.length; i++) {
maxLen[i] = Math.min(inf, maxLen[i - 1] * 4 + 1);
}
if (false) {
for (int n = 1; n <= 3; n++) {
for (int k = 1; k <= maxSplitCount(n) + 20; k++) {
out.print(n + " " + k + " ");
int res = solve(n, k);
if (res == -1) {
out.printLine("NO");
} else {
out.printLine("YES " + res);
}
}
}
return;
}
int q = in.readInt();
while (q-- > 0) {
int n = in.readInt();
long k = in.readLong();
int res = solve(n, k);
if (res == -1) {
out.printLine("NO");
continue;
}
out.printLine("YES " + res);
}
}
long maxSplitCount(int n) {
if (n >= maxLen.length) {
return inf;
}
return maxLen[n];
}
int solve(int n, long k) {
if (maxSplitCount(n) < k) {
return -1;
}
int at = 0;
while (maxSplitCount(at + 1) <= k) {
at++;
}
int curSideLog = n - at;
k -= maxSplitCount(at);
double sideLen = Math.pow(2, n - curSideLog);
double pathLen = sideLen * 2 - 1;
if (curSideLog > 0 && pathLen <= k) {
return curSideLog - 1;
}
double area = sideLen * sideLen;
double otherArea = area - pathLen;
if (otherArea * (double) maxSplitCount(curSideLog) >= k) {
return curSideLog;
}
return -1;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
}
|
O(log(n))
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Classify the following Java code's worst-case time complexity according to its relationship to the input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Rustam Musin (t.me/musin_acm)
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
DOlyaIMagicheskiiKvadrat solver = new DOlyaIMagicheskiiKvadrat();
solver.solve(1, in, out);
out.close();
}
static class DOlyaIMagicheskiiKvadrat {
long inf = (long) 1e18 + 1;
long[] maxLen;
public void solve(int testNumber, InputReader in, OutputWriter out) {
maxLen = new long[100];
maxLen[1] = 0;
for (int i = 1; i < maxLen.length; i++) {
maxLen[i] = Math.min(inf, maxLen[i - 1] * 4 + 1);
}
if (false) {
for (int n = 1; n <= 3; n++) {
for (int k = 1; k <= maxSplitCount(n) + 20; k++) {
out.print(n + " " + k + " ");
int res = solve(n, k);
if (res == -1) {
out.printLine("NO");
} else {
out.printLine("YES " + res);
}
}
}
return;
}
int q = in.readInt();
while (q-- > 0) {
int n = in.readInt();
long k = in.readLong();
int res = solve(n, k);
if (res == -1) {
out.printLine("NO");
continue;
}
out.printLine("YES " + res);
}
}
long maxSplitCount(int n) {
if (n >= maxLen.length) {
return inf;
}
return maxLen[n];
}
int solve(int n, long k) {
if (maxSplitCount(n) < k) {
return -1;
}
int at = 0;
while (maxSplitCount(at + 1) <= k) {
at++;
}
int curSideLog = n - at;
k -= maxSplitCount(at);
double sideLen = Math.pow(2, n - curSideLog);
double pathLen = sideLen * 2 - 1;
if (curSideLog > 0 && pathLen <= k) {
return curSideLog - 1;
}
double area = sideLen * sideLen;
double otherArea = area - pathLen;
if (otherArea * (double) maxSplitCount(curSideLog) >= k) {
return curSideLog;
}
return -1;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(nlog(n)): The running time increases with the product of n and logarithm of n.
- O(n): The running time grows linearly with the input size n.
- O(n^2): The running time increases with the square of the input size n.
- O(1): The running time does not change regardless of the input size n.
- O(log(n)): The running time increases with the logarithm of the input size n.
- non-polynomial: The running time increases non-polynomially with input size n, typically exponentially.
- O(n^3): The running time increases with the cube of the input size n.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.OutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.BufferedWriter;
import java.io.Writer;
import java.io.OutputStreamWriter;
import java.util.InputMismatchException;
import java.io.IOException;
import java.io.InputStream;
/**
* Built using CHelper plug-in
* Actual solution is at the top
*
* @author Rustam Musin (t.me/musin_acm)
*/
public class Main {
public static void main(String[] args) {
InputStream inputStream = System.in;
OutputStream outputStream = System.out;
InputReader in = new InputReader(inputStream);
OutputWriter out = new OutputWriter(outputStream);
DOlyaIMagicheskiiKvadrat solver = new DOlyaIMagicheskiiKvadrat();
solver.solve(1, in, out);
out.close();
}
static class DOlyaIMagicheskiiKvadrat {
long inf = (long) 1e18 + 1;
long[] maxLen;
public void solve(int testNumber, InputReader in, OutputWriter out) {
maxLen = new long[100];
maxLen[1] = 0;
for (int i = 1; i < maxLen.length; i++) {
maxLen[i] = Math.min(inf, maxLen[i - 1] * 4 + 1);
}
if (false) {
for (int n = 1; n <= 3; n++) {
for (int k = 1; k <= maxSplitCount(n) + 20; k++) {
out.print(n + " " + k + " ");
int res = solve(n, k);
if (res == -1) {
out.printLine("NO");
} else {
out.printLine("YES " + res);
}
}
}
return;
}
int q = in.readInt();
while (q-- > 0) {
int n = in.readInt();
long k = in.readLong();
int res = solve(n, k);
if (res == -1) {
out.printLine("NO");
continue;
}
out.printLine("YES " + res);
}
}
long maxSplitCount(int n) {
if (n >= maxLen.length) {
return inf;
}
return maxLen[n];
}
int solve(int n, long k) {
if (maxSplitCount(n) < k) {
return -1;
}
int at = 0;
while (maxSplitCount(at + 1) <= k) {
at++;
}
int curSideLog = n - at;
k -= maxSplitCount(at);
double sideLen = Math.pow(2, n - curSideLog);
double pathLen = sideLen * 2 - 1;
if (curSideLog > 0 && pathLen <= k) {
return curSideLog - 1;
}
double area = sideLen * sideLen;
double otherArea = area - pathLen;
if (otherArea * (double) maxSplitCount(curSideLog) >= k) {
return curSideLog;
}
return -1;
}
}
static class InputReader {
private InputStream stream;
private byte[] buf = new byte[1024];
private int curChar;
private int numChars;
private InputReader.SpaceCharFilter filter;
public InputReader(InputStream stream) {
this.stream = stream;
}
public int read() {
if (numChars == -1) {
throw new InputMismatchException();
}
if (curChar >= numChars) {
curChar = 0;
try {
numChars = stream.read(buf);
} catch (IOException e) {
throw new InputMismatchException();
}
if (numChars <= 0) {
return -1;
}
}
return buf[curChar++];
}
public int readInt() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
int res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public long readLong() {
int c = read();
while (isSpaceChar(c)) {
c = read();
}
int sgn = 1;
if (c == '-') {
sgn = -1;
c = read();
}
long res = 0;
do {
if (c < '0' || c > '9') {
throw new InputMismatchException();
}
res *= 10;
res += c - '0';
c = read();
} while (!isSpaceChar(c));
return res * sgn;
}
public boolean isSpaceChar(int c) {
if (filter != null) {
return filter.isSpaceChar(c);
}
return isWhitespace(c);
}
public static boolean isWhitespace(int c) {
return c == ' ' || c == '\n' || c == '\r' || c == '\t' || c == -1;
}
public interface SpaceCharFilter {
public boolean isSpaceChar(int ch);
}
}
static class OutputWriter {
private final PrintWriter writer;
public OutputWriter(OutputStream outputStream) {
writer = new PrintWriter(new BufferedWriter(new OutputStreamWriter(outputStream)));
}
public OutputWriter(Writer writer) {
this.writer = new PrintWriter(writer);
}
public void print(Object... objects) {
for (int i = 0; i < objects.length; i++) {
if (i != 0) {
writer.print(' ');
}
writer.print(objects[i]);
}
}
public void printLine(Object... objects) {
print(objects);
writer.println();
}
public void close() {
writer.close();
}
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(1): The time complexity is constant to the input size n.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 1,703 | 1,082 |
2,990 |
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Scanner;
public class CodeForces
{
public static void main(String[] args)
{
Scanner input = new Scanner(new BufferedReader(new InputStreamReader(System.in)));
System.out.println(input.nextInt() / 2 + 1);
}
}
|
O(1)
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Scanner;
public class CodeForces
{
public static void main(String[] args)
{
Scanner input = new Scanner(new BufferedReader(new InputStreamReader(System.in)));
System.out.println(input.nextInt() / 2 + 1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
- O(1): The time complexity is constant to the input size n.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
|
Evaluate the code based on the given task, code, and evaluation rubric. Provide a fair and detailed assessment following the rubric.
The XML tags are defined as follows:
- <TASK>: Describes what the responses are supposed to accomplish.
- <CODE>: The code provided to be evaluated.
- <EVALUATION_RUBRIC>: Evaluation rubric to select which label is appropriate.
- <OUTPUT_FORMAT>: Specifies the required format for your final answer.
<TASK>
Determine the worst-case time complexity category of a given Java code based on input size n.
</TASK>
<CODE>
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Scanner;
public class CodeForces
{
public static void main(String[] args)
{
Scanner input = new Scanner(new BufferedReader(new InputStreamReader(System.in)));
System.out.println(input.nextInt() / 2 + 1);
}
}
</CODE>
<EVALUATION_RUBRIC>
- O(n^2): The time complexity grows proportionally to the square of the input size.
- others: The time complexity does not fit any of the above categories or cannot be clearly classified.
- O(log(n)): The time complexity increases logarithmically in relation to the input size.
- non-polynomial: The time complexity is not polynomial. It grows very fast, often exponentially.
- O(n): The time complexity increases proportionally to the input size n in a linear manner.
- O(nlog(n)): The time complexity combines linear and logarithmic growth factors.
- O(1): The time complexity is constant to the input size n.
- O(n^3): The time complexity scales proportionally to the cube of the input size.
</EVALUATION_RUBRIC>
<OUTPUT_FORMAT>
Return a JSON response in the following format:
{
"explanation": "Explanation of why the response received a particular time complexity",
"time_complexity": "Time complexity assigned to the response based on the rubric"
}
</OUTPUT_FORMAT>
| 391 | 2,984 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.